1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// If true, it is safe to use metadata during simplification. 111 InstrInfoQuery IIQ; 112 113 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 114 const DominatorTree *DT, bool UseInstrInfo, 115 OptimizationRemarkEmitter *ORE = nullptr) 116 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 117 }; 118 119 } // end anonymous namespace 120 121 // Given the provided Value and, potentially, a context instruction, return 122 // the preferred context instruction (if any). 123 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 124 // If we've been provided with a context instruction, then use that (provided 125 // it has been inserted). 126 if (CxtI && CxtI->getParent()) 127 return CxtI; 128 129 // If the value is really an already-inserted instruction, then use that. 130 CxtI = dyn_cast<Instruction>(V); 131 if (CxtI && CxtI->getParent()) 132 return CxtI; 133 134 return nullptr; 135 } 136 137 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 138 // If we've been provided with a context instruction, then use that (provided 139 // it has been inserted). 140 if (CxtI && CxtI->getParent()) 141 return CxtI; 142 143 // If the value is really an already-inserted instruction, then use that. 144 CxtI = dyn_cast<Instruction>(V1); 145 if (CxtI && CxtI->getParent()) 146 return CxtI; 147 148 CxtI = dyn_cast<Instruction>(V2); 149 if (CxtI && CxtI->getParent()) 150 return CxtI; 151 152 return nullptr; 153 } 154 155 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 156 const APInt &DemandedElts, 157 APInt &DemandedLHS, APInt &DemandedRHS) { 158 // The length of scalable vectors is unknown at compile time, thus we 159 // cannot check their values 160 if (isa<ScalableVectorType>(Shuf->getType())) 161 return false; 162 163 int NumElts = 164 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 165 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 166 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 167 if (DemandedElts.isNullValue()) 168 return true; 169 // Simple case of a shuffle with zeroinitializer. 170 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 171 DemandedLHS.setBit(0); 172 return true; 173 } 174 for (int i = 0; i != NumMaskElts; ++i) { 175 if (!DemandedElts[i]) 176 continue; 177 int M = Shuf->getMaskValue(i); 178 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 179 180 // For undef elements, we don't know anything about the common state of 181 // the shuffle result. 182 if (M == -1) 183 return false; 184 if (M < NumElts) 185 DemandedLHS.setBit(M % NumElts); 186 else 187 DemandedRHS.setBit(M % NumElts); 188 } 189 190 return true; 191 } 192 193 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 194 KnownBits &Known, unsigned Depth, const Query &Q); 195 196 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 197 const Query &Q) { 198 // FIXME: We currently have no way to represent the DemandedElts of a scalable 199 // vector 200 if (isa<ScalableVectorType>(V->getType())) { 201 Known.resetAll(); 202 return; 203 } 204 205 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 206 APInt DemandedElts = 207 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 208 computeKnownBits(V, DemandedElts, Known, Depth, Q); 209 } 210 211 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 212 const DataLayout &DL, unsigned Depth, 213 AssumptionCache *AC, const Instruction *CxtI, 214 const DominatorTree *DT, 215 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 216 ::computeKnownBits(V, Known, Depth, 217 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 218 } 219 220 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 221 KnownBits &Known, const DataLayout &DL, 222 unsigned Depth, AssumptionCache *AC, 223 const Instruction *CxtI, const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, DemandedElts, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 230 unsigned Depth, const Query &Q); 231 232 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 233 const Query &Q); 234 235 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 236 unsigned Depth, AssumptionCache *AC, 237 const Instruction *CxtI, 238 const DominatorTree *DT, 239 OptimizationRemarkEmitter *ORE, 240 bool UseInstrInfo) { 241 return ::computeKnownBits( 242 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 243 } 244 245 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 246 const DataLayout &DL, unsigned Depth, 247 AssumptionCache *AC, const Instruction *CxtI, 248 const DominatorTree *DT, 249 OptimizationRemarkEmitter *ORE, 250 bool UseInstrInfo) { 251 return ::computeKnownBits( 252 V, DemandedElts, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 257 const DataLayout &DL, AssumptionCache *AC, 258 const Instruction *CxtI, const DominatorTree *DT, 259 bool UseInstrInfo) { 260 assert(LHS->getType() == RHS->getType() && 261 "LHS and RHS should have the same type"); 262 assert(LHS->getType()->isIntOrIntVectorTy() && 263 "LHS and RHS should be integers"); 264 // Look for an inverted mask: (X & ~M) op (Y & M). 265 Value *M; 266 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 267 match(RHS, m_c_And(m_Specific(M), m_Value()))) 268 return true; 269 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 270 match(LHS, m_c_And(m_Specific(M), m_Value()))) 271 return true; 272 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 273 KnownBits LHSKnown(IT->getBitWidth()); 274 KnownBits RHSKnown(IT->getBitWidth()); 275 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 276 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 277 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 278 } 279 280 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 281 for (const User *U : CxtI->users()) { 282 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 283 if (IC->isEquality()) 284 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 285 if (C->isNullValue()) 286 continue; 287 return false; 288 } 289 return true; 290 } 291 292 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 293 const Query &Q); 294 295 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 296 bool OrZero, unsigned Depth, 297 AssumptionCache *AC, const Instruction *CxtI, 298 const DominatorTree *DT, bool UseInstrInfo) { 299 return ::isKnownToBeAPowerOfTwo( 300 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 301 } 302 303 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 304 unsigned Depth, const Query &Q); 305 306 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 307 308 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 309 AssumptionCache *AC, const Instruction *CxtI, 310 const DominatorTree *DT, bool UseInstrInfo) { 311 return ::isKnownNonZero(V, Depth, 312 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 313 } 314 315 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 316 unsigned Depth, AssumptionCache *AC, 317 const Instruction *CxtI, const DominatorTree *DT, 318 bool UseInstrInfo) { 319 KnownBits Known = 320 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 321 return Known.isNonNegative(); 322 } 323 324 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 325 AssumptionCache *AC, const Instruction *CxtI, 326 const DominatorTree *DT, bool UseInstrInfo) { 327 if (auto *CI = dyn_cast<ConstantInt>(V)) 328 return CI->getValue().isStrictlyPositive(); 329 330 // TODO: We'd doing two recursive queries here. We should factor this such 331 // that only a single query is needed. 332 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 333 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 334 } 335 336 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 337 AssumptionCache *AC, const Instruction *CxtI, 338 const DominatorTree *DT, bool UseInstrInfo) { 339 KnownBits Known = 340 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 341 return Known.isNegative(); 342 } 343 344 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 345 const Query &Q); 346 347 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 348 const DataLayout &DL, AssumptionCache *AC, 349 const Instruction *CxtI, const DominatorTree *DT, 350 bool UseInstrInfo) { 351 return ::isKnownNonEqual(V1, V2, 0, 352 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 353 UseInstrInfo, /*ORE=*/nullptr)); 354 } 355 356 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 357 const Query &Q); 358 359 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 360 const DataLayout &DL, unsigned Depth, 361 AssumptionCache *AC, const Instruction *CxtI, 362 const DominatorTree *DT, bool UseInstrInfo) { 363 return ::MaskedValueIsZero( 364 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 365 } 366 367 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 368 unsigned Depth, const Query &Q); 369 370 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 371 const Query &Q) { 372 // FIXME: We currently have no way to represent the DemandedElts of a scalable 373 // vector 374 if (isa<ScalableVectorType>(V->getType())) 375 return 1; 376 377 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 378 APInt DemandedElts = 379 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 380 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 381 } 382 383 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 384 unsigned Depth, AssumptionCache *AC, 385 const Instruction *CxtI, 386 const DominatorTree *DT, bool UseInstrInfo) { 387 return ::ComputeNumSignBits( 388 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 389 } 390 391 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 392 bool NSW, const APInt &DemandedElts, 393 KnownBits &KnownOut, KnownBits &Known2, 394 unsigned Depth, const Query &Q) { 395 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 396 397 // If one operand is unknown and we have no nowrap information, 398 // the result will be unknown independently of the second operand. 399 if (KnownOut.isUnknown() && !NSW) 400 return; 401 402 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 403 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 404 } 405 406 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 407 const APInt &DemandedElts, KnownBits &Known, 408 KnownBits &Known2, unsigned Depth, 409 const Query &Q) { 410 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 413 bool isKnownNegative = false; 414 bool isKnownNonNegative = false; 415 // If the multiplication is known not to overflow, compute the sign bit. 416 if (NSW) { 417 if (Op0 == Op1) { 418 // The product of a number with itself is non-negative. 419 isKnownNonNegative = true; 420 } else { 421 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 422 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 423 bool isKnownNegativeOp1 = Known.isNegative(); 424 bool isKnownNegativeOp0 = Known2.isNegative(); 425 // The product of two numbers with the same sign is non-negative. 426 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 427 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 428 // The product of a negative number and a non-negative number is either 429 // negative or zero. 430 if (!isKnownNonNegative) 431 isKnownNegative = 432 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 433 Known2.isNonZero()) || 434 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 435 } 436 } 437 438 Known = KnownBits::mul(Known, Known2); 439 440 // Only make use of no-wrap flags if we failed to compute the sign bit 441 // directly. This matters if the multiplication always overflows, in 442 // which case we prefer to follow the result of the direct computation, 443 // though as the program is invoking undefined behaviour we can choose 444 // whatever we like here. 445 if (isKnownNonNegative && !Known.isNegative()) 446 Known.makeNonNegative(); 447 else if (isKnownNegative && !Known.isNonNegative()) 448 Known.makeNegative(); 449 } 450 451 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 452 KnownBits &Known) { 453 unsigned BitWidth = Known.getBitWidth(); 454 unsigned NumRanges = Ranges.getNumOperands() / 2; 455 assert(NumRanges >= 1); 456 457 Known.Zero.setAllBits(); 458 Known.One.setAllBits(); 459 460 for (unsigned i = 0; i < NumRanges; ++i) { 461 ConstantInt *Lower = 462 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 463 ConstantInt *Upper = 464 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 465 ConstantRange Range(Lower->getValue(), Upper->getValue()); 466 467 // The first CommonPrefixBits of all values in Range are equal. 468 unsigned CommonPrefixBits = 469 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 470 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 471 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 472 Known.One &= UnsignedMax & Mask; 473 Known.Zero &= ~UnsignedMax & Mask; 474 } 475 } 476 477 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 478 SmallVector<const Value *, 16> WorkSet(1, I); 479 SmallPtrSet<const Value *, 32> Visited; 480 SmallPtrSet<const Value *, 16> EphValues; 481 482 // The instruction defining an assumption's condition itself is always 483 // considered ephemeral to that assumption (even if it has other 484 // non-ephemeral users). See r246696's test case for an example. 485 if (is_contained(I->operands(), E)) 486 return true; 487 488 while (!WorkSet.empty()) { 489 const Value *V = WorkSet.pop_back_val(); 490 if (!Visited.insert(V).second) 491 continue; 492 493 // If all uses of this value are ephemeral, then so is this value. 494 if (llvm::all_of(V->users(), [&](const User *U) { 495 return EphValues.count(U); 496 })) { 497 if (V == E) 498 return true; 499 500 if (V == I || isSafeToSpeculativelyExecute(V)) { 501 EphValues.insert(V); 502 if (const User *U = dyn_cast<User>(V)) 503 append_range(WorkSet, U->operands()); 504 } 505 } 506 } 507 508 return false; 509 } 510 511 // Is this an intrinsic that cannot be speculated but also cannot trap? 512 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 513 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 514 return CI->isAssumeLikeIntrinsic(); 515 516 return false; 517 } 518 519 bool llvm::isValidAssumeForContext(const Instruction *Inv, 520 const Instruction *CxtI, 521 const DominatorTree *DT) { 522 // There are two restrictions on the use of an assume: 523 // 1. The assume must dominate the context (or the control flow must 524 // reach the assume whenever it reaches the context). 525 // 2. The context must not be in the assume's set of ephemeral values 526 // (otherwise we will use the assume to prove that the condition 527 // feeding the assume is trivially true, thus causing the removal of 528 // the assume). 529 530 if (Inv->getParent() == CxtI->getParent()) { 531 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 532 // in the BB. 533 if (Inv->comesBefore(CxtI)) 534 return true; 535 536 // Don't let an assume affect itself - this would cause the problems 537 // `isEphemeralValueOf` is trying to prevent, and it would also make 538 // the loop below go out of bounds. 539 if (Inv == CxtI) 540 return false; 541 542 // The context comes first, but they're both in the same block. 543 // Make sure there is nothing in between that might interrupt 544 // the control flow, not even CxtI itself. 545 // We limit the scan distance between the assume and its context instruction 546 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 547 // it can be adjusted if needed (could be turned into a cl::opt). 548 unsigned ScanLimit = 15; 549 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 550 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 551 return false; 552 553 return !isEphemeralValueOf(Inv, CxtI); 554 } 555 556 // Inv and CxtI are in different blocks. 557 if (DT) { 558 if (DT->dominates(Inv, CxtI)) 559 return true; 560 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 561 // We don't have a DT, but this trivially dominates. 562 return true; 563 } 564 565 return false; 566 } 567 568 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 569 // v u> y implies v != 0. 570 if (Pred == ICmpInst::ICMP_UGT) 571 return true; 572 573 // Special-case v != 0 to also handle v != null. 574 if (Pred == ICmpInst::ICMP_NE) 575 return match(RHS, m_Zero()); 576 577 // All other predicates - rely on generic ConstantRange handling. 578 const APInt *C; 579 if (!match(RHS, m_APInt(C))) 580 return false; 581 582 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 583 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 584 } 585 586 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 587 // Use of assumptions is context-sensitive. If we don't have a context, we 588 // cannot use them! 589 if (!Q.AC || !Q.CxtI) 590 return false; 591 592 if (Q.CxtI && V->getType()->isPointerTy()) { 593 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 594 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 595 V->getType()->getPointerAddressSpace())) 596 AttrKinds.push_back(Attribute::Dereferenceable); 597 598 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 599 return true; 600 } 601 602 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 603 if (!AssumeVH) 604 continue; 605 CallInst *I = cast<CallInst>(AssumeVH); 606 assert(I->getFunction() == Q.CxtI->getFunction() && 607 "Got assumption for the wrong function!"); 608 609 // Warning: This loop can end up being somewhat performance sensitive. 610 // We're running this loop for once for each value queried resulting in a 611 // runtime of ~O(#assumes * #values). 612 613 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 614 "must be an assume intrinsic"); 615 616 Value *RHS; 617 CmpInst::Predicate Pred; 618 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 619 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 620 return false; 621 622 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 623 return true; 624 } 625 626 return false; 627 } 628 629 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 630 unsigned Depth, const Query &Q) { 631 // Use of assumptions is context-sensitive. If we don't have a context, we 632 // cannot use them! 633 if (!Q.AC || !Q.CxtI) 634 return; 635 636 unsigned BitWidth = Known.getBitWidth(); 637 638 // Refine Known set if the pointer alignment is set by assume bundles. 639 if (V->getType()->isPointerTy()) { 640 if (RetainedKnowledge RK = getKnowledgeValidInContext( 641 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 642 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 643 } 644 } 645 646 // Note that the patterns below need to be kept in sync with the code 647 // in AssumptionCache::updateAffectedValues. 648 649 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 650 if (!AssumeVH) 651 continue; 652 CallInst *I = cast<CallInst>(AssumeVH); 653 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 654 "Got assumption for the wrong function!"); 655 656 // Warning: This loop can end up being somewhat performance sensitive. 657 // We're running this loop for once for each value queried resulting in a 658 // runtime of ~O(#assumes * #values). 659 660 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 661 "must be an assume intrinsic"); 662 663 Value *Arg = I->getArgOperand(0); 664 665 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 666 assert(BitWidth == 1 && "assume operand is not i1?"); 667 Known.setAllOnes(); 668 return; 669 } 670 if (match(Arg, m_Not(m_Specific(V))) && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 assert(BitWidth == 1 && "assume operand is not i1?"); 673 Known.setAllZero(); 674 return; 675 } 676 677 // The remaining tests are all recursive, so bail out if we hit the limit. 678 if (Depth == MaxAnalysisRecursionDepth) 679 continue; 680 681 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 682 if (!Cmp) 683 continue; 684 685 // We are attempting to compute known bits for the operands of an assume. 686 // Do not try to use other assumptions for those recursive calls because 687 // that can lead to mutual recursion and a compile-time explosion. 688 // An example of the mutual recursion: computeKnownBits can call 689 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 690 // and so on. 691 Query QueryNoAC = Q; 692 QueryNoAC.AC = nullptr; 693 694 // Note that ptrtoint may change the bitwidth. 695 Value *A, *B; 696 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 697 698 CmpInst::Predicate Pred; 699 uint64_t C; 700 switch (Cmp->getPredicate()) { 701 default: 702 break; 703 case ICmpInst::ICMP_EQ: 704 // assume(v = a) 705 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 KnownBits RHSKnown = 708 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 709 Known.Zero |= RHSKnown.Zero; 710 Known.One |= RHSKnown.One; 711 // assume(v & b = a) 712 } else if (match(Cmp, 713 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 714 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 715 KnownBits RHSKnown = 716 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 717 KnownBits MaskKnown = 718 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 719 720 // For those bits in the mask that are known to be one, we can propagate 721 // known bits from the RHS to V. 722 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 723 Known.One |= RHSKnown.One & MaskKnown.One; 724 // assume(~(v & b) = a) 725 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 726 m_Value(A))) && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 KnownBits RHSKnown = 729 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 730 KnownBits MaskKnown = 731 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 732 733 // For those bits in the mask that are known to be one, we can propagate 734 // inverted known bits from the RHS to V. 735 Known.Zero |= RHSKnown.One & MaskKnown.One; 736 Known.One |= RHSKnown.Zero & MaskKnown.One; 737 // assume(v | b = a) 738 } else if (match(Cmp, 739 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 KnownBits RHSKnown = 742 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 743 KnownBits BKnown = 744 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 745 746 // For those bits in B that are known to be zero, we can propagate known 747 // bits from the RHS to V. 748 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 749 Known.One |= RHSKnown.One & BKnown.Zero; 750 // assume(~(v | b) = a) 751 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 752 m_Value(A))) && 753 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 754 KnownBits RHSKnown = 755 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 756 KnownBits BKnown = 757 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 758 759 // For those bits in B that are known to be zero, we can propagate 760 // inverted known bits from the RHS to V. 761 Known.Zero |= RHSKnown.One & BKnown.Zero; 762 Known.One |= RHSKnown.Zero & BKnown.Zero; 763 // assume(v ^ b = a) 764 } else if (match(Cmp, 765 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 KnownBits RHSKnown = 768 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 769 KnownBits BKnown = 770 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 771 772 // For those bits in B that are known to be zero, we can propagate known 773 // bits from the RHS to V. For those bits in B that are known to be one, 774 // we can propagate inverted known bits from the RHS to V. 775 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 776 Known.One |= RHSKnown.One & BKnown.Zero; 777 Known.Zero |= RHSKnown.One & BKnown.One; 778 Known.One |= RHSKnown.Zero & BKnown.One; 779 // assume(~(v ^ b) = a) 780 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 781 m_Value(A))) && 782 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 783 KnownBits RHSKnown = 784 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 785 KnownBits BKnown = 786 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 787 788 // For those bits in B that are known to be zero, we can propagate 789 // inverted known bits from the RHS to V. For those bits in B that are 790 // known to be one, we can propagate known bits from the RHS to V. 791 Known.Zero |= RHSKnown.One & BKnown.Zero; 792 Known.One |= RHSKnown.Zero & BKnown.Zero; 793 Known.Zero |= RHSKnown.Zero & BKnown.One; 794 Known.One |= RHSKnown.One & BKnown.One; 795 // assume(v << c = a) 796 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 797 m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 801 802 // For those bits in RHS that are known, we can propagate them to known 803 // bits in V shifted to the right by C. 804 RHSKnown.Zero.lshrInPlace(C); 805 Known.Zero |= RHSKnown.Zero; 806 RHSKnown.One.lshrInPlace(C); 807 Known.One |= RHSKnown.One; 808 // assume(~(v << c) = a) 809 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 810 m_Value(A))) && 811 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 812 KnownBits RHSKnown = 813 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 814 // For those bits in RHS that are known, we can propagate them inverted 815 // to known bits in V shifted to the right by C. 816 RHSKnown.One.lshrInPlace(C); 817 Known.Zero |= RHSKnown.One; 818 RHSKnown.Zero.lshrInPlace(C); 819 Known.One |= RHSKnown.Zero; 820 // assume(v >> c = a) 821 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 822 m_Value(A))) && 823 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 824 KnownBits RHSKnown = 825 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 826 // For those bits in RHS that are known, we can propagate them to known 827 // bits in V shifted to the right by C. 828 Known.Zero |= RHSKnown.Zero << C; 829 Known.One |= RHSKnown.One << C; 830 // assume(~(v >> c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 Known.Zero |= RHSKnown.One << C; 839 Known.One |= RHSKnown.Zero << C; 840 } 841 break; 842 case ICmpInst::ICMP_SGE: 843 // assume(v >=_s c) where c is non-negative 844 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 848 849 if (RHSKnown.isNonNegative()) { 850 // We know that the sign bit is zero. 851 Known.makeNonNegative(); 852 } 853 } 854 break; 855 case ICmpInst::ICMP_SGT: 856 // assume(v >_s c) where c is at least -1. 857 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 861 862 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 863 // We know that the sign bit is zero. 864 Known.makeNonNegative(); 865 } 866 } 867 break; 868 case ICmpInst::ICMP_SLE: 869 // assume(v <=_s c) where c is negative 870 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 871 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 872 KnownBits RHSKnown = 873 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 874 875 if (RHSKnown.isNegative()) { 876 // We know that the sign bit is one. 877 Known.makeNegative(); 878 } 879 } 880 break; 881 case ICmpInst::ICMP_SLT: 882 // assume(v <_s c) where c is non-positive 883 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 884 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 885 KnownBits RHSKnown = 886 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 887 888 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 889 // We know that the sign bit is one. 890 Known.makeNegative(); 891 } 892 } 893 break; 894 case ICmpInst::ICMP_ULE: 895 // assume(v <=_u c) 896 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 897 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 898 KnownBits RHSKnown = 899 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 900 901 // Whatever high bits in c are zero are known to be zero. 902 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 903 } 904 break; 905 case ICmpInst::ICMP_ULT: 906 // assume(v <_u c) 907 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 908 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 909 KnownBits RHSKnown = 910 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 911 912 // If the RHS is known zero, then this assumption must be wrong (nothing 913 // is unsigned less than zero). Signal a conflict and get out of here. 914 if (RHSKnown.isZero()) { 915 Known.Zero.setAllBits(); 916 Known.One.setAllBits(); 917 break; 918 } 919 920 // Whatever high bits in c are zero are known to be zero (if c is a power 921 // of 2, then one more). 922 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 923 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 924 else 925 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 926 } 927 break; 928 } 929 } 930 931 // If assumptions conflict with each other or previous known bits, then we 932 // have a logical fallacy. It's possible that the assumption is not reachable, 933 // so this isn't a real bug. On the other hand, the program may have undefined 934 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 935 // clear out the known bits, try to warn the user, and hope for the best. 936 if (Known.Zero.intersects(Known.One)) { 937 Known.resetAll(); 938 939 if (Q.ORE) 940 Q.ORE->emit([&]() { 941 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 942 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 943 CxtI) 944 << "Detected conflicting code assumptions. Program may " 945 "have undefined behavior, or compiler may have " 946 "internal error."; 947 }); 948 } 949 } 950 951 /// Compute known bits from a shift operator, including those with a 952 /// non-constant shift amount. Known is the output of this function. Known2 is a 953 /// pre-allocated temporary with the same bit width as Known and on return 954 /// contains the known bit of the shift value source. KF is an 955 /// operator-specific function that, given the known-bits and a shift amount, 956 /// compute the implied known-bits of the shift operator's result respectively 957 /// for that shift amount. The results from calling KF are conservatively 958 /// combined for all permitted shift amounts. 959 static void computeKnownBitsFromShiftOperator( 960 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 961 KnownBits &Known2, unsigned Depth, const Query &Q, 962 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 963 unsigned BitWidth = Known.getBitWidth(); 964 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 965 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 966 967 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 968 // BitWidth > 64 and any upper bits are known, we'll end up returning the 969 // limit value (which implies all bits are known). 970 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 971 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 972 bool ShiftAmtIsConstant = Known.isConstant(); 973 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 974 975 if (ShiftAmtIsConstant) { 976 Known = KF(Known2, Known); 977 978 // If the known bits conflict, this must be an overflowing left shift, so 979 // the shift result is poison. We can return anything we want. Choose 0 for 980 // the best folding opportunity. 981 if (Known.hasConflict()) 982 Known.setAllZero(); 983 984 return; 985 } 986 987 // If the shift amount could be greater than or equal to the bit-width of the 988 // LHS, the value could be poison, but bail out because the check below is 989 // expensive. 990 // TODO: Should we just carry on? 991 if (MaxShiftAmtIsOutOfRange) { 992 Known.resetAll(); 993 return; 994 } 995 996 // It would be more-clearly correct to use the two temporaries for this 997 // calculation. Reusing the APInts here to prevent unnecessary allocations. 998 Known.resetAll(); 999 1000 // If we know the shifter operand is nonzero, we can sometimes infer more 1001 // known bits. However this is expensive to compute, so be lazy about it and 1002 // only compute it when absolutely necessary. 1003 Optional<bool> ShifterOperandIsNonZero; 1004 1005 // Early exit if we can't constrain any well-defined shift amount. 1006 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1007 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1008 ShifterOperandIsNonZero = 1009 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1010 if (!*ShifterOperandIsNonZero) 1011 return; 1012 } 1013 1014 Known.Zero.setAllBits(); 1015 Known.One.setAllBits(); 1016 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1017 // Combine the shifted known input bits only for those shift amounts 1018 // compatible with its known constraints. 1019 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1020 continue; 1021 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1022 continue; 1023 // If we know the shifter is nonzero, we may be able to infer more known 1024 // bits. This check is sunk down as far as possible to avoid the expensive 1025 // call to isKnownNonZero if the cheaper checks above fail. 1026 if (ShiftAmt == 0) { 1027 if (!ShifterOperandIsNonZero.hasValue()) 1028 ShifterOperandIsNonZero = 1029 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1030 if (*ShifterOperandIsNonZero) 1031 continue; 1032 } 1033 1034 Known = KnownBits::commonBits( 1035 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1036 } 1037 1038 // If the known bits conflict, the result is poison. Return a 0 and hope the 1039 // caller can further optimize that. 1040 if (Known.hasConflict()) 1041 Known.setAllZero(); 1042 } 1043 1044 static void computeKnownBitsFromOperator(const Operator *I, 1045 const APInt &DemandedElts, 1046 KnownBits &Known, unsigned Depth, 1047 const Query &Q) { 1048 unsigned BitWidth = Known.getBitWidth(); 1049 1050 KnownBits Known2(BitWidth); 1051 switch (I->getOpcode()) { 1052 default: break; 1053 case Instruction::Load: 1054 if (MDNode *MD = 1055 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1056 computeKnownBitsFromRangeMetadata(*MD, Known); 1057 break; 1058 case Instruction::And: { 1059 // If either the LHS or the RHS are Zero, the result is zero. 1060 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1061 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1062 1063 Known &= Known2; 1064 1065 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1066 // here we handle the more general case of adding any odd number by 1067 // matching the form add(x, add(x, y)) where y is odd. 1068 // TODO: This could be generalized to clearing any bit set in y where the 1069 // following bit is known to be unset in y. 1070 Value *X = nullptr, *Y = nullptr; 1071 if (!Known.Zero[0] && !Known.One[0] && 1072 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1073 Known2.resetAll(); 1074 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1075 if (Known2.countMinTrailingOnes() > 0) 1076 Known.Zero.setBit(0); 1077 } 1078 break; 1079 } 1080 case Instruction::Or: 1081 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1082 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1083 1084 Known |= Known2; 1085 break; 1086 case Instruction::Xor: 1087 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1088 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1089 1090 Known ^= Known2; 1091 break; 1092 case Instruction::Mul: { 1093 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1094 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1095 Known, Known2, Depth, Q); 1096 break; 1097 } 1098 case Instruction::UDiv: { 1099 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1100 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1101 Known = KnownBits::udiv(Known, Known2); 1102 break; 1103 } 1104 case Instruction::Select: { 1105 const Value *LHS = nullptr, *RHS = nullptr; 1106 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1107 if (SelectPatternResult::isMinOrMax(SPF)) { 1108 computeKnownBits(RHS, Known, Depth + 1, Q); 1109 computeKnownBits(LHS, Known2, Depth + 1, Q); 1110 switch (SPF) { 1111 default: 1112 llvm_unreachable("Unhandled select pattern flavor!"); 1113 case SPF_SMAX: 1114 Known = KnownBits::smax(Known, Known2); 1115 break; 1116 case SPF_SMIN: 1117 Known = KnownBits::smin(Known, Known2); 1118 break; 1119 case SPF_UMAX: 1120 Known = KnownBits::umax(Known, Known2); 1121 break; 1122 case SPF_UMIN: 1123 Known = KnownBits::umin(Known, Known2); 1124 break; 1125 } 1126 break; 1127 } 1128 1129 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1130 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1131 1132 // Only known if known in both the LHS and RHS. 1133 Known = KnownBits::commonBits(Known, Known2); 1134 1135 if (SPF == SPF_ABS) { 1136 // RHS from matchSelectPattern returns the negation part of abs pattern. 1137 // If the negate has an NSW flag we can assume the sign bit of the result 1138 // will be 0 because that makes abs(INT_MIN) undefined. 1139 if (match(RHS, m_Neg(m_Specific(LHS))) && 1140 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1141 Known.Zero.setSignBit(); 1142 } 1143 1144 break; 1145 } 1146 case Instruction::FPTrunc: 1147 case Instruction::FPExt: 1148 case Instruction::FPToUI: 1149 case Instruction::FPToSI: 1150 case Instruction::SIToFP: 1151 case Instruction::UIToFP: 1152 break; // Can't work with floating point. 1153 case Instruction::PtrToInt: 1154 case Instruction::IntToPtr: 1155 // Fall through and handle them the same as zext/trunc. 1156 LLVM_FALLTHROUGH; 1157 case Instruction::ZExt: 1158 case Instruction::Trunc: { 1159 Type *SrcTy = I->getOperand(0)->getType(); 1160 1161 unsigned SrcBitWidth; 1162 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1163 // which fall through here. 1164 Type *ScalarTy = SrcTy->getScalarType(); 1165 SrcBitWidth = ScalarTy->isPointerTy() ? 1166 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1167 Q.DL.getTypeSizeInBits(ScalarTy); 1168 1169 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1170 Known = Known.anyextOrTrunc(SrcBitWidth); 1171 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1172 Known = Known.zextOrTrunc(BitWidth); 1173 break; 1174 } 1175 case Instruction::BitCast: { 1176 Type *SrcTy = I->getOperand(0)->getType(); 1177 if (SrcTy->isIntOrPtrTy() && 1178 // TODO: For now, not handling conversions like: 1179 // (bitcast i64 %x to <2 x i32>) 1180 !I->getType()->isVectorTy()) { 1181 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1182 break; 1183 } 1184 break; 1185 } 1186 case Instruction::SExt: { 1187 // Compute the bits in the result that are not present in the input. 1188 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1189 1190 Known = Known.trunc(SrcBitWidth); 1191 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1192 // If the sign bit of the input is known set or clear, then we know the 1193 // top bits of the result. 1194 Known = Known.sext(BitWidth); 1195 break; 1196 } 1197 case Instruction::Shl: { 1198 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1199 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1200 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1201 // If this shift has "nsw" keyword, then the result is either a poison 1202 // value or has the same sign bit as the first operand. 1203 if (NSW) { 1204 if (KnownVal.Zero.isSignBitSet()) 1205 Result.Zero.setSignBit(); 1206 if (KnownVal.One.isSignBitSet()) 1207 Result.One.setSignBit(); 1208 } 1209 return Result; 1210 }; 1211 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1212 KF); 1213 // Trailing zeros of a right-shifted constant never decrease. 1214 const APInt *C; 1215 if (match(I->getOperand(0), m_APInt(C))) 1216 Known.Zero.setLowBits(C->countTrailingZeros()); 1217 break; 1218 } 1219 case Instruction::LShr: { 1220 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1221 return KnownBits::lshr(KnownVal, KnownAmt); 1222 }; 1223 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1224 KF); 1225 // Leading zeros of a left-shifted constant never decrease. 1226 const APInt *C; 1227 if (match(I->getOperand(0), m_APInt(C))) 1228 Known.Zero.setHighBits(C->countLeadingZeros()); 1229 break; 1230 } 1231 case Instruction::AShr: { 1232 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1233 return KnownBits::ashr(KnownVal, KnownAmt); 1234 }; 1235 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1236 KF); 1237 break; 1238 } 1239 case Instruction::Sub: { 1240 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1241 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1242 DemandedElts, Known, Known2, Depth, Q); 1243 break; 1244 } 1245 case Instruction::Add: { 1246 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1247 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1248 DemandedElts, Known, Known2, Depth, Q); 1249 break; 1250 } 1251 case Instruction::SRem: 1252 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1253 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1254 Known = KnownBits::srem(Known, Known2); 1255 break; 1256 1257 case Instruction::URem: 1258 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1259 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1260 Known = KnownBits::urem(Known, Known2); 1261 break; 1262 case Instruction::Alloca: 1263 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1264 break; 1265 case Instruction::GetElementPtr: { 1266 // Analyze all of the subscripts of this getelementptr instruction 1267 // to determine if we can prove known low zero bits. 1268 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1269 // Accumulate the constant indices in a separate variable 1270 // to minimize the number of calls to computeForAddSub. 1271 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1272 1273 gep_type_iterator GTI = gep_type_begin(I); 1274 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1275 // TrailZ can only become smaller, short-circuit if we hit zero. 1276 if (Known.isUnknown()) 1277 break; 1278 1279 Value *Index = I->getOperand(i); 1280 1281 // Handle case when index is zero. 1282 Constant *CIndex = dyn_cast<Constant>(Index); 1283 if (CIndex && CIndex->isZeroValue()) 1284 continue; 1285 1286 if (StructType *STy = GTI.getStructTypeOrNull()) { 1287 // Handle struct member offset arithmetic. 1288 1289 assert(CIndex && 1290 "Access to structure field must be known at compile time"); 1291 1292 if (CIndex->getType()->isVectorTy()) 1293 Index = CIndex->getSplatValue(); 1294 1295 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1296 const StructLayout *SL = Q.DL.getStructLayout(STy); 1297 uint64_t Offset = SL->getElementOffset(Idx); 1298 AccConstIndices += Offset; 1299 continue; 1300 } 1301 1302 // Handle array index arithmetic. 1303 Type *IndexedTy = GTI.getIndexedType(); 1304 if (!IndexedTy->isSized()) { 1305 Known.resetAll(); 1306 break; 1307 } 1308 1309 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1310 KnownBits IndexBits(IndexBitWidth); 1311 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1312 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1313 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1314 KnownBits ScalingFactor(IndexBitWidth); 1315 // Multiply by current sizeof type. 1316 // &A[i] == A + i * sizeof(*A[i]). 1317 if (IndexTypeSize.isScalable()) { 1318 // For scalable types the only thing we know about sizeof is 1319 // that this is a multiple of the minimum size. 1320 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1321 } else if (IndexBits.isConstant()) { 1322 APInt IndexConst = IndexBits.getConstant(); 1323 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1324 IndexConst *= ScalingFactor; 1325 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1326 continue; 1327 } else { 1328 ScalingFactor = 1329 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1330 } 1331 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1332 1333 // If the offsets have a different width from the pointer, according 1334 // to the language reference we need to sign-extend or truncate them 1335 // to the width of the pointer. 1336 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1337 1338 // Note that inbounds does *not* guarantee nsw for the addition, as only 1339 // the offset is signed, while the base address is unsigned. 1340 Known = KnownBits::computeForAddSub( 1341 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1342 } 1343 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1344 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1345 Known = KnownBits::computeForAddSub( 1346 /*Add=*/true, /*NSW=*/false, Known, Index); 1347 } 1348 break; 1349 } 1350 case Instruction::PHI: { 1351 const PHINode *P = cast<PHINode>(I); 1352 BinaryOperator *BO = nullptr; 1353 Value *R = nullptr, *L = nullptr; 1354 if (matchSimpleRecurrence(P, BO, R, L)) { 1355 // Handle the case of a simple two-predecessor recurrence PHI. 1356 // There's a lot more that could theoretically be done here, but 1357 // this is sufficient to catch some interesting cases. 1358 unsigned Opcode = BO->getOpcode(); 1359 1360 // If this is a shift recurrence, we know the bits being shifted in. 1361 // We can combine that with information about the start value of the 1362 // recurrence to conclude facts about the result. 1363 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1364 Opcode == Instruction::Shl) && 1365 BO->getOperand(0) == I) { 1366 1367 // We have matched a recurrence of the form: 1368 // %iv = [R, %entry], [%iv.next, %backedge] 1369 // %iv.next = shift_op %iv, L 1370 1371 // Recurse with the phi context to avoid concern about whether facts 1372 // inferred hold at original context instruction. TODO: It may be 1373 // correct to use the original context. IF warranted, explore and 1374 // add sufficient tests to cover. 1375 Query RecQ = Q; 1376 RecQ.CxtI = P; 1377 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1378 switch (Opcode) { 1379 case Instruction::Shl: 1380 // A shl recurrence will only increase the tailing zeros 1381 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1382 break; 1383 case Instruction::LShr: 1384 // A lshr recurrence will preserve the leading zeros of the 1385 // start value 1386 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1387 break; 1388 case Instruction::AShr: 1389 // An ashr recurrence will extend the initial sign bit 1390 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1391 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1392 break; 1393 }; 1394 } 1395 1396 // Check for operations that have the property that if 1397 // both their operands have low zero bits, the result 1398 // will have low zero bits. 1399 if (Opcode == Instruction::Add || 1400 Opcode == Instruction::Sub || 1401 Opcode == Instruction::And || 1402 Opcode == Instruction::Or || 1403 Opcode == Instruction::Mul) { 1404 // Change the context instruction to the "edge" that flows into the 1405 // phi. This is important because that is where the value is actually 1406 // "evaluated" even though it is used later somewhere else. (see also 1407 // D69571). 1408 Query RecQ = Q; 1409 1410 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1411 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1412 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1413 1414 // Ok, we have a PHI of the form L op= R. Check for low 1415 // zero bits. 1416 RecQ.CxtI = RInst; 1417 computeKnownBits(R, Known2, Depth + 1, RecQ); 1418 1419 // We need to take the minimum number of known bits 1420 KnownBits Known3(BitWidth); 1421 RecQ.CxtI = LInst; 1422 computeKnownBits(L, Known3, Depth + 1, RecQ); 1423 1424 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1425 Known3.countMinTrailingZeros())); 1426 1427 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1428 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1429 // If initial value of recurrence is nonnegative, and we are adding 1430 // a nonnegative number with nsw, the result can only be nonnegative 1431 // or poison value regardless of the number of times we execute the 1432 // add in phi recurrence. If initial value is negative and we are 1433 // adding a negative number with nsw, the result can only be 1434 // negative or poison value. Similar arguments apply to sub and mul. 1435 // 1436 // (add non-negative, non-negative) --> non-negative 1437 // (add negative, negative) --> negative 1438 if (Opcode == Instruction::Add) { 1439 if (Known2.isNonNegative() && Known3.isNonNegative()) 1440 Known.makeNonNegative(); 1441 else if (Known2.isNegative() && Known3.isNegative()) 1442 Known.makeNegative(); 1443 } 1444 1445 // (sub nsw non-negative, negative) --> non-negative 1446 // (sub nsw negative, non-negative) --> negative 1447 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1448 if (Known2.isNonNegative() && Known3.isNegative()) 1449 Known.makeNonNegative(); 1450 else if (Known2.isNegative() && Known3.isNonNegative()) 1451 Known.makeNegative(); 1452 } 1453 1454 // (mul nsw non-negative, non-negative) --> non-negative 1455 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1456 Known3.isNonNegative()) 1457 Known.makeNonNegative(); 1458 } 1459 1460 break; 1461 } 1462 } 1463 1464 // Unreachable blocks may have zero-operand PHI nodes. 1465 if (P->getNumIncomingValues() == 0) 1466 break; 1467 1468 // Otherwise take the unions of the known bit sets of the operands, 1469 // taking conservative care to avoid excessive recursion. 1470 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1471 // Skip if every incoming value references to ourself. 1472 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1473 break; 1474 1475 Known.Zero.setAllBits(); 1476 Known.One.setAllBits(); 1477 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1478 Value *IncValue = P->getIncomingValue(u); 1479 // Skip direct self references. 1480 if (IncValue == P) continue; 1481 1482 // Change the context instruction to the "edge" that flows into the 1483 // phi. This is important because that is where the value is actually 1484 // "evaluated" even though it is used later somewhere else. (see also 1485 // D69571). 1486 Query RecQ = Q; 1487 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1488 1489 Known2 = KnownBits(BitWidth); 1490 // Recurse, but cap the recursion to one level, because we don't 1491 // want to waste time spinning around in loops. 1492 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1493 Known = KnownBits::commonBits(Known, Known2); 1494 // If all bits have been ruled out, there's no need to check 1495 // more operands. 1496 if (Known.isUnknown()) 1497 break; 1498 } 1499 } 1500 break; 1501 } 1502 case Instruction::Call: 1503 case Instruction::Invoke: 1504 // If range metadata is attached to this call, set known bits from that, 1505 // and then intersect with known bits based on other properties of the 1506 // function. 1507 if (MDNode *MD = 1508 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1509 computeKnownBitsFromRangeMetadata(*MD, Known); 1510 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1511 computeKnownBits(RV, Known2, Depth + 1, Q); 1512 Known.Zero |= Known2.Zero; 1513 Known.One |= Known2.One; 1514 } 1515 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1516 switch (II->getIntrinsicID()) { 1517 default: break; 1518 case Intrinsic::abs: { 1519 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1520 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1521 Known = Known2.abs(IntMinIsPoison); 1522 break; 1523 } 1524 case Intrinsic::bitreverse: 1525 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1526 Known.Zero |= Known2.Zero.reverseBits(); 1527 Known.One |= Known2.One.reverseBits(); 1528 break; 1529 case Intrinsic::bswap: 1530 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1531 Known.Zero |= Known2.Zero.byteSwap(); 1532 Known.One |= Known2.One.byteSwap(); 1533 break; 1534 case Intrinsic::ctlz: { 1535 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1536 // If we have a known 1, its position is our upper bound. 1537 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1538 // If this call is undefined for 0, the result will be less than 2^n. 1539 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1540 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1541 unsigned LowBits = Log2_32(PossibleLZ)+1; 1542 Known.Zero.setBitsFrom(LowBits); 1543 break; 1544 } 1545 case Intrinsic::cttz: { 1546 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1547 // If we have a known 1, its position is our upper bound. 1548 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1549 // If this call is undefined for 0, the result will be less than 2^n. 1550 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1551 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1552 unsigned LowBits = Log2_32(PossibleTZ)+1; 1553 Known.Zero.setBitsFrom(LowBits); 1554 break; 1555 } 1556 case Intrinsic::ctpop: { 1557 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1558 // We can bound the space the count needs. Also, bits known to be zero 1559 // can't contribute to the population. 1560 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1561 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1562 Known.Zero.setBitsFrom(LowBits); 1563 // TODO: we could bound KnownOne using the lower bound on the number 1564 // of bits which might be set provided by popcnt KnownOne2. 1565 break; 1566 } 1567 case Intrinsic::fshr: 1568 case Intrinsic::fshl: { 1569 const APInt *SA; 1570 if (!match(I->getOperand(2), m_APInt(SA))) 1571 break; 1572 1573 // Normalize to funnel shift left. 1574 uint64_t ShiftAmt = SA->urem(BitWidth); 1575 if (II->getIntrinsicID() == Intrinsic::fshr) 1576 ShiftAmt = BitWidth - ShiftAmt; 1577 1578 KnownBits Known3(BitWidth); 1579 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1580 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1581 1582 Known.Zero = 1583 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1584 Known.One = 1585 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1586 break; 1587 } 1588 case Intrinsic::uadd_sat: 1589 case Intrinsic::usub_sat: { 1590 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1591 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1592 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1593 1594 // Add: Leading ones of either operand are preserved. 1595 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1596 // as leading zeros in the result. 1597 unsigned LeadingKnown; 1598 if (IsAdd) 1599 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1600 Known2.countMinLeadingOnes()); 1601 else 1602 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1603 Known2.countMinLeadingOnes()); 1604 1605 Known = KnownBits::computeForAddSub( 1606 IsAdd, /* NSW */ false, Known, Known2); 1607 1608 // We select between the operation result and all-ones/zero 1609 // respectively, so we can preserve known ones/zeros. 1610 if (IsAdd) { 1611 Known.One.setHighBits(LeadingKnown); 1612 Known.Zero.clearAllBits(); 1613 } else { 1614 Known.Zero.setHighBits(LeadingKnown); 1615 Known.One.clearAllBits(); 1616 } 1617 break; 1618 } 1619 case Intrinsic::umin: 1620 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1621 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1622 Known = KnownBits::umin(Known, Known2); 1623 break; 1624 case Intrinsic::umax: 1625 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1626 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1627 Known = KnownBits::umax(Known, Known2); 1628 break; 1629 case Intrinsic::smin: 1630 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1631 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1632 Known = KnownBits::smin(Known, Known2); 1633 break; 1634 case Intrinsic::smax: 1635 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1636 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1637 Known = KnownBits::smax(Known, Known2); 1638 break; 1639 case Intrinsic::x86_sse42_crc32_64_64: 1640 Known.Zero.setBitsFrom(32); 1641 break; 1642 } 1643 } 1644 break; 1645 case Instruction::ShuffleVector: { 1646 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1647 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1648 if (!Shuf) { 1649 Known.resetAll(); 1650 return; 1651 } 1652 // For undef elements, we don't know anything about the common state of 1653 // the shuffle result. 1654 APInt DemandedLHS, DemandedRHS; 1655 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1656 Known.resetAll(); 1657 return; 1658 } 1659 Known.One.setAllBits(); 1660 Known.Zero.setAllBits(); 1661 if (!!DemandedLHS) { 1662 const Value *LHS = Shuf->getOperand(0); 1663 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1664 // If we don't know any bits, early out. 1665 if (Known.isUnknown()) 1666 break; 1667 } 1668 if (!!DemandedRHS) { 1669 const Value *RHS = Shuf->getOperand(1); 1670 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1671 Known = KnownBits::commonBits(Known, Known2); 1672 } 1673 break; 1674 } 1675 case Instruction::InsertElement: { 1676 const Value *Vec = I->getOperand(0); 1677 const Value *Elt = I->getOperand(1); 1678 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1679 // Early out if the index is non-constant or out-of-range. 1680 unsigned NumElts = DemandedElts.getBitWidth(); 1681 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1682 Known.resetAll(); 1683 return; 1684 } 1685 Known.One.setAllBits(); 1686 Known.Zero.setAllBits(); 1687 unsigned EltIdx = CIdx->getZExtValue(); 1688 // Do we demand the inserted element? 1689 if (DemandedElts[EltIdx]) { 1690 computeKnownBits(Elt, Known, Depth + 1, Q); 1691 // If we don't know any bits, early out. 1692 if (Known.isUnknown()) 1693 break; 1694 } 1695 // We don't need the base vector element that has been inserted. 1696 APInt DemandedVecElts = DemandedElts; 1697 DemandedVecElts.clearBit(EltIdx); 1698 if (!!DemandedVecElts) { 1699 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1700 Known = KnownBits::commonBits(Known, Known2); 1701 } 1702 break; 1703 } 1704 case Instruction::ExtractElement: { 1705 // Look through extract element. If the index is non-constant or 1706 // out-of-range demand all elements, otherwise just the extracted element. 1707 const Value *Vec = I->getOperand(0); 1708 const Value *Idx = I->getOperand(1); 1709 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1710 if (isa<ScalableVectorType>(Vec->getType())) { 1711 // FIXME: there's probably *something* we can do with scalable vectors 1712 Known.resetAll(); 1713 break; 1714 } 1715 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1716 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1717 if (CIdx && CIdx->getValue().ult(NumElts)) 1718 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1719 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1720 break; 1721 } 1722 case Instruction::ExtractValue: 1723 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1724 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1725 if (EVI->getNumIndices() != 1) break; 1726 if (EVI->getIndices()[0] == 0) { 1727 switch (II->getIntrinsicID()) { 1728 default: break; 1729 case Intrinsic::uadd_with_overflow: 1730 case Intrinsic::sadd_with_overflow: 1731 computeKnownBitsAddSub(true, II->getArgOperand(0), 1732 II->getArgOperand(1), false, DemandedElts, 1733 Known, Known2, Depth, Q); 1734 break; 1735 case Intrinsic::usub_with_overflow: 1736 case Intrinsic::ssub_with_overflow: 1737 computeKnownBitsAddSub(false, II->getArgOperand(0), 1738 II->getArgOperand(1), false, DemandedElts, 1739 Known, Known2, Depth, Q); 1740 break; 1741 case Intrinsic::umul_with_overflow: 1742 case Intrinsic::smul_with_overflow: 1743 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1744 DemandedElts, Known, Known2, Depth, Q); 1745 break; 1746 } 1747 } 1748 } 1749 break; 1750 case Instruction::Freeze: 1751 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1752 Depth + 1)) 1753 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1754 break; 1755 } 1756 } 1757 1758 /// Determine which bits of V are known to be either zero or one and return 1759 /// them. 1760 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1761 unsigned Depth, const Query &Q) { 1762 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1763 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1764 return Known; 1765 } 1766 1767 /// Determine which bits of V are known to be either zero or one and return 1768 /// them. 1769 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1770 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1771 computeKnownBits(V, Known, Depth, Q); 1772 return Known; 1773 } 1774 1775 /// Determine which bits of V are known to be either zero or one and return 1776 /// them in the Known bit set. 1777 /// 1778 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1779 /// we cannot optimize based on the assumption that it is zero without changing 1780 /// it to be an explicit zero. If we don't change it to zero, other code could 1781 /// optimized based on the contradictory assumption that it is non-zero. 1782 /// Because instcombine aggressively folds operations with undef args anyway, 1783 /// this won't lose us code quality. 1784 /// 1785 /// This function is defined on values with integer type, values with pointer 1786 /// type, and vectors of integers. In the case 1787 /// where V is a vector, known zero, and known one values are the 1788 /// same width as the vector element, and the bit is set only if it is true 1789 /// for all of the demanded elements in the vector specified by DemandedElts. 1790 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1791 KnownBits &Known, unsigned Depth, const Query &Q) { 1792 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1793 // No demanded elts or V is a scalable vector, better to assume we don't 1794 // know anything. 1795 Known.resetAll(); 1796 return; 1797 } 1798 1799 assert(V && "No Value?"); 1800 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1801 1802 #ifndef NDEBUG 1803 Type *Ty = V->getType(); 1804 unsigned BitWidth = Known.getBitWidth(); 1805 1806 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1807 "Not integer or pointer type!"); 1808 1809 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1810 assert( 1811 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1812 "DemandedElt width should equal the fixed vector number of elements"); 1813 } else { 1814 assert(DemandedElts == APInt(1, 1) && 1815 "DemandedElt width should be 1 for scalars"); 1816 } 1817 1818 Type *ScalarTy = Ty->getScalarType(); 1819 if (ScalarTy->isPointerTy()) { 1820 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1821 "V and Known should have same BitWidth"); 1822 } else { 1823 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1824 "V and Known should have same BitWidth"); 1825 } 1826 #endif 1827 1828 const APInt *C; 1829 if (match(V, m_APInt(C))) { 1830 // We know all of the bits for a scalar constant or a splat vector constant! 1831 Known = KnownBits::makeConstant(*C); 1832 return; 1833 } 1834 // Null and aggregate-zero are all-zeros. 1835 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1836 Known.setAllZero(); 1837 return; 1838 } 1839 // Handle a constant vector by taking the intersection of the known bits of 1840 // each element. 1841 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1842 // We know that CDV must be a vector of integers. Take the intersection of 1843 // each element. 1844 Known.Zero.setAllBits(); Known.One.setAllBits(); 1845 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1846 if (!DemandedElts[i]) 1847 continue; 1848 APInt Elt = CDV->getElementAsAPInt(i); 1849 Known.Zero &= ~Elt; 1850 Known.One &= Elt; 1851 } 1852 return; 1853 } 1854 1855 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1856 // We know that CV must be a vector of integers. Take the intersection of 1857 // each element. 1858 Known.Zero.setAllBits(); Known.One.setAllBits(); 1859 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1860 if (!DemandedElts[i]) 1861 continue; 1862 Constant *Element = CV->getAggregateElement(i); 1863 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1864 if (!ElementCI) { 1865 Known.resetAll(); 1866 return; 1867 } 1868 const APInt &Elt = ElementCI->getValue(); 1869 Known.Zero &= ~Elt; 1870 Known.One &= Elt; 1871 } 1872 return; 1873 } 1874 1875 // Start out not knowing anything. 1876 Known.resetAll(); 1877 1878 // We can't imply anything about undefs. 1879 if (isa<UndefValue>(V)) 1880 return; 1881 1882 // There's no point in looking through other users of ConstantData for 1883 // assumptions. Confirm that we've handled them all. 1884 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1885 1886 // All recursive calls that increase depth must come after this. 1887 if (Depth == MaxAnalysisRecursionDepth) 1888 return; 1889 1890 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1891 // the bits of its aliasee. 1892 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1893 if (!GA->isInterposable()) 1894 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1895 return; 1896 } 1897 1898 if (const Operator *I = dyn_cast<Operator>(V)) 1899 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1900 1901 // Aligned pointers have trailing zeros - refine Known.Zero set 1902 if (isa<PointerType>(V->getType())) { 1903 Align Alignment = V->getPointerAlignment(Q.DL); 1904 Known.Zero.setLowBits(Log2(Alignment)); 1905 } 1906 1907 // computeKnownBitsFromAssume strictly refines Known. 1908 // Therefore, we run them after computeKnownBitsFromOperator. 1909 1910 // Check whether a nearby assume intrinsic can determine some known bits. 1911 computeKnownBitsFromAssume(V, Known, Depth, Q); 1912 1913 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1914 } 1915 1916 /// Return true if the given value is known to have exactly one 1917 /// bit set when defined. For vectors return true if every element is known to 1918 /// be a power of two when defined. Supports values with integer or pointer 1919 /// types and vectors of integers. 1920 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1921 const Query &Q) { 1922 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1923 1924 // Attempt to match against constants. 1925 if (OrZero && match(V, m_Power2OrZero())) 1926 return true; 1927 if (match(V, m_Power2())) 1928 return true; 1929 1930 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1931 // it is shifted off the end then the result is undefined. 1932 if (match(V, m_Shl(m_One(), m_Value()))) 1933 return true; 1934 1935 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1936 // the bottom. If it is shifted off the bottom then the result is undefined. 1937 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1938 return true; 1939 1940 // The remaining tests are all recursive, so bail out if we hit the limit. 1941 if (Depth++ == MaxAnalysisRecursionDepth) 1942 return false; 1943 1944 Value *X = nullptr, *Y = nullptr; 1945 // A shift left or a logical shift right of a power of two is a power of two 1946 // or zero. 1947 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1948 match(V, m_LShr(m_Value(X), m_Value())))) 1949 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1950 1951 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1952 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1953 1954 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1955 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1956 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1957 1958 // Peek through min/max. 1959 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 1960 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 1961 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 1962 } 1963 1964 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1965 // A power of two and'd with anything is a power of two or zero. 1966 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1967 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1968 return true; 1969 // X & (-X) is always a power of two or zero. 1970 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1971 return true; 1972 return false; 1973 } 1974 1975 // Adding a power-of-two or zero to the same power-of-two or zero yields 1976 // either the original power-of-two, a larger power-of-two or zero. 1977 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1978 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1979 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1980 Q.IIQ.hasNoSignedWrap(VOBO)) { 1981 if (match(X, m_And(m_Specific(Y), m_Value())) || 1982 match(X, m_And(m_Value(), m_Specific(Y)))) 1983 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1984 return true; 1985 if (match(Y, m_And(m_Specific(X), m_Value())) || 1986 match(Y, m_And(m_Value(), m_Specific(X)))) 1987 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1988 return true; 1989 1990 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1991 KnownBits LHSBits(BitWidth); 1992 computeKnownBits(X, LHSBits, Depth, Q); 1993 1994 KnownBits RHSBits(BitWidth); 1995 computeKnownBits(Y, RHSBits, Depth, Q); 1996 // If i8 V is a power of two or zero: 1997 // ZeroBits: 1 1 1 0 1 1 1 1 1998 // ~ZeroBits: 0 0 0 1 0 0 0 0 1999 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2000 // If OrZero isn't set, we cannot give back a zero result. 2001 // Make sure either the LHS or RHS has a bit set. 2002 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2003 return true; 2004 } 2005 } 2006 2007 // An exact divide or right shift can only shift off zero bits, so the result 2008 // is a power of two only if the first operand is a power of two and not 2009 // copying a sign bit (sdiv int_min, 2). 2010 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2011 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2012 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2013 Depth, Q); 2014 } 2015 2016 return false; 2017 } 2018 2019 /// Test whether a GEP's result is known to be non-null. 2020 /// 2021 /// Uses properties inherent in a GEP to try to determine whether it is known 2022 /// to be non-null. 2023 /// 2024 /// Currently this routine does not support vector GEPs. 2025 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2026 const Query &Q) { 2027 const Function *F = nullptr; 2028 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2029 F = I->getFunction(); 2030 2031 if (!GEP->isInBounds() || 2032 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2033 return false; 2034 2035 // FIXME: Support vector-GEPs. 2036 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2037 2038 // If the base pointer is non-null, we cannot walk to a null address with an 2039 // inbounds GEP in address space zero. 2040 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2041 return true; 2042 2043 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2044 // If so, then the GEP cannot produce a null pointer, as doing so would 2045 // inherently violate the inbounds contract within address space zero. 2046 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2047 GTI != GTE; ++GTI) { 2048 // Struct types are easy -- they must always be indexed by a constant. 2049 if (StructType *STy = GTI.getStructTypeOrNull()) { 2050 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2051 unsigned ElementIdx = OpC->getZExtValue(); 2052 const StructLayout *SL = Q.DL.getStructLayout(STy); 2053 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2054 if (ElementOffset > 0) 2055 return true; 2056 continue; 2057 } 2058 2059 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2060 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2061 continue; 2062 2063 // Fast path the constant operand case both for efficiency and so we don't 2064 // increment Depth when just zipping down an all-constant GEP. 2065 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2066 if (!OpC->isZero()) 2067 return true; 2068 continue; 2069 } 2070 2071 // We post-increment Depth here because while isKnownNonZero increments it 2072 // as well, when we pop back up that increment won't persist. We don't want 2073 // to recurse 10k times just because we have 10k GEP operands. We don't 2074 // bail completely out because we want to handle constant GEPs regardless 2075 // of depth. 2076 if (Depth++ >= MaxAnalysisRecursionDepth) 2077 continue; 2078 2079 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2080 return true; 2081 } 2082 2083 return false; 2084 } 2085 2086 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2087 const Instruction *CtxI, 2088 const DominatorTree *DT) { 2089 if (isa<Constant>(V)) 2090 return false; 2091 2092 if (!CtxI || !DT) 2093 return false; 2094 2095 unsigned NumUsesExplored = 0; 2096 for (auto *U : V->users()) { 2097 // Avoid massive lists 2098 if (NumUsesExplored >= DomConditionsMaxUses) 2099 break; 2100 NumUsesExplored++; 2101 2102 // If the value is used as an argument to a call or invoke, then argument 2103 // attributes may provide an answer about null-ness. 2104 if (const auto *CB = dyn_cast<CallBase>(U)) 2105 if (auto *CalledFunc = CB->getCalledFunction()) 2106 for (const Argument &Arg : CalledFunc->args()) 2107 if (CB->getArgOperand(Arg.getArgNo()) == V && 2108 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2109 DT->dominates(CB, CtxI)) 2110 return true; 2111 2112 // If the value is used as a load/store, then the pointer must be non null. 2113 if (V == getLoadStorePointerOperand(U)) { 2114 const Instruction *I = cast<Instruction>(U); 2115 if (!NullPointerIsDefined(I->getFunction(), 2116 V->getType()->getPointerAddressSpace()) && 2117 DT->dominates(I, CtxI)) 2118 return true; 2119 } 2120 2121 // Consider only compare instructions uniquely controlling a branch 2122 Value *RHS; 2123 CmpInst::Predicate Pred; 2124 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2125 continue; 2126 2127 bool NonNullIfTrue; 2128 if (cmpExcludesZero(Pred, RHS)) 2129 NonNullIfTrue = true; 2130 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2131 NonNullIfTrue = false; 2132 else 2133 continue; 2134 2135 SmallVector<const User *, 4> WorkList; 2136 SmallPtrSet<const User *, 4> Visited; 2137 for (auto *CmpU : U->users()) { 2138 assert(WorkList.empty() && "Should be!"); 2139 if (Visited.insert(CmpU).second) 2140 WorkList.push_back(CmpU); 2141 2142 while (!WorkList.empty()) { 2143 auto *Curr = WorkList.pop_back_val(); 2144 2145 // If a user is an AND, add all its users to the work list. We only 2146 // propagate "pred != null" condition through AND because it is only 2147 // correct to assume that all conditions of AND are met in true branch. 2148 // TODO: Support similar logic of OR and EQ predicate? 2149 if (NonNullIfTrue) 2150 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2151 for (auto *CurrU : Curr->users()) 2152 if (Visited.insert(CurrU).second) 2153 WorkList.push_back(CurrU); 2154 continue; 2155 } 2156 2157 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2158 assert(BI->isConditional() && "uses a comparison!"); 2159 2160 BasicBlock *NonNullSuccessor = 2161 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2162 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2163 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2164 return true; 2165 } else if (NonNullIfTrue && isGuard(Curr) && 2166 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2167 return true; 2168 } 2169 } 2170 } 2171 } 2172 2173 return false; 2174 } 2175 2176 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2177 /// ensure that the value it's attached to is never Value? 'RangeType' is 2178 /// is the type of the value described by the range. 2179 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2180 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2181 assert(NumRanges >= 1); 2182 for (unsigned i = 0; i < NumRanges; ++i) { 2183 ConstantInt *Lower = 2184 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2185 ConstantInt *Upper = 2186 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2187 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2188 if (Range.contains(Value)) 2189 return false; 2190 } 2191 return true; 2192 } 2193 2194 /// Try to detect a recurrence that monotonically increases/decreases from a 2195 /// non-zero starting value. These are common as induction variables. 2196 static bool isNonZeroRecurrence(const PHINode *PN) { 2197 BinaryOperator *BO = nullptr; 2198 Value *Start = nullptr, *Step = nullptr; 2199 const APInt *StartC, *StepC; 2200 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2201 !match(Start, m_APInt(StartC)) || StartC->isNullValue()) 2202 return false; 2203 2204 switch (BO->getOpcode()) { 2205 case Instruction::Add: 2206 // Starting from non-zero and stepping away from zero can never wrap back 2207 // to zero. 2208 return BO->hasNoUnsignedWrap() || 2209 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2210 StartC->isNegative() == StepC->isNegative()); 2211 case Instruction::Mul: 2212 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2213 match(Step, m_APInt(StepC)) && !StepC->isNullValue(); 2214 case Instruction::Shl: 2215 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2216 case Instruction::AShr: 2217 case Instruction::LShr: 2218 return BO->isExact(); 2219 default: 2220 return false; 2221 } 2222 } 2223 2224 /// Return true if the given value is known to be non-zero when defined. For 2225 /// vectors, return true if every demanded element is known to be non-zero when 2226 /// defined. For pointers, if the context instruction and dominator tree are 2227 /// specified, perform context-sensitive analysis and return true if the 2228 /// pointer couldn't possibly be null at the specified instruction. 2229 /// Supports values with integer or pointer type and vectors of integers. 2230 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2231 const Query &Q) { 2232 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2233 // vector 2234 if (isa<ScalableVectorType>(V->getType())) 2235 return false; 2236 2237 if (auto *C = dyn_cast<Constant>(V)) { 2238 if (C->isNullValue()) 2239 return false; 2240 if (isa<ConstantInt>(C)) 2241 // Must be non-zero due to null test above. 2242 return true; 2243 2244 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2245 // See the comment for IntToPtr/PtrToInt instructions below. 2246 if (CE->getOpcode() == Instruction::IntToPtr || 2247 CE->getOpcode() == Instruction::PtrToInt) 2248 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2249 .getFixedSize() <= 2250 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2251 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2252 } 2253 2254 // For constant vectors, check that all elements are undefined or known 2255 // non-zero to determine that the whole vector is known non-zero. 2256 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2257 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2258 if (!DemandedElts[i]) 2259 continue; 2260 Constant *Elt = C->getAggregateElement(i); 2261 if (!Elt || Elt->isNullValue()) 2262 return false; 2263 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2264 return false; 2265 } 2266 return true; 2267 } 2268 2269 // A global variable in address space 0 is non null unless extern weak 2270 // or an absolute symbol reference. Other address spaces may have null as a 2271 // valid address for a global, so we can't assume anything. 2272 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2273 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2274 GV->getType()->getAddressSpace() == 0) 2275 return true; 2276 } else 2277 return false; 2278 } 2279 2280 if (auto *I = dyn_cast<Instruction>(V)) { 2281 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2282 // If the possible ranges don't contain zero, then the value is 2283 // definitely non-zero. 2284 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2285 const APInt ZeroValue(Ty->getBitWidth(), 0); 2286 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2287 return true; 2288 } 2289 } 2290 } 2291 2292 if (isKnownNonZeroFromAssume(V, Q)) 2293 return true; 2294 2295 // Some of the tests below are recursive, so bail out if we hit the limit. 2296 if (Depth++ >= MaxAnalysisRecursionDepth) 2297 return false; 2298 2299 // Check for pointer simplifications. 2300 2301 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2302 // Alloca never returns null, malloc might. 2303 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2304 return true; 2305 2306 // A byval, inalloca may not be null in a non-default addres space. A 2307 // nonnull argument is assumed never 0. 2308 if (const Argument *A = dyn_cast<Argument>(V)) { 2309 if (((A->hasPassPointeeByValueCopyAttr() && 2310 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2311 A->hasNonNullAttr())) 2312 return true; 2313 } 2314 2315 // A Load tagged with nonnull metadata is never null. 2316 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2317 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2318 return true; 2319 2320 if (const auto *Call = dyn_cast<CallBase>(V)) { 2321 if (Call->isReturnNonNull()) 2322 return true; 2323 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2324 return isKnownNonZero(RP, Depth, Q); 2325 } 2326 } 2327 2328 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2329 return true; 2330 2331 // Check for recursive pointer simplifications. 2332 if (V->getType()->isPointerTy()) { 2333 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2334 // do not alter the value, or at least not the nullness property of the 2335 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2336 // 2337 // Note that we have to take special care to avoid looking through 2338 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2339 // as casts that can alter the value, e.g., AddrSpaceCasts. 2340 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2341 return isGEPKnownNonNull(GEP, Depth, Q); 2342 2343 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2344 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2345 2346 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2347 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2348 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2349 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2350 } 2351 2352 // Similar to int2ptr above, we can look through ptr2int here if the cast 2353 // is a no-op or an extend and not a truncate. 2354 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2355 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2356 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2357 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2358 2359 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2360 2361 // X | Y != 0 if X != 0 or Y != 0. 2362 Value *X = nullptr, *Y = nullptr; 2363 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2364 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2365 isKnownNonZero(Y, DemandedElts, Depth, Q); 2366 2367 // ext X != 0 if X != 0. 2368 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2369 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2370 2371 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2372 // if the lowest bit is shifted off the end. 2373 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2374 // shl nuw can't remove any non-zero bits. 2375 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2376 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2377 return isKnownNonZero(X, Depth, Q); 2378 2379 KnownBits Known(BitWidth); 2380 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2381 if (Known.One[0]) 2382 return true; 2383 } 2384 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2385 // defined if the sign bit is shifted off the end. 2386 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2387 // shr exact can only shift out zero bits. 2388 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2389 if (BO->isExact()) 2390 return isKnownNonZero(X, Depth, Q); 2391 2392 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2393 if (Known.isNegative()) 2394 return true; 2395 2396 // If the shifter operand is a constant, and all of the bits shifted 2397 // out are known to be zero, and X is known non-zero then at least one 2398 // non-zero bit must remain. 2399 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2400 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2401 // Is there a known one in the portion not shifted out? 2402 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2403 return true; 2404 // Are all the bits to be shifted out known zero? 2405 if (Known.countMinTrailingZeros() >= ShiftVal) 2406 return isKnownNonZero(X, DemandedElts, Depth, Q); 2407 } 2408 } 2409 // div exact can only produce a zero if the dividend is zero. 2410 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2411 return isKnownNonZero(X, DemandedElts, Depth, Q); 2412 } 2413 // X + Y. 2414 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2415 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2416 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2417 2418 // If X and Y are both non-negative (as signed values) then their sum is not 2419 // zero unless both X and Y are zero. 2420 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2421 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2422 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2423 return true; 2424 2425 // If X and Y are both negative (as signed values) then their sum is not 2426 // zero unless both X and Y equal INT_MIN. 2427 if (XKnown.isNegative() && YKnown.isNegative()) { 2428 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2429 // The sign bit of X is set. If some other bit is set then X is not equal 2430 // to INT_MIN. 2431 if (XKnown.One.intersects(Mask)) 2432 return true; 2433 // The sign bit of Y is set. If some other bit is set then Y is not equal 2434 // to INT_MIN. 2435 if (YKnown.One.intersects(Mask)) 2436 return true; 2437 } 2438 2439 // The sum of a non-negative number and a power of two is not zero. 2440 if (XKnown.isNonNegative() && 2441 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2442 return true; 2443 if (YKnown.isNonNegative() && 2444 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2445 return true; 2446 } 2447 // X * Y. 2448 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2449 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2450 // If X and Y are non-zero then so is X * Y as long as the multiplication 2451 // does not overflow. 2452 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2453 isKnownNonZero(X, DemandedElts, Depth, Q) && 2454 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2455 return true; 2456 } 2457 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2458 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2459 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2460 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2461 return true; 2462 } 2463 // PHI 2464 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2465 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2466 return true; 2467 2468 // Check if all incoming values are non-zero using recursion. 2469 Query RecQ = Q; 2470 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2471 return llvm::all_of(PN->operands(), [&](const Use &U) { 2472 if (U.get() == PN) 2473 return true; 2474 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2475 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2476 }); 2477 } 2478 // ExtractElement 2479 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2480 const Value *Vec = EEI->getVectorOperand(); 2481 const Value *Idx = EEI->getIndexOperand(); 2482 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2483 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2484 unsigned NumElts = VecTy->getNumElements(); 2485 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2486 if (CIdx && CIdx->getValue().ult(NumElts)) 2487 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2488 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2489 } 2490 } 2491 // Freeze 2492 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2493 auto *Op = FI->getOperand(0); 2494 if (isKnownNonZero(Op, Depth, Q) && 2495 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2496 return true; 2497 } 2498 2499 KnownBits Known(BitWidth); 2500 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2501 return Known.One != 0; 2502 } 2503 2504 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2505 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2506 // vector 2507 if (isa<ScalableVectorType>(V->getType())) 2508 return false; 2509 2510 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2511 APInt DemandedElts = 2512 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2513 return isKnownNonZero(V, DemandedElts, Depth, Q); 2514 } 2515 2516 /// If the pair of operators are the same invertible function of a single 2517 /// operand return the index of that operand. Otherwise, return None. An 2518 /// invertible function is one that is 1-to-1 and maps every input value 2519 /// to exactly one output value. This is equivalent to saying that Op1 2520 /// and Op2 are equal exactly when the specified pair of operands are equal, 2521 /// (except that Op1 and Op2 may be poison more often.) 2522 static Optional<unsigned> getInvertibleOperand(const Operator *Op1, 2523 const Operator *Op2) { 2524 if (Op1->getOpcode() != Op2->getOpcode()) 2525 return None; 2526 2527 switch (Op1->getOpcode()) { 2528 default: 2529 break; 2530 case Instruction::Add: 2531 case Instruction::Sub: 2532 if (Op1->getOperand(0) == Op2->getOperand(0)) 2533 return 1; 2534 if (Op1->getOperand(1) == Op2->getOperand(1)) 2535 return 0; 2536 break; 2537 case Instruction::Mul: { 2538 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2539 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2540 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2541 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2542 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2543 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2544 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2545 break; 2546 2547 // Assume operand order has been canonicalized 2548 if (Op1->getOperand(1) == Op2->getOperand(1) && 2549 isa<ConstantInt>(Op1->getOperand(1)) && 2550 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2551 return 0; 2552 break; 2553 } 2554 case Instruction::Shl: { 2555 // Same as multiplies, with the difference that we don't need to check 2556 // for a non-zero multiply. Shifts always multiply by non-zero. 2557 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2558 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2559 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2560 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2561 break; 2562 2563 if (Op1->getOperand(1) == Op2->getOperand(1)) 2564 return 0; 2565 break; 2566 } 2567 case Instruction::AShr: 2568 case Instruction::LShr: { 2569 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2570 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2571 if (!PEO1->isExact() || !PEO2->isExact()) 2572 break; 2573 2574 if (Op1->getOperand(1) == Op2->getOperand(1)) 2575 return 0; 2576 break; 2577 } 2578 case Instruction::SExt: 2579 case Instruction::ZExt: 2580 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2581 return 0; 2582 break; 2583 case Instruction::PHI: { 2584 const PHINode *PN1 = cast<PHINode>(Op1); 2585 const PHINode *PN2 = cast<PHINode>(Op2); 2586 2587 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2588 // are a single invertible function of the start values? Note that repeated 2589 // application of an invertible function is also invertible 2590 BinaryOperator *BO1 = nullptr; 2591 Value *Start1 = nullptr, *Step1 = nullptr; 2592 BinaryOperator *BO2 = nullptr; 2593 Value *Start2 = nullptr, *Step2 = nullptr; 2594 if (PN1->getParent() != PN2->getParent() || 2595 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2596 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2597 break; 2598 2599 Optional<unsigned> Idx = getInvertibleOperand(cast<Operator>(BO1), 2600 cast<Operator>(BO2)); 2601 if (!Idx || *Idx != 0) 2602 break; 2603 assert(BO1->getOperand(*Idx) == PN1 && BO2->getOperand(*Idx) == PN2); 2604 2605 // Phi operands might not be in the same order. TODO: generalize 2606 // interface to return pair of operands. 2607 if (PN1->getOperand(0) == BO1 && PN2->getOperand(0) == BO2) 2608 return 1; 2609 if (PN1->getOperand(1) == BO1 && PN2->getOperand(1) == BO2) 2610 return 0; 2611 } 2612 } 2613 return None; 2614 } 2615 2616 /// Return true if V2 == V1 + X, where X is known non-zero. 2617 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2618 const Query &Q) { 2619 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2620 if (!BO || BO->getOpcode() != Instruction::Add) 2621 return false; 2622 Value *Op = nullptr; 2623 if (V2 == BO->getOperand(0)) 2624 Op = BO->getOperand(1); 2625 else if (V2 == BO->getOperand(1)) 2626 Op = BO->getOperand(0); 2627 else 2628 return false; 2629 return isKnownNonZero(Op, Depth + 1, Q); 2630 } 2631 2632 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2633 /// the multiplication is nuw or nsw. 2634 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2635 const Query &Q) { 2636 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2637 const APInt *C; 2638 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2639 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2640 !C->isNullValue() && !C->isOneValue() && 2641 isKnownNonZero(V1, Depth + 1, Q); 2642 } 2643 return false; 2644 } 2645 2646 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2647 /// the shift is nuw or nsw. 2648 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2649 const Query &Q) { 2650 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2651 const APInt *C; 2652 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2653 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2654 !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); 2655 } 2656 return false; 2657 } 2658 2659 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2660 unsigned Depth, const Query &Q) { 2661 // Check two PHIs are in same block. 2662 if (PN1->getParent() != PN2->getParent()) 2663 return false; 2664 2665 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2666 bool UsedFullRecursion = false; 2667 for (const BasicBlock *IncomBB : PN1->blocks()) { 2668 if (!VisitedBBs.insert(IncomBB).second) 2669 continue; // Don't reprocess blocks that we have dealt with already. 2670 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2671 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2672 const APInt *C1, *C2; 2673 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2674 continue; 2675 2676 // Only one pair of phi operands is allowed for full recursion. 2677 if (UsedFullRecursion) 2678 return false; 2679 2680 Query RecQ = Q; 2681 RecQ.CxtI = IncomBB->getTerminator(); 2682 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2683 return false; 2684 UsedFullRecursion = true; 2685 } 2686 return true; 2687 } 2688 2689 /// Return true if it is known that V1 != V2. 2690 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2691 const Query &Q) { 2692 if (V1 == V2) 2693 return false; 2694 if (V1->getType() != V2->getType()) 2695 // We can't look through casts yet. 2696 return false; 2697 2698 if (Depth >= MaxAnalysisRecursionDepth) 2699 return false; 2700 2701 // See if we can recurse through (exactly one of) our operands. This 2702 // requires our operation be 1-to-1 and map every input value to exactly 2703 // one output value. Such an operation is invertible. 2704 auto *O1 = dyn_cast<Operator>(V1); 2705 auto *O2 = dyn_cast<Operator>(V2); 2706 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2707 if (Optional<unsigned> Opt = getInvertibleOperand(O1, O2)) { 2708 unsigned Idx = *Opt; 2709 return isKnownNonEqual(O1->getOperand(Idx), O2->getOperand(Idx), 2710 Depth + 1, Q); 2711 } 2712 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2713 const PHINode *PN2 = cast<PHINode>(V2); 2714 // FIXME: This is missing a generalization to handle the case where one is 2715 // a PHI and another one isn't. 2716 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2717 return true; 2718 }; 2719 } 2720 2721 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2722 return true; 2723 2724 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2725 return true; 2726 2727 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2728 return true; 2729 2730 if (V1->getType()->isIntOrIntVectorTy()) { 2731 // Are any known bits in V1 contradictory to known bits in V2? If V1 2732 // has a known zero where V2 has a known one, they must not be equal. 2733 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2734 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2735 2736 if (Known1.Zero.intersects(Known2.One) || 2737 Known2.Zero.intersects(Known1.One)) 2738 return true; 2739 } 2740 return false; 2741 } 2742 2743 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2744 /// simplify operations downstream. Mask is known to be zero for bits that V 2745 /// cannot have. 2746 /// 2747 /// This function is defined on values with integer type, values with pointer 2748 /// type, and vectors of integers. In the case 2749 /// where V is a vector, the mask, known zero, and known one values are the 2750 /// same width as the vector element, and the bit is set only if it is true 2751 /// for all of the elements in the vector. 2752 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2753 const Query &Q) { 2754 KnownBits Known(Mask.getBitWidth()); 2755 computeKnownBits(V, Known, Depth, Q); 2756 return Mask.isSubsetOf(Known.Zero); 2757 } 2758 2759 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2760 // Returns the input and lower/upper bounds. 2761 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2762 const APInt *&CLow, const APInt *&CHigh) { 2763 assert(isa<Operator>(Select) && 2764 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2765 "Input should be a Select!"); 2766 2767 const Value *LHS = nullptr, *RHS = nullptr; 2768 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2769 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2770 return false; 2771 2772 if (!match(RHS, m_APInt(CLow))) 2773 return false; 2774 2775 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2776 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2777 if (getInverseMinMaxFlavor(SPF) != SPF2) 2778 return false; 2779 2780 if (!match(RHS2, m_APInt(CHigh))) 2781 return false; 2782 2783 if (SPF == SPF_SMIN) 2784 std::swap(CLow, CHigh); 2785 2786 In = LHS2; 2787 return CLow->sle(*CHigh); 2788 } 2789 2790 /// For vector constants, loop over the elements and find the constant with the 2791 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2792 /// or if any element was not analyzed; otherwise, return the count for the 2793 /// element with the minimum number of sign bits. 2794 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2795 const APInt &DemandedElts, 2796 unsigned TyBits) { 2797 const auto *CV = dyn_cast<Constant>(V); 2798 if (!CV || !isa<FixedVectorType>(CV->getType())) 2799 return 0; 2800 2801 unsigned MinSignBits = TyBits; 2802 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2803 for (unsigned i = 0; i != NumElts; ++i) { 2804 if (!DemandedElts[i]) 2805 continue; 2806 // If we find a non-ConstantInt, bail out. 2807 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2808 if (!Elt) 2809 return 0; 2810 2811 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2812 } 2813 2814 return MinSignBits; 2815 } 2816 2817 static unsigned ComputeNumSignBitsImpl(const Value *V, 2818 const APInt &DemandedElts, 2819 unsigned Depth, const Query &Q); 2820 2821 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2822 unsigned Depth, const Query &Q) { 2823 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2824 assert(Result > 0 && "At least one sign bit needs to be present!"); 2825 return Result; 2826 } 2827 2828 /// Return the number of times the sign bit of the register is replicated into 2829 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2830 /// (itself), but other cases can give us information. For example, immediately 2831 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2832 /// other, so we return 3. For vectors, return the number of sign bits for the 2833 /// vector element with the minimum number of known sign bits of the demanded 2834 /// elements in the vector specified by DemandedElts. 2835 static unsigned ComputeNumSignBitsImpl(const Value *V, 2836 const APInt &DemandedElts, 2837 unsigned Depth, const Query &Q) { 2838 Type *Ty = V->getType(); 2839 2840 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2841 // vector 2842 if (isa<ScalableVectorType>(Ty)) 2843 return 1; 2844 2845 #ifndef NDEBUG 2846 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2847 2848 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2849 assert( 2850 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2851 "DemandedElt width should equal the fixed vector number of elements"); 2852 } else { 2853 assert(DemandedElts == APInt(1, 1) && 2854 "DemandedElt width should be 1 for scalars"); 2855 } 2856 #endif 2857 2858 // We return the minimum number of sign bits that are guaranteed to be present 2859 // in V, so for undef we have to conservatively return 1. We don't have the 2860 // same behavior for poison though -- that's a FIXME today. 2861 2862 Type *ScalarTy = Ty->getScalarType(); 2863 unsigned TyBits = ScalarTy->isPointerTy() ? 2864 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2865 Q.DL.getTypeSizeInBits(ScalarTy); 2866 2867 unsigned Tmp, Tmp2; 2868 unsigned FirstAnswer = 1; 2869 2870 // Note that ConstantInt is handled by the general computeKnownBits case 2871 // below. 2872 2873 if (Depth == MaxAnalysisRecursionDepth) 2874 return 1; 2875 2876 if (auto *U = dyn_cast<Operator>(V)) { 2877 switch (Operator::getOpcode(V)) { 2878 default: break; 2879 case Instruction::SExt: 2880 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2881 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2882 2883 case Instruction::SDiv: { 2884 const APInt *Denominator; 2885 // sdiv X, C -> adds log(C) sign bits. 2886 if (match(U->getOperand(1), m_APInt(Denominator))) { 2887 2888 // Ignore non-positive denominator. 2889 if (!Denominator->isStrictlyPositive()) 2890 break; 2891 2892 // Calculate the incoming numerator bits. 2893 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2894 2895 // Add floor(log(C)) bits to the numerator bits. 2896 return std::min(TyBits, NumBits + Denominator->logBase2()); 2897 } 2898 break; 2899 } 2900 2901 case Instruction::SRem: { 2902 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2903 2904 const APInt *Denominator; 2905 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2906 // positive constant. This let us put a lower bound on the number of sign 2907 // bits. 2908 if (match(U->getOperand(1), m_APInt(Denominator))) { 2909 2910 // Ignore non-positive denominator. 2911 if (Denominator->isStrictlyPositive()) { 2912 // Calculate the leading sign bit constraints by examining the 2913 // denominator. Given that the denominator is positive, there are two 2914 // cases: 2915 // 2916 // 1. The numerator is positive. The result range is [0,C) and 2917 // [0,C) u< (1 << ceilLogBase2(C)). 2918 // 2919 // 2. The numerator is negative. Then the result range is (-C,0] and 2920 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2921 // 2922 // Thus a lower bound on the number of sign bits is `TyBits - 2923 // ceilLogBase2(C)`. 2924 2925 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2926 Tmp = std::max(Tmp, ResBits); 2927 } 2928 } 2929 return Tmp; 2930 } 2931 2932 case Instruction::AShr: { 2933 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2934 // ashr X, C -> adds C sign bits. Vectors too. 2935 const APInt *ShAmt; 2936 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2937 if (ShAmt->uge(TyBits)) 2938 break; // Bad shift. 2939 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2940 Tmp += ShAmtLimited; 2941 if (Tmp > TyBits) Tmp = TyBits; 2942 } 2943 return Tmp; 2944 } 2945 case Instruction::Shl: { 2946 const APInt *ShAmt; 2947 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2948 // shl destroys sign bits. 2949 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2950 if (ShAmt->uge(TyBits) || // Bad shift. 2951 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2952 Tmp2 = ShAmt->getZExtValue(); 2953 return Tmp - Tmp2; 2954 } 2955 break; 2956 } 2957 case Instruction::And: 2958 case Instruction::Or: 2959 case Instruction::Xor: // NOT is handled here. 2960 // Logical binary ops preserve the number of sign bits at the worst. 2961 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2962 if (Tmp != 1) { 2963 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2964 FirstAnswer = std::min(Tmp, Tmp2); 2965 // We computed what we know about the sign bits as our first 2966 // answer. Now proceed to the generic code that uses 2967 // computeKnownBits, and pick whichever answer is better. 2968 } 2969 break; 2970 2971 case Instruction::Select: { 2972 // If we have a clamp pattern, we know that the number of sign bits will 2973 // be the minimum of the clamp min/max range. 2974 const Value *X; 2975 const APInt *CLow, *CHigh; 2976 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2977 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2978 2979 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2980 if (Tmp == 1) break; 2981 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2982 return std::min(Tmp, Tmp2); 2983 } 2984 2985 case Instruction::Add: 2986 // Add can have at most one carry bit. Thus we know that the output 2987 // is, at worst, one more bit than the inputs. 2988 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2989 if (Tmp == 1) break; 2990 2991 // Special case decrementing a value (ADD X, -1): 2992 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2993 if (CRHS->isAllOnesValue()) { 2994 KnownBits Known(TyBits); 2995 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2996 2997 // If the input is known to be 0 or 1, the output is 0/-1, which is 2998 // all sign bits set. 2999 if ((Known.Zero | 1).isAllOnesValue()) 3000 return TyBits; 3001 3002 // If we are subtracting one from a positive number, there is no carry 3003 // out of the result. 3004 if (Known.isNonNegative()) 3005 return Tmp; 3006 } 3007 3008 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3009 if (Tmp2 == 1) break; 3010 return std::min(Tmp, Tmp2) - 1; 3011 3012 case Instruction::Sub: 3013 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3014 if (Tmp2 == 1) break; 3015 3016 // Handle NEG. 3017 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3018 if (CLHS->isNullValue()) { 3019 KnownBits Known(TyBits); 3020 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3021 // If the input is known to be 0 or 1, the output is 0/-1, which is 3022 // all sign bits set. 3023 if ((Known.Zero | 1).isAllOnesValue()) 3024 return TyBits; 3025 3026 // If the input is known to be positive (the sign bit is known clear), 3027 // the output of the NEG has the same number of sign bits as the 3028 // input. 3029 if (Known.isNonNegative()) 3030 return Tmp2; 3031 3032 // Otherwise, we treat this like a SUB. 3033 } 3034 3035 // Sub can have at most one carry bit. Thus we know that the output 3036 // is, at worst, one more bit than the inputs. 3037 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3038 if (Tmp == 1) break; 3039 return std::min(Tmp, Tmp2) - 1; 3040 3041 case Instruction::Mul: { 3042 // The output of the Mul can be at most twice the valid bits in the 3043 // inputs. 3044 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3045 if (SignBitsOp0 == 1) break; 3046 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3047 if (SignBitsOp1 == 1) break; 3048 unsigned OutValidBits = 3049 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3050 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3051 } 3052 3053 case Instruction::PHI: { 3054 const PHINode *PN = cast<PHINode>(U); 3055 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3056 // Don't analyze large in-degree PHIs. 3057 if (NumIncomingValues > 4) break; 3058 // Unreachable blocks may have zero-operand PHI nodes. 3059 if (NumIncomingValues == 0) break; 3060 3061 // Take the minimum of all incoming values. This can't infinitely loop 3062 // because of our depth threshold. 3063 Query RecQ = Q; 3064 Tmp = TyBits; 3065 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3066 if (Tmp == 1) return Tmp; 3067 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3068 Tmp = std::min( 3069 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3070 } 3071 return Tmp; 3072 } 3073 3074 case Instruction::Trunc: 3075 // FIXME: it's tricky to do anything useful for this, but it is an 3076 // important case for targets like X86. 3077 break; 3078 3079 case Instruction::ExtractElement: 3080 // Look through extract element. At the moment we keep this simple and 3081 // skip tracking the specific element. But at least we might find 3082 // information valid for all elements of the vector (for example if vector 3083 // is sign extended, shifted, etc). 3084 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3085 3086 case Instruction::ShuffleVector: { 3087 // Collect the minimum number of sign bits that are shared by every vector 3088 // element referenced by the shuffle. 3089 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3090 if (!Shuf) { 3091 // FIXME: Add support for shufflevector constant expressions. 3092 return 1; 3093 } 3094 APInt DemandedLHS, DemandedRHS; 3095 // For undef elements, we don't know anything about the common state of 3096 // the shuffle result. 3097 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3098 return 1; 3099 Tmp = std::numeric_limits<unsigned>::max(); 3100 if (!!DemandedLHS) { 3101 const Value *LHS = Shuf->getOperand(0); 3102 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3103 } 3104 // If we don't know anything, early out and try computeKnownBits 3105 // fall-back. 3106 if (Tmp == 1) 3107 break; 3108 if (!!DemandedRHS) { 3109 const Value *RHS = Shuf->getOperand(1); 3110 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3111 Tmp = std::min(Tmp, Tmp2); 3112 } 3113 // If we don't know anything, early out and try computeKnownBits 3114 // fall-back. 3115 if (Tmp == 1) 3116 break; 3117 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3118 return Tmp; 3119 } 3120 case Instruction::Call: { 3121 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3122 switch (II->getIntrinsicID()) { 3123 default: break; 3124 case Intrinsic::abs: 3125 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3126 if (Tmp == 1) break; 3127 3128 // Absolute value reduces number of sign bits by at most 1. 3129 return Tmp - 1; 3130 } 3131 } 3132 } 3133 } 3134 } 3135 3136 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3137 // use this information. 3138 3139 // If we can examine all elements of a vector constant successfully, we're 3140 // done (we can't do any better than that). If not, keep trying. 3141 if (unsigned VecSignBits = 3142 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3143 return VecSignBits; 3144 3145 KnownBits Known(TyBits); 3146 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3147 3148 // If we know that the sign bit is either zero or one, determine the number of 3149 // identical bits in the top of the input value. 3150 return std::max(FirstAnswer, Known.countMinSignBits()); 3151 } 3152 3153 /// This function computes the integer multiple of Base that equals V. 3154 /// If successful, it returns true and returns the multiple in 3155 /// Multiple. If unsuccessful, it returns false. It looks 3156 /// through SExt instructions only if LookThroughSExt is true. 3157 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3158 bool LookThroughSExt, unsigned Depth) { 3159 assert(V && "No Value?"); 3160 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3161 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3162 3163 Type *T = V->getType(); 3164 3165 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3166 3167 if (Base == 0) 3168 return false; 3169 3170 if (Base == 1) { 3171 Multiple = V; 3172 return true; 3173 } 3174 3175 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3176 Constant *BaseVal = ConstantInt::get(T, Base); 3177 if (CO && CO == BaseVal) { 3178 // Multiple is 1. 3179 Multiple = ConstantInt::get(T, 1); 3180 return true; 3181 } 3182 3183 if (CI && CI->getZExtValue() % Base == 0) { 3184 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3185 return true; 3186 } 3187 3188 if (Depth == MaxAnalysisRecursionDepth) return false; 3189 3190 Operator *I = dyn_cast<Operator>(V); 3191 if (!I) return false; 3192 3193 switch (I->getOpcode()) { 3194 default: break; 3195 case Instruction::SExt: 3196 if (!LookThroughSExt) return false; 3197 // otherwise fall through to ZExt 3198 LLVM_FALLTHROUGH; 3199 case Instruction::ZExt: 3200 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3201 LookThroughSExt, Depth+1); 3202 case Instruction::Shl: 3203 case Instruction::Mul: { 3204 Value *Op0 = I->getOperand(0); 3205 Value *Op1 = I->getOperand(1); 3206 3207 if (I->getOpcode() == Instruction::Shl) { 3208 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3209 if (!Op1CI) return false; 3210 // Turn Op0 << Op1 into Op0 * 2^Op1 3211 APInt Op1Int = Op1CI->getValue(); 3212 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3213 APInt API(Op1Int.getBitWidth(), 0); 3214 API.setBit(BitToSet); 3215 Op1 = ConstantInt::get(V->getContext(), API); 3216 } 3217 3218 Value *Mul0 = nullptr; 3219 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3220 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3221 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3222 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3223 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3224 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3225 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3226 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3227 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3228 3229 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3230 Multiple = ConstantExpr::getMul(MulC, Op1C); 3231 return true; 3232 } 3233 3234 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3235 if (Mul0CI->getValue() == 1) { 3236 // V == Base * Op1, so return Op1 3237 Multiple = Op1; 3238 return true; 3239 } 3240 } 3241 3242 Value *Mul1 = nullptr; 3243 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3244 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3245 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3246 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3247 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3248 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3249 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3250 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3251 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3252 3253 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3254 Multiple = ConstantExpr::getMul(MulC, Op0C); 3255 return true; 3256 } 3257 3258 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3259 if (Mul1CI->getValue() == 1) { 3260 // V == Base * Op0, so return Op0 3261 Multiple = Op0; 3262 return true; 3263 } 3264 } 3265 } 3266 } 3267 3268 // We could not determine if V is a multiple of Base. 3269 return false; 3270 } 3271 3272 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3273 const TargetLibraryInfo *TLI) { 3274 const Function *F = CB.getCalledFunction(); 3275 if (!F) 3276 return Intrinsic::not_intrinsic; 3277 3278 if (F->isIntrinsic()) 3279 return F->getIntrinsicID(); 3280 3281 // We are going to infer semantics of a library function based on mapping it 3282 // to an LLVM intrinsic. Check that the library function is available from 3283 // this callbase and in this environment. 3284 LibFunc Func; 3285 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3286 !CB.onlyReadsMemory()) 3287 return Intrinsic::not_intrinsic; 3288 3289 switch (Func) { 3290 default: 3291 break; 3292 case LibFunc_sin: 3293 case LibFunc_sinf: 3294 case LibFunc_sinl: 3295 return Intrinsic::sin; 3296 case LibFunc_cos: 3297 case LibFunc_cosf: 3298 case LibFunc_cosl: 3299 return Intrinsic::cos; 3300 case LibFunc_exp: 3301 case LibFunc_expf: 3302 case LibFunc_expl: 3303 return Intrinsic::exp; 3304 case LibFunc_exp2: 3305 case LibFunc_exp2f: 3306 case LibFunc_exp2l: 3307 return Intrinsic::exp2; 3308 case LibFunc_log: 3309 case LibFunc_logf: 3310 case LibFunc_logl: 3311 return Intrinsic::log; 3312 case LibFunc_log10: 3313 case LibFunc_log10f: 3314 case LibFunc_log10l: 3315 return Intrinsic::log10; 3316 case LibFunc_log2: 3317 case LibFunc_log2f: 3318 case LibFunc_log2l: 3319 return Intrinsic::log2; 3320 case LibFunc_fabs: 3321 case LibFunc_fabsf: 3322 case LibFunc_fabsl: 3323 return Intrinsic::fabs; 3324 case LibFunc_fmin: 3325 case LibFunc_fminf: 3326 case LibFunc_fminl: 3327 return Intrinsic::minnum; 3328 case LibFunc_fmax: 3329 case LibFunc_fmaxf: 3330 case LibFunc_fmaxl: 3331 return Intrinsic::maxnum; 3332 case LibFunc_copysign: 3333 case LibFunc_copysignf: 3334 case LibFunc_copysignl: 3335 return Intrinsic::copysign; 3336 case LibFunc_floor: 3337 case LibFunc_floorf: 3338 case LibFunc_floorl: 3339 return Intrinsic::floor; 3340 case LibFunc_ceil: 3341 case LibFunc_ceilf: 3342 case LibFunc_ceill: 3343 return Intrinsic::ceil; 3344 case LibFunc_trunc: 3345 case LibFunc_truncf: 3346 case LibFunc_truncl: 3347 return Intrinsic::trunc; 3348 case LibFunc_rint: 3349 case LibFunc_rintf: 3350 case LibFunc_rintl: 3351 return Intrinsic::rint; 3352 case LibFunc_nearbyint: 3353 case LibFunc_nearbyintf: 3354 case LibFunc_nearbyintl: 3355 return Intrinsic::nearbyint; 3356 case LibFunc_round: 3357 case LibFunc_roundf: 3358 case LibFunc_roundl: 3359 return Intrinsic::round; 3360 case LibFunc_roundeven: 3361 case LibFunc_roundevenf: 3362 case LibFunc_roundevenl: 3363 return Intrinsic::roundeven; 3364 case LibFunc_pow: 3365 case LibFunc_powf: 3366 case LibFunc_powl: 3367 return Intrinsic::pow; 3368 case LibFunc_sqrt: 3369 case LibFunc_sqrtf: 3370 case LibFunc_sqrtl: 3371 return Intrinsic::sqrt; 3372 } 3373 3374 return Intrinsic::not_intrinsic; 3375 } 3376 3377 /// Return true if we can prove that the specified FP value is never equal to 3378 /// -0.0. 3379 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3380 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3381 /// the same as +0.0 in floating-point ops. 3382 /// 3383 /// NOTE: this function will need to be revisited when we support non-default 3384 /// rounding modes! 3385 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3386 unsigned Depth) { 3387 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3388 return !CFP->getValueAPF().isNegZero(); 3389 3390 if (Depth == MaxAnalysisRecursionDepth) 3391 return false; 3392 3393 auto *Op = dyn_cast<Operator>(V); 3394 if (!Op) 3395 return false; 3396 3397 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3398 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3399 return true; 3400 3401 // sitofp and uitofp turn into +0.0 for zero. 3402 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3403 return true; 3404 3405 if (auto *Call = dyn_cast<CallInst>(Op)) { 3406 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3407 switch (IID) { 3408 default: 3409 break; 3410 // sqrt(-0.0) = -0.0, no other negative results are possible. 3411 case Intrinsic::sqrt: 3412 case Intrinsic::canonicalize: 3413 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3414 // fabs(x) != -0.0 3415 case Intrinsic::fabs: 3416 return true; 3417 } 3418 } 3419 3420 return false; 3421 } 3422 3423 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3424 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3425 /// bit despite comparing equal. 3426 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3427 const TargetLibraryInfo *TLI, 3428 bool SignBitOnly, 3429 unsigned Depth) { 3430 // TODO: This function does not do the right thing when SignBitOnly is true 3431 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3432 // which flips the sign bits of NaNs. See 3433 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3434 3435 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3436 return !CFP->getValueAPF().isNegative() || 3437 (!SignBitOnly && CFP->getValueAPF().isZero()); 3438 } 3439 3440 // Handle vector of constants. 3441 if (auto *CV = dyn_cast<Constant>(V)) { 3442 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3443 unsigned NumElts = CVFVTy->getNumElements(); 3444 for (unsigned i = 0; i != NumElts; ++i) { 3445 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3446 if (!CFP) 3447 return false; 3448 if (CFP->getValueAPF().isNegative() && 3449 (SignBitOnly || !CFP->getValueAPF().isZero())) 3450 return false; 3451 } 3452 3453 // All non-negative ConstantFPs. 3454 return true; 3455 } 3456 } 3457 3458 if (Depth == MaxAnalysisRecursionDepth) 3459 return false; 3460 3461 const Operator *I = dyn_cast<Operator>(V); 3462 if (!I) 3463 return false; 3464 3465 switch (I->getOpcode()) { 3466 default: 3467 break; 3468 // Unsigned integers are always nonnegative. 3469 case Instruction::UIToFP: 3470 return true; 3471 case Instruction::FMul: 3472 case Instruction::FDiv: 3473 // X * X is always non-negative or a NaN. 3474 // X / X is always exactly 1.0 or a NaN. 3475 if (I->getOperand(0) == I->getOperand(1) && 3476 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3477 return true; 3478 3479 LLVM_FALLTHROUGH; 3480 case Instruction::FAdd: 3481 case Instruction::FRem: 3482 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3483 Depth + 1) && 3484 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3485 Depth + 1); 3486 case Instruction::Select: 3487 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3488 Depth + 1) && 3489 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3490 Depth + 1); 3491 case Instruction::FPExt: 3492 case Instruction::FPTrunc: 3493 // Widening/narrowing never change sign. 3494 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3495 Depth + 1); 3496 case Instruction::ExtractElement: 3497 // Look through extract element. At the moment we keep this simple and skip 3498 // tracking the specific element. But at least we might find information 3499 // valid for all elements of the vector. 3500 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3501 Depth + 1); 3502 case Instruction::Call: 3503 const auto *CI = cast<CallInst>(I); 3504 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3505 switch (IID) { 3506 default: 3507 break; 3508 case Intrinsic::maxnum: { 3509 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3510 auto isPositiveNum = [&](Value *V) { 3511 if (SignBitOnly) { 3512 // With SignBitOnly, this is tricky because the result of 3513 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3514 // a constant strictly greater than 0.0. 3515 const APFloat *C; 3516 return match(V, m_APFloat(C)) && 3517 *C > APFloat::getZero(C->getSemantics()); 3518 } 3519 3520 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3521 // maxnum can't be ordered-less-than-zero. 3522 return isKnownNeverNaN(V, TLI) && 3523 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3524 }; 3525 3526 // TODO: This could be improved. We could also check that neither operand 3527 // has its sign bit set (and at least 1 is not-NAN?). 3528 return isPositiveNum(V0) || isPositiveNum(V1); 3529 } 3530 3531 case Intrinsic::maximum: 3532 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3533 Depth + 1) || 3534 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3535 Depth + 1); 3536 case Intrinsic::minnum: 3537 case Intrinsic::minimum: 3538 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3539 Depth + 1) && 3540 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3541 Depth + 1); 3542 case Intrinsic::exp: 3543 case Intrinsic::exp2: 3544 case Intrinsic::fabs: 3545 return true; 3546 3547 case Intrinsic::sqrt: 3548 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3549 if (!SignBitOnly) 3550 return true; 3551 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3552 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3553 3554 case Intrinsic::powi: 3555 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3556 // powi(x,n) is non-negative if n is even. 3557 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3558 return true; 3559 } 3560 // TODO: This is not correct. Given that exp is an integer, here are the 3561 // ways that pow can return a negative value: 3562 // 3563 // pow(x, exp) --> negative if exp is odd and x is negative. 3564 // pow(-0, exp) --> -inf if exp is negative odd. 3565 // pow(-0, exp) --> -0 if exp is positive odd. 3566 // pow(-inf, exp) --> -0 if exp is negative odd. 3567 // pow(-inf, exp) --> -inf if exp is positive odd. 3568 // 3569 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3570 // but we must return false if x == -0. Unfortunately we do not currently 3571 // have a way of expressing this constraint. See details in 3572 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3573 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3574 Depth + 1); 3575 3576 case Intrinsic::fma: 3577 case Intrinsic::fmuladd: 3578 // x*x+y is non-negative if y is non-negative. 3579 return I->getOperand(0) == I->getOperand(1) && 3580 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3581 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3582 Depth + 1); 3583 } 3584 break; 3585 } 3586 return false; 3587 } 3588 3589 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3590 const TargetLibraryInfo *TLI) { 3591 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3592 } 3593 3594 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3595 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3596 } 3597 3598 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3599 unsigned Depth) { 3600 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3601 3602 // If we're told that infinities won't happen, assume they won't. 3603 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3604 if (FPMathOp->hasNoInfs()) 3605 return true; 3606 3607 // Handle scalar constants. 3608 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3609 return !CFP->isInfinity(); 3610 3611 if (Depth == MaxAnalysisRecursionDepth) 3612 return false; 3613 3614 if (auto *Inst = dyn_cast<Instruction>(V)) { 3615 switch (Inst->getOpcode()) { 3616 case Instruction::Select: { 3617 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3618 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3619 } 3620 case Instruction::SIToFP: 3621 case Instruction::UIToFP: { 3622 // Get width of largest magnitude integer (remove a bit if signed). 3623 // This still works for a signed minimum value because the largest FP 3624 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3625 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3626 if (Inst->getOpcode() == Instruction::SIToFP) 3627 --IntSize; 3628 3629 // If the exponent of the largest finite FP value can hold the largest 3630 // integer, the result of the cast must be finite. 3631 Type *FPTy = Inst->getType()->getScalarType(); 3632 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3633 } 3634 default: 3635 break; 3636 } 3637 } 3638 3639 // try to handle fixed width vector constants 3640 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3641 if (VFVTy && isa<Constant>(V)) { 3642 // For vectors, verify that each element is not infinity. 3643 unsigned NumElts = VFVTy->getNumElements(); 3644 for (unsigned i = 0; i != NumElts; ++i) { 3645 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3646 if (!Elt) 3647 return false; 3648 if (isa<UndefValue>(Elt)) 3649 continue; 3650 auto *CElt = dyn_cast<ConstantFP>(Elt); 3651 if (!CElt || CElt->isInfinity()) 3652 return false; 3653 } 3654 // All elements were confirmed non-infinity or undefined. 3655 return true; 3656 } 3657 3658 // was not able to prove that V never contains infinity 3659 return false; 3660 } 3661 3662 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3663 unsigned Depth) { 3664 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3665 3666 // If we're told that NaNs won't happen, assume they won't. 3667 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3668 if (FPMathOp->hasNoNaNs()) 3669 return true; 3670 3671 // Handle scalar constants. 3672 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3673 return !CFP->isNaN(); 3674 3675 if (Depth == MaxAnalysisRecursionDepth) 3676 return false; 3677 3678 if (auto *Inst = dyn_cast<Instruction>(V)) { 3679 switch (Inst->getOpcode()) { 3680 case Instruction::FAdd: 3681 case Instruction::FSub: 3682 // Adding positive and negative infinity produces NaN. 3683 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3684 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3685 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3686 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3687 3688 case Instruction::FMul: 3689 // Zero multiplied with infinity produces NaN. 3690 // FIXME: If neither side can be zero fmul never produces NaN. 3691 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3692 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3693 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3694 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3695 3696 case Instruction::FDiv: 3697 case Instruction::FRem: 3698 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3699 return false; 3700 3701 case Instruction::Select: { 3702 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3703 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3704 } 3705 case Instruction::SIToFP: 3706 case Instruction::UIToFP: 3707 return true; 3708 case Instruction::FPTrunc: 3709 case Instruction::FPExt: 3710 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3711 default: 3712 break; 3713 } 3714 } 3715 3716 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3717 switch (II->getIntrinsicID()) { 3718 case Intrinsic::canonicalize: 3719 case Intrinsic::fabs: 3720 case Intrinsic::copysign: 3721 case Intrinsic::exp: 3722 case Intrinsic::exp2: 3723 case Intrinsic::floor: 3724 case Intrinsic::ceil: 3725 case Intrinsic::trunc: 3726 case Intrinsic::rint: 3727 case Intrinsic::nearbyint: 3728 case Intrinsic::round: 3729 case Intrinsic::roundeven: 3730 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3731 case Intrinsic::sqrt: 3732 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3733 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3734 case Intrinsic::minnum: 3735 case Intrinsic::maxnum: 3736 // If either operand is not NaN, the result is not NaN. 3737 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3738 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3739 default: 3740 return false; 3741 } 3742 } 3743 3744 // Try to handle fixed width vector constants 3745 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3746 if (VFVTy && isa<Constant>(V)) { 3747 // For vectors, verify that each element is not NaN. 3748 unsigned NumElts = VFVTy->getNumElements(); 3749 for (unsigned i = 0; i != NumElts; ++i) { 3750 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3751 if (!Elt) 3752 return false; 3753 if (isa<UndefValue>(Elt)) 3754 continue; 3755 auto *CElt = dyn_cast<ConstantFP>(Elt); 3756 if (!CElt || CElt->isNaN()) 3757 return false; 3758 } 3759 // All elements were confirmed not-NaN or undefined. 3760 return true; 3761 } 3762 3763 // Was not able to prove that V never contains NaN 3764 return false; 3765 } 3766 3767 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3768 3769 // All byte-wide stores are splatable, even of arbitrary variables. 3770 if (V->getType()->isIntegerTy(8)) 3771 return V; 3772 3773 LLVMContext &Ctx = V->getContext(); 3774 3775 // Undef don't care. 3776 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3777 if (isa<UndefValue>(V)) 3778 return UndefInt8; 3779 3780 // Return Undef for zero-sized type. 3781 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3782 return UndefInt8; 3783 3784 Constant *C = dyn_cast<Constant>(V); 3785 if (!C) { 3786 // Conceptually, we could handle things like: 3787 // %a = zext i8 %X to i16 3788 // %b = shl i16 %a, 8 3789 // %c = or i16 %a, %b 3790 // but until there is an example that actually needs this, it doesn't seem 3791 // worth worrying about. 3792 return nullptr; 3793 } 3794 3795 // Handle 'null' ConstantArrayZero etc. 3796 if (C->isNullValue()) 3797 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3798 3799 // Constant floating-point values can be handled as integer values if the 3800 // corresponding integer value is "byteable". An important case is 0.0. 3801 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3802 Type *Ty = nullptr; 3803 if (CFP->getType()->isHalfTy()) 3804 Ty = Type::getInt16Ty(Ctx); 3805 else if (CFP->getType()->isFloatTy()) 3806 Ty = Type::getInt32Ty(Ctx); 3807 else if (CFP->getType()->isDoubleTy()) 3808 Ty = Type::getInt64Ty(Ctx); 3809 // Don't handle long double formats, which have strange constraints. 3810 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3811 : nullptr; 3812 } 3813 3814 // We can handle constant integers that are multiple of 8 bits. 3815 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3816 if (CI->getBitWidth() % 8 == 0) { 3817 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3818 if (!CI->getValue().isSplat(8)) 3819 return nullptr; 3820 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3821 } 3822 } 3823 3824 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3825 if (CE->getOpcode() == Instruction::IntToPtr) { 3826 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3827 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3828 return isBytewiseValue( 3829 ConstantExpr::getIntegerCast(CE->getOperand(0), 3830 Type::getIntNTy(Ctx, BitWidth), false), 3831 DL); 3832 } 3833 } 3834 } 3835 3836 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3837 if (LHS == RHS) 3838 return LHS; 3839 if (!LHS || !RHS) 3840 return nullptr; 3841 if (LHS == UndefInt8) 3842 return RHS; 3843 if (RHS == UndefInt8) 3844 return LHS; 3845 return nullptr; 3846 }; 3847 3848 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3849 Value *Val = UndefInt8; 3850 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3851 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3852 return nullptr; 3853 return Val; 3854 } 3855 3856 if (isa<ConstantAggregate>(C)) { 3857 Value *Val = UndefInt8; 3858 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3859 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3860 return nullptr; 3861 return Val; 3862 } 3863 3864 // Don't try to handle the handful of other constants. 3865 return nullptr; 3866 } 3867 3868 // This is the recursive version of BuildSubAggregate. It takes a few different 3869 // arguments. Idxs is the index within the nested struct From that we are 3870 // looking at now (which is of type IndexedType). IdxSkip is the number of 3871 // indices from Idxs that should be left out when inserting into the resulting 3872 // struct. To is the result struct built so far, new insertvalue instructions 3873 // build on that. 3874 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3875 SmallVectorImpl<unsigned> &Idxs, 3876 unsigned IdxSkip, 3877 Instruction *InsertBefore) { 3878 StructType *STy = dyn_cast<StructType>(IndexedType); 3879 if (STy) { 3880 // Save the original To argument so we can modify it 3881 Value *OrigTo = To; 3882 // General case, the type indexed by Idxs is a struct 3883 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3884 // Process each struct element recursively 3885 Idxs.push_back(i); 3886 Value *PrevTo = To; 3887 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3888 InsertBefore); 3889 Idxs.pop_back(); 3890 if (!To) { 3891 // Couldn't find any inserted value for this index? Cleanup 3892 while (PrevTo != OrigTo) { 3893 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3894 PrevTo = Del->getAggregateOperand(); 3895 Del->eraseFromParent(); 3896 } 3897 // Stop processing elements 3898 break; 3899 } 3900 } 3901 // If we successfully found a value for each of our subaggregates 3902 if (To) 3903 return To; 3904 } 3905 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3906 // the struct's elements had a value that was inserted directly. In the latter 3907 // case, perhaps we can't determine each of the subelements individually, but 3908 // we might be able to find the complete struct somewhere. 3909 3910 // Find the value that is at that particular spot 3911 Value *V = FindInsertedValue(From, Idxs); 3912 3913 if (!V) 3914 return nullptr; 3915 3916 // Insert the value in the new (sub) aggregate 3917 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3918 "tmp", InsertBefore); 3919 } 3920 3921 // This helper takes a nested struct and extracts a part of it (which is again a 3922 // struct) into a new value. For example, given the struct: 3923 // { a, { b, { c, d }, e } } 3924 // and the indices "1, 1" this returns 3925 // { c, d }. 3926 // 3927 // It does this by inserting an insertvalue for each element in the resulting 3928 // struct, as opposed to just inserting a single struct. This will only work if 3929 // each of the elements of the substruct are known (ie, inserted into From by an 3930 // insertvalue instruction somewhere). 3931 // 3932 // All inserted insertvalue instructions are inserted before InsertBefore 3933 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3934 Instruction *InsertBefore) { 3935 assert(InsertBefore && "Must have someplace to insert!"); 3936 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3937 idx_range); 3938 Value *To = UndefValue::get(IndexedType); 3939 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3940 unsigned IdxSkip = Idxs.size(); 3941 3942 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3943 } 3944 3945 /// Given an aggregate and a sequence of indices, see if the scalar value 3946 /// indexed is already around as a register, for example if it was inserted 3947 /// directly into the aggregate. 3948 /// 3949 /// If InsertBefore is not null, this function will duplicate (modified) 3950 /// insertvalues when a part of a nested struct is extracted. 3951 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3952 Instruction *InsertBefore) { 3953 // Nothing to index? Just return V then (this is useful at the end of our 3954 // recursion). 3955 if (idx_range.empty()) 3956 return V; 3957 // We have indices, so V should have an indexable type. 3958 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3959 "Not looking at a struct or array?"); 3960 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3961 "Invalid indices for type?"); 3962 3963 if (Constant *C = dyn_cast<Constant>(V)) { 3964 C = C->getAggregateElement(idx_range[0]); 3965 if (!C) return nullptr; 3966 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3967 } 3968 3969 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3970 // Loop the indices for the insertvalue instruction in parallel with the 3971 // requested indices 3972 const unsigned *req_idx = idx_range.begin(); 3973 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3974 i != e; ++i, ++req_idx) { 3975 if (req_idx == idx_range.end()) { 3976 // We can't handle this without inserting insertvalues 3977 if (!InsertBefore) 3978 return nullptr; 3979 3980 // The requested index identifies a part of a nested aggregate. Handle 3981 // this specially. For example, 3982 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3983 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3984 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3985 // This can be changed into 3986 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3987 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3988 // which allows the unused 0,0 element from the nested struct to be 3989 // removed. 3990 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3991 InsertBefore); 3992 } 3993 3994 // This insert value inserts something else than what we are looking for. 3995 // See if the (aggregate) value inserted into has the value we are 3996 // looking for, then. 3997 if (*req_idx != *i) 3998 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3999 InsertBefore); 4000 } 4001 // If we end up here, the indices of the insertvalue match with those 4002 // requested (though possibly only partially). Now we recursively look at 4003 // the inserted value, passing any remaining indices. 4004 return FindInsertedValue(I->getInsertedValueOperand(), 4005 makeArrayRef(req_idx, idx_range.end()), 4006 InsertBefore); 4007 } 4008 4009 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4010 // If we're extracting a value from an aggregate that was extracted from 4011 // something else, we can extract from that something else directly instead. 4012 // However, we will need to chain I's indices with the requested indices. 4013 4014 // Calculate the number of indices required 4015 unsigned size = I->getNumIndices() + idx_range.size(); 4016 // Allocate some space to put the new indices in 4017 SmallVector<unsigned, 5> Idxs; 4018 Idxs.reserve(size); 4019 // Add indices from the extract value instruction 4020 Idxs.append(I->idx_begin(), I->idx_end()); 4021 4022 // Add requested indices 4023 Idxs.append(idx_range.begin(), idx_range.end()); 4024 4025 assert(Idxs.size() == size 4026 && "Number of indices added not correct?"); 4027 4028 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4029 } 4030 // Otherwise, we don't know (such as, extracting from a function return value 4031 // or load instruction) 4032 return nullptr; 4033 } 4034 4035 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4036 unsigned CharSize) { 4037 // Make sure the GEP has exactly three arguments. 4038 if (GEP->getNumOperands() != 3) 4039 return false; 4040 4041 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4042 // CharSize. 4043 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4044 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4045 return false; 4046 4047 // Check to make sure that the first operand of the GEP is an integer and 4048 // has value 0 so that we are sure we're indexing into the initializer. 4049 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4050 if (!FirstIdx || !FirstIdx->isZero()) 4051 return false; 4052 4053 return true; 4054 } 4055 4056 bool llvm::getConstantDataArrayInfo(const Value *V, 4057 ConstantDataArraySlice &Slice, 4058 unsigned ElementSize, uint64_t Offset) { 4059 assert(V); 4060 4061 // Look through bitcast instructions and geps. 4062 V = V->stripPointerCasts(); 4063 4064 // If the value is a GEP instruction or constant expression, treat it as an 4065 // offset. 4066 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4067 // The GEP operator should be based on a pointer to string constant, and is 4068 // indexing into the string constant. 4069 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4070 return false; 4071 4072 // If the second index isn't a ConstantInt, then this is a variable index 4073 // into the array. If this occurs, we can't say anything meaningful about 4074 // the string. 4075 uint64_t StartIdx = 0; 4076 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4077 StartIdx = CI->getZExtValue(); 4078 else 4079 return false; 4080 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4081 StartIdx + Offset); 4082 } 4083 4084 // The GEP instruction, constant or instruction, must reference a global 4085 // variable that is a constant and is initialized. The referenced constant 4086 // initializer is the array that we'll use for optimization. 4087 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4088 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4089 return false; 4090 4091 const ConstantDataArray *Array; 4092 ArrayType *ArrayTy; 4093 if (GV->getInitializer()->isNullValue()) { 4094 Type *GVTy = GV->getValueType(); 4095 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4096 // A zeroinitializer for the array; there is no ConstantDataArray. 4097 Array = nullptr; 4098 } else { 4099 const DataLayout &DL = GV->getParent()->getDataLayout(); 4100 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4101 uint64_t Length = SizeInBytes / (ElementSize / 8); 4102 if (Length <= Offset) 4103 return false; 4104 4105 Slice.Array = nullptr; 4106 Slice.Offset = 0; 4107 Slice.Length = Length - Offset; 4108 return true; 4109 } 4110 } else { 4111 // This must be a ConstantDataArray. 4112 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4113 if (!Array) 4114 return false; 4115 ArrayTy = Array->getType(); 4116 } 4117 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4118 return false; 4119 4120 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4121 if (Offset > NumElts) 4122 return false; 4123 4124 Slice.Array = Array; 4125 Slice.Offset = Offset; 4126 Slice.Length = NumElts - Offset; 4127 return true; 4128 } 4129 4130 /// This function computes the length of a null-terminated C string pointed to 4131 /// by V. If successful, it returns true and returns the string in Str. 4132 /// If unsuccessful, it returns false. 4133 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4134 uint64_t Offset, bool TrimAtNul) { 4135 ConstantDataArraySlice Slice; 4136 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4137 return false; 4138 4139 if (Slice.Array == nullptr) { 4140 if (TrimAtNul) { 4141 Str = StringRef(); 4142 return true; 4143 } 4144 if (Slice.Length == 1) { 4145 Str = StringRef("", 1); 4146 return true; 4147 } 4148 // We cannot instantiate a StringRef as we do not have an appropriate string 4149 // of 0s at hand. 4150 return false; 4151 } 4152 4153 // Start out with the entire array in the StringRef. 4154 Str = Slice.Array->getAsString(); 4155 // Skip over 'offset' bytes. 4156 Str = Str.substr(Slice.Offset); 4157 4158 if (TrimAtNul) { 4159 // Trim off the \0 and anything after it. If the array is not nul 4160 // terminated, we just return the whole end of string. The client may know 4161 // some other way that the string is length-bound. 4162 Str = Str.substr(0, Str.find('\0')); 4163 } 4164 return true; 4165 } 4166 4167 // These next two are very similar to the above, but also look through PHI 4168 // nodes. 4169 // TODO: See if we can integrate these two together. 4170 4171 /// If we can compute the length of the string pointed to by 4172 /// the specified pointer, return 'len+1'. If we can't, return 0. 4173 static uint64_t GetStringLengthH(const Value *V, 4174 SmallPtrSetImpl<const PHINode*> &PHIs, 4175 unsigned CharSize) { 4176 // Look through noop bitcast instructions. 4177 V = V->stripPointerCasts(); 4178 4179 // If this is a PHI node, there are two cases: either we have already seen it 4180 // or we haven't. 4181 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4182 if (!PHIs.insert(PN).second) 4183 return ~0ULL; // already in the set. 4184 4185 // If it was new, see if all the input strings are the same length. 4186 uint64_t LenSoFar = ~0ULL; 4187 for (Value *IncValue : PN->incoming_values()) { 4188 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4189 if (Len == 0) return 0; // Unknown length -> unknown. 4190 4191 if (Len == ~0ULL) continue; 4192 4193 if (Len != LenSoFar && LenSoFar != ~0ULL) 4194 return 0; // Disagree -> unknown. 4195 LenSoFar = Len; 4196 } 4197 4198 // Success, all agree. 4199 return LenSoFar; 4200 } 4201 4202 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4203 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4204 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4205 if (Len1 == 0) return 0; 4206 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4207 if (Len2 == 0) return 0; 4208 if (Len1 == ~0ULL) return Len2; 4209 if (Len2 == ~0ULL) return Len1; 4210 if (Len1 != Len2) return 0; 4211 return Len1; 4212 } 4213 4214 // Otherwise, see if we can read the string. 4215 ConstantDataArraySlice Slice; 4216 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4217 return 0; 4218 4219 if (Slice.Array == nullptr) 4220 return 1; 4221 4222 // Search for nul characters 4223 unsigned NullIndex = 0; 4224 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4225 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4226 break; 4227 } 4228 4229 return NullIndex + 1; 4230 } 4231 4232 /// If we can compute the length of the string pointed to by 4233 /// the specified pointer, return 'len+1'. If we can't, return 0. 4234 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4235 if (!V->getType()->isPointerTy()) 4236 return 0; 4237 4238 SmallPtrSet<const PHINode*, 32> PHIs; 4239 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4240 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4241 // an empty string as a length. 4242 return Len == ~0ULL ? 1 : Len; 4243 } 4244 4245 const Value * 4246 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4247 bool MustPreserveNullness) { 4248 assert(Call && 4249 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4250 if (const Value *RV = Call->getReturnedArgOperand()) 4251 return RV; 4252 // This can be used only as a aliasing property. 4253 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4254 Call, MustPreserveNullness)) 4255 return Call->getArgOperand(0); 4256 return nullptr; 4257 } 4258 4259 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4260 const CallBase *Call, bool MustPreserveNullness) { 4261 switch (Call->getIntrinsicID()) { 4262 case Intrinsic::launder_invariant_group: 4263 case Intrinsic::strip_invariant_group: 4264 case Intrinsic::aarch64_irg: 4265 case Intrinsic::aarch64_tagp: 4266 return true; 4267 case Intrinsic::ptrmask: 4268 return !MustPreserveNullness; 4269 default: 4270 return false; 4271 } 4272 } 4273 4274 /// \p PN defines a loop-variant pointer to an object. Check if the 4275 /// previous iteration of the loop was referring to the same object as \p PN. 4276 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4277 const LoopInfo *LI) { 4278 // Find the loop-defined value. 4279 Loop *L = LI->getLoopFor(PN->getParent()); 4280 if (PN->getNumIncomingValues() != 2) 4281 return true; 4282 4283 // Find the value from previous iteration. 4284 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4285 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4286 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4287 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4288 return true; 4289 4290 // If a new pointer is loaded in the loop, the pointer references a different 4291 // object in every iteration. E.g.: 4292 // for (i) 4293 // int *p = a[i]; 4294 // ... 4295 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4296 if (!L->isLoopInvariant(Load->getPointerOperand())) 4297 return false; 4298 return true; 4299 } 4300 4301 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4302 if (!V->getType()->isPointerTy()) 4303 return V; 4304 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4305 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4306 V = GEP->getPointerOperand(); 4307 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4308 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4309 V = cast<Operator>(V)->getOperand(0); 4310 if (!V->getType()->isPointerTy()) 4311 return V; 4312 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4313 if (GA->isInterposable()) 4314 return V; 4315 V = GA->getAliasee(); 4316 } else { 4317 if (auto *PHI = dyn_cast<PHINode>(V)) { 4318 // Look through single-arg phi nodes created by LCSSA. 4319 if (PHI->getNumIncomingValues() == 1) { 4320 V = PHI->getIncomingValue(0); 4321 continue; 4322 } 4323 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4324 // CaptureTracking can know about special capturing properties of some 4325 // intrinsics like launder.invariant.group, that can't be expressed with 4326 // the attributes, but have properties like returning aliasing pointer. 4327 // Because some analysis may assume that nocaptured pointer is not 4328 // returned from some special intrinsic (because function would have to 4329 // be marked with returns attribute), it is crucial to use this function 4330 // because it should be in sync with CaptureTracking. Not using it may 4331 // cause weird miscompilations where 2 aliasing pointers are assumed to 4332 // noalias. 4333 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4334 V = RP; 4335 continue; 4336 } 4337 } 4338 4339 return V; 4340 } 4341 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4342 } 4343 return V; 4344 } 4345 4346 void llvm::getUnderlyingObjects(const Value *V, 4347 SmallVectorImpl<const Value *> &Objects, 4348 LoopInfo *LI, unsigned MaxLookup) { 4349 SmallPtrSet<const Value *, 4> Visited; 4350 SmallVector<const Value *, 4> Worklist; 4351 Worklist.push_back(V); 4352 do { 4353 const Value *P = Worklist.pop_back_val(); 4354 P = getUnderlyingObject(P, MaxLookup); 4355 4356 if (!Visited.insert(P).second) 4357 continue; 4358 4359 if (auto *SI = dyn_cast<SelectInst>(P)) { 4360 Worklist.push_back(SI->getTrueValue()); 4361 Worklist.push_back(SI->getFalseValue()); 4362 continue; 4363 } 4364 4365 if (auto *PN = dyn_cast<PHINode>(P)) { 4366 // If this PHI changes the underlying object in every iteration of the 4367 // loop, don't look through it. Consider: 4368 // int **A; 4369 // for (i) { 4370 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4371 // Curr = A[i]; 4372 // *Prev, *Curr; 4373 // 4374 // Prev is tracking Curr one iteration behind so they refer to different 4375 // underlying objects. 4376 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4377 isSameUnderlyingObjectInLoop(PN, LI)) 4378 append_range(Worklist, PN->incoming_values()); 4379 continue; 4380 } 4381 4382 Objects.push_back(P); 4383 } while (!Worklist.empty()); 4384 } 4385 4386 /// This is the function that does the work of looking through basic 4387 /// ptrtoint+arithmetic+inttoptr sequences. 4388 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4389 do { 4390 if (const Operator *U = dyn_cast<Operator>(V)) { 4391 // If we find a ptrtoint, we can transfer control back to the 4392 // regular getUnderlyingObjectFromInt. 4393 if (U->getOpcode() == Instruction::PtrToInt) 4394 return U->getOperand(0); 4395 // If we find an add of a constant, a multiplied value, or a phi, it's 4396 // likely that the other operand will lead us to the base 4397 // object. We don't have to worry about the case where the 4398 // object address is somehow being computed by the multiply, 4399 // because our callers only care when the result is an 4400 // identifiable object. 4401 if (U->getOpcode() != Instruction::Add || 4402 (!isa<ConstantInt>(U->getOperand(1)) && 4403 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4404 !isa<PHINode>(U->getOperand(1)))) 4405 return V; 4406 V = U->getOperand(0); 4407 } else { 4408 return V; 4409 } 4410 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4411 } while (true); 4412 } 4413 4414 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4415 /// ptrtoint+arithmetic+inttoptr sequences. 4416 /// It returns false if unidentified object is found in getUnderlyingObjects. 4417 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4418 SmallVectorImpl<Value *> &Objects) { 4419 SmallPtrSet<const Value *, 16> Visited; 4420 SmallVector<const Value *, 4> Working(1, V); 4421 do { 4422 V = Working.pop_back_val(); 4423 4424 SmallVector<const Value *, 4> Objs; 4425 getUnderlyingObjects(V, Objs); 4426 4427 for (const Value *V : Objs) { 4428 if (!Visited.insert(V).second) 4429 continue; 4430 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4431 const Value *O = 4432 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4433 if (O->getType()->isPointerTy()) { 4434 Working.push_back(O); 4435 continue; 4436 } 4437 } 4438 // If getUnderlyingObjects fails to find an identifiable object, 4439 // getUnderlyingObjectsForCodeGen also fails for safety. 4440 if (!isIdentifiedObject(V)) { 4441 Objects.clear(); 4442 return false; 4443 } 4444 Objects.push_back(const_cast<Value *>(V)); 4445 } 4446 } while (!Working.empty()); 4447 return true; 4448 } 4449 4450 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4451 AllocaInst *Result = nullptr; 4452 SmallPtrSet<Value *, 4> Visited; 4453 SmallVector<Value *, 4> Worklist; 4454 4455 auto AddWork = [&](Value *V) { 4456 if (Visited.insert(V).second) 4457 Worklist.push_back(V); 4458 }; 4459 4460 AddWork(V); 4461 do { 4462 V = Worklist.pop_back_val(); 4463 assert(Visited.count(V)); 4464 4465 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4466 if (Result && Result != AI) 4467 return nullptr; 4468 Result = AI; 4469 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4470 AddWork(CI->getOperand(0)); 4471 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4472 for (Value *IncValue : PN->incoming_values()) 4473 AddWork(IncValue); 4474 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4475 AddWork(SI->getTrueValue()); 4476 AddWork(SI->getFalseValue()); 4477 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4478 if (OffsetZero && !GEP->hasAllZeroIndices()) 4479 return nullptr; 4480 AddWork(GEP->getPointerOperand()); 4481 } else { 4482 return nullptr; 4483 } 4484 } while (!Worklist.empty()); 4485 4486 return Result; 4487 } 4488 4489 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4490 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4491 for (const User *U : V->users()) { 4492 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4493 if (!II) 4494 return false; 4495 4496 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4497 continue; 4498 4499 if (AllowDroppable && II->isDroppable()) 4500 continue; 4501 4502 return false; 4503 } 4504 return true; 4505 } 4506 4507 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4508 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4509 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4510 } 4511 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4512 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4513 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4514 } 4515 4516 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4517 if (!LI.isUnordered()) 4518 return true; 4519 const Function &F = *LI.getFunction(); 4520 // Speculative load may create a race that did not exist in the source. 4521 return F.hasFnAttribute(Attribute::SanitizeThread) || 4522 // Speculative load may load data from dirty regions. 4523 F.hasFnAttribute(Attribute::SanitizeAddress) || 4524 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4525 } 4526 4527 4528 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4529 const Instruction *CtxI, 4530 const DominatorTree *DT, 4531 const TargetLibraryInfo *TLI) { 4532 const Operator *Inst = dyn_cast<Operator>(V); 4533 if (!Inst) 4534 return false; 4535 4536 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4537 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4538 if (C->canTrap()) 4539 return false; 4540 4541 switch (Inst->getOpcode()) { 4542 default: 4543 return true; 4544 case Instruction::UDiv: 4545 case Instruction::URem: { 4546 // x / y is undefined if y == 0. 4547 const APInt *V; 4548 if (match(Inst->getOperand(1), m_APInt(V))) 4549 return *V != 0; 4550 return false; 4551 } 4552 case Instruction::SDiv: 4553 case Instruction::SRem: { 4554 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4555 const APInt *Numerator, *Denominator; 4556 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4557 return false; 4558 // We cannot hoist this division if the denominator is 0. 4559 if (*Denominator == 0) 4560 return false; 4561 // It's safe to hoist if the denominator is not 0 or -1. 4562 if (!Denominator->isAllOnesValue()) 4563 return true; 4564 // At this point we know that the denominator is -1. It is safe to hoist as 4565 // long we know that the numerator is not INT_MIN. 4566 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4567 return !Numerator->isMinSignedValue(); 4568 // The numerator *might* be MinSignedValue. 4569 return false; 4570 } 4571 case Instruction::Load: { 4572 const LoadInst *LI = cast<LoadInst>(Inst); 4573 if (mustSuppressSpeculation(*LI)) 4574 return false; 4575 const DataLayout &DL = LI->getModule()->getDataLayout(); 4576 return isDereferenceableAndAlignedPointer( 4577 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4578 DL, CtxI, DT, TLI); 4579 } 4580 case Instruction::Call: { 4581 auto *CI = cast<const CallInst>(Inst); 4582 const Function *Callee = CI->getCalledFunction(); 4583 4584 // The called function could have undefined behavior or side-effects, even 4585 // if marked readnone nounwind. 4586 return Callee && Callee->isSpeculatable(); 4587 } 4588 case Instruction::VAArg: 4589 case Instruction::Alloca: 4590 case Instruction::Invoke: 4591 case Instruction::CallBr: 4592 case Instruction::PHI: 4593 case Instruction::Store: 4594 case Instruction::Ret: 4595 case Instruction::Br: 4596 case Instruction::IndirectBr: 4597 case Instruction::Switch: 4598 case Instruction::Unreachable: 4599 case Instruction::Fence: 4600 case Instruction::AtomicRMW: 4601 case Instruction::AtomicCmpXchg: 4602 case Instruction::LandingPad: 4603 case Instruction::Resume: 4604 case Instruction::CatchSwitch: 4605 case Instruction::CatchPad: 4606 case Instruction::CatchRet: 4607 case Instruction::CleanupPad: 4608 case Instruction::CleanupRet: 4609 return false; // Misc instructions which have effects 4610 } 4611 } 4612 4613 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4614 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4615 } 4616 4617 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4618 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4619 switch (OR) { 4620 case ConstantRange::OverflowResult::MayOverflow: 4621 return OverflowResult::MayOverflow; 4622 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4623 return OverflowResult::AlwaysOverflowsLow; 4624 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4625 return OverflowResult::AlwaysOverflowsHigh; 4626 case ConstantRange::OverflowResult::NeverOverflows: 4627 return OverflowResult::NeverOverflows; 4628 } 4629 llvm_unreachable("Unknown OverflowResult"); 4630 } 4631 4632 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4633 static ConstantRange computeConstantRangeIncludingKnownBits( 4634 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4635 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4636 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4637 KnownBits Known = computeKnownBits( 4638 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4639 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4640 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4641 ConstantRange::PreferredRangeType RangeType = 4642 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4643 return CR1.intersectWith(CR2, RangeType); 4644 } 4645 4646 OverflowResult llvm::computeOverflowForUnsignedMul( 4647 const Value *LHS, const Value *RHS, const DataLayout &DL, 4648 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4649 bool UseInstrInfo) { 4650 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4651 nullptr, UseInstrInfo); 4652 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4653 nullptr, UseInstrInfo); 4654 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4655 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4656 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4657 } 4658 4659 OverflowResult 4660 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4661 const DataLayout &DL, AssumptionCache *AC, 4662 const Instruction *CxtI, 4663 const DominatorTree *DT, bool UseInstrInfo) { 4664 // Multiplying n * m significant bits yields a result of n + m significant 4665 // bits. If the total number of significant bits does not exceed the 4666 // result bit width (minus 1), there is no overflow. 4667 // This means if we have enough leading sign bits in the operands 4668 // we can guarantee that the result does not overflow. 4669 // Ref: "Hacker's Delight" by Henry Warren 4670 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4671 4672 // Note that underestimating the number of sign bits gives a more 4673 // conservative answer. 4674 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4675 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4676 4677 // First handle the easy case: if we have enough sign bits there's 4678 // definitely no overflow. 4679 if (SignBits > BitWidth + 1) 4680 return OverflowResult::NeverOverflows; 4681 4682 // There are two ambiguous cases where there can be no overflow: 4683 // SignBits == BitWidth + 1 and 4684 // SignBits == BitWidth 4685 // The second case is difficult to check, therefore we only handle the 4686 // first case. 4687 if (SignBits == BitWidth + 1) { 4688 // It overflows only when both arguments are negative and the true 4689 // product is exactly the minimum negative number. 4690 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4691 // For simplicity we just check if at least one side is not negative. 4692 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4693 nullptr, UseInstrInfo); 4694 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4695 nullptr, UseInstrInfo); 4696 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4697 return OverflowResult::NeverOverflows; 4698 } 4699 return OverflowResult::MayOverflow; 4700 } 4701 4702 OverflowResult llvm::computeOverflowForUnsignedAdd( 4703 const Value *LHS, const Value *RHS, const DataLayout &DL, 4704 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4705 bool UseInstrInfo) { 4706 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4707 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4708 nullptr, UseInstrInfo); 4709 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4710 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4711 nullptr, UseInstrInfo); 4712 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4713 } 4714 4715 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4716 const Value *RHS, 4717 const AddOperator *Add, 4718 const DataLayout &DL, 4719 AssumptionCache *AC, 4720 const Instruction *CxtI, 4721 const DominatorTree *DT) { 4722 if (Add && Add->hasNoSignedWrap()) { 4723 return OverflowResult::NeverOverflows; 4724 } 4725 4726 // If LHS and RHS each have at least two sign bits, the addition will look 4727 // like 4728 // 4729 // XX..... + 4730 // YY..... 4731 // 4732 // If the carry into the most significant position is 0, X and Y can't both 4733 // be 1 and therefore the carry out of the addition is also 0. 4734 // 4735 // If the carry into the most significant position is 1, X and Y can't both 4736 // be 0 and therefore the carry out of the addition is also 1. 4737 // 4738 // Since the carry into the most significant position is always equal to 4739 // the carry out of the addition, there is no signed overflow. 4740 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4741 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4742 return OverflowResult::NeverOverflows; 4743 4744 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4745 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4746 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4747 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4748 OverflowResult OR = 4749 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4750 if (OR != OverflowResult::MayOverflow) 4751 return OR; 4752 4753 // The remaining code needs Add to be available. Early returns if not so. 4754 if (!Add) 4755 return OverflowResult::MayOverflow; 4756 4757 // If the sign of Add is the same as at least one of the operands, this add 4758 // CANNOT overflow. If this can be determined from the known bits of the 4759 // operands the above signedAddMayOverflow() check will have already done so. 4760 // The only other way to improve on the known bits is from an assumption, so 4761 // call computeKnownBitsFromAssume() directly. 4762 bool LHSOrRHSKnownNonNegative = 4763 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4764 bool LHSOrRHSKnownNegative = 4765 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4766 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4767 KnownBits AddKnown(LHSRange.getBitWidth()); 4768 computeKnownBitsFromAssume( 4769 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4770 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4771 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4772 return OverflowResult::NeverOverflows; 4773 } 4774 4775 return OverflowResult::MayOverflow; 4776 } 4777 4778 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4779 const Value *RHS, 4780 const DataLayout &DL, 4781 AssumptionCache *AC, 4782 const Instruction *CxtI, 4783 const DominatorTree *DT) { 4784 // Checking for conditions implied by dominating conditions may be expensive. 4785 // Limit it to usub_with_overflow calls for now. 4786 if (match(CxtI, 4787 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4788 if (auto C = 4789 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4790 if (*C) 4791 return OverflowResult::NeverOverflows; 4792 return OverflowResult::AlwaysOverflowsLow; 4793 } 4794 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4795 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4796 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4797 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4798 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4799 } 4800 4801 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4802 const Value *RHS, 4803 const DataLayout &DL, 4804 AssumptionCache *AC, 4805 const Instruction *CxtI, 4806 const DominatorTree *DT) { 4807 // If LHS and RHS each have at least two sign bits, the subtraction 4808 // cannot overflow. 4809 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4810 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4811 return OverflowResult::NeverOverflows; 4812 4813 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4814 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4815 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4816 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4817 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4818 } 4819 4820 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4821 const DominatorTree &DT) { 4822 SmallVector<const BranchInst *, 2> GuardingBranches; 4823 SmallVector<const ExtractValueInst *, 2> Results; 4824 4825 for (const User *U : WO->users()) { 4826 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4827 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4828 4829 if (EVI->getIndices()[0] == 0) 4830 Results.push_back(EVI); 4831 else { 4832 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4833 4834 for (const auto *U : EVI->users()) 4835 if (const auto *B = dyn_cast<BranchInst>(U)) { 4836 assert(B->isConditional() && "How else is it using an i1?"); 4837 GuardingBranches.push_back(B); 4838 } 4839 } 4840 } else { 4841 // We are using the aggregate directly in a way we don't want to analyze 4842 // here (storing it to a global, say). 4843 return false; 4844 } 4845 } 4846 4847 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4848 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4849 if (!NoWrapEdge.isSingleEdge()) 4850 return false; 4851 4852 // Check if all users of the add are provably no-wrap. 4853 for (const auto *Result : Results) { 4854 // If the extractvalue itself is not executed on overflow, the we don't 4855 // need to check each use separately, since domination is transitive. 4856 if (DT.dominates(NoWrapEdge, Result->getParent())) 4857 continue; 4858 4859 for (auto &RU : Result->uses()) 4860 if (!DT.dominates(NoWrapEdge, RU)) 4861 return false; 4862 } 4863 4864 return true; 4865 }; 4866 4867 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4868 } 4869 4870 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4871 // See whether I has flags that may create poison 4872 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4873 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4874 return true; 4875 } 4876 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4877 if (ExactOp->isExact()) 4878 return true; 4879 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4880 auto FMF = FP->getFastMathFlags(); 4881 if (FMF.noNaNs() || FMF.noInfs()) 4882 return true; 4883 } 4884 4885 unsigned Opcode = Op->getOpcode(); 4886 4887 // Check whether opcode is a poison/undef-generating operation 4888 switch (Opcode) { 4889 case Instruction::Shl: 4890 case Instruction::AShr: 4891 case Instruction::LShr: { 4892 // Shifts return poison if shiftwidth is larger than the bitwidth. 4893 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4894 SmallVector<Constant *, 4> ShiftAmounts; 4895 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4896 unsigned NumElts = FVTy->getNumElements(); 4897 for (unsigned i = 0; i < NumElts; ++i) 4898 ShiftAmounts.push_back(C->getAggregateElement(i)); 4899 } else if (isa<ScalableVectorType>(C->getType())) 4900 return true; // Can't tell, just return true to be safe 4901 else 4902 ShiftAmounts.push_back(C); 4903 4904 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4905 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4906 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4907 }); 4908 return !Safe; 4909 } 4910 return true; 4911 } 4912 case Instruction::FPToSI: 4913 case Instruction::FPToUI: 4914 // fptosi/ui yields poison if the resulting value does not fit in the 4915 // destination type. 4916 return true; 4917 case Instruction::Call: 4918 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4919 switch (II->getIntrinsicID()) { 4920 // TODO: Add more intrinsics. 4921 case Intrinsic::ctpop: 4922 case Intrinsic::sadd_with_overflow: 4923 case Intrinsic::ssub_with_overflow: 4924 case Intrinsic::smul_with_overflow: 4925 case Intrinsic::uadd_with_overflow: 4926 case Intrinsic::usub_with_overflow: 4927 case Intrinsic::umul_with_overflow: 4928 return false; 4929 } 4930 } 4931 LLVM_FALLTHROUGH; 4932 case Instruction::CallBr: 4933 case Instruction::Invoke: { 4934 const auto *CB = cast<CallBase>(Op); 4935 return !CB->hasRetAttr(Attribute::NoUndef); 4936 } 4937 case Instruction::InsertElement: 4938 case Instruction::ExtractElement: { 4939 // If index exceeds the length of the vector, it returns poison 4940 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4941 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4942 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4943 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4944 return true; 4945 return false; 4946 } 4947 case Instruction::ShuffleVector: { 4948 // shufflevector may return undef. 4949 if (PoisonOnly) 4950 return false; 4951 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4952 ? cast<ConstantExpr>(Op)->getShuffleMask() 4953 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4954 return is_contained(Mask, UndefMaskElem); 4955 } 4956 case Instruction::FNeg: 4957 case Instruction::PHI: 4958 case Instruction::Select: 4959 case Instruction::URem: 4960 case Instruction::SRem: 4961 case Instruction::ExtractValue: 4962 case Instruction::InsertValue: 4963 case Instruction::Freeze: 4964 case Instruction::ICmp: 4965 case Instruction::FCmp: 4966 return false; 4967 case Instruction::GetElementPtr: { 4968 const auto *GEP = cast<GEPOperator>(Op); 4969 return GEP->isInBounds(); 4970 } 4971 default: { 4972 const auto *CE = dyn_cast<ConstantExpr>(Op); 4973 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4974 return false; 4975 else if (Instruction::isBinaryOp(Opcode)) 4976 return false; 4977 // Be conservative and return true. 4978 return true; 4979 } 4980 } 4981 } 4982 4983 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4984 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4985 } 4986 4987 bool llvm::canCreatePoison(const Operator *Op) { 4988 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4989 } 4990 4991 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4992 const Value *V, unsigned Depth) { 4993 if (ValAssumedPoison == V) 4994 return true; 4995 4996 const unsigned MaxDepth = 2; 4997 if (Depth >= MaxDepth) 4998 return false; 4999 5000 if (const auto *I = dyn_cast<Instruction>(V)) { 5001 if (propagatesPoison(cast<Operator>(I))) 5002 return any_of(I->operands(), [=](const Value *Op) { 5003 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5004 }); 5005 5006 // 'select ValAssumedPoison, _, _' is poison. 5007 if (const auto *SI = dyn_cast<SelectInst>(I)) 5008 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5009 Depth + 1); 5010 // V = extractvalue V0, idx 5011 // V2 = extractvalue V0, idx2 5012 // V0's elements are all poison or not. (e.g., add_with_overflow) 5013 const WithOverflowInst *II; 5014 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5015 match(ValAssumedPoison, m_ExtractValue(m_Specific(II)))) 5016 return true; 5017 } 5018 return false; 5019 } 5020 5021 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5022 unsigned Depth) { 5023 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5024 return true; 5025 5026 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5027 return true; 5028 5029 const unsigned MaxDepth = 2; 5030 if (Depth >= MaxDepth) 5031 return false; 5032 5033 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5034 if (I && !canCreatePoison(cast<Operator>(I))) { 5035 return all_of(I->operands(), [=](const Value *Op) { 5036 return impliesPoison(Op, V, Depth + 1); 5037 }); 5038 } 5039 return false; 5040 } 5041 5042 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5043 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5044 } 5045 5046 static bool programUndefinedIfUndefOrPoison(const Value *V, 5047 bool PoisonOnly); 5048 5049 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5050 AssumptionCache *AC, 5051 const Instruction *CtxI, 5052 const DominatorTree *DT, 5053 unsigned Depth, bool PoisonOnly) { 5054 if (Depth >= MaxAnalysisRecursionDepth) 5055 return false; 5056 5057 if (isa<MetadataAsValue>(V)) 5058 return false; 5059 5060 if (const auto *A = dyn_cast<Argument>(V)) { 5061 if (A->hasAttribute(Attribute::NoUndef)) 5062 return true; 5063 } 5064 5065 if (auto *C = dyn_cast<Constant>(V)) { 5066 if (isa<UndefValue>(C)) 5067 return PoisonOnly && !isa<PoisonValue>(C); 5068 5069 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5070 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5071 return true; 5072 5073 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5074 return (PoisonOnly ? !C->containsPoisonElement() 5075 : !C->containsUndefOrPoisonElement()) && 5076 !C->containsConstantExpression(); 5077 } 5078 5079 // Strip cast operations from a pointer value. 5080 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5081 // inbounds with zero offset. To guarantee that the result isn't poison, the 5082 // stripped pointer is checked as it has to be pointing into an allocated 5083 // object or be null `null` to ensure `inbounds` getelement pointers with a 5084 // zero offset could not produce poison. 5085 // It can strip off addrspacecast that do not change bit representation as 5086 // well. We believe that such addrspacecast is equivalent to no-op. 5087 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5088 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5089 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5090 return true; 5091 5092 auto OpCheck = [&](const Value *V) { 5093 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5094 PoisonOnly); 5095 }; 5096 5097 if (auto *Opr = dyn_cast<Operator>(V)) { 5098 // If the value is a freeze instruction, then it can never 5099 // be undef or poison. 5100 if (isa<FreezeInst>(V)) 5101 return true; 5102 5103 if (const auto *CB = dyn_cast<CallBase>(V)) { 5104 if (CB->hasRetAttr(Attribute::NoUndef)) 5105 return true; 5106 } 5107 5108 if (const auto *PN = dyn_cast<PHINode>(V)) { 5109 unsigned Num = PN->getNumIncomingValues(); 5110 bool IsWellDefined = true; 5111 for (unsigned i = 0; i < Num; ++i) { 5112 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5113 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5114 DT, Depth + 1, PoisonOnly)) { 5115 IsWellDefined = false; 5116 break; 5117 } 5118 } 5119 if (IsWellDefined) 5120 return true; 5121 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5122 return true; 5123 } 5124 5125 if (auto *I = dyn_cast<LoadInst>(V)) 5126 if (I->getMetadata(LLVMContext::MD_noundef)) 5127 return true; 5128 5129 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5130 return true; 5131 5132 // CxtI may be null or a cloned instruction. 5133 if (!CtxI || !CtxI->getParent() || !DT) 5134 return false; 5135 5136 auto *DNode = DT->getNode(CtxI->getParent()); 5137 if (!DNode) 5138 // Unreachable block 5139 return false; 5140 5141 // If V is used as a branch condition before reaching CtxI, V cannot be 5142 // undef or poison. 5143 // br V, BB1, BB2 5144 // BB1: 5145 // CtxI ; V cannot be undef or poison here 5146 auto *Dominator = DNode->getIDom(); 5147 while (Dominator) { 5148 auto *TI = Dominator->getBlock()->getTerminator(); 5149 5150 Value *Cond = nullptr; 5151 if (auto BI = dyn_cast<BranchInst>(TI)) { 5152 if (BI->isConditional()) 5153 Cond = BI->getCondition(); 5154 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5155 Cond = SI->getCondition(); 5156 } 5157 5158 if (Cond) { 5159 if (Cond == V) 5160 return true; 5161 else if (PoisonOnly && isa<Operator>(Cond)) { 5162 // For poison, we can analyze further 5163 auto *Opr = cast<Operator>(Cond); 5164 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5165 return true; 5166 } 5167 } 5168 5169 Dominator = Dominator->getIDom(); 5170 } 5171 5172 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5173 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5174 return true; 5175 5176 return false; 5177 } 5178 5179 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5180 const Instruction *CtxI, 5181 const DominatorTree *DT, 5182 unsigned Depth) { 5183 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5184 } 5185 5186 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5187 const Instruction *CtxI, 5188 const DominatorTree *DT, unsigned Depth) { 5189 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5190 } 5191 5192 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5193 const DataLayout &DL, 5194 AssumptionCache *AC, 5195 const Instruction *CxtI, 5196 const DominatorTree *DT) { 5197 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5198 Add, DL, AC, CxtI, DT); 5199 } 5200 5201 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5202 const Value *RHS, 5203 const DataLayout &DL, 5204 AssumptionCache *AC, 5205 const Instruction *CxtI, 5206 const DominatorTree *DT) { 5207 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5208 } 5209 5210 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5211 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5212 // of time because it's possible for another thread to interfere with it for an 5213 // arbitrary length of time, but programs aren't allowed to rely on that. 5214 5215 // If there is no successor, then execution can't transfer to it. 5216 if (isa<ReturnInst>(I)) 5217 return false; 5218 if (isa<UnreachableInst>(I)) 5219 return false; 5220 5221 // An instruction that returns without throwing must transfer control flow 5222 // to a successor. 5223 return !I->mayThrow() && I->willReturn(); 5224 } 5225 5226 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5227 // TODO: This is slightly conservative for invoke instruction since exiting 5228 // via an exception *is* normal control for them. 5229 for (const Instruction &I : *BB) 5230 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5231 return false; 5232 return true; 5233 } 5234 5235 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5236 const Loop *L) { 5237 // The loop header is guaranteed to be executed for every iteration. 5238 // 5239 // FIXME: Relax this constraint to cover all basic blocks that are 5240 // guaranteed to be executed at every iteration. 5241 if (I->getParent() != L->getHeader()) return false; 5242 5243 for (const Instruction &LI : *L->getHeader()) { 5244 if (&LI == I) return true; 5245 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5246 } 5247 llvm_unreachable("Instruction not contained in its own parent basic block."); 5248 } 5249 5250 bool llvm::propagatesPoison(const Operator *I) { 5251 switch (I->getOpcode()) { 5252 case Instruction::Freeze: 5253 case Instruction::Select: 5254 case Instruction::PHI: 5255 case Instruction::Invoke: 5256 return false; 5257 case Instruction::Call: 5258 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5259 switch (II->getIntrinsicID()) { 5260 // TODO: Add more intrinsics. 5261 case Intrinsic::sadd_with_overflow: 5262 case Intrinsic::ssub_with_overflow: 5263 case Intrinsic::smul_with_overflow: 5264 case Intrinsic::uadd_with_overflow: 5265 case Intrinsic::usub_with_overflow: 5266 case Intrinsic::umul_with_overflow: 5267 // If an input is a vector containing a poison element, the 5268 // two output vectors (calculated results, overflow bits)' 5269 // corresponding lanes are poison. 5270 return true; 5271 } 5272 } 5273 return false; 5274 case Instruction::ICmp: 5275 case Instruction::FCmp: 5276 case Instruction::GetElementPtr: 5277 return true; 5278 default: 5279 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5280 return true; 5281 5282 // Be conservative and return false. 5283 return false; 5284 } 5285 } 5286 5287 void llvm::getGuaranteedWellDefinedOps( 5288 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5289 switch (I->getOpcode()) { 5290 case Instruction::Store: 5291 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5292 break; 5293 5294 case Instruction::Load: 5295 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5296 break; 5297 5298 // Since dereferenceable attribute imply noundef, atomic operations 5299 // also implicitly have noundef pointers too 5300 case Instruction::AtomicCmpXchg: 5301 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5302 break; 5303 5304 case Instruction::AtomicRMW: 5305 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5306 break; 5307 5308 case Instruction::Call: 5309 case Instruction::Invoke: { 5310 const CallBase *CB = cast<CallBase>(I); 5311 if (CB->isIndirectCall()) 5312 Operands.insert(CB->getCalledOperand()); 5313 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5314 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5315 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5316 Operands.insert(CB->getArgOperand(i)); 5317 } 5318 break; 5319 } 5320 5321 default: 5322 break; 5323 } 5324 } 5325 5326 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5327 SmallPtrSetImpl<const Value *> &Operands) { 5328 getGuaranteedWellDefinedOps(I, Operands); 5329 switch (I->getOpcode()) { 5330 // Divisors of these operations are allowed to be partially undef. 5331 case Instruction::UDiv: 5332 case Instruction::SDiv: 5333 case Instruction::URem: 5334 case Instruction::SRem: 5335 Operands.insert(I->getOperand(1)); 5336 break; 5337 5338 default: 5339 break; 5340 } 5341 } 5342 5343 bool llvm::mustTriggerUB(const Instruction *I, 5344 const SmallSet<const Value *, 16>& KnownPoison) { 5345 SmallPtrSet<const Value *, 4> NonPoisonOps; 5346 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5347 5348 for (const auto *V : NonPoisonOps) 5349 if (KnownPoison.count(V)) 5350 return true; 5351 5352 return false; 5353 } 5354 5355 static bool programUndefinedIfUndefOrPoison(const Value *V, 5356 bool PoisonOnly) { 5357 // We currently only look for uses of values within the same basic 5358 // block, as that makes it easier to guarantee that the uses will be 5359 // executed given that Inst is executed. 5360 // 5361 // FIXME: Expand this to consider uses beyond the same basic block. To do 5362 // this, look out for the distinction between post-dominance and strong 5363 // post-dominance. 5364 const BasicBlock *BB = nullptr; 5365 BasicBlock::const_iterator Begin; 5366 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5367 BB = Inst->getParent(); 5368 Begin = Inst->getIterator(); 5369 Begin++; 5370 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5371 BB = &Arg->getParent()->getEntryBlock(); 5372 Begin = BB->begin(); 5373 } else { 5374 return false; 5375 } 5376 5377 BasicBlock::const_iterator End = BB->end(); 5378 5379 if (!PoisonOnly) { 5380 // Since undef does not propagate eagerly, be conservative & just check 5381 // whether a value is directly passed to an instruction that must take 5382 // well-defined operands. 5383 5384 for (auto &I : make_range(Begin, End)) { 5385 SmallPtrSet<const Value *, 4> WellDefinedOps; 5386 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5387 for (auto *Op : WellDefinedOps) { 5388 if (Op == V) 5389 return true; 5390 } 5391 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5392 break; 5393 } 5394 return false; 5395 } 5396 5397 // Set of instructions that we have proved will yield poison if Inst 5398 // does. 5399 SmallSet<const Value *, 16> YieldsPoison; 5400 SmallSet<const BasicBlock *, 4> Visited; 5401 5402 YieldsPoison.insert(V); 5403 auto Propagate = [&](const User *User) { 5404 if (propagatesPoison(cast<Operator>(User))) 5405 YieldsPoison.insert(User); 5406 }; 5407 for_each(V->users(), Propagate); 5408 Visited.insert(BB); 5409 5410 unsigned Iter = 0; 5411 while (Iter++ < MaxAnalysisRecursionDepth) { 5412 for (auto &I : make_range(Begin, End)) { 5413 if (mustTriggerUB(&I, YieldsPoison)) 5414 return true; 5415 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5416 return false; 5417 5418 // Mark poison that propagates from I through uses of I. 5419 if (YieldsPoison.count(&I)) 5420 for_each(I.users(), Propagate); 5421 } 5422 5423 if (auto *NextBB = BB->getSingleSuccessor()) { 5424 if (Visited.insert(NextBB).second) { 5425 BB = NextBB; 5426 Begin = BB->getFirstNonPHI()->getIterator(); 5427 End = BB->end(); 5428 continue; 5429 } 5430 } 5431 5432 break; 5433 } 5434 return false; 5435 } 5436 5437 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5438 return ::programUndefinedIfUndefOrPoison(Inst, false); 5439 } 5440 5441 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5442 return ::programUndefinedIfUndefOrPoison(Inst, true); 5443 } 5444 5445 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5446 if (FMF.noNaNs()) 5447 return true; 5448 5449 if (auto *C = dyn_cast<ConstantFP>(V)) 5450 return !C->isNaN(); 5451 5452 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5453 if (!C->getElementType()->isFloatingPointTy()) 5454 return false; 5455 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5456 if (C->getElementAsAPFloat(I).isNaN()) 5457 return false; 5458 } 5459 return true; 5460 } 5461 5462 if (isa<ConstantAggregateZero>(V)) 5463 return true; 5464 5465 return false; 5466 } 5467 5468 static bool isKnownNonZero(const Value *V) { 5469 if (auto *C = dyn_cast<ConstantFP>(V)) 5470 return !C->isZero(); 5471 5472 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5473 if (!C->getElementType()->isFloatingPointTy()) 5474 return false; 5475 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5476 if (C->getElementAsAPFloat(I).isZero()) 5477 return false; 5478 } 5479 return true; 5480 } 5481 5482 return false; 5483 } 5484 5485 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5486 /// Given non-min/max outer cmp/select from the clamp pattern this 5487 /// function recognizes if it can be substitued by a "canonical" min/max 5488 /// pattern. 5489 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5490 Value *CmpLHS, Value *CmpRHS, 5491 Value *TrueVal, Value *FalseVal, 5492 Value *&LHS, Value *&RHS) { 5493 // Try to match 5494 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5495 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5496 // and return description of the outer Max/Min. 5497 5498 // First, check if select has inverse order: 5499 if (CmpRHS == FalseVal) { 5500 std::swap(TrueVal, FalseVal); 5501 Pred = CmpInst::getInversePredicate(Pred); 5502 } 5503 5504 // Assume success now. If there's no match, callers should not use these anyway. 5505 LHS = TrueVal; 5506 RHS = FalseVal; 5507 5508 const APFloat *FC1; 5509 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5510 return {SPF_UNKNOWN, SPNB_NA, false}; 5511 5512 const APFloat *FC2; 5513 switch (Pred) { 5514 case CmpInst::FCMP_OLT: 5515 case CmpInst::FCMP_OLE: 5516 case CmpInst::FCMP_ULT: 5517 case CmpInst::FCMP_ULE: 5518 if (match(FalseVal, 5519 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5520 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5521 *FC1 < *FC2) 5522 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5523 break; 5524 case CmpInst::FCMP_OGT: 5525 case CmpInst::FCMP_OGE: 5526 case CmpInst::FCMP_UGT: 5527 case CmpInst::FCMP_UGE: 5528 if (match(FalseVal, 5529 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5530 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5531 *FC1 > *FC2) 5532 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5533 break; 5534 default: 5535 break; 5536 } 5537 5538 return {SPF_UNKNOWN, SPNB_NA, false}; 5539 } 5540 5541 /// Recognize variations of: 5542 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5543 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5544 Value *CmpLHS, Value *CmpRHS, 5545 Value *TrueVal, Value *FalseVal) { 5546 // Swap the select operands and predicate to match the patterns below. 5547 if (CmpRHS != TrueVal) { 5548 Pred = ICmpInst::getSwappedPredicate(Pred); 5549 std::swap(TrueVal, FalseVal); 5550 } 5551 const APInt *C1; 5552 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5553 const APInt *C2; 5554 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5555 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5556 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5557 return {SPF_SMAX, SPNB_NA, false}; 5558 5559 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5560 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5561 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5562 return {SPF_SMIN, SPNB_NA, false}; 5563 5564 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5565 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5566 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5567 return {SPF_UMAX, SPNB_NA, false}; 5568 5569 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5570 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5571 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5572 return {SPF_UMIN, SPNB_NA, false}; 5573 } 5574 return {SPF_UNKNOWN, SPNB_NA, false}; 5575 } 5576 5577 /// Recognize variations of: 5578 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5579 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5580 Value *CmpLHS, Value *CmpRHS, 5581 Value *TVal, Value *FVal, 5582 unsigned Depth) { 5583 // TODO: Allow FP min/max with nnan/nsz. 5584 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5585 5586 Value *A = nullptr, *B = nullptr; 5587 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5588 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5589 return {SPF_UNKNOWN, SPNB_NA, false}; 5590 5591 Value *C = nullptr, *D = nullptr; 5592 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5593 if (L.Flavor != R.Flavor) 5594 return {SPF_UNKNOWN, SPNB_NA, false}; 5595 5596 // We have something like: x Pred y ? min(a, b) : min(c, d). 5597 // Try to match the compare to the min/max operations of the select operands. 5598 // First, make sure we have the right compare predicate. 5599 switch (L.Flavor) { 5600 case SPF_SMIN: 5601 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5602 Pred = ICmpInst::getSwappedPredicate(Pred); 5603 std::swap(CmpLHS, CmpRHS); 5604 } 5605 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5606 break; 5607 return {SPF_UNKNOWN, SPNB_NA, false}; 5608 case SPF_SMAX: 5609 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5610 Pred = ICmpInst::getSwappedPredicate(Pred); 5611 std::swap(CmpLHS, CmpRHS); 5612 } 5613 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5614 break; 5615 return {SPF_UNKNOWN, SPNB_NA, false}; 5616 case SPF_UMIN: 5617 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5618 Pred = ICmpInst::getSwappedPredicate(Pred); 5619 std::swap(CmpLHS, CmpRHS); 5620 } 5621 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5622 break; 5623 return {SPF_UNKNOWN, SPNB_NA, false}; 5624 case SPF_UMAX: 5625 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5626 Pred = ICmpInst::getSwappedPredicate(Pred); 5627 std::swap(CmpLHS, CmpRHS); 5628 } 5629 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5630 break; 5631 return {SPF_UNKNOWN, SPNB_NA, false}; 5632 default: 5633 return {SPF_UNKNOWN, SPNB_NA, false}; 5634 } 5635 5636 // If there is a common operand in the already matched min/max and the other 5637 // min/max operands match the compare operands (either directly or inverted), 5638 // then this is min/max of the same flavor. 5639 5640 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5641 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5642 if (D == B) { 5643 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5644 match(A, m_Not(m_Specific(CmpRHS))))) 5645 return {L.Flavor, SPNB_NA, false}; 5646 } 5647 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5648 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5649 if (C == B) { 5650 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5651 match(A, m_Not(m_Specific(CmpRHS))))) 5652 return {L.Flavor, SPNB_NA, false}; 5653 } 5654 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5655 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5656 if (D == A) { 5657 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5658 match(B, m_Not(m_Specific(CmpRHS))))) 5659 return {L.Flavor, SPNB_NA, false}; 5660 } 5661 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5662 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5663 if (C == A) { 5664 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5665 match(B, m_Not(m_Specific(CmpRHS))))) 5666 return {L.Flavor, SPNB_NA, false}; 5667 } 5668 5669 return {SPF_UNKNOWN, SPNB_NA, false}; 5670 } 5671 5672 /// If the input value is the result of a 'not' op, constant integer, or vector 5673 /// splat of a constant integer, return the bitwise-not source value. 5674 /// TODO: This could be extended to handle non-splat vector integer constants. 5675 static Value *getNotValue(Value *V) { 5676 Value *NotV; 5677 if (match(V, m_Not(m_Value(NotV)))) 5678 return NotV; 5679 5680 const APInt *C; 5681 if (match(V, m_APInt(C))) 5682 return ConstantInt::get(V->getType(), ~(*C)); 5683 5684 return nullptr; 5685 } 5686 5687 /// Match non-obvious integer minimum and maximum sequences. 5688 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5689 Value *CmpLHS, Value *CmpRHS, 5690 Value *TrueVal, Value *FalseVal, 5691 Value *&LHS, Value *&RHS, 5692 unsigned Depth) { 5693 // Assume success. If there's no match, callers should not use these anyway. 5694 LHS = TrueVal; 5695 RHS = FalseVal; 5696 5697 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5698 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5699 return SPR; 5700 5701 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5702 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5703 return SPR; 5704 5705 // Look through 'not' ops to find disguised min/max. 5706 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5707 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5708 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5709 switch (Pred) { 5710 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5711 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5712 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5713 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5714 default: break; 5715 } 5716 } 5717 5718 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5719 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5720 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5721 switch (Pred) { 5722 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5723 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5724 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5725 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5726 default: break; 5727 } 5728 } 5729 5730 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5731 return {SPF_UNKNOWN, SPNB_NA, false}; 5732 5733 // Z = X -nsw Y 5734 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5735 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5736 if (match(TrueVal, m_Zero()) && 5737 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5738 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5739 5740 // Z = X -nsw Y 5741 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5742 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5743 if (match(FalseVal, m_Zero()) && 5744 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5745 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5746 5747 const APInt *C1; 5748 if (!match(CmpRHS, m_APInt(C1))) 5749 return {SPF_UNKNOWN, SPNB_NA, false}; 5750 5751 // An unsigned min/max can be written with a signed compare. 5752 const APInt *C2; 5753 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5754 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5755 // Is the sign bit set? 5756 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5757 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5758 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5759 C2->isMaxSignedValue()) 5760 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5761 5762 // Is the sign bit clear? 5763 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5764 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5765 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5766 C2->isMinSignedValue()) 5767 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5768 } 5769 5770 return {SPF_UNKNOWN, SPNB_NA, false}; 5771 } 5772 5773 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5774 assert(X && Y && "Invalid operand"); 5775 5776 // X = sub (0, Y) || X = sub nsw (0, Y) 5777 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5778 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5779 return true; 5780 5781 // Y = sub (0, X) || Y = sub nsw (0, X) 5782 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5783 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5784 return true; 5785 5786 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5787 Value *A, *B; 5788 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5789 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5790 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5791 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5792 } 5793 5794 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5795 FastMathFlags FMF, 5796 Value *CmpLHS, Value *CmpRHS, 5797 Value *TrueVal, Value *FalseVal, 5798 Value *&LHS, Value *&RHS, 5799 unsigned Depth) { 5800 if (CmpInst::isFPPredicate(Pred)) { 5801 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5802 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5803 // purpose of identifying min/max. Disregard vector constants with undefined 5804 // elements because those can not be back-propagated for analysis. 5805 Value *OutputZeroVal = nullptr; 5806 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5807 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5808 OutputZeroVal = TrueVal; 5809 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5810 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5811 OutputZeroVal = FalseVal; 5812 5813 if (OutputZeroVal) { 5814 if (match(CmpLHS, m_AnyZeroFP())) 5815 CmpLHS = OutputZeroVal; 5816 if (match(CmpRHS, m_AnyZeroFP())) 5817 CmpRHS = OutputZeroVal; 5818 } 5819 } 5820 5821 LHS = CmpLHS; 5822 RHS = CmpRHS; 5823 5824 // Signed zero may return inconsistent results between implementations. 5825 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5826 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5827 // Therefore, we behave conservatively and only proceed if at least one of the 5828 // operands is known to not be zero or if we don't care about signed zero. 5829 switch (Pred) { 5830 default: break; 5831 // FIXME: Include OGT/OLT/UGT/ULT. 5832 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5833 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5834 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5835 !isKnownNonZero(CmpRHS)) 5836 return {SPF_UNKNOWN, SPNB_NA, false}; 5837 } 5838 5839 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5840 bool Ordered = false; 5841 5842 // When given one NaN and one non-NaN input: 5843 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5844 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5845 // ordered comparison fails), which could be NaN or non-NaN. 5846 // so here we discover exactly what NaN behavior is required/accepted. 5847 if (CmpInst::isFPPredicate(Pred)) { 5848 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5849 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5850 5851 if (LHSSafe && RHSSafe) { 5852 // Both operands are known non-NaN. 5853 NaNBehavior = SPNB_RETURNS_ANY; 5854 } else if (CmpInst::isOrdered(Pred)) { 5855 // An ordered comparison will return false when given a NaN, so it 5856 // returns the RHS. 5857 Ordered = true; 5858 if (LHSSafe) 5859 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5860 NaNBehavior = SPNB_RETURNS_NAN; 5861 else if (RHSSafe) 5862 NaNBehavior = SPNB_RETURNS_OTHER; 5863 else 5864 // Completely unsafe. 5865 return {SPF_UNKNOWN, SPNB_NA, false}; 5866 } else { 5867 Ordered = false; 5868 // An unordered comparison will return true when given a NaN, so it 5869 // returns the LHS. 5870 if (LHSSafe) 5871 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5872 NaNBehavior = SPNB_RETURNS_OTHER; 5873 else if (RHSSafe) 5874 NaNBehavior = SPNB_RETURNS_NAN; 5875 else 5876 // Completely unsafe. 5877 return {SPF_UNKNOWN, SPNB_NA, false}; 5878 } 5879 } 5880 5881 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5882 std::swap(CmpLHS, CmpRHS); 5883 Pred = CmpInst::getSwappedPredicate(Pred); 5884 if (NaNBehavior == SPNB_RETURNS_NAN) 5885 NaNBehavior = SPNB_RETURNS_OTHER; 5886 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5887 NaNBehavior = SPNB_RETURNS_NAN; 5888 Ordered = !Ordered; 5889 } 5890 5891 // ([if]cmp X, Y) ? X : Y 5892 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5893 switch (Pred) { 5894 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5895 case ICmpInst::ICMP_UGT: 5896 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5897 case ICmpInst::ICMP_SGT: 5898 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5899 case ICmpInst::ICMP_ULT: 5900 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5901 case ICmpInst::ICMP_SLT: 5902 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5903 case FCmpInst::FCMP_UGT: 5904 case FCmpInst::FCMP_UGE: 5905 case FCmpInst::FCMP_OGT: 5906 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5907 case FCmpInst::FCMP_ULT: 5908 case FCmpInst::FCMP_ULE: 5909 case FCmpInst::FCMP_OLT: 5910 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5911 } 5912 } 5913 5914 if (isKnownNegation(TrueVal, FalseVal)) { 5915 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5916 // match against either LHS or sext(LHS). 5917 auto MaybeSExtCmpLHS = 5918 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5919 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5920 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5921 if (match(TrueVal, MaybeSExtCmpLHS)) { 5922 // Set the return values. If the compare uses the negated value (-X >s 0), 5923 // swap the return values because the negated value is always 'RHS'. 5924 LHS = TrueVal; 5925 RHS = FalseVal; 5926 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5927 std::swap(LHS, RHS); 5928 5929 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5930 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5931 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5932 return {SPF_ABS, SPNB_NA, false}; 5933 5934 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5935 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5936 return {SPF_ABS, SPNB_NA, false}; 5937 5938 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5939 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5940 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5941 return {SPF_NABS, SPNB_NA, false}; 5942 } 5943 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5944 // Set the return values. If the compare uses the negated value (-X >s 0), 5945 // swap the return values because the negated value is always 'RHS'. 5946 LHS = FalseVal; 5947 RHS = TrueVal; 5948 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5949 std::swap(LHS, RHS); 5950 5951 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5952 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5953 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5954 return {SPF_NABS, SPNB_NA, false}; 5955 5956 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5957 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5958 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5959 return {SPF_ABS, SPNB_NA, false}; 5960 } 5961 } 5962 5963 if (CmpInst::isIntPredicate(Pred)) 5964 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5965 5966 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5967 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5968 // semantics than minNum. Be conservative in such case. 5969 if (NaNBehavior != SPNB_RETURNS_ANY || 5970 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5971 !isKnownNonZero(CmpRHS))) 5972 return {SPF_UNKNOWN, SPNB_NA, false}; 5973 5974 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5975 } 5976 5977 /// Helps to match a select pattern in case of a type mismatch. 5978 /// 5979 /// The function processes the case when type of true and false values of a 5980 /// select instruction differs from type of the cmp instruction operands because 5981 /// of a cast instruction. The function checks if it is legal to move the cast 5982 /// operation after "select". If yes, it returns the new second value of 5983 /// "select" (with the assumption that cast is moved): 5984 /// 1. As operand of cast instruction when both values of "select" are same cast 5985 /// instructions. 5986 /// 2. As restored constant (by applying reverse cast operation) when the first 5987 /// value of the "select" is a cast operation and the second value is a 5988 /// constant. 5989 /// NOTE: We return only the new second value because the first value could be 5990 /// accessed as operand of cast instruction. 5991 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5992 Instruction::CastOps *CastOp) { 5993 auto *Cast1 = dyn_cast<CastInst>(V1); 5994 if (!Cast1) 5995 return nullptr; 5996 5997 *CastOp = Cast1->getOpcode(); 5998 Type *SrcTy = Cast1->getSrcTy(); 5999 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6000 // If V1 and V2 are both the same cast from the same type, look through V1. 6001 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6002 return Cast2->getOperand(0); 6003 return nullptr; 6004 } 6005 6006 auto *C = dyn_cast<Constant>(V2); 6007 if (!C) 6008 return nullptr; 6009 6010 Constant *CastedTo = nullptr; 6011 switch (*CastOp) { 6012 case Instruction::ZExt: 6013 if (CmpI->isUnsigned()) 6014 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6015 break; 6016 case Instruction::SExt: 6017 if (CmpI->isSigned()) 6018 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6019 break; 6020 case Instruction::Trunc: 6021 Constant *CmpConst; 6022 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6023 CmpConst->getType() == SrcTy) { 6024 // Here we have the following case: 6025 // 6026 // %cond = cmp iN %x, CmpConst 6027 // %tr = trunc iN %x to iK 6028 // %narrowsel = select i1 %cond, iK %t, iK C 6029 // 6030 // We can always move trunc after select operation: 6031 // 6032 // %cond = cmp iN %x, CmpConst 6033 // %widesel = select i1 %cond, iN %x, iN CmpConst 6034 // %tr = trunc iN %widesel to iK 6035 // 6036 // Note that C could be extended in any way because we don't care about 6037 // upper bits after truncation. It can't be abs pattern, because it would 6038 // look like: 6039 // 6040 // select i1 %cond, x, -x. 6041 // 6042 // So only min/max pattern could be matched. Such match requires widened C 6043 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6044 // CmpConst == C is checked below. 6045 CastedTo = CmpConst; 6046 } else { 6047 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6048 } 6049 break; 6050 case Instruction::FPTrunc: 6051 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6052 break; 6053 case Instruction::FPExt: 6054 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6055 break; 6056 case Instruction::FPToUI: 6057 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6058 break; 6059 case Instruction::FPToSI: 6060 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6061 break; 6062 case Instruction::UIToFP: 6063 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6064 break; 6065 case Instruction::SIToFP: 6066 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6067 break; 6068 default: 6069 break; 6070 } 6071 6072 if (!CastedTo) 6073 return nullptr; 6074 6075 // Make sure the cast doesn't lose any information. 6076 Constant *CastedBack = 6077 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6078 if (CastedBack != C) 6079 return nullptr; 6080 6081 return CastedTo; 6082 } 6083 6084 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6085 Instruction::CastOps *CastOp, 6086 unsigned Depth) { 6087 if (Depth >= MaxAnalysisRecursionDepth) 6088 return {SPF_UNKNOWN, SPNB_NA, false}; 6089 6090 SelectInst *SI = dyn_cast<SelectInst>(V); 6091 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6092 6093 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6094 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6095 6096 Value *TrueVal = SI->getTrueValue(); 6097 Value *FalseVal = SI->getFalseValue(); 6098 6099 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6100 CastOp, Depth); 6101 } 6102 6103 SelectPatternResult llvm::matchDecomposedSelectPattern( 6104 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6105 Instruction::CastOps *CastOp, unsigned Depth) { 6106 CmpInst::Predicate Pred = CmpI->getPredicate(); 6107 Value *CmpLHS = CmpI->getOperand(0); 6108 Value *CmpRHS = CmpI->getOperand(1); 6109 FastMathFlags FMF; 6110 if (isa<FPMathOperator>(CmpI)) 6111 FMF = CmpI->getFastMathFlags(); 6112 6113 // Bail out early. 6114 if (CmpI->isEquality()) 6115 return {SPF_UNKNOWN, SPNB_NA, false}; 6116 6117 // Deal with type mismatches. 6118 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6119 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6120 // If this is a potential fmin/fmax with a cast to integer, then ignore 6121 // -0.0 because there is no corresponding integer value. 6122 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6123 FMF.setNoSignedZeros(); 6124 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6125 cast<CastInst>(TrueVal)->getOperand(0), C, 6126 LHS, RHS, Depth); 6127 } 6128 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6129 // If this is a potential fmin/fmax with a cast to integer, then ignore 6130 // -0.0 because there is no corresponding integer value. 6131 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6132 FMF.setNoSignedZeros(); 6133 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6134 C, cast<CastInst>(FalseVal)->getOperand(0), 6135 LHS, RHS, Depth); 6136 } 6137 } 6138 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6139 LHS, RHS, Depth); 6140 } 6141 6142 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6143 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6144 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6145 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6146 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6147 if (SPF == SPF_FMINNUM) 6148 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6149 if (SPF == SPF_FMAXNUM) 6150 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6151 llvm_unreachable("unhandled!"); 6152 } 6153 6154 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6155 if (SPF == SPF_SMIN) return SPF_SMAX; 6156 if (SPF == SPF_UMIN) return SPF_UMAX; 6157 if (SPF == SPF_SMAX) return SPF_SMIN; 6158 if (SPF == SPF_UMAX) return SPF_UMIN; 6159 llvm_unreachable("unhandled!"); 6160 } 6161 6162 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6163 switch (MinMaxID) { 6164 case Intrinsic::smax: return Intrinsic::smin; 6165 case Intrinsic::smin: return Intrinsic::smax; 6166 case Intrinsic::umax: return Intrinsic::umin; 6167 case Intrinsic::umin: return Intrinsic::umax; 6168 default: llvm_unreachable("Unexpected intrinsic"); 6169 } 6170 } 6171 6172 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6173 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6174 } 6175 6176 std::pair<Intrinsic::ID, bool> 6177 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6178 // Check if VL contains select instructions that can be folded into a min/max 6179 // vector intrinsic and return the intrinsic if it is possible. 6180 // TODO: Support floating point min/max. 6181 bool AllCmpSingleUse = true; 6182 SelectPatternResult SelectPattern; 6183 SelectPattern.Flavor = SPF_UNKNOWN; 6184 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6185 Value *LHS, *RHS; 6186 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6187 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6188 CurrentPattern.Flavor == SPF_FMINNUM || 6189 CurrentPattern.Flavor == SPF_FMAXNUM || 6190 !I->getType()->isIntOrIntVectorTy()) 6191 return false; 6192 if (SelectPattern.Flavor != SPF_UNKNOWN && 6193 SelectPattern.Flavor != CurrentPattern.Flavor) 6194 return false; 6195 SelectPattern = CurrentPattern; 6196 AllCmpSingleUse &= 6197 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6198 return true; 6199 })) { 6200 switch (SelectPattern.Flavor) { 6201 case SPF_SMIN: 6202 return {Intrinsic::smin, AllCmpSingleUse}; 6203 case SPF_UMIN: 6204 return {Intrinsic::umin, AllCmpSingleUse}; 6205 case SPF_SMAX: 6206 return {Intrinsic::smax, AllCmpSingleUse}; 6207 case SPF_UMAX: 6208 return {Intrinsic::umax, AllCmpSingleUse}; 6209 default: 6210 llvm_unreachable("unexpected select pattern flavor"); 6211 } 6212 } 6213 return {Intrinsic::not_intrinsic, false}; 6214 } 6215 6216 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6217 Value *&Start, Value *&Step) { 6218 // Handle the case of a simple two-predecessor recurrence PHI. 6219 // There's a lot more that could theoretically be done here, but 6220 // this is sufficient to catch some interesting cases. 6221 if (P->getNumIncomingValues() != 2) 6222 return false; 6223 6224 for (unsigned i = 0; i != 2; ++i) { 6225 Value *L = P->getIncomingValue(i); 6226 Value *R = P->getIncomingValue(!i); 6227 Operator *LU = dyn_cast<Operator>(L); 6228 if (!LU) 6229 continue; 6230 unsigned Opcode = LU->getOpcode(); 6231 6232 switch (Opcode) { 6233 default: 6234 continue; 6235 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6236 case Instruction::LShr: 6237 case Instruction::AShr: 6238 case Instruction::Shl: 6239 case Instruction::Add: 6240 case Instruction::Sub: 6241 case Instruction::And: 6242 case Instruction::Or: 6243 case Instruction::Mul: { 6244 Value *LL = LU->getOperand(0); 6245 Value *LR = LU->getOperand(1); 6246 // Find a recurrence. 6247 if (LL == P) 6248 L = LR; 6249 else if (LR == P) 6250 L = LL; 6251 else 6252 continue; // Check for recurrence with L and R flipped. 6253 6254 break; // Match! 6255 } 6256 }; 6257 6258 // We have matched a recurrence of the form: 6259 // %iv = [R, %entry], [%iv.next, %backedge] 6260 // %iv.next = binop %iv, L 6261 // OR 6262 // %iv = [R, %entry], [%iv.next, %backedge] 6263 // %iv.next = binop L, %iv 6264 BO = cast<BinaryOperator>(LU); 6265 Start = R; 6266 Step = L; 6267 return true; 6268 } 6269 return false; 6270 } 6271 6272 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6273 Value *&Start, Value *&Step) { 6274 BinaryOperator *BO = nullptr; 6275 P = dyn_cast<PHINode>(I->getOperand(0)); 6276 if (!P) 6277 P = dyn_cast<PHINode>(I->getOperand(1)); 6278 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6279 } 6280 6281 /// Return true if "icmp Pred LHS RHS" is always true. 6282 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6283 const Value *RHS, const DataLayout &DL, 6284 unsigned Depth) { 6285 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6286 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6287 return true; 6288 6289 switch (Pred) { 6290 default: 6291 return false; 6292 6293 case CmpInst::ICMP_SLE: { 6294 const APInt *C; 6295 6296 // LHS s<= LHS +_{nsw} C if C >= 0 6297 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6298 return !C->isNegative(); 6299 return false; 6300 } 6301 6302 case CmpInst::ICMP_ULE: { 6303 const APInt *C; 6304 6305 // LHS u<= LHS +_{nuw} C for any C 6306 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6307 return true; 6308 6309 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6310 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6311 const Value *&X, 6312 const APInt *&CA, const APInt *&CB) { 6313 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6314 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6315 return true; 6316 6317 // If X & C == 0 then (X | C) == X +_{nuw} C 6318 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6319 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6320 KnownBits Known(CA->getBitWidth()); 6321 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6322 /*CxtI*/ nullptr, /*DT*/ nullptr); 6323 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6324 return true; 6325 } 6326 6327 return false; 6328 }; 6329 6330 const Value *X; 6331 const APInt *CLHS, *CRHS; 6332 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6333 return CLHS->ule(*CRHS); 6334 6335 return false; 6336 } 6337 } 6338 } 6339 6340 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6341 /// ALHS ARHS" is true. Otherwise, return None. 6342 static Optional<bool> 6343 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6344 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6345 const DataLayout &DL, unsigned Depth) { 6346 switch (Pred) { 6347 default: 6348 return None; 6349 6350 case CmpInst::ICMP_SLT: 6351 case CmpInst::ICMP_SLE: 6352 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6353 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6354 return true; 6355 return None; 6356 6357 case CmpInst::ICMP_ULT: 6358 case CmpInst::ICMP_ULE: 6359 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6360 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6361 return true; 6362 return None; 6363 } 6364 } 6365 6366 /// Return true if the operands of the two compares match. IsSwappedOps is true 6367 /// when the operands match, but are swapped. 6368 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6369 const Value *BLHS, const Value *BRHS, 6370 bool &IsSwappedOps) { 6371 6372 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6373 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6374 return IsMatchingOps || IsSwappedOps; 6375 } 6376 6377 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6378 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6379 /// Otherwise, return None if we can't infer anything. 6380 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6381 CmpInst::Predicate BPred, 6382 bool AreSwappedOps) { 6383 // Canonicalize the predicate as if the operands were not commuted. 6384 if (AreSwappedOps) 6385 BPred = ICmpInst::getSwappedPredicate(BPred); 6386 6387 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6388 return true; 6389 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6390 return false; 6391 6392 return None; 6393 } 6394 6395 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6396 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6397 /// Otherwise, return None if we can't infer anything. 6398 static Optional<bool> 6399 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6400 const ConstantInt *C1, 6401 CmpInst::Predicate BPred, 6402 const ConstantInt *C2) { 6403 ConstantRange DomCR = 6404 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6405 ConstantRange CR = 6406 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6407 ConstantRange Intersection = DomCR.intersectWith(CR); 6408 ConstantRange Difference = DomCR.difference(CR); 6409 if (Intersection.isEmptySet()) 6410 return false; 6411 if (Difference.isEmptySet()) 6412 return true; 6413 return None; 6414 } 6415 6416 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6417 /// false. Otherwise, return None if we can't infer anything. 6418 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6419 CmpInst::Predicate BPred, 6420 const Value *BLHS, const Value *BRHS, 6421 const DataLayout &DL, bool LHSIsTrue, 6422 unsigned Depth) { 6423 Value *ALHS = LHS->getOperand(0); 6424 Value *ARHS = LHS->getOperand(1); 6425 6426 // The rest of the logic assumes the LHS condition is true. If that's not the 6427 // case, invert the predicate to make it so. 6428 CmpInst::Predicate APred = 6429 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6430 6431 // Can we infer anything when the two compares have matching operands? 6432 bool AreSwappedOps; 6433 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6434 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6435 APred, BPred, AreSwappedOps)) 6436 return Implication; 6437 // No amount of additional analysis will infer the second condition, so 6438 // early exit. 6439 return None; 6440 } 6441 6442 // Can we infer anything when the LHS operands match and the RHS operands are 6443 // constants (not necessarily matching)? 6444 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6445 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6446 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6447 return Implication; 6448 // No amount of additional analysis will infer the second condition, so 6449 // early exit. 6450 return None; 6451 } 6452 6453 if (APred == BPred) 6454 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6455 return None; 6456 } 6457 6458 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6459 /// false. Otherwise, return None if we can't infer anything. We expect the 6460 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6461 static Optional<bool> 6462 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6463 const Value *RHSOp0, const Value *RHSOp1, 6464 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6465 // The LHS must be an 'or', 'and', or a 'select' instruction. 6466 assert((LHS->getOpcode() == Instruction::And || 6467 LHS->getOpcode() == Instruction::Or || 6468 LHS->getOpcode() == Instruction::Select) && 6469 "Expected LHS to be 'and', 'or', or 'select'."); 6470 6471 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6472 6473 // If the result of an 'or' is false, then we know both legs of the 'or' are 6474 // false. Similarly, if the result of an 'and' is true, then we know both 6475 // legs of the 'and' are true. 6476 const Value *ALHS, *ARHS; 6477 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6478 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6479 // FIXME: Make this non-recursion. 6480 if (Optional<bool> Implication = isImpliedCondition( 6481 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6482 return Implication; 6483 if (Optional<bool> Implication = isImpliedCondition( 6484 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6485 return Implication; 6486 return None; 6487 } 6488 return None; 6489 } 6490 6491 Optional<bool> 6492 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6493 const Value *RHSOp0, const Value *RHSOp1, 6494 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6495 // Bail out when we hit the limit. 6496 if (Depth == MaxAnalysisRecursionDepth) 6497 return None; 6498 6499 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6500 // example. 6501 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6502 return None; 6503 6504 Type *OpTy = LHS->getType(); 6505 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6506 6507 // FIXME: Extending the code below to handle vectors. 6508 if (OpTy->isVectorTy()) 6509 return None; 6510 6511 assert(OpTy->isIntegerTy(1) && "implied by above"); 6512 6513 // Both LHS and RHS are icmps. 6514 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6515 if (LHSCmp) 6516 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6517 Depth); 6518 6519 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6520 /// the RHS to be an icmp. 6521 /// FIXME: Add support for and/or/select on the RHS. 6522 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6523 if ((LHSI->getOpcode() == Instruction::And || 6524 LHSI->getOpcode() == Instruction::Or || 6525 LHSI->getOpcode() == Instruction::Select)) 6526 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6527 Depth); 6528 } 6529 return None; 6530 } 6531 6532 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6533 const DataLayout &DL, bool LHSIsTrue, 6534 unsigned Depth) { 6535 // LHS ==> RHS by definition 6536 if (LHS == RHS) 6537 return LHSIsTrue; 6538 6539 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6540 if (RHSCmp) 6541 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6542 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6543 LHSIsTrue, Depth); 6544 return None; 6545 } 6546 6547 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6548 // condition dominating ContextI or nullptr, if no condition is found. 6549 static std::pair<Value *, bool> 6550 getDomPredecessorCondition(const Instruction *ContextI) { 6551 if (!ContextI || !ContextI->getParent()) 6552 return {nullptr, false}; 6553 6554 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6555 // dominator tree (eg, from a SimplifyQuery) instead? 6556 const BasicBlock *ContextBB = ContextI->getParent(); 6557 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6558 if (!PredBB) 6559 return {nullptr, false}; 6560 6561 // We need a conditional branch in the predecessor. 6562 Value *PredCond; 6563 BasicBlock *TrueBB, *FalseBB; 6564 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6565 return {nullptr, false}; 6566 6567 // The branch should get simplified. Don't bother simplifying this condition. 6568 if (TrueBB == FalseBB) 6569 return {nullptr, false}; 6570 6571 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6572 "Predecessor block does not point to successor?"); 6573 6574 // Is this condition implied by the predecessor condition? 6575 return {PredCond, TrueBB == ContextBB}; 6576 } 6577 6578 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6579 const Instruction *ContextI, 6580 const DataLayout &DL) { 6581 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6582 auto PredCond = getDomPredecessorCondition(ContextI); 6583 if (PredCond.first) 6584 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6585 return None; 6586 } 6587 6588 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6589 const Value *LHS, const Value *RHS, 6590 const Instruction *ContextI, 6591 const DataLayout &DL) { 6592 auto PredCond = getDomPredecessorCondition(ContextI); 6593 if (PredCond.first) 6594 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6595 PredCond.second); 6596 return None; 6597 } 6598 6599 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6600 APInt &Upper, const InstrInfoQuery &IIQ) { 6601 unsigned Width = Lower.getBitWidth(); 6602 const APInt *C; 6603 switch (BO.getOpcode()) { 6604 case Instruction::Add: 6605 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6606 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6607 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6608 // 'add nuw x, C' produces [C, UINT_MAX]. 6609 Lower = *C; 6610 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6611 if (C->isNegative()) { 6612 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6613 Lower = APInt::getSignedMinValue(Width); 6614 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6615 } else { 6616 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6617 Lower = APInt::getSignedMinValue(Width) + *C; 6618 Upper = APInt::getSignedMaxValue(Width) + 1; 6619 } 6620 } 6621 } 6622 break; 6623 6624 case Instruction::And: 6625 if (match(BO.getOperand(1), m_APInt(C))) 6626 // 'and x, C' produces [0, C]. 6627 Upper = *C + 1; 6628 break; 6629 6630 case Instruction::Or: 6631 if (match(BO.getOperand(1), m_APInt(C))) 6632 // 'or x, C' produces [C, UINT_MAX]. 6633 Lower = *C; 6634 break; 6635 6636 case Instruction::AShr: 6637 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6638 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6639 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6640 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6641 } else if (match(BO.getOperand(0), m_APInt(C))) { 6642 unsigned ShiftAmount = Width - 1; 6643 if (!C->isNullValue() && IIQ.isExact(&BO)) 6644 ShiftAmount = C->countTrailingZeros(); 6645 if (C->isNegative()) { 6646 // 'ashr C, x' produces [C, C >> (Width-1)] 6647 Lower = *C; 6648 Upper = C->ashr(ShiftAmount) + 1; 6649 } else { 6650 // 'ashr C, x' produces [C >> (Width-1), C] 6651 Lower = C->ashr(ShiftAmount); 6652 Upper = *C + 1; 6653 } 6654 } 6655 break; 6656 6657 case Instruction::LShr: 6658 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6659 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6660 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6661 } else if (match(BO.getOperand(0), m_APInt(C))) { 6662 // 'lshr C, x' produces [C >> (Width-1), C]. 6663 unsigned ShiftAmount = Width - 1; 6664 if (!C->isNullValue() && IIQ.isExact(&BO)) 6665 ShiftAmount = C->countTrailingZeros(); 6666 Lower = C->lshr(ShiftAmount); 6667 Upper = *C + 1; 6668 } 6669 break; 6670 6671 case Instruction::Shl: 6672 if (match(BO.getOperand(0), m_APInt(C))) { 6673 if (IIQ.hasNoUnsignedWrap(&BO)) { 6674 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6675 Lower = *C; 6676 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6677 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6678 if (C->isNegative()) { 6679 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6680 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6681 Lower = C->shl(ShiftAmount); 6682 Upper = *C + 1; 6683 } else { 6684 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6685 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6686 Lower = *C; 6687 Upper = C->shl(ShiftAmount) + 1; 6688 } 6689 } 6690 } 6691 break; 6692 6693 case Instruction::SDiv: 6694 if (match(BO.getOperand(1), m_APInt(C))) { 6695 APInt IntMin = APInt::getSignedMinValue(Width); 6696 APInt IntMax = APInt::getSignedMaxValue(Width); 6697 if (C->isAllOnesValue()) { 6698 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6699 // where C != -1 and C != 0 and C != 1 6700 Lower = IntMin + 1; 6701 Upper = IntMax + 1; 6702 } else if (C->countLeadingZeros() < Width - 1) { 6703 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6704 // where C != -1 and C != 0 and C != 1 6705 Lower = IntMin.sdiv(*C); 6706 Upper = IntMax.sdiv(*C); 6707 if (Lower.sgt(Upper)) 6708 std::swap(Lower, Upper); 6709 Upper = Upper + 1; 6710 assert(Upper != Lower && "Upper part of range has wrapped!"); 6711 } 6712 } else if (match(BO.getOperand(0), m_APInt(C))) { 6713 if (C->isMinSignedValue()) { 6714 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6715 Lower = *C; 6716 Upper = Lower.lshr(1) + 1; 6717 } else { 6718 // 'sdiv C, x' produces [-|C|, |C|]. 6719 Upper = C->abs() + 1; 6720 Lower = (-Upper) + 1; 6721 } 6722 } 6723 break; 6724 6725 case Instruction::UDiv: 6726 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6727 // 'udiv x, C' produces [0, UINT_MAX / C]. 6728 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6729 } else if (match(BO.getOperand(0), m_APInt(C))) { 6730 // 'udiv C, x' produces [0, C]. 6731 Upper = *C + 1; 6732 } 6733 break; 6734 6735 case Instruction::SRem: 6736 if (match(BO.getOperand(1), m_APInt(C))) { 6737 // 'srem x, C' produces (-|C|, |C|). 6738 Upper = C->abs(); 6739 Lower = (-Upper) + 1; 6740 } 6741 break; 6742 6743 case Instruction::URem: 6744 if (match(BO.getOperand(1), m_APInt(C))) 6745 // 'urem x, C' produces [0, C). 6746 Upper = *C; 6747 break; 6748 6749 default: 6750 break; 6751 } 6752 } 6753 6754 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6755 APInt &Upper) { 6756 unsigned Width = Lower.getBitWidth(); 6757 const APInt *C; 6758 switch (II.getIntrinsicID()) { 6759 case Intrinsic::ctpop: 6760 case Intrinsic::ctlz: 6761 case Intrinsic::cttz: 6762 // Maximum of set/clear bits is the bit width. 6763 assert(Lower == 0 && "Expected lower bound to be zero"); 6764 Upper = Width + 1; 6765 break; 6766 case Intrinsic::uadd_sat: 6767 // uadd.sat(x, C) produces [C, UINT_MAX]. 6768 if (match(II.getOperand(0), m_APInt(C)) || 6769 match(II.getOperand(1), m_APInt(C))) 6770 Lower = *C; 6771 break; 6772 case Intrinsic::sadd_sat: 6773 if (match(II.getOperand(0), m_APInt(C)) || 6774 match(II.getOperand(1), m_APInt(C))) { 6775 if (C->isNegative()) { 6776 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6777 Lower = APInt::getSignedMinValue(Width); 6778 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6779 } else { 6780 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6781 Lower = APInt::getSignedMinValue(Width) + *C; 6782 Upper = APInt::getSignedMaxValue(Width) + 1; 6783 } 6784 } 6785 break; 6786 case Intrinsic::usub_sat: 6787 // usub.sat(C, x) produces [0, C]. 6788 if (match(II.getOperand(0), m_APInt(C))) 6789 Upper = *C + 1; 6790 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6791 else if (match(II.getOperand(1), m_APInt(C))) 6792 Upper = APInt::getMaxValue(Width) - *C + 1; 6793 break; 6794 case Intrinsic::ssub_sat: 6795 if (match(II.getOperand(0), m_APInt(C))) { 6796 if (C->isNegative()) { 6797 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6798 Lower = APInt::getSignedMinValue(Width); 6799 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6800 } else { 6801 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6802 Lower = *C - APInt::getSignedMaxValue(Width); 6803 Upper = APInt::getSignedMaxValue(Width) + 1; 6804 } 6805 } else if (match(II.getOperand(1), m_APInt(C))) { 6806 if (C->isNegative()) { 6807 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6808 Lower = APInt::getSignedMinValue(Width) - *C; 6809 Upper = APInt::getSignedMaxValue(Width) + 1; 6810 } else { 6811 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6812 Lower = APInt::getSignedMinValue(Width); 6813 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6814 } 6815 } 6816 break; 6817 case Intrinsic::umin: 6818 case Intrinsic::umax: 6819 case Intrinsic::smin: 6820 case Intrinsic::smax: 6821 if (!match(II.getOperand(0), m_APInt(C)) && 6822 !match(II.getOperand(1), m_APInt(C))) 6823 break; 6824 6825 switch (II.getIntrinsicID()) { 6826 case Intrinsic::umin: 6827 Upper = *C + 1; 6828 break; 6829 case Intrinsic::umax: 6830 Lower = *C; 6831 break; 6832 case Intrinsic::smin: 6833 Lower = APInt::getSignedMinValue(Width); 6834 Upper = *C + 1; 6835 break; 6836 case Intrinsic::smax: 6837 Lower = *C; 6838 Upper = APInt::getSignedMaxValue(Width) + 1; 6839 break; 6840 default: 6841 llvm_unreachable("Must be min/max intrinsic"); 6842 } 6843 break; 6844 case Intrinsic::abs: 6845 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6846 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6847 if (match(II.getOperand(1), m_One())) 6848 Upper = APInt::getSignedMaxValue(Width) + 1; 6849 else 6850 Upper = APInt::getSignedMinValue(Width) + 1; 6851 break; 6852 default: 6853 break; 6854 } 6855 } 6856 6857 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6858 APInt &Upper, const InstrInfoQuery &IIQ) { 6859 const Value *LHS = nullptr, *RHS = nullptr; 6860 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6861 if (R.Flavor == SPF_UNKNOWN) 6862 return; 6863 6864 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6865 6866 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6867 // If the negation part of the abs (in RHS) has the NSW flag, 6868 // then the result of abs(X) is [0..SIGNED_MAX], 6869 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6870 Lower = APInt::getNullValue(BitWidth); 6871 if (match(RHS, m_Neg(m_Specific(LHS))) && 6872 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6873 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6874 else 6875 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6876 return; 6877 } 6878 6879 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6880 // The result of -abs(X) is <= 0. 6881 Lower = APInt::getSignedMinValue(BitWidth); 6882 Upper = APInt(BitWidth, 1); 6883 return; 6884 } 6885 6886 const APInt *C; 6887 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6888 return; 6889 6890 switch (R.Flavor) { 6891 case SPF_UMIN: 6892 Upper = *C + 1; 6893 break; 6894 case SPF_UMAX: 6895 Lower = *C; 6896 break; 6897 case SPF_SMIN: 6898 Lower = APInt::getSignedMinValue(BitWidth); 6899 Upper = *C + 1; 6900 break; 6901 case SPF_SMAX: 6902 Lower = *C; 6903 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6904 break; 6905 default: 6906 break; 6907 } 6908 } 6909 6910 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6911 AssumptionCache *AC, 6912 const Instruction *CtxI, 6913 unsigned Depth) { 6914 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6915 6916 if (Depth == MaxAnalysisRecursionDepth) 6917 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6918 6919 const APInt *C; 6920 if (match(V, m_APInt(C))) 6921 return ConstantRange(*C); 6922 6923 InstrInfoQuery IIQ(UseInstrInfo); 6924 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6925 APInt Lower = APInt(BitWidth, 0); 6926 APInt Upper = APInt(BitWidth, 0); 6927 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6928 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6929 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6930 setLimitsForIntrinsic(*II, Lower, Upper); 6931 else if (auto *SI = dyn_cast<SelectInst>(V)) 6932 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6933 6934 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6935 6936 if (auto *I = dyn_cast<Instruction>(V)) 6937 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6938 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6939 6940 if (CtxI && AC) { 6941 // Try to restrict the range based on information from assumptions. 6942 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6943 if (!AssumeVH) 6944 continue; 6945 CallInst *I = cast<CallInst>(AssumeVH); 6946 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6947 "Got assumption for the wrong function!"); 6948 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6949 "must be an assume intrinsic"); 6950 6951 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6952 continue; 6953 Value *Arg = I->getArgOperand(0); 6954 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6955 // Currently we just use information from comparisons. 6956 if (!Cmp || Cmp->getOperand(0) != V) 6957 continue; 6958 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6959 AC, I, Depth + 1); 6960 CR = CR.intersectWith( 6961 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6962 } 6963 } 6964 6965 return CR; 6966 } 6967 6968 static Optional<int64_t> 6969 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6970 // Skip over the first indices. 6971 gep_type_iterator GTI = gep_type_begin(GEP); 6972 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6973 /*skip along*/; 6974 6975 // Compute the offset implied by the rest of the indices. 6976 int64_t Offset = 0; 6977 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6978 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6979 if (!OpC) 6980 return None; 6981 if (OpC->isZero()) 6982 continue; // No offset. 6983 6984 // Handle struct indices, which add their field offset to the pointer. 6985 if (StructType *STy = GTI.getStructTypeOrNull()) { 6986 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6987 continue; 6988 } 6989 6990 // Otherwise, we have a sequential type like an array or fixed-length 6991 // vector. Multiply the index by the ElementSize. 6992 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6993 if (Size.isScalable()) 6994 return None; 6995 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6996 } 6997 6998 return Offset; 6999 } 7000 7001 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7002 const DataLayout &DL) { 7003 Ptr1 = Ptr1->stripPointerCasts(); 7004 Ptr2 = Ptr2->stripPointerCasts(); 7005 7006 // Handle the trivial case first. 7007 if (Ptr1 == Ptr2) { 7008 return 0; 7009 } 7010 7011 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7012 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7013 7014 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7015 // as in "P" and "gep P, 1". 7016 // Also do this iteratively to handle the the following case: 7017 // Ptr_t1 = GEP Ptr1, c1 7018 // Ptr_t2 = GEP Ptr_t1, c2 7019 // Ptr2 = GEP Ptr_t2, c3 7020 // where we will return c1+c2+c3. 7021 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7022 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7023 // are the same, and return the difference between offsets. 7024 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7025 const Value *Ptr) -> Optional<int64_t> { 7026 const GEPOperator *GEP_T = GEP; 7027 int64_t OffsetVal = 0; 7028 bool HasSameBase = false; 7029 while (GEP_T) { 7030 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7031 if (!Offset) 7032 return None; 7033 OffsetVal += *Offset; 7034 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7035 if (Op0 == Ptr) { 7036 HasSameBase = true; 7037 break; 7038 } 7039 GEP_T = dyn_cast<GEPOperator>(Op0); 7040 } 7041 if (!HasSameBase) 7042 return None; 7043 return OffsetVal; 7044 }; 7045 7046 if (GEP1) { 7047 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7048 if (Offset) 7049 return -*Offset; 7050 } 7051 if (GEP2) { 7052 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7053 if (Offset) 7054 return Offset; 7055 } 7056 7057 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7058 // base. After that base, they may have some number of common (and 7059 // potentially variable) indices. After that they handle some constant 7060 // offset, which determines their offset from each other. At this point, we 7061 // handle no other case. 7062 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7063 return None; 7064 7065 // Skip any common indices and track the GEP types. 7066 unsigned Idx = 1; 7067 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7068 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7069 break; 7070 7071 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7072 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7073 if (!Offset1 || !Offset2) 7074 return None; 7075 return *Offset2 - *Offset1; 7076 } 7077