1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getIndexTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 /// If true, it is safe to use metadata during simplification. 122 InstrInfoQuery IIQ; 123 124 unsigned NumExcluded = 0; 125 126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT, bool UseInstrInfo, 128 OptimizationRemarkEmitter *ORE = nullptr) 129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 130 131 Query(const Query &Q, const Value *NewExcl) 132 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 133 NumExcluded(Q.NumExcluded) { 134 Excluded = Q.Excluded; 135 Excluded[NumExcluded++] = NewExcl; 136 assert(NumExcluded <= Excluded.size()); 137 } 138 139 bool isExcluded(const Value *Value) const { 140 if (NumExcluded == 0) 141 return false; 142 auto End = Excluded.begin() + NumExcluded; 143 return std::find(Excluded.begin(), End, Value) != End; 144 } 145 }; 146 147 } // end anonymous namespace 148 149 // Given the provided Value and, potentially, a context instruction, return 150 // the preferred context instruction (if any). 151 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 152 // If we've been provided with a context instruction, then use that (provided 153 // it has been inserted). 154 if (CxtI && CxtI->getParent()) 155 return CxtI; 156 157 // If the value is really an already-inserted instruction, then use that. 158 CxtI = dyn_cast<Instruction>(V); 159 if (CxtI && CxtI->getParent()) 160 return CxtI; 161 162 return nullptr; 163 } 164 165 static void computeKnownBits(const Value *V, KnownBits &Known, 166 unsigned Depth, const Query &Q); 167 168 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 169 const DataLayout &DL, unsigned Depth, 170 AssumptionCache *AC, const Instruction *CxtI, 171 const DominatorTree *DT, 172 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 173 ::computeKnownBits(V, Known, Depth, 174 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 175 } 176 177 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 178 const Query &Q); 179 180 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 181 unsigned Depth, AssumptionCache *AC, 182 const Instruction *CxtI, 183 const DominatorTree *DT, 184 OptimizationRemarkEmitter *ORE, 185 bool UseInstrInfo) { 186 return ::computeKnownBits( 187 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 188 } 189 190 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 191 const DataLayout &DL, AssumptionCache *AC, 192 const Instruction *CxtI, const DominatorTree *DT, 193 bool UseInstrInfo) { 194 assert(LHS->getType() == RHS->getType() && 195 "LHS and RHS should have the same type"); 196 assert(LHS->getType()->isIntOrIntVectorTy() && 197 "LHS and RHS should be integers"); 198 // Look for an inverted mask: (X & ~M) op (Y & M). 199 Value *M; 200 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 201 match(RHS, m_c_And(m_Specific(M), m_Value()))) 202 return true; 203 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 204 match(LHS, m_c_And(m_Specific(M), m_Value()))) 205 return true; 206 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 207 KnownBits LHSKnown(IT->getBitWidth()); 208 KnownBits RHSKnown(IT->getBitWidth()); 209 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 210 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 211 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 212 } 213 214 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 215 for (const User *U : CxtI->users()) { 216 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 217 if (IC->isEquality()) 218 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 219 if (C->isNullValue()) 220 continue; 221 return false; 222 } 223 return true; 224 } 225 226 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 227 const Query &Q); 228 229 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 230 bool OrZero, unsigned Depth, 231 AssumptionCache *AC, const Instruction *CxtI, 232 const DominatorTree *DT, bool UseInstrInfo) { 233 return ::isKnownToBeAPowerOfTwo( 234 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 235 } 236 237 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 238 239 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, bool UseInstrInfo) { 242 return ::isKnownNonZero(V, Depth, 243 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 244 } 245 246 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, const DominatorTree *DT, 249 bool UseInstrInfo) { 250 KnownBits Known = 251 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 252 return Known.isNonNegative(); 253 } 254 255 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, bool UseInstrInfo) { 258 if (auto *CI = dyn_cast<ConstantInt>(V)) 259 return CI->getValue().isStrictlyPositive(); 260 261 // TODO: We'd doing two recursive queries here. We should factor this such 262 // that only a single query is needed. 263 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 264 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 265 } 266 267 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 268 AssumptionCache *AC, const Instruction *CxtI, 269 const DominatorTree *DT, bool UseInstrInfo) { 270 KnownBits Known = 271 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 272 return Known.isNegative(); 273 } 274 275 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 276 277 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 278 const DataLayout &DL, AssumptionCache *AC, 279 const Instruction *CxtI, const DominatorTree *DT, 280 bool UseInstrInfo) { 281 return ::isKnownNonEqual(V1, V2, 282 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 283 UseInstrInfo, /*ORE=*/nullptr)); 284 } 285 286 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 287 const Query &Q); 288 289 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 290 const DataLayout &DL, unsigned Depth, 291 AssumptionCache *AC, const Instruction *CxtI, 292 const DominatorTree *DT, bool UseInstrInfo) { 293 return ::MaskedValueIsZero( 294 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 295 } 296 297 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 298 const Query &Q); 299 300 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 301 unsigned Depth, AssumptionCache *AC, 302 const Instruction *CxtI, 303 const DominatorTree *DT, bool UseInstrInfo) { 304 return ::ComputeNumSignBits( 305 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 306 } 307 308 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 309 bool NSW, 310 KnownBits &KnownOut, KnownBits &Known2, 311 unsigned Depth, const Query &Q) { 312 unsigned BitWidth = KnownOut.getBitWidth(); 313 314 // If an initial sequence of bits in the result is not needed, the 315 // corresponding bits in the operands are not needed. 316 KnownBits LHSKnown(BitWidth); 317 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 318 computeKnownBits(Op1, Known2, Depth + 1, Q); 319 320 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 321 } 322 323 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 324 KnownBits &Known, KnownBits &Known2, 325 unsigned Depth, const Query &Q) { 326 unsigned BitWidth = Known.getBitWidth(); 327 computeKnownBits(Op1, Known, Depth + 1, Q); 328 computeKnownBits(Op0, Known2, Depth + 1, Q); 329 330 bool isKnownNegative = false; 331 bool isKnownNonNegative = false; 332 // If the multiplication is known not to overflow, compute the sign bit. 333 if (NSW) { 334 if (Op0 == Op1) { 335 // The product of a number with itself is non-negative. 336 isKnownNonNegative = true; 337 } else { 338 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 339 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 340 bool isKnownNegativeOp1 = Known.isNegative(); 341 bool isKnownNegativeOp0 = Known2.isNegative(); 342 // The product of two numbers with the same sign is non-negative. 343 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 344 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 345 // The product of a negative number and a non-negative number is either 346 // negative or zero. 347 if (!isKnownNonNegative) 348 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 349 isKnownNonZero(Op0, Depth, Q)) || 350 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 351 isKnownNonZero(Op1, Depth, Q)); 352 } 353 } 354 355 assert(!Known.hasConflict() && !Known2.hasConflict()); 356 // Compute a conservative estimate for high known-0 bits. 357 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 358 Known2.countMinLeadingZeros(), 359 BitWidth) - BitWidth; 360 LeadZ = std::min(LeadZ, BitWidth); 361 362 // The result of the bottom bits of an integer multiply can be 363 // inferred by looking at the bottom bits of both operands and 364 // multiplying them together. 365 // We can infer at least the minimum number of known trailing bits 366 // of both operands. Depending on number of trailing zeros, we can 367 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 368 // a and b are divisible by m and n respectively. 369 // We then calculate how many of those bits are inferrable and set 370 // the output. For example, the i8 mul: 371 // a = XXXX1100 (12) 372 // b = XXXX1110 (14) 373 // We know the bottom 3 bits are zero since the first can be divided by 374 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 375 // Applying the multiplication to the trimmed arguments gets: 376 // XX11 (3) 377 // X111 (7) 378 // ------- 379 // XX11 380 // XX11 381 // XX11 382 // XX11 383 // ------- 384 // XXXXX01 385 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 386 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 387 // The proof for this can be described as: 388 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 389 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 390 // umin(countTrailingZeros(C2), C6) + 391 // umin(C5 - umin(countTrailingZeros(C1), C5), 392 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 393 // %aa = shl i8 %a, C5 394 // %bb = shl i8 %b, C6 395 // %aaa = or i8 %aa, C1 396 // %bbb = or i8 %bb, C2 397 // %mul = mul i8 %aaa, %bbb 398 // %mask = and i8 %mul, C7 399 // => 400 // %mask = i8 ((C1*C2)&C7) 401 // Where C5, C6 describe the known bits of %a, %b 402 // C1, C2 describe the known bottom bits of %a, %b. 403 // C7 describes the mask of the known bits of the result. 404 APInt Bottom0 = Known.One; 405 APInt Bottom1 = Known2.One; 406 407 // How many times we'd be able to divide each argument by 2 (shr by 1). 408 // This gives us the number of trailing zeros on the multiplication result. 409 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 410 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 411 unsigned TrailZero0 = Known.countMinTrailingZeros(); 412 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 413 unsigned TrailZ = TrailZero0 + TrailZero1; 414 415 // Figure out the fewest known-bits operand. 416 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 417 TrailBitsKnown1 - TrailZero1); 418 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 419 420 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 421 Bottom1.getLoBits(TrailBitsKnown1); 422 423 Known.resetAll(); 424 Known.Zero.setHighBits(LeadZ); 425 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 426 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 427 428 // Only make use of no-wrap flags if we failed to compute the sign bit 429 // directly. This matters if the multiplication always overflows, in 430 // which case we prefer to follow the result of the direct computation, 431 // though as the program is invoking undefined behaviour we can choose 432 // whatever we like here. 433 if (isKnownNonNegative && !Known.isNegative()) 434 Known.makeNonNegative(); 435 else if (isKnownNegative && !Known.isNonNegative()) 436 Known.makeNegative(); 437 } 438 439 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 440 KnownBits &Known) { 441 unsigned BitWidth = Known.getBitWidth(); 442 unsigned NumRanges = Ranges.getNumOperands() / 2; 443 assert(NumRanges >= 1); 444 445 Known.Zero.setAllBits(); 446 Known.One.setAllBits(); 447 448 for (unsigned i = 0; i < NumRanges; ++i) { 449 ConstantInt *Lower = 450 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 451 ConstantInt *Upper = 452 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 453 ConstantRange Range(Lower->getValue(), Upper->getValue()); 454 455 // The first CommonPrefixBits of all values in Range are equal. 456 unsigned CommonPrefixBits = 457 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 458 459 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 460 Known.One &= Range.getUnsignedMax() & Mask; 461 Known.Zero &= ~Range.getUnsignedMax() & Mask; 462 } 463 } 464 465 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 466 SmallVector<const Value *, 16> WorkSet(1, I); 467 SmallPtrSet<const Value *, 32> Visited; 468 SmallPtrSet<const Value *, 16> EphValues; 469 470 // The instruction defining an assumption's condition itself is always 471 // considered ephemeral to that assumption (even if it has other 472 // non-ephemeral users). See r246696's test case for an example. 473 if (is_contained(I->operands(), E)) 474 return true; 475 476 while (!WorkSet.empty()) { 477 const Value *V = WorkSet.pop_back_val(); 478 if (!Visited.insert(V).second) 479 continue; 480 481 // If all uses of this value are ephemeral, then so is this value. 482 if (llvm::all_of(V->users(), [&](const User *U) { 483 return EphValues.count(U); 484 })) { 485 if (V == E) 486 return true; 487 488 if (V == I || isSafeToSpeculativelyExecute(V)) { 489 EphValues.insert(V); 490 if (const User *U = dyn_cast<User>(V)) 491 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 492 J != JE; ++J) 493 WorkSet.push_back(*J); 494 } 495 } 496 } 497 498 return false; 499 } 500 501 // Is this an intrinsic that cannot be speculated but also cannot trap? 502 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 503 if (const CallInst *CI = dyn_cast<CallInst>(I)) 504 if (Function *F = CI->getCalledFunction()) 505 switch (F->getIntrinsicID()) { 506 default: break; 507 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 508 case Intrinsic::assume: 509 case Intrinsic::sideeffect: 510 case Intrinsic::dbg_declare: 511 case Intrinsic::dbg_value: 512 case Intrinsic::dbg_label: 513 case Intrinsic::invariant_start: 514 case Intrinsic::invariant_end: 515 case Intrinsic::lifetime_start: 516 case Intrinsic::lifetime_end: 517 case Intrinsic::objectsize: 518 case Intrinsic::ptr_annotation: 519 case Intrinsic::var_annotation: 520 return true; 521 } 522 523 return false; 524 } 525 526 bool llvm::isValidAssumeForContext(const Instruction *Inv, 527 const Instruction *CxtI, 528 const DominatorTree *DT) { 529 // There are two restrictions on the use of an assume: 530 // 1. The assume must dominate the context (or the control flow must 531 // reach the assume whenever it reaches the context). 532 // 2. The context must not be in the assume's set of ephemeral values 533 // (otherwise we will use the assume to prove that the condition 534 // feeding the assume is trivially true, thus causing the removal of 535 // the assume). 536 537 if (DT) { 538 if (DT->dominates(Inv, CxtI)) 539 return true; 540 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 541 // We don't have a DT, but this trivially dominates. 542 return true; 543 } 544 545 // With or without a DT, the only remaining case we will check is if the 546 // instructions are in the same BB. Give up if that is not the case. 547 if (Inv->getParent() != CxtI->getParent()) 548 return false; 549 550 // If we have a dom tree, then we now know that the assume doesn't dominate 551 // the other instruction. If we don't have a dom tree then we can check if 552 // the assume is first in the BB. 553 if (!DT) { 554 // Search forward from the assume until we reach the context (or the end 555 // of the block); the common case is that the assume will come first. 556 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 557 IE = Inv->getParent()->end(); I != IE; ++I) 558 if (&*I == CxtI) 559 return true; 560 } 561 562 // The context comes first, but they're both in the same block. Make sure 563 // there is nothing in between that might interrupt the control flow. 564 for (BasicBlock::const_iterator I = 565 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 566 I != IE; ++I) 567 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 568 return false; 569 570 return !isEphemeralValueOf(Inv, CxtI); 571 } 572 573 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 574 unsigned Depth, const Query &Q) { 575 // Use of assumptions is context-sensitive. If we don't have a context, we 576 // cannot use them! 577 if (!Q.AC || !Q.CxtI) 578 return; 579 580 unsigned BitWidth = Known.getBitWidth(); 581 582 // Note that the patterns below need to be kept in sync with the code 583 // in AssumptionCache::updateAffectedValues. 584 585 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 586 if (!AssumeVH) 587 continue; 588 CallInst *I = cast<CallInst>(AssumeVH); 589 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 590 "Got assumption for the wrong function!"); 591 if (Q.isExcluded(I)) 592 continue; 593 594 // Warning: This loop can end up being somewhat performance sensitive. 595 // We're running this loop for once for each value queried resulting in a 596 // runtime of ~O(#assumes * #values). 597 598 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 599 "must be an assume intrinsic"); 600 601 Value *Arg = I->getArgOperand(0); 602 603 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 604 assert(BitWidth == 1 && "assume operand is not i1?"); 605 Known.setAllOnes(); 606 return; 607 } 608 if (match(Arg, m_Not(m_Specific(V))) && 609 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 610 assert(BitWidth == 1 && "assume operand is not i1?"); 611 Known.setAllZero(); 612 return; 613 } 614 615 // The remaining tests are all recursive, so bail out if we hit the limit. 616 if (Depth == MaxDepth) 617 continue; 618 619 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 620 if (!Cmp) 621 continue; 622 623 Value *A, *B; 624 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 625 626 CmpInst::Predicate Pred; 627 uint64_t C; 628 switch (Cmp->getPredicate()) { 629 default: 630 break; 631 case ICmpInst::ICMP_EQ: 632 // assume(v = a) 633 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 635 KnownBits RHSKnown(BitWidth); 636 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 637 Known.Zero |= RHSKnown.Zero; 638 Known.One |= RHSKnown.One; 639 // assume(v & b = a) 640 } else if (match(Cmp, 641 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 643 KnownBits RHSKnown(BitWidth); 644 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 645 KnownBits MaskKnown(BitWidth); 646 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 647 648 // For those bits in the mask that are known to be one, we can propagate 649 // known bits from the RHS to V. 650 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 651 Known.One |= RHSKnown.One & MaskKnown.One; 652 // assume(~(v & b) = a) 653 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 654 m_Value(A))) && 655 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 656 KnownBits RHSKnown(BitWidth); 657 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 658 KnownBits MaskKnown(BitWidth); 659 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 660 661 // For those bits in the mask that are known to be one, we can propagate 662 // inverted known bits from the RHS to V. 663 Known.Zero |= RHSKnown.One & MaskKnown.One; 664 Known.One |= RHSKnown.Zero & MaskKnown.One; 665 // assume(v | b = a) 666 } else if (match(Cmp, 667 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 668 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 669 KnownBits RHSKnown(BitWidth); 670 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 671 KnownBits BKnown(BitWidth); 672 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 673 674 // For those bits in B that are known to be zero, we can propagate known 675 // bits from the RHS to V. 676 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 677 Known.One |= RHSKnown.One & BKnown.Zero; 678 // assume(~(v | b) = a) 679 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 680 m_Value(A))) && 681 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 682 KnownBits RHSKnown(BitWidth); 683 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 684 KnownBits BKnown(BitWidth); 685 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 686 687 // For those bits in B that are known to be zero, we can propagate 688 // inverted known bits from the RHS to V. 689 Known.Zero |= RHSKnown.One & BKnown.Zero; 690 Known.One |= RHSKnown.Zero & BKnown.Zero; 691 // assume(v ^ b = a) 692 } else if (match(Cmp, 693 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 694 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 695 KnownBits RHSKnown(BitWidth); 696 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 697 KnownBits BKnown(BitWidth); 698 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 699 700 // For those bits in B that are known to be zero, we can propagate known 701 // bits from the RHS to V. For those bits in B that are known to be one, 702 // we can propagate inverted known bits from the RHS to V. 703 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 704 Known.One |= RHSKnown.One & BKnown.Zero; 705 Known.Zero |= RHSKnown.One & BKnown.One; 706 Known.One |= RHSKnown.Zero & BKnown.One; 707 // assume(~(v ^ b) = a) 708 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 709 m_Value(A))) && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 KnownBits RHSKnown(BitWidth); 712 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 713 KnownBits BKnown(BitWidth); 714 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 715 716 // For those bits in B that are known to be zero, we can propagate 717 // inverted known bits from the RHS to V. For those bits in B that are 718 // known to be one, we can propagate known bits from the RHS to V. 719 Known.Zero |= RHSKnown.One & BKnown.Zero; 720 Known.One |= RHSKnown.Zero & BKnown.Zero; 721 Known.Zero |= RHSKnown.Zero & BKnown.One; 722 Known.One |= RHSKnown.One & BKnown.One; 723 // assume(v << c = a) 724 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 725 m_Value(A))) && 726 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 727 KnownBits RHSKnown(BitWidth); 728 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 729 // For those bits in RHS that are known, we can propagate them to known 730 // bits in V shifted to the right by C. 731 RHSKnown.Zero.lshrInPlace(C); 732 Known.Zero |= RHSKnown.Zero; 733 RHSKnown.One.lshrInPlace(C); 734 Known.One |= RHSKnown.One; 735 // assume(~(v << c) = a) 736 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 737 m_Value(A))) && 738 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 739 KnownBits RHSKnown(BitWidth); 740 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 741 // For those bits in RHS that are known, we can propagate them inverted 742 // to known bits in V shifted to the right by C. 743 RHSKnown.One.lshrInPlace(C); 744 Known.Zero |= RHSKnown.One; 745 RHSKnown.Zero.lshrInPlace(C); 746 Known.One |= RHSKnown.Zero; 747 // assume(v >> c = a) 748 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 749 m_Value(A))) && 750 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 751 KnownBits RHSKnown(BitWidth); 752 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 753 // For those bits in RHS that are known, we can propagate them to known 754 // bits in V shifted to the right by C. 755 Known.Zero |= RHSKnown.Zero << C; 756 Known.One |= RHSKnown.One << C; 757 // assume(~(v >> c) = a) 758 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 759 m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 761 KnownBits RHSKnown(BitWidth); 762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 763 // For those bits in RHS that are known, we can propagate them inverted 764 // to known bits in V shifted to the right by C. 765 Known.Zero |= RHSKnown.One << C; 766 Known.One |= RHSKnown.Zero << C; 767 } 768 break; 769 case ICmpInst::ICMP_SGE: 770 // assume(v >=_s c) where c is non-negative 771 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 KnownBits RHSKnown(BitWidth); 774 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 775 776 if (RHSKnown.isNonNegative()) { 777 // We know that the sign bit is zero. 778 Known.makeNonNegative(); 779 } 780 } 781 break; 782 case ICmpInst::ICMP_SGT: 783 // assume(v >_s c) where c is at least -1. 784 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 785 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 786 KnownBits RHSKnown(BitWidth); 787 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 788 789 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 790 // We know that the sign bit is zero. 791 Known.makeNonNegative(); 792 } 793 } 794 break; 795 case ICmpInst::ICMP_SLE: 796 // assume(v <=_s c) where c is negative 797 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 799 KnownBits RHSKnown(BitWidth); 800 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 801 802 if (RHSKnown.isNegative()) { 803 // We know that the sign bit is one. 804 Known.makeNegative(); 805 } 806 } 807 break; 808 case ICmpInst::ICMP_SLT: 809 // assume(v <_s c) where c is non-positive 810 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 811 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 812 KnownBits RHSKnown(BitWidth); 813 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 814 815 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 816 // We know that the sign bit is one. 817 Known.makeNegative(); 818 } 819 } 820 break; 821 case ICmpInst::ICMP_ULE: 822 // assume(v <=_u c) 823 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 825 KnownBits RHSKnown(BitWidth); 826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 827 828 // Whatever high bits in c are zero are known to be zero. 829 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 830 } 831 break; 832 case ICmpInst::ICMP_ULT: 833 // assume(v <_u c) 834 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 835 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 836 KnownBits RHSKnown(BitWidth); 837 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 838 839 // If the RHS is known zero, then this assumption must be wrong (nothing 840 // is unsigned less than zero). Signal a conflict and get out of here. 841 if (RHSKnown.isZero()) { 842 Known.Zero.setAllBits(); 843 Known.One.setAllBits(); 844 break; 845 } 846 847 // Whatever high bits in c are zero are known to be zero (if c is a power 848 // of 2, then one more). 849 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 850 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 851 else 852 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 853 } 854 break; 855 } 856 } 857 858 // If assumptions conflict with each other or previous known bits, then we 859 // have a logical fallacy. It's possible that the assumption is not reachable, 860 // so this isn't a real bug. On the other hand, the program may have undefined 861 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 862 // clear out the known bits, try to warn the user, and hope for the best. 863 if (Known.Zero.intersects(Known.One)) { 864 Known.resetAll(); 865 866 if (Q.ORE) 867 Q.ORE->emit([&]() { 868 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 869 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 870 CxtI) 871 << "Detected conflicting code assumptions. Program may " 872 "have undefined behavior, or compiler may have " 873 "internal error."; 874 }); 875 } 876 } 877 878 /// Compute known bits from a shift operator, including those with a 879 /// non-constant shift amount. Known is the output of this function. Known2 is a 880 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 881 /// operator-specific functions that, given the known-zero or known-one bits 882 /// respectively, and a shift amount, compute the implied known-zero or 883 /// known-one bits of the shift operator's result respectively for that shift 884 /// amount. The results from calling KZF and KOF are conservatively combined for 885 /// all permitted shift amounts. 886 static void computeKnownBitsFromShiftOperator( 887 const Operator *I, KnownBits &Known, KnownBits &Known2, 888 unsigned Depth, const Query &Q, 889 function_ref<APInt(const APInt &, unsigned)> KZF, 890 function_ref<APInt(const APInt &, unsigned)> KOF) { 891 unsigned BitWidth = Known.getBitWidth(); 892 893 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 894 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 895 896 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 897 Known.Zero = KZF(Known.Zero, ShiftAmt); 898 Known.One = KOF(Known.One, ShiftAmt); 899 // If the known bits conflict, this must be an overflowing left shift, so 900 // the shift result is poison. We can return anything we want. Choose 0 for 901 // the best folding opportunity. 902 if (Known.hasConflict()) 903 Known.setAllZero(); 904 905 return; 906 } 907 908 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 909 910 // If the shift amount could be greater than or equal to the bit-width of the 911 // LHS, the value could be poison, but bail out because the check below is 912 // expensive. TODO: Should we just carry on? 913 if ((~Known.Zero).uge(BitWidth)) { 914 Known.resetAll(); 915 return; 916 } 917 918 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 919 // BitWidth > 64 and any upper bits are known, we'll end up returning the 920 // limit value (which implies all bits are known). 921 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 922 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 923 924 // It would be more-clearly correct to use the two temporaries for this 925 // calculation. Reusing the APInts here to prevent unnecessary allocations. 926 Known.resetAll(); 927 928 // If we know the shifter operand is nonzero, we can sometimes infer more 929 // known bits. However this is expensive to compute, so be lazy about it and 930 // only compute it when absolutely necessary. 931 Optional<bool> ShifterOperandIsNonZero; 932 933 // Early exit if we can't constrain any well-defined shift amount. 934 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 935 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 936 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 937 if (!*ShifterOperandIsNonZero) 938 return; 939 } 940 941 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 942 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 946 // Combine the shifted known input bits only for those shift amounts 947 // compatible with its known constraints. 948 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 949 continue; 950 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 951 continue; 952 // If we know the shifter is nonzero, we may be able to infer more known 953 // bits. This check is sunk down as far as possible to avoid the expensive 954 // call to isKnownNonZero if the cheaper checks above fail. 955 if (ShiftAmt == 0) { 956 if (!ShifterOperandIsNonZero.hasValue()) 957 ShifterOperandIsNonZero = 958 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 959 if (*ShifterOperandIsNonZero) 960 continue; 961 } 962 963 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 964 Known.One &= KOF(Known2.One, ShiftAmt); 965 } 966 967 // If the known bits conflict, the result is poison. Return a 0 and hope the 968 // caller can further optimize that. 969 if (Known.hasConflict()) 970 Known.setAllZero(); 971 } 972 973 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 974 unsigned Depth, const Query &Q) { 975 unsigned BitWidth = Known.getBitWidth(); 976 977 KnownBits Known2(Known); 978 switch (I->getOpcode()) { 979 default: break; 980 case Instruction::Load: 981 if (MDNode *MD = 982 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 983 computeKnownBitsFromRangeMetadata(*MD, Known); 984 break; 985 case Instruction::And: { 986 // If either the LHS or the RHS are Zero, the result is zero. 987 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 988 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 989 990 // Output known-1 bits are only known if set in both the LHS & RHS. 991 Known.One &= Known2.One; 992 // Output known-0 are known to be clear if zero in either the LHS | RHS. 993 Known.Zero |= Known2.Zero; 994 995 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 996 // here we handle the more general case of adding any odd number by 997 // matching the form add(x, add(x, y)) where y is odd. 998 // TODO: This could be generalized to clearing any bit set in y where the 999 // following bit is known to be unset in y. 1000 Value *X = nullptr, *Y = nullptr; 1001 if (!Known.Zero[0] && !Known.One[0] && 1002 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1003 Known2.resetAll(); 1004 computeKnownBits(Y, Known2, Depth + 1, Q); 1005 if (Known2.countMinTrailingOnes() > 0) 1006 Known.Zero.setBit(0); 1007 } 1008 break; 1009 } 1010 case Instruction::Or: 1011 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1012 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1013 1014 // Output known-0 bits are only known if clear in both the LHS & RHS. 1015 Known.Zero &= Known2.Zero; 1016 // Output known-1 are known to be set if set in either the LHS | RHS. 1017 Known.One |= Known2.One; 1018 break; 1019 case Instruction::Xor: { 1020 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1021 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1022 1023 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1024 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1025 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1026 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1027 Known.Zero = std::move(KnownZeroOut); 1028 break; 1029 } 1030 case Instruction::Mul: { 1031 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1032 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1033 Known2, Depth, Q); 1034 break; 1035 } 1036 case Instruction::UDiv: { 1037 // For the purposes of computing leading zeros we can conservatively 1038 // treat a udiv as a logical right shift by the power of 2 known to 1039 // be less than the denominator. 1040 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1041 unsigned LeadZ = Known2.countMinLeadingZeros(); 1042 1043 Known2.resetAll(); 1044 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1045 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1046 if (RHSMaxLeadingZeros != BitWidth) 1047 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1048 1049 Known.Zero.setHighBits(LeadZ); 1050 break; 1051 } 1052 case Instruction::Select: { 1053 const Value *LHS, *RHS; 1054 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1055 if (SelectPatternResult::isMinOrMax(SPF)) { 1056 computeKnownBits(RHS, Known, Depth + 1, Q); 1057 computeKnownBits(LHS, Known2, Depth + 1, Q); 1058 } else { 1059 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1060 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1061 } 1062 1063 unsigned MaxHighOnes = 0; 1064 unsigned MaxHighZeros = 0; 1065 if (SPF == SPF_SMAX) { 1066 // If both sides are negative, the result is negative. 1067 if (Known.isNegative() && Known2.isNegative()) 1068 // We can derive a lower bound on the result by taking the max of the 1069 // leading one bits. 1070 MaxHighOnes = 1071 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1072 // If either side is non-negative, the result is non-negative. 1073 else if (Known.isNonNegative() || Known2.isNonNegative()) 1074 MaxHighZeros = 1; 1075 } else if (SPF == SPF_SMIN) { 1076 // If both sides are non-negative, the result is non-negative. 1077 if (Known.isNonNegative() && Known2.isNonNegative()) 1078 // We can derive an upper bound on the result by taking the max of the 1079 // leading zero bits. 1080 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1081 Known2.countMinLeadingZeros()); 1082 // If either side is negative, the result is negative. 1083 else if (Known.isNegative() || Known2.isNegative()) 1084 MaxHighOnes = 1; 1085 } else if (SPF == SPF_UMAX) { 1086 // We can derive a lower bound on the result by taking the max of the 1087 // leading one bits. 1088 MaxHighOnes = 1089 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1090 } else if (SPF == SPF_UMIN) { 1091 // We can derive an upper bound on the result by taking the max of the 1092 // leading zero bits. 1093 MaxHighZeros = 1094 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1095 } else if (SPF == SPF_ABS) { 1096 // RHS from matchSelectPattern returns the negation part of abs pattern. 1097 // If the negate has an NSW flag we can assume the sign bit of the result 1098 // will be 0 because that makes abs(INT_MIN) undefined. 1099 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1100 MaxHighZeros = 1; 1101 } 1102 1103 // Only known if known in both the LHS and RHS. 1104 Known.One &= Known2.One; 1105 Known.Zero &= Known2.Zero; 1106 if (MaxHighOnes > 0) 1107 Known.One.setHighBits(MaxHighOnes); 1108 if (MaxHighZeros > 0) 1109 Known.Zero.setHighBits(MaxHighZeros); 1110 break; 1111 } 1112 case Instruction::FPTrunc: 1113 case Instruction::FPExt: 1114 case Instruction::FPToUI: 1115 case Instruction::FPToSI: 1116 case Instruction::SIToFP: 1117 case Instruction::UIToFP: 1118 break; // Can't work with floating point. 1119 case Instruction::PtrToInt: 1120 case Instruction::IntToPtr: 1121 // Fall through and handle them the same as zext/trunc. 1122 LLVM_FALLTHROUGH; 1123 case Instruction::ZExt: 1124 case Instruction::Trunc: { 1125 Type *SrcTy = I->getOperand(0)->getType(); 1126 1127 unsigned SrcBitWidth; 1128 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1129 // which fall through here. 1130 Type *ScalarTy = SrcTy->getScalarType(); 1131 SrcBitWidth = ScalarTy->isPointerTy() ? 1132 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1133 Q.DL.getTypeSizeInBits(ScalarTy); 1134 1135 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1136 Known = Known.zextOrTrunc(SrcBitWidth, false); 1137 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1138 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); 1139 break; 1140 } 1141 case Instruction::BitCast: { 1142 Type *SrcTy = I->getOperand(0)->getType(); 1143 if (SrcTy->isIntOrPtrTy() && 1144 // TODO: For now, not handling conversions like: 1145 // (bitcast i64 %x to <2 x i32>) 1146 !I->getType()->isVectorTy()) { 1147 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1148 break; 1149 } 1150 break; 1151 } 1152 case Instruction::SExt: { 1153 // Compute the bits in the result that are not present in the input. 1154 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1155 1156 Known = Known.trunc(SrcBitWidth); 1157 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1158 // If the sign bit of the input is known set or clear, then we know the 1159 // top bits of the result. 1160 Known = Known.sext(BitWidth); 1161 break; 1162 } 1163 case Instruction::Shl: { 1164 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1165 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1166 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1167 APInt KZResult = KnownZero << ShiftAmt; 1168 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1169 // If this shift has "nsw" keyword, then the result is either a poison 1170 // value or has the same sign bit as the first operand. 1171 if (NSW && KnownZero.isSignBitSet()) 1172 KZResult.setSignBit(); 1173 return KZResult; 1174 }; 1175 1176 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1177 APInt KOResult = KnownOne << ShiftAmt; 1178 if (NSW && KnownOne.isSignBitSet()) 1179 KOResult.setSignBit(); 1180 return KOResult; 1181 }; 1182 1183 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1184 break; 1185 } 1186 case Instruction::LShr: { 1187 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1188 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1189 APInt KZResult = KnownZero.lshr(ShiftAmt); 1190 // High bits known zero. 1191 KZResult.setHighBits(ShiftAmt); 1192 return KZResult; 1193 }; 1194 1195 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1196 return KnownOne.lshr(ShiftAmt); 1197 }; 1198 1199 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1200 break; 1201 } 1202 case Instruction::AShr: { 1203 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1204 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1205 return KnownZero.ashr(ShiftAmt); 1206 }; 1207 1208 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1209 return KnownOne.ashr(ShiftAmt); 1210 }; 1211 1212 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1213 break; 1214 } 1215 case Instruction::Sub: { 1216 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1217 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1218 Known, Known2, Depth, Q); 1219 break; 1220 } 1221 case Instruction::Add: { 1222 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1223 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1224 Known, Known2, Depth, Q); 1225 break; 1226 } 1227 case Instruction::SRem: 1228 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1229 APInt RA = Rem->getValue().abs(); 1230 if (RA.isPowerOf2()) { 1231 APInt LowBits = RA - 1; 1232 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1233 1234 // The low bits of the first operand are unchanged by the srem. 1235 Known.Zero = Known2.Zero & LowBits; 1236 Known.One = Known2.One & LowBits; 1237 1238 // If the first operand is non-negative or has all low bits zero, then 1239 // the upper bits are all zero. 1240 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1241 Known.Zero |= ~LowBits; 1242 1243 // If the first operand is negative and not all low bits are zero, then 1244 // the upper bits are all one. 1245 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1246 Known.One |= ~LowBits; 1247 1248 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1249 break; 1250 } 1251 } 1252 1253 // The sign bit is the LHS's sign bit, except when the result of the 1254 // remainder is zero. 1255 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1256 // If it's known zero, our sign bit is also zero. 1257 if (Known2.isNonNegative()) 1258 Known.makeNonNegative(); 1259 1260 break; 1261 case Instruction::URem: { 1262 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1263 const APInt &RA = Rem->getValue(); 1264 if (RA.isPowerOf2()) { 1265 APInt LowBits = (RA - 1); 1266 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1267 Known.Zero |= ~LowBits; 1268 Known.One &= LowBits; 1269 break; 1270 } 1271 } 1272 1273 // Since the result is less than or equal to either operand, any leading 1274 // zero bits in either operand must also exist in the result. 1275 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1276 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1277 1278 unsigned Leaders = 1279 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1280 Known.resetAll(); 1281 Known.Zero.setHighBits(Leaders); 1282 break; 1283 } 1284 1285 case Instruction::Alloca: { 1286 const AllocaInst *AI = cast<AllocaInst>(I); 1287 unsigned Align = AI->getAlignment(); 1288 if (Align == 0) 1289 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1290 1291 if (Align > 0) 1292 Known.Zero.setLowBits(countTrailingZeros(Align)); 1293 break; 1294 } 1295 case Instruction::GetElementPtr: { 1296 // Analyze all of the subscripts of this getelementptr instruction 1297 // to determine if we can prove known low zero bits. 1298 KnownBits LocalKnown(BitWidth); 1299 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1300 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1301 1302 gep_type_iterator GTI = gep_type_begin(I); 1303 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1304 Value *Index = I->getOperand(i); 1305 if (StructType *STy = GTI.getStructTypeOrNull()) { 1306 // Handle struct member offset arithmetic. 1307 1308 // Handle case when index is vector zeroinitializer 1309 Constant *CIndex = cast<Constant>(Index); 1310 if (CIndex->isZeroValue()) 1311 continue; 1312 1313 if (CIndex->getType()->isVectorTy()) 1314 Index = CIndex->getSplatValue(); 1315 1316 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1317 const StructLayout *SL = Q.DL.getStructLayout(STy); 1318 uint64_t Offset = SL->getElementOffset(Idx); 1319 TrailZ = std::min<unsigned>(TrailZ, 1320 countTrailingZeros(Offset)); 1321 } else { 1322 // Handle array index arithmetic. 1323 Type *IndexedTy = GTI.getIndexedType(); 1324 if (!IndexedTy->isSized()) { 1325 TrailZ = 0; 1326 break; 1327 } 1328 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1329 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1330 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1331 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1332 TrailZ = std::min(TrailZ, 1333 unsigned(countTrailingZeros(TypeSize) + 1334 LocalKnown.countMinTrailingZeros())); 1335 } 1336 } 1337 1338 Known.Zero.setLowBits(TrailZ); 1339 break; 1340 } 1341 case Instruction::PHI: { 1342 const PHINode *P = cast<PHINode>(I); 1343 // Handle the case of a simple two-predecessor recurrence PHI. 1344 // There's a lot more that could theoretically be done here, but 1345 // this is sufficient to catch some interesting cases. 1346 if (P->getNumIncomingValues() == 2) { 1347 for (unsigned i = 0; i != 2; ++i) { 1348 Value *L = P->getIncomingValue(i); 1349 Value *R = P->getIncomingValue(!i); 1350 Operator *LU = dyn_cast<Operator>(L); 1351 if (!LU) 1352 continue; 1353 unsigned Opcode = LU->getOpcode(); 1354 // Check for operations that have the property that if 1355 // both their operands have low zero bits, the result 1356 // will have low zero bits. 1357 if (Opcode == Instruction::Add || 1358 Opcode == Instruction::Sub || 1359 Opcode == Instruction::And || 1360 Opcode == Instruction::Or || 1361 Opcode == Instruction::Mul) { 1362 Value *LL = LU->getOperand(0); 1363 Value *LR = LU->getOperand(1); 1364 // Find a recurrence. 1365 if (LL == I) 1366 L = LR; 1367 else if (LR == I) 1368 L = LL; 1369 else 1370 break; 1371 // Ok, we have a PHI of the form L op= R. Check for low 1372 // zero bits. 1373 computeKnownBits(R, Known2, Depth + 1, Q); 1374 1375 // We need to take the minimum number of known bits 1376 KnownBits Known3(Known); 1377 computeKnownBits(L, Known3, Depth + 1, Q); 1378 1379 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1380 Known3.countMinTrailingZeros())); 1381 1382 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1383 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1384 // If initial value of recurrence is nonnegative, and we are adding 1385 // a nonnegative number with nsw, the result can only be nonnegative 1386 // or poison value regardless of the number of times we execute the 1387 // add in phi recurrence. If initial value is negative and we are 1388 // adding a negative number with nsw, the result can only be 1389 // negative or poison value. Similar arguments apply to sub and mul. 1390 // 1391 // (add non-negative, non-negative) --> non-negative 1392 // (add negative, negative) --> negative 1393 if (Opcode == Instruction::Add) { 1394 if (Known2.isNonNegative() && Known3.isNonNegative()) 1395 Known.makeNonNegative(); 1396 else if (Known2.isNegative() && Known3.isNegative()) 1397 Known.makeNegative(); 1398 } 1399 1400 // (sub nsw non-negative, negative) --> non-negative 1401 // (sub nsw negative, non-negative) --> negative 1402 else if (Opcode == Instruction::Sub && LL == I) { 1403 if (Known2.isNonNegative() && Known3.isNegative()) 1404 Known.makeNonNegative(); 1405 else if (Known2.isNegative() && Known3.isNonNegative()) 1406 Known.makeNegative(); 1407 } 1408 1409 // (mul nsw non-negative, non-negative) --> non-negative 1410 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1411 Known3.isNonNegative()) 1412 Known.makeNonNegative(); 1413 } 1414 1415 break; 1416 } 1417 } 1418 } 1419 1420 // Unreachable blocks may have zero-operand PHI nodes. 1421 if (P->getNumIncomingValues() == 0) 1422 break; 1423 1424 // Otherwise take the unions of the known bit sets of the operands, 1425 // taking conservative care to avoid excessive recursion. 1426 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1427 // Skip if every incoming value references to ourself. 1428 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1429 break; 1430 1431 Known.Zero.setAllBits(); 1432 Known.One.setAllBits(); 1433 for (Value *IncValue : P->incoming_values()) { 1434 // Skip direct self references. 1435 if (IncValue == P) continue; 1436 1437 Known2 = KnownBits(BitWidth); 1438 // Recurse, but cap the recursion to one level, because we don't 1439 // want to waste time spinning around in loops. 1440 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1441 Known.Zero &= Known2.Zero; 1442 Known.One &= Known2.One; 1443 // If all bits have been ruled out, there's no need to check 1444 // more operands. 1445 if (!Known.Zero && !Known.One) 1446 break; 1447 } 1448 } 1449 break; 1450 } 1451 case Instruction::Call: 1452 case Instruction::Invoke: 1453 // If range metadata is attached to this call, set known bits from that, 1454 // and then intersect with known bits based on other properties of the 1455 // function. 1456 if (MDNode *MD = 1457 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1458 computeKnownBitsFromRangeMetadata(*MD, Known); 1459 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1460 computeKnownBits(RV, Known2, Depth + 1, Q); 1461 Known.Zero |= Known2.Zero; 1462 Known.One |= Known2.One; 1463 } 1464 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1465 switch (II->getIntrinsicID()) { 1466 default: break; 1467 case Intrinsic::bitreverse: 1468 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1469 Known.Zero |= Known2.Zero.reverseBits(); 1470 Known.One |= Known2.One.reverseBits(); 1471 break; 1472 case Intrinsic::bswap: 1473 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1474 Known.Zero |= Known2.Zero.byteSwap(); 1475 Known.One |= Known2.One.byteSwap(); 1476 break; 1477 case Intrinsic::ctlz: { 1478 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1479 // If we have a known 1, its position is our upper bound. 1480 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1481 // If this call is undefined for 0, the result will be less than 2^n. 1482 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1483 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1484 unsigned LowBits = Log2_32(PossibleLZ)+1; 1485 Known.Zero.setBitsFrom(LowBits); 1486 break; 1487 } 1488 case Intrinsic::cttz: { 1489 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1490 // If we have a known 1, its position is our upper bound. 1491 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1492 // If this call is undefined for 0, the result will be less than 2^n. 1493 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1494 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1495 unsigned LowBits = Log2_32(PossibleTZ)+1; 1496 Known.Zero.setBitsFrom(LowBits); 1497 break; 1498 } 1499 case Intrinsic::ctpop: { 1500 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1501 // We can bound the space the count needs. Also, bits known to be zero 1502 // can't contribute to the population. 1503 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1504 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1505 Known.Zero.setBitsFrom(LowBits); 1506 // TODO: we could bound KnownOne using the lower bound on the number 1507 // of bits which might be set provided by popcnt KnownOne2. 1508 break; 1509 } 1510 case Intrinsic::fshr: 1511 case Intrinsic::fshl: { 1512 const APInt *SA; 1513 if (!match(I->getOperand(2), m_APInt(SA))) 1514 break; 1515 1516 // Normalize to funnel shift left. 1517 uint64_t ShiftAmt = SA->urem(BitWidth); 1518 if (II->getIntrinsicID() == Intrinsic::fshr) 1519 ShiftAmt = BitWidth - ShiftAmt; 1520 1521 KnownBits Known3(Known); 1522 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1523 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1524 1525 Known.Zero = 1526 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1527 Known.One = 1528 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1529 break; 1530 } 1531 case Intrinsic::uadd_sat: 1532 case Intrinsic::usub_sat: { 1533 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1534 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1535 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1536 1537 // Add: Leading ones of either operand are preserved. 1538 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1539 // as leading zeros in the result. 1540 unsigned LeadingKnown; 1541 if (IsAdd) 1542 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1543 Known2.countMinLeadingOnes()); 1544 else 1545 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1546 Known2.countMinLeadingOnes()); 1547 1548 Known = KnownBits::computeForAddSub( 1549 IsAdd, /* NSW */ false, Known, Known2); 1550 1551 // We select between the operation result and all-ones/zero 1552 // respectively, so we can preserve known ones/zeros. 1553 if (IsAdd) { 1554 Known.One.setHighBits(LeadingKnown); 1555 Known.Zero.clearAllBits(); 1556 } else { 1557 Known.Zero.setHighBits(LeadingKnown); 1558 Known.One.clearAllBits(); 1559 } 1560 break; 1561 } 1562 case Intrinsic::x86_sse42_crc32_64_64: 1563 Known.Zero.setBitsFrom(32); 1564 break; 1565 } 1566 } 1567 break; 1568 case Instruction::ExtractElement: 1569 // Look through extract element. At the moment we keep this simple and skip 1570 // tracking the specific element. But at least we might find information 1571 // valid for all elements of the vector (for example if vector is sign 1572 // extended, shifted, etc). 1573 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1574 break; 1575 case Instruction::ExtractValue: 1576 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1577 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1578 if (EVI->getNumIndices() != 1) break; 1579 if (EVI->getIndices()[0] == 0) { 1580 switch (II->getIntrinsicID()) { 1581 default: break; 1582 case Intrinsic::uadd_with_overflow: 1583 case Intrinsic::sadd_with_overflow: 1584 computeKnownBitsAddSub(true, II->getArgOperand(0), 1585 II->getArgOperand(1), false, Known, Known2, 1586 Depth, Q); 1587 break; 1588 case Intrinsic::usub_with_overflow: 1589 case Intrinsic::ssub_with_overflow: 1590 computeKnownBitsAddSub(false, II->getArgOperand(0), 1591 II->getArgOperand(1), false, Known, Known2, 1592 Depth, Q); 1593 break; 1594 case Intrinsic::umul_with_overflow: 1595 case Intrinsic::smul_with_overflow: 1596 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1597 Known, Known2, Depth, Q); 1598 break; 1599 } 1600 } 1601 } 1602 } 1603 } 1604 1605 /// Determine which bits of V are known to be either zero or one and return 1606 /// them. 1607 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1608 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1609 computeKnownBits(V, Known, Depth, Q); 1610 return Known; 1611 } 1612 1613 /// Determine which bits of V are known to be either zero or one and return 1614 /// them in the Known bit set. 1615 /// 1616 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1617 /// we cannot optimize based on the assumption that it is zero without changing 1618 /// it to be an explicit zero. If we don't change it to zero, other code could 1619 /// optimized based on the contradictory assumption that it is non-zero. 1620 /// Because instcombine aggressively folds operations with undef args anyway, 1621 /// this won't lose us code quality. 1622 /// 1623 /// This function is defined on values with integer type, values with pointer 1624 /// type, and vectors of integers. In the case 1625 /// where V is a vector, known zero, and known one values are the 1626 /// same width as the vector element, and the bit is set only if it is true 1627 /// for all of the elements in the vector. 1628 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1629 const Query &Q) { 1630 assert(V && "No Value?"); 1631 assert(Depth <= MaxDepth && "Limit Search Depth"); 1632 unsigned BitWidth = Known.getBitWidth(); 1633 1634 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1635 V->getType()->isPtrOrPtrVectorTy()) && 1636 "Not integer or pointer type!"); 1637 1638 Type *ScalarTy = V->getType()->getScalarType(); 1639 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1640 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1641 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1642 (void)BitWidth; 1643 (void)ExpectedWidth; 1644 1645 const APInt *C; 1646 if (match(V, m_APInt(C))) { 1647 // We know all of the bits for a scalar constant or a splat vector constant! 1648 Known.One = *C; 1649 Known.Zero = ~Known.One; 1650 return; 1651 } 1652 // Null and aggregate-zero are all-zeros. 1653 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1654 Known.setAllZero(); 1655 return; 1656 } 1657 // Handle a constant vector by taking the intersection of the known bits of 1658 // each element. 1659 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1660 // We know that CDS must be a vector of integers. Take the intersection of 1661 // each element. 1662 Known.Zero.setAllBits(); Known.One.setAllBits(); 1663 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1664 APInt Elt = CDS->getElementAsAPInt(i); 1665 Known.Zero &= ~Elt; 1666 Known.One &= Elt; 1667 } 1668 return; 1669 } 1670 1671 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1672 // We know that CV must be a vector of integers. Take the intersection of 1673 // each element. 1674 Known.Zero.setAllBits(); Known.One.setAllBits(); 1675 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1676 Constant *Element = CV->getAggregateElement(i); 1677 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1678 if (!ElementCI) { 1679 Known.resetAll(); 1680 return; 1681 } 1682 const APInt &Elt = ElementCI->getValue(); 1683 Known.Zero &= ~Elt; 1684 Known.One &= Elt; 1685 } 1686 return; 1687 } 1688 1689 // Start out not knowing anything. 1690 Known.resetAll(); 1691 1692 // We can't imply anything about undefs. 1693 if (isa<UndefValue>(V)) 1694 return; 1695 1696 // There's no point in looking through other users of ConstantData for 1697 // assumptions. Confirm that we've handled them all. 1698 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1699 1700 // Limit search depth. 1701 // All recursive calls that increase depth must come after this. 1702 if (Depth == MaxDepth) 1703 return; 1704 1705 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1706 // the bits of its aliasee. 1707 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1708 if (!GA->isInterposable()) 1709 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1710 return; 1711 } 1712 1713 if (const Operator *I = dyn_cast<Operator>(V)) 1714 computeKnownBitsFromOperator(I, Known, Depth, Q); 1715 1716 // Aligned pointers have trailing zeros - refine Known.Zero set 1717 if (V->getType()->isPointerTy()) { 1718 unsigned Align = V->getPointerAlignment(Q.DL); 1719 if (Align) 1720 Known.Zero.setLowBits(countTrailingZeros(Align)); 1721 } 1722 1723 // computeKnownBitsFromAssume strictly refines Known. 1724 // Therefore, we run them after computeKnownBitsFromOperator. 1725 1726 // Check whether a nearby assume intrinsic can determine some known bits. 1727 computeKnownBitsFromAssume(V, Known, Depth, Q); 1728 1729 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1730 } 1731 1732 /// Return true if the given value is known to have exactly one 1733 /// bit set when defined. For vectors return true if every element is known to 1734 /// be a power of two when defined. Supports values with integer or pointer 1735 /// types and vectors of integers. 1736 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1737 const Query &Q) { 1738 assert(Depth <= MaxDepth && "Limit Search Depth"); 1739 1740 // Attempt to match against constants. 1741 if (OrZero && match(V, m_Power2OrZero())) 1742 return true; 1743 if (match(V, m_Power2())) 1744 return true; 1745 1746 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1747 // it is shifted off the end then the result is undefined. 1748 if (match(V, m_Shl(m_One(), m_Value()))) 1749 return true; 1750 1751 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1752 // the bottom. If it is shifted off the bottom then the result is undefined. 1753 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1754 return true; 1755 1756 // The remaining tests are all recursive, so bail out if we hit the limit. 1757 if (Depth++ == MaxDepth) 1758 return false; 1759 1760 Value *X = nullptr, *Y = nullptr; 1761 // A shift left or a logical shift right of a power of two is a power of two 1762 // or zero. 1763 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1764 match(V, m_LShr(m_Value(X), m_Value())))) 1765 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1766 1767 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1768 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1769 1770 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1771 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1772 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1773 1774 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1775 // A power of two and'd with anything is a power of two or zero. 1776 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1777 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1778 return true; 1779 // X & (-X) is always a power of two or zero. 1780 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1781 return true; 1782 return false; 1783 } 1784 1785 // Adding a power-of-two or zero to the same power-of-two or zero yields 1786 // either the original power-of-two, a larger power-of-two or zero. 1787 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1788 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1789 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1790 Q.IIQ.hasNoSignedWrap(VOBO)) { 1791 if (match(X, m_And(m_Specific(Y), m_Value())) || 1792 match(X, m_And(m_Value(), m_Specific(Y)))) 1793 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1794 return true; 1795 if (match(Y, m_And(m_Specific(X), m_Value())) || 1796 match(Y, m_And(m_Value(), m_Specific(X)))) 1797 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1798 return true; 1799 1800 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1801 KnownBits LHSBits(BitWidth); 1802 computeKnownBits(X, LHSBits, Depth, Q); 1803 1804 KnownBits RHSBits(BitWidth); 1805 computeKnownBits(Y, RHSBits, Depth, Q); 1806 // If i8 V is a power of two or zero: 1807 // ZeroBits: 1 1 1 0 1 1 1 1 1808 // ~ZeroBits: 0 0 0 1 0 0 0 0 1809 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1810 // If OrZero isn't set, we cannot give back a zero result. 1811 // Make sure either the LHS or RHS has a bit set. 1812 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1813 return true; 1814 } 1815 } 1816 1817 // An exact divide or right shift can only shift off zero bits, so the result 1818 // is a power of two only if the first operand is a power of two and not 1819 // copying a sign bit (sdiv int_min, 2). 1820 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1821 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1822 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1823 Depth, Q); 1824 } 1825 1826 return false; 1827 } 1828 1829 /// Test whether a GEP's result is known to be non-null. 1830 /// 1831 /// Uses properties inherent in a GEP to try to determine whether it is known 1832 /// to be non-null. 1833 /// 1834 /// Currently this routine does not support vector GEPs. 1835 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1836 const Query &Q) { 1837 const Function *F = nullptr; 1838 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1839 F = I->getFunction(); 1840 1841 if (!GEP->isInBounds() || 1842 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1843 return false; 1844 1845 // FIXME: Support vector-GEPs. 1846 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1847 1848 // If the base pointer is non-null, we cannot walk to a null address with an 1849 // inbounds GEP in address space zero. 1850 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1851 return true; 1852 1853 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1854 // If so, then the GEP cannot produce a null pointer, as doing so would 1855 // inherently violate the inbounds contract within address space zero. 1856 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1857 GTI != GTE; ++GTI) { 1858 // Struct types are easy -- they must always be indexed by a constant. 1859 if (StructType *STy = GTI.getStructTypeOrNull()) { 1860 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1861 unsigned ElementIdx = OpC->getZExtValue(); 1862 const StructLayout *SL = Q.DL.getStructLayout(STy); 1863 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1864 if (ElementOffset > 0) 1865 return true; 1866 continue; 1867 } 1868 1869 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1870 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1871 continue; 1872 1873 // Fast path the constant operand case both for efficiency and so we don't 1874 // increment Depth when just zipping down an all-constant GEP. 1875 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1876 if (!OpC->isZero()) 1877 return true; 1878 continue; 1879 } 1880 1881 // We post-increment Depth here because while isKnownNonZero increments it 1882 // as well, when we pop back up that increment won't persist. We don't want 1883 // to recurse 10k times just because we have 10k GEP operands. We don't 1884 // bail completely out because we want to handle constant GEPs regardless 1885 // of depth. 1886 if (Depth++ >= MaxDepth) 1887 continue; 1888 1889 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1890 return true; 1891 } 1892 1893 return false; 1894 } 1895 1896 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1897 const Instruction *CtxI, 1898 const DominatorTree *DT) { 1899 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1900 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1901 1902 if (!CtxI || !DT) 1903 return false; 1904 1905 unsigned NumUsesExplored = 0; 1906 for (auto *U : V->users()) { 1907 // Avoid massive lists 1908 if (NumUsesExplored >= DomConditionsMaxUses) 1909 break; 1910 NumUsesExplored++; 1911 1912 // If the value is used as an argument to a call or invoke, then argument 1913 // attributes may provide an answer about null-ness. 1914 if (auto CS = ImmutableCallSite(U)) 1915 if (auto *CalledFunc = CS.getCalledFunction()) 1916 for (const Argument &Arg : CalledFunc->args()) 1917 if (CS.getArgOperand(Arg.getArgNo()) == V && 1918 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1919 return true; 1920 1921 // Consider only compare instructions uniquely controlling a branch 1922 CmpInst::Predicate Pred; 1923 if (!match(const_cast<User *>(U), 1924 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1925 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1926 continue; 1927 1928 SmallVector<const User *, 4> WorkList; 1929 SmallPtrSet<const User *, 4> Visited; 1930 for (auto *CmpU : U->users()) { 1931 assert(WorkList.empty() && "Should be!"); 1932 if (Visited.insert(CmpU).second) 1933 WorkList.push_back(CmpU); 1934 1935 while (!WorkList.empty()) { 1936 auto *Curr = WorkList.pop_back_val(); 1937 1938 // If a user is an AND, add all its users to the work list. We only 1939 // propagate "pred != null" condition through AND because it is only 1940 // correct to assume that all conditions of AND are met in true branch. 1941 // TODO: Support similar logic of OR and EQ predicate? 1942 if (Pred == ICmpInst::ICMP_NE) 1943 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1944 if (BO->getOpcode() == Instruction::And) { 1945 for (auto *BOU : BO->users()) 1946 if (Visited.insert(BOU).second) 1947 WorkList.push_back(BOU); 1948 continue; 1949 } 1950 1951 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1952 assert(BI->isConditional() && "uses a comparison!"); 1953 1954 BasicBlock *NonNullSuccessor = 1955 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1956 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1957 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1958 return true; 1959 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 1960 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1961 return true; 1962 } 1963 } 1964 } 1965 } 1966 1967 return false; 1968 } 1969 1970 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1971 /// ensure that the value it's attached to is never Value? 'RangeType' is 1972 /// is the type of the value described by the range. 1973 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1974 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1975 assert(NumRanges >= 1); 1976 for (unsigned i = 0; i < NumRanges; ++i) { 1977 ConstantInt *Lower = 1978 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1979 ConstantInt *Upper = 1980 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1981 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1982 if (Range.contains(Value)) 1983 return false; 1984 } 1985 return true; 1986 } 1987 1988 /// Return true if the given value is known to be non-zero when defined. For 1989 /// vectors, return true if every element is known to be non-zero when 1990 /// defined. For pointers, if the context instruction and dominator tree are 1991 /// specified, perform context-sensitive analysis and return true if the 1992 /// pointer couldn't possibly be null at the specified instruction. 1993 /// Supports values with integer or pointer type and vectors of integers. 1994 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1995 if (auto *C = dyn_cast<Constant>(V)) { 1996 if (C->isNullValue()) 1997 return false; 1998 if (isa<ConstantInt>(C)) 1999 // Must be non-zero due to null test above. 2000 return true; 2001 2002 // For constant vectors, check that all elements are undefined or known 2003 // non-zero to determine that the whole vector is known non-zero. 2004 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2005 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2006 Constant *Elt = C->getAggregateElement(i); 2007 if (!Elt || Elt->isNullValue()) 2008 return false; 2009 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2010 return false; 2011 } 2012 return true; 2013 } 2014 2015 // A global variable in address space 0 is non null unless extern weak 2016 // or an absolute symbol reference. Other address spaces may have null as a 2017 // valid address for a global, so we can't assume anything. 2018 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2019 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2020 GV->getType()->getAddressSpace() == 0) 2021 return true; 2022 } else 2023 return false; 2024 } 2025 2026 if (auto *I = dyn_cast<Instruction>(V)) { 2027 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2028 // If the possible ranges don't contain zero, then the value is 2029 // definitely non-zero. 2030 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2031 const APInt ZeroValue(Ty->getBitWidth(), 0); 2032 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2033 return true; 2034 } 2035 } 2036 } 2037 2038 // Some of the tests below are recursive, so bail out if we hit the limit. 2039 if (Depth++ >= MaxDepth) 2040 return false; 2041 2042 // Check for pointer simplifications. 2043 if (V->getType()->isPointerTy()) { 2044 // Alloca never returns null, malloc might. 2045 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2046 return true; 2047 2048 // A byval, inalloca, or nonnull argument is never null. 2049 if (const Argument *A = dyn_cast<Argument>(V)) 2050 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2051 return true; 2052 2053 // A Load tagged with nonnull metadata is never null. 2054 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2055 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2056 return true; 2057 2058 if (const auto *Call = dyn_cast<CallBase>(V)) { 2059 if (Call->isReturnNonNull()) 2060 return true; 2061 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call)) 2062 return isKnownNonZero(RP, Depth, Q); 2063 } 2064 } 2065 2066 2067 // Check for recursive pointer simplifications. 2068 if (V->getType()->isPointerTy()) { 2069 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2070 return true; 2071 2072 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2073 // do not alter the value, or at least not the nullness property of the 2074 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2075 // 2076 // Note that we have to take special care to avoid looking through 2077 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2078 // as casts that can alter the value, e.g., AddrSpaceCasts. 2079 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2080 if (isGEPKnownNonNull(GEP, Depth, Q)) 2081 return true; 2082 2083 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2084 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2085 2086 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2087 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2088 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2089 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2090 } 2091 2092 // Similar to int2ptr above, we can look through ptr2int here if the cast 2093 // is a no-op or an extend and not a truncate. 2094 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2095 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2096 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2097 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2098 2099 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2100 2101 // X | Y != 0 if X != 0 or Y != 0. 2102 Value *X = nullptr, *Y = nullptr; 2103 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2104 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2105 2106 // ext X != 0 if X != 0. 2107 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2108 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2109 2110 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2111 // if the lowest bit is shifted off the end. 2112 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2113 // shl nuw can't remove any non-zero bits. 2114 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2115 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2116 return isKnownNonZero(X, Depth, Q); 2117 2118 KnownBits Known(BitWidth); 2119 computeKnownBits(X, Known, Depth, Q); 2120 if (Known.One[0]) 2121 return true; 2122 } 2123 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2124 // defined if the sign bit is shifted off the end. 2125 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2126 // shr exact can only shift out zero bits. 2127 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2128 if (BO->isExact()) 2129 return isKnownNonZero(X, Depth, Q); 2130 2131 KnownBits Known = computeKnownBits(X, Depth, Q); 2132 if (Known.isNegative()) 2133 return true; 2134 2135 // If the shifter operand is a constant, and all of the bits shifted 2136 // out are known to be zero, and X is known non-zero then at least one 2137 // non-zero bit must remain. 2138 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2139 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2140 // Is there a known one in the portion not shifted out? 2141 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2142 return true; 2143 // Are all the bits to be shifted out known zero? 2144 if (Known.countMinTrailingZeros() >= ShiftVal) 2145 return isKnownNonZero(X, Depth, Q); 2146 } 2147 } 2148 // div exact can only produce a zero if the dividend is zero. 2149 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2150 return isKnownNonZero(X, Depth, Q); 2151 } 2152 // X + Y. 2153 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2154 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2155 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2156 2157 // If X and Y are both non-negative (as signed values) then their sum is not 2158 // zero unless both X and Y are zero. 2159 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2160 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2161 return true; 2162 2163 // If X and Y are both negative (as signed values) then their sum is not 2164 // zero unless both X and Y equal INT_MIN. 2165 if (XKnown.isNegative() && YKnown.isNegative()) { 2166 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2167 // The sign bit of X is set. If some other bit is set then X is not equal 2168 // to INT_MIN. 2169 if (XKnown.One.intersects(Mask)) 2170 return true; 2171 // The sign bit of Y is set. If some other bit is set then Y is not equal 2172 // to INT_MIN. 2173 if (YKnown.One.intersects(Mask)) 2174 return true; 2175 } 2176 2177 // The sum of a non-negative number and a power of two is not zero. 2178 if (XKnown.isNonNegative() && 2179 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2180 return true; 2181 if (YKnown.isNonNegative() && 2182 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2183 return true; 2184 } 2185 // X * Y. 2186 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2187 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2188 // If X and Y are non-zero then so is X * Y as long as the multiplication 2189 // does not overflow. 2190 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2191 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2192 return true; 2193 } 2194 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2195 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2196 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2197 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2198 return true; 2199 } 2200 // PHI 2201 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2202 // Try and detect a recurrence that monotonically increases from a 2203 // starting value, as these are common as induction variables. 2204 if (PN->getNumIncomingValues() == 2) { 2205 Value *Start = PN->getIncomingValue(0); 2206 Value *Induction = PN->getIncomingValue(1); 2207 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2208 std::swap(Start, Induction); 2209 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2210 if (!C->isZero() && !C->isNegative()) { 2211 ConstantInt *X; 2212 if (Q.IIQ.UseInstrInfo && 2213 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2214 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2215 !X->isNegative()) 2216 return true; 2217 } 2218 } 2219 } 2220 // Check if all incoming values are non-zero constant. 2221 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2222 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2223 }); 2224 if (AllNonZeroConstants) 2225 return true; 2226 } 2227 2228 KnownBits Known(BitWidth); 2229 computeKnownBits(V, Known, Depth, Q); 2230 return Known.One != 0; 2231 } 2232 2233 /// Return true if V2 == V1 + X, where X is known non-zero. 2234 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2235 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2236 if (!BO || BO->getOpcode() != Instruction::Add) 2237 return false; 2238 Value *Op = nullptr; 2239 if (V2 == BO->getOperand(0)) 2240 Op = BO->getOperand(1); 2241 else if (V2 == BO->getOperand(1)) 2242 Op = BO->getOperand(0); 2243 else 2244 return false; 2245 return isKnownNonZero(Op, 0, Q); 2246 } 2247 2248 /// Return true if it is known that V1 != V2. 2249 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2250 if (V1 == V2) 2251 return false; 2252 if (V1->getType() != V2->getType()) 2253 // We can't look through casts yet. 2254 return false; 2255 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2256 return true; 2257 2258 if (V1->getType()->isIntOrIntVectorTy()) { 2259 // Are any known bits in V1 contradictory to known bits in V2? If V1 2260 // has a known zero where V2 has a known one, they must not be equal. 2261 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2262 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2263 2264 if (Known1.Zero.intersects(Known2.One) || 2265 Known2.Zero.intersects(Known1.One)) 2266 return true; 2267 } 2268 return false; 2269 } 2270 2271 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2272 /// simplify operations downstream. Mask is known to be zero for bits that V 2273 /// cannot have. 2274 /// 2275 /// This function is defined on values with integer type, values with pointer 2276 /// type, and vectors of integers. In the case 2277 /// where V is a vector, the mask, known zero, and known one values are the 2278 /// same width as the vector element, and the bit is set only if it is true 2279 /// for all of the elements in the vector. 2280 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2281 const Query &Q) { 2282 KnownBits Known(Mask.getBitWidth()); 2283 computeKnownBits(V, Known, Depth, Q); 2284 return Mask.isSubsetOf(Known.Zero); 2285 } 2286 2287 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2288 // Returns the input and lower/upper bounds. 2289 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2290 const APInt *&CLow, const APInt *&CHigh) { 2291 assert(isa<Operator>(Select) && 2292 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2293 "Input should be a Select!"); 2294 2295 const Value *LHS, *RHS, *LHS2, *RHS2; 2296 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2297 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2298 return false; 2299 2300 if (!match(RHS, m_APInt(CLow))) 2301 return false; 2302 2303 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2304 if (getInverseMinMaxFlavor(SPF) != SPF2) 2305 return false; 2306 2307 if (!match(RHS2, m_APInt(CHigh))) 2308 return false; 2309 2310 if (SPF == SPF_SMIN) 2311 std::swap(CLow, CHigh); 2312 2313 In = LHS2; 2314 return CLow->sle(*CHigh); 2315 } 2316 2317 /// For vector constants, loop over the elements and find the constant with the 2318 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2319 /// or if any element was not analyzed; otherwise, return the count for the 2320 /// element with the minimum number of sign bits. 2321 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2322 unsigned TyBits) { 2323 const auto *CV = dyn_cast<Constant>(V); 2324 if (!CV || !CV->getType()->isVectorTy()) 2325 return 0; 2326 2327 unsigned MinSignBits = TyBits; 2328 unsigned NumElts = CV->getType()->getVectorNumElements(); 2329 for (unsigned i = 0; i != NumElts; ++i) { 2330 // If we find a non-ConstantInt, bail out. 2331 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2332 if (!Elt) 2333 return 0; 2334 2335 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2336 } 2337 2338 return MinSignBits; 2339 } 2340 2341 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2342 const Query &Q); 2343 2344 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2345 const Query &Q) { 2346 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2347 assert(Result > 0 && "At least one sign bit needs to be present!"); 2348 return Result; 2349 } 2350 2351 /// Return the number of times the sign bit of the register is replicated into 2352 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2353 /// (itself), but other cases can give us information. For example, immediately 2354 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2355 /// other, so we return 3. For vectors, return the number of sign bits for the 2356 /// vector element with the minimum number of known sign bits. 2357 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2358 const Query &Q) { 2359 assert(Depth <= MaxDepth && "Limit Search Depth"); 2360 2361 // We return the minimum number of sign bits that are guaranteed to be present 2362 // in V, so for undef we have to conservatively return 1. We don't have the 2363 // same behavior for poison though -- that's a FIXME today. 2364 2365 Type *ScalarTy = V->getType()->getScalarType(); 2366 unsigned TyBits = ScalarTy->isPointerTy() ? 2367 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2368 Q.DL.getTypeSizeInBits(ScalarTy); 2369 2370 unsigned Tmp, Tmp2; 2371 unsigned FirstAnswer = 1; 2372 2373 // Note that ConstantInt is handled by the general computeKnownBits case 2374 // below. 2375 2376 if (Depth == MaxDepth) 2377 return 1; // Limit search depth. 2378 2379 const Operator *U = dyn_cast<Operator>(V); 2380 switch (Operator::getOpcode(V)) { 2381 default: break; 2382 case Instruction::SExt: 2383 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2384 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2385 2386 case Instruction::SDiv: { 2387 const APInt *Denominator; 2388 // sdiv X, C -> adds log(C) sign bits. 2389 if (match(U->getOperand(1), m_APInt(Denominator))) { 2390 2391 // Ignore non-positive denominator. 2392 if (!Denominator->isStrictlyPositive()) 2393 break; 2394 2395 // Calculate the incoming numerator bits. 2396 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2397 2398 // Add floor(log(C)) bits to the numerator bits. 2399 return std::min(TyBits, NumBits + Denominator->logBase2()); 2400 } 2401 break; 2402 } 2403 2404 case Instruction::SRem: { 2405 const APInt *Denominator; 2406 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2407 // positive constant. This let us put a lower bound on the number of sign 2408 // bits. 2409 if (match(U->getOperand(1), m_APInt(Denominator))) { 2410 2411 // Ignore non-positive denominator. 2412 if (!Denominator->isStrictlyPositive()) 2413 break; 2414 2415 // Calculate the incoming numerator bits. SRem by a positive constant 2416 // can't lower the number of sign bits. 2417 unsigned NumrBits = 2418 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2419 2420 // Calculate the leading sign bit constraints by examining the 2421 // denominator. Given that the denominator is positive, there are two 2422 // cases: 2423 // 2424 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2425 // (1 << ceilLogBase2(C)). 2426 // 2427 // 2. the numerator is negative. Then the result range is (-C,0] and 2428 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2429 // 2430 // Thus a lower bound on the number of sign bits is `TyBits - 2431 // ceilLogBase2(C)`. 2432 2433 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2434 return std::max(NumrBits, ResBits); 2435 } 2436 break; 2437 } 2438 2439 case Instruction::AShr: { 2440 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2441 // ashr X, C -> adds C sign bits. Vectors too. 2442 const APInt *ShAmt; 2443 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2444 if (ShAmt->uge(TyBits)) 2445 break; // Bad shift. 2446 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2447 Tmp += ShAmtLimited; 2448 if (Tmp > TyBits) Tmp = TyBits; 2449 } 2450 return Tmp; 2451 } 2452 case Instruction::Shl: { 2453 const APInt *ShAmt; 2454 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2455 // shl destroys sign bits. 2456 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2457 if (ShAmt->uge(TyBits) || // Bad shift. 2458 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2459 Tmp2 = ShAmt->getZExtValue(); 2460 return Tmp - Tmp2; 2461 } 2462 break; 2463 } 2464 case Instruction::And: 2465 case Instruction::Or: 2466 case Instruction::Xor: // NOT is handled here. 2467 // Logical binary ops preserve the number of sign bits at the worst. 2468 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2469 if (Tmp != 1) { 2470 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2471 FirstAnswer = std::min(Tmp, Tmp2); 2472 // We computed what we know about the sign bits as our first 2473 // answer. Now proceed to the generic code that uses 2474 // computeKnownBits, and pick whichever answer is better. 2475 } 2476 break; 2477 2478 case Instruction::Select: { 2479 // If we have a clamp pattern, we know that the number of sign bits will be 2480 // the minimum of the clamp min/max range. 2481 const Value *X; 2482 const APInt *CLow, *CHigh; 2483 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2484 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2485 2486 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2487 if (Tmp == 1) break; 2488 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2489 return std::min(Tmp, Tmp2); 2490 } 2491 2492 case Instruction::Add: 2493 // Add can have at most one carry bit. Thus we know that the output 2494 // is, at worst, one more bit than the inputs. 2495 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2496 if (Tmp == 1) break; 2497 2498 // Special case decrementing a value (ADD X, -1): 2499 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2500 if (CRHS->isAllOnesValue()) { 2501 KnownBits Known(TyBits); 2502 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2503 2504 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2505 // sign bits set. 2506 if ((Known.Zero | 1).isAllOnesValue()) 2507 return TyBits; 2508 2509 // If we are subtracting one from a positive number, there is no carry 2510 // out of the result. 2511 if (Known.isNonNegative()) 2512 return Tmp; 2513 } 2514 2515 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2516 if (Tmp2 == 1) break; 2517 return std::min(Tmp, Tmp2)-1; 2518 2519 case Instruction::Sub: 2520 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2521 if (Tmp2 == 1) break; 2522 2523 // Handle NEG. 2524 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2525 if (CLHS->isNullValue()) { 2526 KnownBits Known(TyBits); 2527 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2528 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2529 // sign bits set. 2530 if ((Known.Zero | 1).isAllOnesValue()) 2531 return TyBits; 2532 2533 // If the input is known to be positive (the sign bit is known clear), 2534 // the output of the NEG has the same number of sign bits as the input. 2535 if (Known.isNonNegative()) 2536 return Tmp2; 2537 2538 // Otherwise, we treat this like a SUB. 2539 } 2540 2541 // Sub can have at most one carry bit. Thus we know that the output 2542 // is, at worst, one more bit than the inputs. 2543 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2544 if (Tmp == 1) break; 2545 return std::min(Tmp, Tmp2)-1; 2546 2547 case Instruction::Mul: { 2548 // The output of the Mul can be at most twice the valid bits in the inputs. 2549 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2550 if (SignBitsOp0 == 1) break; 2551 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2552 if (SignBitsOp1 == 1) break; 2553 unsigned OutValidBits = 2554 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2555 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2556 } 2557 2558 case Instruction::PHI: { 2559 const PHINode *PN = cast<PHINode>(U); 2560 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2561 // Don't analyze large in-degree PHIs. 2562 if (NumIncomingValues > 4) break; 2563 // Unreachable blocks may have zero-operand PHI nodes. 2564 if (NumIncomingValues == 0) break; 2565 2566 // Take the minimum of all incoming values. This can't infinitely loop 2567 // because of our depth threshold. 2568 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2569 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2570 if (Tmp == 1) return Tmp; 2571 Tmp = std::min( 2572 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2573 } 2574 return Tmp; 2575 } 2576 2577 case Instruction::Trunc: 2578 // FIXME: it's tricky to do anything useful for this, but it is an important 2579 // case for targets like X86. 2580 break; 2581 2582 case Instruction::ExtractElement: 2583 // Look through extract element. At the moment we keep this simple and skip 2584 // tracking the specific element. But at least we might find information 2585 // valid for all elements of the vector (for example if vector is sign 2586 // extended, shifted, etc). 2587 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2588 2589 case Instruction::ShuffleVector: { 2590 // TODO: This is copied almost directly from the SelectionDAG version of 2591 // ComputeNumSignBits. It would be better if we could share common 2592 // code. If not, make sure that changes are translated to the DAG. 2593 2594 // Collect the minimum number of sign bits that are shared by every vector 2595 // element referenced by the shuffle. 2596 auto *Shuf = cast<ShuffleVectorInst>(U); 2597 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 2598 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 2599 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2600 for (int i = 0; i != NumMaskElts; ++i) { 2601 int M = Shuf->getMaskValue(i); 2602 assert(M < NumElts * 2 && "Invalid shuffle mask constant"); 2603 // For undef elements, we don't know anything about the common state of 2604 // the shuffle result. 2605 if (M == -1) 2606 return 1; 2607 if (M < NumElts) 2608 DemandedLHS.setBit(M % NumElts); 2609 else 2610 DemandedRHS.setBit(M % NumElts); 2611 } 2612 Tmp = std::numeric_limits<unsigned>::max(); 2613 if (!!DemandedLHS) 2614 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); 2615 if (!!DemandedRHS) { 2616 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); 2617 Tmp = std::min(Tmp, Tmp2); 2618 } 2619 // If we don't know anything, early out and try computeKnownBits fall-back. 2620 if (Tmp == 1) 2621 break; 2622 assert(Tmp <= V->getType()->getScalarSizeInBits() && 2623 "Failed to determine minimum sign bits"); 2624 return Tmp; 2625 } 2626 } 2627 2628 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2629 // use this information. 2630 2631 // If we can examine all elements of a vector constant successfully, we're 2632 // done (we can't do any better than that). If not, keep trying. 2633 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2634 return VecSignBits; 2635 2636 KnownBits Known(TyBits); 2637 computeKnownBits(V, Known, Depth, Q); 2638 2639 // If we know that the sign bit is either zero or one, determine the number of 2640 // identical bits in the top of the input value. 2641 return std::max(FirstAnswer, Known.countMinSignBits()); 2642 } 2643 2644 /// This function computes the integer multiple of Base that equals V. 2645 /// If successful, it returns true and returns the multiple in 2646 /// Multiple. If unsuccessful, it returns false. It looks 2647 /// through SExt instructions only if LookThroughSExt is true. 2648 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2649 bool LookThroughSExt, unsigned Depth) { 2650 const unsigned MaxDepth = 6; 2651 2652 assert(V && "No Value?"); 2653 assert(Depth <= MaxDepth && "Limit Search Depth"); 2654 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2655 2656 Type *T = V->getType(); 2657 2658 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2659 2660 if (Base == 0) 2661 return false; 2662 2663 if (Base == 1) { 2664 Multiple = V; 2665 return true; 2666 } 2667 2668 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2669 Constant *BaseVal = ConstantInt::get(T, Base); 2670 if (CO && CO == BaseVal) { 2671 // Multiple is 1. 2672 Multiple = ConstantInt::get(T, 1); 2673 return true; 2674 } 2675 2676 if (CI && CI->getZExtValue() % Base == 0) { 2677 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2678 return true; 2679 } 2680 2681 if (Depth == MaxDepth) return false; // Limit search depth. 2682 2683 Operator *I = dyn_cast<Operator>(V); 2684 if (!I) return false; 2685 2686 switch (I->getOpcode()) { 2687 default: break; 2688 case Instruction::SExt: 2689 if (!LookThroughSExt) return false; 2690 // otherwise fall through to ZExt 2691 LLVM_FALLTHROUGH; 2692 case Instruction::ZExt: 2693 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2694 LookThroughSExt, Depth+1); 2695 case Instruction::Shl: 2696 case Instruction::Mul: { 2697 Value *Op0 = I->getOperand(0); 2698 Value *Op1 = I->getOperand(1); 2699 2700 if (I->getOpcode() == Instruction::Shl) { 2701 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2702 if (!Op1CI) return false; 2703 // Turn Op0 << Op1 into Op0 * 2^Op1 2704 APInt Op1Int = Op1CI->getValue(); 2705 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2706 APInt API(Op1Int.getBitWidth(), 0); 2707 API.setBit(BitToSet); 2708 Op1 = ConstantInt::get(V->getContext(), API); 2709 } 2710 2711 Value *Mul0 = nullptr; 2712 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2713 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2714 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2715 if (Op1C->getType()->getPrimitiveSizeInBits() < 2716 MulC->getType()->getPrimitiveSizeInBits()) 2717 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2718 if (Op1C->getType()->getPrimitiveSizeInBits() > 2719 MulC->getType()->getPrimitiveSizeInBits()) 2720 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2721 2722 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2723 Multiple = ConstantExpr::getMul(MulC, Op1C); 2724 return true; 2725 } 2726 2727 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2728 if (Mul0CI->getValue() == 1) { 2729 // V == Base * Op1, so return Op1 2730 Multiple = Op1; 2731 return true; 2732 } 2733 } 2734 2735 Value *Mul1 = nullptr; 2736 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2737 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2738 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2739 if (Op0C->getType()->getPrimitiveSizeInBits() < 2740 MulC->getType()->getPrimitiveSizeInBits()) 2741 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2742 if (Op0C->getType()->getPrimitiveSizeInBits() > 2743 MulC->getType()->getPrimitiveSizeInBits()) 2744 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2745 2746 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2747 Multiple = ConstantExpr::getMul(MulC, Op0C); 2748 return true; 2749 } 2750 2751 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2752 if (Mul1CI->getValue() == 1) { 2753 // V == Base * Op0, so return Op0 2754 Multiple = Op0; 2755 return true; 2756 } 2757 } 2758 } 2759 } 2760 2761 // We could not determine if V is a multiple of Base. 2762 return false; 2763 } 2764 2765 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2766 const TargetLibraryInfo *TLI) { 2767 const Function *F = ICS.getCalledFunction(); 2768 if (!F) 2769 return Intrinsic::not_intrinsic; 2770 2771 if (F->isIntrinsic()) 2772 return F->getIntrinsicID(); 2773 2774 if (!TLI) 2775 return Intrinsic::not_intrinsic; 2776 2777 LibFunc Func; 2778 // We're going to make assumptions on the semantics of the functions, check 2779 // that the target knows that it's available in this environment and it does 2780 // not have local linkage. 2781 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2782 return Intrinsic::not_intrinsic; 2783 2784 if (!ICS.onlyReadsMemory()) 2785 return Intrinsic::not_intrinsic; 2786 2787 // Otherwise check if we have a call to a function that can be turned into a 2788 // vector intrinsic. 2789 switch (Func) { 2790 default: 2791 break; 2792 case LibFunc_sin: 2793 case LibFunc_sinf: 2794 case LibFunc_sinl: 2795 return Intrinsic::sin; 2796 case LibFunc_cos: 2797 case LibFunc_cosf: 2798 case LibFunc_cosl: 2799 return Intrinsic::cos; 2800 case LibFunc_exp: 2801 case LibFunc_expf: 2802 case LibFunc_expl: 2803 return Intrinsic::exp; 2804 case LibFunc_exp2: 2805 case LibFunc_exp2f: 2806 case LibFunc_exp2l: 2807 return Intrinsic::exp2; 2808 case LibFunc_log: 2809 case LibFunc_logf: 2810 case LibFunc_logl: 2811 return Intrinsic::log; 2812 case LibFunc_log10: 2813 case LibFunc_log10f: 2814 case LibFunc_log10l: 2815 return Intrinsic::log10; 2816 case LibFunc_log2: 2817 case LibFunc_log2f: 2818 case LibFunc_log2l: 2819 return Intrinsic::log2; 2820 case LibFunc_fabs: 2821 case LibFunc_fabsf: 2822 case LibFunc_fabsl: 2823 return Intrinsic::fabs; 2824 case LibFunc_fmin: 2825 case LibFunc_fminf: 2826 case LibFunc_fminl: 2827 return Intrinsic::minnum; 2828 case LibFunc_fmax: 2829 case LibFunc_fmaxf: 2830 case LibFunc_fmaxl: 2831 return Intrinsic::maxnum; 2832 case LibFunc_copysign: 2833 case LibFunc_copysignf: 2834 case LibFunc_copysignl: 2835 return Intrinsic::copysign; 2836 case LibFunc_floor: 2837 case LibFunc_floorf: 2838 case LibFunc_floorl: 2839 return Intrinsic::floor; 2840 case LibFunc_ceil: 2841 case LibFunc_ceilf: 2842 case LibFunc_ceill: 2843 return Intrinsic::ceil; 2844 case LibFunc_trunc: 2845 case LibFunc_truncf: 2846 case LibFunc_truncl: 2847 return Intrinsic::trunc; 2848 case LibFunc_rint: 2849 case LibFunc_rintf: 2850 case LibFunc_rintl: 2851 return Intrinsic::rint; 2852 case LibFunc_nearbyint: 2853 case LibFunc_nearbyintf: 2854 case LibFunc_nearbyintl: 2855 return Intrinsic::nearbyint; 2856 case LibFunc_round: 2857 case LibFunc_roundf: 2858 case LibFunc_roundl: 2859 return Intrinsic::round; 2860 case LibFunc_pow: 2861 case LibFunc_powf: 2862 case LibFunc_powl: 2863 return Intrinsic::pow; 2864 case LibFunc_sqrt: 2865 case LibFunc_sqrtf: 2866 case LibFunc_sqrtl: 2867 return Intrinsic::sqrt; 2868 } 2869 2870 return Intrinsic::not_intrinsic; 2871 } 2872 2873 /// Return true if we can prove that the specified FP value is never equal to 2874 /// -0.0. 2875 /// 2876 /// NOTE: this function will need to be revisited when we support non-default 2877 /// rounding modes! 2878 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2879 unsigned Depth) { 2880 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2881 return !CFP->getValueAPF().isNegZero(); 2882 2883 // Limit search depth. 2884 if (Depth == MaxDepth) 2885 return false; 2886 2887 auto *Op = dyn_cast<Operator>(V); 2888 if (!Op) 2889 return false; 2890 2891 // Check if the nsz fast-math flag is set. 2892 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2893 if (FPO->hasNoSignedZeros()) 2894 return true; 2895 2896 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2897 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2898 return true; 2899 2900 // sitofp and uitofp turn into +0.0 for zero. 2901 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2902 return true; 2903 2904 if (auto *Call = dyn_cast<CallInst>(Op)) { 2905 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2906 switch (IID) { 2907 default: 2908 break; 2909 // sqrt(-0.0) = -0.0, no other negative results are possible. 2910 case Intrinsic::sqrt: 2911 case Intrinsic::canonicalize: 2912 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2913 // fabs(x) != -0.0 2914 case Intrinsic::fabs: 2915 return true; 2916 } 2917 } 2918 2919 return false; 2920 } 2921 2922 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2923 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2924 /// bit despite comparing equal. 2925 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2926 const TargetLibraryInfo *TLI, 2927 bool SignBitOnly, 2928 unsigned Depth) { 2929 // TODO: This function does not do the right thing when SignBitOnly is true 2930 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2931 // which flips the sign bits of NaNs. See 2932 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2933 2934 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2935 return !CFP->getValueAPF().isNegative() || 2936 (!SignBitOnly && CFP->getValueAPF().isZero()); 2937 } 2938 2939 // Handle vector of constants. 2940 if (auto *CV = dyn_cast<Constant>(V)) { 2941 if (CV->getType()->isVectorTy()) { 2942 unsigned NumElts = CV->getType()->getVectorNumElements(); 2943 for (unsigned i = 0; i != NumElts; ++i) { 2944 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2945 if (!CFP) 2946 return false; 2947 if (CFP->getValueAPF().isNegative() && 2948 (SignBitOnly || !CFP->getValueAPF().isZero())) 2949 return false; 2950 } 2951 2952 // All non-negative ConstantFPs. 2953 return true; 2954 } 2955 } 2956 2957 if (Depth == MaxDepth) 2958 return false; // Limit search depth. 2959 2960 const Operator *I = dyn_cast<Operator>(V); 2961 if (!I) 2962 return false; 2963 2964 switch (I->getOpcode()) { 2965 default: 2966 break; 2967 // Unsigned integers are always nonnegative. 2968 case Instruction::UIToFP: 2969 return true; 2970 case Instruction::FMul: 2971 // x*x is always non-negative or a NaN. 2972 if (I->getOperand(0) == I->getOperand(1) && 2973 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2974 return true; 2975 2976 LLVM_FALLTHROUGH; 2977 case Instruction::FAdd: 2978 case Instruction::FDiv: 2979 case Instruction::FRem: 2980 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2981 Depth + 1) && 2982 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2983 Depth + 1); 2984 case Instruction::Select: 2985 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2986 Depth + 1) && 2987 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2988 Depth + 1); 2989 case Instruction::FPExt: 2990 case Instruction::FPTrunc: 2991 // Widening/narrowing never change sign. 2992 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2993 Depth + 1); 2994 case Instruction::ExtractElement: 2995 // Look through extract element. At the moment we keep this simple and skip 2996 // tracking the specific element. But at least we might find information 2997 // valid for all elements of the vector. 2998 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2999 Depth + 1); 3000 case Instruction::Call: 3001 const auto *CI = cast<CallInst>(I); 3002 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3003 switch (IID) { 3004 default: 3005 break; 3006 case Intrinsic::maxnum: 3007 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3008 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3009 SignBitOnly, Depth + 1)) || 3010 (isKnownNeverNaN(I->getOperand(1), TLI) && 3011 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3012 SignBitOnly, Depth + 1)); 3013 3014 case Intrinsic::maximum: 3015 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3016 Depth + 1) || 3017 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3018 Depth + 1); 3019 case Intrinsic::minnum: 3020 case Intrinsic::minimum: 3021 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3022 Depth + 1) && 3023 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3024 Depth + 1); 3025 case Intrinsic::exp: 3026 case Intrinsic::exp2: 3027 case Intrinsic::fabs: 3028 return true; 3029 3030 case Intrinsic::sqrt: 3031 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3032 if (!SignBitOnly) 3033 return true; 3034 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3035 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3036 3037 case Intrinsic::powi: 3038 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3039 // powi(x,n) is non-negative if n is even. 3040 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3041 return true; 3042 } 3043 // TODO: This is not correct. Given that exp is an integer, here are the 3044 // ways that pow can return a negative value: 3045 // 3046 // pow(x, exp) --> negative if exp is odd and x is negative. 3047 // pow(-0, exp) --> -inf if exp is negative odd. 3048 // pow(-0, exp) --> -0 if exp is positive odd. 3049 // pow(-inf, exp) --> -0 if exp is negative odd. 3050 // pow(-inf, exp) --> -inf if exp is positive odd. 3051 // 3052 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3053 // but we must return false if x == -0. Unfortunately we do not currently 3054 // have a way of expressing this constraint. See details in 3055 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3056 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3057 Depth + 1); 3058 3059 case Intrinsic::fma: 3060 case Intrinsic::fmuladd: 3061 // x*x+y is non-negative if y is non-negative. 3062 return I->getOperand(0) == I->getOperand(1) && 3063 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3064 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3065 Depth + 1); 3066 } 3067 break; 3068 } 3069 return false; 3070 } 3071 3072 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3073 const TargetLibraryInfo *TLI) { 3074 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3075 } 3076 3077 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3078 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3079 } 3080 3081 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3082 unsigned Depth) { 3083 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3084 3085 // If we're told that NaNs won't happen, assume they won't. 3086 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3087 if (FPMathOp->hasNoNaNs()) 3088 return true; 3089 3090 // Handle scalar constants. 3091 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3092 return !CFP->isNaN(); 3093 3094 if (Depth == MaxDepth) 3095 return false; 3096 3097 if (auto *Inst = dyn_cast<Instruction>(V)) { 3098 switch (Inst->getOpcode()) { 3099 case Instruction::FAdd: 3100 case Instruction::FMul: 3101 case Instruction::FSub: 3102 case Instruction::FDiv: 3103 case Instruction::FRem: { 3104 // TODO: Need isKnownNeverInfinity 3105 return false; 3106 } 3107 case Instruction::Select: { 3108 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3109 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3110 } 3111 case Instruction::SIToFP: 3112 case Instruction::UIToFP: 3113 return true; 3114 case Instruction::FPTrunc: 3115 case Instruction::FPExt: 3116 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3117 default: 3118 break; 3119 } 3120 } 3121 3122 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3123 switch (II->getIntrinsicID()) { 3124 case Intrinsic::canonicalize: 3125 case Intrinsic::fabs: 3126 case Intrinsic::copysign: 3127 case Intrinsic::exp: 3128 case Intrinsic::exp2: 3129 case Intrinsic::floor: 3130 case Intrinsic::ceil: 3131 case Intrinsic::trunc: 3132 case Intrinsic::rint: 3133 case Intrinsic::nearbyint: 3134 case Intrinsic::round: 3135 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3136 case Intrinsic::sqrt: 3137 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3138 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3139 case Intrinsic::minnum: 3140 case Intrinsic::maxnum: 3141 // If either operand is not NaN, the result is not NaN. 3142 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3143 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3144 default: 3145 return false; 3146 } 3147 } 3148 3149 // Bail out for constant expressions, but try to handle vector constants. 3150 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3151 return false; 3152 3153 // For vectors, verify that each element is not NaN. 3154 unsigned NumElts = V->getType()->getVectorNumElements(); 3155 for (unsigned i = 0; i != NumElts; ++i) { 3156 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3157 if (!Elt) 3158 return false; 3159 if (isa<UndefValue>(Elt)) 3160 continue; 3161 auto *CElt = dyn_cast<ConstantFP>(Elt); 3162 if (!CElt || CElt->isNaN()) 3163 return false; 3164 } 3165 // All elements were confirmed not-NaN or undefined. 3166 return true; 3167 } 3168 3169 Value *llvm::isBytewiseValue(Value *V) { 3170 3171 // All byte-wide stores are splatable, even of arbitrary variables. 3172 if (V->getType()->isIntegerTy(8)) 3173 return V; 3174 3175 LLVMContext &Ctx = V->getContext(); 3176 3177 // Undef don't care. 3178 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3179 if (isa<UndefValue>(V)) 3180 return UndefInt8; 3181 3182 Constant *C = dyn_cast<Constant>(V); 3183 if (!C) { 3184 // Conceptually, we could handle things like: 3185 // %a = zext i8 %X to i16 3186 // %b = shl i16 %a, 8 3187 // %c = or i16 %a, %b 3188 // but until there is an example that actually needs this, it doesn't seem 3189 // worth worrying about. 3190 return nullptr; 3191 } 3192 3193 // Handle 'null' ConstantArrayZero etc. 3194 if (C->isNullValue()) 3195 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3196 3197 // Constant floating-point values can be handled as integer values if the 3198 // corresponding integer value is "byteable". An important case is 0.0. 3199 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3200 Type *Ty = nullptr; 3201 if (CFP->getType()->isHalfTy()) 3202 Ty = Type::getInt16Ty(Ctx); 3203 else if (CFP->getType()->isFloatTy()) 3204 Ty = Type::getInt32Ty(Ctx); 3205 else if (CFP->getType()->isDoubleTy()) 3206 Ty = Type::getInt64Ty(Ctx); 3207 // Don't handle long double formats, which have strange constraints. 3208 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr; 3209 } 3210 3211 // We can handle constant integers that are multiple of 8 bits. 3212 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3213 if (CI->getBitWidth() % 8 == 0) { 3214 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3215 if (!CI->getValue().isSplat(8)) 3216 return nullptr; 3217 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3218 } 3219 } 3220 3221 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3222 if (LHS == RHS) 3223 return LHS; 3224 if (!LHS || !RHS) 3225 return nullptr; 3226 if (LHS == UndefInt8) 3227 return RHS; 3228 if (RHS == UndefInt8) 3229 return LHS; 3230 return nullptr; 3231 }; 3232 3233 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3234 Value *Val = UndefInt8; 3235 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3236 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I))))) 3237 return nullptr; 3238 return Val; 3239 } 3240 3241 if (isa<ConstantVector>(C)) { 3242 Constant *Splat = cast<ConstantVector>(C)->getSplatValue(); 3243 return Splat ? isBytewiseValue(Splat) : nullptr; 3244 } 3245 3246 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { 3247 Value *Val = UndefInt8; 3248 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3249 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I))))) 3250 return nullptr; 3251 return Val; 3252 } 3253 3254 // Don't try to handle the handful of other constants. 3255 return nullptr; 3256 } 3257 3258 // This is the recursive version of BuildSubAggregate. It takes a few different 3259 // arguments. Idxs is the index within the nested struct From that we are 3260 // looking at now (which is of type IndexedType). IdxSkip is the number of 3261 // indices from Idxs that should be left out when inserting into the resulting 3262 // struct. To is the result struct built so far, new insertvalue instructions 3263 // build on that. 3264 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3265 SmallVectorImpl<unsigned> &Idxs, 3266 unsigned IdxSkip, 3267 Instruction *InsertBefore) { 3268 StructType *STy = dyn_cast<StructType>(IndexedType); 3269 if (STy) { 3270 // Save the original To argument so we can modify it 3271 Value *OrigTo = To; 3272 // General case, the type indexed by Idxs is a struct 3273 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3274 // Process each struct element recursively 3275 Idxs.push_back(i); 3276 Value *PrevTo = To; 3277 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3278 InsertBefore); 3279 Idxs.pop_back(); 3280 if (!To) { 3281 // Couldn't find any inserted value for this index? Cleanup 3282 while (PrevTo != OrigTo) { 3283 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3284 PrevTo = Del->getAggregateOperand(); 3285 Del->eraseFromParent(); 3286 } 3287 // Stop processing elements 3288 break; 3289 } 3290 } 3291 // If we successfully found a value for each of our subaggregates 3292 if (To) 3293 return To; 3294 } 3295 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3296 // the struct's elements had a value that was inserted directly. In the latter 3297 // case, perhaps we can't determine each of the subelements individually, but 3298 // we might be able to find the complete struct somewhere. 3299 3300 // Find the value that is at that particular spot 3301 Value *V = FindInsertedValue(From, Idxs); 3302 3303 if (!V) 3304 return nullptr; 3305 3306 // Insert the value in the new (sub) aggregate 3307 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3308 "tmp", InsertBefore); 3309 } 3310 3311 // This helper takes a nested struct and extracts a part of it (which is again a 3312 // struct) into a new value. For example, given the struct: 3313 // { a, { b, { c, d }, e } } 3314 // and the indices "1, 1" this returns 3315 // { c, d }. 3316 // 3317 // It does this by inserting an insertvalue for each element in the resulting 3318 // struct, as opposed to just inserting a single struct. This will only work if 3319 // each of the elements of the substruct are known (ie, inserted into From by an 3320 // insertvalue instruction somewhere). 3321 // 3322 // All inserted insertvalue instructions are inserted before InsertBefore 3323 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3324 Instruction *InsertBefore) { 3325 assert(InsertBefore && "Must have someplace to insert!"); 3326 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3327 idx_range); 3328 Value *To = UndefValue::get(IndexedType); 3329 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3330 unsigned IdxSkip = Idxs.size(); 3331 3332 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3333 } 3334 3335 /// Given an aggregate and a sequence of indices, see if the scalar value 3336 /// indexed is already around as a register, for example if it was inserted 3337 /// directly into the aggregate. 3338 /// 3339 /// If InsertBefore is not null, this function will duplicate (modified) 3340 /// insertvalues when a part of a nested struct is extracted. 3341 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3342 Instruction *InsertBefore) { 3343 // Nothing to index? Just return V then (this is useful at the end of our 3344 // recursion). 3345 if (idx_range.empty()) 3346 return V; 3347 // We have indices, so V should have an indexable type. 3348 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3349 "Not looking at a struct or array?"); 3350 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3351 "Invalid indices for type?"); 3352 3353 if (Constant *C = dyn_cast<Constant>(V)) { 3354 C = C->getAggregateElement(idx_range[0]); 3355 if (!C) return nullptr; 3356 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3357 } 3358 3359 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3360 // Loop the indices for the insertvalue instruction in parallel with the 3361 // requested indices 3362 const unsigned *req_idx = idx_range.begin(); 3363 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3364 i != e; ++i, ++req_idx) { 3365 if (req_idx == idx_range.end()) { 3366 // We can't handle this without inserting insertvalues 3367 if (!InsertBefore) 3368 return nullptr; 3369 3370 // The requested index identifies a part of a nested aggregate. Handle 3371 // this specially. For example, 3372 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3373 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3374 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3375 // This can be changed into 3376 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3377 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3378 // which allows the unused 0,0 element from the nested struct to be 3379 // removed. 3380 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3381 InsertBefore); 3382 } 3383 3384 // This insert value inserts something else than what we are looking for. 3385 // See if the (aggregate) value inserted into has the value we are 3386 // looking for, then. 3387 if (*req_idx != *i) 3388 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3389 InsertBefore); 3390 } 3391 // If we end up here, the indices of the insertvalue match with those 3392 // requested (though possibly only partially). Now we recursively look at 3393 // the inserted value, passing any remaining indices. 3394 return FindInsertedValue(I->getInsertedValueOperand(), 3395 makeArrayRef(req_idx, idx_range.end()), 3396 InsertBefore); 3397 } 3398 3399 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3400 // If we're extracting a value from an aggregate that was extracted from 3401 // something else, we can extract from that something else directly instead. 3402 // However, we will need to chain I's indices with the requested indices. 3403 3404 // Calculate the number of indices required 3405 unsigned size = I->getNumIndices() + idx_range.size(); 3406 // Allocate some space to put the new indices in 3407 SmallVector<unsigned, 5> Idxs; 3408 Idxs.reserve(size); 3409 // Add indices from the extract value instruction 3410 Idxs.append(I->idx_begin(), I->idx_end()); 3411 3412 // Add requested indices 3413 Idxs.append(idx_range.begin(), idx_range.end()); 3414 3415 assert(Idxs.size() == size 3416 && "Number of indices added not correct?"); 3417 3418 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3419 } 3420 // Otherwise, we don't know (such as, extracting from a function return value 3421 // or load instruction) 3422 return nullptr; 3423 } 3424 3425 /// Analyze the specified pointer to see if it can be expressed as a base 3426 /// pointer plus a constant offset. Return the base and offset to the caller. 3427 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3428 const DataLayout &DL) { 3429 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3430 APInt ByteOffset(BitWidth, 0); 3431 3432 // We walk up the defs but use a visited set to handle unreachable code. In 3433 // that case, we stop after accumulating the cycle once (not that it 3434 // matters). 3435 SmallPtrSet<Value *, 16> Visited; 3436 while (Visited.insert(Ptr).second) { 3437 if (Ptr->getType()->isVectorTy()) 3438 break; 3439 3440 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3441 // If one of the values we have visited is an addrspacecast, then 3442 // the pointer type of this GEP may be different from the type 3443 // of the Ptr parameter which was passed to this function. This 3444 // means when we construct GEPOffset, we need to use the size 3445 // of GEP's pointer type rather than the size of the original 3446 // pointer type. 3447 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3448 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3449 break; 3450 3451 APInt OrigByteOffset(ByteOffset); 3452 ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth()); 3453 if (ByteOffset.getMinSignedBits() > 64) { 3454 // Stop traversal if the pointer offset wouldn't fit into int64_t 3455 // (this should be removed if Offset is updated to an APInt) 3456 ByteOffset = OrigByteOffset; 3457 break; 3458 } 3459 3460 Ptr = GEP->getPointerOperand(); 3461 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3462 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3463 Ptr = cast<Operator>(Ptr)->getOperand(0); 3464 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3465 if (GA->isInterposable()) 3466 break; 3467 Ptr = GA->getAliasee(); 3468 } else { 3469 break; 3470 } 3471 } 3472 Offset = ByteOffset.getSExtValue(); 3473 return Ptr; 3474 } 3475 3476 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3477 unsigned CharSize) { 3478 // Make sure the GEP has exactly three arguments. 3479 if (GEP->getNumOperands() != 3) 3480 return false; 3481 3482 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3483 // CharSize. 3484 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3485 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3486 return false; 3487 3488 // Check to make sure that the first operand of the GEP is an integer and 3489 // has value 0 so that we are sure we're indexing into the initializer. 3490 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3491 if (!FirstIdx || !FirstIdx->isZero()) 3492 return false; 3493 3494 return true; 3495 } 3496 3497 bool llvm::getConstantDataArrayInfo(const Value *V, 3498 ConstantDataArraySlice &Slice, 3499 unsigned ElementSize, uint64_t Offset) { 3500 assert(V); 3501 3502 // Look through bitcast instructions and geps. 3503 V = V->stripPointerCasts(); 3504 3505 // If the value is a GEP instruction or constant expression, treat it as an 3506 // offset. 3507 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3508 // The GEP operator should be based on a pointer to string constant, and is 3509 // indexing into the string constant. 3510 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3511 return false; 3512 3513 // If the second index isn't a ConstantInt, then this is a variable index 3514 // into the array. If this occurs, we can't say anything meaningful about 3515 // the string. 3516 uint64_t StartIdx = 0; 3517 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3518 StartIdx = CI->getZExtValue(); 3519 else 3520 return false; 3521 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3522 StartIdx + Offset); 3523 } 3524 3525 // The GEP instruction, constant or instruction, must reference a global 3526 // variable that is a constant and is initialized. The referenced constant 3527 // initializer is the array that we'll use for optimization. 3528 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3529 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3530 return false; 3531 3532 const ConstantDataArray *Array; 3533 ArrayType *ArrayTy; 3534 if (GV->getInitializer()->isNullValue()) { 3535 Type *GVTy = GV->getValueType(); 3536 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3537 // A zeroinitializer for the array; there is no ConstantDataArray. 3538 Array = nullptr; 3539 } else { 3540 const DataLayout &DL = GV->getParent()->getDataLayout(); 3541 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3542 uint64_t Length = SizeInBytes / (ElementSize / 8); 3543 if (Length <= Offset) 3544 return false; 3545 3546 Slice.Array = nullptr; 3547 Slice.Offset = 0; 3548 Slice.Length = Length - Offset; 3549 return true; 3550 } 3551 } else { 3552 // This must be a ConstantDataArray. 3553 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3554 if (!Array) 3555 return false; 3556 ArrayTy = Array->getType(); 3557 } 3558 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3559 return false; 3560 3561 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3562 if (Offset > NumElts) 3563 return false; 3564 3565 Slice.Array = Array; 3566 Slice.Offset = Offset; 3567 Slice.Length = NumElts - Offset; 3568 return true; 3569 } 3570 3571 /// This function computes the length of a null-terminated C string pointed to 3572 /// by V. If successful, it returns true and returns the string in Str. 3573 /// If unsuccessful, it returns false. 3574 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3575 uint64_t Offset, bool TrimAtNul) { 3576 ConstantDataArraySlice Slice; 3577 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3578 return false; 3579 3580 if (Slice.Array == nullptr) { 3581 if (TrimAtNul) { 3582 Str = StringRef(); 3583 return true; 3584 } 3585 if (Slice.Length == 1) { 3586 Str = StringRef("", 1); 3587 return true; 3588 } 3589 // We cannot instantiate a StringRef as we do not have an appropriate string 3590 // of 0s at hand. 3591 return false; 3592 } 3593 3594 // Start out with the entire array in the StringRef. 3595 Str = Slice.Array->getAsString(); 3596 // Skip over 'offset' bytes. 3597 Str = Str.substr(Slice.Offset); 3598 3599 if (TrimAtNul) { 3600 // Trim off the \0 and anything after it. If the array is not nul 3601 // terminated, we just return the whole end of string. The client may know 3602 // some other way that the string is length-bound. 3603 Str = Str.substr(0, Str.find('\0')); 3604 } 3605 return true; 3606 } 3607 3608 // These next two are very similar to the above, but also look through PHI 3609 // nodes. 3610 // TODO: See if we can integrate these two together. 3611 3612 /// If we can compute the length of the string pointed to by 3613 /// the specified pointer, return 'len+1'. If we can't, return 0. 3614 static uint64_t GetStringLengthH(const Value *V, 3615 SmallPtrSetImpl<const PHINode*> &PHIs, 3616 unsigned CharSize) { 3617 // Look through noop bitcast instructions. 3618 V = V->stripPointerCasts(); 3619 3620 // If this is a PHI node, there are two cases: either we have already seen it 3621 // or we haven't. 3622 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3623 if (!PHIs.insert(PN).second) 3624 return ~0ULL; // already in the set. 3625 3626 // If it was new, see if all the input strings are the same length. 3627 uint64_t LenSoFar = ~0ULL; 3628 for (Value *IncValue : PN->incoming_values()) { 3629 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3630 if (Len == 0) return 0; // Unknown length -> unknown. 3631 3632 if (Len == ~0ULL) continue; 3633 3634 if (Len != LenSoFar && LenSoFar != ~0ULL) 3635 return 0; // Disagree -> unknown. 3636 LenSoFar = Len; 3637 } 3638 3639 // Success, all agree. 3640 return LenSoFar; 3641 } 3642 3643 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3644 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3645 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3646 if (Len1 == 0) return 0; 3647 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3648 if (Len2 == 0) return 0; 3649 if (Len1 == ~0ULL) return Len2; 3650 if (Len2 == ~0ULL) return Len1; 3651 if (Len1 != Len2) return 0; 3652 return Len1; 3653 } 3654 3655 // Otherwise, see if we can read the string. 3656 ConstantDataArraySlice Slice; 3657 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3658 return 0; 3659 3660 if (Slice.Array == nullptr) 3661 return 1; 3662 3663 // Search for nul characters 3664 unsigned NullIndex = 0; 3665 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3666 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3667 break; 3668 } 3669 3670 return NullIndex + 1; 3671 } 3672 3673 /// If we can compute the length of the string pointed to by 3674 /// the specified pointer, return 'len+1'. If we can't, return 0. 3675 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3676 if (!V->getType()->isPointerTy()) 3677 return 0; 3678 3679 SmallPtrSet<const PHINode*, 32> PHIs; 3680 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3681 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3682 // an empty string as a length. 3683 return Len == ~0ULL ? 1 : Len; 3684 } 3685 3686 const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) { 3687 assert(Call && 3688 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3689 if (const Value *RV = Call->getReturnedArgOperand()) 3690 return RV; 3691 // This can be used only as a aliasing property. 3692 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call)) 3693 return Call->getArgOperand(0); 3694 return nullptr; 3695 } 3696 3697 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3698 const CallBase *Call) { 3699 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3700 Call->getIntrinsicID() == Intrinsic::strip_invariant_group; 3701 } 3702 3703 /// \p PN defines a loop-variant pointer to an object. Check if the 3704 /// previous iteration of the loop was referring to the same object as \p PN. 3705 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3706 const LoopInfo *LI) { 3707 // Find the loop-defined value. 3708 Loop *L = LI->getLoopFor(PN->getParent()); 3709 if (PN->getNumIncomingValues() != 2) 3710 return true; 3711 3712 // Find the value from previous iteration. 3713 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3714 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3715 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3716 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3717 return true; 3718 3719 // If a new pointer is loaded in the loop, the pointer references a different 3720 // object in every iteration. E.g.: 3721 // for (i) 3722 // int *p = a[i]; 3723 // ... 3724 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3725 if (!L->isLoopInvariant(Load->getPointerOperand())) 3726 return false; 3727 return true; 3728 } 3729 3730 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3731 unsigned MaxLookup) { 3732 if (!V->getType()->isPointerTy()) 3733 return V; 3734 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3735 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3736 V = GEP->getPointerOperand(); 3737 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3738 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3739 V = cast<Operator>(V)->getOperand(0); 3740 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3741 if (GA->isInterposable()) 3742 return V; 3743 V = GA->getAliasee(); 3744 } else if (isa<AllocaInst>(V)) { 3745 // An alloca can't be further simplified. 3746 return V; 3747 } else { 3748 if (auto *Call = dyn_cast<CallBase>(V)) { 3749 // CaptureTracking can know about special capturing properties of some 3750 // intrinsics like launder.invariant.group, that can't be expressed with 3751 // the attributes, but have properties like returning aliasing pointer. 3752 // Because some analysis may assume that nocaptured pointer is not 3753 // returned from some special intrinsic (because function would have to 3754 // be marked with returns attribute), it is crucial to use this function 3755 // because it should be in sync with CaptureTracking. Not using it may 3756 // cause weird miscompilations where 2 aliasing pointers are assumed to 3757 // noalias. 3758 if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) { 3759 V = RP; 3760 continue; 3761 } 3762 } 3763 3764 // See if InstructionSimplify knows any relevant tricks. 3765 if (Instruction *I = dyn_cast<Instruction>(V)) 3766 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3767 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3768 V = Simplified; 3769 continue; 3770 } 3771 3772 return V; 3773 } 3774 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3775 } 3776 return V; 3777 } 3778 3779 void llvm::GetUnderlyingObjects(const Value *V, 3780 SmallVectorImpl<const Value *> &Objects, 3781 const DataLayout &DL, LoopInfo *LI, 3782 unsigned MaxLookup) { 3783 SmallPtrSet<const Value *, 4> Visited; 3784 SmallVector<const Value *, 4> Worklist; 3785 Worklist.push_back(V); 3786 do { 3787 const Value *P = Worklist.pop_back_val(); 3788 P = GetUnderlyingObject(P, DL, MaxLookup); 3789 3790 if (!Visited.insert(P).second) 3791 continue; 3792 3793 if (auto *SI = dyn_cast<SelectInst>(P)) { 3794 Worklist.push_back(SI->getTrueValue()); 3795 Worklist.push_back(SI->getFalseValue()); 3796 continue; 3797 } 3798 3799 if (auto *PN = dyn_cast<PHINode>(P)) { 3800 // If this PHI changes the underlying object in every iteration of the 3801 // loop, don't look through it. Consider: 3802 // int **A; 3803 // for (i) { 3804 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3805 // Curr = A[i]; 3806 // *Prev, *Curr; 3807 // 3808 // Prev is tracking Curr one iteration behind so they refer to different 3809 // underlying objects. 3810 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3811 isSameUnderlyingObjectInLoop(PN, LI)) 3812 for (Value *IncValue : PN->incoming_values()) 3813 Worklist.push_back(IncValue); 3814 continue; 3815 } 3816 3817 Objects.push_back(P); 3818 } while (!Worklist.empty()); 3819 } 3820 3821 /// This is the function that does the work of looking through basic 3822 /// ptrtoint+arithmetic+inttoptr sequences. 3823 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3824 do { 3825 if (const Operator *U = dyn_cast<Operator>(V)) { 3826 // If we find a ptrtoint, we can transfer control back to the 3827 // regular getUnderlyingObjectFromInt. 3828 if (U->getOpcode() == Instruction::PtrToInt) 3829 return U->getOperand(0); 3830 // If we find an add of a constant, a multiplied value, or a phi, it's 3831 // likely that the other operand will lead us to the base 3832 // object. We don't have to worry about the case where the 3833 // object address is somehow being computed by the multiply, 3834 // because our callers only care when the result is an 3835 // identifiable object. 3836 if (U->getOpcode() != Instruction::Add || 3837 (!isa<ConstantInt>(U->getOperand(1)) && 3838 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3839 !isa<PHINode>(U->getOperand(1)))) 3840 return V; 3841 V = U->getOperand(0); 3842 } else { 3843 return V; 3844 } 3845 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3846 } while (true); 3847 } 3848 3849 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3850 /// ptrtoint+arithmetic+inttoptr sequences. 3851 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3852 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3853 SmallVectorImpl<Value *> &Objects, 3854 const DataLayout &DL) { 3855 SmallPtrSet<const Value *, 16> Visited; 3856 SmallVector<const Value *, 4> Working(1, V); 3857 do { 3858 V = Working.pop_back_val(); 3859 3860 SmallVector<const Value *, 4> Objs; 3861 GetUnderlyingObjects(V, Objs, DL); 3862 3863 for (const Value *V : Objs) { 3864 if (!Visited.insert(V).second) 3865 continue; 3866 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3867 const Value *O = 3868 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3869 if (O->getType()->isPointerTy()) { 3870 Working.push_back(O); 3871 continue; 3872 } 3873 } 3874 // If GetUnderlyingObjects fails to find an identifiable object, 3875 // getUnderlyingObjectsForCodeGen also fails for safety. 3876 if (!isIdentifiedObject(V)) { 3877 Objects.clear(); 3878 return false; 3879 } 3880 Objects.push_back(const_cast<Value *>(V)); 3881 } 3882 } while (!Working.empty()); 3883 return true; 3884 } 3885 3886 /// Return true if the only users of this pointer are lifetime markers. 3887 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3888 for (const User *U : V->users()) { 3889 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3890 if (!II) return false; 3891 3892 if (!II->isLifetimeStartOrEnd()) 3893 return false; 3894 } 3895 return true; 3896 } 3897 3898 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3899 const Instruction *CtxI, 3900 const DominatorTree *DT) { 3901 const Operator *Inst = dyn_cast<Operator>(V); 3902 if (!Inst) 3903 return false; 3904 3905 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3906 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3907 if (C->canTrap()) 3908 return false; 3909 3910 switch (Inst->getOpcode()) { 3911 default: 3912 return true; 3913 case Instruction::UDiv: 3914 case Instruction::URem: { 3915 // x / y is undefined if y == 0. 3916 const APInt *V; 3917 if (match(Inst->getOperand(1), m_APInt(V))) 3918 return *V != 0; 3919 return false; 3920 } 3921 case Instruction::SDiv: 3922 case Instruction::SRem: { 3923 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3924 const APInt *Numerator, *Denominator; 3925 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3926 return false; 3927 // We cannot hoist this division if the denominator is 0. 3928 if (*Denominator == 0) 3929 return false; 3930 // It's safe to hoist if the denominator is not 0 or -1. 3931 if (*Denominator != -1) 3932 return true; 3933 // At this point we know that the denominator is -1. It is safe to hoist as 3934 // long we know that the numerator is not INT_MIN. 3935 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3936 return !Numerator->isMinSignedValue(); 3937 // The numerator *might* be MinSignedValue. 3938 return false; 3939 } 3940 case Instruction::Load: { 3941 const LoadInst *LI = cast<LoadInst>(Inst); 3942 if (!LI->isUnordered() || 3943 // Speculative load may create a race that did not exist in the source. 3944 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3945 // Speculative load may load data from dirty regions. 3946 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3947 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3948 return false; 3949 const DataLayout &DL = LI->getModule()->getDataLayout(); 3950 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3951 LI->getAlignment(), DL, CtxI, DT); 3952 } 3953 case Instruction::Call: { 3954 auto *CI = cast<const CallInst>(Inst); 3955 const Function *Callee = CI->getCalledFunction(); 3956 3957 // The called function could have undefined behavior or side-effects, even 3958 // if marked readnone nounwind. 3959 return Callee && Callee->isSpeculatable(); 3960 } 3961 case Instruction::VAArg: 3962 case Instruction::Alloca: 3963 case Instruction::Invoke: 3964 case Instruction::CallBr: 3965 case Instruction::PHI: 3966 case Instruction::Store: 3967 case Instruction::Ret: 3968 case Instruction::Br: 3969 case Instruction::IndirectBr: 3970 case Instruction::Switch: 3971 case Instruction::Unreachable: 3972 case Instruction::Fence: 3973 case Instruction::AtomicRMW: 3974 case Instruction::AtomicCmpXchg: 3975 case Instruction::LandingPad: 3976 case Instruction::Resume: 3977 case Instruction::CatchSwitch: 3978 case Instruction::CatchPad: 3979 case Instruction::CatchRet: 3980 case Instruction::CleanupPad: 3981 case Instruction::CleanupRet: 3982 return false; // Misc instructions which have effects 3983 } 3984 } 3985 3986 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3987 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3988 } 3989 3990 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 3991 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 3992 switch (OR) { 3993 case ConstantRange::OverflowResult::MayOverflow: 3994 return OverflowResult::MayOverflow; 3995 case ConstantRange::OverflowResult::AlwaysOverflows: 3996 return OverflowResult::AlwaysOverflows; 3997 case ConstantRange::OverflowResult::NeverOverflows: 3998 return OverflowResult::NeverOverflows; 3999 } 4000 llvm_unreachable("Unknown OverflowResult"); 4001 } 4002 4003 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4004 static ConstantRange computeConstantRangeIncludingKnownBits( 4005 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4006 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4007 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4008 KnownBits Known = computeKnownBits( 4009 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4010 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4011 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4012 ConstantRange::PreferredRangeType RangeType = 4013 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4014 return CR1.intersectWith(CR2, RangeType); 4015 } 4016 4017 OverflowResult llvm::computeOverflowForUnsignedMul( 4018 const Value *LHS, const Value *RHS, const DataLayout &DL, 4019 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4020 bool UseInstrInfo) { 4021 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4022 nullptr, UseInstrInfo); 4023 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4024 nullptr, UseInstrInfo); 4025 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4026 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4027 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4028 } 4029 4030 OverflowResult 4031 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4032 const DataLayout &DL, AssumptionCache *AC, 4033 const Instruction *CxtI, 4034 const DominatorTree *DT, bool UseInstrInfo) { 4035 // Multiplying n * m significant bits yields a result of n + m significant 4036 // bits. If the total number of significant bits does not exceed the 4037 // result bit width (minus 1), there is no overflow. 4038 // This means if we have enough leading sign bits in the operands 4039 // we can guarantee that the result does not overflow. 4040 // Ref: "Hacker's Delight" by Henry Warren 4041 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4042 4043 // Note that underestimating the number of sign bits gives a more 4044 // conservative answer. 4045 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4046 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4047 4048 // First handle the easy case: if we have enough sign bits there's 4049 // definitely no overflow. 4050 if (SignBits > BitWidth + 1) 4051 return OverflowResult::NeverOverflows; 4052 4053 // There are two ambiguous cases where there can be no overflow: 4054 // SignBits == BitWidth + 1 and 4055 // SignBits == BitWidth 4056 // The second case is difficult to check, therefore we only handle the 4057 // first case. 4058 if (SignBits == BitWidth + 1) { 4059 // It overflows only when both arguments are negative and the true 4060 // product is exactly the minimum negative number. 4061 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4062 // For simplicity we just check if at least one side is not negative. 4063 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4064 nullptr, UseInstrInfo); 4065 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4066 nullptr, UseInstrInfo); 4067 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4068 return OverflowResult::NeverOverflows; 4069 } 4070 return OverflowResult::MayOverflow; 4071 } 4072 4073 OverflowResult llvm::computeOverflowForUnsignedAdd( 4074 const Value *LHS, const Value *RHS, const DataLayout &DL, 4075 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4076 bool UseInstrInfo) { 4077 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4078 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4079 nullptr, UseInstrInfo); 4080 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4081 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4082 nullptr, UseInstrInfo); 4083 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4084 } 4085 4086 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4087 const Value *RHS, 4088 const AddOperator *Add, 4089 const DataLayout &DL, 4090 AssumptionCache *AC, 4091 const Instruction *CxtI, 4092 const DominatorTree *DT) { 4093 if (Add && Add->hasNoSignedWrap()) { 4094 return OverflowResult::NeverOverflows; 4095 } 4096 4097 // If LHS and RHS each have at least two sign bits, the addition will look 4098 // like 4099 // 4100 // XX..... + 4101 // YY..... 4102 // 4103 // If the carry into the most significant position is 0, X and Y can't both 4104 // be 1 and therefore the carry out of the addition is also 0. 4105 // 4106 // If the carry into the most significant position is 1, X and Y can't both 4107 // be 0 and therefore the carry out of the addition is also 1. 4108 // 4109 // Since the carry into the most significant position is always equal to 4110 // the carry out of the addition, there is no signed overflow. 4111 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4112 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4113 return OverflowResult::NeverOverflows; 4114 4115 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4116 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4117 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4118 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4119 OverflowResult OR = 4120 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4121 if (OR != OverflowResult::MayOverflow) 4122 return OR; 4123 4124 // The remaining code needs Add to be available. Early returns if not so. 4125 if (!Add) 4126 return OverflowResult::MayOverflow; 4127 4128 // If the sign of Add is the same as at least one of the operands, this add 4129 // CANNOT overflow. If this can be determined from the known bits of the 4130 // operands the above signedAddMayOverflow() check will have already done so. 4131 // The only other way to improve on the known bits is from an assumption, so 4132 // call computeKnownBitsFromAssume() directly. 4133 bool LHSOrRHSKnownNonNegative = 4134 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4135 bool LHSOrRHSKnownNegative = 4136 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4137 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4138 KnownBits AddKnown(LHSRange.getBitWidth()); 4139 computeKnownBitsFromAssume( 4140 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4141 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4142 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4143 return OverflowResult::NeverOverflows; 4144 } 4145 4146 return OverflowResult::MayOverflow; 4147 } 4148 4149 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4150 const Value *RHS, 4151 const DataLayout &DL, 4152 AssumptionCache *AC, 4153 const Instruction *CxtI, 4154 const DominatorTree *DT) { 4155 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4156 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4157 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4158 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4159 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4160 } 4161 4162 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4163 const Value *RHS, 4164 const DataLayout &DL, 4165 AssumptionCache *AC, 4166 const Instruction *CxtI, 4167 const DominatorTree *DT) { 4168 // If LHS and RHS each have at least two sign bits, the subtraction 4169 // cannot overflow. 4170 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4171 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4172 return OverflowResult::NeverOverflows; 4173 4174 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4175 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4176 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4177 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4178 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4179 } 4180 4181 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4182 const DominatorTree &DT) { 4183 SmallVector<const BranchInst *, 2> GuardingBranches; 4184 SmallVector<const ExtractValueInst *, 2> Results; 4185 4186 for (const User *U : WO->users()) { 4187 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4188 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4189 4190 if (EVI->getIndices()[0] == 0) 4191 Results.push_back(EVI); 4192 else { 4193 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4194 4195 for (const auto *U : EVI->users()) 4196 if (const auto *B = dyn_cast<BranchInst>(U)) { 4197 assert(B->isConditional() && "How else is it using an i1?"); 4198 GuardingBranches.push_back(B); 4199 } 4200 } 4201 } else { 4202 // We are using the aggregate directly in a way we don't want to analyze 4203 // here (storing it to a global, say). 4204 return false; 4205 } 4206 } 4207 4208 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4209 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4210 if (!NoWrapEdge.isSingleEdge()) 4211 return false; 4212 4213 // Check if all users of the add are provably no-wrap. 4214 for (const auto *Result : Results) { 4215 // If the extractvalue itself is not executed on overflow, the we don't 4216 // need to check each use separately, since domination is transitive. 4217 if (DT.dominates(NoWrapEdge, Result->getParent())) 4218 continue; 4219 4220 for (auto &RU : Result->uses()) 4221 if (!DT.dominates(NoWrapEdge, RU)) 4222 return false; 4223 } 4224 4225 return true; 4226 }; 4227 4228 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4229 } 4230 4231 4232 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4233 const DataLayout &DL, 4234 AssumptionCache *AC, 4235 const Instruction *CxtI, 4236 const DominatorTree *DT) { 4237 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4238 Add, DL, AC, CxtI, DT); 4239 } 4240 4241 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4242 const Value *RHS, 4243 const DataLayout &DL, 4244 AssumptionCache *AC, 4245 const Instruction *CxtI, 4246 const DominatorTree *DT) { 4247 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4248 } 4249 4250 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4251 // A memory operation returns normally if it isn't volatile. A volatile 4252 // operation is allowed to trap. 4253 // 4254 // An atomic operation isn't guaranteed to return in a reasonable amount of 4255 // time because it's possible for another thread to interfere with it for an 4256 // arbitrary length of time, but programs aren't allowed to rely on that. 4257 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4258 return !LI->isVolatile(); 4259 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4260 return !SI->isVolatile(); 4261 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4262 return !CXI->isVolatile(); 4263 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4264 return !RMWI->isVolatile(); 4265 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4266 return !MII->isVolatile(); 4267 4268 // If there is no successor, then execution can't transfer to it. 4269 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4270 return !CRI->unwindsToCaller(); 4271 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4272 return !CatchSwitch->unwindsToCaller(); 4273 if (isa<ResumeInst>(I)) 4274 return false; 4275 if (isa<ReturnInst>(I)) 4276 return false; 4277 if (isa<UnreachableInst>(I)) 4278 return false; 4279 4280 // Calls can throw, or contain an infinite loop, or kill the process. 4281 if (auto CS = ImmutableCallSite(I)) { 4282 // Call sites that throw have implicit non-local control flow. 4283 if (!CS.doesNotThrow()) 4284 return false; 4285 4286 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4287 // etc. and thus not return. However, LLVM already assumes that 4288 // 4289 // - Thread exiting actions are modeled as writes to memory invisible to 4290 // the program. 4291 // 4292 // - Loops that don't have side effects (side effects are volatile/atomic 4293 // stores and IO) always terminate (see http://llvm.org/PR965). 4294 // Furthermore IO itself is also modeled as writes to memory invisible to 4295 // the program. 4296 // 4297 // We rely on those assumptions here, and use the memory effects of the call 4298 // target as a proxy for checking that it always returns. 4299 4300 // FIXME: This isn't aggressive enough; a call which only writes to a global 4301 // is guaranteed to return. 4302 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4303 match(I, m_Intrinsic<Intrinsic::assume>()) || 4304 match(I, m_Intrinsic<Intrinsic::sideeffect>()) || 4305 match(I, m_Intrinsic<Intrinsic::experimental_widenable_condition>()); 4306 } 4307 4308 // Other instructions return normally. 4309 return true; 4310 } 4311 4312 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4313 // TODO: This is slightly conservative for invoke instruction since exiting 4314 // via an exception *is* normal control for them. 4315 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4316 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4317 return false; 4318 return true; 4319 } 4320 4321 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4322 const Loop *L) { 4323 // The loop header is guaranteed to be executed for every iteration. 4324 // 4325 // FIXME: Relax this constraint to cover all basic blocks that are 4326 // guaranteed to be executed at every iteration. 4327 if (I->getParent() != L->getHeader()) return false; 4328 4329 for (const Instruction &LI : *L->getHeader()) { 4330 if (&LI == I) return true; 4331 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4332 } 4333 llvm_unreachable("Instruction not contained in its own parent basic block."); 4334 } 4335 4336 bool llvm::propagatesFullPoison(const Instruction *I) { 4337 switch (I->getOpcode()) { 4338 case Instruction::Add: 4339 case Instruction::Sub: 4340 case Instruction::Xor: 4341 case Instruction::Trunc: 4342 case Instruction::BitCast: 4343 case Instruction::AddrSpaceCast: 4344 case Instruction::Mul: 4345 case Instruction::Shl: 4346 case Instruction::GetElementPtr: 4347 // These operations all propagate poison unconditionally. Note that poison 4348 // is not any particular value, so xor or subtraction of poison with 4349 // itself still yields poison, not zero. 4350 return true; 4351 4352 case Instruction::AShr: 4353 case Instruction::SExt: 4354 // For these operations, one bit of the input is replicated across 4355 // multiple output bits. A replicated poison bit is still poison. 4356 return true; 4357 4358 case Instruction::ICmp: 4359 // Comparing poison with any value yields poison. This is why, for 4360 // instance, x s< (x +nsw 1) can be folded to true. 4361 return true; 4362 4363 default: 4364 return false; 4365 } 4366 } 4367 4368 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4369 switch (I->getOpcode()) { 4370 case Instruction::Store: 4371 return cast<StoreInst>(I)->getPointerOperand(); 4372 4373 case Instruction::Load: 4374 return cast<LoadInst>(I)->getPointerOperand(); 4375 4376 case Instruction::AtomicCmpXchg: 4377 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4378 4379 case Instruction::AtomicRMW: 4380 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4381 4382 case Instruction::UDiv: 4383 case Instruction::SDiv: 4384 case Instruction::URem: 4385 case Instruction::SRem: 4386 return I->getOperand(1); 4387 4388 default: 4389 return nullptr; 4390 } 4391 } 4392 4393 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4394 // We currently only look for uses of poison values within the same basic 4395 // block, as that makes it easier to guarantee that the uses will be 4396 // executed given that PoisonI is executed. 4397 // 4398 // FIXME: Expand this to consider uses beyond the same basic block. To do 4399 // this, look out for the distinction between post-dominance and strong 4400 // post-dominance. 4401 const BasicBlock *BB = PoisonI->getParent(); 4402 4403 // Set of instructions that we have proved will yield poison if PoisonI 4404 // does. 4405 SmallSet<const Value *, 16> YieldsPoison; 4406 SmallSet<const BasicBlock *, 4> Visited; 4407 YieldsPoison.insert(PoisonI); 4408 Visited.insert(PoisonI->getParent()); 4409 4410 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4411 4412 unsigned Iter = 0; 4413 while (Iter++ < MaxDepth) { 4414 for (auto &I : make_range(Begin, End)) { 4415 if (&I != PoisonI) { 4416 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4417 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4418 return true; 4419 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4420 return false; 4421 } 4422 4423 // Mark poison that propagates from I through uses of I. 4424 if (YieldsPoison.count(&I)) { 4425 for (const User *User : I.users()) { 4426 const Instruction *UserI = cast<Instruction>(User); 4427 if (propagatesFullPoison(UserI)) 4428 YieldsPoison.insert(User); 4429 } 4430 } 4431 } 4432 4433 if (auto *NextBB = BB->getSingleSuccessor()) { 4434 if (Visited.insert(NextBB).second) { 4435 BB = NextBB; 4436 Begin = BB->getFirstNonPHI()->getIterator(); 4437 End = BB->end(); 4438 continue; 4439 } 4440 } 4441 4442 break; 4443 } 4444 return false; 4445 } 4446 4447 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4448 if (FMF.noNaNs()) 4449 return true; 4450 4451 if (auto *C = dyn_cast<ConstantFP>(V)) 4452 return !C->isNaN(); 4453 4454 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4455 if (!C->getElementType()->isFloatingPointTy()) 4456 return false; 4457 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4458 if (C->getElementAsAPFloat(I).isNaN()) 4459 return false; 4460 } 4461 return true; 4462 } 4463 4464 return false; 4465 } 4466 4467 static bool isKnownNonZero(const Value *V) { 4468 if (auto *C = dyn_cast<ConstantFP>(V)) 4469 return !C->isZero(); 4470 4471 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4472 if (!C->getElementType()->isFloatingPointTy()) 4473 return false; 4474 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4475 if (C->getElementAsAPFloat(I).isZero()) 4476 return false; 4477 } 4478 return true; 4479 } 4480 4481 return false; 4482 } 4483 4484 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4485 /// Given non-min/max outer cmp/select from the clamp pattern this 4486 /// function recognizes if it can be substitued by a "canonical" min/max 4487 /// pattern. 4488 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4489 Value *CmpLHS, Value *CmpRHS, 4490 Value *TrueVal, Value *FalseVal, 4491 Value *&LHS, Value *&RHS) { 4492 // Try to match 4493 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4494 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4495 // and return description of the outer Max/Min. 4496 4497 // First, check if select has inverse order: 4498 if (CmpRHS == FalseVal) { 4499 std::swap(TrueVal, FalseVal); 4500 Pred = CmpInst::getInversePredicate(Pred); 4501 } 4502 4503 // Assume success now. If there's no match, callers should not use these anyway. 4504 LHS = TrueVal; 4505 RHS = FalseVal; 4506 4507 const APFloat *FC1; 4508 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4509 return {SPF_UNKNOWN, SPNB_NA, false}; 4510 4511 const APFloat *FC2; 4512 switch (Pred) { 4513 case CmpInst::FCMP_OLT: 4514 case CmpInst::FCMP_OLE: 4515 case CmpInst::FCMP_ULT: 4516 case CmpInst::FCMP_ULE: 4517 if (match(FalseVal, 4518 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4519 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4520 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4521 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4522 break; 4523 case CmpInst::FCMP_OGT: 4524 case CmpInst::FCMP_OGE: 4525 case CmpInst::FCMP_UGT: 4526 case CmpInst::FCMP_UGE: 4527 if (match(FalseVal, 4528 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4529 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4530 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4531 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4532 break; 4533 default: 4534 break; 4535 } 4536 4537 return {SPF_UNKNOWN, SPNB_NA, false}; 4538 } 4539 4540 /// Recognize variations of: 4541 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4542 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4543 Value *CmpLHS, Value *CmpRHS, 4544 Value *TrueVal, Value *FalseVal) { 4545 // Swap the select operands and predicate to match the patterns below. 4546 if (CmpRHS != TrueVal) { 4547 Pred = ICmpInst::getSwappedPredicate(Pred); 4548 std::swap(TrueVal, FalseVal); 4549 } 4550 const APInt *C1; 4551 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4552 const APInt *C2; 4553 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4554 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4555 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4556 return {SPF_SMAX, SPNB_NA, false}; 4557 4558 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4559 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4560 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4561 return {SPF_SMIN, SPNB_NA, false}; 4562 4563 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4564 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4565 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4566 return {SPF_UMAX, SPNB_NA, false}; 4567 4568 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4569 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4570 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4571 return {SPF_UMIN, SPNB_NA, false}; 4572 } 4573 return {SPF_UNKNOWN, SPNB_NA, false}; 4574 } 4575 4576 /// Recognize variations of: 4577 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4578 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4579 Value *CmpLHS, Value *CmpRHS, 4580 Value *TVal, Value *FVal, 4581 unsigned Depth) { 4582 // TODO: Allow FP min/max with nnan/nsz. 4583 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4584 4585 Value *A, *B; 4586 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4587 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4588 return {SPF_UNKNOWN, SPNB_NA, false}; 4589 4590 Value *C, *D; 4591 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4592 if (L.Flavor != R.Flavor) 4593 return {SPF_UNKNOWN, SPNB_NA, false}; 4594 4595 // We have something like: x Pred y ? min(a, b) : min(c, d). 4596 // Try to match the compare to the min/max operations of the select operands. 4597 // First, make sure we have the right compare predicate. 4598 switch (L.Flavor) { 4599 case SPF_SMIN: 4600 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4601 Pred = ICmpInst::getSwappedPredicate(Pred); 4602 std::swap(CmpLHS, CmpRHS); 4603 } 4604 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4605 break; 4606 return {SPF_UNKNOWN, SPNB_NA, false}; 4607 case SPF_SMAX: 4608 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4609 Pred = ICmpInst::getSwappedPredicate(Pred); 4610 std::swap(CmpLHS, CmpRHS); 4611 } 4612 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4613 break; 4614 return {SPF_UNKNOWN, SPNB_NA, false}; 4615 case SPF_UMIN: 4616 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4617 Pred = ICmpInst::getSwappedPredicate(Pred); 4618 std::swap(CmpLHS, CmpRHS); 4619 } 4620 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4621 break; 4622 return {SPF_UNKNOWN, SPNB_NA, false}; 4623 case SPF_UMAX: 4624 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4625 Pred = ICmpInst::getSwappedPredicate(Pred); 4626 std::swap(CmpLHS, CmpRHS); 4627 } 4628 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4629 break; 4630 return {SPF_UNKNOWN, SPNB_NA, false}; 4631 default: 4632 return {SPF_UNKNOWN, SPNB_NA, false}; 4633 } 4634 4635 // If there is a common operand in the already matched min/max and the other 4636 // min/max operands match the compare operands (either directly or inverted), 4637 // then this is min/max of the same flavor. 4638 4639 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4640 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4641 if (D == B) { 4642 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4643 match(A, m_Not(m_Specific(CmpRHS))))) 4644 return {L.Flavor, SPNB_NA, false}; 4645 } 4646 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4647 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4648 if (C == B) { 4649 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4650 match(A, m_Not(m_Specific(CmpRHS))))) 4651 return {L.Flavor, SPNB_NA, false}; 4652 } 4653 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4654 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4655 if (D == A) { 4656 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4657 match(B, m_Not(m_Specific(CmpRHS))))) 4658 return {L.Flavor, SPNB_NA, false}; 4659 } 4660 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4661 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4662 if (C == A) { 4663 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4664 match(B, m_Not(m_Specific(CmpRHS))))) 4665 return {L.Flavor, SPNB_NA, false}; 4666 } 4667 4668 return {SPF_UNKNOWN, SPNB_NA, false}; 4669 } 4670 4671 /// Match non-obvious integer minimum and maximum sequences. 4672 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4673 Value *CmpLHS, Value *CmpRHS, 4674 Value *TrueVal, Value *FalseVal, 4675 Value *&LHS, Value *&RHS, 4676 unsigned Depth) { 4677 // Assume success. If there's no match, callers should not use these anyway. 4678 LHS = TrueVal; 4679 RHS = FalseVal; 4680 4681 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4682 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4683 return SPR; 4684 4685 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4686 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4687 return SPR; 4688 4689 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4690 return {SPF_UNKNOWN, SPNB_NA, false}; 4691 4692 // Z = X -nsw Y 4693 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4694 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4695 if (match(TrueVal, m_Zero()) && 4696 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4697 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4698 4699 // Z = X -nsw Y 4700 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4701 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4702 if (match(FalseVal, m_Zero()) && 4703 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4704 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4705 4706 const APInt *C1; 4707 if (!match(CmpRHS, m_APInt(C1))) 4708 return {SPF_UNKNOWN, SPNB_NA, false}; 4709 4710 // An unsigned min/max can be written with a signed compare. 4711 const APInt *C2; 4712 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4713 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4714 // Is the sign bit set? 4715 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4716 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4717 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4718 C2->isMaxSignedValue()) 4719 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4720 4721 // Is the sign bit clear? 4722 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4723 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4724 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4725 C2->isMinSignedValue()) 4726 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4727 } 4728 4729 // Look through 'not' ops to find disguised signed min/max. 4730 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4731 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4732 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4733 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4734 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4735 4736 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4737 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4738 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4739 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4740 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4741 4742 return {SPF_UNKNOWN, SPNB_NA, false}; 4743 } 4744 4745 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4746 assert(X && Y && "Invalid operand"); 4747 4748 // X = sub (0, Y) || X = sub nsw (0, Y) 4749 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4750 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4751 return true; 4752 4753 // Y = sub (0, X) || Y = sub nsw (0, X) 4754 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4755 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4756 return true; 4757 4758 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4759 Value *A, *B; 4760 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4761 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4762 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4763 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4764 } 4765 4766 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4767 FastMathFlags FMF, 4768 Value *CmpLHS, Value *CmpRHS, 4769 Value *TrueVal, Value *FalseVal, 4770 Value *&LHS, Value *&RHS, 4771 unsigned Depth) { 4772 if (CmpInst::isFPPredicate(Pred)) { 4773 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 4774 // 0.0 operand, set the compare's 0.0 operands to that same value for the 4775 // purpose of identifying min/max. Disregard vector constants with undefined 4776 // elements because those can not be back-propagated for analysis. 4777 Value *OutputZeroVal = nullptr; 4778 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 4779 !cast<Constant>(TrueVal)->containsUndefElement()) 4780 OutputZeroVal = TrueVal; 4781 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 4782 !cast<Constant>(FalseVal)->containsUndefElement()) 4783 OutputZeroVal = FalseVal; 4784 4785 if (OutputZeroVal) { 4786 if (match(CmpLHS, m_AnyZeroFP())) 4787 CmpLHS = OutputZeroVal; 4788 if (match(CmpRHS, m_AnyZeroFP())) 4789 CmpRHS = OutputZeroVal; 4790 } 4791 } 4792 4793 LHS = CmpLHS; 4794 RHS = CmpRHS; 4795 4796 // Signed zero may return inconsistent results between implementations. 4797 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4798 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4799 // Therefore, we behave conservatively and only proceed if at least one of the 4800 // operands is known to not be zero or if we don't care about signed zero. 4801 switch (Pred) { 4802 default: break; 4803 // FIXME: Include OGT/OLT/UGT/ULT. 4804 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4805 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4806 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4807 !isKnownNonZero(CmpRHS)) 4808 return {SPF_UNKNOWN, SPNB_NA, false}; 4809 } 4810 4811 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4812 bool Ordered = false; 4813 4814 // When given one NaN and one non-NaN input: 4815 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4816 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4817 // ordered comparison fails), which could be NaN or non-NaN. 4818 // so here we discover exactly what NaN behavior is required/accepted. 4819 if (CmpInst::isFPPredicate(Pred)) { 4820 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4821 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4822 4823 if (LHSSafe && RHSSafe) { 4824 // Both operands are known non-NaN. 4825 NaNBehavior = SPNB_RETURNS_ANY; 4826 } else if (CmpInst::isOrdered(Pred)) { 4827 // An ordered comparison will return false when given a NaN, so it 4828 // returns the RHS. 4829 Ordered = true; 4830 if (LHSSafe) 4831 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4832 NaNBehavior = SPNB_RETURNS_NAN; 4833 else if (RHSSafe) 4834 NaNBehavior = SPNB_RETURNS_OTHER; 4835 else 4836 // Completely unsafe. 4837 return {SPF_UNKNOWN, SPNB_NA, false}; 4838 } else { 4839 Ordered = false; 4840 // An unordered comparison will return true when given a NaN, so it 4841 // returns the LHS. 4842 if (LHSSafe) 4843 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4844 NaNBehavior = SPNB_RETURNS_OTHER; 4845 else if (RHSSafe) 4846 NaNBehavior = SPNB_RETURNS_NAN; 4847 else 4848 // Completely unsafe. 4849 return {SPF_UNKNOWN, SPNB_NA, false}; 4850 } 4851 } 4852 4853 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4854 std::swap(CmpLHS, CmpRHS); 4855 Pred = CmpInst::getSwappedPredicate(Pred); 4856 if (NaNBehavior == SPNB_RETURNS_NAN) 4857 NaNBehavior = SPNB_RETURNS_OTHER; 4858 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4859 NaNBehavior = SPNB_RETURNS_NAN; 4860 Ordered = !Ordered; 4861 } 4862 4863 // ([if]cmp X, Y) ? X : Y 4864 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4865 switch (Pred) { 4866 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4867 case ICmpInst::ICMP_UGT: 4868 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4869 case ICmpInst::ICMP_SGT: 4870 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4871 case ICmpInst::ICMP_ULT: 4872 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4873 case ICmpInst::ICMP_SLT: 4874 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4875 case FCmpInst::FCMP_UGT: 4876 case FCmpInst::FCMP_UGE: 4877 case FCmpInst::FCMP_OGT: 4878 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4879 case FCmpInst::FCMP_ULT: 4880 case FCmpInst::FCMP_ULE: 4881 case FCmpInst::FCMP_OLT: 4882 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4883 } 4884 } 4885 4886 if (isKnownNegation(TrueVal, FalseVal)) { 4887 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4888 // match against either LHS or sext(LHS). 4889 auto MaybeSExtCmpLHS = 4890 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4891 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4892 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4893 if (match(TrueVal, MaybeSExtCmpLHS)) { 4894 // Set the return values. If the compare uses the negated value (-X >s 0), 4895 // swap the return values because the negated value is always 'RHS'. 4896 LHS = TrueVal; 4897 RHS = FalseVal; 4898 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4899 std::swap(LHS, RHS); 4900 4901 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4902 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4903 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4904 return {SPF_ABS, SPNB_NA, false}; 4905 4906 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 4907 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 4908 return {SPF_ABS, SPNB_NA, false}; 4909 4910 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 4911 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 4912 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4913 return {SPF_NABS, SPNB_NA, false}; 4914 } 4915 else if (match(FalseVal, MaybeSExtCmpLHS)) { 4916 // Set the return values. If the compare uses the negated value (-X >s 0), 4917 // swap the return values because the negated value is always 'RHS'. 4918 LHS = FalseVal; 4919 RHS = TrueVal; 4920 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 4921 std::swap(LHS, RHS); 4922 4923 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 4924 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 4925 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4926 return {SPF_NABS, SPNB_NA, false}; 4927 4928 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 4929 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 4930 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4931 return {SPF_ABS, SPNB_NA, false}; 4932 } 4933 } 4934 4935 if (CmpInst::isIntPredicate(Pred)) 4936 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4937 4938 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4939 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4940 // semantics than minNum. Be conservative in such case. 4941 if (NaNBehavior != SPNB_RETURNS_ANY || 4942 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4943 !isKnownNonZero(CmpRHS))) 4944 return {SPF_UNKNOWN, SPNB_NA, false}; 4945 4946 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4947 } 4948 4949 /// Helps to match a select pattern in case of a type mismatch. 4950 /// 4951 /// The function processes the case when type of true and false values of a 4952 /// select instruction differs from type of the cmp instruction operands because 4953 /// of a cast instruction. The function checks if it is legal to move the cast 4954 /// operation after "select". If yes, it returns the new second value of 4955 /// "select" (with the assumption that cast is moved): 4956 /// 1. As operand of cast instruction when both values of "select" are same cast 4957 /// instructions. 4958 /// 2. As restored constant (by applying reverse cast operation) when the first 4959 /// value of the "select" is a cast operation and the second value is a 4960 /// constant. 4961 /// NOTE: We return only the new second value because the first value could be 4962 /// accessed as operand of cast instruction. 4963 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4964 Instruction::CastOps *CastOp) { 4965 auto *Cast1 = dyn_cast<CastInst>(V1); 4966 if (!Cast1) 4967 return nullptr; 4968 4969 *CastOp = Cast1->getOpcode(); 4970 Type *SrcTy = Cast1->getSrcTy(); 4971 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4972 // If V1 and V2 are both the same cast from the same type, look through V1. 4973 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4974 return Cast2->getOperand(0); 4975 return nullptr; 4976 } 4977 4978 auto *C = dyn_cast<Constant>(V2); 4979 if (!C) 4980 return nullptr; 4981 4982 Constant *CastedTo = nullptr; 4983 switch (*CastOp) { 4984 case Instruction::ZExt: 4985 if (CmpI->isUnsigned()) 4986 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4987 break; 4988 case Instruction::SExt: 4989 if (CmpI->isSigned()) 4990 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4991 break; 4992 case Instruction::Trunc: 4993 Constant *CmpConst; 4994 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4995 CmpConst->getType() == SrcTy) { 4996 // Here we have the following case: 4997 // 4998 // %cond = cmp iN %x, CmpConst 4999 // %tr = trunc iN %x to iK 5000 // %narrowsel = select i1 %cond, iK %t, iK C 5001 // 5002 // We can always move trunc after select operation: 5003 // 5004 // %cond = cmp iN %x, CmpConst 5005 // %widesel = select i1 %cond, iN %x, iN CmpConst 5006 // %tr = trunc iN %widesel to iK 5007 // 5008 // Note that C could be extended in any way because we don't care about 5009 // upper bits after truncation. It can't be abs pattern, because it would 5010 // look like: 5011 // 5012 // select i1 %cond, x, -x. 5013 // 5014 // So only min/max pattern could be matched. Such match requires widened C 5015 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5016 // CmpConst == C is checked below. 5017 CastedTo = CmpConst; 5018 } else { 5019 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5020 } 5021 break; 5022 case Instruction::FPTrunc: 5023 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5024 break; 5025 case Instruction::FPExt: 5026 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5027 break; 5028 case Instruction::FPToUI: 5029 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5030 break; 5031 case Instruction::FPToSI: 5032 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5033 break; 5034 case Instruction::UIToFP: 5035 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5036 break; 5037 case Instruction::SIToFP: 5038 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5039 break; 5040 default: 5041 break; 5042 } 5043 5044 if (!CastedTo) 5045 return nullptr; 5046 5047 // Make sure the cast doesn't lose any information. 5048 Constant *CastedBack = 5049 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5050 if (CastedBack != C) 5051 return nullptr; 5052 5053 return CastedTo; 5054 } 5055 5056 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5057 Instruction::CastOps *CastOp, 5058 unsigned Depth) { 5059 if (Depth >= MaxDepth) 5060 return {SPF_UNKNOWN, SPNB_NA, false}; 5061 5062 SelectInst *SI = dyn_cast<SelectInst>(V); 5063 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5064 5065 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5066 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5067 5068 CmpInst::Predicate Pred = CmpI->getPredicate(); 5069 Value *CmpLHS = CmpI->getOperand(0); 5070 Value *CmpRHS = CmpI->getOperand(1); 5071 Value *TrueVal = SI->getTrueValue(); 5072 Value *FalseVal = SI->getFalseValue(); 5073 FastMathFlags FMF; 5074 if (isa<FPMathOperator>(CmpI)) 5075 FMF = CmpI->getFastMathFlags(); 5076 5077 // Bail out early. 5078 if (CmpI->isEquality()) 5079 return {SPF_UNKNOWN, SPNB_NA, false}; 5080 5081 // Deal with type mismatches. 5082 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5083 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5084 // If this is a potential fmin/fmax with a cast to integer, then ignore 5085 // -0.0 because there is no corresponding integer value. 5086 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5087 FMF.setNoSignedZeros(); 5088 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5089 cast<CastInst>(TrueVal)->getOperand(0), C, 5090 LHS, RHS, Depth); 5091 } 5092 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5093 // If this is a potential fmin/fmax with a cast to integer, then ignore 5094 // -0.0 because there is no corresponding integer value. 5095 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5096 FMF.setNoSignedZeros(); 5097 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5098 C, cast<CastInst>(FalseVal)->getOperand(0), 5099 LHS, RHS, Depth); 5100 } 5101 } 5102 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5103 LHS, RHS, Depth); 5104 } 5105 5106 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5107 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5108 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5109 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5110 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5111 if (SPF == SPF_FMINNUM) 5112 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5113 if (SPF == SPF_FMAXNUM) 5114 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5115 llvm_unreachable("unhandled!"); 5116 } 5117 5118 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5119 if (SPF == SPF_SMIN) return SPF_SMAX; 5120 if (SPF == SPF_UMIN) return SPF_UMAX; 5121 if (SPF == SPF_SMAX) return SPF_SMIN; 5122 if (SPF == SPF_UMAX) return SPF_UMIN; 5123 llvm_unreachable("unhandled!"); 5124 } 5125 5126 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5127 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5128 } 5129 5130 /// Return true if "icmp Pred LHS RHS" is always true. 5131 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5132 const Value *RHS, const DataLayout &DL, 5133 unsigned Depth) { 5134 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5135 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5136 return true; 5137 5138 switch (Pred) { 5139 default: 5140 return false; 5141 5142 case CmpInst::ICMP_SLE: { 5143 const APInt *C; 5144 5145 // LHS s<= LHS +_{nsw} C if C >= 0 5146 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5147 return !C->isNegative(); 5148 return false; 5149 } 5150 5151 case CmpInst::ICMP_ULE: { 5152 const APInt *C; 5153 5154 // LHS u<= LHS +_{nuw} C for any C 5155 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5156 return true; 5157 5158 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5159 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5160 const Value *&X, 5161 const APInt *&CA, const APInt *&CB) { 5162 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5163 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5164 return true; 5165 5166 // If X & C == 0 then (X | C) == X +_{nuw} C 5167 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5168 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5169 KnownBits Known(CA->getBitWidth()); 5170 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5171 /*CxtI*/ nullptr, /*DT*/ nullptr); 5172 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5173 return true; 5174 } 5175 5176 return false; 5177 }; 5178 5179 const Value *X; 5180 const APInt *CLHS, *CRHS; 5181 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5182 return CLHS->ule(*CRHS); 5183 5184 return false; 5185 } 5186 } 5187 } 5188 5189 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5190 /// ALHS ARHS" is true. Otherwise, return None. 5191 static Optional<bool> 5192 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5193 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5194 const DataLayout &DL, unsigned Depth) { 5195 switch (Pred) { 5196 default: 5197 return None; 5198 5199 case CmpInst::ICMP_SLT: 5200 case CmpInst::ICMP_SLE: 5201 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5202 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5203 return true; 5204 return None; 5205 5206 case CmpInst::ICMP_ULT: 5207 case CmpInst::ICMP_ULE: 5208 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5209 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5210 return true; 5211 return None; 5212 } 5213 } 5214 5215 /// Return true if the operands of the two compares match. IsSwappedOps is true 5216 /// when the operands match, but are swapped. 5217 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5218 const Value *BLHS, const Value *BRHS, 5219 bool &IsSwappedOps) { 5220 5221 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5222 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5223 return IsMatchingOps || IsSwappedOps; 5224 } 5225 5226 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5227 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5228 /// Otherwise, return None if we can't infer anything. 5229 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5230 CmpInst::Predicate BPred, 5231 bool AreSwappedOps) { 5232 // Canonicalize the predicate as if the operands were not commuted. 5233 if (AreSwappedOps) 5234 BPred = ICmpInst::getSwappedPredicate(BPred); 5235 5236 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5237 return true; 5238 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5239 return false; 5240 5241 return None; 5242 } 5243 5244 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5245 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5246 /// Otherwise, return None if we can't infer anything. 5247 static Optional<bool> 5248 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5249 const ConstantInt *C1, 5250 CmpInst::Predicate BPred, 5251 const ConstantInt *C2) { 5252 ConstantRange DomCR = 5253 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5254 ConstantRange CR = 5255 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5256 ConstantRange Intersection = DomCR.intersectWith(CR); 5257 ConstantRange Difference = DomCR.difference(CR); 5258 if (Intersection.isEmptySet()) 5259 return false; 5260 if (Difference.isEmptySet()) 5261 return true; 5262 return None; 5263 } 5264 5265 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5266 /// false. Otherwise, return None if we can't infer anything. 5267 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5268 const ICmpInst *RHS, 5269 const DataLayout &DL, bool LHSIsTrue, 5270 unsigned Depth) { 5271 Value *ALHS = LHS->getOperand(0); 5272 Value *ARHS = LHS->getOperand(1); 5273 // The rest of the logic assumes the LHS condition is true. If that's not the 5274 // case, invert the predicate to make it so. 5275 ICmpInst::Predicate APred = 5276 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5277 5278 Value *BLHS = RHS->getOperand(0); 5279 Value *BRHS = RHS->getOperand(1); 5280 ICmpInst::Predicate BPred = RHS->getPredicate(); 5281 5282 // Can we infer anything when the two compares have matching operands? 5283 bool AreSwappedOps; 5284 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5285 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5286 APred, BPred, AreSwappedOps)) 5287 return Implication; 5288 // No amount of additional analysis will infer the second condition, so 5289 // early exit. 5290 return None; 5291 } 5292 5293 // Can we infer anything when the LHS operands match and the RHS operands are 5294 // constants (not necessarily matching)? 5295 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5296 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5297 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5298 return Implication; 5299 // No amount of additional analysis will infer the second condition, so 5300 // early exit. 5301 return None; 5302 } 5303 5304 if (APred == BPred) 5305 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5306 return None; 5307 } 5308 5309 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5310 /// false. Otherwise, return None if we can't infer anything. We expect the 5311 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5312 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5313 const ICmpInst *RHS, 5314 const DataLayout &DL, bool LHSIsTrue, 5315 unsigned Depth) { 5316 // The LHS must be an 'or' or an 'and' instruction. 5317 assert((LHS->getOpcode() == Instruction::And || 5318 LHS->getOpcode() == Instruction::Or) && 5319 "Expected LHS to be 'and' or 'or'."); 5320 5321 assert(Depth <= MaxDepth && "Hit recursion limit"); 5322 5323 // If the result of an 'or' is false, then we know both legs of the 'or' are 5324 // false. Similarly, if the result of an 'and' is true, then we know both 5325 // legs of the 'and' are true. 5326 Value *ALHS, *ARHS; 5327 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5328 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5329 // FIXME: Make this non-recursion. 5330 if (Optional<bool> Implication = 5331 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5332 return Implication; 5333 if (Optional<bool> Implication = 5334 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5335 return Implication; 5336 return None; 5337 } 5338 return None; 5339 } 5340 5341 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5342 const DataLayout &DL, bool LHSIsTrue, 5343 unsigned Depth) { 5344 // Bail out when we hit the limit. 5345 if (Depth == MaxDepth) 5346 return None; 5347 5348 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5349 // example. 5350 if (LHS->getType() != RHS->getType()) 5351 return None; 5352 5353 Type *OpTy = LHS->getType(); 5354 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5355 5356 // LHS ==> RHS by definition 5357 if (LHS == RHS) 5358 return LHSIsTrue; 5359 5360 // FIXME: Extending the code below to handle vectors. 5361 if (OpTy->isVectorTy()) 5362 return None; 5363 5364 assert(OpTy->isIntegerTy(1) && "implied by above"); 5365 5366 // Both LHS and RHS are icmps. 5367 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5368 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5369 if (LHSCmp && RHSCmp) 5370 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5371 5372 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5373 // an icmp. FIXME: Add support for and/or on the RHS. 5374 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5375 if (LHSBO && RHSCmp) { 5376 if ((LHSBO->getOpcode() == Instruction::And || 5377 LHSBO->getOpcode() == Instruction::Or)) 5378 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5379 } 5380 return None; 5381 } 5382 5383 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5384 const Instruction *ContextI, 5385 const DataLayout &DL) { 5386 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5387 if (!ContextI || !ContextI->getParent()) 5388 return None; 5389 5390 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5391 // dominator tree (eg, from a SimplifyQuery) instead? 5392 const BasicBlock *ContextBB = ContextI->getParent(); 5393 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5394 if (!PredBB) 5395 return None; 5396 5397 // We need a conditional branch in the predecessor. 5398 Value *PredCond; 5399 BasicBlock *TrueBB, *FalseBB; 5400 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5401 return None; 5402 5403 // The branch should get simplified. Don't bother simplifying this condition. 5404 if (TrueBB == FalseBB) 5405 return None; 5406 5407 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5408 "Predecessor block does not point to successor?"); 5409 5410 // Is this condition implied by the predecessor condition? 5411 bool CondIsTrue = TrueBB == ContextBB; 5412 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5413 } 5414 5415 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5416 APInt &Upper, const InstrInfoQuery &IIQ) { 5417 unsigned Width = Lower.getBitWidth(); 5418 const APInt *C; 5419 switch (BO.getOpcode()) { 5420 case Instruction::Add: 5421 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5422 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5423 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5424 // 'add nuw x, C' produces [C, UINT_MAX]. 5425 Lower = *C; 5426 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5427 if (C->isNegative()) { 5428 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5429 Lower = APInt::getSignedMinValue(Width); 5430 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5431 } else { 5432 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5433 Lower = APInt::getSignedMinValue(Width) + *C; 5434 Upper = APInt::getSignedMaxValue(Width) + 1; 5435 } 5436 } 5437 } 5438 break; 5439 5440 case Instruction::And: 5441 if (match(BO.getOperand(1), m_APInt(C))) 5442 // 'and x, C' produces [0, C]. 5443 Upper = *C + 1; 5444 break; 5445 5446 case Instruction::Or: 5447 if (match(BO.getOperand(1), m_APInt(C))) 5448 // 'or x, C' produces [C, UINT_MAX]. 5449 Lower = *C; 5450 break; 5451 5452 case Instruction::AShr: 5453 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5454 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5455 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5456 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5457 } else if (match(BO.getOperand(0), m_APInt(C))) { 5458 unsigned ShiftAmount = Width - 1; 5459 if (!C->isNullValue() && IIQ.isExact(&BO)) 5460 ShiftAmount = C->countTrailingZeros(); 5461 if (C->isNegative()) { 5462 // 'ashr C, x' produces [C, C >> (Width-1)] 5463 Lower = *C; 5464 Upper = C->ashr(ShiftAmount) + 1; 5465 } else { 5466 // 'ashr C, x' produces [C >> (Width-1), C] 5467 Lower = C->ashr(ShiftAmount); 5468 Upper = *C + 1; 5469 } 5470 } 5471 break; 5472 5473 case Instruction::LShr: 5474 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5475 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5476 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5477 } else if (match(BO.getOperand(0), m_APInt(C))) { 5478 // 'lshr C, x' produces [C >> (Width-1), C]. 5479 unsigned ShiftAmount = Width - 1; 5480 if (!C->isNullValue() && IIQ.isExact(&BO)) 5481 ShiftAmount = C->countTrailingZeros(); 5482 Lower = C->lshr(ShiftAmount); 5483 Upper = *C + 1; 5484 } 5485 break; 5486 5487 case Instruction::Shl: 5488 if (match(BO.getOperand(0), m_APInt(C))) { 5489 if (IIQ.hasNoUnsignedWrap(&BO)) { 5490 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5491 Lower = *C; 5492 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5493 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5494 if (C->isNegative()) { 5495 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5496 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5497 Lower = C->shl(ShiftAmount); 5498 Upper = *C + 1; 5499 } else { 5500 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5501 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5502 Lower = *C; 5503 Upper = C->shl(ShiftAmount) + 1; 5504 } 5505 } 5506 } 5507 break; 5508 5509 case Instruction::SDiv: 5510 if (match(BO.getOperand(1), m_APInt(C))) { 5511 APInt IntMin = APInt::getSignedMinValue(Width); 5512 APInt IntMax = APInt::getSignedMaxValue(Width); 5513 if (C->isAllOnesValue()) { 5514 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5515 // where C != -1 and C != 0 and C != 1 5516 Lower = IntMin + 1; 5517 Upper = IntMax + 1; 5518 } else if (C->countLeadingZeros() < Width - 1) { 5519 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5520 // where C != -1 and C != 0 and C != 1 5521 Lower = IntMin.sdiv(*C); 5522 Upper = IntMax.sdiv(*C); 5523 if (Lower.sgt(Upper)) 5524 std::swap(Lower, Upper); 5525 Upper = Upper + 1; 5526 assert(Upper != Lower && "Upper part of range has wrapped!"); 5527 } 5528 } else if (match(BO.getOperand(0), m_APInt(C))) { 5529 if (C->isMinSignedValue()) { 5530 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5531 Lower = *C; 5532 Upper = Lower.lshr(1) + 1; 5533 } else { 5534 // 'sdiv C, x' produces [-|C|, |C|]. 5535 Upper = C->abs() + 1; 5536 Lower = (-Upper) + 1; 5537 } 5538 } 5539 break; 5540 5541 case Instruction::UDiv: 5542 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5543 // 'udiv x, C' produces [0, UINT_MAX / C]. 5544 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5545 } else if (match(BO.getOperand(0), m_APInt(C))) { 5546 // 'udiv C, x' produces [0, C]. 5547 Upper = *C + 1; 5548 } 5549 break; 5550 5551 case Instruction::SRem: 5552 if (match(BO.getOperand(1), m_APInt(C))) { 5553 // 'srem x, C' produces (-|C|, |C|). 5554 Upper = C->abs(); 5555 Lower = (-Upper) + 1; 5556 } 5557 break; 5558 5559 case Instruction::URem: 5560 if (match(BO.getOperand(1), m_APInt(C))) 5561 // 'urem x, C' produces [0, C). 5562 Upper = *C; 5563 break; 5564 5565 default: 5566 break; 5567 } 5568 } 5569 5570 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5571 APInt &Upper) { 5572 unsigned Width = Lower.getBitWidth(); 5573 const APInt *C; 5574 switch (II.getIntrinsicID()) { 5575 case Intrinsic::uadd_sat: 5576 // uadd.sat(x, C) produces [C, UINT_MAX]. 5577 if (match(II.getOperand(0), m_APInt(C)) || 5578 match(II.getOperand(1), m_APInt(C))) 5579 Lower = *C; 5580 break; 5581 case Intrinsic::sadd_sat: 5582 if (match(II.getOperand(0), m_APInt(C)) || 5583 match(II.getOperand(1), m_APInt(C))) { 5584 if (C->isNegative()) { 5585 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5586 Lower = APInt::getSignedMinValue(Width); 5587 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5588 } else { 5589 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5590 Lower = APInt::getSignedMinValue(Width) + *C; 5591 Upper = APInt::getSignedMaxValue(Width) + 1; 5592 } 5593 } 5594 break; 5595 case Intrinsic::usub_sat: 5596 // usub.sat(C, x) produces [0, C]. 5597 if (match(II.getOperand(0), m_APInt(C))) 5598 Upper = *C + 1; 5599 // usub.sat(x, C) produces [0, UINT_MAX - C]. 5600 else if (match(II.getOperand(1), m_APInt(C))) 5601 Upper = APInt::getMaxValue(Width) - *C + 1; 5602 break; 5603 case Intrinsic::ssub_sat: 5604 if (match(II.getOperand(0), m_APInt(C))) { 5605 if (C->isNegative()) { 5606 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 5607 Lower = APInt::getSignedMinValue(Width); 5608 Upper = *C - APInt::getSignedMinValue(Width) + 1; 5609 } else { 5610 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 5611 Lower = *C - APInt::getSignedMaxValue(Width); 5612 Upper = APInt::getSignedMaxValue(Width) + 1; 5613 } 5614 } else if (match(II.getOperand(1), m_APInt(C))) { 5615 if (C->isNegative()) { 5616 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 5617 Lower = APInt::getSignedMinValue(Width) - *C; 5618 Upper = APInt::getSignedMaxValue(Width) + 1; 5619 } else { 5620 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 5621 Lower = APInt::getSignedMinValue(Width); 5622 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 5623 } 5624 } 5625 break; 5626 default: 5627 break; 5628 } 5629 } 5630 5631 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 5632 APInt &Upper) { 5633 const Value *LHS, *RHS; 5634 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 5635 if (R.Flavor == SPF_UNKNOWN) 5636 return; 5637 5638 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 5639 5640 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 5641 // If the negation part of the abs (in RHS) has the NSW flag, 5642 // then the result of abs(X) is [0..SIGNED_MAX], 5643 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 5644 Lower = APInt::getNullValue(BitWidth); 5645 if (cast<Instruction>(RHS)->hasNoSignedWrap()) 5646 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5647 else 5648 Upper = APInt::getSignedMinValue(BitWidth) + 1; 5649 return; 5650 } 5651 5652 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 5653 // The result of -abs(X) is <= 0. 5654 Lower = APInt::getSignedMinValue(BitWidth); 5655 Upper = APInt(BitWidth, 1); 5656 return; 5657 } 5658 5659 const APInt *C; 5660 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 5661 return; 5662 5663 switch (R.Flavor) { 5664 case SPF_UMIN: 5665 Upper = *C + 1; 5666 break; 5667 case SPF_UMAX: 5668 Lower = *C; 5669 break; 5670 case SPF_SMIN: 5671 Lower = APInt::getSignedMinValue(BitWidth); 5672 Upper = *C + 1; 5673 break; 5674 case SPF_SMAX: 5675 Lower = *C; 5676 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5677 break; 5678 default: 5679 break; 5680 } 5681 } 5682 5683 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 5684 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 5685 5686 const APInt *C; 5687 if (match(V, m_APInt(C))) 5688 return ConstantRange(*C); 5689 5690 InstrInfoQuery IIQ(UseInstrInfo); 5691 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 5692 APInt Lower = APInt(BitWidth, 0); 5693 APInt Upper = APInt(BitWidth, 0); 5694 if (auto *BO = dyn_cast<BinaryOperator>(V)) 5695 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 5696 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 5697 setLimitsForIntrinsic(*II, Lower, Upper); 5698 else if (auto *SI = dyn_cast<SelectInst>(V)) 5699 setLimitsForSelectPattern(*SI, Lower, Upper); 5700 5701 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 5702 5703 if (auto *I = dyn_cast<Instruction>(V)) 5704 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 5705 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 5706 5707 return CR; 5708 } 5709