1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2,
360                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                    bool NSW, const APInt &DemandedElts,
401                                    KnownBits &KnownOut, KnownBits &Known2,
402                                    unsigned Depth, const Query &Q) {
403   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404 
405   // If one operand is unknown and we have no nowrap information,
406   // the result will be unknown independently of the second operand.
407   if (KnownOut.isUnknown() && !NSW)
408     return;
409 
410   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412 }
413 
414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                 const APInt &DemandedElts, KnownBits &Known,
416                                 KnownBits &Known2, unsigned Depth,
417                                 const Query &Q) {
418   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
419   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
420 
421   bool isKnownNegative = false;
422   bool isKnownNonNegative = false;
423   // If the multiplication is known not to overflow, compute the sign bit.
424   if (NSW) {
425     if (Op0 == Op1) {
426       // The product of a number with itself is non-negative.
427       isKnownNonNegative = true;
428     } else {
429       bool isKnownNonNegativeOp1 = Known.isNonNegative();
430       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
431       bool isKnownNegativeOp1 = Known.isNegative();
432       bool isKnownNegativeOp0 = Known2.isNegative();
433       // The product of two numbers with the same sign is non-negative.
434       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
435                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
436       // The product of a negative number and a non-negative number is either
437       // negative or zero.
438       if (!isKnownNonNegative)
439         isKnownNegative =
440             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
441              Known2.isNonZero()) ||
442             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
443     }
444   }
445 
446   Known = KnownBits::computeForMul(Known, Known2);
447 
448   // Only make use of no-wrap flags if we failed to compute the sign bit
449   // directly.  This matters if the multiplication always overflows, in
450   // which case we prefer to follow the result of the direct computation,
451   // though as the program is invoking undefined behaviour we can choose
452   // whatever we like here.
453   if (isKnownNonNegative && !Known.isNegative())
454     Known.makeNonNegative();
455   else if (isKnownNegative && !Known.isNonNegative())
456     Known.makeNegative();
457 }
458 
459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
460                                              KnownBits &Known) {
461   unsigned BitWidth = Known.getBitWidth();
462   unsigned NumRanges = Ranges.getNumOperands() / 2;
463   assert(NumRanges >= 1);
464 
465   Known.Zero.setAllBits();
466   Known.One.setAllBits();
467 
468   for (unsigned i = 0; i < NumRanges; ++i) {
469     ConstantInt *Lower =
470         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
471     ConstantInt *Upper =
472         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
473     ConstantRange Range(Lower->getValue(), Upper->getValue());
474 
475     // The first CommonPrefixBits of all values in Range are equal.
476     unsigned CommonPrefixBits =
477         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
478     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
479     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
480     Known.One &= UnsignedMax & Mask;
481     Known.Zero &= ~UnsignedMax & Mask;
482   }
483 }
484 
485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
486   SmallVector<const Value *, 16> WorkSet(1, I);
487   SmallPtrSet<const Value *, 32> Visited;
488   SmallPtrSet<const Value *, 16> EphValues;
489 
490   // The instruction defining an assumption's condition itself is always
491   // considered ephemeral to that assumption (even if it has other
492   // non-ephemeral users). See r246696's test case for an example.
493   if (is_contained(I->operands(), E))
494     return true;
495 
496   while (!WorkSet.empty()) {
497     const Value *V = WorkSet.pop_back_val();
498     if (!Visited.insert(V).second)
499       continue;
500 
501     // If all uses of this value are ephemeral, then so is this value.
502     if (llvm::all_of(V->users(), [&](const User *U) {
503                                    return EphValues.count(U);
504                                  })) {
505       if (V == E)
506         return true;
507 
508       if (V == I || isSafeToSpeculativelyExecute(V)) {
509        EphValues.insert(V);
510        if (const User *U = dyn_cast<User>(V))
511          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
512               J != JE; ++J)
513            WorkSet.push_back(*J);
514       }
515     }
516   }
517 
518   return false;
519 }
520 
521 // Is this an intrinsic that cannot be speculated but also cannot trap?
522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
523   if (const CallInst *CI = dyn_cast<CallInst>(I))
524     if (Function *F = CI->getCalledFunction())
525       switch (F->getIntrinsicID()) {
526       default: break;
527       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
528       case Intrinsic::assume:
529       case Intrinsic::sideeffect:
530       case Intrinsic::pseudoprobe:
531       case Intrinsic::dbg_declare:
532       case Intrinsic::dbg_value:
533       case Intrinsic::dbg_label:
534       case Intrinsic::invariant_start:
535       case Intrinsic::invariant_end:
536       case Intrinsic::lifetime_start:
537       case Intrinsic::lifetime_end:
538       case Intrinsic::objectsize:
539       case Intrinsic::ptr_annotation:
540       case Intrinsic::var_annotation:
541         return true;
542       }
543 
544   return false;
545 }
546 
547 bool llvm::isValidAssumeForContext(const Instruction *Inv,
548                                    const Instruction *CxtI,
549                                    const DominatorTree *DT) {
550   // There are two restrictions on the use of an assume:
551   //  1. The assume must dominate the context (or the control flow must
552   //     reach the assume whenever it reaches the context).
553   //  2. The context must not be in the assume's set of ephemeral values
554   //     (otherwise we will use the assume to prove that the condition
555   //     feeding the assume is trivially true, thus causing the removal of
556   //     the assume).
557 
558   if (Inv->getParent() == CxtI->getParent()) {
559     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
560     // in the BB.
561     if (Inv->comesBefore(CxtI))
562       return true;
563 
564     // Don't let an assume affect itself - this would cause the problems
565     // `isEphemeralValueOf` is trying to prevent, and it would also make
566     // the loop below go out of bounds.
567     if (Inv == CxtI)
568       return false;
569 
570     // The context comes first, but they're both in the same block.
571     // Make sure there is nothing in between that might interrupt
572     // the control flow, not even CxtI itself.
573     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
574       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
575         return false;
576 
577     return !isEphemeralValueOf(Inv, CxtI);
578   }
579 
580   // Inv and CxtI are in different blocks.
581   if (DT) {
582     if (DT->dominates(Inv, CxtI))
583       return true;
584   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
585     // We don't have a DT, but this trivially dominates.
586     return true;
587   }
588 
589   return false;
590 }
591 
592 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
593   // Use of assumptions is context-sensitive. If we don't have a context, we
594   // cannot use them!
595   if (!Q.AC || !Q.CxtI)
596     return false;
597 
598   // Note that the patterns below need to be kept in sync with the code
599   // in AssumptionCache::updateAffectedValues.
600 
601   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
602     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
603 
604     Value *RHS;
605     CmpInst::Predicate Pred;
606     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
607       return false;
608     // assume(v u> y) -> assume(v != 0)
609     if (Pred == ICmpInst::ICMP_UGT)
610       return true;
611 
612     // assume(v != 0)
613     // We special-case this one to ensure that we handle `assume(v != null)`.
614     if (Pred == ICmpInst::ICMP_NE)
615       return match(RHS, m_Zero());
616 
617     // All other predicates - rely on generic ConstantRange handling.
618     ConstantInt *CI;
619     if (!match(RHS, m_ConstantInt(CI)))
620       return false;
621     ConstantRange RHSRange(CI->getValue());
622     ConstantRange TrueValues =
623         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
624     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
625   };
626 
627   if (Q.CxtI && V->getType()->isPointerTy()) {
628     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
629     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
630                               V->getType()->getPointerAddressSpace()))
631       AttrKinds.push_back(Attribute::Dereferenceable);
632 
633     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
634       return true;
635   }
636 
637   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
638     if (!AssumeVH)
639       continue;
640     CallInst *I = cast<CallInst>(AssumeVH);
641     assert(I->getFunction() == Q.CxtI->getFunction() &&
642            "Got assumption for the wrong function!");
643     if (Q.isExcluded(I))
644       continue;
645 
646     // Warning: This loop can end up being somewhat performance sensitive.
647     // We're running this loop for once for each value queried resulting in a
648     // runtime of ~O(#assumes * #values).
649 
650     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
651            "must be an assume intrinsic");
652 
653     Value *Arg = I->getArgOperand(0);
654     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
655     if (!Cmp)
656       continue;
657 
658     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
659       return true;
660   }
661 
662   return false;
663 }
664 
665 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
666                                        unsigned Depth, const Query &Q) {
667   // Use of assumptions is context-sensitive. If we don't have a context, we
668   // cannot use them!
669   if (!Q.AC || !Q.CxtI)
670     return;
671 
672   unsigned BitWidth = Known.getBitWidth();
673 
674   // Refine Known set if the pointer alignment is set by assume bundles.
675   if (V->getType()->isPointerTy()) {
676     if (RetainedKnowledge RK = getKnowledgeValidInContext(
677             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
678       Known.Zero.setLowBits(Log2_32(RK.ArgValue));
679     }
680   }
681 
682   // Note that the patterns below need to be kept in sync with the code
683   // in AssumptionCache::updateAffectedValues.
684 
685   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
686     if (!AssumeVH)
687       continue;
688     CallInst *I = cast<CallInst>(AssumeVH);
689     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
690            "Got assumption for the wrong function!");
691     if (Q.isExcluded(I))
692       continue;
693 
694     // Warning: This loop can end up being somewhat performance sensitive.
695     // We're running this loop for once for each value queried resulting in a
696     // runtime of ~O(#assumes * #values).
697 
698     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
699            "must be an assume intrinsic");
700 
701     Value *Arg = I->getArgOperand(0);
702 
703     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
704       assert(BitWidth == 1 && "assume operand is not i1?");
705       Known.setAllOnes();
706       return;
707     }
708     if (match(Arg, m_Not(m_Specific(V))) &&
709         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
710       assert(BitWidth == 1 && "assume operand is not i1?");
711       Known.setAllZero();
712       return;
713     }
714 
715     // The remaining tests are all recursive, so bail out if we hit the limit.
716     if (Depth == MaxAnalysisRecursionDepth)
717       continue;
718 
719     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
720     if (!Cmp)
721       continue;
722 
723     // Note that ptrtoint may change the bitwidth.
724     Value *A, *B;
725     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
726 
727     CmpInst::Predicate Pred;
728     uint64_t C;
729     switch (Cmp->getPredicate()) {
730     default:
731       break;
732     case ICmpInst::ICMP_EQ:
733       // assume(v = a)
734       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
735           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
736         KnownBits RHSKnown =
737             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
738         Known.Zero |= RHSKnown.Zero;
739         Known.One  |= RHSKnown.One;
740       // assume(v & b = a)
741       } else if (match(Cmp,
742                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
743                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
744         KnownBits RHSKnown =
745             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
746         KnownBits MaskKnown =
747             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
748 
749         // For those bits in the mask that are known to be one, we can propagate
750         // known bits from the RHS to V.
751         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
752         Known.One  |= RHSKnown.One  & MaskKnown.One;
753       // assume(~(v & b) = a)
754       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
755                                      m_Value(A))) &&
756                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
757         KnownBits RHSKnown =
758             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
759         KnownBits MaskKnown =
760             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
761 
762         // For those bits in the mask that are known to be one, we can propagate
763         // inverted known bits from the RHS to V.
764         Known.Zero |= RHSKnown.One  & MaskKnown.One;
765         Known.One  |= RHSKnown.Zero & MaskKnown.One;
766       // assume(v | b = a)
767       } else if (match(Cmp,
768                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
769                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
770         KnownBits RHSKnown =
771             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
772         KnownBits BKnown =
773             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
774 
775         // For those bits in B that are known to be zero, we can propagate known
776         // bits from the RHS to V.
777         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
778         Known.One  |= RHSKnown.One  & BKnown.Zero;
779       // assume(~(v | b) = a)
780       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
781                                      m_Value(A))) &&
782                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
783         KnownBits RHSKnown =
784             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
785         KnownBits BKnown =
786             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
787 
788         // For those bits in B that are known to be zero, we can propagate
789         // inverted known bits from the RHS to V.
790         Known.Zero |= RHSKnown.One  & BKnown.Zero;
791         Known.One  |= RHSKnown.Zero & BKnown.Zero;
792       // assume(v ^ b = a)
793       } else if (match(Cmp,
794                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
795                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
796         KnownBits RHSKnown =
797             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
798         KnownBits BKnown =
799             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
800 
801         // For those bits in B that are known to be zero, we can propagate known
802         // bits from the RHS to V. For those bits in B that are known to be one,
803         // we can propagate inverted known bits from the RHS to V.
804         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
805         Known.One  |= RHSKnown.One  & BKnown.Zero;
806         Known.Zero |= RHSKnown.One  & BKnown.One;
807         Known.One  |= RHSKnown.Zero & BKnown.One;
808       // assume(~(v ^ b) = a)
809       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
810                                      m_Value(A))) &&
811                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
812         KnownBits RHSKnown =
813             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
814         KnownBits BKnown =
815             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
816 
817         // For those bits in B that are known to be zero, we can propagate
818         // inverted known bits from the RHS to V. For those bits in B that are
819         // known to be one, we can propagate known bits from the RHS to V.
820         Known.Zero |= RHSKnown.One  & BKnown.Zero;
821         Known.One  |= RHSKnown.Zero & BKnown.Zero;
822         Known.Zero |= RHSKnown.Zero & BKnown.One;
823         Known.One  |= RHSKnown.One  & BKnown.One;
824       // assume(v << c = a)
825       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
826                                      m_Value(A))) &&
827                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
828         KnownBits RHSKnown =
829             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
830 
831         // For those bits in RHS that are known, we can propagate them to known
832         // bits in V shifted to the right by C.
833         RHSKnown.Zero.lshrInPlace(C);
834         Known.Zero |= RHSKnown.Zero;
835         RHSKnown.One.lshrInPlace(C);
836         Known.One  |= RHSKnown.One;
837       // assume(~(v << c) = a)
838       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
839                                      m_Value(A))) &&
840                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
841         KnownBits RHSKnown =
842             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
843         // For those bits in RHS that are known, we can propagate them inverted
844         // to known bits in V shifted to the right by C.
845         RHSKnown.One.lshrInPlace(C);
846         Known.Zero |= RHSKnown.One;
847         RHSKnown.Zero.lshrInPlace(C);
848         Known.One  |= RHSKnown.Zero;
849       // assume(v >> c = a)
850       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
851                                      m_Value(A))) &&
852                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
853         KnownBits RHSKnown =
854             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
855         // For those bits in RHS that are known, we can propagate them to known
856         // bits in V shifted to the right by C.
857         Known.Zero |= RHSKnown.Zero << C;
858         Known.One  |= RHSKnown.One  << C;
859       // assume(~(v >> c) = a)
860       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
861                                      m_Value(A))) &&
862                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
863         KnownBits RHSKnown =
864             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
865         // For those bits in RHS that are known, we can propagate them inverted
866         // to known bits in V shifted to the right by C.
867         Known.Zero |= RHSKnown.One  << C;
868         Known.One  |= RHSKnown.Zero << C;
869       }
870       break;
871     case ICmpInst::ICMP_SGE:
872       // assume(v >=_s c) where c is non-negative
873       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
874           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
875         KnownBits RHSKnown =
876             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
877 
878         if (RHSKnown.isNonNegative()) {
879           // We know that the sign bit is zero.
880           Known.makeNonNegative();
881         }
882       }
883       break;
884     case ICmpInst::ICMP_SGT:
885       // assume(v >_s c) where c is at least -1.
886       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
887           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
888         KnownBits RHSKnown =
889             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
890 
891         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
892           // We know that the sign bit is zero.
893           Known.makeNonNegative();
894         }
895       }
896       break;
897     case ICmpInst::ICMP_SLE:
898       // assume(v <=_s c) where c is negative
899       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
900           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
901         KnownBits RHSKnown =
902             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
903 
904         if (RHSKnown.isNegative()) {
905           // We know that the sign bit is one.
906           Known.makeNegative();
907         }
908       }
909       break;
910     case ICmpInst::ICMP_SLT:
911       // assume(v <_s c) where c is non-positive
912       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
913           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
914         KnownBits RHSKnown =
915             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
916 
917         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
918           // We know that the sign bit is one.
919           Known.makeNegative();
920         }
921       }
922       break;
923     case ICmpInst::ICMP_ULE:
924       // assume(v <=_u c)
925       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
926           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
927         KnownBits RHSKnown =
928             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
929 
930         // Whatever high bits in c are zero are known to be zero.
931         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
932       }
933       break;
934     case ICmpInst::ICMP_ULT:
935       // assume(v <_u c)
936       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
937           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
938         KnownBits RHSKnown =
939             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
940 
941         // If the RHS is known zero, then this assumption must be wrong (nothing
942         // is unsigned less than zero). Signal a conflict and get out of here.
943         if (RHSKnown.isZero()) {
944           Known.Zero.setAllBits();
945           Known.One.setAllBits();
946           break;
947         }
948 
949         // Whatever high bits in c are zero are known to be zero (if c is a power
950         // of 2, then one more).
951         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
952           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
953         else
954           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
955       }
956       break;
957     }
958   }
959 
960   // If assumptions conflict with each other or previous known bits, then we
961   // have a logical fallacy. It's possible that the assumption is not reachable,
962   // so this isn't a real bug. On the other hand, the program may have undefined
963   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
964   // clear out the known bits, try to warn the user, and hope for the best.
965   if (Known.Zero.intersects(Known.One)) {
966     Known.resetAll();
967 
968     if (Q.ORE)
969       Q.ORE->emit([&]() {
970         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
971         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
972                                           CxtI)
973                << "Detected conflicting code assumptions. Program may "
974                   "have undefined behavior, or compiler may have "
975                   "internal error.";
976       });
977   }
978 }
979 
980 /// Compute known bits from a shift operator, including those with a
981 /// non-constant shift amount. Known is the output of this function. Known2 is a
982 /// pre-allocated temporary with the same bit width as Known and on return
983 /// contains the known bit of the shift value source. KF is an
984 /// operator-specific function that, given the known-bits and a shift amount,
985 /// compute the implied known-bits of the shift operator's result respectively
986 /// for that shift amount. The results from calling KF are conservatively
987 /// combined for all permitted shift amounts.
988 static void computeKnownBitsFromShiftOperator(
989     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
990     KnownBits &Known2, unsigned Depth, const Query &Q,
991     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
992   unsigned BitWidth = Known.getBitWidth();
993   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
994   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
995 
996   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
997   // BitWidth > 64 and any upper bits are known, we'll end up returning the
998   // limit value (which implies all bits are known).
999   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1000   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1001   bool ShiftAmtIsConstant = Known.isConstant();
1002   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
1003 
1004   if (ShiftAmtIsConstant) {
1005     Known = KF(Known2, Known);
1006 
1007     // If the known bits conflict, this must be an overflowing left shift, so
1008     // the shift result is poison. We can return anything we want. Choose 0 for
1009     // the best folding opportunity.
1010     if (Known.hasConflict())
1011       Known.setAllZero();
1012 
1013     return;
1014   }
1015 
1016   // If the shift amount could be greater than or equal to the bit-width of the
1017   // LHS, the value could be poison, but bail out because the check below is
1018   // expensive.
1019   // TODO: Should we just carry on?
1020   if (MaxShiftAmtIsOutOfRange) {
1021     Known.resetAll();
1022     return;
1023   }
1024 
1025   // It would be more-clearly correct to use the two temporaries for this
1026   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1027   Known.resetAll();
1028 
1029   // If we know the shifter operand is nonzero, we can sometimes infer more
1030   // known bits. However this is expensive to compute, so be lazy about it and
1031   // only compute it when absolutely necessary.
1032   Optional<bool> ShifterOperandIsNonZero;
1033 
1034   // Early exit if we can't constrain any well-defined shift amount.
1035   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1036       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1037     ShifterOperandIsNonZero =
1038         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1039     if (!*ShifterOperandIsNonZero)
1040       return;
1041   }
1042 
1043   Known.Zero.setAllBits();
1044   Known.One.setAllBits();
1045   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1046     // Combine the shifted known input bits only for those shift amounts
1047     // compatible with its known constraints.
1048     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1049       continue;
1050     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1051       continue;
1052     // If we know the shifter is nonzero, we may be able to infer more known
1053     // bits. This check is sunk down as far as possible to avoid the expensive
1054     // call to isKnownNonZero if the cheaper checks above fail.
1055     if (ShiftAmt == 0) {
1056       if (!ShifterOperandIsNonZero.hasValue())
1057         ShifterOperandIsNonZero =
1058             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1059       if (*ShifterOperandIsNonZero)
1060         continue;
1061     }
1062 
1063     Known = KnownBits::commonBits(
1064         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1065   }
1066 
1067   // If the known bits conflict, the result is poison. Return a 0 and hope the
1068   // caller can further optimize that.
1069   if (Known.hasConflict())
1070     Known.setAllZero();
1071 }
1072 
1073 static void computeKnownBitsFromOperator(const Operator *I,
1074                                          const APInt &DemandedElts,
1075                                          KnownBits &Known, unsigned Depth,
1076                                          const Query &Q) {
1077   unsigned BitWidth = Known.getBitWidth();
1078 
1079   KnownBits Known2(BitWidth);
1080   switch (I->getOpcode()) {
1081   default: break;
1082   case Instruction::Load:
1083     if (MDNode *MD =
1084             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1085       computeKnownBitsFromRangeMetadata(*MD, Known);
1086     break;
1087   case Instruction::And: {
1088     // If either the LHS or the RHS are Zero, the result is zero.
1089     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1090     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1091 
1092     Known &= Known2;
1093 
1094     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1095     // here we handle the more general case of adding any odd number by
1096     // matching the form add(x, add(x, y)) where y is odd.
1097     // TODO: This could be generalized to clearing any bit set in y where the
1098     // following bit is known to be unset in y.
1099     Value *X = nullptr, *Y = nullptr;
1100     if (!Known.Zero[0] && !Known.One[0] &&
1101         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1102       Known2.resetAll();
1103       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1104       if (Known2.countMinTrailingOnes() > 0)
1105         Known.Zero.setBit(0);
1106     }
1107     break;
1108   }
1109   case Instruction::Or:
1110     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1111     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1112 
1113     Known |= Known2;
1114     break;
1115   case Instruction::Xor:
1116     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1117     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1118 
1119     Known ^= Known2;
1120     break;
1121   case Instruction::Mul: {
1122     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1123     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1124                         Known, Known2, Depth, Q);
1125     break;
1126   }
1127   case Instruction::UDiv: {
1128     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1129     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1130     Known = KnownBits::udiv(Known, Known2);
1131     break;
1132   }
1133   case Instruction::Select: {
1134     const Value *LHS = nullptr, *RHS = nullptr;
1135     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1136     if (SelectPatternResult::isMinOrMax(SPF)) {
1137       computeKnownBits(RHS, Known, Depth + 1, Q);
1138       computeKnownBits(LHS, Known2, Depth + 1, Q);
1139       switch (SPF) {
1140       default:
1141         llvm_unreachable("Unhandled select pattern flavor!");
1142       case SPF_SMAX:
1143         Known = KnownBits::smax(Known, Known2);
1144         break;
1145       case SPF_SMIN:
1146         Known = KnownBits::smin(Known, Known2);
1147         break;
1148       case SPF_UMAX:
1149         Known = KnownBits::umax(Known, Known2);
1150         break;
1151       case SPF_UMIN:
1152         Known = KnownBits::umin(Known, Known2);
1153         break;
1154       }
1155       break;
1156     }
1157 
1158     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1159     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1160 
1161     // Only known if known in both the LHS and RHS.
1162     Known = KnownBits::commonBits(Known, Known2);
1163 
1164     if (SPF == SPF_ABS) {
1165       // RHS from matchSelectPattern returns the negation part of abs pattern.
1166       // If the negate has an NSW flag we can assume the sign bit of the result
1167       // will be 0 because that makes abs(INT_MIN) undefined.
1168       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1169           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1170         Known.Zero.setSignBit();
1171     }
1172 
1173     break;
1174   }
1175   case Instruction::FPTrunc:
1176   case Instruction::FPExt:
1177   case Instruction::FPToUI:
1178   case Instruction::FPToSI:
1179   case Instruction::SIToFP:
1180   case Instruction::UIToFP:
1181     break; // Can't work with floating point.
1182   case Instruction::PtrToInt:
1183   case Instruction::IntToPtr:
1184     // Fall through and handle them the same as zext/trunc.
1185     LLVM_FALLTHROUGH;
1186   case Instruction::ZExt:
1187   case Instruction::Trunc: {
1188     Type *SrcTy = I->getOperand(0)->getType();
1189 
1190     unsigned SrcBitWidth;
1191     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1192     // which fall through here.
1193     Type *ScalarTy = SrcTy->getScalarType();
1194     SrcBitWidth = ScalarTy->isPointerTy() ?
1195       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1196       Q.DL.getTypeSizeInBits(ScalarTy);
1197 
1198     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1199     Known = Known.anyextOrTrunc(SrcBitWidth);
1200     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1201     Known = Known.zextOrTrunc(BitWidth);
1202     break;
1203   }
1204   case Instruction::BitCast: {
1205     Type *SrcTy = I->getOperand(0)->getType();
1206     if (SrcTy->isIntOrPtrTy() &&
1207         // TODO: For now, not handling conversions like:
1208         // (bitcast i64 %x to <2 x i32>)
1209         !I->getType()->isVectorTy()) {
1210       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1211       break;
1212     }
1213     break;
1214   }
1215   case Instruction::SExt: {
1216     // Compute the bits in the result that are not present in the input.
1217     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1218 
1219     Known = Known.trunc(SrcBitWidth);
1220     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1221     // If the sign bit of the input is known set or clear, then we know the
1222     // top bits of the result.
1223     Known = Known.sext(BitWidth);
1224     break;
1225   }
1226   case Instruction::Shl: {
1227     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1228     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1229       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1230       // If this shift has "nsw" keyword, then the result is either a poison
1231       // value or has the same sign bit as the first operand.
1232       if (NSW) {
1233         if (KnownVal.Zero.isSignBitSet())
1234           Result.Zero.setSignBit();
1235         if (KnownVal.One.isSignBitSet())
1236           Result.One.setSignBit();
1237       }
1238       return Result;
1239     };
1240     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1241                                       KF);
1242     break;
1243   }
1244   case Instruction::LShr: {
1245     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1246       return KnownBits::lshr(KnownVal, KnownAmt);
1247     };
1248     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1249                                       KF);
1250     break;
1251   }
1252   case Instruction::AShr: {
1253     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1254       return KnownBits::ashr(KnownVal, KnownAmt);
1255     };
1256     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1257                                       KF);
1258     break;
1259   }
1260   case Instruction::Sub: {
1261     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1262     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1263                            DemandedElts, Known, Known2, Depth, Q);
1264     break;
1265   }
1266   case Instruction::Add: {
1267     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1268     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1269                            DemandedElts, Known, Known2, Depth, Q);
1270     break;
1271   }
1272   case Instruction::SRem:
1273     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1274     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1275     Known = KnownBits::srem(Known, Known2);
1276     break;
1277 
1278   case Instruction::URem:
1279     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1280     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1281     Known = KnownBits::urem(Known, Known2);
1282     break;
1283   case Instruction::Alloca:
1284     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1285     break;
1286   case Instruction::GetElementPtr: {
1287     // Analyze all of the subscripts of this getelementptr instruction
1288     // to determine if we can prove known low zero bits.
1289     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1290     // Accumulate the constant indices in a separate variable
1291     // to minimize the number of calls to computeForAddSub.
1292     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1293 
1294     gep_type_iterator GTI = gep_type_begin(I);
1295     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1296       // TrailZ can only become smaller, short-circuit if we hit zero.
1297       if (Known.isUnknown())
1298         break;
1299 
1300       Value *Index = I->getOperand(i);
1301 
1302       // Handle case when index is zero.
1303       Constant *CIndex = dyn_cast<Constant>(Index);
1304       if (CIndex && CIndex->isZeroValue())
1305         continue;
1306 
1307       if (StructType *STy = GTI.getStructTypeOrNull()) {
1308         // Handle struct member offset arithmetic.
1309 
1310         assert(CIndex &&
1311                "Access to structure field must be known at compile time");
1312 
1313         if (CIndex->getType()->isVectorTy())
1314           Index = CIndex->getSplatValue();
1315 
1316         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1317         const StructLayout *SL = Q.DL.getStructLayout(STy);
1318         uint64_t Offset = SL->getElementOffset(Idx);
1319         AccConstIndices += Offset;
1320         continue;
1321       }
1322 
1323       // Handle array index arithmetic.
1324       Type *IndexedTy = GTI.getIndexedType();
1325       if (!IndexedTy->isSized()) {
1326         Known.resetAll();
1327         break;
1328       }
1329 
1330       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1331       KnownBits IndexBits(IndexBitWidth);
1332       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1333       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1334       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1335       KnownBits ScalingFactor(IndexBitWidth);
1336       // Multiply by current sizeof type.
1337       // &A[i] == A + i * sizeof(*A[i]).
1338       if (IndexTypeSize.isScalable()) {
1339         // For scalable types the only thing we know about sizeof is
1340         // that this is a multiple of the minimum size.
1341         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1342       } else if (IndexBits.isConstant()) {
1343         APInt IndexConst = IndexBits.getConstant();
1344         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1345         IndexConst *= ScalingFactor;
1346         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1347         continue;
1348       } else {
1349         ScalingFactor.Zero = ~TypeSizeInBytes;
1350         ScalingFactor.One = TypeSizeInBytes;
1351       }
1352       IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor);
1353 
1354       // If the offsets have a different width from the pointer, according
1355       // to the language reference we need to sign-extend or truncate them
1356       // to the width of the pointer.
1357       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1358 
1359       // Note that inbounds does *not* guarantee nsw for the addition, as only
1360       // the offset is signed, while the base address is unsigned.
1361       Known = KnownBits::computeForAddSub(
1362           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1363     }
1364     if (!Known.isUnknown() && !AccConstIndices.isNullValue()) {
1365       KnownBits Index(BitWidth);
1366       Index.Zero = ~AccConstIndices;
1367       Index.One = AccConstIndices;
1368       Known = KnownBits::computeForAddSub(
1369           /*Add=*/true, /*NSW=*/false, Known, Index);
1370     }
1371     break;
1372   }
1373   case Instruction::PHI: {
1374     const PHINode *P = cast<PHINode>(I);
1375     // Handle the case of a simple two-predecessor recurrence PHI.
1376     // There's a lot more that could theoretically be done here, but
1377     // this is sufficient to catch some interesting cases.
1378     if (P->getNumIncomingValues() == 2) {
1379       for (unsigned i = 0; i != 2; ++i) {
1380         Value *L = P->getIncomingValue(i);
1381         Value *R = P->getIncomingValue(!i);
1382         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1383         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1384         Operator *LU = dyn_cast<Operator>(L);
1385         if (!LU)
1386           continue;
1387         unsigned Opcode = LU->getOpcode();
1388         // Check for operations that have the property that if
1389         // both their operands have low zero bits, the result
1390         // will have low zero bits.
1391         if (Opcode == Instruction::Add ||
1392             Opcode == Instruction::Sub ||
1393             Opcode == Instruction::And ||
1394             Opcode == Instruction::Or ||
1395             Opcode == Instruction::Mul) {
1396           Value *LL = LU->getOperand(0);
1397           Value *LR = LU->getOperand(1);
1398           // Find a recurrence.
1399           if (LL == I)
1400             L = LR;
1401           else if (LR == I)
1402             L = LL;
1403           else
1404             continue; // Check for recurrence with L and R flipped.
1405 
1406           // Change the context instruction to the "edge" that flows into the
1407           // phi. This is important because that is where the value is actually
1408           // "evaluated" even though it is used later somewhere else. (see also
1409           // D69571).
1410           Query RecQ = Q;
1411 
1412           // Ok, we have a PHI of the form L op= R. Check for low
1413           // zero bits.
1414           RecQ.CxtI = RInst;
1415           computeKnownBits(R, Known2, Depth + 1, RecQ);
1416 
1417           // We need to take the minimum number of known bits
1418           KnownBits Known3(BitWidth);
1419           RecQ.CxtI = LInst;
1420           computeKnownBits(L, Known3, Depth + 1, RecQ);
1421 
1422           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1423                                          Known3.countMinTrailingZeros()));
1424 
1425           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1426           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1427             // If initial value of recurrence is nonnegative, and we are adding
1428             // a nonnegative number with nsw, the result can only be nonnegative
1429             // or poison value regardless of the number of times we execute the
1430             // add in phi recurrence. If initial value is negative and we are
1431             // adding a negative number with nsw, the result can only be
1432             // negative or poison value. Similar arguments apply to sub and mul.
1433             //
1434             // (add non-negative, non-negative) --> non-negative
1435             // (add negative, negative) --> negative
1436             if (Opcode == Instruction::Add) {
1437               if (Known2.isNonNegative() && Known3.isNonNegative())
1438                 Known.makeNonNegative();
1439               else if (Known2.isNegative() && Known3.isNegative())
1440                 Known.makeNegative();
1441             }
1442 
1443             // (sub nsw non-negative, negative) --> non-negative
1444             // (sub nsw negative, non-negative) --> negative
1445             else if (Opcode == Instruction::Sub && LL == I) {
1446               if (Known2.isNonNegative() && Known3.isNegative())
1447                 Known.makeNonNegative();
1448               else if (Known2.isNegative() && Known3.isNonNegative())
1449                 Known.makeNegative();
1450             }
1451 
1452             // (mul nsw non-negative, non-negative) --> non-negative
1453             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1454                      Known3.isNonNegative())
1455               Known.makeNonNegative();
1456           }
1457 
1458           break;
1459         }
1460       }
1461     }
1462 
1463     // Unreachable blocks may have zero-operand PHI nodes.
1464     if (P->getNumIncomingValues() == 0)
1465       break;
1466 
1467     // Otherwise take the unions of the known bit sets of the operands,
1468     // taking conservative care to avoid excessive recursion.
1469     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1470       // Skip if every incoming value references to ourself.
1471       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1472         break;
1473 
1474       Known.Zero.setAllBits();
1475       Known.One.setAllBits();
1476       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1477         Value *IncValue = P->getIncomingValue(u);
1478         // Skip direct self references.
1479         if (IncValue == P) continue;
1480 
1481         // Change the context instruction to the "edge" that flows into the
1482         // phi. This is important because that is where the value is actually
1483         // "evaluated" even though it is used later somewhere else. (see also
1484         // D69571).
1485         Query RecQ = Q;
1486         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1487 
1488         Known2 = KnownBits(BitWidth);
1489         // Recurse, but cap the recursion to one level, because we don't
1490         // want to waste time spinning around in loops.
1491         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1492         Known = KnownBits::commonBits(Known, Known2);
1493         // If all bits have been ruled out, there's no need to check
1494         // more operands.
1495         if (Known.isUnknown())
1496           break;
1497       }
1498     }
1499     break;
1500   }
1501   case Instruction::Call:
1502   case Instruction::Invoke:
1503     // If range metadata is attached to this call, set known bits from that,
1504     // and then intersect with known bits based on other properties of the
1505     // function.
1506     if (MDNode *MD =
1507             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1508       computeKnownBitsFromRangeMetadata(*MD, Known);
1509     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1510       computeKnownBits(RV, Known2, Depth + 1, Q);
1511       Known.Zero |= Known2.Zero;
1512       Known.One |= Known2.One;
1513     }
1514     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1515       switch (II->getIntrinsicID()) {
1516       default: break;
1517       case Intrinsic::abs: {
1518         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1519         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1520         Known = Known2.abs(IntMinIsPoison);
1521         break;
1522       }
1523       case Intrinsic::bitreverse:
1524         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1525         Known.Zero |= Known2.Zero.reverseBits();
1526         Known.One |= Known2.One.reverseBits();
1527         break;
1528       case Intrinsic::bswap:
1529         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1530         Known.Zero |= Known2.Zero.byteSwap();
1531         Known.One |= Known2.One.byteSwap();
1532         break;
1533       case Intrinsic::ctlz: {
1534         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1535         // If we have a known 1, its position is our upper bound.
1536         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1537         // If this call is undefined for 0, the result will be less than 2^n.
1538         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1539           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1540         unsigned LowBits = Log2_32(PossibleLZ)+1;
1541         Known.Zero.setBitsFrom(LowBits);
1542         break;
1543       }
1544       case Intrinsic::cttz: {
1545         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1546         // If we have a known 1, its position is our upper bound.
1547         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1548         // If this call is undefined for 0, the result will be less than 2^n.
1549         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1550           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1551         unsigned LowBits = Log2_32(PossibleTZ)+1;
1552         Known.Zero.setBitsFrom(LowBits);
1553         break;
1554       }
1555       case Intrinsic::ctpop: {
1556         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1557         // We can bound the space the count needs.  Also, bits known to be zero
1558         // can't contribute to the population.
1559         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1560         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1561         Known.Zero.setBitsFrom(LowBits);
1562         // TODO: we could bound KnownOne using the lower bound on the number
1563         // of bits which might be set provided by popcnt KnownOne2.
1564         break;
1565       }
1566       case Intrinsic::fshr:
1567       case Intrinsic::fshl: {
1568         const APInt *SA;
1569         if (!match(I->getOperand(2), m_APInt(SA)))
1570           break;
1571 
1572         // Normalize to funnel shift left.
1573         uint64_t ShiftAmt = SA->urem(BitWidth);
1574         if (II->getIntrinsicID() == Intrinsic::fshr)
1575           ShiftAmt = BitWidth - ShiftAmt;
1576 
1577         KnownBits Known3(BitWidth);
1578         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1579         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1580 
1581         Known.Zero =
1582             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1583         Known.One =
1584             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1585         break;
1586       }
1587       case Intrinsic::uadd_sat:
1588       case Intrinsic::usub_sat: {
1589         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1590         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1591         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1592 
1593         // Add: Leading ones of either operand are preserved.
1594         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1595         // as leading zeros in the result.
1596         unsigned LeadingKnown;
1597         if (IsAdd)
1598           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1599                                   Known2.countMinLeadingOnes());
1600         else
1601           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1602                                   Known2.countMinLeadingOnes());
1603 
1604         Known = KnownBits::computeForAddSub(
1605             IsAdd, /* NSW */ false, Known, Known2);
1606 
1607         // We select between the operation result and all-ones/zero
1608         // respectively, so we can preserve known ones/zeros.
1609         if (IsAdd) {
1610           Known.One.setHighBits(LeadingKnown);
1611           Known.Zero.clearAllBits();
1612         } else {
1613           Known.Zero.setHighBits(LeadingKnown);
1614           Known.One.clearAllBits();
1615         }
1616         break;
1617       }
1618       case Intrinsic::umin:
1619         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1620         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1621         Known = KnownBits::umin(Known, Known2);
1622         break;
1623       case Intrinsic::umax:
1624         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1625         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1626         Known = KnownBits::umax(Known, Known2);
1627         break;
1628       case Intrinsic::smin:
1629         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1630         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1631         Known = KnownBits::smin(Known, Known2);
1632         break;
1633       case Intrinsic::smax:
1634         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1635         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1636         Known = KnownBits::smax(Known, Known2);
1637         break;
1638       case Intrinsic::x86_sse42_crc32_64_64:
1639         Known.Zero.setBitsFrom(32);
1640         break;
1641       }
1642     }
1643     break;
1644   case Instruction::ShuffleVector: {
1645     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1646     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1647     if (!Shuf) {
1648       Known.resetAll();
1649       return;
1650     }
1651     // For undef elements, we don't know anything about the common state of
1652     // the shuffle result.
1653     APInt DemandedLHS, DemandedRHS;
1654     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1655       Known.resetAll();
1656       return;
1657     }
1658     Known.One.setAllBits();
1659     Known.Zero.setAllBits();
1660     if (!!DemandedLHS) {
1661       const Value *LHS = Shuf->getOperand(0);
1662       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1663       // If we don't know any bits, early out.
1664       if (Known.isUnknown())
1665         break;
1666     }
1667     if (!!DemandedRHS) {
1668       const Value *RHS = Shuf->getOperand(1);
1669       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1670       Known = KnownBits::commonBits(Known, Known2);
1671     }
1672     break;
1673   }
1674   case Instruction::InsertElement: {
1675     const Value *Vec = I->getOperand(0);
1676     const Value *Elt = I->getOperand(1);
1677     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1678     // Early out if the index is non-constant or out-of-range.
1679     unsigned NumElts = DemandedElts.getBitWidth();
1680     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1681       Known.resetAll();
1682       return;
1683     }
1684     Known.One.setAllBits();
1685     Known.Zero.setAllBits();
1686     unsigned EltIdx = CIdx->getZExtValue();
1687     // Do we demand the inserted element?
1688     if (DemandedElts[EltIdx]) {
1689       computeKnownBits(Elt, Known, Depth + 1, Q);
1690       // If we don't know any bits, early out.
1691       if (Known.isUnknown())
1692         break;
1693     }
1694     // We don't need the base vector element that has been inserted.
1695     APInt DemandedVecElts = DemandedElts;
1696     DemandedVecElts.clearBit(EltIdx);
1697     if (!!DemandedVecElts) {
1698       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1699       Known = KnownBits::commonBits(Known, Known2);
1700     }
1701     break;
1702   }
1703   case Instruction::ExtractElement: {
1704     // Look through extract element. If the index is non-constant or
1705     // out-of-range demand all elements, otherwise just the extracted element.
1706     const Value *Vec = I->getOperand(0);
1707     const Value *Idx = I->getOperand(1);
1708     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1709     if (isa<ScalableVectorType>(Vec->getType())) {
1710       // FIXME: there's probably *something* we can do with scalable vectors
1711       Known.resetAll();
1712       break;
1713     }
1714     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1715     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1716     if (CIdx && CIdx->getValue().ult(NumElts))
1717       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1718     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1719     break;
1720   }
1721   case Instruction::ExtractValue:
1722     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1723       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1724       if (EVI->getNumIndices() != 1) break;
1725       if (EVI->getIndices()[0] == 0) {
1726         switch (II->getIntrinsicID()) {
1727         default: break;
1728         case Intrinsic::uadd_with_overflow:
1729         case Intrinsic::sadd_with_overflow:
1730           computeKnownBitsAddSub(true, II->getArgOperand(0),
1731                                  II->getArgOperand(1), false, DemandedElts,
1732                                  Known, Known2, Depth, Q);
1733           break;
1734         case Intrinsic::usub_with_overflow:
1735         case Intrinsic::ssub_with_overflow:
1736           computeKnownBitsAddSub(false, II->getArgOperand(0),
1737                                  II->getArgOperand(1), false, DemandedElts,
1738                                  Known, Known2, Depth, Q);
1739           break;
1740         case Intrinsic::umul_with_overflow:
1741         case Intrinsic::smul_with_overflow:
1742           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1743                               DemandedElts, Known, Known2, Depth, Q);
1744           break;
1745         }
1746       }
1747     }
1748     break;
1749   case Instruction::Freeze:
1750     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1751                                   Depth + 1))
1752       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1753     break;
1754   }
1755 }
1756 
1757 /// Determine which bits of V are known to be either zero or one and return
1758 /// them.
1759 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1760                            unsigned Depth, const Query &Q) {
1761   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1762   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1763   return Known;
1764 }
1765 
1766 /// Determine which bits of V are known to be either zero or one and return
1767 /// them.
1768 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1769   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1770   computeKnownBits(V, Known, Depth, Q);
1771   return Known;
1772 }
1773 
1774 /// Determine which bits of V are known to be either zero or one and return
1775 /// them in the Known bit set.
1776 ///
1777 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1778 /// we cannot optimize based on the assumption that it is zero without changing
1779 /// it to be an explicit zero.  If we don't change it to zero, other code could
1780 /// optimized based on the contradictory assumption that it is non-zero.
1781 /// Because instcombine aggressively folds operations with undef args anyway,
1782 /// this won't lose us code quality.
1783 ///
1784 /// This function is defined on values with integer type, values with pointer
1785 /// type, and vectors of integers.  In the case
1786 /// where V is a vector, known zero, and known one values are the
1787 /// same width as the vector element, and the bit is set only if it is true
1788 /// for all of the demanded elements in the vector specified by DemandedElts.
1789 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1790                       KnownBits &Known, unsigned Depth, const Query &Q) {
1791   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1792     // No demanded elts or V is a scalable vector, better to assume we don't
1793     // know anything.
1794     Known.resetAll();
1795     return;
1796   }
1797 
1798   assert(V && "No Value?");
1799   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1800 
1801 #ifndef NDEBUG
1802   Type *Ty = V->getType();
1803   unsigned BitWidth = Known.getBitWidth();
1804 
1805   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1806          "Not integer or pointer type!");
1807 
1808   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1809     assert(
1810         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1811         "DemandedElt width should equal the fixed vector number of elements");
1812   } else {
1813     assert(DemandedElts == APInt(1, 1) &&
1814            "DemandedElt width should be 1 for scalars");
1815   }
1816 
1817   Type *ScalarTy = Ty->getScalarType();
1818   if (ScalarTy->isPointerTy()) {
1819     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1820            "V and Known should have same BitWidth");
1821   } else {
1822     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1823            "V and Known should have same BitWidth");
1824   }
1825 #endif
1826 
1827   const APInt *C;
1828   if (match(V, m_APInt(C))) {
1829     // We know all of the bits for a scalar constant or a splat vector constant!
1830     Known.One = *C;
1831     Known.Zero = ~Known.One;
1832     return;
1833   }
1834   // Null and aggregate-zero are all-zeros.
1835   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1836     Known.setAllZero();
1837     return;
1838   }
1839   // Handle a constant vector by taking the intersection of the known bits of
1840   // each element.
1841   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1842     // We know that CDV must be a vector of integers. Take the intersection of
1843     // each element.
1844     Known.Zero.setAllBits(); Known.One.setAllBits();
1845     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1846       if (!DemandedElts[i])
1847         continue;
1848       APInt Elt = CDV->getElementAsAPInt(i);
1849       Known.Zero &= ~Elt;
1850       Known.One &= Elt;
1851     }
1852     return;
1853   }
1854 
1855   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1856     // We know that CV must be a vector of integers. Take the intersection of
1857     // each element.
1858     Known.Zero.setAllBits(); Known.One.setAllBits();
1859     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1860       if (!DemandedElts[i])
1861         continue;
1862       Constant *Element = CV->getAggregateElement(i);
1863       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1864       if (!ElementCI) {
1865         Known.resetAll();
1866         return;
1867       }
1868       const APInt &Elt = ElementCI->getValue();
1869       Known.Zero &= ~Elt;
1870       Known.One &= Elt;
1871     }
1872     return;
1873   }
1874 
1875   // Start out not knowing anything.
1876   Known.resetAll();
1877 
1878   // We can't imply anything about undefs.
1879   if (isa<UndefValue>(V))
1880     return;
1881 
1882   // There's no point in looking through other users of ConstantData for
1883   // assumptions.  Confirm that we've handled them all.
1884   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1885 
1886   // All recursive calls that increase depth must come after this.
1887   if (Depth == MaxAnalysisRecursionDepth)
1888     return;
1889 
1890   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1891   // the bits of its aliasee.
1892   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1893     if (!GA->isInterposable())
1894       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1895     return;
1896   }
1897 
1898   if (const Operator *I = dyn_cast<Operator>(V))
1899     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1900 
1901   // Aligned pointers have trailing zeros - refine Known.Zero set
1902   if (isa<PointerType>(V->getType())) {
1903     Align Alignment = V->getPointerAlignment(Q.DL);
1904     Known.Zero.setLowBits(Log2(Alignment));
1905   }
1906 
1907   // computeKnownBitsFromAssume strictly refines Known.
1908   // Therefore, we run them after computeKnownBitsFromOperator.
1909 
1910   // Check whether a nearby assume intrinsic can determine some known bits.
1911   computeKnownBitsFromAssume(V, Known, Depth, Q);
1912 
1913   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1914 }
1915 
1916 /// Return true if the given value is known to have exactly one
1917 /// bit set when defined. For vectors return true if every element is known to
1918 /// be a power of two when defined. Supports values with integer or pointer
1919 /// types and vectors of integers.
1920 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1921                             const Query &Q) {
1922   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1923 
1924   // Attempt to match against constants.
1925   if (OrZero && match(V, m_Power2OrZero()))
1926       return true;
1927   if (match(V, m_Power2()))
1928       return true;
1929 
1930   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1931   // it is shifted off the end then the result is undefined.
1932   if (match(V, m_Shl(m_One(), m_Value())))
1933     return true;
1934 
1935   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1936   // the bottom.  If it is shifted off the bottom then the result is undefined.
1937   if (match(V, m_LShr(m_SignMask(), m_Value())))
1938     return true;
1939 
1940   // The remaining tests are all recursive, so bail out if we hit the limit.
1941   if (Depth++ == MaxAnalysisRecursionDepth)
1942     return false;
1943 
1944   Value *X = nullptr, *Y = nullptr;
1945   // A shift left or a logical shift right of a power of two is a power of two
1946   // or zero.
1947   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1948                  match(V, m_LShr(m_Value(X), m_Value()))))
1949     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1950 
1951   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1952     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1953 
1954   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1955     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1956            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1957 
1958   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1959     // A power of two and'd with anything is a power of two or zero.
1960     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1961         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1962       return true;
1963     // X & (-X) is always a power of two or zero.
1964     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1965       return true;
1966     return false;
1967   }
1968 
1969   // Adding a power-of-two or zero to the same power-of-two or zero yields
1970   // either the original power-of-two, a larger power-of-two or zero.
1971   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1972     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1973     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1974         Q.IIQ.hasNoSignedWrap(VOBO)) {
1975       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1976           match(X, m_And(m_Value(), m_Specific(Y))))
1977         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1978           return true;
1979       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1980           match(Y, m_And(m_Value(), m_Specific(X))))
1981         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1982           return true;
1983 
1984       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1985       KnownBits LHSBits(BitWidth);
1986       computeKnownBits(X, LHSBits, Depth, Q);
1987 
1988       KnownBits RHSBits(BitWidth);
1989       computeKnownBits(Y, RHSBits, Depth, Q);
1990       // If i8 V is a power of two or zero:
1991       //  ZeroBits: 1 1 1 0 1 1 1 1
1992       // ~ZeroBits: 0 0 0 1 0 0 0 0
1993       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1994         // If OrZero isn't set, we cannot give back a zero result.
1995         // Make sure either the LHS or RHS has a bit set.
1996         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1997           return true;
1998     }
1999   }
2000 
2001   // An exact divide or right shift can only shift off zero bits, so the result
2002   // is a power of two only if the first operand is a power of two and not
2003   // copying a sign bit (sdiv int_min, 2).
2004   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2005       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2006     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2007                                   Depth, Q);
2008   }
2009 
2010   return false;
2011 }
2012 
2013 /// Test whether a GEP's result is known to be non-null.
2014 ///
2015 /// Uses properties inherent in a GEP to try to determine whether it is known
2016 /// to be non-null.
2017 ///
2018 /// Currently this routine does not support vector GEPs.
2019 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2020                               const Query &Q) {
2021   const Function *F = nullptr;
2022   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2023     F = I->getFunction();
2024 
2025   if (!GEP->isInBounds() ||
2026       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2027     return false;
2028 
2029   // FIXME: Support vector-GEPs.
2030   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2031 
2032   // If the base pointer is non-null, we cannot walk to a null address with an
2033   // inbounds GEP in address space zero.
2034   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2035     return true;
2036 
2037   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2038   // If so, then the GEP cannot produce a null pointer, as doing so would
2039   // inherently violate the inbounds contract within address space zero.
2040   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2041        GTI != GTE; ++GTI) {
2042     // Struct types are easy -- they must always be indexed by a constant.
2043     if (StructType *STy = GTI.getStructTypeOrNull()) {
2044       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2045       unsigned ElementIdx = OpC->getZExtValue();
2046       const StructLayout *SL = Q.DL.getStructLayout(STy);
2047       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2048       if (ElementOffset > 0)
2049         return true;
2050       continue;
2051     }
2052 
2053     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2054     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2055       continue;
2056 
2057     // Fast path the constant operand case both for efficiency and so we don't
2058     // increment Depth when just zipping down an all-constant GEP.
2059     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2060       if (!OpC->isZero())
2061         return true;
2062       continue;
2063     }
2064 
2065     // We post-increment Depth here because while isKnownNonZero increments it
2066     // as well, when we pop back up that increment won't persist. We don't want
2067     // to recurse 10k times just because we have 10k GEP operands. We don't
2068     // bail completely out because we want to handle constant GEPs regardless
2069     // of depth.
2070     if (Depth++ >= MaxAnalysisRecursionDepth)
2071       continue;
2072 
2073     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2074       return true;
2075   }
2076 
2077   return false;
2078 }
2079 
2080 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2081                                                   const Instruction *CtxI,
2082                                                   const DominatorTree *DT) {
2083   if (isa<Constant>(V))
2084     return false;
2085 
2086   if (!CtxI || !DT)
2087     return false;
2088 
2089   unsigned NumUsesExplored = 0;
2090   for (auto *U : V->users()) {
2091     // Avoid massive lists
2092     if (NumUsesExplored >= DomConditionsMaxUses)
2093       break;
2094     NumUsesExplored++;
2095 
2096     // If the value is used as an argument to a call or invoke, then argument
2097     // attributes may provide an answer about null-ness.
2098     if (const auto *CB = dyn_cast<CallBase>(U))
2099       if (auto *CalledFunc = CB->getCalledFunction())
2100         for (const Argument &Arg : CalledFunc->args())
2101           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2102               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2103             return true;
2104 
2105     // If the value is used as a load/store, then the pointer must be non null.
2106     if (V == getLoadStorePointerOperand(U)) {
2107       const Instruction *I = cast<Instruction>(U);
2108       if (!NullPointerIsDefined(I->getFunction(),
2109                                 V->getType()->getPointerAddressSpace()) &&
2110           DT->dominates(I, CtxI))
2111         return true;
2112     }
2113 
2114     // Consider only compare instructions uniquely controlling a branch
2115     CmpInst::Predicate Pred;
2116     if (!match(const_cast<User *>(U),
2117                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2118         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2119       continue;
2120 
2121     SmallVector<const User *, 4> WorkList;
2122     SmallPtrSet<const User *, 4> Visited;
2123     for (auto *CmpU : U->users()) {
2124       assert(WorkList.empty() && "Should be!");
2125       if (Visited.insert(CmpU).second)
2126         WorkList.push_back(CmpU);
2127 
2128       while (!WorkList.empty()) {
2129         auto *Curr = WorkList.pop_back_val();
2130 
2131         // If a user is an AND, add all its users to the work list. We only
2132         // propagate "pred != null" condition through AND because it is only
2133         // correct to assume that all conditions of AND are met in true branch.
2134         // TODO: Support similar logic of OR and EQ predicate?
2135         if (Pred == ICmpInst::ICMP_NE)
2136           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2137             if (BO->getOpcode() == Instruction::And) {
2138               for (auto *BOU : BO->users())
2139                 if (Visited.insert(BOU).second)
2140                   WorkList.push_back(BOU);
2141               continue;
2142             }
2143 
2144         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2145           assert(BI->isConditional() && "uses a comparison!");
2146 
2147           BasicBlock *NonNullSuccessor =
2148               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2149           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2150           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2151             return true;
2152         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2153                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2154           return true;
2155         }
2156       }
2157     }
2158   }
2159 
2160   return false;
2161 }
2162 
2163 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2164 /// ensure that the value it's attached to is never Value?  'RangeType' is
2165 /// is the type of the value described by the range.
2166 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2167   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2168   assert(NumRanges >= 1);
2169   for (unsigned i = 0; i < NumRanges; ++i) {
2170     ConstantInt *Lower =
2171         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2172     ConstantInt *Upper =
2173         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2174     ConstantRange Range(Lower->getValue(), Upper->getValue());
2175     if (Range.contains(Value))
2176       return false;
2177   }
2178   return true;
2179 }
2180 
2181 /// Return true if the given value is known to be non-zero when defined. For
2182 /// vectors, return true if every demanded element is known to be non-zero when
2183 /// defined. For pointers, if the context instruction and dominator tree are
2184 /// specified, perform context-sensitive analysis and return true if the
2185 /// pointer couldn't possibly be null at the specified instruction.
2186 /// Supports values with integer or pointer type and vectors of integers.
2187 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2188                     const Query &Q) {
2189   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2190   // vector
2191   if (isa<ScalableVectorType>(V->getType()))
2192     return false;
2193 
2194   if (auto *C = dyn_cast<Constant>(V)) {
2195     if (C->isNullValue())
2196       return false;
2197     if (isa<ConstantInt>(C))
2198       // Must be non-zero due to null test above.
2199       return true;
2200 
2201     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2202       // See the comment for IntToPtr/PtrToInt instructions below.
2203       if (CE->getOpcode() == Instruction::IntToPtr ||
2204           CE->getOpcode() == Instruction::PtrToInt)
2205         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2206                 .getFixedSize() <=
2207             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2208           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2209     }
2210 
2211     // For constant vectors, check that all elements are undefined or known
2212     // non-zero to determine that the whole vector is known non-zero.
2213     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2214       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2215         if (!DemandedElts[i])
2216           continue;
2217         Constant *Elt = C->getAggregateElement(i);
2218         if (!Elt || Elt->isNullValue())
2219           return false;
2220         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2221           return false;
2222       }
2223       return true;
2224     }
2225 
2226     // A global variable in address space 0 is non null unless extern weak
2227     // or an absolute symbol reference. Other address spaces may have null as a
2228     // valid address for a global, so we can't assume anything.
2229     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2230       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2231           GV->getType()->getAddressSpace() == 0)
2232         return true;
2233     } else
2234       return false;
2235   }
2236 
2237   if (auto *I = dyn_cast<Instruction>(V)) {
2238     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2239       // If the possible ranges don't contain zero, then the value is
2240       // definitely non-zero.
2241       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2242         const APInt ZeroValue(Ty->getBitWidth(), 0);
2243         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2244           return true;
2245       }
2246     }
2247   }
2248 
2249   if (isKnownNonZeroFromAssume(V, Q))
2250     return true;
2251 
2252   // Some of the tests below are recursive, so bail out if we hit the limit.
2253   if (Depth++ >= MaxAnalysisRecursionDepth)
2254     return false;
2255 
2256   // Check for pointer simplifications.
2257 
2258   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2259     // Alloca never returns null, malloc might.
2260     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2261       return true;
2262 
2263     // A byval, inalloca may not be null in a non-default addres space. A
2264     // nonnull argument is assumed never 0.
2265     if (const Argument *A = dyn_cast<Argument>(V)) {
2266       if (((A->hasPassPointeeByValueCopyAttr() &&
2267             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2268            A->hasNonNullAttr()))
2269         return true;
2270     }
2271 
2272     // A Load tagged with nonnull metadata is never null.
2273     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2274       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2275         return true;
2276 
2277     if (const auto *Call = dyn_cast<CallBase>(V)) {
2278       if (Call->isReturnNonNull())
2279         return true;
2280       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2281         return isKnownNonZero(RP, Depth, Q);
2282     }
2283   }
2284 
2285   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2286     return true;
2287 
2288   // Check for recursive pointer simplifications.
2289   if (V->getType()->isPointerTy()) {
2290     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2291     // do not alter the value, or at least not the nullness property of the
2292     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2293     //
2294     // Note that we have to take special care to avoid looking through
2295     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2296     // as casts that can alter the value, e.g., AddrSpaceCasts.
2297     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2298       return isGEPKnownNonNull(GEP, Depth, Q);
2299 
2300     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2301       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2302 
2303     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2304       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2305           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2306         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2307   }
2308 
2309   // Similar to int2ptr above, we can look through ptr2int here if the cast
2310   // is a no-op or an extend and not a truncate.
2311   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2312     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2313         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2314       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2315 
2316   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2317 
2318   // X | Y != 0 if X != 0 or Y != 0.
2319   Value *X = nullptr, *Y = nullptr;
2320   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2321     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2322            isKnownNonZero(Y, DemandedElts, Depth, Q);
2323 
2324   // ext X != 0 if X != 0.
2325   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2326     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2327 
2328   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2329   // if the lowest bit is shifted off the end.
2330   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2331     // shl nuw can't remove any non-zero bits.
2332     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2333     if (Q.IIQ.hasNoUnsignedWrap(BO))
2334       return isKnownNonZero(X, Depth, Q);
2335 
2336     KnownBits Known(BitWidth);
2337     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2338     if (Known.One[0])
2339       return true;
2340   }
2341   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2342   // defined if the sign bit is shifted off the end.
2343   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2344     // shr exact can only shift out zero bits.
2345     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2346     if (BO->isExact())
2347       return isKnownNonZero(X, Depth, Q);
2348 
2349     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2350     if (Known.isNegative())
2351       return true;
2352 
2353     // If the shifter operand is a constant, and all of the bits shifted
2354     // out are known to be zero, and X is known non-zero then at least one
2355     // non-zero bit must remain.
2356     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2357       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2358       // Is there a known one in the portion not shifted out?
2359       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2360         return true;
2361       // Are all the bits to be shifted out known zero?
2362       if (Known.countMinTrailingZeros() >= ShiftVal)
2363         return isKnownNonZero(X, DemandedElts, Depth, Q);
2364     }
2365   }
2366   // div exact can only produce a zero if the dividend is zero.
2367   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2368     return isKnownNonZero(X, DemandedElts, Depth, Q);
2369   }
2370   // X + Y.
2371   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2372     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2373     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2374 
2375     // If X and Y are both non-negative (as signed values) then their sum is not
2376     // zero unless both X and Y are zero.
2377     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2378       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2379           isKnownNonZero(Y, DemandedElts, Depth, Q))
2380         return true;
2381 
2382     // If X and Y are both negative (as signed values) then their sum is not
2383     // zero unless both X and Y equal INT_MIN.
2384     if (XKnown.isNegative() && YKnown.isNegative()) {
2385       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2386       // The sign bit of X is set.  If some other bit is set then X is not equal
2387       // to INT_MIN.
2388       if (XKnown.One.intersects(Mask))
2389         return true;
2390       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2391       // to INT_MIN.
2392       if (YKnown.One.intersects(Mask))
2393         return true;
2394     }
2395 
2396     // The sum of a non-negative number and a power of two is not zero.
2397     if (XKnown.isNonNegative() &&
2398         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2399       return true;
2400     if (YKnown.isNonNegative() &&
2401         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2402       return true;
2403   }
2404   // X * Y.
2405   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2406     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2407     // If X and Y are non-zero then so is X * Y as long as the multiplication
2408     // does not overflow.
2409     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2410         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2411         isKnownNonZero(Y, DemandedElts, Depth, Q))
2412       return true;
2413   }
2414   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2415   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2416     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2417         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2418       return true;
2419   }
2420   // PHI
2421   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2422     // Try and detect a recurrence that monotonically increases from a
2423     // starting value, as these are common as induction variables.
2424     if (PN->getNumIncomingValues() == 2) {
2425       Value *Start = PN->getIncomingValue(0);
2426       Value *Induction = PN->getIncomingValue(1);
2427       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2428         std::swap(Start, Induction);
2429       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2430         if (!C->isZero() && !C->isNegative()) {
2431           ConstantInt *X;
2432           if (Q.IIQ.UseInstrInfo &&
2433               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2434                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2435               !X->isNegative())
2436             return true;
2437         }
2438       }
2439     }
2440     // Check if all incoming values are non-zero using recursion.
2441     Query RecQ = Q;
2442     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2443     return llvm::all_of(PN->operands(), [&](const Use &U) {
2444       if (U.get() == PN)
2445         return true;
2446       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2447       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2448     });
2449   }
2450   // ExtractElement
2451   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2452     const Value *Vec = EEI->getVectorOperand();
2453     const Value *Idx = EEI->getIndexOperand();
2454     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2455     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2456       unsigned NumElts = VecTy->getNumElements();
2457       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2458       if (CIdx && CIdx->getValue().ult(NumElts))
2459         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2460       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2461     }
2462   }
2463   // Freeze
2464   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2465     auto *Op = FI->getOperand(0);
2466     if (isKnownNonZero(Op, Depth, Q) &&
2467         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2468       return true;
2469   }
2470 
2471   KnownBits Known(BitWidth);
2472   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2473   return Known.One != 0;
2474 }
2475 
2476 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2477   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2478   // vector
2479   if (isa<ScalableVectorType>(V->getType()))
2480     return false;
2481 
2482   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2483   APInt DemandedElts =
2484       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2485   return isKnownNonZero(V, DemandedElts, Depth, Q);
2486 }
2487 
2488 /// Return true if V2 == V1 + X, where X is known non-zero.
2489 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2490   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2491   if (!BO || BO->getOpcode() != Instruction::Add)
2492     return false;
2493   Value *Op = nullptr;
2494   if (V2 == BO->getOperand(0))
2495     Op = BO->getOperand(1);
2496   else if (V2 == BO->getOperand(1))
2497     Op = BO->getOperand(0);
2498   else
2499     return false;
2500   return isKnownNonZero(Op, 0, Q);
2501 }
2502 
2503 /// Return true if it is known that V1 != V2.
2504 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2505   if (V1 == V2)
2506     return false;
2507   if (V1->getType() != V2->getType())
2508     // We can't look through casts yet.
2509     return false;
2510   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2511     return true;
2512 
2513   if (V1->getType()->isIntOrIntVectorTy()) {
2514     // Are any known bits in V1 contradictory to known bits in V2? If V1
2515     // has a known zero where V2 has a known one, they must not be equal.
2516     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2517     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2518 
2519     if (Known1.Zero.intersects(Known2.One) ||
2520         Known2.Zero.intersects(Known1.One))
2521       return true;
2522   }
2523   return false;
2524 }
2525 
2526 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2527 /// simplify operations downstream. Mask is known to be zero for bits that V
2528 /// cannot have.
2529 ///
2530 /// This function is defined on values with integer type, values with pointer
2531 /// type, and vectors of integers.  In the case
2532 /// where V is a vector, the mask, known zero, and known one values are the
2533 /// same width as the vector element, and the bit is set only if it is true
2534 /// for all of the elements in the vector.
2535 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2536                        const Query &Q) {
2537   KnownBits Known(Mask.getBitWidth());
2538   computeKnownBits(V, Known, Depth, Q);
2539   return Mask.isSubsetOf(Known.Zero);
2540 }
2541 
2542 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2543 // Returns the input and lower/upper bounds.
2544 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2545                                 const APInt *&CLow, const APInt *&CHigh) {
2546   assert(isa<Operator>(Select) &&
2547          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2548          "Input should be a Select!");
2549 
2550   const Value *LHS = nullptr, *RHS = nullptr;
2551   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2552   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2553     return false;
2554 
2555   if (!match(RHS, m_APInt(CLow)))
2556     return false;
2557 
2558   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2559   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2560   if (getInverseMinMaxFlavor(SPF) != SPF2)
2561     return false;
2562 
2563   if (!match(RHS2, m_APInt(CHigh)))
2564     return false;
2565 
2566   if (SPF == SPF_SMIN)
2567     std::swap(CLow, CHigh);
2568 
2569   In = LHS2;
2570   return CLow->sle(*CHigh);
2571 }
2572 
2573 /// For vector constants, loop over the elements and find the constant with the
2574 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2575 /// or if any element was not analyzed; otherwise, return the count for the
2576 /// element with the minimum number of sign bits.
2577 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2578                                                  const APInt &DemandedElts,
2579                                                  unsigned TyBits) {
2580   const auto *CV = dyn_cast<Constant>(V);
2581   if (!CV || !isa<FixedVectorType>(CV->getType()))
2582     return 0;
2583 
2584   unsigned MinSignBits = TyBits;
2585   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2586   for (unsigned i = 0; i != NumElts; ++i) {
2587     if (!DemandedElts[i])
2588       continue;
2589     // If we find a non-ConstantInt, bail out.
2590     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2591     if (!Elt)
2592       return 0;
2593 
2594     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2595   }
2596 
2597   return MinSignBits;
2598 }
2599 
2600 static unsigned ComputeNumSignBitsImpl(const Value *V,
2601                                        const APInt &DemandedElts,
2602                                        unsigned Depth, const Query &Q);
2603 
2604 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2605                                    unsigned Depth, const Query &Q) {
2606   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2607   assert(Result > 0 && "At least one sign bit needs to be present!");
2608   return Result;
2609 }
2610 
2611 /// Return the number of times the sign bit of the register is replicated into
2612 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2613 /// (itself), but other cases can give us information. For example, immediately
2614 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2615 /// other, so we return 3. For vectors, return the number of sign bits for the
2616 /// vector element with the minimum number of known sign bits of the demanded
2617 /// elements in the vector specified by DemandedElts.
2618 static unsigned ComputeNumSignBitsImpl(const Value *V,
2619                                        const APInt &DemandedElts,
2620                                        unsigned Depth, const Query &Q) {
2621   Type *Ty = V->getType();
2622 
2623   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2624   // vector
2625   if (isa<ScalableVectorType>(Ty))
2626     return 1;
2627 
2628 #ifndef NDEBUG
2629   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2630 
2631   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2632     assert(
2633         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2634         "DemandedElt width should equal the fixed vector number of elements");
2635   } else {
2636     assert(DemandedElts == APInt(1, 1) &&
2637            "DemandedElt width should be 1 for scalars");
2638   }
2639 #endif
2640 
2641   // We return the minimum number of sign bits that are guaranteed to be present
2642   // in V, so for undef we have to conservatively return 1.  We don't have the
2643   // same behavior for poison though -- that's a FIXME today.
2644 
2645   Type *ScalarTy = Ty->getScalarType();
2646   unsigned TyBits = ScalarTy->isPointerTy() ?
2647     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2648     Q.DL.getTypeSizeInBits(ScalarTy);
2649 
2650   unsigned Tmp, Tmp2;
2651   unsigned FirstAnswer = 1;
2652 
2653   // Note that ConstantInt is handled by the general computeKnownBits case
2654   // below.
2655 
2656   if (Depth == MaxAnalysisRecursionDepth)
2657     return 1;
2658 
2659   if (auto *U = dyn_cast<Operator>(V)) {
2660     switch (Operator::getOpcode(V)) {
2661     default: break;
2662     case Instruction::SExt:
2663       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2664       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2665 
2666     case Instruction::SDiv: {
2667       const APInt *Denominator;
2668       // sdiv X, C -> adds log(C) sign bits.
2669       if (match(U->getOperand(1), m_APInt(Denominator))) {
2670 
2671         // Ignore non-positive denominator.
2672         if (!Denominator->isStrictlyPositive())
2673           break;
2674 
2675         // Calculate the incoming numerator bits.
2676         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2677 
2678         // Add floor(log(C)) bits to the numerator bits.
2679         return std::min(TyBits, NumBits + Denominator->logBase2());
2680       }
2681       break;
2682     }
2683 
2684     case Instruction::SRem: {
2685       const APInt *Denominator;
2686       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2687       // positive constant.  This let us put a lower bound on the number of sign
2688       // bits.
2689       if (match(U->getOperand(1), m_APInt(Denominator))) {
2690 
2691         // Ignore non-positive denominator.
2692         if (!Denominator->isStrictlyPositive())
2693           break;
2694 
2695         // Calculate the incoming numerator bits. SRem by a positive constant
2696         // can't lower the number of sign bits.
2697         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2698 
2699         // Calculate the leading sign bit constraints by examining the
2700         // denominator.  Given that the denominator is positive, there are two
2701         // cases:
2702         //
2703         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2704         //     (1 << ceilLogBase2(C)).
2705         //
2706         //  2. the numerator is negative. Then the result range is (-C,0] and
2707         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2708         //
2709         // Thus a lower bound on the number of sign bits is `TyBits -
2710         // ceilLogBase2(C)`.
2711 
2712         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2713         return std::max(NumrBits, ResBits);
2714       }
2715       break;
2716     }
2717 
2718     case Instruction::AShr: {
2719       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2720       // ashr X, C   -> adds C sign bits.  Vectors too.
2721       const APInt *ShAmt;
2722       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2723         if (ShAmt->uge(TyBits))
2724           break; // Bad shift.
2725         unsigned ShAmtLimited = ShAmt->getZExtValue();
2726         Tmp += ShAmtLimited;
2727         if (Tmp > TyBits) Tmp = TyBits;
2728       }
2729       return Tmp;
2730     }
2731     case Instruction::Shl: {
2732       const APInt *ShAmt;
2733       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2734         // shl destroys sign bits.
2735         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2736         if (ShAmt->uge(TyBits) ||   // Bad shift.
2737             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2738         Tmp2 = ShAmt->getZExtValue();
2739         return Tmp - Tmp2;
2740       }
2741       break;
2742     }
2743     case Instruction::And:
2744     case Instruction::Or:
2745     case Instruction::Xor: // NOT is handled here.
2746       // Logical binary ops preserve the number of sign bits at the worst.
2747       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2748       if (Tmp != 1) {
2749         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2750         FirstAnswer = std::min(Tmp, Tmp2);
2751         // We computed what we know about the sign bits as our first
2752         // answer. Now proceed to the generic code that uses
2753         // computeKnownBits, and pick whichever answer is better.
2754       }
2755       break;
2756 
2757     case Instruction::Select: {
2758       // If we have a clamp pattern, we know that the number of sign bits will
2759       // be the minimum of the clamp min/max range.
2760       const Value *X;
2761       const APInt *CLow, *CHigh;
2762       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2763         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2764 
2765       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2766       if (Tmp == 1) break;
2767       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2768       return std::min(Tmp, Tmp2);
2769     }
2770 
2771     case Instruction::Add:
2772       // Add can have at most one carry bit.  Thus we know that the output
2773       // is, at worst, one more bit than the inputs.
2774       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2775       if (Tmp == 1) break;
2776 
2777       // Special case decrementing a value (ADD X, -1):
2778       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2779         if (CRHS->isAllOnesValue()) {
2780           KnownBits Known(TyBits);
2781           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2782 
2783           // If the input is known to be 0 or 1, the output is 0/-1, which is
2784           // all sign bits set.
2785           if ((Known.Zero | 1).isAllOnesValue())
2786             return TyBits;
2787 
2788           // If we are subtracting one from a positive number, there is no carry
2789           // out of the result.
2790           if (Known.isNonNegative())
2791             return Tmp;
2792         }
2793 
2794       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2795       if (Tmp2 == 1) break;
2796       return std::min(Tmp, Tmp2) - 1;
2797 
2798     case Instruction::Sub:
2799       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2800       if (Tmp2 == 1) break;
2801 
2802       // Handle NEG.
2803       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2804         if (CLHS->isNullValue()) {
2805           KnownBits Known(TyBits);
2806           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2807           // If the input is known to be 0 or 1, the output is 0/-1, which is
2808           // all sign bits set.
2809           if ((Known.Zero | 1).isAllOnesValue())
2810             return TyBits;
2811 
2812           // If the input is known to be positive (the sign bit is known clear),
2813           // the output of the NEG has the same number of sign bits as the
2814           // input.
2815           if (Known.isNonNegative())
2816             return Tmp2;
2817 
2818           // Otherwise, we treat this like a SUB.
2819         }
2820 
2821       // Sub can have at most one carry bit.  Thus we know that the output
2822       // is, at worst, one more bit than the inputs.
2823       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2824       if (Tmp == 1) break;
2825       return std::min(Tmp, Tmp2) - 1;
2826 
2827     case Instruction::Mul: {
2828       // The output of the Mul can be at most twice the valid bits in the
2829       // inputs.
2830       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2831       if (SignBitsOp0 == 1) break;
2832       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2833       if (SignBitsOp1 == 1) break;
2834       unsigned OutValidBits =
2835           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2836       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2837     }
2838 
2839     case Instruction::PHI: {
2840       const PHINode *PN = cast<PHINode>(U);
2841       unsigned NumIncomingValues = PN->getNumIncomingValues();
2842       // Don't analyze large in-degree PHIs.
2843       if (NumIncomingValues > 4) break;
2844       // Unreachable blocks may have zero-operand PHI nodes.
2845       if (NumIncomingValues == 0) break;
2846 
2847       // Take the minimum of all incoming values.  This can't infinitely loop
2848       // because of our depth threshold.
2849       Query RecQ = Q;
2850       Tmp = TyBits;
2851       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
2852         if (Tmp == 1) return Tmp;
2853         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
2854         Tmp = std::min(
2855             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
2856       }
2857       return Tmp;
2858     }
2859 
2860     case Instruction::Trunc:
2861       // FIXME: it's tricky to do anything useful for this, but it is an
2862       // important case for targets like X86.
2863       break;
2864 
2865     case Instruction::ExtractElement:
2866       // Look through extract element. At the moment we keep this simple and
2867       // skip tracking the specific element. But at least we might find
2868       // information valid for all elements of the vector (for example if vector
2869       // is sign extended, shifted, etc).
2870       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2871 
2872     case Instruction::ShuffleVector: {
2873       // Collect the minimum number of sign bits that are shared by every vector
2874       // element referenced by the shuffle.
2875       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2876       if (!Shuf) {
2877         // FIXME: Add support for shufflevector constant expressions.
2878         return 1;
2879       }
2880       APInt DemandedLHS, DemandedRHS;
2881       // For undef elements, we don't know anything about the common state of
2882       // the shuffle result.
2883       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
2884         return 1;
2885       Tmp = std::numeric_limits<unsigned>::max();
2886       if (!!DemandedLHS) {
2887         const Value *LHS = Shuf->getOperand(0);
2888         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
2889       }
2890       // If we don't know anything, early out and try computeKnownBits
2891       // fall-back.
2892       if (Tmp == 1)
2893         break;
2894       if (!!DemandedRHS) {
2895         const Value *RHS = Shuf->getOperand(1);
2896         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
2897         Tmp = std::min(Tmp, Tmp2);
2898       }
2899       // If we don't know anything, early out and try computeKnownBits
2900       // fall-back.
2901       if (Tmp == 1)
2902         break;
2903       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
2904       return Tmp;
2905     }
2906     case Instruction::Call: {
2907       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
2908         switch (II->getIntrinsicID()) {
2909         default: break;
2910         case Intrinsic::abs:
2911           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2912           if (Tmp == 1) break;
2913 
2914           // Absolute value reduces number of sign bits by at most 1.
2915           return Tmp - 1;
2916         }
2917       }
2918     }
2919     }
2920   }
2921 
2922   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2923   // use this information.
2924 
2925   // If we can examine all elements of a vector constant successfully, we're
2926   // done (we can't do any better than that). If not, keep trying.
2927   if (unsigned VecSignBits =
2928           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
2929     return VecSignBits;
2930 
2931   KnownBits Known(TyBits);
2932   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2933 
2934   // If we know that the sign bit is either zero or one, determine the number of
2935   // identical bits in the top of the input value.
2936   return std::max(FirstAnswer, Known.countMinSignBits());
2937 }
2938 
2939 /// This function computes the integer multiple of Base that equals V.
2940 /// If successful, it returns true and returns the multiple in
2941 /// Multiple. If unsuccessful, it returns false. It looks
2942 /// through SExt instructions only if LookThroughSExt is true.
2943 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2944                            bool LookThroughSExt, unsigned Depth) {
2945   assert(V && "No Value?");
2946   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2947   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2948 
2949   Type *T = V->getType();
2950 
2951   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2952 
2953   if (Base == 0)
2954     return false;
2955 
2956   if (Base == 1) {
2957     Multiple = V;
2958     return true;
2959   }
2960 
2961   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2962   Constant *BaseVal = ConstantInt::get(T, Base);
2963   if (CO && CO == BaseVal) {
2964     // Multiple is 1.
2965     Multiple = ConstantInt::get(T, 1);
2966     return true;
2967   }
2968 
2969   if (CI && CI->getZExtValue() % Base == 0) {
2970     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2971     return true;
2972   }
2973 
2974   if (Depth == MaxAnalysisRecursionDepth) return false;
2975 
2976   Operator *I = dyn_cast<Operator>(V);
2977   if (!I) return false;
2978 
2979   switch (I->getOpcode()) {
2980   default: break;
2981   case Instruction::SExt:
2982     if (!LookThroughSExt) return false;
2983     // otherwise fall through to ZExt
2984     LLVM_FALLTHROUGH;
2985   case Instruction::ZExt:
2986     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2987                            LookThroughSExt, Depth+1);
2988   case Instruction::Shl:
2989   case Instruction::Mul: {
2990     Value *Op0 = I->getOperand(0);
2991     Value *Op1 = I->getOperand(1);
2992 
2993     if (I->getOpcode() == Instruction::Shl) {
2994       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2995       if (!Op1CI) return false;
2996       // Turn Op0 << Op1 into Op0 * 2^Op1
2997       APInt Op1Int = Op1CI->getValue();
2998       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2999       APInt API(Op1Int.getBitWidth(), 0);
3000       API.setBit(BitToSet);
3001       Op1 = ConstantInt::get(V->getContext(), API);
3002     }
3003 
3004     Value *Mul0 = nullptr;
3005     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3006       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3007         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3008           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3009               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3010             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3011           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3012               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3013             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3014 
3015           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3016           Multiple = ConstantExpr::getMul(MulC, Op1C);
3017           return true;
3018         }
3019 
3020       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3021         if (Mul0CI->getValue() == 1) {
3022           // V == Base * Op1, so return Op1
3023           Multiple = Op1;
3024           return true;
3025         }
3026     }
3027 
3028     Value *Mul1 = nullptr;
3029     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3030       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3031         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3032           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3033               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3034             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3035           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3036               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3037             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3038 
3039           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3040           Multiple = ConstantExpr::getMul(MulC, Op0C);
3041           return true;
3042         }
3043 
3044       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3045         if (Mul1CI->getValue() == 1) {
3046           // V == Base * Op0, so return Op0
3047           Multiple = Op0;
3048           return true;
3049         }
3050     }
3051   }
3052   }
3053 
3054   // We could not determine if V is a multiple of Base.
3055   return false;
3056 }
3057 
3058 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3059                                             const TargetLibraryInfo *TLI) {
3060   const Function *F = CB.getCalledFunction();
3061   if (!F)
3062     return Intrinsic::not_intrinsic;
3063 
3064   if (F->isIntrinsic())
3065     return F->getIntrinsicID();
3066 
3067   // We are going to infer semantics of a library function based on mapping it
3068   // to an LLVM intrinsic. Check that the library function is available from
3069   // this callbase and in this environment.
3070   LibFunc Func;
3071   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3072       !CB.onlyReadsMemory())
3073     return Intrinsic::not_intrinsic;
3074 
3075   switch (Func) {
3076   default:
3077     break;
3078   case LibFunc_sin:
3079   case LibFunc_sinf:
3080   case LibFunc_sinl:
3081     return Intrinsic::sin;
3082   case LibFunc_cos:
3083   case LibFunc_cosf:
3084   case LibFunc_cosl:
3085     return Intrinsic::cos;
3086   case LibFunc_exp:
3087   case LibFunc_expf:
3088   case LibFunc_expl:
3089     return Intrinsic::exp;
3090   case LibFunc_exp2:
3091   case LibFunc_exp2f:
3092   case LibFunc_exp2l:
3093     return Intrinsic::exp2;
3094   case LibFunc_log:
3095   case LibFunc_logf:
3096   case LibFunc_logl:
3097     return Intrinsic::log;
3098   case LibFunc_log10:
3099   case LibFunc_log10f:
3100   case LibFunc_log10l:
3101     return Intrinsic::log10;
3102   case LibFunc_log2:
3103   case LibFunc_log2f:
3104   case LibFunc_log2l:
3105     return Intrinsic::log2;
3106   case LibFunc_fabs:
3107   case LibFunc_fabsf:
3108   case LibFunc_fabsl:
3109     return Intrinsic::fabs;
3110   case LibFunc_fmin:
3111   case LibFunc_fminf:
3112   case LibFunc_fminl:
3113     return Intrinsic::minnum;
3114   case LibFunc_fmax:
3115   case LibFunc_fmaxf:
3116   case LibFunc_fmaxl:
3117     return Intrinsic::maxnum;
3118   case LibFunc_copysign:
3119   case LibFunc_copysignf:
3120   case LibFunc_copysignl:
3121     return Intrinsic::copysign;
3122   case LibFunc_floor:
3123   case LibFunc_floorf:
3124   case LibFunc_floorl:
3125     return Intrinsic::floor;
3126   case LibFunc_ceil:
3127   case LibFunc_ceilf:
3128   case LibFunc_ceill:
3129     return Intrinsic::ceil;
3130   case LibFunc_trunc:
3131   case LibFunc_truncf:
3132   case LibFunc_truncl:
3133     return Intrinsic::trunc;
3134   case LibFunc_rint:
3135   case LibFunc_rintf:
3136   case LibFunc_rintl:
3137     return Intrinsic::rint;
3138   case LibFunc_nearbyint:
3139   case LibFunc_nearbyintf:
3140   case LibFunc_nearbyintl:
3141     return Intrinsic::nearbyint;
3142   case LibFunc_round:
3143   case LibFunc_roundf:
3144   case LibFunc_roundl:
3145     return Intrinsic::round;
3146   case LibFunc_roundeven:
3147   case LibFunc_roundevenf:
3148   case LibFunc_roundevenl:
3149     return Intrinsic::roundeven;
3150   case LibFunc_pow:
3151   case LibFunc_powf:
3152   case LibFunc_powl:
3153     return Intrinsic::pow;
3154   case LibFunc_sqrt:
3155   case LibFunc_sqrtf:
3156   case LibFunc_sqrtl:
3157     return Intrinsic::sqrt;
3158   }
3159 
3160   return Intrinsic::not_intrinsic;
3161 }
3162 
3163 /// Return true if we can prove that the specified FP value is never equal to
3164 /// -0.0.
3165 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3166 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3167 ///       the same as +0.0 in floating-point ops.
3168 ///
3169 /// NOTE: this function will need to be revisited when we support non-default
3170 /// rounding modes!
3171 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3172                                 unsigned Depth) {
3173   if (auto *CFP = dyn_cast<ConstantFP>(V))
3174     return !CFP->getValueAPF().isNegZero();
3175 
3176   if (Depth == MaxAnalysisRecursionDepth)
3177     return false;
3178 
3179   auto *Op = dyn_cast<Operator>(V);
3180   if (!Op)
3181     return false;
3182 
3183   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3184   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3185     return true;
3186 
3187   // sitofp and uitofp turn into +0.0 for zero.
3188   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3189     return true;
3190 
3191   if (auto *Call = dyn_cast<CallInst>(Op)) {
3192     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3193     switch (IID) {
3194     default:
3195       break;
3196     // sqrt(-0.0) = -0.0, no other negative results are possible.
3197     case Intrinsic::sqrt:
3198     case Intrinsic::canonicalize:
3199       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3200     // fabs(x) != -0.0
3201     case Intrinsic::fabs:
3202       return true;
3203     }
3204   }
3205 
3206   return false;
3207 }
3208 
3209 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3210 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3211 /// bit despite comparing equal.
3212 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3213                                             const TargetLibraryInfo *TLI,
3214                                             bool SignBitOnly,
3215                                             unsigned Depth) {
3216   // TODO: This function does not do the right thing when SignBitOnly is true
3217   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3218   // which flips the sign bits of NaNs.  See
3219   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3220 
3221   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3222     return !CFP->getValueAPF().isNegative() ||
3223            (!SignBitOnly && CFP->getValueAPF().isZero());
3224   }
3225 
3226   // Handle vector of constants.
3227   if (auto *CV = dyn_cast<Constant>(V)) {
3228     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3229       unsigned NumElts = CVFVTy->getNumElements();
3230       for (unsigned i = 0; i != NumElts; ++i) {
3231         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3232         if (!CFP)
3233           return false;
3234         if (CFP->getValueAPF().isNegative() &&
3235             (SignBitOnly || !CFP->getValueAPF().isZero()))
3236           return false;
3237       }
3238 
3239       // All non-negative ConstantFPs.
3240       return true;
3241     }
3242   }
3243 
3244   if (Depth == MaxAnalysisRecursionDepth)
3245     return false;
3246 
3247   const Operator *I = dyn_cast<Operator>(V);
3248   if (!I)
3249     return false;
3250 
3251   switch (I->getOpcode()) {
3252   default:
3253     break;
3254   // Unsigned integers are always nonnegative.
3255   case Instruction::UIToFP:
3256     return true;
3257   case Instruction::FMul:
3258   case Instruction::FDiv:
3259     // X * X is always non-negative or a NaN.
3260     // X / X is always exactly 1.0 or a NaN.
3261     if (I->getOperand(0) == I->getOperand(1) &&
3262         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3263       return true;
3264 
3265     LLVM_FALLTHROUGH;
3266   case Instruction::FAdd:
3267   case Instruction::FRem:
3268     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3269                                            Depth + 1) &&
3270            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3271                                            Depth + 1);
3272   case Instruction::Select:
3273     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3274                                            Depth + 1) &&
3275            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3276                                            Depth + 1);
3277   case Instruction::FPExt:
3278   case Instruction::FPTrunc:
3279     // Widening/narrowing never change sign.
3280     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3281                                            Depth + 1);
3282   case Instruction::ExtractElement:
3283     // Look through extract element. At the moment we keep this simple and skip
3284     // tracking the specific element. But at least we might find information
3285     // valid for all elements of the vector.
3286     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3287                                            Depth + 1);
3288   case Instruction::Call:
3289     const auto *CI = cast<CallInst>(I);
3290     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3291     switch (IID) {
3292     default:
3293       break;
3294     case Intrinsic::maxnum: {
3295       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3296       auto isPositiveNum = [&](Value *V) {
3297         if (SignBitOnly) {
3298           // With SignBitOnly, this is tricky because the result of
3299           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3300           // a constant strictly greater than 0.0.
3301           const APFloat *C;
3302           return match(V, m_APFloat(C)) &&
3303                  *C > APFloat::getZero(C->getSemantics());
3304         }
3305 
3306         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3307         // maxnum can't be ordered-less-than-zero.
3308         return isKnownNeverNaN(V, TLI) &&
3309                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3310       };
3311 
3312       // TODO: This could be improved. We could also check that neither operand
3313       //       has its sign bit set (and at least 1 is not-NAN?).
3314       return isPositiveNum(V0) || isPositiveNum(V1);
3315     }
3316 
3317     case Intrinsic::maximum:
3318       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3319                                              Depth + 1) ||
3320              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3321                                              Depth + 1);
3322     case Intrinsic::minnum:
3323     case Intrinsic::minimum:
3324       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3325                                              Depth + 1) &&
3326              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3327                                              Depth + 1);
3328     case Intrinsic::exp:
3329     case Intrinsic::exp2:
3330     case Intrinsic::fabs:
3331       return true;
3332 
3333     case Intrinsic::sqrt:
3334       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3335       if (!SignBitOnly)
3336         return true;
3337       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3338                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3339 
3340     case Intrinsic::powi:
3341       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3342         // powi(x,n) is non-negative if n is even.
3343         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3344           return true;
3345       }
3346       // TODO: This is not correct.  Given that exp is an integer, here are the
3347       // ways that pow can return a negative value:
3348       //
3349       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3350       //   pow(-0, exp)   --> -inf if exp is negative odd.
3351       //   pow(-0, exp)   --> -0 if exp is positive odd.
3352       //   pow(-inf, exp) --> -0 if exp is negative odd.
3353       //   pow(-inf, exp) --> -inf if exp is positive odd.
3354       //
3355       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3356       // but we must return false if x == -0.  Unfortunately we do not currently
3357       // have a way of expressing this constraint.  See details in
3358       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3359       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3360                                              Depth + 1);
3361 
3362     case Intrinsic::fma:
3363     case Intrinsic::fmuladd:
3364       // x*x+y is non-negative if y is non-negative.
3365       return I->getOperand(0) == I->getOperand(1) &&
3366              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3367              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3368                                              Depth + 1);
3369     }
3370     break;
3371   }
3372   return false;
3373 }
3374 
3375 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3376                                        const TargetLibraryInfo *TLI) {
3377   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3378 }
3379 
3380 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3381   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3382 }
3383 
3384 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3385                                 unsigned Depth) {
3386   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3387 
3388   // If we're told that infinities won't happen, assume they won't.
3389   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3390     if (FPMathOp->hasNoInfs())
3391       return true;
3392 
3393   // Handle scalar constants.
3394   if (auto *CFP = dyn_cast<ConstantFP>(V))
3395     return !CFP->isInfinity();
3396 
3397   if (Depth == MaxAnalysisRecursionDepth)
3398     return false;
3399 
3400   if (auto *Inst = dyn_cast<Instruction>(V)) {
3401     switch (Inst->getOpcode()) {
3402     case Instruction::Select: {
3403       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3404              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3405     }
3406     case Instruction::SIToFP:
3407     case Instruction::UIToFP: {
3408       // Get width of largest magnitude integer (remove a bit if signed).
3409       // This still works for a signed minimum value because the largest FP
3410       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3411       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3412       if (Inst->getOpcode() == Instruction::SIToFP)
3413         --IntSize;
3414 
3415       // If the exponent of the largest finite FP value can hold the largest
3416       // integer, the result of the cast must be finite.
3417       Type *FPTy = Inst->getType()->getScalarType();
3418       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3419     }
3420     default:
3421       break;
3422     }
3423   }
3424 
3425   // try to handle fixed width vector constants
3426   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3427   if (VFVTy && isa<Constant>(V)) {
3428     // For vectors, verify that each element is not infinity.
3429     unsigned NumElts = VFVTy->getNumElements();
3430     for (unsigned i = 0; i != NumElts; ++i) {
3431       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3432       if (!Elt)
3433         return false;
3434       if (isa<UndefValue>(Elt))
3435         continue;
3436       auto *CElt = dyn_cast<ConstantFP>(Elt);
3437       if (!CElt || CElt->isInfinity())
3438         return false;
3439     }
3440     // All elements were confirmed non-infinity or undefined.
3441     return true;
3442   }
3443 
3444   // was not able to prove that V never contains infinity
3445   return false;
3446 }
3447 
3448 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3449                            unsigned Depth) {
3450   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3451 
3452   // If we're told that NaNs won't happen, assume they won't.
3453   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3454     if (FPMathOp->hasNoNaNs())
3455       return true;
3456 
3457   // Handle scalar constants.
3458   if (auto *CFP = dyn_cast<ConstantFP>(V))
3459     return !CFP->isNaN();
3460 
3461   if (Depth == MaxAnalysisRecursionDepth)
3462     return false;
3463 
3464   if (auto *Inst = dyn_cast<Instruction>(V)) {
3465     switch (Inst->getOpcode()) {
3466     case Instruction::FAdd:
3467     case Instruction::FSub:
3468       // Adding positive and negative infinity produces NaN.
3469       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3470              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3471              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3472               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3473 
3474     case Instruction::FMul:
3475       // Zero multiplied with infinity produces NaN.
3476       // FIXME: If neither side can be zero fmul never produces NaN.
3477       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3478              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3479              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3480              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3481 
3482     case Instruction::FDiv:
3483     case Instruction::FRem:
3484       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3485       return false;
3486 
3487     case Instruction::Select: {
3488       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3489              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3490     }
3491     case Instruction::SIToFP:
3492     case Instruction::UIToFP:
3493       return true;
3494     case Instruction::FPTrunc:
3495     case Instruction::FPExt:
3496       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3497     default:
3498       break;
3499     }
3500   }
3501 
3502   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3503     switch (II->getIntrinsicID()) {
3504     case Intrinsic::canonicalize:
3505     case Intrinsic::fabs:
3506     case Intrinsic::copysign:
3507     case Intrinsic::exp:
3508     case Intrinsic::exp2:
3509     case Intrinsic::floor:
3510     case Intrinsic::ceil:
3511     case Intrinsic::trunc:
3512     case Intrinsic::rint:
3513     case Intrinsic::nearbyint:
3514     case Intrinsic::round:
3515     case Intrinsic::roundeven:
3516       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3517     case Intrinsic::sqrt:
3518       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3519              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3520     case Intrinsic::minnum:
3521     case Intrinsic::maxnum:
3522       // If either operand is not NaN, the result is not NaN.
3523       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3524              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3525     default:
3526       return false;
3527     }
3528   }
3529 
3530   // Try to handle fixed width vector constants
3531   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3532   if (VFVTy && isa<Constant>(V)) {
3533     // For vectors, verify that each element is not NaN.
3534     unsigned NumElts = VFVTy->getNumElements();
3535     for (unsigned i = 0; i != NumElts; ++i) {
3536       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3537       if (!Elt)
3538         return false;
3539       if (isa<UndefValue>(Elt))
3540         continue;
3541       auto *CElt = dyn_cast<ConstantFP>(Elt);
3542       if (!CElt || CElt->isNaN())
3543         return false;
3544     }
3545     // All elements were confirmed not-NaN or undefined.
3546     return true;
3547   }
3548 
3549   // Was not able to prove that V never contains NaN
3550   return false;
3551 }
3552 
3553 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3554 
3555   // All byte-wide stores are splatable, even of arbitrary variables.
3556   if (V->getType()->isIntegerTy(8))
3557     return V;
3558 
3559   LLVMContext &Ctx = V->getContext();
3560 
3561   // Undef don't care.
3562   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3563   if (isa<UndefValue>(V))
3564     return UndefInt8;
3565 
3566   // Return Undef for zero-sized type.
3567   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3568     return UndefInt8;
3569 
3570   Constant *C = dyn_cast<Constant>(V);
3571   if (!C) {
3572     // Conceptually, we could handle things like:
3573     //   %a = zext i8 %X to i16
3574     //   %b = shl i16 %a, 8
3575     //   %c = or i16 %a, %b
3576     // but until there is an example that actually needs this, it doesn't seem
3577     // worth worrying about.
3578     return nullptr;
3579   }
3580 
3581   // Handle 'null' ConstantArrayZero etc.
3582   if (C->isNullValue())
3583     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3584 
3585   // Constant floating-point values can be handled as integer values if the
3586   // corresponding integer value is "byteable".  An important case is 0.0.
3587   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3588     Type *Ty = nullptr;
3589     if (CFP->getType()->isHalfTy())
3590       Ty = Type::getInt16Ty(Ctx);
3591     else if (CFP->getType()->isFloatTy())
3592       Ty = Type::getInt32Ty(Ctx);
3593     else if (CFP->getType()->isDoubleTy())
3594       Ty = Type::getInt64Ty(Ctx);
3595     // Don't handle long double formats, which have strange constraints.
3596     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3597               : nullptr;
3598   }
3599 
3600   // We can handle constant integers that are multiple of 8 bits.
3601   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3602     if (CI->getBitWidth() % 8 == 0) {
3603       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3604       if (!CI->getValue().isSplat(8))
3605         return nullptr;
3606       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3607     }
3608   }
3609 
3610   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3611     if (CE->getOpcode() == Instruction::IntToPtr) {
3612       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3613         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3614         return isBytewiseValue(
3615             ConstantExpr::getIntegerCast(CE->getOperand(0),
3616                                          Type::getIntNTy(Ctx, BitWidth), false),
3617             DL);
3618       }
3619     }
3620   }
3621 
3622   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3623     if (LHS == RHS)
3624       return LHS;
3625     if (!LHS || !RHS)
3626       return nullptr;
3627     if (LHS == UndefInt8)
3628       return RHS;
3629     if (RHS == UndefInt8)
3630       return LHS;
3631     return nullptr;
3632   };
3633 
3634   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3635     Value *Val = UndefInt8;
3636     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3637       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3638         return nullptr;
3639     return Val;
3640   }
3641 
3642   if (isa<ConstantAggregate>(C)) {
3643     Value *Val = UndefInt8;
3644     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3645       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3646         return nullptr;
3647     return Val;
3648   }
3649 
3650   // Don't try to handle the handful of other constants.
3651   return nullptr;
3652 }
3653 
3654 // This is the recursive version of BuildSubAggregate. It takes a few different
3655 // arguments. Idxs is the index within the nested struct From that we are
3656 // looking at now (which is of type IndexedType). IdxSkip is the number of
3657 // indices from Idxs that should be left out when inserting into the resulting
3658 // struct. To is the result struct built so far, new insertvalue instructions
3659 // build on that.
3660 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3661                                 SmallVectorImpl<unsigned> &Idxs,
3662                                 unsigned IdxSkip,
3663                                 Instruction *InsertBefore) {
3664   StructType *STy = dyn_cast<StructType>(IndexedType);
3665   if (STy) {
3666     // Save the original To argument so we can modify it
3667     Value *OrigTo = To;
3668     // General case, the type indexed by Idxs is a struct
3669     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3670       // Process each struct element recursively
3671       Idxs.push_back(i);
3672       Value *PrevTo = To;
3673       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3674                              InsertBefore);
3675       Idxs.pop_back();
3676       if (!To) {
3677         // Couldn't find any inserted value for this index? Cleanup
3678         while (PrevTo != OrigTo) {
3679           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3680           PrevTo = Del->getAggregateOperand();
3681           Del->eraseFromParent();
3682         }
3683         // Stop processing elements
3684         break;
3685       }
3686     }
3687     // If we successfully found a value for each of our subaggregates
3688     if (To)
3689       return To;
3690   }
3691   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3692   // the struct's elements had a value that was inserted directly. In the latter
3693   // case, perhaps we can't determine each of the subelements individually, but
3694   // we might be able to find the complete struct somewhere.
3695 
3696   // Find the value that is at that particular spot
3697   Value *V = FindInsertedValue(From, Idxs);
3698 
3699   if (!V)
3700     return nullptr;
3701 
3702   // Insert the value in the new (sub) aggregate
3703   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3704                                  "tmp", InsertBefore);
3705 }
3706 
3707 // This helper takes a nested struct and extracts a part of it (which is again a
3708 // struct) into a new value. For example, given the struct:
3709 // { a, { b, { c, d }, e } }
3710 // and the indices "1, 1" this returns
3711 // { c, d }.
3712 //
3713 // It does this by inserting an insertvalue for each element in the resulting
3714 // struct, as opposed to just inserting a single struct. This will only work if
3715 // each of the elements of the substruct are known (ie, inserted into From by an
3716 // insertvalue instruction somewhere).
3717 //
3718 // All inserted insertvalue instructions are inserted before InsertBefore
3719 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3720                                 Instruction *InsertBefore) {
3721   assert(InsertBefore && "Must have someplace to insert!");
3722   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3723                                                              idx_range);
3724   Value *To = UndefValue::get(IndexedType);
3725   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3726   unsigned IdxSkip = Idxs.size();
3727 
3728   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3729 }
3730 
3731 /// Given an aggregate and a sequence of indices, see if the scalar value
3732 /// indexed is already around as a register, for example if it was inserted
3733 /// directly into the aggregate.
3734 ///
3735 /// If InsertBefore is not null, this function will duplicate (modified)
3736 /// insertvalues when a part of a nested struct is extracted.
3737 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3738                                Instruction *InsertBefore) {
3739   // Nothing to index? Just return V then (this is useful at the end of our
3740   // recursion).
3741   if (idx_range.empty())
3742     return V;
3743   // We have indices, so V should have an indexable type.
3744   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3745          "Not looking at a struct or array?");
3746   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3747          "Invalid indices for type?");
3748 
3749   if (Constant *C = dyn_cast<Constant>(V)) {
3750     C = C->getAggregateElement(idx_range[0]);
3751     if (!C) return nullptr;
3752     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3753   }
3754 
3755   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3756     // Loop the indices for the insertvalue instruction in parallel with the
3757     // requested indices
3758     const unsigned *req_idx = idx_range.begin();
3759     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3760          i != e; ++i, ++req_idx) {
3761       if (req_idx == idx_range.end()) {
3762         // We can't handle this without inserting insertvalues
3763         if (!InsertBefore)
3764           return nullptr;
3765 
3766         // The requested index identifies a part of a nested aggregate. Handle
3767         // this specially. For example,
3768         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3769         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3770         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3771         // This can be changed into
3772         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3773         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3774         // which allows the unused 0,0 element from the nested struct to be
3775         // removed.
3776         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3777                                  InsertBefore);
3778       }
3779 
3780       // This insert value inserts something else than what we are looking for.
3781       // See if the (aggregate) value inserted into has the value we are
3782       // looking for, then.
3783       if (*req_idx != *i)
3784         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3785                                  InsertBefore);
3786     }
3787     // If we end up here, the indices of the insertvalue match with those
3788     // requested (though possibly only partially). Now we recursively look at
3789     // the inserted value, passing any remaining indices.
3790     return FindInsertedValue(I->getInsertedValueOperand(),
3791                              makeArrayRef(req_idx, idx_range.end()),
3792                              InsertBefore);
3793   }
3794 
3795   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3796     // If we're extracting a value from an aggregate that was extracted from
3797     // something else, we can extract from that something else directly instead.
3798     // However, we will need to chain I's indices with the requested indices.
3799 
3800     // Calculate the number of indices required
3801     unsigned size = I->getNumIndices() + idx_range.size();
3802     // Allocate some space to put the new indices in
3803     SmallVector<unsigned, 5> Idxs;
3804     Idxs.reserve(size);
3805     // Add indices from the extract value instruction
3806     Idxs.append(I->idx_begin(), I->idx_end());
3807 
3808     // Add requested indices
3809     Idxs.append(idx_range.begin(), idx_range.end());
3810 
3811     assert(Idxs.size() == size
3812            && "Number of indices added not correct?");
3813 
3814     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3815   }
3816   // Otherwise, we don't know (such as, extracting from a function return value
3817   // or load instruction)
3818   return nullptr;
3819 }
3820 
3821 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3822                                        unsigned CharSize) {
3823   // Make sure the GEP has exactly three arguments.
3824   if (GEP->getNumOperands() != 3)
3825     return false;
3826 
3827   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3828   // CharSize.
3829   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3830   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3831     return false;
3832 
3833   // Check to make sure that the first operand of the GEP is an integer and
3834   // has value 0 so that we are sure we're indexing into the initializer.
3835   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3836   if (!FirstIdx || !FirstIdx->isZero())
3837     return false;
3838 
3839   return true;
3840 }
3841 
3842 bool llvm::getConstantDataArrayInfo(const Value *V,
3843                                     ConstantDataArraySlice &Slice,
3844                                     unsigned ElementSize, uint64_t Offset) {
3845   assert(V);
3846 
3847   // Look through bitcast instructions and geps.
3848   V = V->stripPointerCasts();
3849 
3850   // If the value is a GEP instruction or constant expression, treat it as an
3851   // offset.
3852   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3853     // The GEP operator should be based on a pointer to string constant, and is
3854     // indexing into the string constant.
3855     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3856       return false;
3857 
3858     // If the second index isn't a ConstantInt, then this is a variable index
3859     // into the array.  If this occurs, we can't say anything meaningful about
3860     // the string.
3861     uint64_t StartIdx = 0;
3862     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3863       StartIdx = CI->getZExtValue();
3864     else
3865       return false;
3866     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3867                                     StartIdx + Offset);
3868   }
3869 
3870   // The GEP instruction, constant or instruction, must reference a global
3871   // variable that is a constant and is initialized. The referenced constant
3872   // initializer is the array that we'll use for optimization.
3873   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3874   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3875     return false;
3876 
3877   const ConstantDataArray *Array;
3878   ArrayType *ArrayTy;
3879   if (GV->getInitializer()->isNullValue()) {
3880     Type *GVTy = GV->getValueType();
3881     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3882       // A zeroinitializer for the array; there is no ConstantDataArray.
3883       Array = nullptr;
3884     } else {
3885       const DataLayout &DL = GV->getParent()->getDataLayout();
3886       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3887       uint64_t Length = SizeInBytes / (ElementSize / 8);
3888       if (Length <= Offset)
3889         return false;
3890 
3891       Slice.Array = nullptr;
3892       Slice.Offset = 0;
3893       Slice.Length = Length - Offset;
3894       return true;
3895     }
3896   } else {
3897     // This must be a ConstantDataArray.
3898     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3899     if (!Array)
3900       return false;
3901     ArrayTy = Array->getType();
3902   }
3903   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3904     return false;
3905 
3906   uint64_t NumElts = ArrayTy->getArrayNumElements();
3907   if (Offset > NumElts)
3908     return false;
3909 
3910   Slice.Array = Array;
3911   Slice.Offset = Offset;
3912   Slice.Length = NumElts - Offset;
3913   return true;
3914 }
3915 
3916 /// This function computes the length of a null-terminated C string pointed to
3917 /// by V. If successful, it returns true and returns the string in Str.
3918 /// If unsuccessful, it returns false.
3919 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3920                                  uint64_t Offset, bool TrimAtNul) {
3921   ConstantDataArraySlice Slice;
3922   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3923     return false;
3924 
3925   if (Slice.Array == nullptr) {
3926     if (TrimAtNul) {
3927       Str = StringRef();
3928       return true;
3929     }
3930     if (Slice.Length == 1) {
3931       Str = StringRef("", 1);
3932       return true;
3933     }
3934     // We cannot instantiate a StringRef as we do not have an appropriate string
3935     // of 0s at hand.
3936     return false;
3937   }
3938 
3939   // Start out with the entire array in the StringRef.
3940   Str = Slice.Array->getAsString();
3941   // Skip over 'offset' bytes.
3942   Str = Str.substr(Slice.Offset);
3943 
3944   if (TrimAtNul) {
3945     // Trim off the \0 and anything after it.  If the array is not nul
3946     // terminated, we just return the whole end of string.  The client may know
3947     // some other way that the string is length-bound.
3948     Str = Str.substr(0, Str.find('\0'));
3949   }
3950   return true;
3951 }
3952 
3953 // These next two are very similar to the above, but also look through PHI
3954 // nodes.
3955 // TODO: See if we can integrate these two together.
3956 
3957 /// If we can compute the length of the string pointed to by
3958 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3959 static uint64_t GetStringLengthH(const Value *V,
3960                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3961                                  unsigned CharSize) {
3962   // Look through noop bitcast instructions.
3963   V = V->stripPointerCasts();
3964 
3965   // If this is a PHI node, there are two cases: either we have already seen it
3966   // or we haven't.
3967   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3968     if (!PHIs.insert(PN).second)
3969       return ~0ULL;  // already in the set.
3970 
3971     // If it was new, see if all the input strings are the same length.
3972     uint64_t LenSoFar = ~0ULL;
3973     for (Value *IncValue : PN->incoming_values()) {
3974       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3975       if (Len == 0) return 0; // Unknown length -> unknown.
3976 
3977       if (Len == ~0ULL) continue;
3978 
3979       if (Len != LenSoFar && LenSoFar != ~0ULL)
3980         return 0;    // Disagree -> unknown.
3981       LenSoFar = Len;
3982     }
3983 
3984     // Success, all agree.
3985     return LenSoFar;
3986   }
3987 
3988   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3989   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3990     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3991     if (Len1 == 0) return 0;
3992     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3993     if (Len2 == 0) return 0;
3994     if (Len1 == ~0ULL) return Len2;
3995     if (Len2 == ~0ULL) return Len1;
3996     if (Len1 != Len2) return 0;
3997     return Len1;
3998   }
3999 
4000   // Otherwise, see if we can read the string.
4001   ConstantDataArraySlice Slice;
4002   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4003     return 0;
4004 
4005   if (Slice.Array == nullptr)
4006     return 1;
4007 
4008   // Search for nul characters
4009   unsigned NullIndex = 0;
4010   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4011     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4012       break;
4013   }
4014 
4015   return NullIndex + 1;
4016 }
4017 
4018 /// If we can compute the length of the string pointed to by
4019 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4020 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4021   if (!V->getType()->isPointerTy())
4022     return 0;
4023 
4024   SmallPtrSet<const PHINode*, 32> PHIs;
4025   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4026   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4027   // an empty string as a length.
4028   return Len == ~0ULL ? 1 : Len;
4029 }
4030 
4031 const Value *
4032 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4033                                            bool MustPreserveNullness) {
4034   assert(Call &&
4035          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4036   if (const Value *RV = Call->getReturnedArgOperand())
4037     return RV;
4038   // This can be used only as a aliasing property.
4039   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4040           Call, MustPreserveNullness))
4041     return Call->getArgOperand(0);
4042   return nullptr;
4043 }
4044 
4045 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4046     const CallBase *Call, bool MustPreserveNullness) {
4047   switch (Call->getIntrinsicID()) {
4048   case Intrinsic::launder_invariant_group:
4049   case Intrinsic::strip_invariant_group:
4050   case Intrinsic::aarch64_irg:
4051   case Intrinsic::aarch64_tagp:
4052     return true;
4053   case Intrinsic::ptrmask:
4054     return !MustPreserveNullness;
4055   default:
4056     return false;
4057   }
4058 }
4059 
4060 /// \p PN defines a loop-variant pointer to an object.  Check if the
4061 /// previous iteration of the loop was referring to the same object as \p PN.
4062 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4063                                          const LoopInfo *LI) {
4064   // Find the loop-defined value.
4065   Loop *L = LI->getLoopFor(PN->getParent());
4066   if (PN->getNumIncomingValues() != 2)
4067     return true;
4068 
4069   // Find the value from previous iteration.
4070   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4071   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4072     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4073   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4074     return true;
4075 
4076   // If a new pointer is loaded in the loop, the pointer references a different
4077   // object in every iteration.  E.g.:
4078   //    for (i)
4079   //       int *p = a[i];
4080   //       ...
4081   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4082     if (!L->isLoopInvariant(Load->getPointerOperand()))
4083       return false;
4084   return true;
4085 }
4086 
4087 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4088   if (!V->getType()->isPointerTy())
4089     return V;
4090   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4091     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4092       V = GEP->getPointerOperand();
4093     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4094                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4095       V = cast<Operator>(V)->getOperand(0);
4096       if (!V->getType()->isPointerTy())
4097         return V;
4098     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4099       if (GA->isInterposable())
4100         return V;
4101       V = GA->getAliasee();
4102     } else {
4103       if (auto *PHI = dyn_cast<PHINode>(V)) {
4104         // Look through single-arg phi nodes created by LCSSA.
4105         if (PHI->getNumIncomingValues() == 1) {
4106           V = PHI->getIncomingValue(0);
4107           continue;
4108         }
4109       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4110         // CaptureTracking can know about special capturing properties of some
4111         // intrinsics like launder.invariant.group, that can't be expressed with
4112         // the attributes, but have properties like returning aliasing pointer.
4113         // Because some analysis may assume that nocaptured pointer is not
4114         // returned from some special intrinsic (because function would have to
4115         // be marked with returns attribute), it is crucial to use this function
4116         // because it should be in sync with CaptureTracking. Not using it may
4117         // cause weird miscompilations where 2 aliasing pointers are assumed to
4118         // noalias.
4119         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4120           V = RP;
4121           continue;
4122         }
4123       }
4124 
4125       return V;
4126     }
4127     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4128   }
4129   return V;
4130 }
4131 
4132 void llvm::getUnderlyingObjects(const Value *V,
4133                                 SmallVectorImpl<const Value *> &Objects,
4134                                 LoopInfo *LI, unsigned MaxLookup) {
4135   SmallPtrSet<const Value *, 4> Visited;
4136   SmallVector<const Value *, 4> Worklist;
4137   Worklist.push_back(V);
4138   do {
4139     const Value *P = Worklist.pop_back_val();
4140     P = getUnderlyingObject(P, MaxLookup);
4141 
4142     if (!Visited.insert(P).second)
4143       continue;
4144 
4145     if (auto *SI = dyn_cast<SelectInst>(P)) {
4146       Worklist.push_back(SI->getTrueValue());
4147       Worklist.push_back(SI->getFalseValue());
4148       continue;
4149     }
4150 
4151     if (auto *PN = dyn_cast<PHINode>(P)) {
4152       // If this PHI changes the underlying object in every iteration of the
4153       // loop, don't look through it.  Consider:
4154       //   int **A;
4155       //   for (i) {
4156       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4157       //     Curr = A[i];
4158       //     *Prev, *Curr;
4159       //
4160       // Prev is tracking Curr one iteration behind so they refer to different
4161       // underlying objects.
4162       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4163           isSameUnderlyingObjectInLoop(PN, LI))
4164         for (Value *IncValue : PN->incoming_values())
4165           Worklist.push_back(IncValue);
4166       continue;
4167     }
4168 
4169     Objects.push_back(P);
4170   } while (!Worklist.empty());
4171 }
4172 
4173 /// This is the function that does the work of looking through basic
4174 /// ptrtoint+arithmetic+inttoptr sequences.
4175 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4176   do {
4177     if (const Operator *U = dyn_cast<Operator>(V)) {
4178       // If we find a ptrtoint, we can transfer control back to the
4179       // regular getUnderlyingObjectFromInt.
4180       if (U->getOpcode() == Instruction::PtrToInt)
4181         return U->getOperand(0);
4182       // If we find an add of a constant, a multiplied value, or a phi, it's
4183       // likely that the other operand will lead us to the base
4184       // object. We don't have to worry about the case where the
4185       // object address is somehow being computed by the multiply,
4186       // because our callers only care when the result is an
4187       // identifiable object.
4188       if (U->getOpcode() != Instruction::Add ||
4189           (!isa<ConstantInt>(U->getOperand(1)) &&
4190            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4191            !isa<PHINode>(U->getOperand(1))))
4192         return V;
4193       V = U->getOperand(0);
4194     } else {
4195       return V;
4196     }
4197     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4198   } while (true);
4199 }
4200 
4201 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4202 /// ptrtoint+arithmetic+inttoptr sequences.
4203 /// It returns false if unidentified object is found in getUnderlyingObjects.
4204 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4205                                           SmallVectorImpl<Value *> &Objects) {
4206   SmallPtrSet<const Value *, 16> Visited;
4207   SmallVector<const Value *, 4> Working(1, V);
4208   do {
4209     V = Working.pop_back_val();
4210 
4211     SmallVector<const Value *, 4> Objs;
4212     getUnderlyingObjects(V, Objs);
4213 
4214     for (const Value *V : Objs) {
4215       if (!Visited.insert(V).second)
4216         continue;
4217       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4218         const Value *O =
4219           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4220         if (O->getType()->isPointerTy()) {
4221           Working.push_back(O);
4222           continue;
4223         }
4224       }
4225       // If getUnderlyingObjects fails to find an identifiable object,
4226       // getUnderlyingObjectsForCodeGen also fails for safety.
4227       if (!isIdentifiedObject(V)) {
4228         Objects.clear();
4229         return false;
4230       }
4231       Objects.push_back(const_cast<Value *>(V));
4232     }
4233   } while (!Working.empty());
4234   return true;
4235 }
4236 
4237 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4238   AllocaInst *Result = nullptr;
4239   SmallPtrSet<Value *, 4> Visited;
4240   SmallVector<Value *, 4> Worklist;
4241 
4242   auto AddWork = [&](Value *V) {
4243     if (Visited.insert(V).second)
4244       Worklist.push_back(V);
4245   };
4246 
4247   AddWork(V);
4248   do {
4249     V = Worklist.pop_back_val();
4250     assert(Visited.count(V));
4251 
4252     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4253       if (Result && Result != AI)
4254         return nullptr;
4255       Result = AI;
4256     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4257       AddWork(CI->getOperand(0));
4258     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4259       for (Value *IncValue : PN->incoming_values())
4260         AddWork(IncValue);
4261     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4262       AddWork(SI->getTrueValue());
4263       AddWork(SI->getFalseValue());
4264     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4265       if (OffsetZero && !GEP->hasAllZeroIndices())
4266         return nullptr;
4267       AddWork(GEP->getPointerOperand());
4268     } else {
4269       return nullptr;
4270     }
4271   } while (!Worklist.empty());
4272 
4273   return Result;
4274 }
4275 
4276 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4277     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4278   for (const User *U : V->users()) {
4279     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4280     if (!II)
4281       return false;
4282 
4283     if (AllowLifetime && II->isLifetimeStartOrEnd())
4284       continue;
4285 
4286     if (AllowDroppable && II->isDroppable())
4287       continue;
4288 
4289     return false;
4290   }
4291   return true;
4292 }
4293 
4294 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4295   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4296       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4297 }
4298 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4299   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4300       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4301 }
4302 
4303 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4304   if (!LI.isUnordered())
4305     return true;
4306   const Function &F = *LI.getFunction();
4307   // Speculative load may create a race that did not exist in the source.
4308   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4309     // Speculative load may load data from dirty regions.
4310     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4311     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4312 }
4313 
4314 
4315 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4316                                         const Instruction *CtxI,
4317                                         const DominatorTree *DT) {
4318   const Operator *Inst = dyn_cast<Operator>(V);
4319   if (!Inst)
4320     return false;
4321 
4322   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4323     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4324       if (C->canTrap())
4325         return false;
4326 
4327   switch (Inst->getOpcode()) {
4328   default:
4329     return true;
4330   case Instruction::UDiv:
4331   case Instruction::URem: {
4332     // x / y is undefined if y == 0.
4333     const APInt *V;
4334     if (match(Inst->getOperand(1), m_APInt(V)))
4335       return *V != 0;
4336     return false;
4337   }
4338   case Instruction::SDiv:
4339   case Instruction::SRem: {
4340     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4341     const APInt *Numerator, *Denominator;
4342     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4343       return false;
4344     // We cannot hoist this division if the denominator is 0.
4345     if (*Denominator == 0)
4346       return false;
4347     // It's safe to hoist if the denominator is not 0 or -1.
4348     if (*Denominator != -1)
4349       return true;
4350     // At this point we know that the denominator is -1.  It is safe to hoist as
4351     // long we know that the numerator is not INT_MIN.
4352     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4353       return !Numerator->isMinSignedValue();
4354     // The numerator *might* be MinSignedValue.
4355     return false;
4356   }
4357   case Instruction::Load: {
4358     const LoadInst *LI = cast<LoadInst>(Inst);
4359     if (mustSuppressSpeculation(*LI))
4360       return false;
4361     const DataLayout &DL = LI->getModule()->getDataLayout();
4362     return isDereferenceableAndAlignedPointer(
4363         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4364         DL, CtxI, DT);
4365   }
4366   case Instruction::Call: {
4367     auto *CI = cast<const CallInst>(Inst);
4368     const Function *Callee = CI->getCalledFunction();
4369 
4370     // The called function could have undefined behavior or side-effects, even
4371     // if marked readnone nounwind.
4372     return Callee && Callee->isSpeculatable();
4373   }
4374   case Instruction::VAArg:
4375   case Instruction::Alloca:
4376   case Instruction::Invoke:
4377   case Instruction::CallBr:
4378   case Instruction::PHI:
4379   case Instruction::Store:
4380   case Instruction::Ret:
4381   case Instruction::Br:
4382   case Instruction::IndirectBr:
4383   case Instruction::Switch:
4384   case Instruction::Unreachable:
4385   case Instruction::Fence:
4386   case Instruction::AtomicRMW:
4387   case Instruction::AtomicCmpXchg:
4388   case Instruction::LandingPad:
4389   case Instruction::Resume:
4390   case Instruction::CatchSwitch:
4391   case Instruction::CatchPad:
4392   case Instruction::CatchRet:
4393   case Instruction::CleanupPad:
4394   case Instruction::CleanupRet:
4395     return false; // Misc instructions which have effects
4396   }
4397 }
4398 
4399 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4400   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4401 }
4402 
4403 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4404 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4405   switch (OR) {
4406     case ConstantRange::OverflowResult::MayOverflow:
4407       return OverflowResult::MayOverflow;
4408     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4409       return OverflowResult::AlwaysOverflowsLow;
4410     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4411       return OverflowResult::AlwaysOverflowsHigh;
4412     case ConstantRange::OverflowResult::NeverOverflows:
4413       return OverflowResult::NeverOverflows;
4414   }
4415   llvm_unreachable("Unknown OverflowResult");
4416 }
4417 
4418 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4419 static ConstantRange computeConstantRangeIncludingKnownBits(
4420     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4421     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4422     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4423   KnownBits Known = computeKnownBits(
4424       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4425   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4426   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4427   ConstantRange::PreferredRangeType RangeType =
4428       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4429   return CR1.intersectWith(CR2, RangeType);
4430 }
4431 
4432 OverflowResult llvm::computeOverflowForUnsignedMul(
4433     const Value *LHS, const Value *RHS, const DataLayout &DL,
4434     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4435     bool UseInstrInfo) {
4436   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4437                                         nullptr, UseInstrInfo);
4438   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4439                                         nullptr, UseInstrInfo);
4440   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4441   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4442   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4443 }
4444 
4445 OverflowResult
4446 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4447                                   const DataLayout &DL, AssumptionCache *AC,
4448                                   const Instruction *CxtI,
4449                                   const DominatorTree *DT, bool UseInstrInfo) {
4450   // Multiplying n * m significant bits yields a result of n + m significant
4451   // bits. If the total number of significant bits does not exceed the
4452   // result bit width (minus 1), there is no overflow.
4453   // This means if we have enough leading sign bits in the operands
4454   // we can guarantee that the result does not overflow.
4455   // Ref: "Hacker's Delight" by Henry Warren
4456   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4457 
4458   // Note that underestimating the number of sign bits gives a more
4459   // conservative answer.
4460   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4461                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4462 
4463   // First handle the easy case: if we have enough sign bits there's
4464   // definitely no overflow.
4465   if (SignBits > BitWidth + 1)
4466     return OverflowResult::NeverOverflows;
4467 
4468   // There are two ambiguous cases where there can be no overflow:
4469   //   SignBits == BitWidth + 1    and
4470   //   SignBits == BitWidth
4471   // The second case is difficult to check, therefore we only handle the
4472   // first case.
4473   if (SignBits == BitWidth + 1) {
4474     // It overflows only when both arguments are negative and the true
4475     // product is exactly the minimum negative number.
4476     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4477     // For simplicity we just check if at least one side is not negative.
4478     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4479                                           nullptr, UseInstrInfo);
4480     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4481                                           nullptr, UseInstrInfo);
4482     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4483       return OverflowResult::NeverOverflows;
4484   }
4485   return OverflowResult::MayOverflow;
4486 }
4487 
4488 OverflowResult llvm::computeOverflowForUnsignedAdd(
4489     const Value *LHS, const Value *RHS, const DataLayout &DL,
4490     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4491     bool UseInstrInfo) {
4492   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4493       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4494       nullptr, UseInstrInfo);
4495   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4496       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4497       nullptr, UseInstrInfo);
4498   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4499 }
4500 
4501 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4502                                                   const Value *RHS,
4503                                                   const AddOperator *Add,
4504                                                   const DataLayout &DL,
4505                                                   AssumptionCache *AC,
4506                                                   const Instruction *CxtI,
4507                                                   const DominatorTree *DT) {
4508   if (Add && Add->hasNoSignedWrap()) {
4509     return OverflowResult::NeverOverflows;
4510   }
4511 
4512   // If LHS and RHS each have at least two sign bits, the addition will look
4513   // like
4514   //
4515   // XX..... +
4516   // YY.....
4517   //
4518   // If the carry into the most significant position is 0, X and Y can't both
4519   // be 1 and therefore the carry out of the addition is also 0.
4520   //
4521   // If the carry into the most significant position is 1, X and Y can't both
4522   // be 0 and therefore the carry out of the addition is also 1.
4523   //
4524   // Since the carry into the most significant position is always equal to
4525   // the carry out of the addition, there is no signed overflow.
4526   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4527       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4528     return OverflowResult::NeverOverflows;
4529 
4530   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4531       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4532   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4533       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4534   OverflowResult OR =
4535       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4536   if (OR != OverflowResult::MayOverflow)
4537     return OR;
4538 
4539   // The remaining code needs Add to be available. Early returns if not so.
4540   if (!Add)
4541     return OverflowResult::MayOverflow;
4542 
4543   // If the sign of Add is the same as at least one of the operands, this add
4544   // CANNOT overflow. If this can be determined from the known bits of the
4545   // operands the above signedAddMayOverflow() check will have already done so.
4546   // The only other way to improve on the known bits is from an assumption, so
4547   // call computeKnownBitsFromAssume() directly.
4548   bool LHSOrRHSKnownNonNegative =
4549       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4550   bool LHSOrRHSKnownNegative =
4551       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4552   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4553     KnownBits AddKnown(LHSRange.getBitWidth());
4554     computeKnownBitsFromAssume(
4555         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4556     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4557         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4558       return OverflowResult::NeverOverflows;
4559   }
4560 
4561   return OverflowResult::MayOverflow;
4562 }
4563 
4564 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4565                                                    const Value *RHS,
4566                                                    const DataLayout &DL,
4567                                                    AssumptionCache *AC,
4568                                                    const Instruction *CxtI,
4569                                                    const DominatorTree *DT) {
4570   // Checking for conditions implied by dominating conditions may be expensive.
4571   // Limit it to usub_with_overflow calls for now.
4572   if (match(CxtI,
4573             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4574     if (auto C =
4575             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4576       if (*C)
4577         return OverflowResult::NeverOverflows;
4578       return OverflowResult::AlwaysOverflowsLow;
4579     }
4580   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4581       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4582   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4583       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4584   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4585 }
4586 
4587 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4588                                                  const Value *RHS,
4589                                                  const DataLayout &DL,
4590                                                  AssumptionCache *AC,
4591                                                  const Instruction *CxtI,
4592                                                  const DominatorTree *DT) {
4593   // If LHS and RHS each have at least two sign bits, the subtraction
4594   // cannot overflow.
4595   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4596       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4597     return OverflowResult::NeverOverflows;
4598 
4599   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4600       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4601   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4602       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4603   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4604 }
4605 
4606 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4607                                      const DominatorTree &DT) {
4608   SmallVector<const BranchInst *, 2> GuardingBranches;
4609   SmallVector<const ExtractValueInst *, 2> Results;
4610 
4611   for (const User *U : WO->users()) {
4612     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4613       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4614 
4615       if (EVI->getIndices()[0] == 0)
4616         Results.push_back(EVI);
4617       else {
4618         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4619 
4620         for (const auto *U : EVI->users())
4621           if (const auto *B = dyn_cast<BranchInst>(U)) {
4622             assert(B->isConditional() && "How else is it using an i1?");
4623             GuardingBranches.push_back(B);
4624           }
4625       }
4626     } else {
4627       // We are using the aggregate directly in a way we don't want to analyze
4628       // here (storing it to a global, say).
4629       return false;
4630     }
4631   }
4632 
4633   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4634     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4635     if (!NoWrapEdge.isSingleEdge())
4636       return false;
4637 
4638     // Check if all users of the add are provably no-wrap.
4639     for (const auto *Result : Results) {
4640       // If the extractvalue itself is not executed on overflow, the we don't
4641       // need to check each use separately, since domination is transitive.
4642       if (DT.dominates(NoWrapEdge, Result->getParent()))
4643         continue;
4644 
4645       for (auto &RU : Result->uses())
4646         if (!DT.dominates(NoWrapEdge, RU))
4647           return false;
4648     }
4649 
4650     return true;
4651   };
4652 
4653   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4654 }
4655 
4656 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4657   // See whether I has flags that may create poison
4658   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4659     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4660       return true;
4661   }
4662   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4663     if (ExactOp->isExact())
4664       return true;
4665   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4666     auto FMF = FP->getFastMathFlags();
4667     if (FMF.noNaNs() || FMF.noInfs())
4668       return true;
4669   }
4670 
4671   unsigned Opcode = Op->getOpcode();
4672 
4673   // Check whether opcode is a poison/undef-generating operation
4674   switch (Opcode) {
4675   case Instruction::Shl:
4676   case Instruction::AShr:
4677   case Instruction::LShr: {
4678     // Shifts return poison if shiftwidth is larger than the bitwidth.
4679     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4680       SmallVector<Constant *, 4> ShiftAmounts;
4681       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4682         unsigned NumElts = FVTy->getNumElements();
4683         for (unsigned i = 0; i < NumElts; ++i)
4684           ShiftAmounts.push_back(C->getAggregateElement(i));
4685       } else if (isa<ScalableVectorType>(C->getType()))
4686         return true; // Can't tell, just return true to be safe
4687       else
4688         ShiftAmounts.push_back(C);
4689 
4690       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4691         auto *CI = dyn_cast<ConstantInt>(C);
4692         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4693       });
4694       return !Safe;
4695     }
4696     return true;
4697   }
4698   case Instruction::FPToSI:
4699   case Instruction::FPToUI:
4700     // fptosi/ui yields poison if the resulting value does not fit in the
4701     // destination type.
4702     return true;
4703   case Instruction::Call:
4704   case Instruction::CallBr:
4705   case Instruction::Invoke: {
4706     const auto *CB = cast<CallBase>(Op);
4707     return !CB->hasRetAttr(Attribute::NoUndef);
4708   }
4709   case Instruction::InsertElement:
4710   case Instruction::ExtractElement: {
4711     // If index exceeds the length of the vector, it returns poison
4712     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4713     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4714     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4715     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4716       return true;
4717     return false;
4718   }
4719   case Instruction::ShuffleVector: {
4720     // shufflevector may return undef.
4721     if (PoisonOnly)
4722       return false;
4723     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4724                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4725                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4726     return is_contained(Mask, UndefMaskElem);
4727   }
4728   case Instruction::FNeg:
4729   case Instruction::PHI:
4730   case Instruction::Select:
4731   case Instruction::URem:
4732   case Instruction::SRem:
4733   case Instruction::ExtractValue:
4734   case Instruction::InsertValue:
4735   case Instruction::Freeze:
4736   case Instruction::ICmp:
4737   case Instruction::FCmp:
4738     return false;
4739   case Instruction::GetElementPtr: {
4740     const auto *GEP = cast<GEPOperator>(Op);
4741     return GEP->isInBounds();
4742   }
4743   default: {
4744     const auto *CE = dyn_cast<ConstantExpr>(Op);
4745     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4746       return false;
4747     else if (Instruction::isBinaryOp(Opcode))
4748       return false;
4749     // Be conservative and return true.
4750     return true;
4751   }
4752   }
4753 }
4754 
4755 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4756   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4757 }
4758 
4759 bool llvm::canCreatePoison(const Operator *Op) {
4760   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4761 }
4762 
4763 static bool programUndefinedIfUndefOrPoison(const Value *V,
4764                                             bool PoisonOnly);
4765 
4766 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
4767                                              AssumptionCache *AC,
4768                                              const Instruction *CtxI,
4769                                              const DominatorTree *DT,
4770                                              unsigned Depth, bool PoisonOnly) {
4771   if (Depth >= MaxAnalysisRecursionDepth)
4772     return false;
4773 
4774   if (isa<MetadataAsValue>(V))
4775     return false;
4776 
4777   if (const auto *A = dyn_cast<Argument>(V)) {
4778     if (A->hasAttribute(Attribute::NoUndef))
4779       return true;
4780   }
4781 
4782   if (auto *C = dyn_cast<Constant>(V)) {
4783     if (isa<UndefValue>(C))
4784       return PoisonOnly;
4785 
4786     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4787         isa<ConstantPointerNull>(C) || isa<Function>(C))
4788       return true;
4789 
4790     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4791       return (PoisonOnly || !C->containsUndefElement()) &&
4792              !C->containsConstantExpression();
4793   }
4794 
4795   // Strip cast operations from a pointer value.
4796   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4797   // inbounds with zero offset. To guarantee that the result isn't poison, the
4798   // stripped pointer is checked as it has to be pointing into an allocated
4799   // object or be null `null` to ensure `inbounds` getelement pointers with a
4800   // zero offset could not produce poison.
4801   // It can strip off addrspacecast that do not change bit representation as
4802   // well. We believe that such addrspacecast is equivalent to no-op.
4803   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4804   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4805       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4806     return true;
4807 
4808   auto OpCheck = [&](const Value *V) {
4809     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
4810                                             PoisonOnly);
4811   };
4812 
4813   if (auto *Opr = dyn_cast<Operator>(V)) {
4814     // If the value is a freeze instruction, then it can never
4815     // be undef or poison.
4816     if (isa<FreezeInst>(V))
4817       return true;
4818 
4819     if (const auto *CB = dyn_cast<CallBase>(V)) {
4820       if (CB->hasRetAttr(Attribute::NoUndef))
4821         return true;
4822     }
4823 
4824     if (const auto *PN = dyn_cast<PHINode>(V)) {
4825       unsigned Num = PN->getNumIncomingValues();
4826       bool IsWellDefined = true;
4827       for (unsigned i = 0; i < Num; ++i) {
4828         auto *TI = PN->getIncomingBlock(i)->getTerminator();
4829         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
4830                                               DT, Depth + 1, PoisonOnly)) {
4831           IsWellDefined = false;
4832           break;
4833         }
4834       }
4835       if (IsWellDefined)
4836         return true;
4837     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4838       return true;
4839   }
4840 
4841   if (auto *I = dyn_cast<LoadInst>(V))
4842     if (I->getMetadata(LLVMContext::MD_noundef))
4843       return true;
4844 
4845   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
4846     return true;
4847 
4848   // CxtI may be null or a cloned instruction.
4849   if (!CtxI || !CtxI->getParent() || !DT)
4850     return false;
4851 
4852   auto *DNode = DT->getNode(CtxI->getParent());
4853   if (!DNode)
4854     // Unreachable block
4855     return false;
4856 
4857   // If V is used as a branch condition before reaching CtxI, V cannot be
4858   // undef or poison.
4859   //   br V, BB1, BB2
4860   // BB1:
4861   //   CtxI ; V cannot be undef or poison here
4862   auto *Dominator = DNode->getIDom();
4863   while (Dominator) {
4864     auto *TI = Dominator->getBlock()->getTerminator();
4865 
4866     Value *Cond = nullptr;
4867     if (auto BI = dyn_cast<BranchInst>(TI)) {
4868       if (BI->isConditional())
4869         Cond = BI->getCondition();
4870     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4871       Cond = SI->getCondition();
4872     }
4873 
4874     if (Cond) {
4875       if (Cond == V)
4876         return true;
4877       else if (PoisonOnly && isa<Operator>(Cond)) {
4878         // For poison, we can analyze further
4879         auto *Opr = cast<Operator>(Cond);
4880         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
4881           return true;
4882       }
4883     }
4884 
4885     Dominator = Dominator->getIDom();
4886   }
4887 
4888   SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
4889   if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
4890     return true;
4891 
4892   return false;
4893 }
4894 
4895 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
4896                                             const Instruction *CtxI,
4897                                             const DominatorTree *DT,
4898                                             unsigned Depth) {
4899   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
4900 }
4901 
4902 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
4903                                      const Instruction *CtxI,
4904                                      const DominatorTree *DT, unsigned Depth) {
4905   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
4906 }
4907 
4908 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4909                                                  const DataLayout &DL,
4910                                                  AssumptionCache *AC,
4911                                                  const Instruction *CxtI,
4912                                                  const DominatorTree *DT) {
4913   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4914                                        Add, DL, AC, CxtI, DT);
4915 }
4916 
4917 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4918                                                  const Value *RHS,
4919                                                  const DataLayout &DL,
4920                                                  AssumptionCache *AC,
4921                                                  const Instruction *CxtI,
4922                                                  const DominatorTree *DT) {
4923   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4924 }
4925 
4926 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4927   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4928   // of time because it's possible for another thread to interfere with it for an
4929   // arbitrary length of time, but programs aren't allowed to rely on that.
4930 
4931   // If there is no successor, then execution can't transfer to it.
4932   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4933     return !CRI->unwindsToCaller();
4934   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4935     return !CatchSwitch->unwindsToCaller();
4936   if (isa<ResumeInst>(I))
4937     return false;
4938   if (isa<ReturnInst>(I))
4939     return false;
4940   if (isa<UnreachableInst>(I))
4941     return false;
4942 
4943   // Calls can throw, or contain an infinite loop, or kill the process.
4944   if (const auto *CB = dyn_cast<CallBase>(I)) {
4945     // Call sites that throw have implicit non-local control flow.
4946     if (!CB->doesNotThrow())
4947       return false;
4948 
4949     // A function which doens't throw and has "willreturn" attribute will
4950     // always return.
4951     if (CB->hasFnAttr(Attribute::WillReturn))
4952       return true;
4953 
4954     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4955     // etc. and thus not return.  However, LLVM already assumes that
4956     //
4957     //  - Thread exiting actions are modeled as writes to memory invisible to
4958     //    the program.
4959     //
4960     //  - Loops that don't have side effects (side effects are volatile/atomic
4961     //    stores and IO) always terminate (see http://llvm.org/PR965).
4962     //    Furthermore IO itself is also modeled as writes to memory invisible to
4963     //    the program.
4964     //
4965     // We rely on those assumptions here, and use the memory effects of the call
4966     // target as a proxy for checking that it always returns.
4967 
4968     // FIXME: This isn't aggressive enough; a call which only writes to a global
4969     // is guaranteed to return.
4970     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
4971   }
4972 
4973   // Other instructions return normally.
4974   return true;
4975 }
4976 
4977 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4978   // TODO: This is slightly conservative for invoke instruction since exiting
4979   // via an exception *is* normal control for them.
4980   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4981     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4982       return false;
4983   return true;
4984 }
4985 
4986 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4987                                                   const Loop *L) {
4988   // The loop header is guaranteed to be executed for every iteration.
4989   //
4990   // FIXME: Relax this constraint to cover all basic blocks that are
4991   // guaranteed to be executed at every iteration.
4992   if (I->getParent() != L->getHeader()) return false;
4993 
4994   for (const Instruction &LI : *L->getHeader()) {
4995     if (&LI == I) return true;
4996     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4997   }
4998   llvm_unreachable("Instruction not contained in its own parent basic block.");
4999 }
5000 
5001 bool llvm::propagatesPoison(const Operator *I) {
5002   switch (I->getOpcode()) {
5003   case Instruction::Freeze:
5004   case Instruction::Select:
5005   case Instruction::PHI:
5006   case Instruction::Call:
5007   case Instruction::Invoke:
5008     return false;
5009   case Instruction::ICmp:
5010   case Instruction::FCmp:
5011   case Instruction::GetElementPtr:
5012     return true;
5013   default:
5014     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5015       return true;
5016 
5017     // Be conservative and return false.
5018     return false;
5019   }
5020 }
5021 
5022 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5023                                      SmallPtrSetImpl<const Value *> &Operands) {
5024   switch (I->getOpcode()) {
5025     case Instruction::Store:
5026       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5027       break;
5028 
5029     case Instruction::Load:
5030       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5031       break;
5032 
5033     case Instruction::AtomicCmpXchg:
5034       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5035       break;
5036 
5037     case Instruction::AtomicRMW:
5038       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5039       break;
5040 
5041     case Instruction::UDiv:
5042     case Instruction::SDiv:
5043     case Instruction::URem:
5044     case Instruction::SRem:
5045       Operands.insert(I->getOperand(1));
5046       break;
5047 
5048     case Instruction::Call:
5049     case Instruction::Invoke: {
5050       const CallBase *CB = cast<CallBase>(I);
5051       if (CB->isIndirectCall())
5052         Operands.insert(CB->getCalledOperand());
5053       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5054         if (CB->paramHasAttr(i, Attribute::NoUndef))
5055           Operands.insert(CB->getArgOperand(i));
5056       }
5057       break;
5058     }
5059 
5060     default:
5061       break;
5062   }
5063 }
5064 
5065 bool llvm::mustTriggerUB(const Instruction *I,
5066                          const SmallSet<const Value *, 16>& KnownPoison) {
5067   SmallPtrSet<const Value *, 4> NonPoisonOps;
5068   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5069 
5070   for (const auto *V : NonPoisonOps)
5071     if (KnownPoison.count(V))
5072       return true;
5073 
5074   return false;
5075 }
5076 
5077 static bool programUndefinedIfUndefOrPoison(const Value *V,
5078                                             bool PoisonOnly) {
5079   // We currently only look for uses of values within the same basic
5080   // block, as that makes it easier to guarantee that the uses will be
5081   // executed given that Inst is executed.
5082   //
5083   // FIXME: Expand this to consider uses beyond the same basic block. To do
5084   // this, look out for the distinction between post-dominance and strong
5085   // post-dominance.
5086   const BasicBlock *BB = nullptr;
5087   BasicBlock::const_iterator Begin;
5088   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5089     BB = Inst->getParent();
5090     Begin = Inst->getIterator();
5091     Begin++;
5092   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5093     BB = &Arg->getParent()->getEntryBlock();
5094     Begin = BB->begin();
5095   } else {
5096     return false;
5097   }
5098 
5099   BasicBlock::const_iterator End = BB->end();
5100 
5101   if (!PoisonOnly) {
5102     // Be conservative & just check whether a value is passed to a noundef
5103     // argument.
5104     // Instructions that raise UB with a poison operand are well-defined
5105     // or have unclear semantics when the input is partially undef.
5106     // For example, 'udiv x, (undef | 1)' isn't UB.
5107 
5108     for (auto &I : make_range(Begin, End)) {
5109       if (const auto *CB = dyn_cast<CallBase>(&I)) {
5110         for (unsigned i = 0; i < CB->arg_size(); ++i) {
5111           if (CB->paramHasAttr(i, Attribute::NoUndef) &&
5112               CB->getArgOperand(i) == V)
5113             return true;
5114         }
5115       }
5116       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5117         break;
5118     }
5119     return false;
5120   }
5121 
5122   // Set of instructions that we have proved will yield poison if Inst
5123   // does.
5124   SmallSet<const Value *, 16> YieldsPoison;
5125   SmallSet<const BasicBlock *, 4> Visited;
5126 
5127   YieldsPoison.insert(V);
5128   auto Propagate = [&](const User *User) {
5129     if (propagatesPoison(cast<Operator>(User)))
5130       YieldsPoison.insert(User);
5131   };
5132   for_each(V->users(), Propagate);
5133   Visited.insert(BB);
5134 
5135   unsigned Iter = 0;
5136   while (Iter++ < MaxAnalysisRecursionDepth) {
5137     for (auto &I : make_range(Begin, End)) {
5138       if (mustTriggerUB(&I, YieldsPoison))
5139         return true;
5140       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5141         return false;
5142 
5143       // Mark poison that propagates from I through uses of I.
5144       if (YieldsPoison.count(&I))
5145         for_each(I.users(), Propagate);
5146     }
5147 
5148     if (auto *NextBB = BB->getSingleSuccessor()) {
5149       if (Visited.insert(NextBB).second) {
5150         BB = NextBB;
5151         Begin = BB->getFirstNonPHI()->getIterator();
5152         End = BB->end();
5153         continue;
5154       }
5155     }
5156 
5157     break;
5158   }
5159   return false;
5160 }
5161 
5162 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5163   return ::programUndefinedIfUndefOrPoison(Inst, false);
5164 }
5165 
5166 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5167   return ::programUndefinedIfUndefOrPoison(Inst, true);
5168 }
5169 
5170 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5171   if (FMF.noNaNs())
5172     return true;
5173 
5174   if (auto *C = dyn_cast<ConstantFP>(V))
5175     return !C->isNaN();
5176 
5177   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5178     if (!C->getElementType()->isFloatingPointTy())
5179       return false;
5180     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5181       if (C->getElementAsAPFloat(I).isNaN())
5182         return false;
5183     }
5184     return true;
5185   }
5186 
5187   if (isa<ConstantAggregateZero>(V))
5188     return true;
5189 
5190   return false;
5191 }
5192 
5193 static bool isKnownNonZero(const Value *V) {
5194   if (auto *C = dyn_cast<ConstantFP>(V))
5195     return !C->isZero();
5196 
5197   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5198     if (!C->getElementType()->isFloatingPointTy())
5199       return false;
5200     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5201       if (C->getElementAsAPFloat(I).isZero())
5202         return false;
5203     }
5204     return true;
5205   }
5206 
5207   return false;
5208 }
5209 
5210 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5211 /// Given non-min/max outer cmp/select from the clamp pattern this
5212 /// function recognizes if it can be substitued by a "canonical" min/max
5213 /// pattern.
5214 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5215                                                Value *CmpLHS, Value *CmpRHS,
5216                                                Value *TrueVal, Value *FalseVal,
5217                                                Value *&LHS, Value *&RHS) {
5218   // Try to match
5219   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5220   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5221   // and return description of the outer Max/Min.
5222 
5223   // First, check if select has inverse order:
5224   if (CmpRHS == FalseVal) {
5225     std::swap(TrueVal, FalseVal);
5226     Pred = CmpInst::getInversePredicate(Pred);
5227   }
5228 
5229   // Assume success now. If there's no match, callers should not use these anyway.
5230   LHS = TrueVal;
5231   RHS = FalseVal;
5232 
5233   const APFloat *FC1;
5234   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5235     return {SPF_UNKNOWN, SPNB_NA, false};
5236 
5237   const APFloat *FC2;
5238   switch (Pred) {
5239   case CmpInst::FCMP_OLT:
5240   case CmpInst::FCMP_OLE:
5241   case CmpInst::FCMP_ULT:
5242   case CmpInst::FCMP_ULE:
5243     if (match(FalseVal,
5244               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5245                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5246         *FC1 < *FC2)
5247       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5248     break;
5249   case CmpInst::FCMP_OGT:
5250   case CmpInst::FCMP_OGE:
5251   case CmpInst::FCMP_UGT:
5252   case CmpInst::FCMP_UGE:
5253     if (match(FalseVal,
5254               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5255                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5256         *FC1 > *FC2)
5257       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5258     break;
5259   default:
5260     break;
5261   }
5262 
5263   return {SPF_UNKNOWN, SPNB_NA, false};
5264 }
5265 
5266 /// Recognize variations of:
5267 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5268 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5269                                       Value *CmpLHS, Value *CmpRHS,
5270                                       Value *TrueVal, Value *FalseVal) {
5271   // Swap the select operands and predicate to match the patterns below.
5272   if (CmpRHS != TrueVal) {
5273     Pred = ICmpInst::getSwappedPredicate(Pred);
5274     std::swap(TrueVal, FalseVal);
5275   }
5276   const APInt *C1;
5277   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5278     const APInt *C2;
5279     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5280     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5281         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5282       return {SPF_SMAX, SPNB_NA, false};
5283 
5284     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5285     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5286         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5287       return {SPF_SMIN, SPNB_NA, false};
5288 
5289     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5290     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5291         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5292       return {SPF_UMAX, SPNB_NA, false};
5293 
5294     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5295     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5296         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5297       return {SPF_UMIN, SPNB_NA, false};
5298   }
5299   return {SPF_UNKNOWN, SPNB_NA, false};
5300 }
5301 
5302 /// Recognize variations of:
5303 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5304 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5305                                                Value *CmpLHS, Value *CmpRHS,
5306                                                Value *TVal, Value *FVal,
5307                                                unsigned Depth) {
5308   // TODO: Allow FP min/max with nnan/nsz.
5309   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5310 
5311   Value *A = nullptr, *B = nullptr;
5312   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5313   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5314     return {SPF_UNKNOWN, SPNB_NA, false};
5315 
5316   Value *C = nullptr, *D = nullptr;
5317   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5318   if (L.Flavor != R.Flavor)
5319     return {SPF_UNKNOWN, SPNB_NA, false};
5320 
5321   // We have something like: x Pred y ? min(a, b) : min(c, d).
5322   // Try to match the compare to the min/max operations of the select operands.
5323   // First, make sure we have the right compare predicate.
5324   switch (L.Flavor) {
5325   case SPF_SMIN:
5326     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5327       Pred = ICmpInst::getSwappedPredicate(Pred);
5328       std::swap(CmpLHS, CmpRHS);
5329     }
5330     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5331       break;
5332     return {SPF_UNKNOWN, SPNB_NA, false};
5333   case SPF_SMAX:
5334     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5335       Pred = ICmpInst::getSwappedPredicate(Pred);
5336       std::swap(CmpLHS, CmpRHS);
5337     }
5338     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5339       break;
5340     return {SPF_UNKNOWN, SPNB_NA, false};
5341   case SPF_UMIN:
5342     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5343       Pred = ICmpInst::getSwappedPredicate(Pred);
5344       std::swap(CmpLHS, CmpRHS);
5345     }
5346     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5347       break;
5348     return {SPF_UNKNOWN, SPNB_NA, false};
5349   case SPF_UMAX:
5350     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5351       Pred = ICmpInst::getSwappedPredicate(Pred);
5352       std::swap(CmpLHS, CmpRHS);
5353     }
5354     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5355       break;
5356     return {SPF_UNKNOWN, SPNB_NA, false};
5357   default:
5358     return {SPF_UNKNOWN, SPNB_NA, false};
5359   }
5360 
5361   // If there is a common operand in the already matched min/max and the other
5362   // min/max operands match the compare operands (either directly or inverted),
5363   // then this is min/max of the same flavor.
5364 
5365   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5366   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5367   if (D == B) {
5368     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5369                                          match(A, m_Not(m_Specific(CmpRHS)))))
5370       return {L.Flavor, SPNB_NA, false};
5371   }
5372   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5373   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5374   if (C == B) {
5375     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5376                                          match(A, m_Not(m_Specific(CmpRHS)))))
5377       return {L.Flavor, SPNB_NA, false};
5378   }
5379   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5380   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5381   if (D == A) {
5382     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5383                                          match(B, m_Not(m_Specific(CmpRHS)))))
5384       return {L.Flavor, SPNB_NA, false};
5385   }
5386   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5387   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5388   if (C == A) {
5389     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5390                                          match(B, m_Not(m_Specific(CmpRHS)))))
5391       return {L.Flavor, SPNB_NA, false};
5392   }
5393 
5394   return {SPF_UNKNOWN, SPNB_NA, false};
5395 }
5396 
5397 /// If the input value is the result of a 'not' op, constant integer, or vector
5398 /// splat of a constant integer, return the bitwise-not source value.
5399 /// TODO: This could be extended to handle non-splat vector integer constants.
5400 static Value *getNotValue(Value *V) {
5401   Value *NotV;
5402   if (match(V, m_Not(m_Value(NotV))))
5403     return NotV;
5404 
5405   const APInt *C;
5406   if (match(V, m_APInt(C)))
5407     return ConstantInt::get(V->getType(), ~(*C));
5408 
5409   return nullptr;
5410 }
5411 
5412 /// Match non-obvious integer minimum and maximum sequences.
5413 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5414                                        Value *CmpLHS, Value *CmpRHS,
5415                                        Value *TrueVal, Value *FalseVal,
5416                                        Value *&LHS, Value *&RHS,
5417                                        unsigned Depth) {
5418   // Assume success. If there's no match, callers should not use these anyway.
5419   LHS = TrueVal;
5420   RHS = FalseVal;
5421 
5422   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5423   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5424     return SPR;
5425 
5426   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5427   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5428     return SPR;
5429 
5430   // Look through 'not' ops to find disguised min/max.
5431   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5432   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5433   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5434     switch (Pred) {
5435     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5436     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5437     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5438     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5439     default: break;
5440     }
5441   }
5442 
5443   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5444   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5445   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5446     switch (Pred) {
5447     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5448     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5449     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5450     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5451     default: break;
5452     }
5453   }
5454 
5455   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5456     return {SPF_UNKNOWN, SPNB_NA, false};
5457 
5458   // Z = X -nsw Y
5459   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5460   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5461   if (match(TrueVal, m_Zero()) &&
5462       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5463     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5464 
5465   // Z = X -nsw Y
5466   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5467   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5468   if (match(FalseVal, m_Zero()) &&
5469       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5470     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5471 
5472   const APInt *C1;
5473   if (!match(CmpRHS, m_APInt(C1)))
5474     return {SPF_UNKNOWN, SPNB_NA, false};
5475 
5476   // An unsigned min/max can be written with a signed compare.
5477   const APInt *C2;
5478   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5479       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5480     // Is the sign bit set?
5481     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5482     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5483     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5484         C2->isMaxSignedValue())
5485       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5486 
5487     // Is the sign bit clear?
5488     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5489     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5490     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5491         C2->isMinSignedValue())
5492       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5493   }
5494 
5495   return {SPF_UNKNOWN, SPNB_NA, false};
5496 }
5497 
5498 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5499   assert(X && Y && "Invalid operand");
5500 
5501   // X = sub (0, Y) || X = sub nsw (0, Y)
5502   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5503       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5504     return true;
5505 
5506   // Y = sub (0, X) || Y = sub nsw (0, X)
5507   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5508       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5509     return true;
5510 
5511   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5512   Value *A, *B;
5513   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5514                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5515          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5516                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5517 }
5518 
5519 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5520                                               FastMathFlags FMF,
5521                                               Value *CmpLHS, Value *CmpRHS,
5522                                               Value *TrueVal, Value *FalseVal,
5523                                               Value *&LHS, Value *&RHS,
5524                                               unsigned Depth) {
5525   if (CmpInst::isFPPredicate(Pred)) {
5526     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5527     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5528     // purpose of identifying min/max. Disregard vector constants with undefined
5529     // elements because those can not be back-propagated for analysis.
5530     Value *OutputZeroVal = nullptr;
5531     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5532         !cast<Constant>(TrueVal)->containsUndefElement())
5533       OutputZeroVal = TrueVal;
5534     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5535              !cast<Constant>(FalseVal)->containsUndefElement())
5536       OutputZeroVal = FalseVal;
5537 
5538     if (OutputZeroVal) {
5539       if (match(CmpLHS, m_AnyZeroFP()))
5540         CmpLHS = OutputZeroVal;
5541       if (match(CmpRHS, m_AnyZeroFP()))
5542         CmpRHS = OutputZeroVal;
5543     }
5544   }
5545 
5546   LHS = CmpLHS;
5547   RHS = CmpRHS;
5548 
5549   // Signed zero may return inconsistent results between implementations.
5550   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5551   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5552   // Therefore, we behave conservatively and only proceed if at least one of the
5553   // operands is known to not be zero or if we don't care about signed zero.
5554   switch (Pred) {
5555   default: break;
5556   // FIXME: Include OGT/OLT/UGT/ULT.
5557   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5558   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5559     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5560         !isKnownNonZero(CmpRHS))
5561       return {SPF_UNKNOWN, SPNB_NA, false};
5562   }
5563 
5564   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5565   bool Ordered = false;
5566 
5567   // When given one NaN and one non-NaN input:
5568   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5569   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5570   //     ordered comparison fails), which could be NaN or non-NaN.
5571   // so here we discover exactly what NaN behavior is required/accepted.
5572   if (CmpInst::isFPPredicate(Pred)) {
5573     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5574     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5575 
5576     if (LHSSafe && RHSSafe) {
5577       // Both operands are known non-NaN.
5578       NaNBehavior = SPNB_RETURNS_ANY;
5579     } else if (CmpInst::isOrdered(Pred)) {
5580       // An ordered comparison will return false when given a NaN, so it
5581       // returns the RHS.
5582       Ordered = true;
5583       if (LHSSafe)
5584         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5585         NaNBehavior = SPNB_RETURNS_NAN;
5586       else if (RHSSafe)
5587         NaNBehavior = SPNB_RETURNS_OTHER;
5588       else
5589         // Completely unsafe.
5590         return {SPF_UNKNOWN, SPNB_NA, false};
5591     } else {
5592       Ordered = false;
5593       // An unordered comparison will return true when given a NaN, so it
5594       // returns the LHS.
5595       if (LHSSafe)
5596         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5597         NaNBehavior = SPNB_RETURNS_OTHER;
5598       else if (RHSSafe)
5599         NaNBehavior = SPNB_RETURNS_NAN;
5600       else
5601         // Completely unsafe.
5602         return {SPF_UNKNOWN, SPNB_NA, false};
5603     }
5604   }
5605 
5606   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5607     std::swap(CmpLHS, CmpRHS);
5608     Pred = CmpInst::getSwappedPredicate(Pred);
5609     if (NaNBehavior == SPNB_RETURNS_NAN)
5610       NaNBehavior = SPNB_RETURNS_OTHER;
5611     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5612       NaNBehavior = SPNB_RETURNS_NAN;
5613     Ordered = !Ordered;
5614   }
5615 
5616   // ([if]cmp X, Y) ? X : Y
5617   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5618     switch (Pred) {
5619     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5620     case ICmpInst::ICMP_UGT:
5621     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5622     case ICmpInst::ICMP_SGT:
5623     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5624     case ICmpInst::ICMP_ULT:
5625     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5626     case ICmpInst::ICMP_SLT:
5627     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5628     case FCmpInst::FCMP_UGT:
5629     case FCmpInst::FCMP_UGE:
5630     case FCmpInst::FCMP_OGT:
5631     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5632     case FCmpInst::FCMP_ULT:
5633     case FCmpInst::FCMP_ULE:
5634     case FCmpInst::FCMP_OLT:
5635     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5636     }
5637   }
5638 
5639   if (isKnownNegation(TrueVal, FalseVal)) {
5640     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5641     // match against either LHS or sext(LHS).
5642     auto MaybeSExtCmpLHS =
5643         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5644     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5645     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5646     if (match(TrueVal, MaybeSExtCmpLHS)) {
5647       // Set the return values. If the compare uses the negated value (-X >s 0),
5648       // swap the return values because the negated value is always 'RHS'.
5649       LHS = TrueVal;
5650       RHS = FalseVal;
5651       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5652         std::swap(LHS, RHS);
5653 
5654       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5655       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5656       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5657         return {SPF_ABS, SPNB_NA, false};
5658 
5659       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5660       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5661         return {SPF_ABS, SPNB_NA, false};
5662 
5663       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5664       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5665       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5666         return {SPF_NABS, SPNB_NA, false};
5667     }
5668     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5669       // Set the return values. If the compare uses the negated value (-X >s 0),
5670       // swap the return values because the negated value is always 'RHS'.
5671       LHS = FalseVal;
5672       RHS = TrueVal;
5673       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5674         std::swap(LHS, RHS);
5675 
5676       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5677       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5678       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5679         return {SPF_NABS, SPNB_NA, false};
5680 
5681       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5682       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5683       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5684         return {SPF_ABS, SPNB_NA, false};
5685     }
5686   }
5687 
5688   if (CmpInst::isIntPredicate(Pred))
5689     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5690 
5691   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5692   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5693   // semantics than minNum. Be conservative in such case.
5694   if (NaNBehavior != SPNB_RETURNS_ANY ||
5695       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5696        !isKnownNonZero(CmpRHS)))
5697     return {SPF_UNKNOWN, SPNB_NA, false};
5698 
5699   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5700 }
5701 
5702 /// Helps to match a select pattern in case of a type mismatch.
5703 ///
5704 /// The function processes the case when type of true and false values of a
5705 /// select instruction differs from type of the cmp instruction operands because
5706 /// of a cast instruction. The function checks if it is legal to move the cast
5707 /// operation after "select". If yes, it returns the new second value of
5708 /// "select" (with the assumption that cast is moved):
5709 /// 1. As operand of cast instruction when both values of "select" are same cast
5710 /// instructions.
5711 /// 2. As restored constant (by applying reverse cast operation) when the first
5712 /// value of the "select" is a cast operation and the second value is a
5713 /// constant.
5714 /// NOTE: We return only the new second value because the first value could be
5715 /// accessed as operand of cast instruction.
5716 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5717                               Instruction::CastOps *CastOp) {
5718   auto *Cast1 = dyn_cast<CastInst>(V1);
5719   if (!Cast1)
5720     return nullptr;
5721 
5722   *CastOp = Cast1->getOpcode();
5723   Type *SrcTy = Cast1->getSrcTy();
5724   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5725     // If V1 and V2 are both the same cast from the same type, look through V1.
5726     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5727       return Cast2->getOperand(0);
5728     return nullptr;
5729   }
5730 
5731   auto *C = dyn_cast<Constant>(V2);
5732   if (!C)
5733     return nullptr;
5734 
5735   Constant *CastedTo = nullptr;
5736   switch (*CastOp) {
5737   case Instruction::ZExt:
5738     if (CmpI->isUnsigned())
5739       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5740     break;
5741   case Instruction::SExt:
5742     if (CmpI->isSigned())
5743       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5744     break;
5745   case Instruction::Trunc:
5746     Constant *CmpConst;
5747     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5748         CmpConst->getType() == SrcTy) {
5749       // Here we have the following case:
5750       //
5751       //   %cond = cmp iN %x, CmpConst
5752       //   %tr = trunc iN %x to iK
5753       //   %narrowsel = select i1 %cond, iK %t, iK C
5754       //
5755       // We can always move trunc after select operation:
5756       //
5757       //   %cond = cmp iN %x, CmpConst
5758       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5759       //   %tr = trunc iN %widesel to iK
5760       //
5761       // Note that C could be extended in any way because we don't care about
5762       // upper bits after truncation. It can't be abs pattern, because it would
5763       // look like:
5764       //
5765       //   select i1 %cond, x, -x.
5766       //
5767       // So only min/max pattern could be matched. Such match requires widened C
5768       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5769       // CmpConst == C is checked below.
5770       CastedTo = CmpConst;
5771     } else {
5772       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5773     }
5774     break;
5775   case Instruction::FPTrunc:
5776     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5777     break;
5778   case Instruction::FPExt:
5779     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5780     break;
5781   case Instruction::FPToUI:
5782     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5783     break;
5784   case Instruction::FPToSI:
5785     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5786     break;
5787   case Instruction::UIToFP:
5788     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5789     break;
5790   case Instruction::SIToFP:
5791     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5792     break;
5793   default:
5794     break;
5795   }
5796 
5797   if (!CastedTo)
5798     return nullptr;
5799 
5800   // Make sure the cast doesn't lose any information.
5801   Constant *CastedBack =
5802       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5803   if (CastedBack != C)
5804     return nullptr;
5805 
5806   return CastedTo;
5807 }
5808 
5809 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5810                                              Instruction::CastOps *CastOp,
5811                                              unsigned Depth) {
5812   if (Depth >= MaxAnalysisRecursionDepth)
5813     return {SPF_UNKNOWN, SPNB_NA, false};
5814 
5815   SelectInst *SI = dyn_cast<SelectInst>(V);
5816   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5817 
5818   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5819   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5820 
5821   Value *TrueVal = SI->getTrueValue();
5822   Value *FalseVal = SI->getFalseValue();
5823 
5824   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5825                                             CastOp, Depth);
5826 }
5827 
5828 SelectPatternResult llvm::matchDecomposedSelectPattern(
5829     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5830     Instruction::CastOps *CastOp, unsigned Depth) {
5831   CmpInst::Predicate Pred = CmpI->getPredicate();
5832   Value *CmpLHS = CmpI->getOperand(0);
5833   Value *CmpRHS = CmpI->getOperand(1);
5834   FastMathFlags FMF;
5835   if (isa<FPMathOperator>(CmpI))
5836     FMF = CmpI->getFastMathFlags();
5837 
5838   // Bail out early.
5839   if (CmpI->isEquality())
5840     return {SPF_UNKNOWN, SPNB_NA, false};
5841 
5842   // Deal with type mismatches.
5843   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5844     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5845       // If this is a potential fmin/fmax with a cast to integer, then ignore
5846       // -0.0 because there is no corresponding integer value.
5847       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5848         FMF.setNoSignedZeros();
5849       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5850                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5851                                   LHS, RHS, Depth);
5852     }
5853     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5854       // If this is a potential fmin/fmax with a cast to integer, then ignore
5855       // -0.0 because there is no corresponding integer value.
5856       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5857         FMF.setNoSignedZeros();
5858       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5859                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5860                                   LHS, RHS, Depth);
5861     }
5862   }
5863   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5864                               LHS, RHS, Depth);
5865 }
5866 
5867 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5868   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5869   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5870   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5871   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5872   if (SPF == SPF_FMINNUM)
5873     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5874   if (SPF == SPF_FMAXNUM)
5875     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5876   llvm_unreachable("unhandled!");
5877 }
5878 
5879 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5880   if (SPF == SPF_SMIN) return SPF_SMAX;
5881   if (SPF == SPF_UMIN) return SPF_UMAX;
5882   if (SPF == SPF_SMAX) return SPF_SMIN;
5883   if (SPF == SPF_UMAX) return SPF_UMIN;
5884   llvm_unreachable("unhandled!");
5885 }
5886 
5887 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5888   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5889 }
5890 
5891 std::pair<Intrinsic::ID, bool>
5892 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
5893   // Check if VL contains select instructions that can be folded into a min/max
5894   // vector intrinsic and return the intrinsic if it is possible.
5895   // TODO: Support floating point min/max.
5896   bool AllCmpSingleUse = true;
5897   SelectPatternResult SelectPattern;
5898   SelectPattern.Flavor = SPF_UNKNOWN;
5899   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
5900         Value *LHS, *RHS;
5901         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
5902         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
5903             CurrentPattern.Flavor == SPF_FMINNUM ||
5904             CurrentPattern.Flavor == SPF_FMAXNUM ||
5905             !I->getType()->isIntOrIntVectorTy())
5906           return false;
5907         if (SelectPattern.Flavor != SPF_UNKNOWN &&
5908             SelectPattern.Flavor != CurrentPattern.Flavor)
5909           return false;
5910         SelectPattern = CurrentPattern;
5911         AllCmpSingleUse &=
5912             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
5913         return true;
5914       })) {
5915     switch (SelectPattern.Flavor) {
5916     case SPF_SMIN:
5917       return {Intrinsic::smin, AllCmpSingleUse};
5918     case SPF_UMIN:
5919       return {Intrinsic::umin, AllCmpSingleUse};
5920     case SPF_SMAX:
5921       return {Intrinsic::smax, AllCmpSingleUse};
5922     case SPF_UMAX:
5923       return {Intrinsic::umax, AllCmpSingleUse};
5924     default:
5925       llvm_unreachable("unexpected select pattern flavor");
5926     }
5927   }
5928   return {Intrinsic::not_intrinsic, false};
5929 }
5930 
5931 /// Return true if "icmp Pred LHS RHS" is always true.
5932 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5933                             const Value *RHS, const DataLayout &DL,
5934                             unsigned Depth) {
5935   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5936   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5937     return true;
5938 
5939   switch (Pred) {
5940   default:
5941     return false;
5942 
5943   case CmpInst::ICMP_SLE: {
5944     const APInt *C;
5945 
5946     // LHS s<= LHS +_{nsw} C   if C >= 0
5947     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5948       return !C->isNegative();
5949     return false;
5950   }
5951 
5952   case CmpInst::ICMP_ULE: {
5953     const APInt *C;
5954 
5955     // LHS u<= LHS +_{nuw} C   for any C
5956     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5957       return true;
5958 
5959     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5960     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5961                                        const Value *&X,
5962                                        const APInt *&CA, const APInt *&CB) {
5963       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5964           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5965         return true;
5966 
5967       // If X & C == 0 then (X | C) == X +_{nuw} C
5968       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5969           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5970         KnownBits Known(CA->getBitWidth());
5971         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5972                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5973         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5974           return true;
5975       }
5976 
5977       return false;
5978     };
5979 
5980     const Value *X;
5981     const APInt *CLHS, *CRHS;
5982     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5983       return CLHS->ule(*CRHS);
5984 
5985     return false;
5986   }
5987   }
5988 }
5989 
5990 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5991 /// ALHS ARHS" is true.  Otherwise, return None.
5992 static Optional<bool>
5993 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5994                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5995                       const DataLayout &DL, unsigned Depth) {
5996   switch (Pred) {
5997   default:
5998     return None;
5999 
6000   case CmpInst::ICMP_SLT:
6001   case CmpInst::ICMP_SLE:
6002     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6003         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6004       return true;
6005     return None;
6006 
6007   case CmpInst::ICMP_ULT:
6008   case CmpInst::ICMP_ULE:
6009     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6010         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6011       return true;
6012     return None;
6013   }
6014 }
6015 
6016 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6017 /// when the operands match, but are swapped.
6018 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6019                           const Value *BLHS, const Value *BRHS,
6020                           bool &IsSwappedOps) {
6021 
6022   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6023   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6024   return IsMatchingOps || IsSwappedOps;
6025 }
6026 
6027 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6028 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6029 /// Otherwise, return None if we can't infer anything.
6030 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6031                                                     CmpInst::Predicate BPred,
6032                                                     bool AreSwappedOps) {
6033   // Canonicalize the predicate as if the operands were not commuted.
6034   if (AreSwappedOps)
6035     BPred = ICmpInst::getSwappedPredicate(BPred);
6036 
6037   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6038     return true;
6039   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6040     return false;
6041 
6042   return None;
6043 }
6044 
6045 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6046 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6047 /// Otherwise, return None if we can't infer anything.
6048 static Optional<bool>
6049 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6050                                  const ConstantInt *C1,
6051                                  CmpInst::Predicate BPred,
6052                                  const ConstantInt *C2) {
6053   ConstantRange DomCR =
6054       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6055   ConstantRange CR =
6056       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6057   ConstantRange Intersection = DomCR.intersectWith(CR);
6058   ConstantRange Difference = DomCR.difference(CR);
6059   if (Intersection.isEmptySet())
6060     return false;
6061   if (Difference.isEmptySet())
6062     return true;
6063   return None;
6064 }
6065 
6066 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6067 /// false.  Otherwise, return None if we can't infer anything.
6068 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6069                                          CmpInst::Predicate BPred,
6070                                          const Value *BLHS, const Value *BRHS,
6071                                          const DataLayout &DL, bool LHSIsTrue,
6072                                          unsigned Depth) {
6073   Value *ALHS = LHS->getOperand(0);
6074   Value *ARHS = LHS->getOperand(1);
6075 
6076   // The rest of the logic assumes the LHS condition is true.  If that's not the
6077   // case, invert the predicate to make it so.
6078   CmpInst::Predicate APred =
6079       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6080 
6081   // Can we infer anything when the two compares have matching operands?
6082   bool AreSwappedOps;
6083   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6084     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6085             APred, BPred, AreSwappedOps))
6086       return Implication;
6087     // No amount of additional analysis will infer the second condition, so
6088     // early exit.
6089     return None;
6090   }
6091 
6092   // Can we infer anything when the LHS operands match and the RHS operands are
6093   // constants (not necessarily matching)?
6094   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6095     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6096             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6097       return Implication;
6098     // No amount of additional analysis will infer the second condition, so
6099     // early exit.
6100     return None;
6101   }
6102 
6103   if (APred == BPred)
6104     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6105   return None;
6106 }
6107 
6108 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6109 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6110 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6111 static Optional<bool>
6112 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6113                    const Value *RHSOp0, const Value *RHSOp1,
6114 
6115                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6116   // The LHS must be an 'or' or an 'and' instruction.
6117   assert((LHS->getOpcode() == Instruction::And ||
6118           LHS->getOpcode() == Instruction::Or) &&
6119          "Expected LHS to be 'and' or 'or'.");
6120 
6121   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6122 
6123   // If the result of an 'or' is false, then we know both legs of the 'or' are
6124   // false.  Similarly, if the result of an 'and' is true, then we know both
6125   // legs of the 'and' are true.
6126   Value *ALHS, *ARHS;
6127   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6128       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6129     // FIXME: Make this non-recursion.
6130     if (Optional<bool> Implication = isImpliedCondition(
6131             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6132       return Implication;
6133     if (Optional<bool> Implication = isImpliedCondition(
6134             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6135       return Implication;
6136     return None;
6137   }
6138   return None;
6139 }
6140 
6141 Optional<bool>
6142 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6143                          const Value *RHSOp0, const Value *RHSOp1,
6144                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6145   // Bail out when we hit the limit.
6146   if (Depth == MaxAnalysisRecursionDepth)
6147     return None;
6148 
6149   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6150   // example.
6151   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6152     return None;
6153 
6154   Type *OpTy = LHS->getType();
6155   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6156 
6157   // FIXME: Extending the code below to handle vectors.
6158   if (OpTy->isVectorTy())
6159     return None;
6160 
6161   assert(OpTy->isIntegerTy(1) && "implied by above");
6162 
6163   // Both LHS and RHS are icmps.
6164   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6165   if (LHSCmp)
6166     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6167                               Depth);
6168 
6169   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6170   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6171   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6172   if (LHSBO) {
6173     if ((LHSBO->getOpcode() == Instruction::And ||
6174          LHSBO->getOpcode() == Instruction::Or))
6175       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6176                                 Depth);
6177   }
6178   return None;
6179 }
6180 
6181 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6182                                         const DataLayout &DL, bool LHSIsTrue,
6183                                         unsigned Depth) {
6184   // LHS ==> RHS by definition
6185   if (LHS == RHS)
6186     return LHSIsTrue;
6187 
6188   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6189   if (RHSCmp)
6190     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6191                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6192                               LHSIsTrue, Depth);
6193   return None;
6194 }
6195 
6196 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6197 // condition dominating ContextI or nullptr, if no condition is found.
6198 static std::pair<Value *, bool>
6199 getDomPredecessorCondition(const Instruction *ContextI) {
6200   if (!ContextI || !ContextI->getParent())
6201     return {nullptr, false};
6202 
6203   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6204   // dominator tree (eg, from a SimplifyQuery) instead?
6205   const BasicBlock *ContextBB = ContextI->getParent();
6206   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6207   if (!PredBB)
6208     return {nullptr, false};
6209 
6210   // We need a conditional branch in the predecessor.
6211   Value *PredCond;
6212   BasicBlock *TrueBB, *FalseBB;
6213   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6214     return {nullptr, false};
6215 
6216   // The branch should get simplified. Don't bother simplifying this condition.
6217   if (TrueBB == FalseBB)
6218     return {nullptr, false};
6219 
6220   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6221          "Predecessor block does not point to successor?");
6222 
6223   // Is this condition implied by the predecessor condition?
6224   return {PredCond, TrueBB == ContextBB};
6225 }
6226 
6227 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6228                                              const Instruction *ContextI,
6229                                              const DataLayout &DL) {
6230   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6231   auto PredCond = getDomPredecessorCondition(ContextI);
6232   if (PredCond.first)
6233     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6234   return None;
6235 }
6236 
6237 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6238                                              const Value *LHS, const Value *RHS,
6239                                              const Instruction *ContextI,
6240                                              const DataLayout &DL) {
6241   auto PredCond = getDomPredecessorCondition(ContextI);
6242   if (PredCond.first)
6243     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6244                               PredCond.second);
6245   return None;
6246 }
6247 
6248 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6249                               APInt &Upper, const InstrInfoQuery &IIQ) {
6250   unsigned Width = Lower.getBitWidth();
6251   const APInt *C;
6252   switch (BO.getOpcode()) {
6253   case Instruction::Add:
6254     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6255       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6256       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6257         // 'add nuw x, C' produces [C, UINT_MAX].
6258         Lower = *C;
6259       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6260         if (C->isNegative()) {
6261           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6262           Lower = APInt::getSignedMinValue(Width);
6263           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6264         } else {
6265           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6266           Lower = APInt::getSignedMinValue(Width) + *C;
6267           Upper = APInt::getSignedMaxValue(Width) + 1;
6268         }
6269       }
6270     }
6271     break;
6272 
6273   case Instruction::And:
6274     if (match(BO.getOperand(1), m_APInt(C)))
6275       // 'and x, C' produces [0, C].
6276       Upper = *C + 1;
6277     break;
6278 
6279   case Instruction::Or:
6280     if (match(BO.getOperand(1), m_APInt(C)))
6281       // 'or x, C' produces [C, UINT_MAX].
6282       Lower = *C;
6283     break;
6284 
6285   case Instruction::AShr:
6286     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6287       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6288       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6289       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6290     } else if (match(BO.getOperand(0), m_APInt(C))) {
6291       unsigned ShiftAmount = Width - 1;
6292       if (!C->isNullValue() && IIQ.isExact(&BO))
6293         ShiftAmount = C->countTrailingZeros();
6294       if (C->isNegative()) {
6295         // 'ashr C, x' produces [C, C >> (Width-1)]
6296         Lower = *C;
6297         Upper = C->ashr(ShiftAmount) + 1;
6298       } else {
6299         // 'ashr C, x' produces [C >> (Width-1), C]
6300         Lower = C->ashr(ShiftAmount);
6301         Upper = *C + 1;
6302       }
6303     }
6304     break;
6305 
6306   case Instruction::LShr:
6307     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6308       // 'lshr x, C' produces [0, UINT_MAX >> C].
6309       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6310     } else if (match(BO.getOperand(0), m_APInt(C))) {
6311       // 'lshr C, x' produces [C >> (Width-1), C].
6312       unsigned ShiftAmount = Width - 1;
6313       if (!C->isNullValue() && IIQ.isExact(&BO))
6314         ShiftAmount = C->countTrailingZeros();
6315       Lower = C->lshr(ShiftAmount);
6316       Upper = *C + 1;
6317     }
6318     break;
6319 
6320   case Instruction::Shl:
6321     if (match(BO.getOperand(0), m_APInt(C))) {
6322       if (IIQ.hasNoUnsignedWrap(&BO)) {
6323         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6324         Lower = *C;
6325         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6326       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6327         if (C->isNegative()) {
6328           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6329           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6330           Lower = C->shl(ShiftAmount);
6331           Upper = *C + 1;
6332         } else {
6333           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6334           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6335           Lower = *C;
6336           Upper = C->shl(ShiftAmount) + 1;
6337         }
6338       }
6339     }
6340     break;
6341 
6342   case Instruction::SDiv:
6343     if (match(BO.getOperand(1), m_APInt(C))) {
6344       APInt IntMin = APInt::getSignedMinValue(Width);
6345       APInt IntMax = APInt::getSignedMaxValue(Width);
6346       if (C->isAllOnesValue()) {
6347         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6348         //    where C != -1 and C != 0 and C != 1
6349         Lower = IntMin + 1;
6350         Upper = IntMax + 1;
6351       } else if (C->countLeadingZeros() < Width - 1) {
6352         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6353         //    where C != -1 and C != 0 and C != 1
6354         Lower = IntMin.sdiv(*C);
6355         Upper = IntMax.sdiv(*C);
6356         if (Lower.sgt(Upper))
6357           std::swap(Lower, Upper);
6358         Upper = Upper + 1;
6359         assert(Upper != Lower && "Upper part of range has wrapped!");
6360       }
6361     } else if (match(BO.getOperand(0), m_APInt(C))) {
6362       if (C->isMinSignedValue()) {
6363         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6364         Lower = *C;
6365         Upper = Lower.lshr(1) + 1;
6366       } else {
6367         // 'sdiv C, x' produces [-|C|, |C|].
6368         Upper = C->abs() + 1;
6369         Lower = (-Upper) + 1;
6370       }
6371     }
6372     break;
6373 
6374   case Instruction::UDiv:
6375     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6376       // 'udiv x, C' produces [0, UINT_MAX / C].
6377       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6378     } else if (match(BO.getOperand(0), m_APInt(C))) {
6379       // 'udiv C, x' produces [0, C].
6380       Upper = *C + 1;
6381     }
6382     break;
6383 
6384   case Instruction::SRem:
6385     if (match(BO.getOperand(1), m_APInt(C))) {
6386       // 'srem x, C' produces (-|C|, |C|).
6387       Upper = C->abs();
6388       Lower = (-Upper) + 1;
6389     }
6390     break;
6391 
6392   case Instruction::URem:
6393     if (match(BO.getOperand(1), m_APInt(C)))
6394       // 'urem x, C' produces [0, C).
6395       Upper = *C;
6396     break;
6397 
6398   default:
6399     break;
6400   }
6401 }
6402 
6403 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6404                                   APInt &Upper) {
6405   unsigned Width = Lower.getBitWidth();
6406   const APInt *C;
6407   switch (II.getIntrinsicID()) {
6408   case Intrinsic::ctpop:
6409   case Intrinsic::ctlz:
6410   case Intrinsic::cttz:
6411     // Maximum of set/clear bits is the bit width.
6412     assert(Lower == 0 && "Expected lower bound to be zero");
6413     Upper = Width + 1;
6414     break;
6415   case Intrinsic::uadd_sat:
6416     // uadd.sat(x, C) produces [C, UINT_MAX].
6417     if (match(II.getOperand(0), m_APInt(C)) ||
6418         match(II.getOperand(1), m_APInt(C)))
6419       Lower = *C;
6420     break;
6421   case Intrinsic::sadd_sat:
6422     if (match(II.getOperand(0), m_APInt(C)) ||
6423         match(II.getOperand(1), m_APInt(C))) {
6424       if (C->isNegative()) {
6425         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6426         Lower = APInt::getSignedMinValue(Width);
6427         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6428       } else {
6429         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6430         Lower = APInt::getSignedMinValue(Width) + *C;
6431         Upper = APInt::getSignedMaxValue(Width) + 1;
6432       }
6433     }
6434     break;
6435   case Intrinsic::usub_sat:
6436     // usub.sat(C, x) produces [0, C].
6437     if (match(II.getOperand(0), m_APInt(C)))
6438       Upper = *C + 1;
6439     // usub.sat(x, C) produces [0, UINT_MAX - C].
6440     else if (match(II.getOperand(1), m_APInt(C)))
6441       Upper = APInt::getMaxValue(Width) - *C + 1;
6442     break;
6443   case Intrinsic::ssub_sat:
6444     if (match(II.getOperand(0), m_APInt(C))) {
6445       if (C->isNegative()) {
6446         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6447         Lower = APInt::getSignedMinValue(Width);
6448         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6449       } else {
6450         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6451         Lower = *C - APInt::getSignedMaxValue(Width);
6452         Upper = APInt::getSignedMaxValue(Width) + 1;
6453       }
6454     } else if (match(II.getOperand(1), m_APInt(C))) {
6455       if (C->isNegative()) {
6456         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6457         Lower = APInt::getSignedMinValue(Width) - *C;
6458         Upper = APInt::getSignedMaxValue(Width) + 1;
6459       } else {
6460         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6461         Lower = APInt::getSignedMinValue(Width);
6462         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6463       }
6464     }
6465     break;
6466   case Intrinsic::umin:
6467   case Intrinsic::umax:
6468   case Intrinsic::smin:
6469   case Intrinsic::smax:
6470     if (!match(II.getOperand(0), m_APInt(C)) &&
6471         !match(II.getOperand(1), m_APInt(C)))
6472       break;
6473 
6474     switch (II.getIntrinsicID()) {
6475     case Intrinsic::umin:
6476       Upper = *C + 1;
6477       break;
6478     case Intrinsic::umax:
6479       Lower = *C;
6480       break;
6481     case Intrinsic::smin:
6482       Lower = APInt::getSignedMinValue(Width);
6483       Upper = *C + 1;
6484       break;
6485     case Intrinsic::smax:
6486       Lower = *C;
6487       Upper = APInt::getSignedMaxValue(Width) + 1;
6488       break;
6489     default:
6490       llvm_unreachable("Must be min/max intrinsic");
6491     }
6492     break;
6493   case Intrinsic::abs:
6494     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6495     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6496     if (match(II.getOperand(1), m_One()))
6497       Upper = APInt::getSignedMaxValue(Width) + 1;
6498     else
6499       Upper = APInt::getSignedMinValue(Width) + 1;
6500     break;
6501   default:
6502     break;
6503   }
6504 }
6505 
6506 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6507                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6508   const Value *LHS = nullptr, *RHS = nullptr;
6509   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6510   if (R.Flavor == SPF_UNKNOWN)
6511     return;
6512 
6513   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6514 
6515   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6516     // If the negation part of the abs (in RHS) has the NSW flag,
6517     // then the result of abs(X) is [0..SIGNED_MAX],
6518     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6519     Lower = APInt::getNullValue(BitWidth);
6520     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6521         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6522       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6523     else
6524       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6525     return;
6526   }
6527 
6528   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6529     // The result of -abs(X) is <= 0.
6530     Lower = APInt::getSignedMinValue(BitWidth);
6531     Upper = APInt(BitWidth, 1);
6532     return;
6533   }
6534 
6535   const APInt *C;
6536   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6537     return;
6538 
6539   switch (R.Flavor) {
6540     case SPF_UMIN:
6541       Upper = *C + 1;
6542       break;
6543     case SPF_UMAX:
6544       Lower = *C;
6545       break;
6546     case SPF_SMIN:
6547       Lower = APInt::getSignedMinValue(BitWidth);
6548       Upper = *C + 1;
6549       break;
6550     case SPF_SMAX:
6551       Lower = *C;
6552       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6553       break;
6554     default:
6555       break;
6556   }
6557 }
6558 
6559 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6560                                          AssumptionCache *AC,
6561                                          const Instruction *CtxI,
6562                                          unsigned Depth) {
6563   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6564 
6565   if (Depth == MaxAnalysisRecursionDepth)
6566     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6567 
6568   const APInt *C;
6569   if (match(V, m_APInt(C)))
6570     return ConstantRange(*C);
6571 
6572   InstrInfoQuery IIQ(UseInstrInfo);
6573   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6574   APInt Lower = APInt(BitWidth, 0);
6575   APInt Upper = APInt(BitWidth, 0);
6576   if (auto *BO = dyn_cast<BinaryOperator>(V))
6577     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6578   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6579     setLimitsForIntrinsic(*II, Lower, Upper);
6580   else if (auto *SI = dyn_cast<SelectInst>(V))
6581     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6582 
6583   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6584 
6585   if (auto *I = dyn_cast<Instruction>(V))
6586     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6587       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6588 
6589   if (CtxI && AC) {
6590     // Try to restrict the range based on information from assumptions.
6591     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6592       if (!AssumeVH)
6593         continue;
6594       CallInst *I = cast<CallInst>(AssumeVH);
6595       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6596              "Got assumption for the wrong function!");
6597       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6598              "must be an assume intrinsic");
6599 
6600       if (!isValidAssumeForContext(I, CtxI, nullptr))
6601         continue;
6602       Value *Arg = I->getArgOperand(0);
6603       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6604       // Currently we just use information from comparisons.
6605       if (!Cmp || Cmp->getOperand(0) != V)
6606         continue;
6607       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6608                                                AC, I, Depth + 1);
6609       CR = CR.intersectWith(
6610           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6611     }
6612   }
6613 
6614   return CR;
6615 }
6616 
6617 static Optional<int64_t>
6618 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6619   // Skip over the first indices.
6620   gep_type_iterator GTI = gep_type_begin(GEP);
6621   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6622     /*skip along*/;
6623 
6624   // Compute the offset implied by the rest of the indices.
6625   int64_t Offset = 0;
6626   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6627     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6628     if (!OpC)
6629       return None;
6630     if (OpC->isZero())
6631       continue; // No offset.
6632 
6633     // Handle struct indices, which add their field offset to the pointer.
6634     if (StructType *STy = GTI.getStructTypeOrNull()) {
6635       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6636       continue;
6637     }
6638 
6639     // Otherwise, we have a sequential type like an array or fixed-length
6640     // vector. Multiply the index by the ElementSize.
6641     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6642     if (Size.isScalable())
6643       return None;
6644     Offset += Size.getFixedSize() * OpC->getSExtValue();
6645   }
6646 
6647   return Offset;
6648 }
6649 
6650 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6651                                         const DataLayout &DL) {
6652   Ptr1 = Ptr1->stripPointerCasts();
6653   Ptr2 = Ptr2->stripPointerCasts();
6654 
6655   // Handle the trivial case first.
6656   if (Ptr1 == Ptr2) {
6657     return 0;
6658   }
6659 
6660   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6661   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6662 
6663   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6664   // as in "P" and "gep P, 1".
6665   // Also do this iteratively to handle the the following case:
6666   //   Ptr_t1 = GEP Ptr1, c1
6667   //   Ptr_t2 = GEP Ptr_t1, c2
6668   //   Ptr2 = GEP Ptr_t2, c3
6669   // where we will return c1+c2+c3.
6670   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6671   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6672   // are the same, and return the difference between offsets.
6673   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6674                                  const Value *Ptr) -> Optional<int64_t> {
6675     const GEPOperator *GEP_T = GEP;
6676     int64_t OffsetVal = 0;
6677     bool HasSameBase = false;
6678     while (GEP_T) {
6679       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6680       if (!Offset)
6681         return None;
6682       OffsetVal += *Offset;
6683       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6684       if (Op0 == Ptr) {
6685         HasSameBase = true;
6686         break;
6687       }
6688       GEP_T = dyn_cast<GEPOperator>(Op0);
6689     }
6690     if (!HasSameBase)
6691       return None;
6692     return OffsetVal;
6693   };
6694 
6695   if (GEP1) {
6696     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6697     if (Offset)
6698       return -*Offset;
6699   }
6700   if (GEP2) {
6701     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6702     if (Offset)
6703       return Offset;
6704   }
6705 
6706   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6707   // base.  After that base, they may have some number of common (and
6708   // potentially variable) indices.  After that they handle some constant
6709   // offset, which determines their offset from each other.  At this point, we
6710   // handle no other case.
6711   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6712     return None;
6713 
6714   // Skip any common indices and track the GEP types.
6715   unsigned Idx = 1;
6716   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6717     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6718       break;
6719 
6720   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6721   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6722   if (!Offset1 || !Offset2)
6723     return None;
6724   return *Offset2 - *Offset1;
6725 }
6726