1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57   if (unsigned BitWidth = Ty->getScalarSizeInBits())
58     return BitWidth;
59 
60   return DL.getPointerTypeSizeInBits(Ty);
61 }
62 
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69   const DataLayout &DL;
70   AssumptionCache *AC;
71   const Instruction *CxtI;
72   const DominatorTree *DT;
73 
74   /// Set of assumptions that should be excluded from further queries.
75   /// This is because of the potential for mutual recursion to cause
76   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77   /// classic case of this is assume(x = y), which will attempt to determine
78   /// bits in x from bits in y, which will attempt to determine bits in y from
79   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82   /// on.
83   std::array<const Value*, MaxDepth> Excluded;
84   unsigned NumExcluded;
85 
86   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87         const DominatorTree *DT)
88       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89 
90   Query(const Query &Q, const Value *NewExcl)
91       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92     Excluded = Q.Excluded;
93     Excluded[NumExcluded++] = NewExcl;
94     assert(NumExcluded <= Excluded.size());
95   }
96 
97   bool isExcluded(const Value *Value) const {
98     if (NumExcluded == 0)
99       return false;
100     auto End = Excluded.begin() + NumExcluded;
101     return std::find(Excluded.begin(), End, Value) != End;
102   }
103 };
104 } // end anonymous namespace
105 
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109   // If we've been provided with a context instruction, then use that (provided
110   // it has been inserted).
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   // If the value is really an already-inserted instruction, then use that.
115   CxtI = dyn_cast<Instruction>(V);
116   if (CxtI && CxtI->getParent())
117     return CxtI;
118 
119   return nullptr;
120 }
121 
122 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
123                              unsigned Depth, const Query &Q);
124 
125 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
126                             const DataLayout &DL, unsigned Depth,
127                             AssumptionCache *AC, const Instruction *CxtI,
128                             const DominatorTree *DT) {
129   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130                      Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132 
133 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134                                AssumptionCache *AC, const Instruction *CxtI,
135                                const DominatorTree *DT) {
136   assert(LHS->getType() == RHS->getType() &&
137          "LHS and RHS should have the same type");
138   assert(LHS->getType()->isIntOrIntVectorTy() &&
139          "LHS and RHS should be integers");
140   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146 }
147 
148 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
149                            unsigned Depth, const Query &Q);
150 
151 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
152                           const DataLayout &DL, unsigned Depth,
153                           AssumptionCache *AC, const Instruction *CxtI,
154                           const DominatorTree *DT) {
155   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156                    Query(DL, AC, safeCxtI(V, CxtI), DT));
157 }
158 
159 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
160                                    const Query &Q);
161 
162 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
163                                   unsigned Depth, AssumptionCache *AC,
164                                   const Instruction *CxtI,
165                                   const DominatorTree *DT) {
166   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
167                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
168 }
169 
170 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
171 
172 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173                           AssumptionCache *AC, const Instruction *CxtI,
174                           const DominatorTree *DT) {
175   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
176 }
177 
178 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179                               AssumptionCache *AC, const Instruction *CxtI,
180                               const DominatorTree *DT) {
181   bool NonNegative, Negative;
182   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183   return NonNegative;
184 }
185 
186 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187                            AssumptionCache *AC, const Instruction *CxtI,
188                            const DominatorTree *DT) {
189   if (auto *CI = dyn_cast<ConstantInt>(V))
190     return CI->getValue().isStrictlyPositive();
191 
192   // TODO: We'd doing two recursive queries here.  We should factor this such
193   // that only a single query is needed.
194   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196 }
197 
198 bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199                            AssumptionCache *AC, const Instruction *CxtI,
200                            const DominatorTree *DT) {
201   bool NonNegative, Negative;
202   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203   return Negative;
204 }
205 
206 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
207 
208 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209                           AssumptionCache *AC, const Instruction *CxtI,
210                           const DominatorTree *DT) {
211   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
213                                          DT));
214 }
215 
216 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217                               const Query &Q);
218 
219 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220                              unsigned Depth, AssumptionCache *AC,
221                              const Instruction *CxtI, const DominatorTree *DT) {
222   return ::MaskedValueIsZero(V, Mask, Depth,
223                              Query(DL, AC, safeCxtI(V, CxtI), DT));
224 }
225 
226 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
227 
228 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229                                   unsigned Depth, AssumptionCache *AC,
230                                   const Instruction *CxtI,
231                                   const DominatorTree *DT) {
232   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
233 }
234 
235 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236                                    APInt &KnownZero, APInt &KnownOne,
237                                    APInt &KnownZero2, APInt &KnownOne2,
238                                    unsigned Depth, const Query &Q) {
239   if (!Add) {
240     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241       // We know that the top bits of C-X are clear if X contains less bits
242       // than C (i.e. no wrap-around can happen).  For example, 20-X is
243       // positive if we can prove that X is >= 0 and < 16.
244       if (!CLHS->getValue().isNegative()) {
245         unsigned BitWidth = KnownZero.getBitWidth();
246         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247         // NLZ can't be BitWidth with no sign bit
248         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
249         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
250 
251         // If all of the MaskV bits are known to be zero, then we know the
252         // output top bits are zero, because we now know that the output is
253         // from [0-C].
254         if ((KnownZero2 & MaskV) == MaskV) {
255           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256           // Top bits known zero.
257           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258         }
259       }
260     }
261   }
262 
263   unsigned BitWidth = KnownZero.getBitWidth();
264 
265   // If an initial sequence of bits in the result is not needed, the
266   // corresponding bits in the operands are not needed.
267   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
268   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
270 
271   // Carry in a 1 for a subtract, rather than a 0.
272   APInt CarryIn(BitWidth, 0);
273   if (!Add) {
274     // Sum = LHS + ~RHS + 1
275     std::swap(KnownZero2, KnownOne2);
276     CarryIn.setBit(0);
277   }
278 
279   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281 
282   // Compute known bits of the carry.
283   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285 
286   // Compute set of known bits (where all three relevant bits are known).
287   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288   APInt RHSKnown = KnownZero2 | KnownOne2;
289   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290   APInt Known = LHSKnown & RHSKnown & CarryKnown;
291 
292   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293          "known bits of sum differ");
294 
295   // Compute known bits of the result.
296   KnownZero = ~PossibleSumOne & Known;
297   KnownOne = PossibleSumOne & Known;
298 
299   // Are we still trying to solve for the sign bit?
300   if (!Known.isNegative()) {
301     if (NSW) {
302       // Adding two non-negative numbers, or subtracting a negative number from
303       // a non-negative one, can't wrap into negative.
304       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305         KnownZero |= APInt::getSignBit(BitWidth);
306       // Adding two negative numbers, or subtracting a non-negative number from
307       // a negative one, can't wrap into non-negative.
308       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309         KnownOne |= APInt::getSignBit(BitWidth);
310     }
311   }
312 }
313 
314 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315                                 APInt &KnownZero, APInt &KnownOne,
316                                 APInt &KnownZero2, APInt &KnownOne2,
317                                 unsigned Depth, const Query &Q) {
318   unsigned BitWidth = KnownZero.getBitWidth();
319   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
321 
322   bool isKnownNegative = false;
323   bool isKnownNonNegative = false;
324   // If the multiplication is known not to overflow, compute the sign bit.
325   if (NSW) {
326     if (Op0 == Op1) {
327       // The product of a number with itself is non-negative.
328       isKnownNonNegative = true;
329     } else {
330       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332       bool isKnownNegativeOp1 = KnownOne.isNegative();
333       bool isKnownNegativeOp0 = KnownOne2.isNegative();
334       // The product of two numbers with the same sign is non-negative.
335       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337       // The product of a negative number and a non-negative number is either
338       // negative or zero.
339       if (!isKnownNonNegative)
340         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
341                            isKnownNonZero(Op0, Depth, Q)) ||
342                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
343                            isKnownNonZero(Op1, Depth, Q));
344     }
345   }
346 
347   // If low bits are zero in either operand, output low known-0 bits.
348   // Also compute a conservative estimate for high known-0 bits.
349   // More trickiness is possible, but this is sufficient for the
350   // interesting case of alignment computation.
351   KnownOne.clearAllBits();
352   unsigned TrailZ = KnownZero.countTrailingOnes() +
353                     KnownZero2.countTrailingOnes();
354   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
355                              KnownZero2.countLeadingOnes(),
356                              BitWidth) - BitWidth;
357 
358   TrailZ = std::min(TrailZ, BitWidth);
359   LeadZ = std::min(LeadZ, BitWidth);
360   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361               APInt::getHighBitsSet(BitWidth, LeadZ);
362 
363   // Only make use of no-wrap flags if we failed to compute the sign bit
364   // directly.  This matters if the multiplication always overflows, in
365   // which case we prefer to follow the result of the direct computation,
366   // though as the program is invoking undefined behaviour we can choose
367   // whatever we like here.
368   if (isKnownNonNegative && !KnownOne.isNegative())
369     KnownZero.setBit(BitWidth - 1);
370   else if (isKnownNegative && !KnownZero.isNegative())
371     KnownOne.setBit(BitWidth - 1);
372 }
373 
374 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
375                                              APInt &KnownZero,
376                                              APInt &KnownOne) {
377   unsigned BitWidth = KnownZero.getBitWidth();
378   unsigned NumRanges = Ranges.getNumOperands() / 2;
379   assert(NumRanges >= 1);
380 
381   KnownZero.setAllBits();
382   KnownOne.setAllBits();
383 
384   for (unsigned i = 0; i < NumRanges; ++i) {
385     ConstantInt *Lower =
386         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387     ConstantInt *Upper =
388         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
389     ConstantRange Range(Lower->getValue(), Upper->getValue());
390 
391     // The first CommonPrefixBits of all values in Range are equal.
392     unsigned CommonPrefixBits =
393         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394 
395     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396     KnownOne &= Range.getUnsignedMax() & Mask;
397     KnownZero &= ~Range.getUnsignedMax() & Mask;
398   }
399 }
400 
401 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402   SmallVector<const Value *, 16> WorkSet(1, I);
403   SmallPtrSet<const Value *, 32> Visited;
404   SmallPtrSet<const Value *, 16> EphValues;
405 
406   // The instruction defining an assumption's condition itself is always
407   // considered ephemeral to that assumption (even if it has other
408   // non-ephemeral users). See r246696's test case for an example.
409   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410     return true;
411 
412   while (!WorkSet.empty()) {
413     const Value *V = WorkSet.pop_back_val();
414     if (!Visited.insert(V).second)
415       continue;
416 
417     // If all uses of this value are ephemeral, then so is this value.
418     if (std::all_of(V->user_begin(), V->user_end(),
419                     [&](const User *U) { return EphValues.count(U); })) {
420       if (V == E)
421         return true;
422 
423       EphValues.insert(V);
424       if (const User *U = dyn_cast<User>(V))
425         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426              J != JE; ++J) {
427           if (isSafeToSpeculativelyExecute(*J))
428             WorkSet.push_back(*J);
429         }
430     }
431   }
432 
433   return false;
434 }
435 
436 // Is this an intrinsic that cannot be speculated but also cannot trap?
437 static bool isAssumeLikeIntrinsic(const Instruction *I) {
438   if (const CallInst *CI = dyn_cast<CallInst>(I))
439     if (Function *F = CI->getCalledFunction())
440       switch (F->getIntrinsicID()) {
441       default: break;
442       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443       case Intrinsic::assume:
444       case Intrinsic::dbg_declare:
445       case Intrinsic::dbg_value:
446       case Intrinsic::invariant_start:
447       case Intrinsic::invariant_end:
448       case Intrinsic::lifetime_start:
449       case Intrinsic::lifetime_end:
450       case Intrinsic::objectsize:
451       case Intrinsic::ptr_annotation:
452       case Intrinsic::var_annotation:
453         return true;
454       }
455 
456   return false;
457 }
458 
459 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460                                     const DominatorTree *DT) {
461   Instruction *Inv = cast<Instruction>(V);
462 
463   // There are two restrictions on the use of an assume:
464   //  1. The assume must dominate the context (or the control flow must
465   //     reach the assume whenever it reaches the context).
466   //  2. The context must not be in the assume's set of ephemeral values
467   //     (otherwise we will use the assume to prove that the condition
468   //     feeding the assume is trivially true, thus causing the removal of
469   //     the assume).
470 
471   if (DT) {
472     if (DT->dominates(Inv, CxtI)) {
473       return true;
474     } else if (Inv->getParent() == CxtI->getParent()) {
475       // The context comes first, but they're both in the same block. Make sure
476       // there is nothing in between that might interrupt the control flow.
477       for (BasicBlock::const_iterator I =
478              std::next(BasicBlock::const_iterator(CxtI)),
479                                       IE(Inv); I != IE; ++I)
480         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
481           return false;
482 
483       return !isEphemeralValueOf(Inv, CxtI);
484     }
485 
486     return false;
487   }
488 
489   // When we don't have a DT, we do a limited search...
490   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
491     return true;
492   } else if (Inv->getParent() == CxtI->getParent()) {
493     // Search forward from the assume until we reach the context (or the end
494     // of the block); the common case is that the assume will come first.
495     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496          IE = Inv->getParent()->end(); I != IE; ++I)
497       if (&*I == CxtI)
498         return true;
499 
500     // The context must come first...
501     for (BasicBlock::const_iterator I =
502            std::next(BasicBlock::const_iterator(CxtI)),
503                                     IE(Inv); I != IE; ++I)
504       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
505         return false;
506 
507     return !isEphemeralValueOf(Inv, CxtI);
508   }
509 
510   return false;
511 }
512 
513 bool llvm::isValidAssumeForContext(const Instruction *I,
514                                    const Instruction *CxtI,
515                                    const DominatorTree *DT) {
516   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
517 }
518 
519 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
520                                        APInt &KnownOne, unsigned Depth,
521                                        const Query &Q) {
522   // Use of assumptions is context-sensitive. If we don't have a context, we
523   // cannot use them!
524   if (!Q.AC || !Q.CxtI)
525     return;
526 
527   unsigned BitWidth = KnownZero.getBitWidth();
528 
529   for (auto &AssumeVH : Q.AC->assumptions()) {
530     if (!AssumeVH)
531       continue;
532     CallInst *I = cast<CallInst>(AssumeVH);
533     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
534            "Got assumption for the wrong function!");
535     if (Q.isExcluded(I))
536       continue;
537 
538     // Warning: This loop can end up being somewhat performance sensetive.
539     // We're running this loop for once for each value queried resulting in a
540     // runtime of ~O(#assumes * #values).
541 
542     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
543            "must be an assume intrinsic");
544 
545     Value *Arg = I->getArgOperand(0);
546 
547     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548       assert(BitWidth == 1 && "assume operand is not i1?");
549       KnownZero.clearAllBits();
550       KnownOne.setAllBits();
551       return;
552     }
553 
554     // The remaining tests are all recursive, so bail out if we hit the limit.
555     if (Depth == MaxDepth)
556       continue;
557 
558     Value *A, *B;
559     auto m_V = m_CombineOr(m_Specific(V),
560                            m_CombineOr(m_PtrToInt(m_Specific(V)),
561                            m_BitCast(m_Specific(V))));
562 
563     CmpInst::Predicate Pred;
564     ConstantInt *C;
565     // assume(v = a)
566     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
567         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
568       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
569       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
570       KnownZero |= RHSKnownZero;
571       KnownOne  |= RHSKnownOne;
572     // assume(v & b = a)
573     } else if (match(Arg,
574                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
575                Pred == ICmpInst::ICMP_EQ &&
576                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
577       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
578       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
579       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
580       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
581 
582       // For those bits in the mask that are known to be one, we can propagate
583       // known bits from the RHS to V.
584       KnownZero |= RHSKnownZero & MaskKnownOne;
585       KnownOne  |= RHSKnownOne  & MaskKnownOne;
586     // assume(~(v & b) = a)
587     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588                                    m_Value(A))) &&
589                Pred == ICmpInst::ICMP_EQ &&
590                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
591       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
592       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
593       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
594       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
595 
596       // For those bits in the mask that are known to be one, we can propagate
597       // inverted known bits from the RHS to V.
598       KnownZero |= RHSKnownOne  & MaskKnownOne;
599       KnownOne  |= RHSKnownZero & MaskKnownOne;
600     // assume(v | b = a)
601     } else if (match(Arg,
602                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
603                Pred == ICmpInst::ICMP_EQ &&
604                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
606       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
607       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
608       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
609 
610       // For those bits in B that are known to be zero, we can propagate known
611       // bits from the RHS to V.
612       KnownZero |= RHSKnownZero & BKnownZero;
613       KnownOne  |= RHSKnownOne  & BKnownZero;
614     // assume(~(v | b) = a)
615     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616                                    m_Value(A))) &&
617                Pred == ICmpInst::ICMP_EQ &&
618                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
619       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
620       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
621       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
622       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
623 
624       // For those bits in B that are known to be zero, we can propagate
625       // inverted known bits from the RHS to V.
626       KnownZero |= RHSKnownOne  & BKnownZero;
627       KnownOne  |= RHSKnownZero & BKnownZero;
628     // assume(v ^ b = a)
629     } else if (match(Arg,
630                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
631                Pred == ICmpInst::ICMP_EQ &&
632                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
633       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
634       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
635       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
636       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
637 
638       // For those bits in B that are known to be zero, we can propagate known
639       // bits from the RHS to V. For those bits in B that are known to be one,
640       // we can propagate inverted known bits from the RHS to V.
641       KnownZero |= RHSKnownZero & BKnownZero;
642       KnownOne  |= RHSKnownOne  & BKnownZero;
643       KnownZero |= RHSKnownOne  & BKnownOne;
644       KnownOne  |= RHSKnownZero & BKnownOne;
645     // assume(~(v ^ b) = a)
646     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647                                    m_Value(A))) &&
648                Pred == ICmpInst::ICMP_EQ &&
649                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
650       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
651       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
652       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
653       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
654 
655       // For those bits in B that are known to be zero, we can propagate
656       // inverted known bits from the RHS to V. For those bits in B that are
657       // known to be one, we can propagate known bits from the RHS to V.
658       KnownZero |= RHSKnownOne  & BKnownZero;
659       KnownOne  |= RHSKnownZero & BKnownZero;
660       KnownZero |= RHSKnownZero & BKnownOne;
661       KnownOne  |= RHSKnownOne  & BKnownOne;
662     // assume(v << c = a)
663     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664                                    m_Value(A))) &&
665                Pred == ICmpInst::ICMP_EQ &&
666                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
668       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
669       // For those bits in RHS that are known, we can propagate them to known
670       // bits in V shifted to the right by C.
671       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
673     // assume(~(v << c) = a)
674     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675                                    m_Value(A))) &&
676                Pred == ICmpInst::ICMP_EQ &&
677                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
678       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
679       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
680       // For those bits in RHS that are known, we can propagate them inverted
681       // to known bits in V shifted to the right by C.
682       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
684     // assume(v >> c = a)
685     } else if (match(Arg,
686                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
687                                                 m_AShr(m_V, m_ConstantInt(C))),
688                               m_Value(A))) &&
689                Pred == ICmpInst::ICMP_EQ &&
690                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
691       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
692       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
693       // For those bits in RHS that are known, we can propagate them to known
694       // bits in V shifted to the right by C.
695       KnownZero |= RHSKnownZero << C->getZExtValue();
696       KnownOne  |= RHSKnownOne  << C->getZExtValue();
697     // assume(~(v >> c) = a)
698     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
699                                              m_LShr(m_V, m_ConstantInt(C)),
700                                              m_AShr(m_V, m_ConstantInt(C)))),
701                                    m_Value(A))) &&
702                Pred == ICmpInst::ICMP_EQ &&
703                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
704       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
705       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
706       // For those bits in RHS that are known, we can propagate them inverted
707       // to known bits in V shifted to the right by C.
708       KnownZero |= RHSKnownOne  << C->getZExtValue();
709       KnownOne  |= RHSKnownZero << C->getZExtValue();
710     // assume(v >=_s c) where c is non-negative
711     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
712                Pred == ICmpInst::ICMP_SGE &&
713                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
714       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
715       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
716 
717       if (RHSKnownZero.isNegative()) {
718         // We know that the sign bit is zero.
719         KnownZero |= APInt::getSignBit(BitWidth);
720       }
721     // assume(v >_s c) where c is at least -1.
722     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
723                Pred == ICmpInst::ICMP_SGT &&
724                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
725       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
726       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
727 
728       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729         // We know that the sign bit is zero.
730         KnownZero |= APInt::getSignBit(BitWidth);
731       }
732     // assume(v <=_s c) where c is negative
733     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
734                Pred == ICmpInst::ICMP_SLE &&
735                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
736       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
737       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
738 
739       if (RHSKnownOne.isNegative()) {
740         // We know that the sign bit is one.
741         KnownOne |= APInt::getSignBit(BitWidth);
742       }
743     // assume(v <_s c) where c is non-positive
744     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
745                Pred == ICmpInst::ICMP_SLT &&
746                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
747       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
748       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
749 
750       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751         // We know that the sign bit is one.
752         KnownOne |= APInt::getSignBit(BitWidth);
753       }
754     // assume(v <=_u c)
755     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
756                Pred == ICmpInst::ICMP_ULE &&
757                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
759       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
760 
761       // Whatever high bits in c are zero are known to be zero.
762       KnownZero |=
763         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764     // assume(v <_u c)
765     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
766                Pred == ICmpInst::ICMP_ULT &&
767                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
770 
771       // Whatever high bits in c are zero are known to be zero (if c is a power
772       // of 2, then one more).
773       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
774         KnownZero |=
775           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776       else
777         KnownZero |=
778           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
779     }
780   }
781 }
782 
783 // Compute known bits from a shift operator, including those with a
784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787 // functors that, given the known-zero or known-one bits respectively, and a
788 // shift amount, compute the implied known-zero or known-one bits of the shift
789 // operator's result respectively for that shift amount. The results from calling
790 // KZF and KOF are conservatively combined for all permitted shift amounts.
791 template <typename KZFunctor, typename KOFunctor>
792 static void computeKnownBitsFromShiftOperator(Operator *I,
793               APInt &KnownZero, APInt &KnownOne,
794               APInt &KnownZero2, APInt &KnownOne2,
795               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
796   unsigned BitWidth = KnownZero.getBitWidth();
797 
798   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800 
801     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
802     KnownZero = KZF(KnownZero, ShiftAmt);
803     KnownOne  = KOF(KnownOne, ShiftAmt);
804     return;
805   }
806 
807   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
808 
809   // Note: We cannot use KnownZero.getLimitedValue() here, because if
810   // BitWidth > 64 and any upper bits are known, we'll end up returning the
811   // limit value (which implies all bits are known).
812   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814 
815   // It would be more-clearly correct to use the two temporaries for this
816   // calculation. Reusing the APInts here to prevent unnecessary allocations.
817   KnownZero.clearAllBits();
818   KnownOne.clearAllBits();
819 
820   // If we know the shifter operand is nonzero, we can sometimes infer more
821   // known bits. However this is expensive to compute, so be lazy about it and
822   // only compute it when absolutely necessary.
823   Optional<bool> ShifterOperandIsNonZero;
824 
825   // Early exit if we can't constrain any well-defined shift amount.
826   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827     ShifterOperandIsNonZero =
828         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
829     if (!*ShifterOperandIsNonZero)
830       return;
831   }
832 
833   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
834 
835   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837     // Combine the shifted known input bits only for those shift amounts
838     // compatible with its known constraints.
839     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840       continue;
841     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842       continue;
843     // If we know the shifter is nonzero, we may be able to infer more known
844     // bits. This check is sunk down as far as possible to avoid the expensive
845     // call to isKnownNonZero if the cheaper checks above fail.
846     if (ShiftAmt == 0) {
847       if (!ShifterOperandIsNonZero.hasValue())
848         ShifterOperandIsNonZero =
849             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
850       if (*ShifterOperandIsNonZero)
851         continue;
852     }
853 
854     KnownZero &= KZF(KnownZero2, ShiftAmt);
855     KnownOne  &= KOF(KnownOne2, ShiftAmt);
856   }
857 
858   // If there are no compatible shift amounts, then we've proven that the shift
859   // amount must be >= the BitWidth, and the result is undefined. We could
860   // return anything we'd like, but we need to make sure the sets of known bits
861   // stay disjoint (it should be better for some other code to actually
862   // propagate the undef than to pick a value here using known bits).
863   if ((KnownZero & KnownOne) != 0) {
864     KnownZero.clearAllBits();
865     KnownOne.clearAllBits();
866   }
867 }
868 
869 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
870                                          APInt &KnownOne, unsigned Depth,
871                                          const Query &Q) {
872   unsigned BitWidth = KnownZero.getBitWidth();
873 
874   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
875   switch (I->getOpcode()) {
876   default: break;
877   case Instruction::Load:
878     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
879       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
880     break;
881   case Instruction::And: {
882     // If either the LHS or the RHS are Zero, the result is zero.
883     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
885 
886     // Output known-1 bits are only known if set in both the LHS & RHS.
887     KnownOne &= KnownOne2;
888     // Output known-0 are known to be clear if zero in either the LHS | RHS.
889     KnownZero |= KnownZero2;
890 
891     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892     // here we handle the more general case of adding any odd number by
893     // matching the form add(x, add(x, y)) where y is odd.
894     // TODO: This could be generalized to clearing any bit set in y where the
895     // following bit is known to be unset in y.
896     Value *Y = nullptr;
897     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898                                       m_Value(Y))) ||
899         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900                                       m_Value(Y)))) {
901       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
902       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
903       if (KnownOne3.countTrailingOnes() > 0)
904         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905     }
906     break;
907   }
908   case Instruction::Or: {
909     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
911 
912     // Output known-0 bits are only known if clear in both the LHS & RHS.
913     KnownZero &= KnownZero2;
914     // Output known-1 are known to be set if set in either the LHS | RHS.
915     KnownOne |= KnownOne2;
916     break;
917   }
918   case Instruction::Xor: {
919     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
921 
922     // Output known-0 bits are known if clear or set in both the LHS & RHS.
923     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924     // Output known-1 are known to be set if set in only one of the LHS, RHS.
925     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926     KnownZero = KnownZeroOut;
927     break;
928   }
929   case Instruction::Mul: {
930     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
931     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
932                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
933     break;
934   }
935   case Instruction::UDiv: {
936     // For the purposes of computing leading zeros we can conservatively
937     // treat a udiv as a logical right shift by the power of 2 known to
938     // be less than the denominator.
939     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
940     unsigned LeadZ = KnownZero2.countLeadingOnes();
941 
942     KnownOne2.clearAllBits();
943     KnownZero2.clearAllBits();
944     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
945     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946     if (RHSUnknownLeadingOnes != BitWidth)
947       LeadZ = std::min(BitWidth,
948                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949 
950     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
951     break;
952   }
953   case Instruction::Select:
954     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
956 
957     // Only known if known in both the LHS and RHS.
958     KnownOne &= KnownOne2;
959     KnownZero &= KnownZero2;
960     break;
961   case Instruction::FPTrunc:
962   case Instruction::FPExt:
963   case Instruction::FPToUI:
964   case Instruction::FPToSI:
965   case Instruction::SIToFP:
966   case Instruction::UIToFP:
967     break; // Can't work with floating point.
968   case Instruction::PtrToInt:
969   case Instruction::IntToPtr:
970   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
971     // FALL THROUGH and handle them the same as zext/trunc.
972   case Instruction::ZExt:
973   case Instruction::Trunc: {
974     Type *SrcTy = I->getOperand(0)->getType();
975 
976     unsigned SrcBitWidth;
977     // Note that we handle pointer operands here because of inttoptr/ptrtoint
978     // which fall through here.
979     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
980 
981     assert(SrcBitWidth && "SrcBitWidth can't be zero");
982     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
984     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
985     KnownZero = KnownZero.zextOrTrunc(BitWidth);
986     KnownOne = KnownOne.zextOrTrunc(BitWidth);
987     // Any top bits are known to be zero.
988     if (BitWidth > SrcBitWidth)
989       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
990     break;
991   }
992   case Instruction::BitCast: {
993     Type *SrcTy = I->getOperand(0)->getType();
994     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
995          SrcTy->isFloatingPointTy()) &&
996         // TODO: For now, not handling conversions like:
997         // (bitcast i64 %x to <2 x i32>)
998         !I->getType()->isVectorTy()) {
999       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1000       break;
1001     }
1002     break;
1003   }
1004   case Instruction::SExt: {
1005     // Compute the bits in the result that are not present in the input.
1006     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1007 
1008     KnownZero = KnownZero.trunc(SrcBitWidth);
1009     KnownOne = KnownOne.trunc(SrcBitWidth);
1010     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1011     KnownZero = KnownZero.zext(BitWidth);
1012     KnownOne = KnownOne.zext(BitWidth);
1013 
1014     // If the sign bit of the input is known set or clear, then we know the
1015     // top bits of the result.
1016     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1017       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1018     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1019       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1020     break;
1021   }
1022   case Instruction::Shl: {
1023     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1024     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1025       return (KnownZero << ShiftAmt) |
1026              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1027     };
1028 
1029     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1030       return KnownOne << ShiftAmt;
1031     };
1032 
1033     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1034                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1035                                       KOF);
1036     break;
1037   }
1038   case Instruction::LShr: {
1039     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1040     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1041       return APIntOps::lshr(KnownZero, ShiftAmt) |
1042              // High bits known zero.
1043              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1044     };
1045 
1046     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1047       return APIntOps::lshr(KnownOne, ShiftAmt);
1048     };
1049 
1050     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1051                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1052                                       KOF);
1053     break;
1054   }
1055   case Instruction::AShr: {
1056     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1057     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1058       return APIntOps::ashr(KnownZero, ShiftAmt);
1059     };
1060 
1061     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1062       return APIntOps::ashr(KnownOne, ShiftAmt);
1063     };
1064 
1065     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1066                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1067                                       KOF);
1068     break;
1069   }
1070   case Instruction::Sub: {
1071     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1072     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1073                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1074                            Q);
1075     break;
1076   }
1077   case Instruction::Add: {
1078     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1079     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1080                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1081                            Q);
1082     break;
1083   }
1084   case Instruction::SRem:
1085     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1086       APInt RA = Rem->getValue().abs();
1087       if (RA.isPowerOf2()) {
1088         APInt LowBits = RA - 1;
1089         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1090                          Q);
1091 
1092         // The low bits of the first operand are unchanged by the srem.
1093         KnownZero = KnownZero2 & LowBits;
1094         KnownOne = KnownOne2 & LowBits;
1095 
1096         // If the first operand is non-negative or has all low bits zero, then
1097         // the upper bits are all zero.
1098         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1099           KnownZero |= ~LowBits;
1100 
1101         // If the first operand is negative and not all low bits are zero, then
1102         // the upper bits are all one.
1103         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1104           KnownOne |= ~LowBits;
1105 
1106         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1107       }
1108     }
1109 
1110     // The sign bit is the LHS's sign bit, except when the result of the
1111     // remainder is zero.
1112     if (KnownZero.isNonNegative()) {
1113       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1114       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1115                        Q);
1116       // If it's known zero, our sign bit is also zero.
1117       if (LHSKnownZero.isNegative())
1118         KnownZero.setBit(BitWidth - 1);
1119     }
1120 
1121     break;
1122   case Instruction::URem: {
1123     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1124       APInt RA = Rem->getValue();
1125       if (RA.isPowerOf2()) {
1126         APInt LowBits = (RA - 1);
1127         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1128         KnownZero |= ~LowBits;
1129         KnownOne &= LowBits;
1130         break;
1131       }
1132     }
1133 
1134     // Since the result is less than or equal to either operand, any leading
1135     // zero bits in either operand must also exist in the result.
1136     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1137     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1138 
1139     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1140                                 KnownZero2.countLeadingOnes());
1141     KnownOne.clearAllBits();
1142     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1143     break;
1144   }
1145 
1146   case Instruction::Alloca: {
1147     AllocaInst *AI = cast<AllocaInst>(I);
1148     unsigned Align = AI->getAlignment();
1149     if (Align == 0)
1150       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1151 
1152     if (Align > 0)
1153       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1154     break;
1155   }
1156   case Instruction::GetElementPtr: {
1157     // Analyze all of the subscripts of this getelementptr instruction
1158     // to determine if we can prove known low zero bits.
1159     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1160     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1161                      Q);
1162     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1163 
1164     gep_type_iterator GTI = gep_type_begin(I);
1165     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1166       Value *Index = I->getOperand(i);
1167       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1168         // Handle struct member offset arithmetic.
1169 
1170         // Handle case when index is vector zeroinitializer
1171         Constant *CIndex = cast<Constant>(Index);
1172         if (CIndex->isZeroValue())
1173           continue;
1174 
1175         if (CIndex->getType()->isVectorTy())
1176           Index = CIndex->getSplatValue();
1177 
1178         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1179         const StructLayout *SL = Q.DL.getStructLayout(STy);
1180         uint64_t Offset = SL->getElementOffset(Idx);
1181         TrailZ = std::min<unsigned>(TrailZ,
1182                                     countTrailingZeros(Offset));
1183       } else {
1184         // Handle array index arithmetic.
1185         Type *IndexedTy = GTI.getIndexedType();
1186         if (!IndexedTy->isSized()) {
1187           TrailZ = 0;
1188           break;
1189         }
1190         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1191         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1192         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1193         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1194         TrailZ = std::min(TrailZ,
1195                           unsigned(countTrailingZeros(TypeSize) +
1196                                    LocalKnownZero.countTrailingOnes()));
1197       }
1198     }
1199 
1200     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1201     break;
1202   }
1203   case Instruction::PHI: {
1204     PHINode *P = cast<PHINode>(I);
1205     // Handle the case of a simple two-predecessor recurrence PHI.
1206     // There's a lot more that could theoretically be done here, but
1207     // this is sufficient to catch some interesting cases.
1208     if (P->getNumIncomingValues() == 2) {
1209       for (unsigned i = 0; i != 2; ++i) {
1210         Value *L = P->getIncomingValue(i);
1211         Value *R = P->getIncomingValue(!i);
1212         Operator *LU = dyn_cast<Operator>(L);
1213         if (!LU)
1214           continue;
1215         unsigned Opcode = LU->getOpcode();
1216         // Check for operations that have the property that if
1217         // both their operands have low zero bits, the result
1218         // will have low zero bits.
1219         if (Opcode == Instruction::Add ||
1220             Opcode == Instruction::Sub ||
1221             Opcode == Instruction::And ||
1222             Opcode == Instruction::Or ||
1223             Opcode == Instruction::Mul) {
1224           Value *LL = LU->getOperand(0);
1225           Value *LR = LU->getOperand(1);
1226           // Find a recurrence.
1227           if (LL == I)
1228             L = LR;
1229           else if (LR == I)
1230             L = LL;
1231           else
1232             break;
1233           // Ok, we have a PHI of the form L op= R. Check for low
1234           // zero bits.
1235           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1236 
1237           // We need to take the minimum number of known bits
1238           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1239           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1240 
1241           KnownZero = APInt::getLowBitsSet(BitWidth,
1242                                            std::min(KnownZero2.countTrailingOnes(),
1243                                                     KnownZero3.countTrailingOnes()));
1244           break;
1245         }
1246       }
1247     }
1248 
1249     // Unreachable blocks may have zero-operand PHI nodes.
1250     if (P->getNumIncomingValues() == 0)
1251       break;
1252 
1253     // Otherwise take the unions of the known bit sets of the operands,
1254     // taking conservative care to avoid excessive recursion.
1255     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1256       // Skip if every incoming value references to ourself.
1257       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1258         break;
1259 
1260       KnownZero = APInt::getAllOnesValue(BitWidth);
1261       KnownOne = APInt::getAllOnesValue(BitWidth);
1262       for (Value *IncValue : P->incoming_values()) {
1263         // Skip direct self references.
1264         if (IncValue == P) continue;
1265 
1266         KnownZero2 = APInt(BitWidth, 0);
1267         KnownOne2 = APInt(BitWidth, 0);
1268         // Recurse, but cap the recursion to one level, because we don't
1269         // want to waste time spinning around in loops.
1270         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1271         KnownZero &= KnownZero2;
1272         KnownOne &= KnownOne2;
1273         // If all bits have been ruled out, there's no need to check
1274         // more operands.
1275         if (!KnownZero && !KnownOne)
1276           break;
1277       }
1278     }
1279     break;
1280   }
1281   case Instruction::Call:
1282   case Instruction::Invoke:
1283     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1284       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1285     // If a range metadata is attached to this IntrinsicInst, intersect the
1286     // explicit range specified by the metadata and the implicit range of
1287     // the intrinsic.
1288     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1289       switch (II->getIntrinsicID()) {
1290       default: break;
1291       case Intrinsic::bswap:
1292         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1293         KnownZero |= KnownZero2.byteSwap();
1294         KnownOne |= KnownOne2.byteSwap();
1295         break;
1296       case Intrinsic::ctlz:
1297       case Intrinsic::cttz: {
1298         unsigned LowBits = Log2_32(BitWidth)+1;
1299         // If this call is undefined for 0, the result will be less than 2^n.
1300         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1301           LowBits -= 1;
1302         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1303         break;
1304       }
1305       case Intrinsic::ctpop: {
1306         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1307         // We can bound the space the count needs.  Also, bits known to be zero
1308         // can't contribute to the population.
1309         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1310         unsigned LeadingZeros =
1311           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1312         assert(LeadingZeros <= BitWidth);
1313         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1314         KnownOne &= ~KnownZero;
1315         // TODO: we could bound KnownOne using the lower bound on the number
1316         // of bits which might be set provided by popcnt KnownOne2.
1317         break;
1318       }
1319       case Intrinsic::fabs: {
1320         Type *Ty = II->getType();
1321         APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1322         KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1323         break;
1324       }
1325       case Intrinsic::x86_sse42_crc32_64_64:
1326         KnownZero |= APInt::getHighBitsSet(64, 32);
1327         break;
1328       }
1329     }
1330     break;
1331   case Instruction::ExtractValue:
1332     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1333       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1334       if (EVI->getNumIndices() != 1) break;
1335       if (EVI->getIndices()[0] == 0) {
1336         switch (II->getIntrinsicID()) {
1337         default: break;
1338         case Intrinsic::uadd_with_overflow:
1339         case Intrinsic::sadd_with_overflow:
1340           computeKnownBitsAddSub(true, II->getArgOperand(0),
1341                                  II->getArgOperand(1), false, KnownZero,
1342                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1343           break;
1344         case Intrinsic::usub_with_overflow:
1345         case Intrinsic::ssub_with_overflow:
1346           computeKnownBitsAddSub(false, II->getArgOperand(0),
1347                                  II->getArgOperand(1), false, KnownZero,
1348                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1349           break;
1350         case Intrinsic::umul_with_overflow:
1351         case Intrinsic::smul_with_overflow:
1352           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1353                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1354                               Q);
1355           break;
1356         }
1357       }
1358     }
1359   }
1360 }
1361 
1362 /// Determine which bits of V are known to be either zero or one and return
1363 /// them in the KnownZero/KnownOne bit sets.
1364 ///
1365 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1366 /// we cannot optimize based on the assumption that it is zero without changing
1367 /// it to be an explicit zero.  If we don't change it to zero, other code could
1368 /// optimized based on the contradictory assumption that it is non-zero.
1369 /// Because instcombine aggressively folds operations with undef args anyway,
1370 /// this won't lose us code quality.
1371 ///
1372 /// This function is defined on values with integer type, values with pointer
1373 /// type, and vectors of integers.  In the case
1374 /// where V is a vector, known zero, and known one values are the
1375 /// same width as the vector element, and the bit is set only if it is true
1376 /// for all of the elements in the vector.
1377 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1378                       unsigned Depth, const Query &Q) {
1379   assert(V && "No Value?");
1380   assert(Depth <= MaxDepth && "Limit Search Depth");
1381   unsigned BitWidth = KnownZero.getBitWidth();
1382 
1383   assert((V->getType()->isIntOrIntVectorTy() ||
1384           V->getType()->isFPOrFPVectorTy() ||
1385           V->getType()->getScalarType()->isPointerTy()) &&
1386          "Not integer, floating point, or pointer type!");
1387   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1388          (!V->getType()->isIntOrIntVectorTy() ||
1389           V->getType()->getScalarSizeInBits() == BitWidth) &&
1390          KnownZero.getBitWidth() == BitWidth &&
1391          KnownOne.getBitWidth() == BitWidth &&
1392          "V, KnownOne and KnownZero should have same BitWidth");
1393 
1394   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1395     // We know all of the bits for a constant!
1396     KnownOne = CI->getValue();
1397     KnownZero = ~KnownOne;
1398     return;
1399   }
1400   // Null and aggregate-zero are all-zeros.
1401   if (isa<ConstantPointerNull>(V) ||
1402       isa<ConstantAggregateZero>(V)) {
1403     KnownOne.clearAllBits();
1404     KnownZero = APInt::getAllOnesValue(BitWidth);
1405     return;
1406   }
1407   // Handle a constant vector by taking the intersection of the known bits of
1408   // each element.
1409   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1410     // We know that CDS must be a vector of integers. Take the intersection of
1411     // each element.
1412     KnownZero.setAllBits(); KnownOne.setAllBits();
1413     APInt Elt(KnownZero.getBitWidth(), 0);
1414     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1415       Elt = CDS->getElementAsInteger(i);
1416       KnownZero &= ~Elt;
1417       KnownOne &= Elt;
1418     }
1419     return;
1420   }
1421 
1422   if (auto *CV = dyn_cast<ConstantVector>(V)) {
1423     // We know that CV must be a vector of integers. Take the intersection of
1424     // each element.
1425     KnownZero.setAllBits(); KnownOne.setAllBits();
1426     APInt Elt(KnownZero.getBitWidth(), 0);
1427     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1428       Constant *Element = CV->getAggregateElement(i);
1429       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1430       if (!ElementCI) {
1431         KnownZero.clearAllBits();
1432         KnownOne.clearAllBits();
1433         return;
1434       }
1435       Elt = ElementCI->getValue();
1436       KnownZero &= ~Elt;
1437       KnownOne &= Elt;
1438     }
1439     return;
1440   }
1441 
1442   // Start out not knowing anything.
1443   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1444 
1445   // Limit search depth.
1446   // All recursive calls that increase depth must come after this.
1447   if (Depth == MaxDepth)
1448     return;
1449 
1450   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1451   // the bits of its aliasee.
1452   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1453     if (!GA->isInterposable())
1454       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1455     return;
1456   }
1457 
1458   if (Operator *I = dyn_cast<Operator>(V))
1459     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1460 
1461   // Aligned pointers have trailing zeros - refine KnownZero set
1462   if (V->getType()->isPointerTy()) {
1463     unsigned Align = V->getPointerAlignment(Q.DL);
1464     if (Align)
1465       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1466   }
1467 
1468   // computeKnownBitsFromAssume strictly refines KnownZero and
1469   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1470 
1471   // Check whether a nearby assume intrinsic can determine some known bits.
1472   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1473 
1474   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1475 }
1476 
1477 /// Determine whether the sign bit is known to be zero or one.
1478 /// Convenience wrapper around computeKnownBits.
1479 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1480                     unsigned Depth, const Query &Q) {
1481   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1482   if (!BitWidth) {
1483     KnownZero = false;
1484     KnownOne = false;
1485     return;
1486   }
1487   APInt ZeroBits(BitWidth, 0);
1488   APInt OneBits(BitWidth, 0);
1489   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1490   KnownOne = OneBits[BitWidth - 1];
1491   KnownZero = ZeroBits[BitWidth - 1];
1492 }
1493 
1494 /// Return true if the given value is known to have exactly one
1495 /// bit set when defined. For vectors return true if every element is known to
1496 /// be a power of two when defined. Supports values with integer or pointer
1497 /// types and vectors of integers.
1498 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1499                             const Query &Q) {
1500   if (Constant *C = dyn_cast<Constant>(V)) {
1501     if (C->isNullValue())
1502       return OrZero;
1503     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1504       return CI->getValue().isPowerOf2();
1505     // TODO: Handle vector constants.
1506   }
1507 
1508   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1509   // it is shifted off the end then the result is undefined.
1510   if (match(V, m_Shl(m_One(), m_Value())))
1511     return true;
1512 
1513   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1514   // bottom.  If it is shifted off the bottom then the result is undefined.
1515   if (match(V, m_LShr(m_SignBit(), m_Value())))
1516     return true;
1517 
1518   // The remaining tests are all recursive, so bail out if we hit the limit.
1519   if (Depth++ == MaxDepth)
1520     return false;
1521 
1522   Value *X = nullptr, *Y = nullptr;
1523   // A shift left or a logical shift right of a power of two is a power of two
1524   // or zero.
1525   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1526                  match(V, m_LShr(m_Value(X), m_Value()))))
1527     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1528 
1529   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1530     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1531 
1532   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1533     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1534            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1535 
1536   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1537     // A power of two and'd with anything is a power of two or zero.
1538     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1539         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1540       return true;
1541     // X & (-X) is always a power of two or zero.
1542     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1543       return true;
1544     return false;
1545   }
1546 
1547   // Adding a power-of-two or zero to the same power-of-two or zero yields
1548   // either the original power-of-two, a larger power-of-two or zero.
1549   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1550     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1551     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1552       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1553           match(X, m_And(m_Value(), m_Specific(Y))))
1554         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1555           return true;
1556       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1557           match(Y, m_And(m_Value(), m_Specific(X))))
1558         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1559           return true;
1560 
1561       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1562       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1563       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1564 
1565       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1566       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1567       // If i8 V is a power of two or zero:
1568       //  ZeroBits: 1 1 1 0 1 1 1 1
1569       // ~ZeroBits: 0 0 0 1 0 0 0 0
1570       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1571         // If OrZero isn't set, we cannot give back a zero result.
1572         // Make sure either the LHS or RHS has a bit set.
1573         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1574           return true;
1575     }
1576   }
1577 
1578   // An exact divide or right shift can only shift off zero bits, so the result
1579   // is a power of two only if the first operand is a power of two and not
1580   // copying a sign bit (sdiv int_min, 2).
1581   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1582       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1583     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1584                                   Depth, Q);
1585   }
1586 
1587   return false;
1588 }
1589 
1590 /// \brief Test whether a GEP's result is known to be non-null.
1591 ///
1592 /// Uses properties inherent in a GEP to try to determine whether it is known
1593 /// to be non-null.
1594 ///
1595 /// Currently this routine does not support vector GEPs.
1596 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1597                               const Query &Q) {
1598   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1599     return false;
1600 
1601   // FIXME: Support vector-GEPs.
1602   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1603 
1604   // If the base pointer is non-null, we cannot walk to a null address with an
1605   // inbounds GEP in address space zero.
1606   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1607     return true;
1608 
1609   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1610   // If so, then the GEP cannot produce a null pointer, as doing so would
1611   // inherently violate the inbounds contract within address space zero.
1612   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1613        GTI != GTE; ++GTI) {
1614     // Struct types are easy -- they must always be indexed by a constant.
1615     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1616       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1617       unsigned ElementIdx = OpC->getZExtValue();
1618       const StructLayout *SL = Q.DL.getStructLayout(STy);
1619       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1620       if (ElementOffset > 0)
1621         return true;
1622       continue;
1623     }
1624 
1625     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1626     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1627       continue;
1628 
1629     // Fast path the constant operand case both for efficiency and so we don't
1630     // increment Depth when just zipping down an all-constant GEP.
1631     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1632       if (!OpC->isZero())
1633         return true;
1634       continue;
1635     }
1636 
1637     // We post-increment Depth here because while isKnownNonZero increments it
1638     // as well, when we pop back up that increment won't persist. We don't want
1639     // to recurse 10k times just because we have 10k GEP operands. We don't
1640     // bail completely out because we want to handle constant GEPs regardless
1641     // of depth.
1642     if (Depth++ >= MaxDepth)
1643       continue;
1644 
1645     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1646       return true;
1647   }
1648 
1649   return false;
1650 }
1651 
1652 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1653 /// ensure that the value it's attached to is never Value?  'RangeType' is
1654 /// is the type of the value described by the range.
1655 static bool rangeMetadataExcludesValue(MDNode* Ranges,
1656                                        const APInt& Value) {
1657   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1658   assert(NumRanges >= 1);
1659   for (unsigned i = 0; i < NumRanges; ++i) {
1660     ConstantInt *Lower =
1661         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1662     ConstantInt *Upper =
1663         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1664     ConstantRange Range(Lower->getValue(), Upper->getValue());
1665     if (Range.contains(Value))
1666       return false;
1667   }
1668   return true;
1669 }
1670 
1671 /// Return true if the given value is known to be non-zero when defined.
1672 /// For vectors return true if every element is known to be non-zero when
1673 /// defined. Supports values with integer or pointer type and vectors of
1674 /// integers.
1675 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1676   if (Constant *C = dyn_cast<Constant>(V)) {
1677     if (C->isNullValue())
1678       return false;
1679     if (isa<ConstantInt>(C))
1680       // Must be non-zero due to null test above.
1681       return true;
1682     // TODO: Handle vectors
1683     return false;
1684   }
1685 
1686   if (Instruction* I = dyn_cast<Instruction>(V)) {
1687     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1688       // If the possible ranges don't contain zero, then the value is
1689       // definitely non-zero.
1690       if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1691         const APInt ZeroValue(Ty->getBitWidth(), 0);
1692         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1693           return true;
1694       }
1695     }
1696   }
1697 
1698   // The remaining tests are all recursive, so bail out if we hit the limit.
1699   if (Depth++ >= MaxDepth)
1700     return false;
1701 
1702   // Check for pointer simplifications.
1703   if (V->getType()->isPointerTy()) {
1704     if (isKnownNonNull(V))
1705       return true;
1706     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1707       if (isGEPKnownNonNull(GEP, Depth, Q))
1708         return true;
1709   }
1710 
1711   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1712 
1713   // X | Y != 0 if X != 0 or Y != 0.
1714   Value *X = nullptr, *Y = nullptr;
1715   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1716     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1717 
1718   // ext X != 0 if X != 0.
1719   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1720     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1721 
1722   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1723   // if the lowest bit is shifted off the end.
1724   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1725     // shl nuw can't remove any non-zero bits.
1726     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1727     if (BO->hasNoUnsignedWrap())
1728       return isKnownNonZero(X, Depth, Q);
1729 
1730     APInt KnownZero(BitWidth, 0);
1731     APInt KnownOne(BitWidth, 0);
1732     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1733     if (KnownOne[0])
1734       return true;
1735   }
1736   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1737   // defined if the sign bit is shifted off the end.
1738   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1739     // shr exact can only shift out zero bits.
1740     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1741     if (BO->isExact())
1742       return isKnownNonZero(X, Depth, Q);
1743 
1744     bool XKnownNonNegative, XKnownNegative;
1745     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1746     if (XKnownNegative)
1747       return true;
1748 
1749     // If the shifter operand is a constant, and all of the bits shifted
1750     // out are known to be zero, and X is known non-zero then at least one
1751     // non-zero bit must remain.
1752     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1753       APInt KnownZero(BitWidth, 0);
1754       APInt KnownOne(BitWidth, 0);
1755       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1756 
1757       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1758       // Is there a known one in the portion not shifted out?
1759       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1760         return true;
1761       // Are all the bits to be shifted out known zero?
1762       if (KnownZero.countTrailingOnes() >= ShiftVal)
1763         return isKnownNonZero(X, Depth, Q);
1764     }
1765   }
1766   // div exact can only produce a zero if the dividend is zero.
1767   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1768     return isKnownNonZero(X, Depth, Q);
1769   }
1770   // X + Y.
1771   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1772     bool XKnownNonNegative, XKnownNegative;
1773     bool YKnownNonNegative, YKnownNegative;
1774     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1775     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1776 
1777     // If X and Y are both non-negative (as signed values) then their sum is not
1778     // zero unless both X and Y are zero.
1779     if (XKnownNonNegative && YKnownNonNegative)
1780       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1781         return true;
1782 
1783     // If X and Y are both negative (as signed values) then their sum is not
1784     // zero unless both X and Y equal INT_MIN.
1785     if (BitWidth && XKnownNegative && YKnownNegative) {
1786       APInt KnownZero(BitWidth, 0);
1787       APInt KnownOne(BitWidth, 0);
1788       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1789       // The sign bit of X is set.  If some other bit is set then X is not equal
1790       // to INT_MIN.
1791       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1792       if ((KnownOne & Mask) != 0)
1793         return true;
1794       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1795       // to INT_MIN.
1796       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1797       if ((KnownOne & Mask) != 0)
1798         return true;
1799     }
1800 
1801     // The sum of a non-negative number and a power of two is not zero.
1802     if (XKnownNonNegative &&
1803         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1804       return true;
1805     if (YKnownNonNegative &&
1806         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1807       return true;
1808   }
1809   // X * Y.
1810   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1811     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1812     // If X and Y are non-zero then so is X * Y as long as the multiplication
1813     // does not overflow.
1814     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1815         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1816       return true;
1817   }
1818   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1819   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1820     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1821         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1822       return true;
1823   }
1824   // PHI
1825   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1826     // Try and detect a recurrence that monotonically increases from a
1827     // starting value, as these are common as induction variables.
1828     if (PN->getNumIncomingValues() == 2) {
1829       Value *Start = PN->getIncomingValue(0);
1830       Value *Induction = PN->getIncomingValue(1);
1831       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1832         std::swap(Start, Induction);
1833       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1834         if (!C->isZero() && !C->isNegative()) {
1835           ConstantInt *X;
1836           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1837                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1838               !X->isNegative())
1839             return true;
1840         }
1841       }
1842     }
1843     // Check if all incoming values are non-zero constant.
1844     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1845       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1846     });
1847     if (AllNonZeroConstants)
1848       return true;
1849   }
1850 
1851   if (!BitWidth) return false;
1852   APInt KnownZero(BitWidth, 0);
1853   APInt KnownOne(BitWidth, 0);
1854   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1855   return KnownOne != 0;
1856 }
1857 
1858 /// Return true if V2 == V1 + X, where X is known non-zero.
1859 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
1860   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1861   if (!BO || BO->getOpcode() != Instruction::Add)
1862     return false;
1863   Value *Op = nullptr;
1864   if (V2 == BO->getOperand(0))
1865     Op = BO->getOperand(1);
1866   else if (V2 == BO->getOperand(1))
1867     Op = BO->getOperand(0);
1868   else
1869     return false;
1870   return isKnownNonZero(Op, 0, Q);
1871 }
1872 
1873 /// Return true if it is known that V1 != V2.
1874 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
1875   if (V1->getType()->isVectorTy() || V1 == V2)
1876     return false;
1877   if (V1->getType() != V2->getType())
1878     // We can't look through casts yet.
1879     return false;
1880   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1881     return true;
1882 
1883   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1884     // Are any known bits in V1 contradictory to known bits in V2? If V1
1885     // has a known zero where V2 has a known one, they must not be equal.
1886     auto BitWidth = Ty->getBitWidth();
1887     APInt KnownZero1(BitWidth, 0);
1888     APInt KnownOne1(BitWidth, 0);
1889     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1890     APInt KnownZero2(BitWidth, 0);
1891     APInt KnownOne2(BitWidth, 0);
1892     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1893 
1894     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1895     if (OppositeBits.getBoolValue())
1896       return true;
1897   }
1898   return false;
1899 }
1900 
1901 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1902 /// simplify operations downstream. Mask is known to be zero for bits that V
1903 /// cannot have.
1904 ///
1905 /// This function is defined on values with integer type, values with pointer
1906 /// type, and vectors of integers.  In the case
1907 /// where V is a vector, the mask, known zero, and known one values are the
1908 /// same width as the vector element, and the bit is set only if it is true
1909 /// for all of the elements in the vector.
1910 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1911                        const Query &Q) {
1912   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1913   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1914   return (KnownZero & Mask) == Mask;
1915 }
1916 
1917 
1918 
1919 /// Return the number of times the sign bit of the register is replicated into
1920 /// the other bits. We know that at least 1 bit is always equal to the sign bit
1921 /// (itself), but other cases can give us information. For example, immediately
1922 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1923 /// other, so we return 3.
1924 ///
1925 /// 'Op' must have a scalar integer type.
1926 ///
1927 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1928   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
1929   unsigned Tmp, Tmp2;
1930   unsigned FirstAnswer = 1;
1931 
1932   // Note that ConstantInt is handled by the general computeKnownBits case
1933   // below.
1934 
1935   if (Depth == 6)
1936     return 1;  // Limit search depth.
1937 
1938   Operator *U = dyn_cast<Operator>(V);
1939   switch (Operator::getOpcode(V)) {
1940   default: break;
1941   case Instruction::SExt:
1942     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1943     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
1944 
1945   case Instruction::SDiv: {
1946     const APInt *Denominator;
1947     // sdiv X, C -> adds log(C) sign bits.
1948     if (match(U->getOperand(1), m_APInt(Denominator))) {
1949 
1950       // Ignore non-positive denominator.
1951       if (!Denominator->isStrictlyPositive())
1952         break;
1953 
1954       // Calculate the incoming numerator bits.
1955       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1956 
1957       // Add floor(log(C)) bits to the numerator bits.
1958       return std::min(TyBits, NumBits + Denominator->logBase2());
1959     }
1960     break;
1961   }
1962 
1963   case Instruction::SRem: {
1964     const APInt *Denominator;
1965     // srem X, C -> we know that the result is within [-C+1,C) when C is a
1966     // positive constant.  This let us put a lower bound on the number of sign
1967     // bits.
1968     if (match(U->getOperand(1), m_APInt(Denominator))) {
1969 
1970       // Ignore non-positive denominator.
1971       if (!Denominator->isStrictlyPositive())
1972         break;
1973 
1974       // Calculate the incoming numerator bits. SRem by a positive constant
1975       // can't lower the number of sign bits.
1976       unsigned NumrBits =
1977           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1978 
1979       // Calculate the leading sign bit constraints by examining the
1980       // denominator.  Given that the denominator is positive, there are two
1981       // cases:
1982       //
1983       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
1984       //     (1 << ceilLogBase2(C)).
1985       //
1986       //  2. the numerator is negative.  Then the result range is (-C,0] and
1987       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1988       //
1989       // Thus a lower bound on the number of sign bits is `TyBits -
1990       // ceilLogBase2(C)`.
1991 
1992       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
1993       return std::max(NumrBits, ResBits);
1994     }
1995     break;
1996   }
1997 
1998   case Instruction::AShr: {
1999     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2000     // ashr X, C   -> adds C sign bits.  Vectors too.
2001     const APInt *ShAmt;
2002     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2003       Tmp += ShAmt->getZExtValue();
2004       if (Tmp > TyBits) Tmp = TyBits;
2005     }
2006     return Tmp;
2007   }
2008   case Instruction::Shl: {
2009     const APInt *ShAmt;
2010     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2011       // shl destroys sign bits.
2012       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2013       Tmp2 = ShAmt->getZExtValue();
2014       if (Tmp2 >= TyBits ||      // Bad shift.
2015           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2016       return Tmp - Tmp2;
2017     }
2018     break;
2019   }
2020   case Instruction::And:
2021   case Instruction::Or:
2022   case Instruction::Xor:    // NOT is handled here.
2023     // Logical binary ops preserve the number of sign bits at the worst.
2024     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2025     if (Tmp != 1) {
2026       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2027       FirstAnswer = std::min(Tmp, Tmp2);
2028       // We computed what we know about the sign bits as our first
2029       // answer. Now proceed to the generic code that uses
2030       // computeKnownBits, and pick whichever answer is better.
2031     }
2032     break;
2033 
2034   case Instruction::Select:
2035     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2036     if (Tmp == 1) return 1;  // Early out.
2037     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2038     return std::min(Tmp, Tmp2);
2039 
2040   case Instruction::Add:
2041     // Add can have at most one carry bit.  Thus we know that the output
2042     // is, at worst, one more bit than the inputs.
2043     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2044     if (Tmp == 1) return 1;  // Early out.
2045 
2046     // Special case decrementing a value (ADD X, -1):
2047     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2048       if (CRHS->isAllOnesValue()) {
2049         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2050         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2051 
2052         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2053         // sign bits set.
2054         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2055           return TyBits;
2056 
2057         // If we are subtracting one from a positive number, there is no carry
2058         // out of the result.
2059         if (KnownZero.isNegative())
2060           return Tmp;
2061       }
2062 
2063     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2064     if (Tmp2 == 1) return 1;
2065     return std::min(Tmp, Tmp2)-1;
2066 
2067   case Instruction::Sub:
2068     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2069     if (Tmp2 == 1) return 1;
2070 
2071     // Handle NEG.
2072     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2073       if (CLHS->isNullValue()) {
2074         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2075         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2076         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2077         // sign bits set.
2078         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2079           return TyBits;
2080 
2081         // If the input is known to be positive (the sign bit is known clear),
2082         // the output of the NEG has the same number of sign bits as the input.
2083         if (KnownZero.isNegative())
2084           return Tmp2;
2085 
2086         // Otherwise, we treat this like a SUB.
2087       }
2088 
2089     // Sub can have at most one carry bit.  Thus we know that the output
2090     // is, at worst, one more bit than the inputs.
2091     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2092     if (Tmp == 1) return 1;  // Early out.
2093     return std::min(Tmp, Tmp2)-1;
2094 
2095   case Instruction::PHI: {
2096     PHINode *PN = cast<PHINode>(U);
2097     unsigned NumIncomingValues = PN->getNumIncomingValues();
2098     // Don't analyze large in-degree PHIs.
2099     if (NumIncomingValues > 4) break;
2100     // Unreachable blocks may have zero-operand PHI nodes.
2101     if (NumIncomingValues == 0) break;
2102 
2103     // Take the minimum of all incoming values.  This can't infinitely loop
2104     // because of our depth threshold.
2105     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2106     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2107       if (Tmp == 1) return Tmp;
2108       Tmp = std::min(
2109           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2110     }
2111     return Tmp;
2112   }
2113 
2114   case Instruction::Trunc:
2115     // FIXME: it's tricky to do anything useful for this, but it is an important
2116     // case for targets like X86.
2117     break;
2118   }
2119 
2120   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2121   // use this information.
2122   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2123   APInt Mask;
2124   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2125 
2126   if (KnownZero.isNegative()) {        // sign bit is 0
2127     Mask = KnownZero;
2128   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2129     Mask = KnownOne;
2130   } else {
2131     // Nothing known.
2132     return FirstAnswer;
2133   }
2134 
2135   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2136   // the number of identical bits in the top of the input value.
2137   Mask = ~Mask;
2138   Mask <<= Mask.getBitWidth()-TyBits;
2139   // Return # leading zeros.  We use 'min' here in case Val was zero before
2140   // shifting.  We don't want to return '64' as for an i32 "0".
2141   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2142 }
2143 
2144 /// This function computes the integer multiple of Base that equals V.
2145 /// If successful, it returns true and returns the multiple in
2146 /// Multiple. If unsuccessful, it returns false. It looks
2147 /// through SExt instructions only if LookThroughSExt is true.
2148 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2149                            bool LookThroughSExt, unsigned Depth) {
2150   const unsigned MaxDepth = 6;
2151 
2152   assert(V && "No Value?");
2153   assert(Depth <= MaxDepth && "Limit Search Depth");
2154   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2155 
2156   Type *T = V->getType();
2157 
2158   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2159 
2160   if (Base == 0)
2161     return false;
2162 
2163   if (Base == 1) {
2164     Multiple = V;
2165     return true;
2166   }
2167 
2168   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2169   Constant *BaseVal = ConstantInt::get(T, Base);
2170   if (CO && CO == BaseVal) {
2171     // Multiple is 1.
2172     Multiple = ConstantInt::get(T, 1);
2173     return true;
2174   }
2175 
2176   if (CI && CI->getZExtValue() % Base == 0) {
2177     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2178     return true;
2179   }
2180 
2181   if (Depth == MaxDepth) return false;  // Limit search depth.
2182 
2183   Operator *I = dyn_cast<Operator>(V);
2184   if (!I) return false;
2185 
2186   switch (I->getOpcode()) {
2187   default: break;
2188   case Instruction::SExt:
2189     if (!LookThroughSExt) return false;
2190     // otherwise fall through to ZExt
2191   case Instruction::ZExt:
2192     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2193                            LookThroughSExt, Depth+1);
2194   case Instruction::Shl:
2195   case Instruction::Mul: {
2196     Value *Op0 = I->getOperand(0);
2197     Value *Op1 = I->getOperand(1);
2198 
2199     if (I->getOpcode() == Instruction::Shl) {
2200       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2201       if (!Op1CI) return false;
2202       // Turn Op0 << Op1 into Op0 * 2^Op1
2203       APInt Op1Int = Op1CI->getValue();
2204       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2205       APInt API(Op1Int.getBitWidth(), 0);
2206       API.setBit(BitToSet);
2207       Op1 = ConstantInt::get(V->getContext(), API);
2208     }
2209 
2210     Value *Mul0 = nullptr;
2211     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2212       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2213         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2214           if (Op1C->getType()->getPrimitiveSizeInBits() <
2215               MulC->getType()->getPrimitiveSizeInBits())
2216             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2217           if (Op1C->getType()->getPrimitiveSizeInBits() >
2218               MulC->getType()->getPrimitiveSizeInBits())
2219             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2220 
2221           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2222           Multiple = ConstantExpr::getMul(MulC, Op1C);
2223           return true;
2224         }
2225 
2226       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2227         if (Mul0CI->getValue() == 1) {
2228           // V == Base * Op1, so return Op1
2229           Multiple = Op1;
2230           return true;
2231         }
2232     }
2233 
2234     Value *Mul1 = nullptr;
2235     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2236       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2237         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2238           if (Op0C->getType()->getPrimitiveSizeInBits() <
2239               MulC->getType()->getPrimitiveSizeInBits())
2240             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2241           if (Op0C->getType()->getPrimitiveSizeInBits() >
2242               MulC->getType()->getPrimitiveSizeInBits())
2243             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2244 
2245           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2246           Multiple = ConstantExpr::getMul(MulC, Op0C);
2247           return true;
2248         }
2249 
2250       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2251         if (Mul1CI->getValue() == 1) {
2252           // V == Base * Op0, so return Op0
2253           Multiple = Op0;
2254           return true;
2255         }
2256     }
2257   }
2258   }
2259 
2260   // We could not determine if V is a multiple of Base.
2261   return false;
2262 }
2263 
2264 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2265                                             const TargetLibraryInfo *TLI) {
2266   const Function *F = ICS.getCalledFunction();
2267   if (!F)
2268     return Intrinsic::not_intrinsic;
2269 
2270   if (F->isIntrinsic())
2271     return F->getIntrinsicID();
2272 
2273   if (!TLI)
2274     return Intrinsic::not_intrinsic;
2275 
2276   LibFunc::Func Func;
2277   // We're going to make assumptions on the semantics of the functions, check
2278   // that the target knows that it's available in this environment and it does
2279   // not have local linkage.
2280   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2281     return Intrinsic::not_intrinsic;
2282 
2283   if (!ICS.onlyReadsMemory())
2284     return Intrinsic::not_intrinsic;
2285 
2286   // Otherwise check if we have a call to a function that can be turned into a
2287   // vector intrinsic.
2288   switch (Func) {
2289   default:
2290     break;
2291   case LibFunc::sin:
2292   case LibFunc::sinf:
2293   case LibFunc::sinl:
2294     return Intrinsic::sin;
2295   case LibFunc::cos:
2296   case LibFunc::cosf:
2297   case LibFunc::cosl:
2298     return Intrinsic::cos;
2299   case LibFunc::exp:
2300   case LibFunc::expf:
2301   case LibFunc::expl:
2302     return Intrinsic::exp;
2303   case LibFunc::exp2:
2304   case LibFunc::exp2f:
2305   case LibFunc::exp2l:
2306     return Intrinsic::exp2;
2307   case LibFunc::log:
2308   case LibFunc::logf:
2309   case LibFunc::logl:
2310     return Intrinsic::log;
2311   case LibFunc::log10:
2312   case LibFunc::log10f:
2313   case LibFunc::log10l:
2314     return Intrinsic::log10;
2315   case LibFunc::log2:
2316   case LibFunc::log2f:
2317   case LibFunc::log2l:
2318     return Intrinsic::log2;
2319   case LibFunc::fabs:
2320   case LibFunc::fabsf:
2321   case LibFunc::fabsl:
2322     return Intrinsic::fabs;
2323   case LibFunc::fmin:
2324   case LibFunc::fminf:
2325   case LibFunc::fminl:
2326     return Intrinsic::minnum;
2327   case LibFunc::fmax:
2328   case LibFunc::fmaxf:
2329   case LibFunc::fmaxl:
2330     return Intrinsic::maxnum;
2331   case LibFunc::copysign:
2332   case LibFunc::copysignf:
2333   case LibFunc::copysignl:
2334     return Intrinsic::copysign;
2335   case LibFunc::floor:
2336   case LibFunc::floorf:
2337   case LibFunc::floorl:
2338     return Intrinsic::floor;
2339   case LibFunc::ceil:
2340   case LibFunc::ceilf:
2341   case LibFunc::ceill:
2342     return Intrinsic::ceil;
2343   case LibFunc::trunc:
2344   case LibFunc::truncf:
2345   case LibFunc::truncl:
2346     return Intrinsic::trunc;
2347   case LibFunc::rint:
2348   case LibFunc::rintf:
2349   case LibFunc::rintl:
2350     return Intrinsic::rint;
2351   case LibFunc::nearbyint:
2352   case LibFunc::nearbyintf:
2353   case LibFunc::nearbyintl:
2354     return Intrinsic::nearbyint;
2355   case LibFunc::round:
2356   case LibFunc::roundf:
2357   case LibFunc::roundl:
2358     return Intrinsic::round;
2359   case LibFunc::pow:
2360   case LibFunc::powf:
2361   case LibFunc::powl:
2362     return Intrinsic::pow;
2363   case LibFunc::sqrt:
2364   case LibFunc::sqrtf:
2365   case LibFunc::sqrtl:
2366     if (ICS->hasNoNaNs())
2367       return Intrinsic::sqrt;
2368     return Intrinsic::not_intrinsic;
2369   }
2370 
2371   return Intrinsic::not_intrinsic;
2372 }
2373 
2374 /// Return true if we can prove that the specified FP value is never equal to
2375 /// -0.0.
2376 ///
2377 /// NOTE: this function will need to be revisited when we support non-default
2378 /// rounding modes!
2379 ///
2380 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2381                                 unsigned Depth) {
2382   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2383     return !CFP->getValueAPF().isNegZero();
2384 
2385   // FIXME: Magic number! At the least, this should be given a name because it's
2386   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2387   // expose it as a parameter, so it can be used for testing / experimenting.
2388   if (Depth == 6)
2389     return false;  // Limit search depth.
2390 
2391   const Operator *I = dyn_cast<Operator>(V);
2392   if (!I) return false;
2393 
2394   // Check if the nsz fast-math flag is set
2395   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2396     if (FPO->hasNoSignedZeros())
2397       return true;
2398 
2399   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2400   if (I->getOpcode() == Instruction::FAdd)
2401     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2402       if (CFP->isNullValue())
2403         return true;
2404 
2405   // sitofp and uitofp turn into +0.0 for zero.
2406   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2407     return true;
2408 
2409   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2410     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2411     switch (IID) {
2412     default:
2413       break;
2414     // sqrt(-0.0) = -0.0, no other negative results are possible.
2415     case Intrinsic::sqrt:
2416       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2417     // fabs(x) != -0.0
2418     case Intrinsic::fabs:
2419       return true;
2420     }
2421   }
2422 
2423   return false;
2424 }
2425 
2426 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2427                                        const TargetLibraryInfo *TLI,
2428                                        unsigned Depth) {
2429   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2430     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2431 
2432   // FIXME: Magic number! At the least, this should be given a name because it's
2433   // used similarly in CannotBeNegativeZero(). A better fix may be to
2434   // expose it as a parameter, so it can be used for testing / experimenting.
2435   if (Depth == 6)
2436     return false;  // Limit search depth.
2437 
2438   const Operator *I = dyn_cast<Operator>(V);
2439   if (!I) return false;
2440 
2441   switch (I->getOpcode()) {
2442   default: break;
2443   // Unsigned integers are always nonnegative.
2444   case Instruction::UIToFP:
2445     return true;
2446   case Instruction::FMul:
2447     // x*x is always non-negative or a NaN.
2448     if (I->getOperand(0) == I->getOperand(1))
2449       return true;
2450     // Fall through
2451   case Instruction::FAdd:
2452   case Instruction::FDiv:
2453   case Instruction::FRem:
2454     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2455            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2456   case Instruction::Select:
2457     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2458            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2459   case Instruction::FPExt:
2460   case Instruction::FPTrunc:
2461     // Widening/narrowing never change sign.
2462     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2463   case Instruction::Call:
2464     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2465     switch (IID) {
2466     default:
2467       break;
2468     case Intrinsic::maxnum:
2469       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2470              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2471     case Intrinsic::minnum:
2472       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2473              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2474     case Intrinsic::exp:
2475     case Intrinsic::exp2:
2476     case Intrinsic::fabs:
2477     case Intrinsic::sqrt:
2478       return true;
2479     case Intrinsic::powi:
2480       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2481         // powi(x,n) is non-negative if n is even.
2482         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2483           return true;
2484       }
2485       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2486     case Intrinsic::fma:
2487     case Intrinsic::fmuladd:
2488       // x*x+y is non-negative if y is non-negative.
2489       return I->getOperand(0) == I->getOperand(1) &&
2490              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2491     }
2492     break;
2493   }
2494   return false;
2495 }
2496 
2497 /// If the specified value can be set by repeating the same byte in memory,
2498 /// return the i8 value that it is represented with.  This is
2499 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2500 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2501 /// byte store (e.g. i16 0x1234), return null.
2502 Value *llvm::isBytewiseValue(Value *V) {
2503   // All byte-wide stores are splatable, even of arbitrary variables.
2504   if (V->getType()->isIntegerTy(8)) return V;
2505 
2506   // Handle 'null' ConstantArrayZero etc.
2507   if (Constant *C = dyn_cast<Constant>(V))
2508     if (C->isNullValue())
2509       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2510 
2511   // Constant float and double values can be handled as integer values if the
2512   // corresponding integer value is "byteable".  An important case is 0.0.
2513   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2514     if (CFP->getType()->isFloatTy())
2515       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2516     if (CFP->getType()->isDoubleTy())
2517       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2518     // Don't handle long double formats, which have strange constraints.
2519   }
2520 
2521   // We can handle constant integers that are multiple of 8 bits.
2522   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2523     if (CI->getBitWidth() % 8 == 0) {
2524       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2525 
2526       if (!CI->getValue().isSplat(8))
2527         return nullptr;
2528       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2529     }
2530   }
2531 
2532   // A ConstantDataArray/Vector is splatable if all its members are equal and
2533   // also splatable.
2534   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2535     Value *Elt = CA->getElementAsConstant(0);
2536     Value *Val = isBytewiseValue(Elt);
2537     if (!Val)
2538       return nullptr;
2539 
2540     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2541       if (CA->getElementAsConstant(I) != Elt)
2542         return nullptr;
2543 
2544     return Val;
2545   }
2546 
2547   // Conceptually, we could handle things like:
2548   //   %a = zext i8 %X to i16
2549   //   %b = shl i16 %a, 8
2550   //   %c = or i16 %a, %b
2551   // but until there is an example that actually needs this, it doesn't seem
2552   // worth worrying about.
2553   return nullptr;
2554 }
2555 
2556 
2557 // This is the recursive version of BuildSubAggregate. It takes a few different
2558 // arguments. Idxs is the index within the nested struct From that we are
2559 // looking at now (which is of type IndexedType). IdxSkip is the number of
2560 // indices from Idxs that should be left out when inserting into the resulting
2561 // struct. To is the result struct built so far, new insertvalue instructions
2562 // build on that.
2563 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2564                                 SmallVectorImpl<unsigned> &Idxs,
2565                                 unsigned IdxSkip,
2566                                 Instruction *InsertBefore) {
2567   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2568   if (STy) {
2569     // Save the original To argument so we can modify it
2570     Value *OrigTo = To;
2571     // General case, the type indexed by Idxs is a struct
2572     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2573       // Process each struct element recursively
2574       Idxs.push_back(i);
2575       Value *PrevTo = To;
2576       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2577                              InsertBefore);
2578       Idxs.pop_back();
2579       if (!To) {
2580         // Couldn't find any inserted value for this index? Cleanup
2581         while (PrevTo != OrigTo) {
2582           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2583           PrevTo = Del->getAggregateOperand();
2584           Del->eraseFromParent();
2585         }
2586         // Stop processing elements
2587         break;
2588       }
2589     }
2590     // If we successfully found a value for each of our subaggregates
2591     if (To)
2592       return To;
2593   }
2594   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2595   // the struct's elements had a value that was inserted directly. In the latter
2596   // case, perhaps we can't determine each of the subelements individually, but
2597   // we might be able to find the complete struct somewhere.
2598 
2599   // Find the value that is at that particular spot
2600   Value *V = FindInsertedValue(From, Idxs);
2601 
2602   if (!V)
2603     return nullptr;
2604 
2605   // Insert the value in the new (sub) aggregrate
2606   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2607                                        "tmp", InsertBefore);
2608 }
2609 
2610 // This helper takes a nested struct and extracts a part of it (which is again a
2611 // struct) into a new value. For example, given the struct:
2612 // { a, { b, { c, d }, e } }
2613 // and the indices "1, 1" this returns
2614 // { c, d }.
2615 //
2616 // It does this by inserting an insertvalue for each element in the resulting
2617 // struct, as opposed to just inserting a single struct. This will only work if
2618 // each of the elements of the substruct are known (ie, inserted into From by an
2619 // insertvalue instruction somewhere).
2620 //
2621 // All inserted insertvalue instructions are inserted before InsertBefore
2622 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2623                                 Instruction *InsertBefore) {
2624   assert(InsertBefore && "Must have someplace to insert!");
2625   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2626                                                              idx_range);
2627   Value *To = UndefValue::get(IndexedType);
2628   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2629   unsigned IdxSkip = Idxs.size();
2630 
2631   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2632 }
2633 
2634 /// Given an aggregrate and an sequence of indices, see if
2635 /// the scalar value indexed is already around as a register, for example if it
2636 /// were inserted directly into the aggregrate.
2637 ///
2638 /// If InsertBefore is not null, this function will duplicate (modified)
2639 /// insertvalues when a part of a nested struct is extracted.
2640 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2641                                Instruction *InsertBefore) {
2642   // Nothing to index? Just return V then (this is useful at the end of our
2643   // recursion).
2644   if (idx_range.empty())
2645     return V;
2646   // We have indices, so V should have an indexable type.
2647   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2648          "Not looking at a struct or array?");
2649   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2650          "Invalid indices for type?");
2651 
2652   if (Constant *C = dyn_cast<Constant>(V)) {
2653     C = C->getAggregateElement(idx_range[0]);
2654     if (!C) return nullptr;
2655     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2656   }
2657 
2658   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2659     // Loop the indices for the insertvalue instruction in parallel with the
2660     // requested indices
2661     const unsigned *req_idx = idx_range.begin();
2662     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2663          i != e; ++i, ++req_idx) {
2664       if (req_idx == idx_range.end()) {
2665         // We can't handle this without inserting insertvalues
2666         if (!InsertBefore)
2667           return nullptr;
2668 
2669         // The requested index identifies a part of a nested aggregate. Handle
2670         // this specially. For example,
2671         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2672         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2673         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2674         // This can be changed into
2675         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2676         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2677         // which allows the unused 0,0 element from the nested struct to be
2678         // removed.
2679         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2680                                  InsertBefore);
2681       }
2682 
2683       // This insert value inserts something else than what we are looking for.
2684       // See if the (aggregate) value inserted into has the value we are
2685       // looking for, then.
2686       if (*req_idx != *i)
2687         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2688                                  InsertBefore);
2689     }
2690     // If we end up here, the indices of the insertvalue match with those
2691     // requested (though possibly only partially). Now we recursively look at
2692     // the inserted value, passing any remaining indices.
2693     return FindInsertedValue(I->getInsertedValueOperand(),
2694                              makeArrayRef(req_idx, idx_range.end()),
2695                              InsertBefore);
2696   }
2697 
2698   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2699     // If we're extracting a value from an aggregate that was extracted from
2700     // something else, we can extract from that something else directly instead.
2701     // However, we will need to chain I's indices with the requested indices.
2702 
2703     // Calculate the number of indices required
2704     unsigned size = I->getNumIndices() + idx_range.size();
2705     // Allocate some space to put the new indices in
2706     SmallVector<unsigned, 5> Idxs;
2707     Idxs.reserve(size);
2708     // Add indices from the extract value instruction
2709     Idxs.append(I->idx_begin(), I->idx_end());
2710 
2711     // Add requested indices
2712     Idxs.append(idx_range.begin(), idx_range.end());
2713 
2714     assert(Idxs.size() == size
2715            && "Number of indices added not correct?");
2716 
2717     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2718   }
2719   // Otherwise, we don't know (such as, extracting from a function return value
2720   // or load instruction)
2721   return nullptr;
2722 }
2723 
2724 /// Analyze the specified pointer to see if it can be expressed as a base
2725 /// pointer plus a constant offset. Return the base and offset to the caller.
2726 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2727                                               const DataLayout &DL) {
2728   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2729   APInt ByteOffset(BitWidth, 0);
2730 
2731   // We walk up the defs but use a visited set to handle unreachable code. In
2732   // that case, we stop after accumulating the cycle once (not that it
2733   // matters).
2734   SmallPtrSet<Value *, 16> Visited;
2735   while (Visited.insert(Ptr).second) {
2736     if (Ptr->getType()->isVectorTy())
2737       break;
2738 
2739     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2740       APInt GEPOffset(BitWidth, 0);
2741       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2742         break;
2743 
2744       ByteOffset += GEPOffset;
2745 
2746       Ptr = GEP->getPointerOperand();
2747     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2748                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2749       Ptr = cast<Operator>(Ptr)->getOperand(0);
2750     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2751       if (GA->isInterposable())
2752         break;
2753       Ptr = GA->getAliasee();
2754     } else {
2755       break;
2756     }
2757   }
2758   Offset = ByteOffset.getSExtValue();
2759   return Ptr;
2760 }
2761 
2762 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2763   // Make sure the GEP has exactly three arguments.
2764   if (GEP->getNumOperands() != 3)
2765     return false;
2766 
2767   // Make sure the index-ee is a pointer to array of i8.
2768   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2769   if (!AT || !AT->getElementType()->isIntegerTy(8))
2770     return false;
2771 
2772   // Check to make sure that the first operand of the GEP is an integer and
2773   // has value 0 so that we are sure we're indexing into the initializer.
2774   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2775   if (!FirstIdx || !FirstIdx->isZero())
2776     return false;
2777 
2778   return true;
2779 }
2780 
2781 /// This function computes the length of a null-terminated C string pointed to
2782 /// by V. If successful, it returns true and returns the string in Str.
2783 /// If unsuccessful, it returns false.
2784 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2785                                  uint64_t Offset, bool TrimAtNul) {
2786   assert(V);
2787 
2788   // Look through bitcast instructions and geps.
2789   V = V->stripPointerCasts();
2790 
2791   // If the value is a GEP instruction or constant expression, treat it as an
2792   // offset.
2793   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2794     // The GEP operator should be based on a pointer to string constant, and is
2795     // indexing into the string constant.
2796     if (!isGEPBasedOnPointerToString(GEP))
2797       return false;
2798 
2799     // If the second index isn't a ConstantInt, then this is a variable index
2800     // into the array.  If this occurs, we can't say anything meaningful about
2801     // the string.
2802     uint64_t StartIdx = 0;
2803     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2804       StartIdx = CI->getZExtValue();
2805     else
2806       return false;
2807     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2808                                  TrimAtNul);
2809   }
2810 
2811   // The GEP instruction, constant or instruction, must reference a global
2812   // variable that is a constant and is initialized. The referenced constant
2813   // initializer is the array that we'll use for optimization.
2814   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2815   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2816     return false;
2817 
2818   // Handle the all-zeros case
2819   if (GV->getInitializer()->isNullValue()) {
2820     // This is a degenerate case. The initializer is constant zero so the
2821     // length of the string must be zero.
2822     Str = "";
2823     return true;
2824   }
2825 
2826   // Must be a Constant Array
2827   const ConstantDataArray *Array =
2828     dyn_cast<ConstantDataArray>(GV->getInitializer());
2829   if (!Array || !Array->isString())
2830     return false;
2831 
2832   // Get the number of elements in the array
2833   uint64_t NumElts = Array->getType()->getArrayNumElements();
2834 
2835   // Start out with the entire array in the StringRef.
2836   Str = Array->getAsString();
2837 
2838   if (Offset > NumElts)
2839     return false;
2840 
2841   // Skip over 'offset' bytes.
2842   Str = Str.substr(Offset);
2843 
2844   if (TrimAtNul) {
2845     // Trim off the \0 and anything after it.  If the array is not nul
2846     // terminated, we just return the whole end of string.  The client may know
2847     // some other way that the string is length-bound.
2848     Str = Str.substr(0, Str.find('\0'));
2849   }
2850   return true;
2851 }
2852 
2853 // These next two are very similar to the above, but also look through PHI
2854 // nodes.
2855 // TODO: See if we can integrate these two together.
2856 
2857 /// If we can compute the length of the string pointed to by
2858 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2859 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2860   // Look through noop bitcast instructions.
2861   V = V->stripPointerCasts();
2862 
2863   // If this is a PHI node, there are two cases: either we have already seen it
2864   // or we haven't.
2865   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2866     if (!PHIs.insert(PN).second)
2867       return ~0ULL;  // already in the set.
2868 
2869     // If it was new, see if all the input strings are the same length.
2870     uint64_t LenSoFar = ~0ULL;
2871     for (Value *IncValue : PN->incoming_values()) {
2872       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2873       if (Len == 0) return 0; // Unknown length -> unknown.
2874 
2875       if (Len == ~0ULL) continue;
2876 
2877       if (Len != LenSoFar && LenSoFar != ~0ULL)
2878         return 0;    // Disagree -> unknown.
2879       LenSoFar = Len;
2880     }
2881 
2882     // Success, all agree.
2883     return LenSoFar;
2884   }
2885 
2886   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2887   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2888     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2889     if (Len1 == 0) return 0;
2890     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2891     if (Len2 == 0) return 0;
2892     if (Len1 == ~0ULL) return Len2;
2893     if (Len2 == ~0ULL) return Len1;
2894     if (Len1 != Len2) return 0;
2895     return Len1;
2896   }
2897 
2898   // Otherwise, see if we can read the string.
2899   StringRef StrData;
2900   if (!getConstantStringInfo(V, StrData))
2901     return 0;
2902 
2903   return StrData.size()+1;
2904 }
2905 
2906 /// If we can compute the length of the string pointed to by
2907 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2908 uint64_t llvm::GetStringLength(Value *V) {
2909   if (!V->getType()->isPointerTy()) return 0;
2910 
2911   SmallPtrSet<PHINode*, 32> PHIs;
2912   uint64_t Len = GetStringLengthH(V, PHIs);
2913   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2914   // an empty string as a length.
2915   return Len == ~0ULL ? 1 : Len;
2916 }
2917 
2918 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
2919 /// previous iteration of the loop was referring to the same object as \p PN.
2920 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2921   // Find the loop-defined value.
2922   Loop *L = LI->getLoopFor(PN->getParent());
2923   if (PN->getNumIncomingValues() != 2)
2924     return true;
2925 
2926   // Find the value from previous iteration.
2927   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2928   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2929     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2930   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2931     return true;
2932 
2933   // If a new pointer is loaded in the loop, the pointer references a different
2934   // object in every iteration.  E.g.:
2935   //    for (i)
2936   //       int *p = a[i];
2937   //       ...
2938   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2939     if (!L->isLoopInvariant(Load->getPointerOperand()))
2940       return false;
2941   return true;
2942 }
2943 
2944 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2945                                  unsigned MaxLookup) {
2946   if (!V->getType()->isPointerTy())
2947     return V;
2948   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2949     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2950       V = GEP->getPointerOperand();
2951     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2952                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
2953       V = cast<Operator>(V)->getOperand(0);
2954     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2955       if (GA->isInterposable())
2956         return V;
2957       V = GA->getAliasee();
2958     } else {
2959       // See if InstructionSimplify knows any relevant tricks.
2960       if (Instruction *I = dyn_cast<Instruction>(V))
2961         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
2962         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
2963           V = Simplified;
2964           continue;
2965         }
2966 
2967       return V;
2968     }
2969     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2970   }
2971   return V;
2972 }
2973 
2974 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
2975                                 const DataLayout &DL, LoopInfo *LI,
2976                                 unsigned MaxLookup) {
2977   SmallPtrSet<Value *, 4> Visited;
2978   SmallVector<Value *, 4> Worklist;
2979   Worklist.push_back(V);
2980   do {
2981     Value *P = Worklist.pop_back_val();
2982     P = GetUnderlyingObject(P, DL, MaxLookup);
2983 
2984     if (!Visited.insert(P).second)
2985       continue;
2986 
2987     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2988       Worklist.push_back(SI->getTrueValue());
2989       Worklist.push_back(SI->getFalseValue());
2990       continue;
2991     }
2992 
2993     if (PHINode *PN = dyn_cast<PHINode>(P)) {
2994       // If this PHI changes the underlying object in every iteration of the
2995       // loop, don't look through it.  Consider:
2996       //   int **A;
2997       //   for (i) {
2998       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
2999       //     Curr = A[i];
3000       //     *Prev, *Curr;
3001       //
3002       // Prev is tracking Curr one iteration behind so they refer to different
3003       // underlying objects.
3004       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3005           isSameUnderlyingObjectInLoop(PN, LI))
3006         for (Value *IncValue : PN->incoming_values())
3007           Worklist.push_back(IncValue);
3008       continue;
3009     }
3010 
3011     Objects.push_back(P);
3012   } while (!Worklist.empty());
3013 }
3014 
3015 /// Return true if the only users of this pointer are lifetime markers.
3016 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3017   for (const User *U : V->users()) {
3018     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3019     if (!II) return false;
3020 
3021     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3022         II->getIntrinsicID() != Intrinsic::lifetime_end)
3023       return false;
3024   }
3025   return true;
3026 }
3027 
3028 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3029                                         const Instruction *CtxI,
3030                                         const DominatorTree *DT,
3031                                         const TargetLibraryInfo *TLI) {
3032   const Operator *Inst = dyn_cast<Operator>(V);
3033   if (!Inst)
3034     return false;
3035 
3036   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3037     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3038       if (C->canTrap())
3039         return false;
3040 
3041   switch (Inst->getOpcode()) {
3042   default:
3043     return true;
3044   case Instruction::UDiv:
3045   case Instruction::URem: {
3046     // x / y is undefined if y == 0.
3047     const APInt *V;
3048     if (match(Inst->getOperand(1), m_APInt(V)))
3049       return *V != 0;
3050     return false;
3051   }
3052   case Instruction::SDiv:
3053   case Instruction::SRem: {
3054     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3055     const APInt *Numerator, *Denominator;
3056     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3057       return false;
3058     // We cannot hoist this division if the denominator is 0.
3059     if (*Denominator == 0)
3060       return false;
3061     // It's safe to hoist if the denominator is not 0 or -1.
3062     if (*Denominator != -1)
3063       return true;
3064     // At this point we know that the denominator is -1.  It is safe to hoist as
3065     // long we know that the numerator is not INT_MIN.
3066     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3067       return !Numerator->isMinSignedValue();
3068     // The numerator *might* be MinSignedValue.
3069     return false;
3070   }
3071   case Instruction::Load: {
3072     const LoadInst *LI = cast<LoadInst>(Inst);
3073     if (!LI->isUnordered() ||
3074         // Speculative load may create a race that did not exist in the source.
3075         LI->getParent()->getParent()->hasFnAttribute(
3076             Attribute::SanitizeThread) ||
3077         // Speculative load may load data from dirty regions.
3078         LI->getParent()->getParent()->hasFnAttribute(
3079             Attribute::SanitizeAddress))
3080       return false;
3081     const DataLayout &DL = LI->getModule()->getDataLayout();
3082     return isDereferenceableAndAlignedPointer(
3083         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3084   }
3085   case Instruction::Call: {
3086     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3087       switch (II->getIntrinsicID()) {
3088       // These synthetic intrinsics have no side-effects and just mark
3089       // information about their operands.
3090       // FIXME: There are other no-op synthetic instructions that potentially
3091       // should be considered at least *safe* to speculate...
3092       case Intrinsic::dbg_declare:
3093       case Intrinsic::dbg_value:
3094         return true;
3095 
3096       case Intrinsic::bswap:
3097       case Intrinsic::ctlz:
3098       case Intrinsic::ctpop:
3099       case Intrinsic::cttz:
3100       case Intrinsic::objectsize:
3101       case Intrinsic::sadd_with_overflow:
3102       case Intrinsic::smul_with_overflow:
3103       case Intrinsic::ssub_with_overflow:
3104       case Intrinsic::uadd_with_overflow:
3105       case Intrinsic::umul_with_overflow:
3106       case Intrinsic::usub_with_overflow:
3107         return true;
3108       // These intrinsics are defined to have the same behavior as libm
3109       // functions except for setting errno.
3110       case Intrinsic::sqrt:
3111       case Intrinsic::fma:
3112       case Intrinsic::fmuladd:
3113         return true;
3114       // These intrinsics are defined to have the same behavior as libm
3115       // functions, and the corresponding libm functions never set errno.
3116       case Intrinsic::trunc:
3117       case Intrinsic::copysign:
3118       case Intrinsic::fabs:
3119       case Intrinsic::minnum:
3120       case Intrinsic::maxnum:
3121         return true;
3122       // These intrinsics are defined to have the same behavior as libm
3123       // functions, which never overflow when operating on the IEEE754 types
3124       // that we support, and never set errno otherwise.
3125       case Intrinsic::ceil:
3126       case Intrinsic::floor:
3127       case Intrinsic::nearbyint:
3128       case Intrinsic::rint:
3129       case Intrinsic::round:
3130         return true;
3131       // TODO: are convert_{from,to}_fp16 safe?
3132       // TODO: can we list target-specific intrinsics here?
3133       default: break;
3134       }
3135     }
3136     return false; // The called function could have undefined behavior or
3137                   // side-effects, even if marked readnone nounwind.
3138   }
3139   case Instruction::VAArg:
3140   case Instruction::Alloca:
3141   case Instruction::Invoke:
3142   case Instruction::PHI:
3143   case Instruction::Store:
3144   case Instruction::Ret:
3145   case Instruction::Br:
3146   case Instruction::IndirectBr:
3147   case Instruction::Switch:
3148   case Instruction::Unreachable:
3149   case Instruction::Fence:
3150   case Instruction::AtomicRMW:
3151   case Instruction::AtomicCmpXchg:
3152   case Instruction::LandingPad:
3153   case Instruction::Resume:
3154   case Instruction::CatchSwitch:
3155   case Instruction::CatchPad:
3156   case Instruction::CatchRet:
3157   case Instruction::CleanupPad:
3158   case Instruction::CleanupRet:
3159     return false; // Misc instructions which have effects
3160   }
3161 }
3162 
3163 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3164   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3165 }
3166 
3167 /// Return true if we know that the specified value is never null.
3168 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3169   assert(V->getType()->isPointerTy() && "V must be pointer type");
3170 
3171   // Alloca never returns null, malloc might.
3172   if (isa<AllocaInst>(V)) return true;
3173 
3174   // A byval, inalloca, or nonnull argument is never null.
3175   if (const Argument *A = dyn_cast<Argument>(V))
3176     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3177 
3178   // A global variable in address space 0 is non null unless extern weak.
3179   // Other address spaces may have null as a valid address for a global,
3180   // so we can't assume anything.
3181   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3182     return !GV->hasExternalWeakLinkage() &&
3183            GV->getType()->getAddressSpace() == 0;
3184 
3185   // A Load tagged w/nonnull metadata is never null.
3186   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3187     return LI->getMetadata(LLVMContext::MD_nonnull);
3188 
3189   if (auto CS = ImmutableCallSite(V))
3190     if (CS.isReturnNonNull())
3191       return true;
3192 
3193   return false;
3194 }
3195 
3196 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3197                                                   const Instruction *CtxI,
3198                                                   const DominatorTree *DT) {
3199   assert(V->getType()->isPointerTy() && "V must be pointer type");
3200 
3201   unsigned NumUsesExplored = 0;
3202   for (auto U : V->users()) {
3203     // Avoid massive lists
3204     if (NumUsesExplored >= DomConditionsMaxUses)
3205       break;
3206     NumUsesExplored++;
3207     // Consider only compare instructions uniquely controlling a branch
3208     const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3209     if (!Cmp)
3210       continue;
3211 
3212     for (auto *CmpU : Cmp->users()) {
3213       const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3214       if (!BI)
3215         continue;
3216 
3217       assert(BI->isConditional() && "uses a comparison!");
3218 
3219       BasicBlock *NonNullSuccessor = nullptr;
3220       CmpInst::Predicate Pred;
3221 
3222       if (match(const_cast<ICmpInst*>(Cmp),
3223                 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3224         if (Pred == ICmpInst::ICMP_EQ)
3225           NonNullSuccessor = BI->getSuccessor(1);
3226         else if (Pred == ICmpInst::ICMP_NE)
3227           NonNullSuccessor = BI->getSuccessor(0);
3228       }
3229 
3230       if (NonNullSuccessor) {
3231         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3232         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3233           return true;
3234       }
3235     }
3236   }
3237 
3238   return false;
3239 }
3240 
3241 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3242                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3243   if (isKnownNonNull(V, TLI))
3244     return true;
3245 
3246   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3247 }
3248 
3249 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3250                                                    const DataLayout &DL,
3251                                                    AssumptionCache *AC,
3252                                                    const Instruction *CxtI,
3253                                                    const DominatorTree *DT) {
3254   // Multiplying n * m significant bits yields a result of n + m significant
3255   // bits. If the total number of significant bits does not exceed the
3256   // result bit width (minus 1), there is no overflow.
3257   // This means if we have enough leading zero bits in the operands
3258   // we can guarantee that the result does not overflow.
3259   // Ref: "Hacker's Delight" by Henry Warren
3260   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3261   APInt LHSKnownZero(BitWidth, 0);
3262   APInt LHSKnownOne(BitWidth, 0);
3263   APInt RHSKnownZero(BitWidth, 0);
3264   APInt RHSKnownOne(BitWidth, 0);
3265   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3266                    DT);
3267   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3268                    DT);
3269   // Note that underestimating the number of zero bits gives a more
3270   // conservative answer.
3271   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3272                       RHSKnownZero.countLeadingOnes();
3273   // First handle the easy case: if we have enough zero bits there's
3274   // definitely no overflow.
3275   if (ZeroBits >= BitWidth)
3276     return OverflowResult::NeverOverflows;
3277 
3278   // Get the largest possible values for each operand.
3279   APInt LHSMax = ~LHSKnownZero;
3280   APInt RHSMax = ~RHSKnownZero;
3281 
3282   // We know the multiply operation doesn't overflow if the maximum values for
3283   // each operand will not overflow after we multiply them together.
3284   bool MaxOverflow;
3285   LHSMax.umul_ov(RHSMax, MaxOverflow);
3286   if (!MaxOverflow)
3287     return OverflowResult::NeverOverflows;
3288 
3289   // We know it always overflows if multiplying the smallest possible values for
3290   // the operands also results in overflow.
3291   bool MinOverflow;
3292   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3293   if (MinOverflow)
3294     return OverflowResult::AlwaysOverflows;
3295 
3296   return OverflowResult::MayOverflow;
3297 }
3298 
3299 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3300                                                    const DataLayout &DL,
3301                                                    AssumptionCache *AC,
3302                                                    const Instruction *CxtI,
3303                                                    const DominatorTree *DT) {
3304   bool LHSKnownNonNegative, LHSKnownNegative;
3305   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3306                  AC, CxtI, DT);
3307   if (LHSKnownNonNegative || LHSKnownNegative) {
3308     bool RHSKnownNonNegative, RHSKnownNegative;
3309     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3310                    AC, CxtI, DT);
3311 
3312     if (LHSKnownNegative && RHSKnownNegative) {
3313       // The sign bit is set in both cases: this MUST overflow.
3314       // Create a simple add instruction, and insert it into the struct.
3315       return OverflowResult::AlwaysOverflows;
3316     }
3317 
3318     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3319       // The sign bit is clear in both cases: this CANNOT overflow.
3320       // Create a simple add instruction, and insert it into the struct.
3321       return OverflowResult::NeverOverflows;
3322     }
3323   }
3324 
3325   return OverflowResult::MayOverflow;
3326 }
3327 
3328 static OverflowResult computeOverflowForSignedAdd(
3329     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3330     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3331   if (Add && Add->hasNoSignedWrap()) {
3332     return OverflowResult::NeverOverflows;
3333   }
3334 
3335   bool LHSKnownNonNegative, LHSKnownNegative;
3336   bool RHSKnownNonNegative, RHSKnownNegative;
3337   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3338                  AC, CxtI, DT);
3339   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3340                  AC, CxtI, DT);
3341 
3342   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3343       (LHSKnownNegative && RHSKnownNonNegative)) {
3344     // The sign bits are opposite: this CANNOT overflow.
3345     return OverflowResult::NeverOverflows;
3346   }
3347 
3348   // The remaining code needs Add to be available. Early returns if not so.
3349   if (!Add)
3350     return OverflowResult::MayOverflow;
3351 
3352   // If the sign of Add is the same as at least one of the operands, this add
3353   // CANNOT overflow. This is particularly useful when the sum is
3354   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3355   // operands.
3356   bool LHSOrRHSKnownNonNegative =
3357       (LHSKnownNonNegative || RHSKnownNonNegative);
3358   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3359   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3360     bool AddKnownNonNegative, AddKnownNegative;
3361     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3362                    /*Depth=*/0, AC, CxtI, DT);
3363     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3364         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3365       return OverflowResult::NeverOverflows;
3366     }
3367   }
3368 
3369   return OverflowResult::MayOverflow;
3370 }
3371 
3372 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3373                                                  const DataLayout &DL,
3374                                                  AssumptionCache *AC,
3375                                                  const Instruction *CxtI,
3376                                                  const DominatorTree *DT) {
3377   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3378                                        Add, DL, AC, CxtI, DT);
3379 }
3380 
3381 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3382                                                  const DataLayout &DL,
3383                                                  AssumptionCache *AC,
3384                                                  const Instruction *CxtI,
3385                                                  const DominatorTree *DT) {
3386   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3387 }
3388 
3389 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3390   // FIXME: This conservative implementation can be relaxed. E.g. most
3391   // atomic operations are guaranteed to terminate on most platforms
3392   // and most functions terminate.
3393 
3394   return !I->isAtomic() &&       // atomics may never succeed on some platforms
3395          !isa<CallInst>(I) &&    // could throw and might not terminate
3396          !isa<InvokeInst>(I) &&  // might not terminate and could throw to
3397                                  //   non-successor (see bug 24185 for details).
3398          !isa<ResumeInst>(I) &&  // has no successors
3399          !isa<ReturnInst>(I);    // has no successors
3400 }
3401 
3402 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3403                                                   const Loop *L) {
3404   // The loop header is guaranteed to be executed for every iteration.
3405   //
3406   // FIXME: Relax this constraint to cover all basic blocks that are
3407   // guaranteed to be executed at every iteration.
3408   if (I->getParent() != L->getHeader()) return false;
3409 
3410   for (const Instruction &LI : *L->getHeader()) {
3411     if (&LI == I) return true;
3412     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3413   }
3414   llvm_unreachable("Instruction not contained in its own parent basic block.");
3415 }
3416 
3417 bool llvm::propagatesFullPoison(const Instruction *I) {
3418   switch (I->getOpcode()) {
3419     case Instruction::Add:
3420     case Instruction::Sub:
3421     case Instruction::Xor:
3422     case Instruction::Trunc:
3423     case Instruction::BitCast:
3424     case Instruction::AddrSpaceCast:
3425       // These operations all propagate poison unconditionally. Note that poison
3426       // is not any particular value, so xor or subtraction of poison with
3427       // itself still yields poison, not zero.
3428       return true;
3429 
3430     case Instruction::AShr:
3431     case Instruction::SExt:
3432       // For these operations, one bit of the input is replicated across
3433       // multiple output bits. A replicated poison bit is still poison.
3434       return true;
3435 
3436     case Instruction::Shl: {
3437       // Left shift *by* a poison value is poison. The number of
3438       // positions to shift is unsigned, so no negative values are
3439       // possible there. Left shift by zero places preserves poison. So
3440       // it only remains to consider left shift of poison by a positive
3441       // number of places.
3442       //
3443       // A left shift by a positive number of places leaves the lowest order bit
3444       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3445       // make the poison operand violate that flag, yielding a fresh full-poison
3446       // value.
3447       auto *OBO = cast<OverflowingBinaryOperator>(I);
3448       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3449     }
3450 
3451     case Instruction::Mul: {
3452       // A multiplication by zero yields a non-poison zero result, so we need to
3453       // rule out zero as an operand. Conservatively, multiplication by a
3454       // non-zero constant is not multiplication by zero.
3455       //
3456       // Multiplication by a non-zero constant can leave some bits
3457       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3458       // order bit unpoisoned. So we need to consider that.
3459       //
3460       // Multiplication by 1 preserves poison. If the multiplication has a
3461       // no-wrap flag, then we can make the poison operand violate that flag
3462       // when multiplied by any integer other than 0 and 1.
3463       auto *OBO = cast<OverflowingBinaryOperator>(I);
3464       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3465         for (Value *V : OBO->operands()) {
3466           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3467             // A ConstantInt cannot yield poison, so we can assume that it is
3468             // the other operand that is poison.
3469             return !CI->isZero();
3470           }
3471         }
3472       }
3473       return false;
3474     }
3475 
3476     case Instruction::GetElementPtr:
3477       // A GEP implicitly represents a sequence of additions, subtractions,
3478       // truncations, sign extensions and multiplications. The multiplications
3479       // are by the non-zero sizes of some set of types, so we do not have to be
3480       // concerned with multiplication by zero. If the GEP is in-bounds, then
3481       // these operations are implicitly no-signed-wrap so poison is propagated
3482       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3483       return cast<GEPOperator>(I)->isInBounds();
3484 
3485     default:
3486       return false;
3487   }
3488 }
3489 
3490 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3491   switch (I->getOpcode()) {
3492     case Instruction::Store:
3493       return cast<StoreInst>(I)->getPointerOperand();
3494 
3495     case Instruction::Load:
3496       return cast<LoadInst>(I)->getPointerOperand();
3497 
3498     case Instruction::AtomicCmpXchg:
3499       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3500 
3501     case Instruction::AtomicRMW:
3502       return cast<AtomicRMWInst>(I)->getPointerOperand();
3503 
3504     case Instruction::UDiv:
3505     case Instruction::SDiv:
3506     case Instruction::URem:
3507     case Instruction::SRem:
3508       return I->getOperand(1);
3509 
3510     default:
3511       return nullptr;
3512   }
3513 }
3514 
3515 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3516   // We currently only look for uses of poison values within the same basic
3517   // block, as that makes it easier to guarantee that the uses will be
3518   // executed given that PoisonI is executed.
3519   //
3520   // FIXME: Expand this to consider uses beyond the same basic block. To do
3521   // this, look out for the distinction between post-dominance and strong
3522   // post-dominance.
3523   const BasicBlock *BB = PoisonI->getParent();
3524 
3525   // Set of instructions that we have proved will yield poison if PoisonI
3526   // does.
3527   SmallSet<const Value *, 16> YieldsPoison;
3528   SmallSet<const BasicBlock *, 4> Visited;
3529   YieldsPoison.insert(PoisonI);
3530   Visited.insert(PoisonI->getParent());
3531 
3532   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3533 
3534   unsigned Iter = 0;
3535   while (Iter++ < MaxDepth) {
3536     for (auto &I : make_range(Begin, End)) {
3537       if (&I != PoisonI) {
3538         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3539         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3540           return true;
3541         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3542           return false;
3543       }
3544 
3545       // Mark poison that propagates from I through uses of I.
3546       if (YieldsPoison.count(&I)) {
3547         for (const User *User : I.users()) {
3548           const Instruction *UserI = cast<Instruction>(User);
3549           if (propagatesFullPoison(UserI))
3550             YieldsPoison.insert(User);
3551         }
3552       }
3553     }
3554 
3555     if (auto *NextBB = BB->getSingleSuccessor()) {
3556       if (Visited.insert(NextBB).second) {
3557         BB = NextBB;
3558         Begin = BB->getFirstNonPHI()->getIterator();
3559         End = BB->end();
3560         continue;
3561       }
3562     }
3563 
3564     break;
3565   };
3566   return false;
3567 }
3568 
3569 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3570   if (FMF.noNaNs())
3571     return true;
3572 
3573   if (auto *C = dyn_cast<ConstantFP>(V))
3574     return !C->isNaN();
3575   return false;
3576 }
3577 
3578 static bool isKnownNonZero(Value *V) {
3579   if (auto *C = dyn_cast<ConstantFP>(V))
3580     return !C->isZero();
3581   return false;
3582 }
3583 
3584 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3585                                               FastMathFlags FMF,
3586                                               Value *CmpLHS, Value *CmpRHS,
3587                                               Value *TrueVal, Value *FalseVal,
3588                                               Value *&LHS, Value *&RHS) {
3589   LHS = CmpLHS;
3590   RHS = CmpRHS;
3591 
3592   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3593   // return inconsistent results between implementations.
3594   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3595   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3596   // Therefore we behave conservatively and only proceed if at least one of the
3597   // operands is known to not be zero, or if we don't care about signed zeroes.
3598   switch (Pred) {
3599   default: break;
3600   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3601   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3602     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3603         !isKnownNonZero(CmpRHS))
3604       return {SPF_UNKNOWN, SPNB_NA, false};
3605   }
3606 
3607   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3608   bool Ordered = false;
3609 
3610   // When given one NaN and one non-NaN input:
3611   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3612   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3613   //     ordered comparison fails), which could be NaN or non-NaN.
3614   // so here we discover exactly what NaN behavior is required/accepted.
3615   if (CmpInst::isFPPredicate(Pred)) {
3616     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3617     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3618 
3619     if (LHSSafe && RHSSafe) {
3620       // Both operands are known non-NaN.
3621       NaNBehavior = SPNB_RETURNS_ANY;
3622     } else if (CmpInst::isOrdered(Pred)) {
3623       // An ordered comparison will return false when given a NaN, so it
3624       // returns the RHS.
3625       Ordered = true;
3626       if (LHSSafe)
3627         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3628         NaNBehavior = SPNB_RETURNS_NAN;
3629       else if (RHSSafe)
3630         NaNBehavior = SPNB_RETURNS_OTHER;
3631       else
3632         // Completely unsafe.
3633         return {SPF_UNKNOWN, SPNB_NA, false};
3634     } else {
3635       Ordered = false;
3636       // An unordered comparison will return true when given a NaN, so it
3637       // returns the LHS.
3638       if (LHSSafe)
3639         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3640         NaNBehavior = SPNB_RETURNS_OTHER;
3641       else if (RHSSafe)
3642         NaNBehavior = SPNB_RETURNS_NAN;
3643       else
3644         // Completely unsafe.
3645         return {SPF_UNKNOWN, SPNB_NA, false};
3646     }
3647   }
3648 
3649   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3650     std::swap(CmpLHS, CmpRHS);
3651     Pred = CmpInst::getSwappedPredicate(Pred);
3652     if (NaNBehavior == SPNB_RETURNS_NAN)
3653       NaNBehavior = SPNB_RETURNS_OTHER;
3654     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3655       NaNBehavior = SPNB_RETURNS_NAN;
3656     Ordered = !Ordered;
3657   }
3658 
3659   // ([if]cmp X, Y) ? X : Y
3660   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3661     switch (Pred) {
3662     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3663     case ICmpInst::ICMP_UGT:
3664     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3665     case ICmpInst::ICMP_SGT:
3666     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3667     case ICmpInst::ICMP_ULT:
3668     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3669     case ICmpInst::ICMP_SLT:
3670     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3671     case FCmpInst::FCMP_UGT:
3672     case FCmpInst::FCMP_UGE:
3673     case FCmpInst::FCMP_OGT:
3674     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3675     case FCmpInst::FCMP_ULT:
3676     case FCmpInst::FCMP_ULE:
3677     case FCmpInst::FCMP_OLT:
3678     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3679     }
3680   }
3681 
3682   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3683     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3684         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3685 
3686       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3687       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3688       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3689         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3690       }
3691 
3692       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3693       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3694       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3695         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3696       }
3697     }
3698 
3699     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3700     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3701       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3702           ~C1->getValue() == C2->getValue() &&
3703           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3704            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3705         LHS = TrueVal;
3706         RHS = FalseVal;
3707         return {SPF_SMIN, SPNB_NA, false};
3708       }
3709     }
3710   }
3711 
3712   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3713 
3714   return {SPF_UNKNOWN, SPNB_NA, false};
3715 }
3716 
3717 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3718                               Instruction::CastOps *CastOp) {
3719   CastInst *CI = dyn_cast<CastInst>(V1);
3720   Constant *C = dyn_cast<Constant>(V2);
3721   if (!CI)
3722     return nullptr;
3723   *CastOp = CI->getOpcode();
3724 
3725   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3726     // If V1 and V2 are both the same cast from the same type, we can look
3727     // through V1.
3728     if (CI2->getOpcode() == CI->getOpcode() &&
3729         CI2->getSrcTy() == CI->getSrcTy())
3730       return CI2->getOperand(0);
3731     return nullptr;
3732   } else if (!C) {
3733     return nullptr;
3734   }
3735 
3736   Constant *CastedTo = nullptr;
3737 
3738   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3739     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3740 
3741   if (isa<SExtInst>(CI) && CmpI->isSigned())
3742     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3743 
3744   if (isa<TruncInst>(CI))
3745     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3746 
3747   if (isa<FPTruncInst>(CI))
3748     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3749 
3750   if (isa<FPExtInst>(CI))
3751     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3752 
3753   if (isa<FPToUIInst>(CI))
3754     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3755 
3756   if (isa<FPToSIInst>(CI))
3757     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3758 
3759   if (isa<UIToFPInst>(CI))
3760     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3761 
3762   if (isa<SIToFPInst>(CI))
3763     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3764 
3765   if (!CastedTo)
3766     return nullptr;
3767 
3768   Constant *CastedBack =
3769       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3770   // Make sure the cast doesn't lose any information.
3771   if (CastedBack != C)
3772     return nullptr;
3773 
3774   return CastedTo;
3775 }
3776 
3777 SelectPatternResult llvm::matchSelectPattern(Value *V,
3778                                              Value *&LHS, Value *&RHS,
3779                                              Instruction::CastOps *CastOp) {
3780   SelectInst *SI = dyn_cast<SelectInst>(V);
3781   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3782 
3783   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3784   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3785 
3786   CmpInst::Predicate Pred = CmpI->getPredicate();
3787   Value *CmpLHS = CmpI->getOperand(0);
3788   Value *CmpRHS = CmpI->getOperand(1);
3789   Value *TrueVal = SI->getTrueValue();
3790   Value *FalseVal = SI->getFalseValue();
3791   FastMathFlags FMF;
3792   if (isa<FPMathOperator>(CmpI))
3793     FMF = CmpI->getFastMathFlags();
3794 
3795   // Bail out early.
3796   if (CmpI->isEquality())
3797     return {SPF_UNKNOWN, SPNB_NA, false};
3798 
3799   // Deal with type mismatches.
3800   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
3801     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
3802       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3803                                   cast<CastInst>(TrueVal)->getOperand(0), C,
3804                                   LHS, RHS);
3805     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
3806       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3807                                   C, cast<CastInst>(FalseVal)->getOperand(0),
3808                                   LHS, RHS);
3809   }
3810   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
3811                               LHS, RHS);
3812 }
3813 
3814 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3815   const unsigned NumRanges = Ranges.getNumOperands() / 2;
3816   assert(NumRanges >= 1 && "Must have at least one range!");
3817   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3818 
3819   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3820   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3821 
3822   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3823 
3824   for (unsigned i = 1; i < NumRanges; ++i) {
3825     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3826     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3827 
3828     // Note: unionWith will potentially create a range that contains values not
3829     // contained in any of the original N ranges.
3830     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3831   }
3832 
3833   return CR;
3834 }
3835 
3836 /// Return true if "icmp Pred LHS RHS" is always true.
3837 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3838                             const DataLayout &DL, unsigned Depth,
3839                             AssumptionCache *AC, const Instruction *CxtI,
3840                             const DominatorTree *DT) {
3841   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
3842   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3843     return true;
3844 
3845   switch (Pred) {
3846   default:
3847     return false;
3848 
3849   case CmpInst::ICMP_SLE: {
3850     const APInt *C;
3851 
3852     // LHS s<= LHS +_{nsw} C   if C >= 0
3853     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
3854       return !C->isNegative();
3855     return false;
3856   }
3857 
3858   case CmpInst::ICMP_ULE: {
3859     const APInt *C;
3860 
3861     // LHS u<= LHS +_{nuw} C   for any C
3862     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
3863       return true;
3864 
3865     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3866     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3867                                        const APInt *&CA, const APInt *&CB) {
3868       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3869           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3870         return true;
3871 
3872       // If X & C == 0 then (X | C) == X +_{nuw} C
3873       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3874           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3875         unsigned BitWidth = CA->getBitWidth();
3876         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3877         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3878 
3879         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3880           return true;
3881       }
3882 
3883       return false;
3884     };
3885 
3886     Value *X;
3887     const APInt *CLHS, *CRHS;
3888     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3889       return CLHS->ule(*CRHS);
3890 
3891     return false;
3892   }
3893   }
3894 }
3895 
3896 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
3897 /// ALHS ARHS" is true.  Otherwise, return None.
3898 static Optional<bool>
3899 isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3900                       Value *BLHS, Value *BRHS, const DataLayout &DL,
3901                       unsigned Depth, AssumptionCache *AC,
3902                       const Instruction *CxtI, const DominatorTree *DT) {
3903   switch (Pred) {
3904   default:
3905     return None;
3906 
3907   case CmpInst::ICMP_SLT:
3908   case CmpInst::ICMP_SLE:
3909     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3910                         DT) &&
3911         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3912       return true;
3913     return None;
3914 
3915   case CmpInst::ICMP_ULT:
3916   case CmpInst::ICMP_ULE:
3917     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3918                         DT) &&
3919         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3920       return true;
3921     return None;
3922   }
3923 }
3924 
3925 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
3926 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
3927 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
3928 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
3929                                                     Value *ALHS, Value *ARHS,
3930                                                     CmpInst::Predicate BPred,
3931                                                     Value *BLHS, Value *BRHS) {
3932   // The operands of the two compares must match.
3933   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
3934   bool IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
3935   if (!IsMatchingOps && !IsSwappedOps)
3936     return None;
3937 
3938   // Canonicalize the operands so they're matching.
3939   if (IsSwappedOps) {
3940     std::swap(BLHS, BRHS);
3941     BPred = ICmpInst::getSwappedPredicate(BPred);
3942   }
3943   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
3944     return true;
3945   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
3946     return false;
3947 
3948   return None;
3949 }
3950 
3951 Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
3952                                         const DataLayout &DL, bool InvertAPred,
3953                                         unsigned Depth, AssumptionCache *AC,
3954                                         const Instruction *CxtI,
3955                                         const DominatorTree *DT) {
3956   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
3957   if (LHS->getType() != RHS->getType())
3958     return None;
3959 
3960   Type *OpTy = LHS->getType();
3961   assert(OpTy->getScalarType()->isIntegerTy(1));
3962 
3963   // LHS ==> RHS by definition
3964   if (!InvertAPred && LHS == RHS)
3965     return true;
3966 
3967   if (OpTy->isVectorTy())
3968     // TODO: extending the code below to handle vectors
3969     return None;
3970   assert(OpTy->isIntegerTy(1) && "implied by above");
3971 
3972   ICmpInst::Predicate APred, BPred;
3973   Value *ALHS, *ARHS;
3974   Value *BLHS, *BRHS;
3975 
3976   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
3977       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
3978     return None;
3979 
3980   if (InvertAPred)
3981     APred = CmpInst::getInversePredicate(APred);
3982 
3983   Optional<bool> Implication =
3984       isImpliedCondMatchingOperands(APred, ALHS, ARHS, BPred, BLHS, BRHS);
3985   if (Implication)
3986     return Implication;
3987 
3988   if (APred == BPred)
3989     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
3990                                  CxtI, DT);
3991 
3992   return None;
3993 }
3994