1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 55 /// 0). For vector types, returns the element type's bitwidth. 56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 57 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 58 return BitWidth; 59 60 return DL.getPointerTypeSizeInBits(Ty); 61 } 62 63 namespace { 64 // Simplifying using an assume can only be done in a particular control-flow 65 // context (the context instruction provides that context). If an assume and 66 // the context instruction are not in the same block then the DT helps in 67 // figuring out if we can use it. 68 struct Query { 69 const DataLayout &DL; 70 AssumptionCache *AC; 71 const Instruction *CxtI; 72 const DominatorTree *DT; 73 74 /// Set of assumptions that should be excluded from further queries. 75 /// This is because of the potential for mutual recursion to cause 76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 77 /// classic case of this is assume(x = y), which will attempt to determine 78 /// bits in x from bits in y, which will attempt to determine bits in y from 79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 82 /// on. 83 std::array<const Value*, MaxDepth> Excluded; 84 unsigned NumExcluded; 85 86 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 87 const DominatorTree *DT) 88 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 89 90 Query(const Query &Q, const Value *NewExcl) 91 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 92 Excluded = Q.Excluded; 93 Excluded[NumExcluded++] = NewExcl; 94 assert(NumExcluded <= Excluded.size()); 95 } 96 97 bool isExcluded(const Value *Value) const { 98 if (NumExcluded == 0) 99 return false; 100 auto End = Excluded.begin() + NumExcluded; 101 return std::find(Excluded.begin(), End, Value) != End; 102 } 103 }; 104 } // end anonymous namespace 105 106 // Given the provided Value and, potentially, a context instruction, return 107 // the preferred context instruction (if any). 108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 109 // If we've been provided with a context instruction, then use that (provided 110 // it has been inserted). 111 if (CxtI && CxtI->getParent()) 112 return CxtI; 113 114 // If the value is really an already-inserted instruction, then use that. 115 CxtI = dyn_cast<Instruction>(V); 116 if (CxtI && CxtI->getParent()) 117 return CxtI; 118 119 return nullptr; 120 } 121 122 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 123 unsigned Depth, const Query &Q); 124 125 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 126 const DataLayout &DL, unsigned Depth, 127 AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT) { 129 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 130 Query(DL, AC, safeCxtI(V, CxtI), DT)); 131 } 132 133 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 134 AssumptionCache *AC, const Instruction *CxtI, 135 const DominatorTree *DT) { 136 assert(LHS->getType() == RHS->getType() && 137 "LHS and RHS should have the same type"); 138 assert(LHS->getType()->isIntOrIntVectorTy() && 139 "LHS and RHS should be integers"); 140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 146 } 147 148 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 149 unsigned Depth, const Query &Q); 150 151 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 152 const DataLayout &DL, unsigned Depth, 153 AssumptionCache *AC, const Instruction *CxtI, 154 const DominatorTree *DT) { 155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 156 Query(DL, AC, safeCxtI(V, CxtI), DT)); 157 } 158 159 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 160 const Query &Q); 161 162 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 163 unsigned Depth, AssumptionCache *AC, 164 const Instruction *CxtI, 165 const DominatorTree *DT) { 166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 167 Query(DL, AC, safeCxtI(V, CxtI), DT)); 168 } 169 170 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q); 171 172 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 173 AssumptionCache *AC, const Instruction *CxtI, 174 const DominatorTree *DT) { 175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 176 } 177 178 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 179 AssumptionCache *AC, const Instruction *CxtI, 180 const DominatorTree *DT) { 181 bool NonNegative, Negative; 182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 183 return NonNegative; 184 } 185 186 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 if (auto *CI = dyn_cast<ConstantInt>(V)) 190 return CI->getValue().isStrictlyPositive(); 191 192 // TODO: We'd doing two recursive queries here. We should factor this such 193 // that only a single query is needed. 194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 196 } 197 198 bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth, 199 AssumptionCache *AC, const Instruction *CxtI, 200 const DominatorTree *DT) { 201 bool NonNegative, Negative; 202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 203 return Negative; 204 } 205 206 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q); 207 208 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 209 AssumptionCache *AC, const Instruction *CxtI, 210 const DominatorTree *DT) { 211 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 212 safeCxtI(V1, safeCxtI(V2, CxtI)), 213 DT)); 214 } 215 216 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 217 const Query &Q); 218 219 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 220 unsigned Depth, AssumptionCache *AC, 221 const Instruction *CxtI, const DominatorTree *DT) { 222 return ::MaskedValueIsZero(V, Mask, Depth, 223 Query(DL, AC, safeCxtI(V, CxtI), DT)); 224 } 225 226 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q); 227 228 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 229 unsigned Depth, AssumptionCache *AC, 230 const Instruction *CxtI, 231 const DominatorTree *DT) { 232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 233 } 234 235 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 236 APInt &KnownZero, APInt &KnownOne, 237 APInt &KnownZero2, APInt &KnownOne2, 238 unsigned Depth, const Query &Q) { 239 if (!Add) { 240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 241 // We know that the top bits of C-X are clear if X contains less bits 242 // than C (i.e. no wrap-around can happen). For example, 20-X is 243 // positive if we can prove that X is >= 0 and < 16. 244 if (!CLHS->getValue().isNegative()) { 245 unsigned BitWidth = KnownZero.getBitWidth(); 246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 247 // NLZ can't be BitWidth with no sign bit 248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 250 251 // If all of the MaskV bits are known to be zero, then we know the 252 // output top bits are zero, because we now know that the output is 253 // from [0-C]. 254 if ((KnownZero2 & MaskV) == MaskV) { 255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 256 // Top bits known zero. 257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 258 } 259 } 260 } 261 } 262 263 unsigned BitWidth = KnownZero.getBitWidth(); 264 265 // If an initial sequence of bits in the result is not needed, the 266 // corresponding bits in the operands are not needed. 267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 270 271 // Carry in a 1 for a subtract, rather than a 0. 272 APInt CarryIn(BitWidth, 0); 273 if (!Add) { 274 // Sum = LHS + ~RHS + 1 275 std::swap(KnownZero2, KnownOne2); 276 CarryIn.setBit(0); 277 } 278 279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 281 282 // Compute known bits of the carry. 283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 285 286 // Compute set of known bits (where all three relevant bits are known). 287 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 288 APInt RHSKnown = KnownZero2 | KnownOne2; 289 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 290 APInt Known = LHSKnown & RHSKnown & CarryKnown; 291 292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 293 "known bits of sum differ"); 294 295 // Compute known bits of the result. 296 KnownZero = ~PossibleSumOne & Known; 297 KnownOne = PossibleSumOne & Known; 298 299 // Are we still trying to solve for the sign bit? 300 if (!Known.isNegative()) { 301 if (NSW) { 302 // Adding two non-negative numbers, or subtracting a negative number from 303 // a non-negative one, can't wrap into negative. 304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 305 KnownZero |= APInt::getSignBit(BitWidth); 306 // Adding two negative numbers, or subtracting a non-negative number from 307 // a negative one, can't wrap into non-negative. 308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 309 KnownOne |= APInt::getSignBit(BitWidth); 310 } 311 } 312 } 313 314 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 315 APInt &KnownZero, APInt &KnownOne, 316 APInt &KnownZero2, APInt &KnownOne2, 317 unsigned Depth, const Query &Q) { 318 unsigned BitWidth = KnownZero.getBitWidth(); 319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 321 322 bool isKnownNegative = false; 323 bool isKnownNonNegative = false; 324 // If the multiplication is known not to overflow, compute the sign bit. 325 if (NSW) { 326 if (Op0 == Op1) { 327 // The product of a number with itself is non-negative. 328 isKnownNonNegative = true; 329 } else { 330 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 332 bool isKnownNegativeOp1 = KnownOne.isNegative(); 333 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 334 // The product of two numbers with the same sign is non-negative. 335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 337 // The product of a negative number and a non-negative number is either 338 // negative or zero. 339 if (!isKnownNonNegative) 340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 341 isKnownNonZero(Op0, Depth, Q)) || 342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 343 isKnownNonZero(Op1, Depth, Q)); 344 } 345 } 346 347 // If low bits are zero in either operand, output low known-0 bits. 348 // Also compute a conservative estimate for high known-0 bits. 349 // More trickiness is possible, but this is sufficient for the 350 // interesting case of alignment computation. 351 KnownOne.clearAllBits(); 352 unsigned TrailZ = KnownZero.countTrailingOnes() + 353 KnownZero2.countTrailingOnes(); 354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 355 KnownZero2.countLeadingOnes(), 356 BitWidth) - BitWidth; 357 358 TrailZ = std::min(TrailZ, BitWidth); 359 LeadZ = std::min(LeadZ, BitWidth); 360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 361 APInt::getHighBitsSet(BitWidth, LeadZ); 362 363 // Only make use of no-wrap flags if we failed to compute the sign bit 364 // directly. This matters if the multiplication always overflows, in 365 // which case we prefer to follow the result of the direct computation, 366 // though as the program is invoking undefined behaviour we can choose 367 // whatever we like here. 368 if (isKnownNonNegative && !KnownOne.isNegative()) 369 KnownZero.setBit(BitWidth - 1); 370 else if (isKnownNegative && !KnownZero.isNegative()) 371 KnownOne.setBit(BitWidth - 1); 372 } 373 374 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 375 APInt &KnownZero, 376 APInt &KnownOne) { 377 unsigned BitWidth = KnownZero.getBitWidth(); 378 unsigned NumRanges = Ranges.getNumOperands() / 2; 379 assert(NumRanges >= 1); 380 381 KnownZero.setAllBits(); 382 KnownOne.setAllBits(); 383 384 for (unsigned i = 0; i < NumRanges; ++i) { 385 ConstantInt *Lower = 386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 387 ConstantInt *Upper = 388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 389 ConstantRange Range(Lower->getValue(), Upper->getValue()); 390 391 // The first CommonPrefixBits of all values in Range are equal. 392 unsigned CommonPrefixBits = 393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 394 395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 396 KnownOne &= Range.getUnsignedMax() & Mask; 397 KnownZero &= ~Range.getUnsignedMax() & Mask; 398 } 399 } 400 401 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 402 SmallVector<const Value *, 16> WorkSet(1, I); 403 SmallPtrSet<const Value *, 32> Visited; 404 SmallPtrSet<const Value *, 16> EphValues; 405 406 // The instruction defining an assumption's condition itself is always 407 // considered ephemeral to that assumption (even if it has other 408 // non-ephemeral users). See r246696's test case for an example. 409 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 410 return true; 411 412 while (!WorkSet.empty()) { 413 const Value *V = WorkSet.pop_back_val(); 414 if (!Visited.insert(V).second) 415 continue; 416 417 // If all uses of this value are ephemeral, then so is this value. 418 if (std::all_of(V->user_begin(), V->user_end(), 419 [&](const User *U) { return EphValues.count(U); })) { 420 if (V == E) 421 return true; 422 423 EphValues.insert(V); 424 if (const User *U = dyn_cast<User>(V)) 425 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 426 J != JE; ++J) { 427 if (isSafeToSpeculativelyExecute(*J)) 428 WorkSet.push_back(*J); 429 } 430 } 431 } 432 433 return false; 434 } 435 436 // Is this an intrinsic that cannot be speculated but also cannot trap? 437 static bool isAssumeLikeIntrinsic(const Instruction *I) { 438 if (const CallInst *CI = dyn_cast<CallInst>(I)) 439 if (Function *F = CI->getCalledFunction()) 440 switch (F->getIntrinsicID()) { 441 default: break; 442 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 443 case Intrinsic::assume: 444 case Intrinsic::dbg_declare: 445 case Intrinsic::dbg_value: 446 case Intrinsic::invariant_start: 447 case Intrinsic::invariant_end: 448 case Intrinsic::lifetime_start: 449 case Intrinsic::lifetime_end: 450 case Intrinsic::objectsize: 451 case Intrinsic::ptr_annotation: 452 case Intrinsic::var_annotation: 453 return true; 454 } 455 456 return false; 457 } 458 459 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI, 460 const DominatorTree *DT) { 461 Instruction *Inv = cast<Instruction>(V); 462 463 // There are two restrictions on the use of an assume: 464 // 1. The assume must dominate the context (or the control flow must 465 // reach the assume whenever it reaches the context). 466 // 2. The context must not be in the assume's set of ephemeral values 467 // (otherwise we will use the assume to prove that the condition 468 // feeding the assume is trivially true, thus causing the removal of 469 // the assume). 470 471 if (DT) { 472 if (DT->dominates(Inv, CxtI)) { 473 return true; 474 } else if (Inv->getParent() == CxtI->getParent()) { 475 // The context comes first, but they're both in the same block. Make sure 476 // there is nothing in between that might interrupt the control flow. 477 for (BasicBlock::const_iterator I = 478 std::next(BasicBlock::const_iterator(CxtI)), 479 IE(Inv); I != IE; ++I) 480 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 481 return false; 482 483 return !isEphemeralValueOf(Inv, CxtI); 484 } 485 486 return false; 487 } 488 489 // When we don't have a DT, we do a limited search... 490 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 491 return true; 492 } else if (Inv->getParent() == CxtI->getParent()) { 493 // Search forward from the assume until we reach the context (or the end 494 // of the block); the common case is that the assume will come first. 495 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 496 IE = Inv->getParent()->end(); I != IE; ++I) 497 if (&*I == CxtI) 498 return true; 499 500 // The context must come first... 501 for (BasicBlock::const_iterator I = 502 std::next(BasicBlock::const_iterator(CxtI)), 503 IE(Inv); I != IE; ++I) 504 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 505 return false; 506 507 return !isEphemeralValueOf(Inv, CxtI); 508 } 509 510 return false; 511 } 512 513 bool llvm::isValidAssumeForContext(const Instruction *I, 514 const Instruction *CxtI, 515 const DominatorTree *DT) { 516 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT); 517 } 518 519 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 520 APInt &KnownOne, unsigned Depth, 521 const Query &Q) { 522 // Use of assumptions is context-sensitive. If we don't have a context, we 523 // cannot use them! 524 if (!Q.AC || !Q.CxtI) 525 return; 526 527 unsigned BitWidth = KnownZero.getBitWidth(); 528 529 for (auto &AssumeVH : Q.AC->assumptions()) { 530 if (!AssumeVH) 531 continue; 532 CallInst *I = cast<CallInst>(AssumeVH); 533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 534 "Got assumption for the wrong function!"); 535 if (Q.isExcluded(I)) 536 continue; 537 538 // Warning: This loop can end up being somewhat performance sensetive. 539 // We're running this loop for once for each value queried resulting in a 540 // runtime of ~O(#assumes * #values). 541 542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 543 "must be an assume intrinsic"); 544 545 Value *Arg = I->getArgOperand(0); 546 547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 548 assert(BitWidth == 1 && "assume operand is not i1?"); 549 KnownZero.clearAllBits(); 550 KnownOne.setAllBits(); 551 return; 552 } 553 554 // The remaining tests are all recursive, so bail out if we hit the limit. 555 if (Depth == MaxDepth) 556 continue; 557 558 Value *A, *B; 559 auto m_V = m_CombineOr(m_Specific(V), 560 m_CombineOr(m_PtrToInt(m_Specific(V)), 561 m_BitCast(m_Specific(V)))); 562 563 CmpInst::Predicate Pred; 564 ConstantInt *C; 565 // assume(v = a) 566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 570 KnownZero |= RHSKnownZero; 571 KnownOne |= RHSKnownOne; 572 // assume(v & b = a) 573 } else if (match(Arg, 574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 575 Pred == ICmpInst::ICMP_EQ && 576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 581 582 // For those bits in the mask that are known to be one, we can propagate 583 // known bits from the RHS to V. 584 KnownZero |= RHSKnownZero & MaskKnownOne; 585 KnownOne |= RHSKnownOne & MaskKnownOne; 586 // assume(~(v & b) = a) 587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 588 m_Value(A))) && 589 Pred == ICmpInst::ICMP_EQ && 590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 595 596 // For those bits in the mask that are known to be one, we can propagate 597 // inverted known bits from the RHS to V. 598 KnownZero |= RHSKnownOne & MaskKnownOne; 599 KnownOne |= RHSKnownZero & MaskKnownOne; 600 // assume(v | b = a) 601 } else if (match(Arg, 602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 603 Pred == ICmpInst::ICMP_EQ && 604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 609 610 // For those bits in B that are known to be zero, we can propagate known 611 // bits from the RHS to V. 612 KnownZero |= RHSKnownZero & BKnownZero; 613 KnownOne |= RHSKnownOne & BKnownZero; 614 // assume(~(v | b) = a) 615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 616 m_Value(A))) && 617 Pred == ICmpInst::ICMP_EQ && 618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 623 624 // For those bits in B that are known to be zero, we can propagate 625 // inverted known bits from the RHS to V. 626 KnownZero |= RHSKnownOne & BKnownZero; 627 KnownOne |= RHSKnownZero & BKnownZero; 628 // assume(v ^ b = a) 629 } else if (match(Arg, 630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 631 Pred == ICmpInst::ICMP_EQ && 632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 637 638 // For those bits in B that are known to be zero, we can propagate known 639 // bits from the RHS to V. For those bits in B that are known to be one, 640 // we can propagate inverted known bits from the RHS to V. 641 KnownZero |= RHSKnownZero & BKnownZero; 642 KnownOne |= RHSKnownOne & BKnownZero; 643 KnownZero |= RHSKnownOne & BKnownOne; 644 KnownOne |= RHSKnownZero & BKnownOne; 645 // assume(~(v ^ b) = a) 646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 647 m_Value(A))) && 648 Pred == ICmpInst::ICMP_EQ && 649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 654 655 // For those bits in B that are known to be zero, we can propagate 656 // inverted known bits from the RHS to V. For those bits in B that are 657 // known to be one, we can propagate known bits from the RHS to V. 658 KnownZero |= RHSKnownOne & BKnownZero; 659 KnownOne |= RHSKnownZero & BKnownZero; 660 KnownZero |= RHSKnownZero & BKnownOne; 661 KnownOne |= RHSKnownOne & BKnownOne; 662 // assume(v << c = a) 663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 664 m_Value(A))) && 665 Pred == ICmpInst::ICMP_EQ && 666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 669 // For those bits in RHS that are known, we can propagate them to known 670 // bits in V shifted to the right by C. 671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 673 // assume(~(v << c) = a) 674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 675 m_Value(A))) && 676 Pred == ICmpInst::ICMP_EQ && 677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 680 // For those bits in RHS that are known, we can propagate them inverted 681 // to known bits in V shifted to the right by C. 682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 684 // assume(v >> c = a) 685 } else if (match(Arg, 686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 687 m_AShr(m_V, m_ConstantInt(C))), 688 m_Value(A))) && 689 Pred == ICmpInst::ICMP_EQ && 690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 693 // For those bits in RHS that are known, we can propagate them to known 694 // bits in V shifted to the right by C. 695 KnownZero |= RHSKnownZero << C->getZExtValue(); 696 KnownOne |= RHSKnownOne << C->getZExtValue(); 697 // assume(~(v >> c) = a) 698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 699 m_LShr(m_V, m_ConstantInt(C)), 700 m_AShr(m_V, m_ConstantInt(C)))), 701 m_Value(A))) && 702 Pred == ICmpInst::ICMP_EQ && 703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 706 // For those bits in RHS that are known, we can propagate them inverted 707 // to known bits in V shifted to the right by C. 708 KnownZero |= RHSKnownOne << C->getZExtValue(); 709 KnownOne |= RHSKnownZero << C->getZExtValue(); 710 // assume(v >=_s c) where c is non-negative 711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 712 Pred == ICmpInst::ICMP_SGE && 713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 716 717 if (RHSKnownZero.isNegative()) { 718 // We know that the sign bit is zero. 719 KnownZero |= APInt::getSignBit(BitWidth); 720 } 721 // assume(v >_s c) where c is at least -1. 722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 723 Pred == ICmpInst::ICMP_SGT && 724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 727 728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 729 // We know that the sign bit is zero. 730 KnownZero |= APInt::getSignBit(BitWidth); 731 } 732 // assume(v <=_s c) where c is negative 733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 734 Pred == ICmpInst::ICMP_SLE && 735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 738 739 if (RHSKnownOne.isNegative()) { 740 // We know that the sign bit is one. 741 KnownOne |= APInt::getSignBit(BitWidth); 742 } 743 // assume(v <_s c) where c is non-positive 744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 745 Pred == ICmpInst::ICMP_SLT && 746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 749 750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 751 // We know that the sign bit is one. 752 KnownOne |= APInt::getSignBit(BitWidth); 753 } 754 // assume(v <=_u c) 755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 756 Pred == ICmpInst::ICMP_ULE && 757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 760 761 // Whatever high bits in c are zero are known to be zero. 762 KnownZero |= 763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 764 // assume(v <_u c) 765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 766 Pred == ICmpInst::ICMP_ULT && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 770 771 // Whatever high bits in c are zero are known to be zero (if c is a power 772 // of 2, then one more). 773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 774 KnownZero |= 775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 776 else 777 KnownZero |= 778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 779 } 780 } 781 } 782 783 // Compute known bits from a shift operator, including those with a 784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 787 // functors that, given the known-zero or known-one bits respectively, and a 788 // shift amount, compute the implied known-zero or known-one bits of the shift 789 // operator's result respectively for that shift amount. The results from calling 790 // KZF and KOF are conservatively combined for all permitted shift amounts. 791 template <typename KZFunctor, typename KOFunctor> 792 static void computeKnownBitsFromShiftOperator(Operator *I, 793 APInt &KnownZero, APInt &KnownOne, 794 APInt &KnownZero2, APInt &KnownOne2, 795 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) { 796 unsigned BitWidth = KnownZero.getBitWidth(); 797 798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 800 801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 802 KnownZero = KZF(KnownZero, ShiftAmt); 803 KnownOne = KOF(KnownOne, ShiftAmt); 804 return; 805 } 806 807 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 808 809 // Note: We cannot use KnownZero.getLimitedValue() here, because if 810 // BitWidth > 64 and any upper bits are known, we'll end up returning the 811 // limit value (which implies all bits are known). 812 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 813 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 814 815 // It would be more-clearly correct to use the two temporaries for this 816 // calculation. Reusing the APInts here to prevent unnecessary allocations. 817 KnownZero.clearAllBits(); 818 KnownOne.clearAllBits(); 819 820 // If we know the shifter operand is nonzero, we can sometimes infer more 821 // known bits. However this is expensive to compute, so be lazy about it and 822 // only compute it when absolutely necessary. 823 Optional<bool> ShifterOperandIsNonZero; 824 825 // Early exit if we can't constrain any well-defined shift amount. 826 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 827 ShifterOperandIsNonZero = 828 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 829 if (!*ShifterOperandIsNonZero) 830 return; 831 } 832 833 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 834 835 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 836 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 837 // Combine the shifted known input bits only for those shift amounts 838 // compatible with its known constraints. 839 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 840 continue; 841 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 842 continue; 843 // If we know the shifter is nonzero, we may be able to infer more known 844 // bits. This check is sunk down as far as possible to avoid the expensive 845 // call to isKnownNonZero if the cheaper checks above fail. 846 if (ShiftAmt == 0) { 847 if (!ShifterOperandIsNonZero.hasValue()) 848 ShifterOperandIsNonZero = 849 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 850 if (*ShifterOperandIsNonZero) 851 continue; 852 } 853 854 KnownZero &= KZF(KnownZero2, ShiftAmt); 855 KnownOne &= KOF(KnownOne2, ShiftAmt); 856 } 857 858 // If there are no compatible shift amounts, then we've proven that the shift 859 // amount must be >= the BitWidth, and the result is undefined. We could 860 // return anything we'd like, but we need to make sure the sets of known bits 861 // stay disjoint (it should be better for some other code to actually 862 // propagate the undef than to pick a value here using known bits). 863 if ((KnownZero & KnownOne) != 0) { 864 KnownZero.clearAllBits(); 865 KnownOne.clearAllBits(); 866 } 867 } 868 869 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 870 APInt &KnownOne, unsigned Depth, 871 const Query &Q) { 872 unsigned BitWidth = KnownZero.getBitWidth(); 873 874 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 875 switch (I->getOpcode()) { 876 default: break; 877 case Instruction::Load: 878 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 879 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 880 break; 881 case Instruction::And: { 882 // If either the LHS or the RHS are Zero, the result is zero. 883 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 884 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 885 886 // Output known-1 bits are only known if set in both the LHS & RHS. 887 KnownOne &= KnownOne2; 888 // Output known-0 are known to be clear if zero in either the LHS | RHS. 889 KnownZero |= KnownZero2; 890 891 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 892 // here we handle the more general case of adding any odd number by 893 // matching the form add(x, add(x, y)) where y is odd. 894 // TODO: This could be generalized to clearing any bit set in y where the 895 // following bit is known to be unset in y. 896 Value *Y = nullptr; 897 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 898 m_Value(Y))) || 899 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 900 m_Value(Y)))) { 901 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 902 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 903 if (KnownOne3.countTrailingOnes() > 0) 904 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 905 } 906 break; 907 } 908 case Instruction::Or: { 909 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 911 912 // Output known-0 bits are only known if clear in both the LHS & RHS. 913 KnownZero &= KnownZero2; 914 // Output known-1 are known to be set if set in either the LHS | RHS. 915 KnownOne |= KnownOne2; 916 break; 917 } 918 case Instruction::Xor: { 919 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 920 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 921 922 // Output known-0 bits are known if clear or set in both the LHS & RHS. 923 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 924 // Output known-1 are known to be set if set in only one of the LHS, RHS. 925 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 926 KnownZero = KnownZeroOut; 927 break; 928 } 929 case Instruction::Mul: { 930 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 931 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 932 KnownOne, KnownZero2, KnownOne2, Depth, Q); 933 break; 934 } 935 case Instruction::UDiv: { 936 // For the purposes of computing leading zeros we can conservatively 937 // treat a udiv as a logical right shift by the power of 2 known to 938 // be less than the denominator. 939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 940 unsigned LeadZ = KnownZero2.countLeadingOnes(); 941 942 KnownOne2.clearAllBits(); 943 KnownZero2.clearAllBits(); 944 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 945 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 946 if (RHSUnknownLeadingOnes != BitWidth) 947 LeadZ = std::min(BitWidth, 948 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 949 950 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 951 break; 952 } 953 case Instruction::Select: 954 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 955 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 956 957 // Only known if known in both the LHS and RHS. 958 KnownOne &= KnownOne2; 959 KnownZero &= KnownZero2; 960 break; 961 case Instruction::FPTrunc: 962 case Instruction::FPExt: 963 case Instruction::FPToUI: 964 case Instruction::FPToSI: 965 case Instruction::SIToFP: 966 case Instruction::UIToFP: 967 break; // Can't work with floating point. 968 case Instruction::PtrToInt: 969 case Instruction::IntToPtr: 970 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 971 // FALL THROUGH and handle them the same as zext/trunc. 972 case Instruction::ZExt: 973 case Instruction::Trunc: { 974 Type *SrcTy = I->getOperand(0)->getType(); 975 976 unsigned SrcBitWidth; 977 // Note that we handle pointer operands here because of inttoptr/ptrtoint 978 // which fall through here. 979 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 980 981 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 982 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 983 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 984 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 985 KnownZero = KnownZero.zextOrTrunc(BitWidth); 986 KnownOne = KnownOne.zextOrTrunc(BitWidth); 987 // Any top bits are known to be zero. 988 if (BitWidth > SrcBitWidth) 989 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 990 break; 991 } 992 case Instruction::BitCast: { 993 Type *SrcTy = I->getOperand(0)->getType(); 994 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 995 SrcTy->isFloatingPointTy()) && 996 // TODO: For now, not handling conversions like: 997 // (bitcast i64 %x to <2 x i32>) 998 !I->getType()->isVectorTy()) { 999 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1000 break; 1001 } 1002 break; 1003 } 1004 case Instruction::SExt: { 1005 // Compute the bits in the result that are not present in the input. 1006 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1007 1008 KnownZero = KnownZero.trunc(SrcBitWidth); 1009 KnownOne = KnownOne.trunc(SrcBitWidth); 1010 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1011 KnownZero = KnownZero.zext(BitWidth); 1012 KnownOne = KnownOne.zext(BitWidth); 1013 1014 // If the sign bit of the input is known set or clear, then we know the 1015 // top bits of the result. 1016 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1017 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1018 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1019 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1020 break; 1021 } 1022 case Instruction::Shl: { 1023 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1024 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1025 return (KnownZero << ShiftAmt) | 1026 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1027 }; 1028 1029 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1030 return KnownOne << ShiftAmt; 1031 }; 1032 1033 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1034 KnownZero2, KnownOne2, Depth, Q, KZF, 1035 KOF); 1036 break; 1037 } 1038 case Instruction::LShr: { 1039 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1040 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1041 return APIntOps::lshr(KnownZero, ShiftAmt) | 1042 // High bits known zero. 1043 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1044 }; 1045 1046 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1047 return APIntOps::lshr(KnownOne, ShiftAmt); 1048 }; 1049 1050 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1051 KnownZero2, KnownOne2, Depth, Q, KZF, 1052 KOF); 1053 break; 1054 } 1055 case Instruction::AShr: { 1056 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1057 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1058 return APIntOps::ashr(KnownZero, ShiftAmt); 1059 }; 1060 1061 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1062 return APIntOps::ashr(KnownOne, ShiftAmt); 1063 }; 1064 1065 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1066 KnownZero2, KnownOne2, Depth, Q, KZF, 1067 KOF); 1068 break; 1069 } 1070 case Instruction::Sub: { 1071 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1072 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1073 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1074 Q); 1075 break; 1076 } 1077 case Instruction::Add: { 1078 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1079 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1080 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1081 Q); 1082 break; 1083 } 1084 case Instruction::SRem: 1085 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1086 APInt RA = Rem->getValue().abs(); 1087 if (RA.isPowerOf2()) { 1088 APInt LowBits = RA - 1; 1089 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1090 Q); 1091 1092 // The low bits of the first operand are unchanged by the srem. 1093 KnownZero = KnownZero2 & LowBits; 1094 KnownOne = KnownOne2 & LowBits; 1095 1096 // If the first operand is non-negative or has all low bits zero, then 1097 // the upper bits are all zero. 1098 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1099 KnownZero |= ~LowBits; 1100 1101 // If the first operand is negative and not all low bits are zero, then 1102 // the upper bits are all one. 1103 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1104 KnownOne |= ~LowBits; 1105 1106 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1107 } 1108 } 1109 1110 // The sign bit is the LHS's sign bit, except when the result of the 1111 // remainder is zero. 1112 if (KnownZero.isNonNegative()) { 1113 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1114 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1115 Q); 1116 // If it's known zero, our sign bit is also zero. 1117 if (LHSKnownZero.isNegative()) 1118 KnownZero.setBit(BitWidth - 1); 1119 } 1120 1121 break; 1122 case Instruction::URem: { 1123 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1124 APInt RA = Rem->getValue(); 1125 if (RA.isPowerOf2()) { 1126 APInt LowBits = (RA - 1); 1127 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1128 KnownZero |= ~LowBits; 1129 KnownOne &= LowBits; 1130 break; 1131 } 1132 } 1133 1134 // Since the result is less than or equal to either operand, any leading 1135 // zero bits in either operand must also exist in the result. 1136 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1137 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1138 1139 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1140 KnownZero2.countLeadingOnes()); 1141 KnownOne.clearAllBits(); 1142 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1143 break; 1144 } 1145 1146 case Instruction::Alloca: { 1147 AllocaInst *AI = cast<AllocaInst>(I); 1148 unsigned Align = AI->getAlignment(); 1149 if (Align == 0) 1150 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1151 1152 if (Align > 0) 1153 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1154 break; 1155 } 1156 case Instruction::GetElementPtr: { 1157 // Analyze all of the subscripts of this getelementptr instruction 1158 // to determine if we can prove known low zero bits. 1159 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1160 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1161 Q); 1162 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1163 1164 gep_type_iterator GTI = gep_type_begin(I); 1165 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1166 Value *Index = I->getOperand(i); 1167 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1168 // Handle struct member offset arithmetic. 1169 1170 // Handle case when index is vector zeroinitializer 1171 Constant *CIndex = cast<Constant>(Index); 1172 if (CIndex->isZeroValue()) 1173 continue; 1174 1175 if (CIndex->getType()->isVectorTy()) 1176 Index = CIndex->getSplatValue(); 1177 1178 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1179 const StructLayout *SL = Q.DL.getStructLayout(STy); 1180 uint64_t Offset = SL->getElementOffset(Idx); 1181 TrailZ = std::min<unsigned>(TrailZ, 1182 countTrailingZeros(Offset)); 1183 } else { 1184 // Handle array index arithmetic. 1185 Type *IndexedTy = GTI.getIndexedType(); 1186 if (!IndexedTy->isSized()) { 1187 TrailZ = 0; 1188 break; 1189 } 1190 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1191 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1192 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1193 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1194 TrailZ = std::min(TrailZ, 1195 unsigned(countTrailingZeros(TypeSize) + 1196 LocalKnownZero.countTrailingOnes())); 1197 } 1198 } 1199 1200 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1201 break; 1202 } 1203 case Instruction::PHI: { 1204 PHINode *P = cast<PHINode>(I); 1205 // Handle the case of a simple two-predecessor recurrence PHI. 1206 // There's a lot more that could theoretically be done here, but 1207 // this is sufficient to catch some interesting cases. 1208 if (P->getNumIncomingValues() == 2) { 1209 for (unsigned i = 0; i != 2; ++i) { 1210 Value *L = P->getIncomingValue(i); 1211 Value *R = P->getIncomingValue(!i); 1212 Operator *LU = dyn_cast<Operator>(L); 1213 if (!LU) 1214 continue; 1215 unsigned Opcode = LU->getOpcode(); 1216 // Check for operations that have the property that if 1217 // both their operands have low zero bits, the result 1218 // will have low zero bits. 1219 if (Opcode == Instruction::Add || 1220 Opcode == Instruction::Sub || 1221 Opcode == Instruction::And || 1222 Opcode == Instruction::Or || 1223 Opcode == Instruction::Mul) { 1224 Value *LL = LU->getOperand(0); 1225 Value *LR = LU->getOperand(1); 1226 // Find a recurrence. 1227 if (LL == I) 1228 L = LR; 1229 else if (LR == I) 1230 L = LL; 1231 else 1232 break; 1233 // Ok, we have a PHI of the form L op= R. Check for low 1234 // zero bits. 1235 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1236 1237 // We need to take the minimum number of known bits 1238 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1239 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1240 1241 KnownZero = APInt::getLowBitsSet(BitWidth, 1242 std::min(KnownZero2.countTrailingOnes(), 1243 KnownZero3.countTrailingOnes())); 1244 break; 1245 } 1246 } 1247 } 1248 1249 // Unreachable blocks may have zero-operand PHI nodes. 1250 if (P->getNumIncomingValues() == 0) 1251 break; 1252 1253 // Otherwise take the unions of the known bit sets of the operands, 1254 // taking conservative care to avoid excessive recursion. 1255 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1256 // Skip if every incoming value references to ourself. 1257 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1258 break; 1259 1260 KnownZero = APInt::getAllOnesValue(BitWidth); 1261 KnownOne = APInt::getAllOnesValue(BitWidth); 1262 for (Value *IncValue : P->incoming_values()) { 1263 // Skip direct self references. 1264 if (IncValue == P) continue; 1265 1266 KnownZero2 = APInt(BitWidth, 0); 1267 KnownOne2 = APInt(BitWidth, 0); 1268 // Recurse, but cap the recursion to one level, because we don't 1269 // want to waste time spinning around in loops. 1270 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1271 KnownZero &= KnownZero2; 1272 KnownOne &= KnownOne2; 1273 // If all bits have been ruled out, there's no need to check 1274 // more operands. 1275 if (!KnownZero && !KnownOne) 1276 break; 1277 } 1278 } 1279 break; 1280 } 1281 case Instruction::Call: 1282 case Instruction::Invoke: 1283 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1284 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1285 // If a range metadata is attached to this IntrinsicInst, intersect the 1286 // explicit range specified by the metadata and the implicit range of 1287 // the intrinsic. 1288 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1289 switch (II->getIntrinsicID()) { 1290 default: break; 1291 case Intrinsic::bswap: 1292 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1293 KnownZero |= KnownZero2.byteSwap(); 1294 KnownOne |= KnownOne2.byteSwap(); 1295 break; 1296 case Intrinsic::ctlz: 1297 case Intrinsic::cttz: { 1298 unsigned LowBits = Log2_32(BitWidth)+1; 1299 // If this call is undefined for 0, the result will be less than 2^n. 1300 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1301 LowBits -= 1; 1302 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1303 break; 1304 } 1305 case Intrinsic::ctpop: { 1306 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1307 // We can bound the space the count needs. Also, bits known to be zero 1308 // can't contribute to the population. 1309 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1310 unsigned LeadingZeros = 1311 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1312 assert(LeadingZeros <= BitWidth); 1313 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1314 KnownOne &= ~KnownZero; 1315 // TODO: we could bound KnownOne using the lower bound on the number 1316 // of bits which might be set provided by popcnt KnownOne2. 1317 break; 1318 } 1319 case Intrinsic::fabs: { 1320 Type *Ty = II->getType(); 1321 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1322 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1323 break; 1324 } 1325 case Intrinsic::x86_sse42_crc32_64_64: 1326 KnownZero |= APInt::getHighBitsSet(64, 32); 1327 break; 1328 } 1329 } 1330 break; 1331 case Instruction::ExtractValue: 1332 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1333 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1334 if (EVI->getNumIndices() != 1) break; 1335 if (EVI->getIndices()[0] == 0) { 1336 switch (II->getIntrinsicID()) { 1337 default: break; 1338 case Intrinsic::uadd_with_overflow: 1339 case Intrinsic::sadd_with_overflow: 1340 computeKnownBitsAddSub(true, II->getArgOperand(0), 1341 II->getArgOperand(1), false, KnownZero, 1342 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1343 break; 1344 case Intrinsic::usub_with_overflow: 1345 case Intrinsic::ssub_with_overflow: 1346 computeKnownBitsAddSub(false, II->getArgOperand(0), 1347 II->getArgOperand(1), false, KnownZero, 1348 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1349 break; 1350 case Intrinsic::umul_with_overflow: 1351 case Intrinsic::smul_with_overflow: 1352 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1353 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1354 Q); 1355 break; 1356 } 1357 } 1358 } 1359 } 1360 } 1361 1362 /// Determine which bits of V are known to be either zero or one and return 1363 /// them in the KnownZero/KnownOne bit sets. 1364 /// 1365 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1366 /// we cannot optimize based on the assumption that it is zero without changing 1367 /// it to be an explicit zero. If we don't change it to zero, other code could 1368 /// optimized based on the contradictory assumption that it is non-zero. 1369 /// Because instcombine aggressively folds operations with undef args anyway, 1370 /// this won't lose us code quality. 1371 /// 1372 /// This function is defined on values with integer type, values with pointer 1373 /// type, and vectors of integers. In the case 1374 /// where V is a vector, known zero, and known one values are the 1375 /// same width as the vector element, and the bit is set only if it is true 1376 /// for all of the elements in the vector. 1377 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1378 unsigned Depth, const Query &Q) { 1379 assert(V && "No Value?"); 1380 assert(Depth <= MaxDepth && "Limit Search Depth"); 1381 unsigned BitWidth = KnownZero.getBitWidth(); 1382 1383 assert((V->getType()->isIntOrIntVectorTy() || 1384 V->getType()->isFPOrFPVectorTy() || 1385 V->getType()->getScalarType()->isPointerTy()) && 1386 "Not integer, floating point, or pointer type!"); 1387 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1388 (!V->getType()->isIntOrIntVectorTy() || 1389 V->getType()->getScalarSizeInBits() == BitWidth) && 1390 KnownZero.getBitWidth() == BitWidth && 1391 KnownOne.getBitWidth() == BitWidth && 1392 "V, KnownOne and KnownZero should have same BitWidth"); 1393 1394 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1395 // We know all of the bits for a constant! 1396 KnownOne = CI->getValue(); 1397 KnownZero = ~KnownOne; 1398 return; 1399 } 1400 // Null and aggregate-zero are all-zeros. 1401 if (isa<ConstantPointerNull>(V) || 1402 isa<ConstantAggregateZero>(V)) { 1403 KnownOne.clearAllBits(); 1404 KnownZero = APInt::getAllOnesValue(BitWidth); 1405 return; 1406 } 1407 // Handle a constant vector by taking the intersection of the known bits of 1408 // each element. 1409 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1410 // We know that CDS must be a vector of integers. Take the intersection of 1411 // each element. 1412 KnownZero.setAllBits(); KnownOne.setAllBits(); 1413 APInt Elt(KnownZero.getBitWidth(), 0); 1414 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1415 Elt = CDS->getElementAsInteger(i); 1416 KnownZero &= ~Elt; 1417 KnownOne &= Elt; 1418 } 1419 return; 1420 } 1421 1422 if (auto *CV = dyn_cast<ConstantVector>(V)) { 1423 // We know that CV must be a vector of integers. Take the intersection of 1424 // each element. 1425 KnownZero.setAllBits(); KnownOne.setAllBits(); 1426 APInt Elt(KnownZero.getBitWidth(), 0); 1427 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1428 Constant *Element = CV->getAggregateElement(i); 1429 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1430 if (!ElementCI) { 1431 KnownZero.clearAllBits(); 1432 KnownOne.clearAllBits(); 1433 return; 1434 } 1435 Elt = ElementCI->getValue(); 1436 KnownZero &= ~Elt; 1437 KnownOne &= Elt; 1438 } 1439 return; 1440 } 1441 1442 // Start out not knowing anything. 1443 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1444 1445 // Limit search depth. 1446 // All recursive calls that increase depth must come after this. 1447 if (Depth == MaxDepth) 1448 return; 1449 1450 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1451 // the bits of its aliasee. 1452 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1453 if (!GA->isInterposable()) 1454 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1455 return; 1456 } 1457 1458 if (Operator *I = dyn_cast<Operator>(V)) 1459 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1460 1461 // Aligned pointers have trailing zeros - refine KnownZero set 1462 if (V->getType()->isPointerTy()) { 1463 unsigned Align = V->getPointerAlignment(Q.DL); 1464 if (Align) 1465 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1466 } 1467 1468 // computeKnownBitsFromAssume strictly refines KnownZero and 1469 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1470 1471 // Check whether a nearby assume intrinsic can determine some known bits. 1472 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1473 1474 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1475 } 1476 1477 /// Determine whether the sign bit is known to be zero or one. 1478 /// Convenience wrapper around computeKnownBits. 1479 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1480 unsigned Depth, const Query &Q) { 1481 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1482 if (!BitWidth) { 1483 KnownZero = false; 1484 KnownOne = false; 1485 return; 1486 } 1487 APInt ZeroBits(BitWidth, 0); 1488 APInt OneBits(BitWidth, 0); 1489 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1490 KnownOne = OneBits[BitWidth - 1]; 1491 KnownZero = ZeroBits[BitWidth - 1]; 1492 } 1493 1494 /// Return true if the given value is known to have exactly one 1495 /// bit set when defined. For vectors return true if every element is known to 1496 /// be a power of two when defined. Supports values with integer or pointer 1497 /// types and vectors of integers. 1498 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1499 const Query &Q) { 1500 if (Constant *C = dyn_cast<Constant>(V)) { 1501 if (C->isNullValue()) 1502 return OrZero; 1503 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1504 return CI->getValue().isPowerOf2(); 1505 // TODO: Handle vector constants. 1506 } 1507 1508 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1509 // it is shifted off the end then the result is undefined. 1510 if (match(V, m_Shl(m_One(), m_Value()))) 1511 return true; 1512 1513 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1514 // bottom. If it is shifted off the bottom then the result is undefined. 1515 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1516 return true; 1517 1518 // The remaining tests are all recursive, so bail out if we hit the limit. 1519 if (Depth++ == MaxDepth) 1520 return false; 1521 1522 Value *X = nullptr, *Y = nullptr; 1523 // A shift left or a logical shift right of a power of two is a power of two 1524 // or zero. 1525 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1526 match(V, m_LShr(m_Value(X), m_Value())))) 1527 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1528 1529 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1530 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1531 1532 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1533 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1534 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1535 1536 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1537 // A power of two and'd with anything is a power of two or zero. 1538 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1539 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1540 return true; 1541 // X & (-X) is always a power of two or zero. 1542 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1543 return true; 1544 return false; 1545 } 1546 1547 // Adding a power-of-two or zero to the same power-of-two or zero yields 1548 // either the original power-of-two, a larger power-of-two or zero. 1549 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1550 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1551 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1552 if (match(X, m_And(m_Specific(Y), m_Value())) || 1553 match(X, m_And(m_Value(), m_Specific(Y)))) 1554 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1555 return true; 1556 if (match(Y, m_And(m_Specific(X), m_Value())) || 1557 match(Y, m_And(m_Value(), m_Specific(X)))) 1558 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1559 return true; 1560 1561 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1562 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1563 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1564 1565 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1566 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1567 // If i8 V is a power of two or zero: 1568 // ZeroBits: 1 1 1 0 1 1 1 1 1569 // ~ZeroBits: 0 0 0 1 0 0 0 0 1570 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1571 // If OrZero isn't set, we cannot give back a zero result. 1572 // Make sure either the LHS or RHS has a bit set. 1573 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1574 return true; 1575 } 1576 } 1577 1578 // An exact divide or right shift can only shift off zero bits, so the result 1579 // is a power of two only if the first operand is a power of two and not 1580 // copying a sign bit (sdiv int_min, 2). 1581 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1582 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1583 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1584 Depth, Q); 1585 } 1586 1587 return false; 1588 } 1589 1590 /// \brief Test whether a GEP's result is known to be non-null. 1591 /// 1592 /// Uses properties inherent in a GEP to try to determine whether it is known 1593 /// to be non-null. 1594 /// 1595 /// Currently this routine does not support vector GEPs. 1596 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth, 1597 const Query &Q) { 1598 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1599 return false; 1600 1601 // FIXME: Support vector-GEPs. 1602 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1603 1604 // If the base pointer is non-null, we cannot walk to a null address with an 1605 // inbounds GEP in address space zero. 1606 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1607 return true; 1608 1609 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1610 // If so, then the GEP cannot produce a null pointer, as doing so would 1611 // inherently violate the inbounds contract within address space zero. 1612 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1613 GTI != GTE; ++GTI) { 1614 // Struct types are easy -- they must always be indexed by a constant. 1615 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1616 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1617 unsigned ElementIdx = OpC->getZExtValue(); 1618 const StructLayout *SL = Q.DL.getStructLayout(STy); 1619 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1620 if (ElementOffset > 0) 1621 return true; 1622 continue; 1623 } 1624 1625 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1626 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1627 continue; 1628 1629 // Fast path the constant operand case both for efficiency and so we don't 1630 // increment Depth when just zipping down an all-constant GEP. 1631 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1632 if (!OpC->isZero()) 1633 return true; 1634 continue; 1635 } 1636 1637 // We post-increment Depth here because while isKnownNonZero increments it 1638 // as well, when we pop back up that increment won't persist. We don't want 1639 // to recurse 10k times just because we have 10k GEP operands. We don't 1640 // bail completely out because we want to handle constant GEPs regardless 1641 // of depth. 1642 if (Depth++ >= MaxDepth) 1643 continue; 1644 1645 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1646 return true; 1647 } 1648 1649 return false; 1650 } 1651 1652 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1653 /// ensure that the value it's attached to is never Value? 'RangeType' is 1654 /// is the type of the value described by the range. 1655 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1656 const APInt& Value) { 1657 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1658 assert(NumRanges >= 1); 1659 for (unsigned i = 0; i < NumRanges; ++i) { 1660 ConstantInt *Lower = 1661 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1662 ConstantInt *Upper = 1663 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1664 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1665 if (Range.contains(Value)) 1666 return false; 1667 } 1668 return true; 1669 } 1670 1671 /// Return true if the given value is known to be non-zero when defined. 1672 /// For vectors return true if every element is known to be non-zero when 1673 /// defined. Supports values with integer or pointer type and vectors of 1674 /// integers. 1675 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) { 1676 if (Constant *C = dyn_cast<Constant>(V)) { 1677 if (C->isNullValue()) 1678 return false; 1679 if (isa<ConstantInt>(C)) 1680 // Must be non-zero due to null test above. 1681 return true; 1682 // TODO: Handle vectors 1683 return false; 1684 } 1685 1686 if (Instruction* I = dyn_cast<Instruction>(V)) { 1687 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1688 // If the possible ranges don't contain zero, then the value is 1689 // definitely non-zero. 1690 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1691 const APInt ZeroValue(Ty->getBitWidth(), 0); 1692 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1693 return true; 1694 } 1695 } 1696 } 1697 1698 // The remaining tests are all recursive, so bail out if we hit the limit. 1699 if (Depth++ >= MaxDepth) 1700 return false; 1701 1702 // Check for pointer simplifications. 1703 if (V->getType()->isPointerTy()) { 1704 if (isKnownNonNull(V)) 1705 return true; 1706 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1707 if (isGEPKnownNonNull(GEP, Depth, Q)) 1708 return true; 1709 } 1710 1711 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1712 1713 // X | Y != 0 if X != 0 or Y != 0. 1714 Value *X = nullptr, *Y = nullptr; 1715 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1716 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1717 1718 // ext X != 0 if X != 0. 1719 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1720 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1721 1722 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1723 // if the lowest bit is shifted off the end. 1724 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1725 // shl nuw can't remove any non-zero bits. 1726 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1727 if (BO->hasNoUnsignedWrap()) 1728 return isKnownNonZero(X, Depth, Q); 1729 1730 APInt KnownZero(BitWidth, 0); 1731 APInt KnownOne(BitWidth, 0); 1732 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1733 if (KnownOne[0]) 1734 return true; 1735 } 1736 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1737 // defined if the sign bit is shifted off the end. 1738 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1739 // shr exact can only shift out zero bits. 1740 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1741 if (BO->isExact()) 1742 return isKnownNonZero(X, Depth, Q); 1743 1744 bool XKnownNonNegative, XKnownNegative; 1745 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1746 if (XKnownNegative) 1747 return true; 1748 1749 // If the shifter operand is a constant, and all of the bits shifted 1750 // out are known to be zero, and X is known non-zero then at least one 1751 // non-zero bit must remain. 1752 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1753 APInt KnownZero(BitWidth, 0); 1754 APInt KnownOne(BitWidth, 0); 1755 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1756 1757 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1758 // Is there a known one in the portion not shifted out? 1759 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1760 return true; 1761 // Are all the bits to be shifted out known zero? 1762 if (KnownZero.countTrailingOnes() >= ShiftVal) 1763 return isKnownNonZero(X, Depth, Q); 1764 } 1765 } 1766 // div exact can only produce a zero if the dividend is zero. 1767 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1768 return isKnownNonZero(X, Depth, Q); 1769 } 1770 // X + Y. 1771 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1772 bool XKnownNonNegative, XKnownNegative; 1773 bool YKnownNonNegative, YKnownNegative; 1774 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1775 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1776 1777 // If X and Y are both non-negative (as signed values) then their sum is not 1778 // zero unless both X and Y are zero. 1779 if (XKnownNonNegative && YKnownNonNegative) 1780 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1781 return true; 1782 1783 // If X and Y are both negative (as signed values) then their sum is not 1784 // zero unless both X and Y equal INT_MIN. 1785 if (BitWidth && XKnownNegative && YKnownNegative) { 1786 APInt KnownZero(BitWidth, 0); 1787 APInt KnownOne(BitWidth, 0); 1788 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1789 // The sign bit of X is set. If some other bit is set then X is not equal 1790 // to INT_MIN. 1791 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1792 if ((KnownOne & Mask) != 0) 1793 return true; 1794 // The sign bit of Y is set. If some other bit is set then Y is not equal 1795 // to INT_MIN. 1796 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1797 if ((KnownOne & Mask) != 0) 1798 return true; 1799 } 1800 1801 // The sum of a non-negative number and a power of two is not zero. 1802 if (XKnownNonNegative && 1803 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1804 return true; 1805 if (YKnownNonNegative && 1806 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1807 return true; 1808 } 1809 // X * Y. 1810 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1811 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1812 // If X and Y are non-zero then so is X * Y as long as the multiplication 1813 // does not overflow. 1814 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1815 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1816 return true; 1817 } 1818 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1819 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1820 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1821 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1822 return true; 1823 } 1824 // PHI 1825 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1826 // Try and detect a recurrence that monotonically increases from a 1827 // starting value, as these are common as induction variables. 1828 if (PN->getNumIncomingValues() == 2) { 1829 Value *Start = PN->getIncomingValue(0); 1830 Value *Induction = PN->getIncomingValue(1); 1831 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1832 std::swap(Start, Induction); 1833 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1834 if (!C->isZero() && !C->isNegative()) { 1835 ConstantInt *X; 1836 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1837 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1838 !X->isNegative()) 1839 return true; 1840 } 1841 } 1842 } 1843 // Check if all incoming values are non-zero constant. 1844 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1845 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1846 }); 1847 if (AllNonZeroConstants) 1848 return true; 1849 } 1850 1851 if (!BitWidth) return false; 1852 APInt KnownZero(BitWidth, 0); 1853 APInt KnownOne(BitWidth, 0); 1854 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1855 return KnownOne != 0; 1856 } 1857 1858 /// Return true if V2 == V1 + X, where X is known non-zero. 1859 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) { 1860 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1861 if (!BO || BO->getOpcode() != Instruction::Add) 1862 return false; 1863 Value *Op = nullptr; 1864 if (V2 == BO->getOperand(0)) 1865 Op = BO->getOperand(1); 1866 else if (V2 == BO->getOperand(1)) 1867 Op = BO->getOperand(0); 1868 else 1869 return false; 1870 return isKnownNonZero(Op, 0, Q); 1871 } 1872 1873 /// Return true if it is known that V1 != V2. 1874 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) { 1875 if (V1->getType()->isVectorTy() || V1 == V2) 1876 return false; 1877 if (V1->getType() != V2->getType()) 1878 // We can't look through casts yet. 1879 return false; 1880 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1881 return true; 1882 1883 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1884 // Are any known bits in V1 contradictory to known bits in V2? If V1 1885 // has a known zero where V2 has a known one, they must not be equal. 1886 auto BitWidth = Ty->getBitWidth(); 1887 APInt KnownZero1(BitWidth, 0); 1888 APInt KnownOne1(BitWidth, 0); 1889 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1890 APInt KnownZero2(BitWidth, 0); 1891 APInt KnownOne2(BitWidth, 0); 1892 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1893 1894 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1895 if (OppositeBits.getBoolValue()) 1896 return true; 1897 } 1898 return false; 1899 } 1900 1901 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1902 /// simplify operations downstream. Mask is known to be zero for bits that V 1903 /// cannot have. 1904 /// 1905 /// This function is defined on values with integer type, values with pointer 1906 /// type, and vectors of integers. In the case 1907 /// where V is a vector, the mask, known zero, and known one values are the 1908 /// same width as the vector element, and the bit is set only if it is true 1909 /// for all of the elements in the vector. 1910 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 1911 const Query &Q) { 1912 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1913 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1914 return (KnownZero & Mask) == Mask; 1915 } 1916 1917 1918 1919 /// Return the number of times the sign bit of the register is replicated into 1920 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1921 /// (itself), but other cases can give us information. For example, immediately 1922 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1923 /// other, so we return 3. 1924 /// 1925 /// 'Op' must have a scalar integer type. 1926 /// 1927 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) { 1928 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 1929 unsigned Tmp, Tmp2; 1930 unsigned FirstAnswer = 1; 1931 1932 // Note that ConstantInt is handled by the general computeKnownBits case 1933 // below. 1934 1935 if (Depth == 6) 1936 return 1; // Limit search depth. 1937 1938 Operator *U = dyn_cast<Operator>(V); 1939 switch (Operator::getOpcode(V)) { 1940 default: break; 1941 case Instruction::SExt: 1942 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1943 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 1944 1945 case Instruction::SDiv: { 1946 const APInt *Denominator; 1947 // sdiv X, C -> adds log(C) sign bits. 1948 if (match(U->getOperand(1), m_APInt(Denominator))) { 1949 1950 // Ignore non-positive denominator. 1951 if (!Denominator->isStrictlyPositive()) 1952 break; 1953 1954 // Calculate the incoming numerator bits. 1955 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1956 1957 // Add floor(log(C)) bits to the numerator bits. 1958 return std::min(TyBits, NumBits + Denominator->logBase2()); 1959 } 1960 break; 1961 } 1962 1963 case Instruction::SRem: { 1964 const APInt *Denominator; 1965 // srem X, C -> we know that the result is within [-C+1,C) when C is a 1966 // positive constant. This let us put a lower bound on the number of sign 1967 // bits. 1968 if (match(U->getOperand(1), m_APInt(Denominator))) { 1969 1970 // Ignore non-positive denominator. 1971 if (!Denominator->isStrictlyPositive()) 1972 break; 1973 1974 // Calculate the incoming numerator bits. SRem by a positive constant 1975 // can't lower the number of sign bits. 1976 unsigned NumrBits = 1977 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1978 1979 // Calculate the leading sign bit constraints by examining the 1980 // denominator. Given that the denominator is positive, there are two 1981 // cases: 1982 // 1983 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 1984 // (1 << ceilLogBase2(C)). 1985 // 1986 // 2. the numerator is negative. Then the result range is (-C,0] and 1987 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 1988 // 1989 // Thus a lower bound on the number of sign bits is `TyBits - 1990 // ceilLogBase2(C)`. 1991 1992 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 1993 return std::max(NumrBits, ResBits); 1994 } 1995 break; 1996 } 1997 1998 case Instruction::AShr: { 1999 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2000 // ashr X, C -> adds C sign bits. Vectors too. 2001 const APInt *ShAmt; 2002 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2003 Tmp += ShAmt->getZExtValue(); 2004 if (Tmp > TyBits) Tmp = TyBits; 2005 } 2006 return Tmp; 2007 } 2008 case Instruction::Shl: { 2009 const APInt *ShAmt; 2010 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2011 // shl destroys sign bits. 2012 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2013 Tmp2 = ShAmt->getZExtValue(); 2014 if (Tmp2 >= TyBits || // Bad shift. 2015 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2016 return Tmp - Tmp2; 2017 } 2018 break; 2019 } 2020 case Instruction::And: 2021 case Instruction::Or: 2022 case Instruction::Xor: // NOT is handled here. 2023 // Logical binary ops preserve the number of sign bits at the worst. 2024 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2025 if (Tmp != 1) { 2026 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2027 FirstAnswer = std::min(Tmp, Tmp2); 2028 // We computed what we know about the sign bits as our first 2029 // answer. Now proceed to the generic code that uses 2030 // computeKnownBits, and pick whichever answer is better. 2031 } 2032 break; 2033 2034 case Instruction::Select: 2035 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2036 if (Tmp == 1) return 1; // Early out. 2037 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2038 return std::min(Tmp, Tmp2); 2039 2040 case Instruction::Add: 2041 // Add can have at most one carry bit. Thus we know that the output 2042 // is, at worst, one more bit than the inputs. 2043 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2044 if (Tmp == 1) return 1; // Early out. 2045 2046 // Special case decrementing a value (ADD X, -1): 2047 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2048 if (CRHS->isAllOnesValue()) { 2049 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2050 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2051 2052 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2053 // sign bits set. 2054 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2055 return TyBits; 2056 2057 // If we are subtracting one from a positive number, there is no carry 2058 // out of the result. 2059 if (KnownZero.isNegative()) 2060 return Tmp; 2061 } 2062 2063 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2064 if (Tmp2 == 1) return 1; 2065 return std::min(Tmp, Tmp2)-1; 2066 2067 case Instruction::Sub: 2068 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2069 if (Tmp2 == 1) return 1; 2070 2071 // Handle NEG. 2072 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2073 if (CLHS->isNullValue()) { 2074 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2075 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2076 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2077 // sign bits set. 2078 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2079 return TyBits; 2080 2081 // If the input is known to be positive (the sign bit is known clear), 2082 // the output of the NEG has the same number of sign bits as the input. 2083 if (KnownZero.isNegative()) 2084 return Tmp2; 2085 2086 // Otherwise, we treat this like a SUB. 2087 } 2088 2089 // Sub can have at most one carry bit. Thus we know that the output 2090 // is, at worst, one more bit than the inputs. 2091 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2092 if (Tmp == 1) return 1; // Early out. 2093 return std::min(Tmp, Tmp2)-1; 2094 2095 case Instruction::PHI: { 2096 PHINode *PN = cast<PHINode>(U); 2097 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2098 // Don't analyze large in-degree PHIs. 2099 if (NumIncomingValues > 4) break; 2100 // Unreachable blocks may have zero-operand PHI nodes. 2101 if (NumIncomingValues == 0) break; 2102 2103 // Take the minimum of all incoming values. This can't infinitely loop 2104 // because of our depth threshold. 2105 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2106 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2107 if (Tmp == 1) return Tmp; 2108 Tmp = std::min( 2109 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2110 } 2111 return Tmp; 2112 } 2113 2114 case Instruction::Trunc: 2115 // FIXME: it's tricky to do anything useful for this, but it is an important 2116 // case for targets like X86. 2117 break; 2118 } 2119 2120 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2121 // use this information. 2122 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2123 APInt Mask; 2124 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2125 2126 if (KnownZero.isNegative()) { // sign bit is 0 2127 Mask = KnownZero; 2128 } else if (KnownOne.isNegative()) { // sign bit is 1; 2129 Mask = KnownOne; 2130 } else { 2131 // Nothing known. 2132 return FirstAnswer; 2133 } 2134 2135 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2136 // the number of identical bits in the top of the input value. 2137 Mask = ~Mask; 2138 Mask <<= Mask.getBitWidth()-TyBits; 2139 // Return # leading zeros. We use 'min' here in case Val was zero before 2140 // shifting. We don't want to return '64' as for an i32 "0". 2141 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2142 } 2143 2144 /// This function computes the integer multiple of Base that equals V. 2145 /// If successful, it returns true and returns the multiple in 2146 /// Multiple. If unsuccessful, it returns false. It looks 2147 /// through SExt instructions only if LookThroughSExt is true. 2148 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2149 bool LookThroughSExt, unsigned Depth) { 2150 const unsigned MaxDepth = 6; 2151 2152 assert(V && "No Value?"); 2153 assert(Depth <= MaxDepth && "Limit Search Depth"); 2154 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2155 2156 Type *T = V->getType(); 2157 2158 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2159 2160 if (Base == 0) 2161 return false; 2162 2163 if (Base == 1) { 2164 Multiple = V; 2165 return true; 2166 } 2167 2168 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2169 Constant *BaseVal = ConstantInt::get(T, Base); 2170 if (CO && CO == BaseVal) { 2171 // Multiple is 1. 2172 Multiple = ConstantInt::get(T, 1); 2173 return true; 2174 } 2175 2176 if (CI && CI->getZExtValue() % Base == 0) { 2177 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2178 return true; 2179 } 2180 2181 if (Depth == MaxDepth) return false; // Limit search depth. 2182 2183 Operator *I = dyn_cast<Operator>(V); 2184 if (!I) return false; 2185 2186 switch (I->getOpcode()) { 2187 default: break; 2188 case Instruction::SExt: 2189 if (!LookThroughSExt) return false; 2190 // otherwise fall through to ZExt 2191 case Instruction::ZExt: 2192 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2193 LookThroughSExt, Depth+1); 2194 case Instruction::Shl: 2195 case Instruction::Mul: { 2196 Value *Op0 = I->getOperand(0); 2197 Value *Op1 = I->getOperand(1); 2198 2199 if (I->getOpcode() == Instruction::Shl) { 2200 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2201 if (!Op1CI) return false; 2202 // Turn Op0 << Op1 into Op0 * 2^Op1 2203 APInt Op1Int = Op1CI->getValue(); 2204 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2205 APInt API(Op1Int.getBitWidth(), 0); 2206 API.setBit(BitToSet); 2207 Op1 = ConstantInt::get(V->getContext(), API); 2208 } 2209 2210 Value *Mul0 = nullptr; 2211 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2212 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2213 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2214 if (Op1C->getType()->getPrimitiveSizeInBits() < 2215 MulC->getType()->getPrimitiveSizeInBits()) 2216 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2217 if (Op1C->getType()->getPrimitiveSizeInBits() > 2218 MulC->getType()->getPrimitiveSizeInBits()) 2219 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2220 2221 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2222 Multiple = ConstantExpr::getMul(MulC, Op1C); 2223 return true; 2224 } 2225 2226 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2227 if (Mul0CI->getValue() == 1) { 2228 // V == Base * Op1, so return Op1 2229 Multiple = Op1; 2230 return true; 2231 } 2232 } 2233 2234 Value *Mul1 = nullptr; 2235 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2236 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2237 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2238 if (Op0C->getType()->getPrimitiveSizeInBits() < 2239 MulC->getType()->getPrimitiveSizeInBits()) 2240 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2241 if (Op0C->getType()->getPrimitiveSizeInBits() > 2242 MulC->getType()->getPrimitiveSizeInBits()) 2243 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2244 2245 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2246 Multiple = ConstantExpr::getMul(MulC, Op0C); 2247 return true; 2248 } 2249 2250 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2251 if (Mul1CI->getValue() == 1) { 2252 // V == Base * Op0, so return Op0 2253 Multiple = Op0; 2254 return true; 2255 } 2256 } 2257 } 2258 } 2259 2260 // We could not determine if V is a multiple of Base. 2261 return false; 2262 } 2263 2264 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2265 const TargetLibraryInfo *TLI) { 2266 const Function *F = ICS.getCalledFunction(); 2267 if (!F) 2268 return Intrinsic::not_intrinsic; 2269 2270 if (F->isIntrinsic()) 2271 return F->getIntrinsicID(); 2272 2273 if (!TLI) 2274 return Intrinsic::not_intrinsic; 2275 2276 LibFunc::Func Func; 2277 // We're going to make assumptions on the semantics of the functions, check 2278 // that the target knows that it's available in this environment and it does 2279 // not have local linkage. 2280 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2281 return Intrinsic::not_intrinsic; 2282 2283 if (!ICS.onlyReadsMemory()) 2284 return Intrinsic::not_intrinsic; 2285 2286 // Otherwise check if we have a call to a function that can be turned into a 2287 // vector intrinsic. 2288 switch (Func) { 2289 default: 2290 break; 2291 case LibFunc::sin: 2292 case LibFunc::sinf: 2293 case LibFunc::sinl: 2294 return Intrinsic::sin; 2295 case LibFunc::cos: 2296 case LibFunc::cosf: 2297 case LibFunc::cosl: 2298 return Intrinsic::cos; 2299 case LibFunc::exp: 2300 case LibFunc::expf: 2301 case LibFunc::expl: 2302 return Intrinsic::exp; 2303 case LibFunc::exp2: 2304 case LibFunc::exp2f: 2305 case LibFunc::exp2l: 2306 return Intrinsic::exp2; 2307 case LibFunc::log: 2308 case LibFunc::logf: 2309 case LibFunc::logl: 2310 return Intrinsic::log; 2311 case LibFunc::log10: 2312 case LibFunc::log10f: 2313 case LibFunc::log10l: 2314 return Intrinsic::log10; 2315 case LibFunc::log2: 2316 case LibFunc::log2f: 2317 case LibFunc::log2l: 2318 return Intrinsic::log2; 2319 case LibFunc::fabs: 2320 case LibFunc::fabsf: 2321 case LibFunc::fabsl: 2322 return Intrinsic::fabs; 2323 case LibFunc::fmin: 2324 case LibFunc::fminf: 2325 case LibFunc::fminl: 2326 return Intrinsic::minnum; 2327 case LibFunc::fmax: 2328 case LibFunc::fmaxf: 2329 case LibFunc::fmaxl: 2330 return Intrinsic::maxnum; 2331 case LibFunc::copysign: 2332 case LibFunc::copysignf: 2333 case LibFunc::copysignl: 2334 return Intrinsic::copysign; 2335 case LibFunc::floor: 2336 case LibFunc::floorf: 2337 case LibFunc::floorl: 2338 return Intrinsic::floor; 2339 case LibFunc::ceil: 2340 case LibFunc::ceilf: 2341 case LibFunc::ceill: 2342 return Intrinsic::ceil; 2343 case LibFunc::trunc: 2344 case LibFunc::truncf: 2345 case LibFunc::truncl: 2346 return Intrinsic::trunc; 2347 case LibFunc::rint: 2348 case LibFunc::rintf: 2349 case LibFunc::rintl: 2350 return Intrinsic::rint; 2351 case LibFunc::nearbyint: 2352 case LibFunc::nearbyintf: 2353 case LibFunc::nearbyintl: 2354 return Intrinsic::nearbyint; 2355 case LibFunc::round: 2356 case LibFunc::roundf: 2357 case LibFunc::roundl: 2358 return Intrinsic::round; 2359 case LibFunc::pow: 2360 case LibFunc::powf: 2361 case LibFunc::powl: 2362 return Intrinsic::pow; 2363 case LibFunc::sqrt: 2364 case LibFunc::sqrtf: 2365 case LibFunc::sqrtl: 2366 if (ICS->hasNoNaNs()) 2367 return Intrinsic::sqrt; 2368 return Intrinsic::not_intrinsic; 2369 } 2370 2371 return Intrinsic::not_intrinsic; 2372 } 2373 2374 /// Return true if we can prove that the specified FP value is never equal to 2375 /// -0.0. 2376 /// 2377 /// NOTE: this function will need to be revisited when we support non-default 2378 /// rounding modes! 2379 /// 2380 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2381 unsigned Depth) { 2382 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2383 return !CFP->getValueAPF().isNegZero(); 2384 2385 // FIXME: Magic number! At the least, this should be given a name because it's 2386 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2387 // expose it as a parameter, so it can be used for testing / experimenting. 2388 if (Depth == 6) 2389 return false; // Limit search depth. 2390 2391 const Operator *I = dyn_cast<Operator>(V); 2392 if (!I) return false; 2393 2394 // Check if the nsz fast-math flag is set 2395 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2396 if (FPO->hasNoSignedZeros()) 2397 return true; 2398 2399 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2400 if (I->getOpcode() == Instruction::FAdd) 2401 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2402 if (CFP->isNullValue()) 2403 return true; 2404 2405 // sitofp and uitofp turn into +0.0 for zero. 2406 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2407 return true; 2408 2409 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2410 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2411 switch (IID) { 2412 default: 2413 break; 2414 // sqrt(-0.0) = -0.0, no other negative results are possible. 2415 case Intrinsic::sqrt: 2416 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2417 // fabs(x) != -0.0 2418 case Intrinsic::fabs: 2419 return true; 2420 } 2421 } 2422 2423 return false; 2424 } 2425 2426 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2427 const TargetLibraryInfo *TLI, 2428 unsigned Depth) { 2429 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2430 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2431 2432 // FIXME: Magic number! At the least, this should be given a name because it's 2433 // used similarly in CannotBeNegativeZero(). A better fix may be to 2434 // expose it as a parameter, so it can be used for testing / experimenting. 2435 if (Depth == 6) 2436 return false; // Limit search depth. 2437 2438 const Operator *I = dyn_cast<Operator>(V); 2439 if (!I) return false; 2440 2441 switch (I->getOpcode()) { 2442 default: break; 2443 // Unsigned integers are always nonnegative. 2444 case Instruction::UIToFP: 2445 return true; 2446 case Instruction::FMul: 2447 // x*x is always non-negative or a NaN. 2448 if (I->getOperand(0) == I->getOperand(1)) 2449 return true; 2450 // Fall through 2451 case Instruction::FAdd: 2452 case Instruction::FDiv: 2453 case Instruction::FRem: 2454 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2455 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2456 case Instruction::Select: 2457 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && 2458 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2459 case Instruction::FPExt: 2460 case Instruction::FPTrunc: 2461 // Widening/narrowing never change sign. 2462 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2463 case Instruction::Call: 2464 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2465 switch (IID) { 2466 default: 2467 break; 2468 case Intrinsic::maxnum: 2469 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || 2470 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2471 case Intrinsic::minnum: 2472 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2473 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2474 case Intrinsic::exp: 2475 case Intrinsic::exp2: 2476 case Intrinsic::fabs: 2477 case Intrinsic::sqrt: 2478 return true; 2479 case Intrinsic::powi: 2480 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2481 // powi(x,n) is non-negative if n is even. 2482 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2483 return true; 2484 } 2485 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2486 case Intrinsic::fma: 2487 case Intrinsic::fmuladd: 2488 // x*x+y is non-negative if y is non-negative. 2489 return I->getOperand(0) == I->getOperand(1) && 2490 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2491 } 2492 break; 2493 } 2494 return false; 2495 } 2496 2497 /// If the specified value can be set by repeating the same byte in memory, 2498 /// return the i8 value that it is represented with. This is 2499 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2500 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2501 /// byte store (e.g. i16 0x1234), return null. 2502 Value *llvm::isBytewiseValue(Value *V) { 2503 // All byte-wide stores are splatable, even of arbitrary variables. 2504 if (V->getType()->isIntegerTy(8)) return V; 2505 2506 // Handle 'null' ConstantArrayZero etc. 2507 if (Constant *C = dyn_cast<Constant>(V)) 2508 if (C->isNullValue()) 2509 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2510 2511 // Constant float and double values can be handled as integer values if the 2512 // corresponding integer value is "byteable". An important case is 0.0. 2513 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2514 if (CFP->getType()->isFloatTy()) 2515 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2516 if (CFP->getType()->isDoubleTy()) 2517 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2518 // Don't handle long double formats, which have strange constraints. 2519 } 2520 2521 // We can handle constant integers that are multiple of 8 bits. 2522 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2523 if (CI->getBitWidth() % 8 == 0) { 2524 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2525 2526 if (!CI->getValue().isSplat(8)) 2527 return nullptr; 2528 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2529 } 2530 } 2531 2532 // A ConstantDataArray/Vector is splatable if all its members are equal and 2533 // also splatable. 2534 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2535 Value *Elt = CA->getElementAsConstant(0); 2536 Value *Val = isBytewiseValue(Elt); 2537 if (!Val) 2538 return nullptr; 2539 2540 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2541 if (CA->getElementAsConstant(I) != Elt) 2542 return nullptr; 2543 2544 return Val; 2545 } 2546 2547 // Conceptually, we could handle things like: 2548 // %a = zext i8 %X to i16 2549 // %b = shl i16 %a, 8 2550 // %c = or i16 %a, %b 2551 // but until there is an example that actually needs this, it doesn't seem 2552 // worth worrying about. 2553 return nullptr; 2554 } 2555 2556 2557 // This is the recursive version of BuildSubAggregate. It takes a few different 2558 // arguments. Idxs is the index within the nested struct From that we are 2559 // looking at now (which is of type IndexedType). IdxSkip is the number of 2560 // indices from Idxs that should be left out when inserting into the resulting 2561 // struct. To is the result struct built so far, new insertvalue instructions 2562 // build on that. 2563 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2564 SmallVectorImpl<unsigned> &Idxs, 2565 unsigned IdxSkip, 2566 Instruction *InsertBefore) { 2567 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2568 if (STy) { 2569 // Save the original To argument so we can modify it 2570 Value *OrigTo = To; 2571 // General case, the type indexed by Idxs is a struct 2572 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2573 // Process each struct element recursively 2574 Idxs.push_back(i); 2575 Value *PrevTo = To; 2576 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2577 InsertBefore); 2578 Idxs.pop_back(); 2579 if (!To) { 2580 // Couldn't find any inserted value for this index? Cleanup 2581 while (PrevTo != OrigTo) { 2582 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2583 PrevTo = Del->getAggregateOperand(); 2584 Del->eraseFromParent(); 2585 } 2586 // Stop processing elements 2587 break; 2588 } 2589 } 2590 // If we successfully found a value for each of our subaggregates 2591 if (To) 2592 return To; 2593 } 2594 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2595 // the struct's elements had a value that was inserted directly. In the latter 2596 // case, perhaps we can't determine each of the subelements individually, but 2597 // we might be able to find the complete struct somewhere. 2598 2599 // Find the value that is at that particular spot 2600 Value *V = FindInsertedValue(From, Idxs); 2601 2602 if (!V) 2603 return nullptr; 2604 2605 // Insert the value in the new (sub) aggregrate 2606 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2607 "tmp", InsertBefore); 2608 } 2609 2610 // This helper takes a nested struct and extracts a part of it (which is again a 2611 // struct) into a new value. For example, given the struct: 2612 // { a, { b, { c, d }, e } } 2613 // and the indices "1, 1" this returns 2614 // { c, d }. 2615 // 2616 // It does this by inserting an insertvalue for each element in the resulting 2617 // struct, as opposed to just inserting a single struct. This will only work if 2618 // each of the elements of the substruct are known (ie, inserted into From by an 2619 // insertvalue instruction somewhere). 2620 // 2621 // All inserted insertvalue instructions are inserted before InsertBefore 2622 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2623 Instruction *InsertBefore) { 2624 assert(InsertBefore && "Must have someplace to insert!"); 2625 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2626 idx_range); 2627 Value *To = UndefValue::get(IndexedType); 2628 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2629 unsigned IdxSkip = Idxs.size(); 2630 2631 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2632 } 2633 2634 /// Given an aggregrate and an sequence of indices, see if 2635 /// the scalar value indexed is already around as a register, for example if it 2636 /// were inserted directly into the aggregrate. 2637 /// 2638 /// If InsertBefore is not null, this function will duplicate (modified) 2639 /// insertvalues when a part of a nested struct is extracted. 2640 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2641 Instruction *InsertBefore) { 2642 // Nothing to index? Just return V then (this is useful at the end of our 2643 // recursion). 2644 if (idx_range.empty()) 2645 return V; 2646 // We have indices, so V should have an indexable type. 2647 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2648 "Not looking at a struct or array?"); 2649 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2650 "Invalid indices for type?"); 2651 2652 if (Constant *C = dyn_cast<Constant>(V)) { 2653 C = C->getAggregateElement(idx_range[0]); 2654 if (!C) return nullptr; 2655 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2656 } 2657 2658 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2659 // Loop the indices for the insertvalue instruction in parallel with the 2660 // requested indices 2661 const unsigned *req_idx = idx_range.begin(); 2662 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2663 i != e; ++i, ++req_idx) { 2664 if (req_idx == idx_range.end()) { 2665 // We can't handle this without inserting insertvalues 2666 if (!InsertBefore) 2667 return nullptr; 2668 2669 // The requested index identifies a part of a nested aggregate. Handle 2670 // this specially. For example, 2671 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2672 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2673 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2674 // This can be changed into 2675 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2676 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2677 // which allows the unused 0,0 element from the nested struct to be 2678 // removed. 2679 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2680 InsertBefore); 2681 } 2682 2683 // This insert value inserts something else than what we are looking for. 2684 // See if the (aggregate) value inserted into has the value we are 2685 // looking for, then. 2686 if (*req_idx != *i) 2687 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2688 InsertBefore); 2689 } 2690 // If we end up here, the indices of the insertvalue match with those 2691 // requested (though possibly only partially). Now we recursively look at 2692 // the inserted value, passing any remaining indices. 2693 return FindInsertedValue(I->getInsertedValueOperand(), 2694 makeArrayRef(req_idx, idx_range.end()), 2695 InsertBefore); 2696 } 2697 2698 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2699 // If we're extracting a value from an aggregate that was extracted from 2700 // something else, we can extract from that something else directly instead. 2701 // However, we will need to chain I's indices with the requested indices. 2702 2703 // Calculate the number of indices required 2704 unsigned size = I->getNumIndices() + idx_range.size(); 2705 // Allocate some space to put the new indices in 2706 SmallVector<unsigned, 5> Idxs; 2707 Idxs.reserve(size); 2708 // Add indices from the extract value instruction 2709 Idxs.append(I->idx_begin(), I->idx_end()); 2710 2711 // Add requested indices 2712 Idxs.append(idx_range.begin(), idx_range.end()); 2713 2714 assert(Idxs.size() == size 2715 && "Number of indices added not correct?"); 2716 2717 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2718 } 2719 // Otherwise, we don't know (such as, extracting from a function return value 2720 // or load instruction) 2721 return nullptr; 2722 } 2723 2724 /// Analyze the specified pointer to see if it can be expressed as a base 2725 /// pointer plus a constant offset. Return the base and offset to the caller. 2726 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2727 const DataLayout &DL) { 2728 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2729 APInt ByteOffset(BitWidth, 0); 2730 2731 // We walk up the defs but use a visited set to handle unreachable code. In 2732 // that case, we stop after accumulating the cycle once (not that it 2733 // matters). 2734 SmallPtrSet<Value *, 16> Visited; 2735 while (Visited.insert(Ptr).second) { 2736 if (Ptr->getType()->isVectorTy()) 2737 break; 2738 2739 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2740 APInt GEPOffset(BitWidth, 0); 2741 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2742 break; 2743 2744 ByteOffset += GEPOffset; 2745 2746 Ptr = GEP->getPointerOperand(); 2747 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2748 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2749 Ptr = cast<Operator>(Ptr)->getOperand(0); 2750 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2751 if (GA->isInterposable()) 2752 break; 2753 Ptr = GA->getAliasee(); 2754 } else { 2755 break; 2756 } 2757 } 2758 Offset = ByteOffset.getSExtValue(); 2759 return Ptr; 2760 } 2761 2762 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2763 // Make sure the GEP has exactly three arguments. 2764 if (GEP->getNumOperands() != 3) 2765 return false; 2766 2767 // Make sure the index-ee is a pointer to array of i8. 2768 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2769 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2770 return false; 2771 2772 // Check to make sure that the first operand of the GEP is an integer and 2773 // has value 0 so that we are sure we're indexing into the initializer. 2774 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2775 if (!FirstIdx || !FirstIdx->isZero()) 2776 return false; 2777 2778 return true; 2779 } 2780 2781 /// This function computes the length of a null-terminated C string pointed to 2782 /// by V. If successful, it returns true and returns the string in Str. 2783 /// If unsuccessful, it returns false. 2784 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2785 uint64_t Offset, bool TrimAtNul) { 2786 assert(V); 2787 2788 // Look through bitcast instructions and geps. 2789 V = V->stripPointerCasts(); 2790 2791 // If the value is a GEP instruction or constant expression, treat it as an 2792 // offset. 2793 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2794 // The GEP operator should be based on a pointer to string constant, and is 2795 // indexing into the string constant. 2796 if (!isGEPBasedOnPointerToString(GEP)) 2797 return false; 2798 2799 // If the second index isn't a ConstantInt, then this is a variable index 2800 // into the array. If this occurs, we can't say anything meaningful about 2801 // the string. 2802 uint64_t StartIdx = 0; 2803 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2804 StartIdx = CI->getZExtValue(); 2805 else 2806 return false; 2807 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2808 TrimAtNul); 2809 } 2810 2811 // The GEP instruction, constant or instruction, must reference a global 2812 // variable that is a constant and is initialized. The referenced constant 2813 // initializer is the array that we'll use for optimization. 2814 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2815 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2816 return false; 2817 2818 // Handle the all-zeros case 2819 if (GV->getInitializer()->isNullValue()) { 2820 // This is a degenerate case. The initializer is constant zero so the 2821 // length of the string must be zero. 2822 Str = ""; 2823 return true; 2824 } 2825 2826 // Must be a Constant Array 2827 const ConstantDataArray *Array = 2828 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2829 if (!Array || !Array->isString()) 2830 return false; 2831 2832 // Get the number of elements in the array 2833 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2834 2835 // Start out with the entire array in the StringRef. 2836 Str = Array->getAsString(); 2837 2838 if (Offset > NumElts) 2839 return false; 2840 2841 // Skip over 'offset' bytes. 2842 Str = Str.substr(Offset); 2843 2844 if (TrimAtNul) { 2845 // Trim off the \0 and anything after it. If the array is not nul 2846 // terminated, we just return the whole end of string. The client may know 2847 // some other way that the string is length-bound. 2848 Str = Str.substr(0, Str.find('\0')); 2849 } 2850 return true; 2851 } 2852 2853 // These next two are very similar to the above, but also look through PHI 2854 // nodes. 2855 // TODO: See if we can integrate these two together. 2856 2857 /// If we can compute the length of the string pointed to by 2858 /// the specified pointer, return 'len+1'. If we can't, return 0. 2859 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2860 // Look through noop bitcast instructions. 2861 V = V->stripPointerCasts(); 2862 2863 // If this is a PHI node, there are two cases: either we have already seen it 2864 // or we haven't. 2865 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2866 if (!PHIs.insert(PN).second) 2867 return ~0ULL; // already in the set. 2868 2869 // If it was new, see if all the input strings are the same length. 2870 uint64_t LenSoFar = ~0ULL; 2871 for (Value *IncValue : PN->incoming_values()) { 2872 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2873 if (Len == 0) return 0; // Unknown length -> unknown. 2874 2875 if (Len == ~0ULL) continue; 2876 2877 if (Len != LenSoFar && LenSoFar != ~0ULL) 2878 return 0; // Disagree -> unknown. 2879 LenSoFar = Len; 2880 } 2881 2882 // Success, all agree. 2883 return LenSoFar; 2884 } 2885 2886 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2887 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2888 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2889 if (Len1 == 0) return 0; 2890 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2891 if (Len2 == 0) return 0; 2892 if (Len1 == ~0ULL) return Len2; 2893 if (Len2 == ~0ULL) return Len1; 2894 if (Len1 != Len2) return 0; 2895 return Len1; 2896 } 2897 2898 // Otherwise, see if we can read the string. 2899 StringRef StrData; 2900 if (!getConstantStringInfo(V, StrData)) 2901 return 0; 2902 2903 return StrData.size()+1; 2904 } 2905 2906 /// If we can compute the length of the string pointed to by 2907 /// the specified pointer, return 'len+1'. If we can't, return 0. 2908 uint64_t llvm::GetStringLength(Value *V) { 2909 if (!V->getType()->isPointerTy()) return 0; 2910 2911 SmallPtrSet<PHINode*, 32> PHIs; 2912 uint64_t Len = GetStringLengthH(V, PHIs); 2913 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2914 // an empty string as a length. 2915 return Len == ~0ULL ? 1 : Len; 2916 } 2917 2918 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2919 /// previous iteration of the loop was referring to the same object as \p PN. 2920 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2921 // Find the loop-defined value. 2922 Loop *L = LI->getLoopFor(PN->getParent()); 2923 if (PN->getNumIncomingValues() != 2) 2924 return true; 2925 2926 // Find the value from previous iteration. 2927 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2928 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2929 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2930 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2931 return true; 2932 2933 // If a new pointer is loaded in the loop, the pointer references a different 2934 // object in every iteration. E.g.: 2935 // for (i) 2936 // int *p = a[i]; 2937 // ... 2938 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2939 if (!L->isLoopInvariant(Load->getPointerOperand())) 2940 return false; 2941 return true; 2942 } 2943 2944 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2945 unsigned MaxLookup) { 2946 if (!V->getType()->isPointerTy()) 2947 return V; 2948 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2949 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2950 V = GEP->getPointerOperand(); 2951 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2952 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2953 V = cast<Operator>(V)->getOperand(0); 2954 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2955 if (GA->isInterposable()) 2956 return V; 2957 V = GA->getAliasee(); 2958 } else { 2959 // See if InstructionSimplify knows any relevant tricks. 2960 if (Instruction *I = dyn_cast<Instruction>(V)) 2961 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2962 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2963 V = Simplified; 2964 continue; 2965 } 2966 2967 return V; 2968 } 2969 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2970 } 2971 return V; 2972 } 2973 2974 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2975 const DataLayout &DL, LoopInfo *LI, 2976 unsigned MaxLookup) { 2977 SmallPtrSet<Value *, 4> Visited; 2978 SmallVector<Value *, 4> Worklist; 2979 Worklist.push_back(V); 2980 do { 2981 Value *P = Worklist.pop_back_val(); 2982 P = GetUnderlyingObject(P, DL, MaxLookup); 2983 2984 if (!Visited.insert(P).second) 2985 continue; 2986 2987 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2988 Worklist.push_back(SI->getTrueValue()); 2989 Worklist.push_back(SI->getFalseValue()); 2990 continue; 2991 } 2992 2993 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2994 // If this PHI changes the underlying object in every iteration of the 2995 // loop, don't look through it. Consider: 2996 // int **A; 2997 // for (i) { 2998 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2999 // Curr = A[i]; 3000 // *Prev, *Curr; 3001 // 3002 // Prev is tracking Curr one iteration behind so they refer to different 3003 // underlying objects. 3004 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3005 isSameUnderlyingObjectInLoop(PN, LI)) 3006 for (Value *IncValue : PN->incoming_values()) 3007 Worklist.push_back(IncValue); 3008 continue; 3009 } 3010 3011 Objects.push_back(P); 3012 } while (!Worklist.empty()); 3013 } 3014 3015 /// Return true if the only users of this pointer are lifetime markers. 3016 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3017 for (const User *U : V->users()) { 3018 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3019 if (!II) return false; 3020 3021 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3022 II->getIntrinsicID() != Intrinsic::lifetime_end) 3023 return false; 3024 } 3025 return true; 3026 } 3027 3028 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3029 const Instruction *CtxI, 3030 const DominatorTree *DT, 3031 const TargetLibraryInfo *TLI) { 3032 const Operator *Inst = dyn_cast<Operator>(V); 3033 if (!Inst) 3034 return false; 3035 3036 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3037 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3038 if (C->canTrap()) 3039 return false; 3040 3041 switch (Inst->getOpcode()) { 3042 default: 3043 return true; 3044 case Instruction::UDiv: 3045 case Instruction::URem: { 3046 // x / y is undefined if y == 0. 3047 const APInt *V; 3048 if (match(Inst->getOperand(1), m_APInt(V))) 3049 return *V != 0; 3050 return false; 3051 } 3052 case Instruction::SDiv: 3053 case Instruction::SRem: { 3054 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3055 const APInt *Numerator, *Denominator; 3056 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3057 return false; 3058 // We cannot hoist this division if the denominator is 0. 3059 if (*Denominator == 0) 3060 return false; 3061 // It's safe to hoist if the denominator is not 0 or -1. 3062 if (*Denominator != -1) 3063 return true; 3064 // At this point we know that the denominator is -1. It is safe to hoist as 3065 // long we know that the numerator is not INT_MIN. 3066 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3067 return !Numerator->isMinSignedValue(); 3068 // The numerator *might* be MinSignedValue. 3069 return false; 3070 } 3071 case Instruction::Load: { 3072 const LoadInst *LI = cast<LoadInst>(Inst); 3073 if (!LI->isUnordered() || 3074 // Speculative load may create a race that did not exist in the source. 3075 LI->getParent()->getParent()->hasFnAttribute( 3076 Attribute::SanitizeThread) || 3077 // Speculative load may load data from dirty regions. 3078 LI->getParent()->getParent()->hasFnAttribute( 3079 Attribute::SanitizeAddress)) 3080 return false; 3081 const DataLayout &DL = LI->getModule()->getDataLayout(); 3082 return isDereferenceableAndAlignedPointer( 3083 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3084 } 3085 case Instruction::Call: { 3086 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3087 switch (II->getIntrinsicID()) { 3088 // These synthetic intrinsics have no side-effects and just mark 3089 // information about their operands. 3090 // FIXME: There are other no-op synthetic instructions that potentially 3091 // should be considered at least *safe* to speculate... 3092 case Intrinsic::dbg_declare: 3093 case Intrinsic::dbg_value: 3094 return true; 3095 3096 case Intrinsic::bswap: 3097 case Intrinsic::ctlz: 3098 case Intrinsic::ctpop: 3099 case Intrinsic::cttz: 3100 case Intrinsic::objectsize: 3101 case Intrinsic::sadd_with_overflow: 3102 case Intrinsic::smul_with_overflow: 3103 case Intrinsic::ssub_with_overflow: 3104 case Intrinsic::uadd_with_overflow: 3105 case Intrinsic::umul_with_overflow: 3106 case Intrinsic::usub_with_overflow: 3107 return true; 3108 // These intrinsics are defined to have the same behavior as libm 3109 // functions except for setting errno. 3110 case Intrinsic::sqrt: 3111 case Intrinsic::fma: 3112 case Intrinsic::fmuladd: 3113 return true; 3114 // These intrinsics are defined to have the same behavior as libm 3115 // functions, and the corresponding libm functions never set errno. 3116 case Intrinsic::trunc: 3117 case Intrinsic::copysign: 3118 case Intrinsic::fabs: 3119 case Intrinsic::minnum: 3120 case Intrinsic::maxnum: 3121 return true; 3122 // These intrinsics are defined to have the same behavior as libm 3123 // functions, which never overflow when operating on the IEEE754 types 3124 // that we support, and never set errno otherwise. 3125 case Intrinsic::ceil: 3126 case Intrinsic::floor: 3127 case Intrinsic::nearbyint: 3128 case Intrinsic::rint: 3129 case Intrinsic::round: 3130 return true; 3131 // TODO: are convert_{from,to}_fp16 safe? 3132 // TODO: can we list target-specific intrinsics here? 3133 default: break; 3134 } 3135 } 3136 return false; // The called function could have undefined behavior or 3137 // side-effects, even if marked readnone nounwind. 3138 } 3139 case Instruction::VAArg: 3140 case Instruction::Alloca: 3141 case Instruction::Invoke: 3142 case Instruction::PHI: 3143 case Instruction::Store: 3144 case Instruction::Ret: 3145 case Instruction::Br: 3146 case Instruction::IndirectBr: 3147 case Instruction::Switch: 3148 case Instruction::Unreachable: 3149 case Instruction::Fence: 3150 case Instruction::AtomicRMW: 3151 case Instruction::AtomicCmpXchg: 3152 case Instruction::LandingPad: 3153 case Instruction::Resume: 3154 case Instruction::CatchSwitch: 3155 case Instruction::CatchPad: 3156 case Instruction::CatchRet: 3157 case Instruction::CleanupPad: 3158 case Instruction::CleanupRet: 3159 return false; // Misc instructions which have effects 3160 } 3161 } 3162 3163 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3164 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3165 } 3166 3167 /// Return true if we know that the specified value is never null. 3168 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3169 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3170 3171 // Alloca never returns null, malloc might. 3172 if (isa<AllocaInst>(V)) return true; 3173 3174 // A byval, inalloca, or nonnull argument is never null. 3175 if (const Argument *A = dyn_cast<Argument>(V)) 3176 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3177 3178 // A global variable in address space 0 is non null unless extern weak. 3179 // Other address spaces may have null as a valid address for a global, 3180 // so we can't assume anything. 3181 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3182 return !GV->hasExternalWeakLinkage() && 3183 GV->getType()->getAddressSpace() == 0; 3184 3185 // A Load tagged w/nonnull metadata is never null. 3186 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3187 return LI->getMetadata(LLVMContext::MD_nonnull); 3188 3189 if (auto CS = ImmutableCallSite(V)) 3190 if (CS.isReturnNonNull()) 3191 return true; 3192 3193 return false; 3194 } 3195 3196 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3197 const Instruction *CtxI, 3198 const DominatorTree *DT) { 3199 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3200 3201 unsigned NumUsesExplored = 0; 3202 for (auto U : V->users()) { 3203 // Avoid massive lists 3204 if (NumUsesExplored >= DomConditionsMaxUses) 3205 break; 3206 NumUsesExplored++; 3207 // Consider only compare instructions uniquely controlling a branch 3208 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3209 if (!Cmp) 3210 continue; 3211 3212 for (auto *CmpU : Cmp->users()) { 3213 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3214 if (!BI) 3215 continue; 3216 3217 assert(BI->isConditional() && "uses a comparison!"); 3218 3219 BasicBlock *NonNullSuccessor = nullptr; 3220 CmpInst::Predicate Pred; 3221 3222 if (match(const_cast<ICmpInst*>(Cmp), 3223 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3224 if (Pred == ICmpInst::ICMP_EQ) 3225 NonNullSuccessor = BI->getSuccessor(1); 3226 else if (Pred == ICmpInst::ICMP_NE) 3227 NonNullSuccessor = BI->getSuccessor(0); 3228 } 3229 3230 if (NonNullSuccessor) { 3231 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3232 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3233 return true; 3234 } 3235 } 3236 } 3237 3238 return false; 3239 } 3240 3241 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3242 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3243 if (isKnownNonNull(V, TLI)) 3244 return true; 3245 3246 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3247 } 3248 3249 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3250 const DataLayout &DL, 3251 AssumptionCache *AC, 3252 const Instruction *CxtI, 3253 const DominatorTree *DT) { 3254 // Multiplying n * m significant bits yields a result of n + m significant 3255 // bits. If the total number of significant bits does not exceed the 3256 // result bit width (minus 1), there is no overflow. 3257 // This means if we have enough leading zero bits in the operands 3258 // we can guarantee that the result does not overflow. 3259 // Ref: "Hacker's Delight" by Henry Warren 3260 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3261 APInt LHSKnownZero(BitWidth, 0); 3262 APInt LHSKnownOne(BitWidth, 0); 3263 APInt RHSKnownZero(BitWidth, 0); 3264 APInt RHSKnownOne(BitWidth, 0); 3265 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3266 DT); 3267 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3268 DT); 3269 // Note that underestimating the number of zero bits gives a more 3270 // conservative answer. 3271 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3272 RHSKnownZero.countLeadingOnes(); 3273 // First handle the easy case: if we have enough zero bits there's 3274 // definitely no overflow. 3275 if (ZeroBits >= BitWidth) 3276 return OverflowResult::NeverOverflows; 3277 3278 // Get the largest possible values for each operand. 3279 APInt LHSMax = ~LHSKnownZero; 3280 APInt RHSMax = ~RHSKnownZero; 3281 3282 // We know the multiply operation doesn't overflow if the maximum values for 3283 // each operand will not overflow after we multiply them together. 3284 bool MaxOverflow; 3285 LHSMax.umul_ov(RHSMax, MaxOverflow); 3286 if (!MaxOverflow) 3287 return OverflowResult::NeverOverflows; 3288 3289 // We know it always overflows if multiplying the smallest possible values for 3290 // the operands also results in overflow. 3291 bool MinOverflow; 3292 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3293 if (MinOverflow) 3294 return OverflowResult::AlwaysOverflows; 3295 3296 return OverflowResult::MayOverflow; 3297 } 3298 3299 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3300 const DataLayout &DL, 3301 AssumptionCache *AC, 3302 const Instruction *CxtI, 3303 const DominatorTree *DT) { 3304 bool LHSKnownNonNegative, LHSKnownNegative; 3305 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3306 AC, CxtI, DT); 3307 if (LHSKnownNonNegative || LHSKnownNegative) { 3308 bool RHSKnownNonNegative, RHSKnownNegative; 3309 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3310 AC, CxtI, DT); 3311 3312 if (LHSKnownNegative && RHSKnownNegative) { 3313 // The sign bit is set in both cases: this MUST overflow. 3314 // Create a simple add instruction, and insert it into the struct. 3315 return OverflowResult::AlwaysOverflows; 3316 } 3317 3318 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3319 // The sign bit is clear in both cases: this CANNOT overflow. 3320 // Create a simple add instruction, and insert it into the struct. 3321 return OverflowResult::NeverOverflows; 3322 } 3323 } 3324 3325 return OverflowResult::MayOverflow; 3326 } 3327 3328 static OverflowResult computeOverflowForSignedAdd( 3329 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3330 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3331 if (Add && Add->hasNoSignedWrap()) { 3332 return OverflowResult::NeverOverflows; 3333 } 3334 3335 bool LHSKnownNonNegative, LHSKnownNegative; 3336 bool RHSKnownNonNegative, RHSKnownNegative; 3337 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3338 AC, CxtI, DT); 3339 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3340 AC, CxtI, DT); 3341 3342 if ((LHSKnownNonNegative && RHSKnownNegative) || 3343 (LHSKnownNegative && RHSKnownNonNegative)) { 3344 // The sign bits are opposite: this CANNOT overflow. 3345 return OverflowResult::NeverOverflows; 3346 } 3347 3348 // The remaining code needs Add to be available. Early returns if not so. 3349 if (!Add) 3350 return OverflowResult::MayOverflow; 3351 3352 // If the sign of Add is the same as at least one of the operands, this add 3353 // CANNOT overflow. This is particularly useful when the sum is 3354 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3355 // operands. 3356 bool LHSOrRHSKnownNonNegative = 3357 (LHSKnownNonNegative || RHSKnownNonNegative); 3358 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3359 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3360 bool AddKnownNonNegative, AddKnownNegative; 3361 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3362 /*Depth=*/0, AC, CxtI, DT); 3363 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3364 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3365 return OverflowResult::NeverOverflows; 3366 } 3367 } 3368 3369 return OverflowResult::MayOverflow; 3370 } 3371 3372 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3373 const DataLayout &DL, 3374 AssumptionCache *AC, 3375 const Instruction *CxtI, 3376 const DominatorTree *DT) { 3377 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3378 Add, DL, AC, CxtI, DT); 3379 } 3380 3381 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3382 const DataLayout &DL, 3383 AssumptionCache *AC, 3384 const Instruction *CxtI, 3385 const DominatorTree *DT) { 3386 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3387 } 3388 3389 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3390 // FIXME: This conservative implementation can be relaxed. E.g. most 3391 // atomic operations are guaranteed to terminate on most platforms 3392 // and most functions terminate. 3393 3394 return !I->isAtomic() && // atomics may never succeed on some platforms 3395 !isa<CallInst>(I) && // could throw and might not terminate 3396 !isa<InvokeInst>(I) && // might not terminate and could throw to 3397 // non-successor (see bug 24185 for details). 3398 !isa<ResumeInst>(I) && // has no successors 3399 !isa<ReturnInst>(I); // has no successors 3400 } 3401 3402 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3403 const Loop *L) { 3404 // The loop header is guaranteed to be executed for every iteration. 3405 // 3406 // FIXME: Relax this constraint to cover all basic blocks that are 3407 // guaranteed to be executed at every iteration. 3408 if (I->getParent() != L->getHeader()) return false; 3409 3410 for (const Instruction &LI : *L->getHeader()) { 3411 if (&LI == I) return true; 3412 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3413 } 3414 llvm_unreachable("Instruction not contained in its own parent basic block."); 3415 } 3416 3417 bool llvm::propagatesFullPoison(const Instruction *I) { 3418 switch (I->getOpcode()) { 3419 case Instruction::Add: 3420 case Instruction::Sub: 3421 case Instruction::Xor: 3422 case Instruction::Trunc: 3423 case Instruction::BitCast: 3424 case Instruction::AddrSpaceCast: 3425 // These operations all propagate poison unconditionally. Note that poison 3426 // is not any particular value, so xor or subtraction of poison with 3427 // itself still yields poison, not zero. 3428 return true; 3429 3430 case Instruction::AShr: 3431 case Instruction::SExt: 3432 // For these operations, one bit of the input is replicated across 3433 // multiple output bits. A replicated poison bit is still poison. 3434 return true; 3435 3436 case Instruction::Shl: { 3437 // Left shift *by* a poison value is poison. The number of 3438 // positions to shift is unsigned, so no negative values are 3439 // possible there. Left shift by zero places preserves poison. So 3440 // it only remains to consider left shift of poison by a positive 3441 // number of places. 3442 // 3443 // A left shift by a positive number of places leaves the lowest order bit 3444 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3445 // make the poison operand violate that flag, yielding a fresh full-poison 3446 // value. 3447 auto *OBO = cast<OverflowingBinaryOperator>(I); 3448 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3449 } 3450 3451 case Instruction::Mul: { 3452 // A multiplication by zero yields a non-poison zero result, so we need to 3453 // rule out zero as an operand. Conservatively, multiplication by a 3454 // non-zero constant is not multiplication by zero. 3455 // 3456 // Multiplication by a non-zero constant can leave some bits 3457 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3458 // order bit unpoisoned. So we need to consider that. 3459 // 3460 // Multiplication by 1 preserves poison. If the multiplication has a 3461 // no-wrap flag, then we can make the poison operand violate that flag 3462 // when multiplied by any integer other than 0 and 1. 3463 auto *OBO = cast<OverflowingBinaryOperator>(I); 3464 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3465 for (Value *V : OBO->operands()) { 3466 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3467 // A ConstantInt cannot yield poison, so we can assume that it is 3468 // the other operand that is poison. 3469 return !CI->isZero(); 3470 } 3471 } 3472 } 3473 return false; 3474 } 3475 3476 case Instruction::GetElementPtr: 3477 // A GEP implicitly represents a sequence of additions, subtractions, 3478 // truncations, sign extensions and multiplications. The multiplications 3479 // are by the non-zero sizes of some set of types, so we do not have to be 3480 // concerned with multiplication by zero. If the GEP is in-bounds, then 3481 // these operations are implicitly no-signed-wrap so poison is propagated 3482 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3483 return cast<GEPOperator>(I)->isInBounds(); 3484 3485 default: 3486 return false; 3487 } 3488 } 3489 3490 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3491 switch (I->getOpcode()) { 3492 case Instruction::Store: 3493 return cast<StoreInst>(I)->getPointerOperand(); 3494 3495 case Instruction::Load: 3496 return cast<LoadInst>(I)->getPointerOperand(); 3497 3498 case Instruction::AtomicCmpXchg: 3499 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3500 3501 case Instruction::AtomicRMW: 3502 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3503 3504 case Instruction::UDiv: 3505 case Instruction::SDiv: 3506 case Instruction::URem: 3507 case Instruction::SRem: 3508 return I->getOperand(1); 3509 3510 default: 3511 return nullptr; 3512 } 3513 } 3514 3515 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3516 // We currently only look for uses of poison values within the same basic 3517 // block, as that makes it easier to guarantee that the uses will be 3518 // executed given that PoisonI is executed. 3519 // 3520 // FIXME: Expand this to consider uses beyond the same basic block. To do 3521 // this, look out for the distinction between post-dominance and strong 3522 // post-dominance. 3523 const BasicBlock *BB = PoisonI->getParent(); 3524 3525 // Set of instructions that we have proved will yield poison if PoisonI 3526 // does. 3527 SmallSet<const Value *, 16> YieldsPoison; 3528 SmallSet<const BasicBlock *, 4> Visited; 3529 YieldsPoison.insert(PoisonI); 3530 Visited.insert(PoisonI->getParent()); 3531 3532 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3533 3534 unsigned Iter = 0; 3535 while (Iter++ < MaxDepth) { 3536 for (auto &I : make_range(Begin, End)) { 3537 if (&I != PoisonI) { 3538 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3539 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3540 return true; 3541 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3542 return false; 3543 } 3544 3545 // Mark poison that propagates from I through uses of I. 3546 if (YieldsPoison.count(&I)) { 3547 for (const User *User : I.users()) { 3548 const Instruction *UserI = cast<Instruction>(User); 3549 if (propagatesFullPoison(UserI)) 3550 YieldsPoison.insert(User); 3551 } 3552 } 3553 } 3554 3555 if (auto *NextBB = BB->getSingleSuccessor()) { 3556 if (Visited.insert(NextBB).second) { 3557 BB = NextBB; 3558 Begin = BB->getFirstNonPHI()->getIterator(); 3559 End = BB->end(); 3560 continue; 3561 } 3562 } 3563 3564 break; 3565 }; 3566 return false; 3567 } 3568 3569 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3570 if (FMF.noNaNs()) 3571 return true; 3572 3573 if (auto *C = dyn_cast<ConstantFP>(V)) 3574 return !C->isNaN(); 3575 return false; 3576 } 3577 3578 static bool isKnownNonZero(Value *V) { 3579 if (auto *C = dyn_cast<ConstantFP>(V)) 3580 return !C->isZero(); 3581 return false; 3582 } 3583 3584 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3585 FastMathFlags FMF, 3586 Value *CmpLHS, Value *CmpRHS, 3587 Value *TrueVal, Value *FalseVal, 3588 Value *&LHS, Value *&RHS) { 3589 LHS = CmpLHS; 3590 RHS = CmpRHS; 3591 3592 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3593 // return inconsistent results between implementations. 3594 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3595 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3596 // Therefore we behave conservatively and only proceed if at least one of the 3597 // operands is known to not be zero, or if we don't care about signed zeroes. 3598 switch (Pred) { 3599 default: break; 3600 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3601 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3602 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3603 !isKnownNonZero(CmpRHS)) 3604 return {SPF_UNKNOWN, SPNB_NA, false}; 3605 } 3606 3607 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3608 bool Ordered = false; 3609 3610 // When given one NaN and one non-NaN input: 3611 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3612 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3613 // ordered comparison fails), which could be NaN or non-NaN. 3614 // so here we discover exactly what NaN behavior is required/accepted. 3615 if (CmpInst::isFPPredicate(Pred)) { 3616 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3617 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3618 3619 if (LHSSafe && RHSSafe) { 3620 // Both operands are known non-NaN. 3621 NaNBehavior = SPNB_RETURNS_ANY; 3622 } else if (CmpInst::isOrdered(Pred)) { 3623 // An ordered comparison will return false when given a NaN, so it 3624 // returns the RHS. 3625 Ordered = true; 3626 if (LHSSafe) 3627 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3628 NaNBehavior = SPNB_RETURNS_NAN; 3629 else if (RHSSafe) 3630 NaNBehavior = SPNB_RETURNS_OTHER; 3631 else 3632 // Completely unsafe. 3633 return {SPF_UNKNOWN, SPNB_NA, false}; 3634 } else { 3635 Ordered = false; 3636 // An unordered comparison will return true when given a NaN, so it 3637 // returns the LHS. 3638 if (LHSSafe) 3639 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3640 NaNBehavior = SPNB_RETURNS_OTHER; 3641 else if (RHSSafe) 3642 NaNBehavior = SPNB_RETURNS_NAN; 3643 else 3644 // Completely unsafe. 3645 return {SPF_UNKNOWN, SPNB_NA, false}; 3646 } 3647 } 3648 3649 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3650 std::swap(CmpLHS, CmpRHS); 3651 Pred = CmpInst::getSwappedPredicate(Pred); 3652 if (NaNBehavior == SPNB_RETURNS_NAN) 3653 NaNBehavior = SPNB_RETURNS_OTHER; 3654 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3655 NaNBehavior = SPNB_RETURNS_NAN; 3656 Ordered = !Ordered; 3657 } 3658 3659 // ([if]cmp X, Y) ? X : Y 3660 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3661 switch (Pred) { 3662 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3663 case ICmpInst::ICMP_UGT: 3664 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3665 case ICmpInst::ICMP_SGT: 3666 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3667 case ICmpInst::ICMP_ULT: 3668 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3669 case ICmpInst::ICMP_SLT: 3670 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3671 case FCmpInst::FCMP_UGT: 3672 case FCmpInst::FCMP_UGE: 3673 case FCmpInst::FCMP_OGT: 3674 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3675 case FCmpInst::FCMP_ULT: 3676 case FCmpInst::FCMP_ULE: 3677 case FCmpInst::FCMP_OLT: 3678 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3679 } 3680 } 3681 3682 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3683 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3684 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3685 3686 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3687 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3688 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3689 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3690 } 3691 3692 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3693 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3694 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3695 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3696 } 3697 } 3698 3699 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3700 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3701 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3702 ~C1->getValue() == C2->getValue() && 3703 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3704 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3705 LHS = TrueVal; 3706 RHS = FalseVal; 3707 return {SPF_SMIN, SPNB_NA, false}; 3708 } 3709 } 3710 } 3711 3712 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3713 3714 return {SPF_UNKNOWN, SPNB_NA, false}; 3715 } 3716 3717 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3718 Instruction::CastOps *CastOp) { 3719 CastInst *CI = dyn_cast<CastInst>(V1); 3720 Constant *C = dyn_cast<Constant>(V2); 3721 if (!CI) 3722 return nullptr; 3723 *CastOp = CI->getOpcode(); 3724 3725 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 3726 // If V1 and V2 are both the same cast from the same type, we can look 3727 // through V1. 3728 if (CI2->getOpcode() == CI->getOpcode() && 3729 CI2->getSrcTy() == CI->getSrcTy()) 3730 return CI2->getOperand(0); 3731 return nullptr; 3732 } else if (!C) { 3733 return nullptr; 3734 } 3735 3736 Constant *CastedTo = nullptr; 3737 3738 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3739 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3740 3741 if (isa<SExtInst>(CI) && CmpI->isSigned()) 3742 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 3743 3744 if (isa<TruncInst>(CI)) 3745 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3746 3747 if (isa<FPTruncInst>(CI)) 3748 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3749 3750 if (isa<FPExtInst>(CI)) 3751 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3752 3753 if (isa<FPToUIInst>(CI)) 3754 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3755 3756 if (isa<FPToSIInst>(CI)) 3757 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3758 3759 if (isa<UIToFPInst>(CI)) 3760 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3761 3762 if (isa<SIToFPInst>(CI)) 3763 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3764 3765 if (!CastedTo) 3766 return nullptr; 3767 3768 Constant *CastedBack = 3769 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 3770 // Make sure the cast doesn't lose any information. 3771 if (CastedBack != C) 3772 return nullptr; 3773 3774 return CastedTo; 3775 } 3776 3777 SelectPatternResult llvm::matchSelectPattern(Value *V, 3778 Value *&LHS, Value *&RHS, 3779 Instruction::CastOps *CastOp) { 3780 SelectInst *SI = dyn_cast<SelectInst>(V); 3781 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3782 3783 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3784 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3785 3786 CmpInst::Predicate Pred = CmpI->getPredicate(); 3787 Value *CmpLHS = CmpI->getOperand(0); 3788 Value *CmpRHS = CmpI->getOperand(1); 3789 Value *TrueVal = SI->getTrueValue(); 3790 Value *FalseVal = SI->getFalseValue(); 3791 FastMathFlags FMF; 3792 if (isa<FPMathOperator>(CmpI)) 3793 FMF = CmpI->getFastMathFlags(); 3794 3795 // Bail out early. 3796 if (CmpI->isEquality()) 3797 return {SPF_UNKNOWN, SPNB_NA, false}; 3798 3799 // Deal with type mismatches. 3800 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3801 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3802 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3803 cast<CastInst>(TrueVal)->getOperand(0), C, 3804 LHS, RHS); 3805 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3806 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3807 C, cast<CastInst>(FalseVal)->getOperand(0), 3808 LHS, RHS); 3809 } 3810 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3811 LHS, RHS); 3812 } 3813 3814 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 3815 const unsigned NumRanges = Ranges.getNumOperands() / 2; 3816 assert(NumRanges >= 1 && "Must have at least one range!"); 3817 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 3818 3819 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 3820 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 3821 3822 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 3823 3824 for (unsigned i = 1; i < NumRanges; ++i) { 3825 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 3826 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 3827 3828 // Note: unionWith will potentially create a range that contains values not 3829 // contained in any of the original N ranges. 3830 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 3831 } 3832 3833 return CR; 3834 } 3835 3836 /// Return true if "icmp Pred LHS RHS" is always true. 3837 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 3838 const DataLayout &DL, unsigned Depth, 3839 AssumptionCache *AC, const Instruction *CxtI, 3840 const DominatorTree *DT) { 3841 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 3842 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 3843 return true; 3844 3845 switch (Pred) { 3846 default: 3847 return false; 3848 3849 case CmpInst::ICMP_SLE: { 3850 const APInt *C; 3851 3852 // LHS s<= LHS +_{nsw} C if C >= 0 3853 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 3854 return !C->isNegative(); 3855 return false; 3856 } 3857 3858 case CmpInst::ICMP_ULE: { 3859 const APInt *C; 3860 3861 // LHS u<= LHS +_{nuw} C for any C 3862 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 3863 return true; 3864 3865 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 3866 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X, 3867 const APInt *&CA, const APInt *&CB) { 3868 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 3869 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 3870 return true; 3871 3872 // If X & C == 0 then (X | C) == X +_{nuw} C 3873 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 3874 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 3875 unsigned BitWidth = CA->getBitWidth(); 3876 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3877 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 3878 3879 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 3880 return true; 3881 } 3882 3883 return false; 3884 }; 3885 3886 Value *X; 3887 const APInt *CLHS, *CRHS; 3888 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 3889 return CLHS->ule(*CRHS); 3890 3891 return false; 3892 } 3893 } 3894 } 3895 3896 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 3897 /// ALHS ARHS" is true. Otherwise, return None. 3898 static Optional<bool> 3899 isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS, 3900 Value *BLHS, Value *BRHS, const DataLayout &DL, 3901 unsigned Depth, AssumptionCache *AC, 3902 const Instruction *CxtI, const DominatorTree *DT) { 3903 switch (Pred) { 3904 default: 3905 return None; 3906 3907 case CmpInst::ICMP_SLT: 3908 case CmpInst::ICMP_SLE: 3909 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 3910 DT) && 3911 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 3912 return true; 3913 return None; 3914 3915 case CmpInst::ICMP_ULT: 3916 case CmpInst::ICMP_ULE: 3917 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 3918 DT) && 3919 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 3920 return true; 3921 return None; 3922 } 3923 } 3924 3925 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 3926 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 3927 /// BRHS" is false. Otherwise, return None if we can't infer anything. 3928 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 3929 Value *ALHS, Value *ARHS, 3930 CmpInst::Predicate BPred, 3931 Value *BLHS, Value *BRHS) { 3932 // The operands of the two compares must match. 3933 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 3934 bool IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 3935 if (!IsMatchingOps && !IsSwappedOps) 3936 return None; 3937 3938 // Canonicalize the operands so they're matching. 3939 if (IsSwappedOps) { 3940 std::swap(BLHS, BRHS); 3941 BPred = ICmpInst::getSwappedPredicate(BPred); 3942 } 3943 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 3944 return true; 3945 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 3946 return false; 3947 3948 return None; 3949 } 3950 3951 Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS, 3952 const DataLayout &DL, bool InvertAPred, 3953 unsigned Depth, AssumptionCache *AC, 3954 const Instruction *CxtI, 3955 const DominatorTree *DT) { 3956 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 3957 if (LHS->getType() != RHS->getType()) 3958 return None; 3959 3960 Type *OpTy = LHS->getType(); 3961 assert(OpTy->getScalarType()->isIntegerTy(1)); 3962 3963 // LHS ==> RHS by definition 3964 if (!InvertAPred && LHS == RHS) 3965 return true; 3966 3967 if (OpTy->isVectorTy()) 3968 // TODO: extending the code below to handle vectors 3969 return None; 3970 assert(OpTy->isIntegerTy(1) && "implied by above"); 3971 3972 ICmpInst::Predicate APred, BPred; 3973 Value *ALHS, *ARHS; 3974 Value *BLHS, *BRHS; 3975 3976 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 3977 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 3978 return None; 3979 3980 if (InvertAPred) 3981 APred = CmpInst::getInversePredicate(APred); 3982 3983 Optional<bool> Implication = 3984 isImpliedCondMatchingOperands(APred, ALHS, ARHS, BPred, BLHS, BRHS); 3985 if (Implication) 3986 return Implication; 3987 3988 if (APred == BPred) 3989 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 3990 CxtI, DT); 3991 3992 return None; 3993 } 3994