1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 // According to the LangRef, branching on a poison condition is absolutely 86 // immediate full UB. However, historically we haven't implemented that 87 // consistently as we have an important transformation (non-trivial unswitch) 88 // which introduces instances of branch on poison/undef to otherwise well 89 // defined programs. This flag exists to let us test optimization benefit 90 // of exploiting the specified behavior (in combination with enabling the 91 // unswitch fix.) 92 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 93 cl::Hidden, cl::init(false)); 94 95 96 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 97 /// returns the element type's bitwidth. 98 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 99 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 100 return BitWidth; 101 102 return DL.getPointerTypeSizeInBits(Ty); 103 } 104 105 namespace { 106 107 // Simplifying using an assume can only be done in a particular control-flow 108 // context (the context instruction provides that context). If an assume and 109 // the context instruction are not in the same block then the DT helps in 110 // figuring out if we can use it. 111 struct Query { 112 const DataLayout &DL; 113 AssumptionCache *AC; 114 const Instruction *CxtI; 115 const DominatorTree *DT; 116 117 // Unlike the other analyses, this may be a nullptr because not all clients 118 // provide it currently. 119 OptimizationRemarkEmitter *ORE; 120 121 /// If true, it is safe to use metadata during simplification. 122 InstrInfoQuery IIQ; 123 124 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 125 const DominatorTree *DT, bool UseInstrInfo, 126 OptimizationRemarkEmitter *ORE = nullptr) 127 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 128 }; 129 130 } // end anonymous namespace 131 132 // Given the provided Value and, potentially, a context instruction, return 133 // the preferred context instruction (if any). 134 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 135 // If we've been provided with a context instruction, then use that (provided 136 // it has been inserted). 137 if (CxtI && CxtI->getParent()) 138 return CxtI; 139 140 // If the value is really an already-inserted instruction, then use that. 141 CxtI = dyn_cast<Instruction>(V); 142 if (CxtI && CxtI->getParent()) 143 return CxtI; 144 145 return nullptr; 146 } 147 148 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 149 // If we've been provided with a context instruction, then use that (provided 150 // it has been inserted). 151 if (CxtI && CxtI->getParent()) 152 return CxtI; 153 154 // If the value is really an already-inserted instruction, then use that. 155 CxtI = dyn_cast<Instruction>(V1); 156 if (CxtI && CxtI->getParent()) 157 return CxtI; 158 159 CxtI = dyn_cast<Instruction>(V2); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 178 if (DemandedElts.isZero()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 // FIXME: We currently have no way to represent the DemandedElts of a scalable 210 // vector 211 if (isa<ScalableVectorType>(V->getType())) { 212 Known.resetAll(); 213 return; 214 } 215 216 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 217 APInt DemandedElts = 218 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 219 computeKnownBits(V, DemandedElts, Known, Depth, Q); 220 } 221 222 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 223 const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, const Instruction *CxtI, 225 const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 232 KnownBits &Known, const DataLayout &DL, 233 unsigned Depth, AssumptionCache *AC, 234 const Instruction *CxtI, const DominatorTree *DT, 235 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 236 ::computeKnownBits(V, DemandedElts, Known, Depth, 237 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 238 } 239 240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 241 unsigned Depth, const Query &Q); 242 243 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 257 const DataLayout &DL, unsigned Depth, 258 AssumptionCache *AC, const Instruction *CxtI, 259 const DominatorTree *DT, 260 OptimizationRemarkEmitter *ORE, 261 bool UseInstrInfo) { 262 return ::computeKnownBits( 263 V, DemandedElts, Depth, 264 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 265 } 266 267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 268 const DataLayout &DL, AssumptionCache *AC, 269 const Instruction *CxtI, const DominatorTree *DT, 270 bool UseInstrInfo) { 271 assert(LHS->getType() == RHS->getType() && 272 "LHS and RHS should have the same type"); 273 assert(LHS->getType()->isIntOrIntVectorTy() && 274 "LHS and RHS should be integers"); 275 // Look for an inverted mask: (X & ~M) op (Y & M). 276 { 277 Value *M; 278 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(RHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 282 match(LHS, m_c_And(m_Specific(M), m_Value()))) 283 return true; 284 } 285 // Look for: (A & B) op ~(A | B) 286 { 287 Value *A, *B; 288 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 289 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 290 return true; 291 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 292 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 293 return true; 294 } 295 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 296 KnownBits LHSKnown(IT->getBitWidth()); 297 KnownBits RHSKnown(IT->getBitWidth()); 298 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 299 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 300 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 301 } 302 303 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 304 return !I->user_empty() && all_of(I->users(), [](const User *U) { 305 ICmpInst::Predicate P; 306 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 307 }); 308 } 309 310 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 311 const Query &Q); 312 313 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 314 bool OrZero, unsigned Depth, 315 AssumptionCache *AC, const Instruction *CxtI, 316 const DominatorTree *DT, bool UseInstrInfo) { 317 return ::isKnownToBeAPowerOfTwo( 318 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 319 } 320 321 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 322 unsigned Depth, const Query &Q); 323 324 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 325 326 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 327 AssumptionCache *AC, const Instruction *CxtI, 328 const DominatorTree *DT, bool UseInstrInfo) { 329 return ::isKnownNonZero(V, Depth, 330 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 331 } 332 333 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 334 unsigned Depth, AssumptionCache *AC, 335 const Instruction *CxtI, const DominatorTree *DT, 336 bool UseInstrInfo) { 337 KnownBits Known = 338 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 339 return Known.isNonNegative(); 340 } 341 342 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 343 AssumptionCache *AC, const Instruction *CxtI, 344 const DominatorTree *DT, bool UseInstrInfo) { 345 if (auto *CI = dyn_cast<ConstantInt>(V)) 346 return CI->getValue().isStrictlyPositive(); 347 348 // TODO: We'd doing two recursive queries here. We should factor this such 349 // that only a single query is needed. 350 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 351 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 352 } 353 354 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 355 AssumptionCache *AC, const Instruction *CxtI, 356 const DominatorTree *DT, bool UseInstrInfo) { 357 KnownBits Known = 358 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 359 return Known.isNegative(); 360 } 361 362 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 363 const Query &Q); 364 365 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 366 const DataLayout &DL, AssumptionCache *AC, 367 const Instruction *CxtI, const DominatorTree *DT, 368 bool UseInstrInfo) { 369 return ::isKnownNonEqual(V1, V2, 0, 370 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 371 UseInstrInfo, /*ORE=*/nullptr)); 372 } 373 374 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 375 const Query &Q); 376 377 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 378 const DataLayout &DL, unsigned Depth, 379 AssumptionCache *AC, const Instruction *CxtI, 380 const DominatorTree *DT, bool UseInstrInfo) { 381 return ::MaskedValueIsZero( 382 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 383 } 384 385 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 386 unsigned Depth, const Query &Q); 387 388 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 389 const Query &Q) { 390 // FIXME: We currently have no way to represent the DemandedElts of a scalable 391 // vector 392 if (isa<ScalableVectorType>(V->getType())) 393 return 1; 394 395 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 396 APInt DemandedElts = 397 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 398 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 399 } 400 401 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 402 unsigned Depth, AssumptionCache *AC, 403 const Instruction *CxtI, 404 const DominatorTree *DT, bool UseInstrInfo) { 405 return ::ComputeNumSignBits( 406 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 407 } 408 409 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 410 unsigned Depth, AssumptionCache *AC, 411 const Instruction *CxtI, 412 const DominatorTree *DT) { 413 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 414 return V->getType()->getScalarSizeInBits() - SignBits + 1; 415 } 416 417 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 418 bool NSW, const APInt &DemandedElts, 419 KnownBits &KnownOut, KnownBits &Known2, 420 unsigned Depth, const Query &Q) { 421 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 422 423 // If one operand is unknown and we have no nowrap information, 424 // the result will be unknown independently of the second operand. 425 if (KnownOut.isUnknown() && !NSW) 426 return; 427 428 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 429 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 430 } 431 432 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 433 const APInt &DemandedElts, KnownBits &Known, 434 KnownBits &Known2, unsigned Depth, 435 const Query &Q) { 436 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 437 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 438 439 bool isKnownNegative = false; 440 bool isKnownNonNegative = false; 441 // If the multiplication is known not to overflow, compute the sign bit. 442 if (NSW) { 443 if (Op0 == Op1) { 444 // The product of a number with itself is non-negative. 445 isKnownNonNegative = true; 446 } else { 447 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 448 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 449 bool isKnownNegativeOp1 = Known.isNegative(); 450 bool isKnownNegativeOp0 = Known2.isNegative(); 451 // The product of two numbers with the same sign is non-negative. 452 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 453 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 454 // The product of a negative number and a non-negative number is either 455 // negative or zero. 456 if (!isKnownNonNegative) 457 isKnownNegative = 458 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 459 Known2.isNonZero()) || 460 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 461 } 462 } 463 464 bool SelfMultiply = Op0 == Op1; 465 // TODO: SelfMultiply can be poison, but not undef. 466 if (SelfMultiply) 467 SelfMultiply &= 468 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 469 Known = KnownBits::mul(Known, Known2, SelfMultiply); 470 471 // Only make use of no-wrap flags if we failed to compute the sign bit 472 // directly. This matters if the multiplication always overflows, in 473 // which case we prefer to follow the result of the direct computation, 474 // though as the program is invoking undefined behaviour we can choose 475 // whatever we like here. 476 if (isKnownNonNegative && !Known.isNegative()) 477 Known.makeNonNegative(); 478 else if (isKnownNegative && !Known.isNonNegative()) 479 Known.makeNegative(); 480 } 481 482 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 483 KnownBits &Known) { 484 unsigned BitWidth = Known.getBitWidth(); 485 unsigned NumRanges = Ranges.getNumOperands() / 2; 486 assert(NumRanges >= 1); 487 488 Known.Zero.setAllBits(); 489 Known.One.setAllBits(); 490 491 for (unsigned i = 0; i < NumRanges; ++i) { 492 ConstantInt *Lower = 493 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 494 ConstantInt *Upper = 495 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 496 ConstantRange Range(Lower->getValue(), Upper->getValue()); 497 498 // The first CommonPrefixBits of all values in Range are equal. 499 unsigned CommonPrefixBits = 500 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 501 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 502 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 503 Known.One &= UnsignedMax & Mask; 504 Known.Zero &= ~UnsignedMax & Mask; 505 } 506 } 507 508 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 509 SmallVector<const Value *, 16> WorkSet(1, I); 510 SmallPtrSet<const Value *, 32> Visited; 511 SmallPtrSet<const Value *, 16> EphValues; 512 513 // The instruction defining an assumption's condition itself is always 514 // considered ephemeral to that assumption (even if it has other 515 // non-ephemeral users). See r246696's test case for an example. 516 if (is_contained(I->operands(), E)) 517 return true; 518 519 while (!WorkSet.empty()) { 520 const Value *V = WorkSet.pop_back_val(); 521 if (!Visited.insert(V).second) 522 continue; 523 524 // If all uses of this value are ephemeral, then so is this value. 525 if (llvm::all_of(V->users(), [&](const User *U) { 526 return EphValues.count(U); 527 })) { 528 if (V == E) 529 return true; 530 531 if (V == I || (isa<Instruction>(V) && 532 !cast<Instruction>(V)->mayHaveSideEffects() && 533 !cast<Instruction>(V)->isTerminator())) { 534 EphValues.insert(V); 535 if (const User *U = dyn_cast<User>(V)) 536 append_range(WorkSet, U->operands()); 537 } 538 } 539 } 540 541 return false; 542 } 543 544 // Is this an intrinsic that cannot be speculated but also cannot trap? 545 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 546 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 547 return CI->isAssumeLikeIntrinsic(); 548 549 return false; 550 } 551 552 bool llvm::isValidAssumeForContext(const Instruction *Inv, 553 const Instruction *CxtI, 554 const DominatorTree *DT) { 555 // There are two restrictions on the use of an assume: 556 // 1. The assume must dominate the context (or the control flow must 557 // reach the assume whenever it reaches the context). 558 // 2. The context must not be in the assume's set of ephemeral values 559 // (otherwise we will use the assume to prove that the condition 560 // feeding the assume is trivially true, thus causing the removal of 561 // the assume). 562 563 if (Inv->getParent() == CxtI->getParent()) { 564 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 565 // in the BB. 566 if (Inv->comesBefore(CxtI)) 567 return true; 568 569 // Don't let an assume affect itself - this would cause the problems 570 // `isEphemeralValueOf` is trying to prevent, and it would also make 571 // the loop below go out of bounds. 572 if (Inv == CxtI) 573 return false; 574 575 // The context comes first, but they're both in the same block. 576 // Make sure there is nothing in between that might interrupt 577 // the control flow, not even CxtI itself. 578 // We limit the scan distance between the assume and its context instruction 579 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 580 // it can be adjusted if needed (could be turned into a cl::opt). 581 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 582 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 583 return false; 584 585 return !isEphemeralValueOf(Inv, CxtI); 586 } 587 588 // Inv and CxtI are in different blocks. 589 if (DT) { 590 if (DT->dominates(Inv, CxtI)) 591 return true; 592 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 593 // We don't have a DT, but this trivially dominates. 594 return true; 595 } 596 597 return false; 598 } 599 600 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 601 // v u> y implies v != 0. 602 if (Pred == ICmpInst::ICMP_UGT) 603 return true; 604 605 // Special-case v != 0 to also handle v != null. 606 if (Pred == ICmpInst::ICMP_NE) 607 return match(RHS, m_Zero()); 608 609 // All other predicates - rely on generic ConstantRange handling. 610 const APInt *C; 611 if (!match(RHS, m_APInt(C))) 612 return false; 613 614 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 615 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 616 } 617 618 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 619 // Use of assumptions is context-sensitive. If we don't have a context, we 620 // cannot use them! 621 if (!Q.AC || !Q.CxtI) 622 return false; 623 624 if (Q.CxtI && V->getType()->isPointerTy()) { 625 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 626 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 627 V->getType()->getPointerAddressSpace())) 628 AttrKinds.push_back(Attribute::Dereferenceable); 629 630 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 631 return true; 632 } 633 634 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 635 if (!AssumeVH) 636 continue; 637 CallInst *I = cast<CallInst>(AssumeVH); 638 assert(I->getFunction() == Q.CxtI->getFunction() && 639 "Got assumption for the wrong function!"); 640 641 // Warning: This loop can end up being somewhat performance sensitive. 642 // We're running this loop for once for each value queried resulting in a 643 // runtime of ~O(#assumes * #values). 644 645 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 646 "must be an assume intrinsic"); 647 648 Value *RHS; 649 CmpInst::Predicate Pred; 650 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 651 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 652 return false; 653 654 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 655 return true; 656 } 657 658 return false; 659 } 660 661 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 662 unsigned Depth, const Query &Q) { 663 // Use of assumptions is context-sensitive. If we don't have a context, we 664 // cannot use them! 665 if (!Q.AC || !Q.CxtI) 666 return; 667 668 unsigned BitWidth = Known.getBitWidth(); 669 670 // Refine Known set if the pointer alignment is set by assume bundles. 671 if (V->getType()->isPointerTy()) { 672 if (RetainedKnowledge RK = getKnowledgeValidInContext( 673 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 674 if (isPowerOf2_64(RK.ArgValue)) 675 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 676 } 677 } 678 679 // Note that the patterns below need to be kept in sync with the code 680 // in AssumptionCache::updateAffectedValues. 681 682 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 683 if (!AssumeVH) 684 continue; 685 CallInst *I = cast<CallInst>(AssumeVH); 686 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 687 "Got assumption for the wrong function!"); 688 689 // Warning: This loop can end up being somewhat performance sensitive. 690 // We're running this loop for once for each value queried resulting in a 691 // runtime of ~O(#assumes * #values). 692 693 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 694 "must be an assume intrinsic"); 695 696 Value *Arg = I->getArgOperand(0); 697 698 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 699 assert(BitWidth == 1 && "assume operand is not i1?"); 700 Known.setAllOnes(); 701 return; 702 } 703 if (match(Arg, m_Not(m_Specific(V))) && 704 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 705 assert(BitWidth == 1 && "assume operand is not i1?"); 706 Known.setAllZero(); 707 return; 708 } 709 710 // The remaining tests are all recursive, so bail out if we hit the limit. 711 if (Depth == MaxAnalysisRecursionDepth) 712 continue; 713 714 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 715 if (!Cmp) 716 continue; 717 718 // We are attempting to compute known bits for the operands of an assume. 719 // Do not try to use other assumptions for those recursive calls because 720 // that can lead to mutual recursion and a compile-time explosion. 721 // An example of the mutual recursion: computeKnownBits can call 722 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 723 // and so on. 724 Query QueryNoAC = Q; 725 QueryNoAC.AC = nullptr; 726 727 // Note that ptrtoint may change the bitwidth. 728 Value *A, *B; 729 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 730 731 CmpInst::Predicate Pred; 732 uint64_t C; 733 switch (Cmp->getPredicate()) { 734 default: 735 break; 736 case ICmpInst::ICMP_EQ: 737 // assume(v = a) 738 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 739 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 740 KnownBits RHSKnown = 741 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 742 Known.Zero |= RHSKnown.Zero; 743 Known.One |= RHSKnown.One; 744 // assume(v & b = a) 745 } else if (match(Cmp, 746 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 747 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 748 KnownBits RHSKnown = 749 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 750 KnownBits MaskKnown = 751 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 752 753 // For those bits in the mask that are known to be one, we can propagate 754 // known bits from the RHS to V. 755 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 756 Known.One |= RHSKnown.One & MaskKnown.One; 757 // assume(~(v & b) = a) 758 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 759 m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 763 KnownBits MaskKnown = 764 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 765 766 // For those bits in the mask that are known to be one, we can propagate 767 // inverted known bits from the RHS to V. 768 Known.Zero |= RHSKnown.One & MaskKnown.One; 769 Known.One |= RHSKnown.Zero & MaskKnown.One; 770 // assume(v | b = a) 771 } else if (match(Cmp, 772 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 776 KnownBits BKnown = 777 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 778 779 // For those bits in B that are known to be zero, we can propagate known 780 // bits from the RHS to V. 781 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 782 Known.One |= RHSKnown.One & BKnown.Zero; 783 // assume(~(v | b) = a) 784 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 785 m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate 793 // inverted known bits from the RHS to V. 794 Known.Zero |= RHSKnown.One & BKnown.Zero; 795 Known.One |= RHSKnown.Zero & BKnown.Zero; 796 // assume(v ^ b = a) 797 } else if (match(Cmp, 798 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown = 801 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 802 KnownBits BKnown = 803 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 804 805 // For those bits in B that are known to be zero, we can propagate known 806 // bits from the RHS to V. For those bits in B that are known to be one, 807 // we can propagate inverted known bits from the RHS to V. 808 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 809 Known.One |= RHSKnown.One & BKnown.Zero; 810 Known.Zero |= RHSKnown.One & BKnown.One; 811 Known.One |= RHSKnown.Zero & BKnown.One; 812 // assume(~(v ^ b) = a) 813 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 814 m_Value(A))) && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown = 817 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 818 KnownBits BKnown = 819 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 820 821 // For those bits in B that are known to be zero, we can propagate 822 // inverted known bits from the RHS to V. For those bits in B that are 823 // known to be one, we can propagate known bits from the RHS to V. 824 Known.Zero |= RHSKnown.One & BKnown.Zero; 825 Known.One |= RHSKnown.Zero & BKnown.Zero; 826 Known.Zero |= RHSKnown.Zero & BKnown.One; 827 Known.One |= RHSKnown.One & BKnown.One; 828 // assume(v << c = a) 829 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 830 m_Value(A))) && 831 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 832 KnownBits RHSKnown = 833 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 834 835 // For those bits in RHS that are known, we can propagate them to known 836 // bits in V shifted to the right by C. 837 RHSKnown.Zero.lshrInPlace(C); 838 Known.Zero |= RHSKnown.Zero; 839 RHSKnown.One.lshrInPlace(C); 840 Known.One |= RHSKnown.One; 841 // assume(~(v << c) = a) 842 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 843 m_Value(A))) && 844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 845 KnownBits RHSKnown = 846 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 847 // For those bits in RHS that are known, we can propagate them inverted 848 // to known bits in V shifted to the right by C. 849 RHSKnown.One.lshrInPlace(C); 850 Known.Zero |= RHSKnown.One; 851 RHSKnown.Zero.lshrInPlace(C); 852 Known.One |= RHSKnown.Zero; 853 // assume(v >> c = a) 854 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 855 m_Value(A))) && 856 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 857 KnownBits RHSKnown = 858 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 859 // For those bits in RHS that are known, we can propagate them to known 860 // bits in V shifted to the right by C. 861 Known.Zero |= RHSKnown.Zero << C; 862 Known.One |= RHSKnown.One << C; 863 // assume(~(v >> c) = a) 864 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 865 m_Value(A))) && 866 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 867 KnownBits RHSKnown = 868 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 869 // For those bits in RHS that are known, we can propagate them inverted 870 // to known bits in V shifted to the right by C. 871 Known.Zero |= RHSKnown.One << C; 872 Known.One |= RHSKnown.Zero << C; 873 } 874 break; 875 case ICmpInst::ICMP_SGE: 876 // assume(v >=_s c) where c is non-negative 877 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 878 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 879 KnownBits RHSKnown = 880 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 881 882 if (RHSKnown.isNonNegative()) { 883 // We know that the sign bit is zero. 884 Known.makeNonNegative(); 885 } 886 } 887 break; 888 case ICmpInst::ICMP_SGT: 889 // assume(v >_s c) where c is at least -1. 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 896 // We know that the sign bit is zero. 897 Known.makeNonNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SLE: 902 // assume(v <=_s c) where c is negative 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isNegative()) { 909 // We know that the sign bit is one. 910 Known.makeNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_SLT: 915 // assume(v <_s c) where c is non-positive 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 920 921 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 922 // We know that the sign bit is one. 923 Known.makeNegative(); 924 } 925 } 926 break; 927 case ICmpInst::ICMP_ULE: 928 // assume(v <=_u c) 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 933 934 // Whatever high bits in c are zero are known to be zero. 935 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 936 } 937 break; 938 case ICmpInst::ICMP_ULT: 939 // assume(v <_u c) 940 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 941 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 942 KnownBits RHSKnown = 943 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 944 945 // If the RHS is known zero, then this assumption must be wrong (nothing 946 // is unsigned less than zero). Signal a conflict and get out of here. 947 if (RHSKnown.isZero()) { 948 Known.Zero.setAllBits(); 949 Known.One.setAllBits(); 950 break; 951 } 952 953 // Whatever high bits in c are zero are known to be zero (if c is a power 954 // of 2, then one more). 955 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 956 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 957 else 958 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 959 } 960 break; 961 } 962 } 963 964 // If assumptions conflict with each other or previous known bits, then we 965 // have a logical fallacy. It's possible that the assumption is not reachable, 966 // so this isn't a real bug. On the other hand, the program may have undefined 967 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 968 // clear out the known bits, try to warn the user, and hope for the best. 969 if (Known.Zero.intersects(Known.One)) { 970 Known.resetAll(); 971 972 if (Q.ORE) 973 Q.ORE->emit([&]() { 974 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 975 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 976 CxtI) 977 << "Detected conflicting code assumptions. Program may " 978 "have undefined behavior, or compiler may have " 979 "internal error."; 980 }); 981 } 982 } 983 984 /// Compute known bits from a shift operator, including those with a 985 /// non-constant shift amount. Known is the output of this function. Known2 is a 986 /// pre-allocated temporary with the same bit width as Known and on return 987 /// contains the known bit of the shift value source. KF is an 988 /// operator-specific function that, given the known-bits and a shift amount, 989 /// compute the implied known-bits of the shift operator's result respectively 990 /// for that shift amount. The results from calling KF are conservatively 991 /// combined for all permitted shift amounts. 992 static void computeKnownBitsFromShiftOperator( 993 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 994 KnownBits &Known2, unsigned Depth, const Query &Q, 995 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 996 unsigned BitWidth = Known.getBitWidth(); 997 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 998 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 999 1000 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1001 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1002 // limit value (which implies all bits are known). 1003 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1004 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1005 bool ShiftAmtIsConstant = Known.isConstant(); 1006 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1007 1008 if (ShiftAmtIsConstant) { 1009 Known = KF(Known2, Known); 1010 1011 // If the known bits conflict, this must be an overflowing left shift, so 1012 // the shift result is poison. We can return anything we want. Choose 0 for 1013 // the best folding opportunity. 1014 if (Known.hasConflict()) 1015 Known.setAllZero(); 1016 1017 return; 1018 } 1019 1020 // If the shift amount could be greater than or equal to the bit-width of the 1021 // LHS, the value could be poison, but bail out because the check below is 1022 // expensive. 1023 // TODO: Should we just carry on? 1024 if (MaxShiftAmtIsOutOfRange) { 1025 Known.resetAll(); 1026 return; 1027 } 1028 1029 // It would be more-clearly correct to use the two temporaries for this 1030 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1031 Known.resetAll(); 1032 1033 // If we know the shifter operand is nonzero, we can sometimes infer more 1034 // known bits. However this is expensive to compute, so be lazy about it and 1035 // only compute it when absolutely necessary. 1036 Optional<bool> ShifterOperandIsNonZero; 1037 1038 // Early exit if we can't constrain any well-defined shift amount. 1039 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1040 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1041 ShifterOperandIsNonZero = 1042 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1043 if (!*ShifterOperandIsNonZero) 1044 return; 1045 } 1046 1047 Known.Zero.setAllBits(); 1048 Known.One.setAllBits(); 1049 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1050 // Combine the shifted known input bits only for those shift amounts 1051 // compatible with its known constraints. 1052 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1053 continue; 1054 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1055 continue; 1056 // If we know the shifter is nonzero, we may be able to infer more known 1057 // bits. This check is sunk down as far as possible to avoid the expensive 1058 // call to isKnownNonZero if the cheaper checks above fail. 1059 if (ShiftAmt == 0) { 1060 if (!ShifterOperandIsNonZero.hasValue()) 1061 ShifterOperandIsNonZero = 1062 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1063 if (*ShifterOperandIsNonZero) 1064 continue; 1065 } 1066 1067 Known = KnownBits::commonBits( 1068 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1069 } 1070 1071 // If the known bits conflict, the result is poison. Return a 0 and hope the 1072 // caller can further optimize that. 1073 if (Known.hasConflict()) 1074 Known.setAllZero(); 1075 } 1076 1077 static void computeKnownBitsFromOperator(const Operator *I, 1078 const APInt &DemandedElts, 1079 KnownBits &Known, unsigned Depth, 1080 const Query &Q) { 1081 unsigned BitWidth = Known.getBitWidth(); 1082 1083 KnownBits Known2(BitWidth); 1084 switch (I->getOpcode()) { 1085 default: break; 1086 case Instruction::Load: 1087 if (MDNode *MD = 1088 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1089 computeKnownBitsFromRangeMetadata(*MD, Known); 1090 break; 1091 case Instruction::And: { 1092 // If either the LHS or the RHS are Zero, the result is zero. 1093 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1094 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1095 1096 Known &= Known2; 1097 1098 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1099 // here we handle the more general case of adding any odd number by 1100 // matching the form add(x, add(x, y)) where y is odd. 1101 // TODO: This could be generalized to clearing any bit set in y where the 1102 // following bit is known to be unset in y. 1103 Value *X = nullptr, *Y = nullptr; 1104 if (!Known.Zero[0] && !Known.One[0] && 1105 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1106 Known2.resetAll(); 1107 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1108 if (Known2.countMinTrailingOnes() > 0) 1109 Known.Zero.setBit(0); 1110 } 1111 break; 1112 } 1113 case Instruction::Or: 1114 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1115 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1116 1117 Known |= Known2; 1118 break; 1119 case Instruction::Xor: 1120 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1121 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1122 1123 Known ^= Known2; 1124 break; 1125 case Instruction::Mul: { 1126 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1127 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1128 Known, Known2, Depth, Q); 1129 break; 1130 } 1131 case Instruction::UDiv: { 1132 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1133 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1134 Known = KnownBits::udiv(Known, Known2); 1135 break; 1136 } 1137 case Instruction::Select: { 1138 const Value *LHS = nullptr, *RHS = nullptr; 1139 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1140 if (SelectPatternResult::isMinOrMax(SPF)) { 1141 computeKnownBits(RHS, Known, Depth + 1, Q); 1142 computeKnownBits(LHS, Known2, Depth + 1, Q); 1143 switch (SPF) { 1144 default: 1145 llvm_unreachable("Unhandled select pattern flavor!"); 1146 case SPF_SMAX: 1147 Known = KnownBits::smax(Known, Known2); 1148 break; 1149 case SPF_SMIN: 1150 Known = KnownBits::smin(Known, Known2); 1151 break; 1152 case SPF_UMAX: 1153 Known = KnownBits::umax(Known, Known2); 1154 break; 1155 case SPF_UMIN: 1156 Known = KnownBits::umin(Known, Known2); 1157 break; 1158 } 1159 break; 1160 } 1161 1162 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1163 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1164 1165 // Only known if known in both the LHS and RHS. 1166 Known = KnownBits::commonBits(Known, Known2); 1167 1168 if (SPF == SPF_ABS) { 1169 // RHS from matchSelectPattern returns the negation part of abs pattern. 1170 // If the negate has an NSW flag we can assume the sign bit of the result 1171 // will be 0 because that makes abs(INT_MIN) undefined. 1172 if (match(RHS, m_Neg(m_Specific(LHS))) && 1173 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1174 Known.Zero.setSignBit(); 1175 } 1176 1177 break; 1178 } 1179 case Instruction::FPTrunc: 1180 case Instruction::FPExt: 1181 case Instruction::FPToUI: 1182 case Instruction::FPToSI: 1183 case Instruction::SIToFP: 1184 case Instruction::UIToFP: 1185 break; // Can't work with floating point. 1186 case Instruction::PtrToInt: 1187 case Instruction::IntToPtr: 1188 // Fall through and handle them the same as zext/trunc. 1189 LLVM_FALLTHROUGH; 1190 case Instruction::ZExt: 1191 case Instruction::Trunc: { 1192 Type *SrcTy = I->getOperand(0)->getType(); 1193 1194 unsigned SrcBitWidth; 1195 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1196 // which fall through here. 1197 Type *ScalarTy = SrcTy->getScalarType(); 1198 SrcBitWidth = ScalarTy->isPointerTy() ? 1199 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1200 Q.DL.getTypeSizeInBits(ScalarTy); 1201 1202 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1203 Known = Known.anyextOrTrunc(SrcBitWidth); 1204 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1205 Known = Known.zextOrTrunc(BitWidth); 1206 break; 1207 } 1208 case Instruction::BitCast: { 1209 Type *SrcTy = I->getOperand(0)->getType(); 1210 if (SrcTy->isIntOrPtrTy() && 1211 // TODO: For now, not handling conversions like: 1212 // (bitcast i64 %x to <2 x i32>) 1213 !I->getType()->isVectorTy()) { 1214 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1215 break; 1216 } 1217 1218 // Handle cast from vector integer type to scalar or vector integer. 1219 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1220 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1221 !I->getType()->isIntOrIntVectorTy()) 1222 break; 1223 1224 // Look through a cast from narrow vector elements to wider type. 1225 // Examples: v4i32 -> v2i64, v3i8 -> v24 1226 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1227 if (BitWidth % SubBitWidth == 0) { 1228 // Known bits are automatically intersected across demanded elements of a 1229 // vector. So for example, if a bit is computed as known zero, it must be 1230 // zero across all demanded elements of the vector. 1231 // 1232 // For this bitcast, each demanded element of the output is sub-divided 1233 // across a set of smaller vector elements in the source vector. To get 1234 // the known bits for an entire element of the output, compute the known 1235 // bits for each sub-element sequentially. This is done by shifting the 1236 // one-set-bit demanded elements parameter across the sub-elements for 1237 // consecutive calls to computeKnownBits. We are using the demanded 1238 // elements parameter as a mask operator. 1239 // 1240 // The known bits of each sub-element are then inserted into place 1241 // (dependent on endian) to form the full result of known bits. 1242 unsigned NumElts = DemandedElts.getBitWidth(); 1243 unsigned SubScale = BitWidth / SubBitWidth; 1244 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1245 for (unsigned i = 0; i != NumElts; ++i) { 1246 if (DemandedElts[i]) 1247 SubDemandedElts.setBit(i * SubScale); 1248 } 1249 1250 KnownBits KnownSrc(SubBitWidth); 1251 for (unsigned i = 0; i != SubScale; ++i) { 1252 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1253 Depth + 1, Q); 1254 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1255 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1256 } 1257 } 1258 break; 1259 } 1260 case Instruction::SExt: { 1261 // Compute the bits in the result that are not present in the input. 1262 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1263 1264 Known = Known.trunc(SrcBitWidth); 1265 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1266 // If the sign bit of the input is known set or clear, then we know the 1267 // top bits of the result. 1268 Known = Known.sext(BitWidth); 1269 break; 1270 } 1271 case Instruction::Shl: { 1272 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1273 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1274 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1275 // If this shift has "nsw" keyword, then the result is either a poison 1276 // value or has the same sign bit as the first operand. 1277 if (NSW) { 1278 if (KnownVal.Zero.isSignBitSet()) 1279 Result.Zero.setSignBit(); 1280 if (KnownVal.One.isSignBitSet()) 1281 Result.One.setSignBit(); 1282 } 1283 return Result; 1284 }; 1285 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1286 KF); 1287 // Trailing zeros of a right-shifted constant never decrease. 1288 const APInt *C; 1289 if (match(I->getOperand(0), m_APInt(C))) 1290 Known.Zero.setLowBits(C->countTrailingZeros()); 1291 break; 1292 } 1293 case Instruction::LShr: { 1294 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1295 return KnownBits::lshr(KnownVal, KnownAmt); 1296 }; 1297 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1298 KF); 1299 // Leading zeros of a left-shifted constant never decrease. 1300 const APInt *C; 1301 if (match(I->getOperand(0), m_APInt(C))) 1302 Known.Zero.setHighBits(C->countLeadingZeros()); 1303 break; 1304 } 1305 case Instruction::AShr: { 1306 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1307 return KnownBits::ashr(KnownVal, KnownAmt); 1308 }; 1309 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1310 KF); 1311 break; 1312 } 1313 case Instruction::Sub: { 1314 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1315 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1316 DemandedElts, Known, Known2, Depth, Q); 1317 break; 1318 } 1319 case Instruction::Add: { 1320 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1321 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1322 DemandedElts, Known, Known2, Depth, Q); 1323 break; 1324 } 1325 case Instruction::SRem: 1326 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1327 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1328 Known = KnownBits::srem(Known, Known2); 1329 break; 1330 1331 case Instruction::URem: 1332 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1333 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1334 Known = KnownBits::urem(Known, Known2); 1335 break; 1336 case Instruction::Alloca: 1337 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1338 break; 1339 case Instruction::GetElementPtr: { 1340 // Analyze all of the subscripts of this getelementptr instruction 1341 // to determine if we can prove known low zero bits. 1342 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1343 // Accumulate the constant indices in a separate variable 1344 // to minimize the number of calls to computeForAddSub. 1345 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1346 1347 gep_type_iterator GTI = gep_type_begin(I); 1348 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1349 // TrailZ can only become smaller, short-circuit if we hit zero. 1350 if (Known.isUnknown()) 1351 break; 1352 1353 Value *Index = I->getOperand(i); 1354 1355 // Handle case when index is zero. 1356 Constant *CIndex = dyn_cast<Constant>(Index); 1357 if (CIndex && CIndex->isZeroValue()) 1358 continue; 1359 1360 if (StructType *STy = GTI.getStructTypeOrNull()) { 1361 // Handle struct member offset arithmetic. 1362 1363 assert(CIndex && 1364 "Access to structure field must be known at compile time"); 1365 1366 if (CIndex->getType()->isVectorTy()) 1367 Index = CIndex->getSplatValue(); 1368 1369 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1370 const StructLayout *SL = Q.DL.getStructLayout(STy); 1371 uint64_t Offset = SL->getElementOffset(Idx); 1372 AccConstIndices += Offset; 1373 continue; 1374 } 1375 1376 // Handle array index arithmetic. 1377 Type *IndexedTy = GTI.getIndexedType(); 1378 if (!IndexedTy->isSized()) { 1379 Known.resetAll(); 1380 break; 1381 } 1382 1383 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1384 KnownBits IndexBits(IndexBitWidth); 1385 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1386 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1387 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1388 KnownBits ScalingFactor(IndexBitWidth); 1389 // Multiply by current sizeof type. 1390 // &A[i] == A + i * sizeof(*A[i]). 1391 if (IndexTypeSize.isScalable()) { 1392 // For scalable types the only thing we know about sizeof is 1393 // that this is a multiple of the minimum size. 1394 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1395 } else if (IndexBits.isConstant()) { 1396 APInt IndexConst = IndexBits.getConstant(); 1397 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1398 IndexConst *= ScalingFactor; 1399 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1400 continue; 1401 } else { 1402 ScalingFactor = 1403 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1404 } 1405 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1406 1407 // If the offsets have a different width from the pointer, according 1408 // to the language reference we need to sign-extend or truncate them 1409 // to the width of the pointer. 1410 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1411 1412 // Note that inbounds does *not* guarantee nsw for the addition, as only 1413 // the offset is signed, while the base address is unsigned. 1414 Known = KnownBits::computeForAddSub( 1415 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1416 } 1417 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1418 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1419 Known = KnownBits::computeForAddSub( 1420 /*Add=*/true, /*NSW=*/false, Known, Index); 1421 } 1422 break; 1423 } 1424 case Instruction::PHI: { 1425 const PHINode *P = cast<PHINode>(I); 1426 BinaryOperator *BO = nullptr; 1427 Value *R = nullptr, *L = nullptr; 1428 if (matchSimpleRecurrence(P, BO, R, L)) { 1429 // Handle the case of a simple two-predecessor recurrence PHI. 1430 // There's a lot more that could theoretically be done here, but 1431 // this is sufficient to catch some interesting cases. 1432 unsigned Opcode = BO->getOpcode(); 1433 1434 // If this is a shift recurrence, we know the bits being shifted in. 1435 // We can combine that with information about the start value of the 1436 // recurrence to conclude facts about the result. 1437 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1438 Opcode == Instruction::Shl) && 1439 BO->getOperand(0) == I) { 1440 1441 // We have matched a recurrence of the form: 1442 // %iv = [R, %entry], [%iv.next, %backedge] 1443 // %iv.next = shift_op %iv, L 1444 1445 // Recurse with the phi context to avoid concern about whether facts 1446 // inferred hold at original context instruction. TODO: It may be 1447 // correct to use the original context. IF warranted, explore and 1448 // add sufficient tests to cover. 1449 Query RecQ = Q; 1450 RecQ.CxtI = P; 1451 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1452 switch (Opcode) { 1453 case Instruction::Shl: 1454 // A shl recurrence will only increase the tailing zeros 1455 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1456 break; 1457 case Instruction::LShr: 1458 // A lshr recurrence will preserve the leading zeros of the 1459 // start value 1460 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1461 break; 1462 case Instruction::AShr: 1463 // An ashr recurrence will extend the initial sign bit 1464 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1465 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1466 break; 1467 }; 1468 } 1469 1470 // Check for operations that have the property that if 1471 // both their operands have low zero bits, the result 1472 // will have low zero bits. 1473 if (Opcode == Instruction::Add || 1474 Opcode == Instruction::Sub || 1475 Opcode == Instruction::And || 1476 Opcode == Instruction::Or || 1477 Opcode == Instruction::Mul) { 1478 // Change the context instruction to the "edge" that flows into the 1479 // phi. This is important because that is where the value is actually 1480 // "evaluated" even though it is used later somewhere else. (see also 1481 // D69571). 1482 Query RecQ = Q; 1483 1484 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1485 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1486 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1487 1488 // Ok, we have a PHI of the form L op= R. Check for low 1489 // zero bits. 1490 RecQ.CxtI = RInst; 1491 computeKnownBits(R, Known2, Depth + 1, RecQ); 1492 1493 // We need to take the minimum number of known bits 1494 KnownBits Known3(BitWidth); 1495 RecQ.CxtI = LInst; 1496 computeKnownBits(L, Known3, Depth + 1, RecQ); 1497 1498 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1499 Known3.countMinTrailingZeros())); 1500 1501 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1502 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1503 // If initial value of recurrence is nonnegative, and we are adding 1504 // a nonnegative number with nsw, the result can only be nonnegative 1505 // or poison value regardless of the number of times we execute the 1506 // add in phi recurrence. If initial value is negative and we are 1507 // adding a negative number with nsw, the result can only be 1508 // negative or poison value. Similar arguments apply to sub and mul. 1509 // 1510 // (add non-negative, non-negative) --> non-negative 1511 // (add negative, negative) --> negative 1512 if (Opcode == Instruction::Add) { 1513 if (Known2.isNonNegative() && Known3.isNonNegative()) 1514 Known.makeNonNegative(); 1515 else if (Known2.isNegative() && Known3.isNegative()) 1516 Known.makeNegative(); 1517 } 1518 1519 // (sub nsw non-negative, negative) --> non-negative 1520 // (sub nsw negative, non-negative) --> negative 1521 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1522 if (Known2.isNonNegative() && Known3.isNegative()) 1523 Known.makeNonNegative(); 1524 else if (Known2.isNegative() && Known3.isNonNegative()) 1525 Known.makeNegative(); 1526 } 1527 1528 // (mul nsw non-negative, non-negative) --> non-negative 1529 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1530 Known3.isNonNegative()) 1531 Known.makeNonNegative(); 1532 } 1533 1534 break; 1535 } 1536 } 1537 1538 // Unreachable blocks may have zero-operand PHI nodes. 1539 if (P->getNumIncomingValues() == 0) 1540 break; 1541 1542 // Otherwise take the unions of the known bit sets of the operands, 1543 // taking conservative care to avoid excessive recursion. 1544 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1545 // Skip if every incoming value references to ourself. 1546 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1547 break; 1548 1549 Known.Zero.setAllBits(); 1550 Known.One.setAllBits(); 1551 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1552 Value *IncValue = P->getIncomingValue(u); 1553 // Skip direct self references. 1554 if (IncValue == P) continue; 1555 1556 // Change the context instruction to the "edge" that flows into the 1557 // phi. This is important because that is where the value is actually 1558 // "evaluated" even though it is used later somewhere else. (see also 1559 // D69571). 1560 Query RecQ = Q; 1561 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1562 1563 Known2 = KnownBits(BitWidth); 1564 // Recurse, but cap the recursion to one level, because we don't 1565 // want to waste time spinning around in loops. 1566 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1567 Known = KnownBits::commonBits(Known, Known2); 1568 // If all bits have been ruled out, there's no need to check 1569 // more operands. 1570 if (Known.isUnknown()) 1571 break; 1572 } 1573 } 1574 break; 1575 } 1576 case Instruction::Call: 1577 case Instruction::Invoke: 1578 // If range metadata is attached to this call, set known bits from that, 1579 // and then intersect with known bits based on other properties of the 1580 // function. 1581 if (MDNode *MD = 1582 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1583 computeKnownBitsFromRangeMetadata(*MD, Known); 1584 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1585 computeKnownBits(RV, Known2, Depth + 1, Q); 1586 Known.Zero |= Known2.Zero; 1587 Known.One |= Known2.One; 1588 } 1589 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1590 switch (II->getIntrinsicID()) { 1591 default: break; 1592 case Intrinsic::abs: { 1593 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1594 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1595 Known = Known2.abs(IntMinIsPoison); 1596 break; 1597 } 1598 case Intrinsic::bitreverse: 1599 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1600 Known.Zero |= Known2.Zero.reverseBits(); 1601 Known.One |= Known2.One.reverseBits(); 1602 break; 1603 case Intrinsic::bswap: 1604 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1605 Known.Zero |= Known2.Zero.byteSwap(); 1606 Known.One |= Known2.One.byteSwap(); 1607 break; 1608 case Intrinsic::ctlz: { 1609 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1610 // If we have a known 1, its position is our upper bound. 1611 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1612 // If this call is poison for 0 input, the result will be less than 2^n. 1613 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1614 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1615 unsigned LowBits = Log2_32(PossibleLZ)+1; 1616 Known.Zero.setBitsFrom(LowBits); 1617 break; 1618 } 1619 case Intrinsic::cttz: { 1620 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1621 // If we have a known 1, its position is our upper bound. 1622 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1623 // If this call is poison for 0 input, the result will be less than 2^n. 1624 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1625 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1626 unsigned LowBits = Log2_32(PossibleTZ)+1; 1627 Known.Zero.setBitsFrom(LowBits); 1628 break; 1629 } 1630 case Intrinsic::ctpop: { 1631 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1632 // We can bound the space the count needs. Also, bits known to be zero 1633 // can't contribute to the population. 1634 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1635 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1636 Known.Zero.setBitsFrom(LowBits); 1637 // TODO: we could bound KnownOne using the lower bound on the number 1638 // of bits which might be set provided by popcnt KnownOne2. 1639 break; 1640 } 1641 case Intrinsic::fshr: 1642 case Intrinsic::fshl: { 1643 const APInt *SA; 1644 if (!match(I->getOperand(2), m_APInt(SA))) 1645 break; 1646 1647 // Normalize to funnel shift left. 1648 uint64_t ShiftAmt = SA->urem(BitWidth); 1649 if (II->getIntrinsicID() == Intrinsic::fshr) 1650 ShiftAmt = BitWidth - ShiftAmt; 1651 1652 KnownBits Known3(BitWidth); 1653 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1654 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1655 1656 Known.Zero = 1657 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1658 Known.One = 1659 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1660 break; 1661 } 1662 case Intrinsic::uadd_sat: 1663 case Intrinsic::usub_sat: { 1664 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1665 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1666 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1667 1668 // Add: Leading ones of either operand are preserved. 1669 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1670 // as leading zeros in the result. 1671 unsigned LeadingKnown; 1672 if (IsAdd) 1673 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1674 Known2.countMinLeadingOnes()); 1675 else 1676 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1677 Known2.countMinLeadingOnes()); 1678 1679 Known = KnownBits::computeForAddSub( 1680 IsAdd, /* NSW */ false, Known, Known2); 1681 1682 // We select between the operation result and all-ones/zero 1683 // respectively, so we can preserve known ones/zeros. 1684 if (IsAdd) { 1685 Known.One.setHighBits(LeadingKnown); 1686 Known.Zero.clearAllBits(); 1687 } else { 1688 Known.Zero.setHighBits(LeadingKnown); 1689 Known.One.clearAllBits(); 1690 } 1691 break; 1692 } 1693 case Intrinsic::umin: 1694 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1695 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1696 Known = KnownBits::umin(Known, Known2); 1697 break; 1698 case Intrinsic::umax: 1699 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1700 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1701 Known = KnownBits::umax(Known, Known2); 1702 break; 1703 case Intrinsic::smin: 1704 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1705 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1706 Known = KnownBits::smin(Known, Known2); 1707 break; 1708 case Intrinsic::smax: 1709 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1710 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1711 Known = KnownBits::smax(Known, Known2); 1712 break; 1713 case Intrinsic::x86_sse42_crc32_64_64: 1714 Known.Zero.setBitsFrom(32); 1715 break; 1716 case Intrinsic::riscv_vsetvli: 1717 case Intrinsic::riscv_vsetvlimax: 1718 // Assume that VL output is positive and would fit in an int32_t. 1719 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1720 if (BitWidth >= 32) 1721 Known.Zero.setBitsFrom(31); 1722 break; 1723 case Intrinsic::vscale: { 1724 if (!II->getParent() || !II->getFunction() || 1725 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1726 break; 1727 1728 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1729 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1730 1731 if (!VScaleMax) 1732 break; 1733 1734 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1735 1736 // If vscale min = max then we know the exact value at compile time 1737 // and hence we know the exact bits. 1738 if (VScaleMin == VScaleMax) { 1739 Known.One = VScaleMin; 1740 Known.Zero = VScaleMin; 1741 Known.Zero.flipAllBits(); 1742 break; 1743 } 1744 1745 unsigned FirstZeroHighBit = 1746 32 - countLeadingZeros(VScaleMax.getValue()); 1747 if (FirstZeroHighBit < BitWidth) 1748 Known.Zero.setBitsFrom(FirstZeroHighBit); 1749 1750 break; 1751 } 1752 } 1753 } 1754 break; 1755 case Instruction::ShuffleVector: { 1756 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1757 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1758 if (!Shuf) { 1759 Known.resetAll(); 1760 return; 1761 } 1762 // For undef elements, we don't know anything about the common state of 1763 // the shuffle result. 1764 APInt DemandedLHS, DemandedRHS; 1765 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1766 Known.resetAll(); 1767 return; 1768 } 1769 Known.One.setAllBits(); 1770 Known.Zero.setAllBits(); 1771 if (!!DemandedLHS) { 1772 const Value *LHS = Shuf->getOperand(0); 1773 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1774 // If we don't know any bits, early out. 1775 if (Known.isUnknown()) 1776 break; 1777 } 1778 if (!!DemandedRHS) { 1779 const Value *RHS = Shuf->getOperand(1); 1780 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1781 Known = KnownBits::commonBits(Known, Known2); 1782 } 1783 break; 1784 } 1785 case Instruction::InsertElement: { 1786 const Value *Vec = I->getOperand(0); 1787 const Value *Elt = I->getOperand(1); 1788 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1789 // Early out if the index is non-constant or out-of-range. 1790 unsigned NumElts = DemandedElts.getBitWidth(); 1791 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1792 Known.resetAll(); 1793 return; 1794 } 1795 Known.One.setAllBits(); 1796 Known.Zero.setAllBits(); 1797 unsigned EltIdx = CIdx->getZExtValue(); 1798 // Do we demand the inserted element? 1799 if (DemandedElts[EltIdx]) { 1800 computeKnownBits(Elt, Known, Depth + 1, Q); 1801 // If we don't know any bits, early out. 1802 if (Known.isUnknown()) 1803 break; 1804 } 1805 // We don't need the base vector element that has been inserted. 1806 APInt DemandedVecElts = DemandedElts; 1807 DemandedVecElts.clearBit(EltIdx); 1808 if (!!DemandedVecElts) { 1809 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1810 Known = KnownBits::commonBits(Known, Known2); 1811 } 1812 break; 1813 } 1814 case Instruction::ExtractElement: { 1815 // Look through extract element. If the index is non-constant or 1816 // out-of-range demand all elements, otherwise just the extracted element. 1817 const Value *Vec = I->getOperand(0); 1818 const Value *Idx = I->getOperand(1); 1819 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1820 if (isa<ScalableVectorType>(Vec->getType())) { 1821 // FIXME: there's probably *something* we can do with scalable vectors 1822 Known.resetAll(); 1823 break; 1824 } 1825 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1826 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1827 if (CIdx && CIdx->getValue().ult(NumElts)) 1828 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1829 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1830 break; 1831 } 1832 case Instruction::ExtractValue: 1833 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1834 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1835 if (EVI->getNumIndices() != 1) break; 1836 if (EVI->getIndices()[0] == 0) { 1837 switch (II->getIntrinsicID()) { 1838 default: break; 1839 case Intrinsic::uadd_with_overflow: 1840 case Intrinsic::sadd_with_overflow: 1841 computeKnownBitsAddSub(true, II->getArgOperand(0), 1842 II->getArgOperand(1), false, DemandedElts, 1843 Known, Known2, Depth, Q); 1844 break; 1845 case Intrinsic::usub_with_overflow: 1846 case Intrinsic::ssub_with_overflow: 1847 computeKnownBitsAddSub(false, II->getArgOperand(0), 1848 II->getArgOperand(1), false, DemandedElts, 1849 Known, Known2, Depth, Q); 1850 break; 1851 case Intrinsic::umul_with_overflow: 1852 case Intrinsic::smul_with_overflow: 1853 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1854 DemandedElts, Known, Known2, Depth, Q); 1855 break; 1856 } 1857 } 1858 } 1859 break; 1860 case Instruction::Freeze: 1861 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1862 Depth + 1)) 1863 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1864 break; 1865 } 1866 } 1867 1868 /// Determine which bits of V are known to be either zero or one and return 1869 /// them. 1870 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1871 unsigned Depth, const Query &Q) { 1872 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1873 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1874 return Known; 1875 } 1876 1877 /// Determine which bits of V are known to be either zero or one and return 1878 /// them. 1879 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1880 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1881 computeKnownBits(V, Known, Depth, Q); 1882 return Known; 1883 } 1884 1885 /// Determine which bits of V are known to be either zero or one and return 1886 /// them in the Known bit set. 1887 /// 1888 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1889 /// we cannot optimize based on the assumption that it is zero without changing 1890 /// it to be an explicit zero. If we don't change it to zero, other code could 1891 /// optimized based on the contradictory assumption that it is non-zero. 1892 /// Because instcombine aggressively folds operations with undef args anyway, 1893 /// this won't lose us code quality. 1894 /// 1895 /// This function is defined on values with integer type, values with pointer 1896 /// type, and vectors of integers. In the case 1897 /// where V is a vector, known zero, and known one values are the 1898 /// same width as the vector element, and the bit is set only if it is true 1899 /// for all of the demanded elements in the vector specified by DemandedElts. 1900 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1901 KnownBits &Known, unsigned Depth, const Query &Q) { 1902 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1903 // No demanded elts or V is a scalable vector, better to assume we don't 1904 // know anything. 1905 Known.resetAll(); 1906 return; 1907 } 1908 1909 assert(V && "No Value?"); 1910 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1911 1912 #ifndef NDEBUG 1913 Type *Ty = V->getType(); 1914 unsigned BitWidth = Known.getBitWidth(); 1915 1916 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1917 "Not integer or pointer type!"); 1918 1919 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1920 assert( 1921 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1922 "DemandedElt width should equal the fixed vector number of elements"); 1923 } else { 1924 assert(DemandedElts == APInt(1, 1) && 1925 "DemandedElt width should be 1 for scalars"); 1926 } 1927 1928 Type *ScalarTy = Ty->getScalarType(); 1929 if (ScalarTy->isPointerTy()) { 1930 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1931 "V and Known should have same BitWidth"); 1932 } else { 1933 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1934 "V and Known should have same BitWidth"); 1935 } 1936 #endif 1937 1938 const APInt *C; 1939 if (match(V, m_APInt(C))) { 1940 // We know all of the bits for a scalar constant or a splat vector constant! 1941 Known = KnownBits::makeConstant(*C); 1942 return; 1943 } 1944 // Null and aggregate-zero are all-zeros. 1945 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1946 Known.setAllZero(); 1947 return; 1948 } 1949 // Handle a constant vector by taking the intersection of the known bits of 1950 // each element. 1951 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1952 // We know that CDV must be a vector of integers. Take the intersection of 1953 // each element. 1954 Known.Zero.setAllBits(); Known.One.setAllBits(); 1955 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1956 if (!DemandedElts[i]) 1957 continue; 1958 APInt Elt = CDV->getElementAsAPInt(i); 1959 Known.Zero &= ~Elt; 1960 Known.One &= Elt; 1961 } 1962 return; 1963 } 1964 1965 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1966 // We know that CV must be a vector of integers. Take the intersection of 1967 // each element. 1968 Known.Zero.setAllBits(); Known.One.setAllBits(); 1969 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1970 if (!DemandedElts[i]) 1971 continue; 1972 Constant *Element = CV->getAggregateElement(i); 1973 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1974 if (!ElementCI) { 1975 Known.resetAll(); 1976 return; 1977 } 1978 const APInt &Elt = ElementCI->getValue(); 1979 Known.Zero &= ~Elt; 1980 Known.One &= Elt; 1981 } 1982 return; 1983 } 1984 1985 // Start out not knowing anything. 1986 Known.resetAll(); 1987 1988 // We can't imply anything about undefs. 1989 if (isa<UndefValue>(V)) 1990 return; 1991 1992 // There's no point in looking through other users of ConstantData for 1993 // assumptions. Confirm that we've handled them all. 1994 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1995 1996 // All recursive calls that increase depth must come after this. 1997 if (Depth == MaxAnalysisRecursionDepth) 1998 return; 1999 2000 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2001 // the bits of its aliasee. 2002 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2003 if (!GA->isInterposable()) 2004 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2005 return; 2006 } 2007 2008 if (const Operator *I = dyn_cast<Operator>(V)) 2009 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2010 2011 // Aligned pointers have trailing zeros - refine Known.Zero set 2012 if (isa<PointerType>(V->getType())) { 2013 Align Alignment = V->getPointerAlignment(Q.DL); 2014 Known.Zero.setLowBits(Log2(Alignment)); 2015 } 2016 2017 // computeKnownBitsFromAssume strictly refines Known. 2018 // Therefore, we run them after computeKnownBitsFromOperator. 2019 2020 // Check whether a nearby assume intrinsic can determine some known bits. 2021 computeKnownBitsFromAssume(V, Known, Depth, Q); 2022 2023 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2024 } 2025 2026 /// Return true if the given value is known to have exactly one 2027 /// bit set when defined. For vectors return true if every element is known to 2028 /// be a power of two when defined. Supports values with integer or pointer 2029 /// types and vectors of integers. 2030 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2031 const Query &Q) { 2032 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2033 2034 // Attempt to match against constants. 2035 if (OrZero && match(V, m_Power2OrZero())) 2036 return true; 2037 if (match(V, m_Power2())) 2038 return true; 2039 2040 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2041 // it is shifted off the end then the result is undefined. 2042 if (match(V, m_Shl(m_One(), m_Value()))) 2043 return true; 2044 2045 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2046 // the bottom. If it is shifted off the bottom then the result is undefined. 2047 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2048 return true; 2049 2050 // The remaining tests are all recursive, so bail out if we hit the limit. 2051 if (Depth++ == MaxAnalysisRecursionDepth) 2052 return false; 2053 2054 Value *X = nullptr, *Y = nullptr; 2055 // A shift left or a logical shift right of a power of two is a power of two 2056 // or zero. 2057 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2058 match(V, m_LShr(m_Value(X), m_Value())))) 2059 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2060 2061 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2062 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2063 2064 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2065 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2066 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2067 2068 // Peek through min/max. 2069 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2070 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2071 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2072 } 2073 2074 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2075 // A power of two and'd with anything is a power of two or zero. 2076 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2077 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2078 return true; 2079 // X & (-X) is always a power of two or zero. 2080 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2081 return true; 2082 return false; 2083 } 2084 2085 // Adding a power-of-two or zero to the same power-of-two or zero yields 2086 // either the original power-of-two, a larger power-of-two or zero. 2087 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2088 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2089 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2090 Q.IIQ.hasNoSignedWrap(VOBO)) { 2091 if (match(X, m_And(m_Specific(Y), m_Value())) || 2092 match(X, m_And(m_Value(), m_Specific(Y)))) 2093 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2094 return true; 2095 if (match(Y, m_And(m_Specific(X), m_Value())) || 2096 match(Y, m_And(m_Value(), m_Specific(X)))) 2097 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2098 return true; 2099 2100 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2101 KnownBits LHSBits(BitWidth); 2102 computeKnownBits(X, LHSBits, Depth, Q); 2103 2104 KnownBits RHSBits(BitWidth); 2105 computeKnownBits(Y, RHSBits, Depth, Q); 2106 // If i8 V is a power of two or zero: 2107 // ZeroBits: 1 1 1 0 1 1 1 1 2108 // ~ZeroBits: 0 0 0 1 0 0 0 0 2109 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2110 // If OrZero isn't set, we cannot give back a zero result. 2111 // Make sure either the LHS or RHS has a bit set. 2112 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2113 return true; 2114 } 2115 } 2116 2117 // An exact divide or right shift can only shift off zero bits, so the result 2118 // is a power of two only if the first operand is a power of two and not 2119 // copying a sign bit (sdiv int_min, 2). 2120 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2121 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2122 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2123 Depth, Q); 2124 } 2125 2126 return false; 2127 } 2128 2129 /// Test whether a GEP's result is known to be non-null. 2130 /// 2131 /// Uses properties inherent in a GEP to try to determine whether it is known 2132 /// to be non-null. 2133 /// 2134 /// Currently this routine does not support vector GEPs. 2135 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2136 const Query &Q) { 2137 const Function *F = nullptr; 2138 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2139 F = I->getFunction(); 2140 2141 if (!GEP->isInBounds() || 2142 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2143 return false; 2144 2145 // FIXME: Support vector-GEPs. 2146 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2147 2148 // If the base pointer is non-null, we cannot walk to a null address with an 2149 // inbounds GEP in address space zero. 2150 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2151 return true; 2152 2153 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2154 // If so, then the GEP cannot produce a null pointer, as doing so would 2155 // inherently violate the inbounds contract within address space zero. 2156 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2157 GTI != GTE; ++GTI) { 2158 // Struct types are easy -- they must always be indexed by a constant. 2159 if (StructType *STy = GTI.getStructTypeOrNull()) { 2160 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2161 unsigned ElementIdx = OpC->getZExtValue(); 2162 const StructLayout *SL = Q.DL.getStructLayout(STy); 2163 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2164 if (ElementOffset > 0) 2165 return true; 2166 continue; 2167 } 2168 2169 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2170 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2171 continue; 2172 2173 // Fast path the constant operand case both for efficiency and so we don't 2174 // increment Depth when just zipping down an all-constant GEP. 2175 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2176 if (!OpC->isZero()) 2177 return true; 2178 continue; 2179 } 2180 2181 // We post-increment Depth here because while isKnownNonZero increments it 2182 // as well, when we pop back up that increment won't persist. We don't want 2183 // to recurse 10k times just because we have 10k GEP operands. We don't 2184 // bail completely out because we want to handle constant GEPs regardless 2185 // of depth. 2186 if (Depth++ >= MaxAnalysisRecursionDepth) 2187 continue; 2188 2189 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2190 return true; 2191 } 2192 2193 return false; 2194 } 2195 2196 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2197 const Instruction *CtxI, 2198 const DominatorTree *DT) { 2199 if (isa<Constant>(V)) 2200 return false; 2201 2202 if (!CtxI || !DT) 2203 return false; 2204 2205 unsigned NumUsesExplored = 0; 2206 for (auto *U : V->users()) { 2207 // Avoid massive lists 2208 if (NumUsesExplored >= DomConditionsMaxUses) 2209 break; 2210 NumUsesExplored++; 2211 2212 // If the value is used as an argument to a call or invoke, then argument 2213 // attributes may provide an answer about null-ness. 2214 if (const auto *CB = dyn_cast<CallBase>(U)) 2215 if (auto *CalledFunc = CB->getCalledFunction()) 2216 for (const Argument &Arg : CalledFunc->args()) 2217 if (CB->getArgOperand(Arg.getArgNo()) == V && 2218 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2219 DT->dominates(CB, CtxI)) 2220 return true; 2221 2222 // If the value is used as a load/store, then the pointer must be non null. 2223 if (V == getLoadStorePointerOperand(U)) { 2224 const Instruction *I = cast<Instruction>(U); 2225 if (!NullPointerIsDefined(I->getFunction(), 2226 V->getType()->getPointerAddressSpace()) && 2227 DT->dominates(I, CtxI)) 2228 return true; 2229 } 2230 2231 // Consider only compare instructions uniquely controlling a branch 2232 Value *RHS; 2233 CmpInst::Predicate Pred; 2234 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2235 continue; 2236 2237 bool NonNullIfTrue; 2238 if (cmpExcludesZero(Pred, RHS)) 2239 NonNullIfTrue = true; 2240 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2241 NonNullIfTrue = false; 2242 else 2243 continue; 2244 2245 SmallVector<const User *, 4> WorkList; 2246 SmallPtrSet<const User *, 4> Visited; 2247 for (auto *CmpU : U->users()) { 2248 assert(WorkList.empty() && "Should be!"); 2249 if (Visited.insert(CmpU).second) 2250 WorkList.push_back(CmpU); 2251 2252 while (!WorkList.empty()) { 2253 auto *Curr = WorkList.pop_back_val(); 2254 2255 // If a user is an AND, add all its users to the work list. We only 2256 // propagate "pred != null" condition through AND because it is only 2257 // correct to assume that all conditions of AND are met in true branch. 2258 // TODO: Support similar logic of OR and EQ predicate? 2259 if (NonNullIfTrue) 2260 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2261 for (auto *CurrU : Curr->users()) 2262 if (Visited.insert(CurrU).second) 2263 WorkList.push_back(CurrU); 2264 continue; 2265 } 2266 2267 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2268 assert(BI->isConditional() && "uses a comparison!"); 2269 2270 BasicBlock *NonNullSuccessor = 2271 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2272 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2273 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2274 return true; 2275 } else if (NonNullIfTrue && isGuard(Curr) && 2276 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2277 return true; 2278 } 2279 } 2280 } 2281 } 2282 2283 return false; 2284 } 2285 2286 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2287 /// ensure that the value it's attached to is never Value? 'RangeType' is 2288 /// is the type of the value described by the range. 2289 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2290 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2291 assert(NumRanges >= 1); 2292 for (unsigned i = 0; i < NumRanges; ++i) { 2293 ConstantInt *Lower = 2294 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2295 ConstantInt *Upper = 2296 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2297 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2298 if (Range.contains(Value)) 2299 return false; 2300 } 2301 return true; 2302 } 2303 2304 /// Try to detect a recurrence that monotonically increases/decreases from a 2305 /// non-zero starting value. These are common as induction variables. 2306 static bool isNonZeroRecurrence(const PHINode *PN) { 2307 BinaryOperator *BO = nullptr; 2308 Value *Start = nullptr, *Step = nullptr; 2309 const APInt *StartC, *StepC; 2310 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2311 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2312 return false; 2313 2314 switch (BO->getOpcode()) { 2315 case Instruction::Add: 2316 // Starting from non-zero and stepping away from zero can never wrap back 2317 // to zero. 2318 return BO->hasNoUnsignedWrap() || 2319 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2320 StartC->isNegative() == StepC->isNegative()); 2321 case Instruction::Mul: 2322 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2323 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2324 case Instruction::Shl: 2325 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2326 case Instruction::AShr: 2327 case Instruction::LShr: 2328 return BO->isExact(); 2329 default: 2330 return false; 2331 } 2332 } 2333 2334 /// Return true if the given value is known to be non-zero when defined. For 2335 /// vectors, return true if every demanded element is known to be non-zero when 2336 /// defined. For pointers, if the context instruction and dominator tree are 2337 /// specified, perform context-sensitive analysis and return true if the 2338 /// pointer couldn't possibly be null at the specified instruction. 2339 /// Supports values with integer or pointer type and vectors of integers. 2340 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2341 const Query &Q) { 2342 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2343 // vector 2344 if (isa<ScalableVectorType>(V->getType())) 2345 return false; 2346 2347 if (auto *C = dyn_cast<Constant>(V)) { 2348 if (C->isNullValue()) 2349 return false; 2350 if (isa<ConstantInt>(C)) 2351 // Must be non-zero due to null test above. 2352 return true; 2353 2354 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2355 // See the comment for IntToPtr/PtrToInt instructions below. 2356 if (CE->getOpcode() == Instruction::IntToPtr || 2357 CE->getOpcode() == Instruction::PtrToInt) 2358 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2359 .getFixedSize() <= 2360 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2361 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2362 } 2363 2364 // For constant vectors, check that all elements are undefined or known 2365 // non-zero to determine that the whole vector is known non-zero. 2366 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2367 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2368 if (!DemandedElts[i]) 2369 continue; 2370 Constant *Elt = C->getAggregateElement(i); 2371 if (!Elt || Elt->isNullValue()) 2372 return false; 2373 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2374 return false; 2375 } 2376 return true; 2377 } 2378 2379 // A global variable in address space 0 is non null unless extern weak 2380 // or an absolute symbol reference. Other address spaces may have null as a 2381 // valid address for a global, so we can't assume anything. 2382 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2383 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2384 GV->getType()->getAddressSpace() == 0) 2385 return true; 2386 } else 2387 return false; 2388 } 2389 2390 if (auto *I = dyn_cast<Instruction>(V)) { 2391 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2392 // If the possible ranges don't contain zero, then the value is 2393 // definitely non-zero. 2394 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2395 const APInt ZeroValue(Ty->getBitWidth(), 0); 2396 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2397 return true; 2398 } 2399 } 2400 } 2401 2402 if (isKnownNonZeroFromAssume(V, Q)) 2403 return true; 2404 2405 // Some of the tests below are recursive, so bail out if we hit the limit. 2406 if (Depth++ >= MaxAnalysisRecursionDepth) 2407 return false; 2408 2409 // Check for pointer simplifications. 2410 2411 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2412 // Alloca never returns null, malloc might. 2413 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2414 return true; 2415 2416 // A byval, inalloca may not be null in a non-default addres space. A 2417 // nonnull argument is assumed never 0. 2418 if (const Argument *A = dyn_cast<Argument>(V)) { 2419 if (((A->hasPassPointeeByValueCopyAttr() && 2420 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2421 A->hasNonNullAttr())) 2422 return true; 2423 } 2424 2425 // A Load tagged with nonnull metadata is never null. 2426 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2427 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2428 return true; 2429 2430 if (const auto *Call = dyn_cast<CallBase>(V)) { 2431 if (Call->isReturnNonNull()) 2432 return true; 2433 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2434 return isKnownNonZero(RP, Depth, Q); 2435 } 2436 } 2437 2438 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2439 return true; 2440 2441 // Check for recursive pointer simplifications. 2442 if (V->getType()->isPointerTy()) { 2443 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2444 // do not alter the value, or at least not the nullness property of the 2445 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2446 // 2447 // Note that we have to take special care to avoid looking through 2448 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2449 // as casts that can alter the value, e.g., AddrSpaceCasts. 2450 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2451 return isGEPKnownNonNull(GEP, Depth, Q); 2452 2453 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2454 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2455 2456 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2457 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2458 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2459 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2460 } 2461 2462 // Similar to int2ptr above, we can look through ptr2int here if the cast 2463 // is a no-op or an extend and not a truncate. 2464 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2465 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2466 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2467 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2468 2469 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2470 2471 // X | Y != 0 if X != 0 or Y != 0. 2472 Value *X = nullptr, *Y = nullptr; 2473 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2474 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2475 isKnownNonZero(Y, DemandedElts, Depth, Q); 2476 2477 // ext X != 0 if X != 0. 2478 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2479 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2480 2481 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2482 // if the lowest bit is shifted off the end. 2483 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2484 // shl nuw can't remove any non-zero bits. 2485 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2486 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2487 return isKnownNonZero(X, Depth, Q); 2488 2489 KnownBits Known(BitWidth); 2490 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2491 if (Known.One[0]) 2492 return true; 2493 } 2494 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2495 // defined if the sign bit is shifted off the end. 2496 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2497 // shr exact can only shift out zero bits. 2498 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2499 if (BO->isExact()) 2500 return isKnownNonZero(X, Depth, Q); 2501 2502 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2503 if (Known.isNegative()) 2504 return true; 2505 2506 // If the shifter operand is a constant, and all of the bits shifted 2507 // out are known to be zero, and X is known non-zero then at least one 2508 // non-zero bit must remain. 2509 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2510 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2511 // Is there a known one in the portion not shifted out? 2512 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2513 return true; 2514 // Are all the bits to be shifted out known zero? 2515 if (Known.countMinTrailingZeros() >= ShiftVal) 2516 return isKnownNonZero(X, DemandedElts, Depth, Q); 2517 } 2518 } 2519 // div exact can only produce a zero if the dividend is zero. 2520 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2521 return isKnownNonZero(X, DemandedElts, Depth, Q); 2522 } 2523 // X + Y. 2524 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2525 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2526 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2527 2528 // If X and Y are both non-negative (as signed values) then their sum is not 2529 // zero unless both X and Y are zero. 2530 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2531 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2532 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2533 return true; 2534 2535 // If X and Y are both negative (as signed values) then their sum is not 2536 // zero unless both X and Y equal INT_MIN. 2537 if (XKnown.isNegative() && YKnown.isNegative()) { 2538 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2539 // The sign bit of X is set. If some other bit is set then X is not equal 2540 // to INT_MIN. 2541 if (XKnown.One.intersects(Mask)) 2542 return true; 2543 // The sign bit of Y is set. If some other bit is set then Y is not equal 2544 // to INT_MIN. 2545 if (YKnown.One.intersects(Mask)) 2546 return true; 2547 } 2548 2549 // The sum of a non-negative number and a power of two is not zero. 2550 if (XKnown.isNonNegative() && 2551 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2552 return true; 2553 if (YKnown.isNonNegative() && 2554 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2555 return true; 2556 } 2557 // X * Y. 2558 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2559 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2560 // If X and Y are non-zero then so is X * Y as long as the multiplication 2561 // does not overflow. 2562 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2563 isKnownNonZero(X, DemandedElts, Depth, Q) && 2564 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2565 return true; 2566 } 2567 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2568 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2569 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2570 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2571 return true; 2572 } 2573 // PHI 2574 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2575 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2576 return true; 2577 2578 // Check if all incoming values are non-zero using recursion. 2579 Query RecQ = Q; 2580 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2581 return llvm::all_of(PN->operands(), [&](const Use &U) { 2582 if (U.get() == PN) 2583 return true; 2584 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2585 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2586 }); 2587 } 2588 // ExtractElement 2589 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2590 const Value *Vec = EEI->getVectorOperand(); 2591 const Value *Idx = EEI->getIndexOperand(); 2592 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2593 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2594 unsigned NumElts = VecTy->getNumElements(); 2595 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2596 if (CIdx && CIdx->getValue().ult(NumElts)) 2597 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2598 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2599 } 2600 } 2601 // Freeze 2602 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2603 auto *Op = FI->getOperand(0); 2604 if (isKnownNonZero(Op, Depth, Q) && 2605 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2606 return true; 2607 } 2608 2609 KnownBits Known(BitWidth); 2610 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2611 return Known.One != 0; 2612 } 2613 2614 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2615 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2616 // vector 2617 if (isa<ScalableVectorType>(V->getType())) 2618 return false; 2619 2620 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2621 APInt DemandedElts = 2622 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2623 return isKnownNonZero(V, DemandedElts, Depth, Q); 2624 } 2625 2626 /// If the pair of operators are the same invertible function, return the 2627 /// the operands of the function corresponding to each input. Otherwise, 2628 /// return None. An invertible function is one that is 1-to-1 and maps 2629 /// every input value to exactly one output value. This is equivalent to 2630 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2631 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2632 static Optional<std::pair<Value*, Value*>> 2633 getInvertibleOperands(const Operator *Op1, 2634 const Operator *Op2) { 2635 if (Op1->getOpcode() != Op2->getOpcode()) 2636 return None; 2637 2638 auto getOperands = [&](unsigned OpNum) -> auto { 2639 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2640 }; 2641 2642 switch (Op1->getOpcode()) { 2643 default: 2644 break; 2645 case Instruction::Add: 2646 case Instruction::Sub: 2647 if (Op1->getOperand(0) == Op2->getOperand(0)) 2648 return getOperands(1); 2649 if (Op1->getOperand(1) == Op2->getOperand(1)) 2650 return getOperands(0); 2651 break; 2652 case Instruction::Mul: { 2653 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2654 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2655 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2656 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2657 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2658 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2659 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2660 break; 2661 2662 // Assume operand order has been canonicalized 2663 if (Op1->getOperand(1) == Op2->getOperand(1) && 2664 isa<ConstantInt>(Op1->getOperand(1)) && 2665 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2666 return getOperands(0); 2667 break; 2668 } 2669 case Instruction::Shl: { 2670 // Same as multiplies, with the difference that we don't need to check 2671 // for a non-zero multiply. Shifts always multiply by non-zero. 2672 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2673 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2674 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2675 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2676 break; 2677 2678 if (Op1->getOperand(1) == Op2->getOperand(1)) 2679 return getOperands(0); 2680 break; 2681 } 2682 case Instruction::AShr: 2683 case Instruction::LShr: { 2684 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2685 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2686 if (!PEO1->isExact() || !PEO2->isExact()) 2687 break; 2688 2689 if (Op1->getOperand(1) == Op2->getOperand(1)) 2690 return getOperands(0); 2691 break; 2692 } 2693 case Instruction::SExt: 2694 case Instruction::ZExt: 2695 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2696 return getOperands(0); 2697 break; 2698 case Instruction::PHI: { 2699 const PHINode *PN1 = cast<PHINode>(Op1); 2700 const PHINode *PN2 = cast<PHINode>(Op2); 2701 2702 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2703 // are a single invertible function of the start values? Note that repeated 2704 // application of an invertible function is also invertible 2705 BinaryOperator *BO1 = nullptr; 2706 Value *Start1 = nullptr, *Step1 = nullptr; 2707 BinaryOperator *BO2 = nullptr; 2708 Value *Start2 = nullptr, *Step2 = nullptr; 2709 if (PN1->getParent() != PN2->getParent() || 2710 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2711 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2712 break; 2713 2714 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2715 cast<Operator>(BO2)); 2716 if (!Values) 2717 break; 2718 2719 // We have to be careful of mutually defined recurrences here. Ex: 2720 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2721 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2722 // The invertibility of these is complicated, and not worth reasoning 2723 // about (yet?). 2724 if (Values->first != PN1 || Values->second != PN2) 2725 break; 2726 2727 return std::make_pair(Start1, Start2); 2728 } 2729 } 2730 return None; 2731 } 2732 2733 /// Return true if V2 == V1 + X, where X is known non-zero. 2734 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2735 const Query &Q) { 2736 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2737 if (!BO || BO->getOpcode() != Instruction::Add) 2738 return false; 2739 Value *Op = nullptr; 2740 if (V2 == BO->getOperand(0)) 2741 Op = BO->getOperand(1); 2742 else if (V2 == BO->getOperand(1)) 2743 Op = BO->getOperand(0); 2744 else 2745 return false; 2746 return isKnownNonZero(Op, Depth + 1, Q); 2747 } 2748 2749 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2750 /// the multiplication is nuw or nsw. 2751 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2752 const Query &Q) { 2753 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2754 const APInt *C; 2755 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2756 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2757 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2758 } 2759 return false; 2760 } 2761 2762 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2763 /// the shift is nuw or nsw. 2764 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2765 const Query &Q) { 2766 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2767 const APInt *C; 2768 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2769 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2770 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2771 } 2772 return false; 2773 } 2774 2775 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2776 unsigned Depth, const Query &Q) { 2777 // Check two PHIs are in same block. 2778 if (PN1->getParent() != PN2->getParent()) 2779 return false; 2780 2781 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2782 bool UsedFullRecursion = false; 2783 for (const BasicBlock *IncomBB : PN1->blocks()) { 2784 if (!VisitedBBs.insert(IncomBB).second) 2785 continue; // Don't reprocess blocks that we have dealt with already. 2786 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2787 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2788 const APInt *C1, *C2; 2789 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2790 continue; 2791 2792 // Only one pair of phi operands is allowed for full recursion. 2793 if (UsedFullRecursion) 2794 return false; 2795 2796 Query RecQ = Q; 2797 RecQ.CxtI = IncomBB->getTerminator(); 2798 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2799 return false; 2800 UsedFullRecursion = true; 2801 } 2802 return true; 2803 } 2804 2805 /// Return true if it is known that V1 != V2. 2806 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2807 const Query &Q) { 2808 if (V1 == V2) 2809 return false; 2810 if (V1->getType() != V2->getType()) 2811 // We can't look through casts yet. 2812 return false; 2813 2814 if (Depth >= MaxAnalysisRecursionDepth) 2815 return false; 2816 2817 // See if we can recurse through (exactly one of) our operands. This 2818 // requires our operation be 1-to-1 and map every input value to exactly 2819 // one output value. Such an operation is invertible. 2820 auto *O1 = dyn_cast<Operator>(V1); 2821 auto *O2 = dyn_cast<Operator>(V2); 2822 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2823 if (auto Values = getInvertibleOperands(O1, O2)) 2824 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2825 2826 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2827 const PHINode *PN2 = cast<PHINode>(V2); 2828 // FIXME: This is missing a generalization to handle the case where one is 2829 // a PHI and another one isn't. 2830 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2831 return true; 2832 }; 2833 } 2834 2835 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2836 return true; 2837 2838 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2839 return true; 2840 2841 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2842 return true; 2843 2844 if (V1->getType()->isIntOrIntVectorTy()) { 2845 // Are any known bits in V1 contradictory to known bits in V2? If V1 2846 // has a known zero where V2 has a known one, they must not be equal. 2847 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2848 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2849 2850 if (Known1.Zero.intersects(Known2.One) || 2851 Known2.Zero.intersects(Known1.One)) 2852 return true; 2853 } 2854 return false; 2855 } 2856 2857 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2858 /// simplify operations downstream. Mask is known to be zero for bits that V 2859 /// cannot have. 2860 /// 2861 /// This function is defined on values with integer type, values with pointer 2862 /// type, and vectors of integers. In the case 2863 /// where V is a vector, the mask, known zero, and known one values are the 2864 /// same width as the vector element, and the bit is set only if it is true 2865 /// for all of the elements in the vector. 2866 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2867 const Query &Q) { 2868 KnownBits Known(Mask.getBitWidth()); 2869 computeKnownBits(V, Known, Depth, Q); 2870 return Mask.isSubsetOf(Known.Zero); 2871 } 2872 2873 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2874 // Returns the input and lower/upper bounds. 2875 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2876 const APInt *&CLow, const APInt *&CHigh) { 2877 assert(isa<Operator>(Select) && 2878 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2879 "Input should be a Select!"); 2880 2881 const Value *LHS = nullptr, *RHS = nullptr; 2882 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2883 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2884 return false; 2885 2886 if (!match(RHS, m_APInt(CLow))) 2887 return false; 2888 2889 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2890 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2891 if (getInverseMinMaxFlavor(SPF) != SPF2) 2892 return false; 2893 2894 if (!match(RHS2, m_APInt(CHigh))) 2895 return false; 2896 2897 if (SPF == SPF_SMIN) 2898 std::swap(CLow, CHigh); 2899 2900 In = LHS2; 2901 return CLow->sle(*CHigh); 2902 } 2903 2904 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 2905 const APInt *&CLow, 2906 const APInt *&CHigh) { 2907 assert((II->getIntrinsicID() == Intrinsic::smin || 2908 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); 2909 2910 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 2911 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 2912 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 2913 !match(II->getArgOperand(1), m_APInt(CLow)) || 2914 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 2915 return false; 2916 2917 if (II->getIntrinsicID() == Intrinsic::smin) 2918 std::swap(CLow, CHigh); 2919 return CLow->sle(*CHigh); 2920 } 2921 2922 /// For vector constants, loop over the elements and find the constant with the 2923 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2924 /// or if any element was not analyzed; otherwise, return the count for the 2925 /// element with the minimum number of sign bits. 2926 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2927 const APInt &DemandedElts, 2928 unsigned TyBits) { 2929 const auto *CV = dyn_cast<Constant>(V); 2930 if (!CV || !isa<FixedVectorType>(CV->getType())) 2931 return 0; 2932 2933 unsigned MinSignBits = TyBits; 2934 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2935 for (unsigned i = 0; i != NumElts; ++i) { 2936 if (!DemandedElts[i]) 2937 continue; 2938 // If we find a non-ConstantInt, bail out. 2939 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2940 if (!Elt) 2941 return 0; 2942 2943 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2944 } 2945 2946 return MinSignBits; 2947 } 2948 2949 static unsigned ComputeNumSignBitsImpl(const Value *V, 2950 const APInt &DemandedElts, 2951 unsigned Depth, const Query &Q); 2952 2953 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2954 unsigned Depth, const Query &Q) { 2955 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2956 assert(Result > 0 && "At least one sign bit needs to be present!"); 2957 return Result; 2958 } 2959 2960 /// Return the number of times the sign bit of the register is replicated into 2961 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2962 /// (itself), but other cases can give us information. For example, immediately 2963 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2964 /// other, so we return 3. For vectors, return the number of sign bits for the 2965 /// vector element with the minimum number of known sign bits of the demanded 2966 /// elements in the vector specified by DemandedElts. 2967 static unsigned ComputeNumSignBitsImpl(const Value *V, 2968 const APInt &DemandedElts, 2969 unsigned Depth, const Query &Q) { 2970 Type *Ty = V->getType(); 2971 2972 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2973 // vector 2974 if (isa<ScalableVectorType>(Ty)) 2975 return 1; 2976 2977 #ifndef NDEBUG 2978 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2979 2980 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2981 assert( 2982 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2983 "DemandedElt width should equal the fixed vector number of elements"); 2984 } else { 2985 assert(DemandedElts == APInt(1, 1) && 2986 "DemandedElt width should be 1 for scalars"); 2987 } 2988 #endif 2989 2990 // We return the minimum number of sign bits that are guaranteed to be present 2991 // in V, so for undef we have to conservatively return 1. We don't have the 2992 // same behavior for poison though -- that's a FIXME today. 2993 2994 Type *ScalarTy = Ty->getScalarType(); 2995 unsigned TyBits = ScalarTy->isPointerTy() ? 2996 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2997 Q.DL.getTypeSizeInBits(ScalarTy); 2998 2999 unsigned Tmp, Tmp2; 3000 unsigned FirstAnswer = 1; 3001 3002 // Note that ConstantInt is handled by the general computeKnownBits case 3003 // below. 3004 3005 if (Depth == MaxAnalysisRecursionDepth) 3006 return 1; 3007 3008 if (auto *U = dyn_cast<Operator>(V)) { 3009 switch (Operator::getOpcode(V)) { 3010 default: break; 3011 case Instruction::SExt: 3012 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3013 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 3014 3015 case Instruction::SDiv: { 3016 const APInt *Denominator; 3017 // sdiv X, C -> adds log(C) sign bits. 3018 if (match(U->getOperand(1), m_APInt(Denominator))) { 3019 3020 // Ignore non-positive denominator. 3021 if (!Denominator->isStrictlyPositive()) 3022 break; 3023 3024 // Calculate the incoming numerator bits. 3025 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3026 3027 // Add floor(log(C)) bits to the numerator bits. 3028 return std::min(TyBits, NumBits + Denominator->logBase2()); 3029 } 3030 break; 3031 } 3032 3033 case Instruction::SRem: { 3034 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3035 3036 const APInt *Denominator; 3037 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3038 // positive constant. This let us put a lower bound on the number of sign 3039 // bits. 3040 if (match(U->getOperand(1), m_APInt(Denominator))) { 3041 3042 // Ignore non-positive denominator. 3043 if (Denominator->isStrictlyPositive()) { 3044 // Calculate the leading sign bit constraints by examining the 3045 // denominator. Given that the denominator is positive, there are two 3046 // cases: 3047 // 3048 // 1. The numerator is positive. The result range is [0,C) and 3049 // [0,C) u< (1 << ceilLogBase2(C)). 3050 // 3051 // 2. The numerator is negative. Then the result range is (-C,0] and 3052 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3053 // 3054 // Thus a lower bound on the number of sign bits is `TyBits - 3055 // ceilLogBase2(C)`. 3056 3057 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3058 Tmp = std::max(Tmp, ResBits); 3059 } 3060 } 3061 return Tmp; 3062 } 3063 3064 case Instruction::AShr: { 3065 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3066 // ashr X, C -> adds C sign bits. Vectors too. 3067 const APInt *ShAmt; 3068 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3069 if (ShAmt->uge(TyBits)) 3070 break; // Bad shift. 3071 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3072 Tmp += ShAmtLimited; 3073 if (Tmp > TyBits) Tmp = TyBits; 3074 } 3075 return Tmp; 3076 } 3077 case Instruction::Shl: { 3078 const APInt *ShAmt; 3079 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3080 // shl destroys sign bits. 3081 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3082 if (ShAmt->uge(TyBits) || // Bad shift. 3083 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3084 Tmp2 = ShAmt->getZExtValue(); 3085 return Tmp - Tmp2; 3086 } 3087 break; 3088 } 3089 case Instruction::And: 3090 case Instruction::Or: 3091 case Instruction::Xor: // NOT is handled here. 3092 // Logical binary ops preserve the number of sign bits at the worst. 3093 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3094 if (Tmp != 1) { 3095 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3096 FirstAnswer = std::min(Tmp, Tmp2); 3097 // We computed what we know about the sign bits as our first 3098 // answer. Now proceed to the generic code that uses 3099 // computeKnownBits, and pick whichever answer is better. 3100 } 3101 break; 3102 3103 case Instruction::Select: { 3104 // If we have a clamp pattern, we know that the number of sign bits will 3105 // be the minimum of the clamp min/max range. 3106 const Value *X; 3107 const APInt *CLow, *CHigh; 3108 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3109 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3110 3111 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3112 if (Tmp == 1) break; 3113 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3114 return std::min(Tmp, Tmp2); 3115 } 3116 3117 case Instruction::Add: 3118 // Add can have at most one carry bit. Thus we know that the output 3119 // is, at worst, one more bit than the inputs. 3120 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3121 if (Tmp == 1) break; 3122 3123 // Special case decrementing a value (ADD X, -1): 3124 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3125 if (CRHS->isAllOnesValue()) { 3126 KnownBits Known(TyBits); 3127 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3128 3129 // If the input is known to be 0 or 1, the output is 0/-1, which is 3130 // all sign bits set. 3131 if ((Known.Zero | 1).isAllOnes()) 3132 return TyBits; 3133 3134 // If we are subtracting one from a positive number, there is no carry 3135 // out of the result. 3136 if (Known.isNonNegative()) 3137 return Tmp; 3138 } 3139 3140 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3141 if (Tmp2 == 1) break; 3142 return std::min(Tmp, Tmp2) - 1; 3143 3144 case Instruction::Sub: 3145 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3146 if (Tmp2 == 1) break; 3147 3148 // Handle NEG. 3149 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3150 if (CLHS->isNullValue()) { 3151 KnownBits Known(TyBits); 3152 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3153 // If the input is known to be 0 or 1, the output is 0/-1, which is 3154 // all sign bits set. 3155 if ((Known.Zero | 1).isAllOnes()) 3156 return TyBits; 3157 3158 // If the input is known to be positive (the sign bit is known clear), 3159 // the output of the NEG has the same number of sign bits as the 3160 // input. 3161 if (Known.isNonNegative()) 3162 return Tmp2; 3163 3164 // Otherwise, we treat this like a SUB. 3165 } 3166 3167 // Sub can have at most one carry bit. Thus we know that the output 3168 // is, at worst, one more bit than the inputs. 3169 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3170 if (Tmp == 1) break; 3171 return std::min(Tmp, Tmp2) - 1; 3172 3173 case Instruction::Mul: { 3174 // The output of the Mul can be at most twice the valid bits in the 3175 // inputs. 3176 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3177 if (SignBitsOp0 == 1) break; 3178 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3179 if (SignBitsOp1 == 1) break; 3180 unsigned OutValidBits = 3181 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3182 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3183 } 3184 3185 case Instruction::PHI: { 3186 const PHINode *PN = cast<PHINode>(U); 3187 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3188 // Don't analyze large in-degree PHIs. 3189 if (NumIncomingValues > 4) break; 3190 // Unreachable blocks may have zero-operand PHI nodes. 3191 if (NumIncomingValues == 0) break; 3192 3193 // Take the minimum of all incoming values. This can't infinitely loop 3194 // because of our depth threshold. 3195 Query RecQ = Q; 3196 Tmp = TyBits; 3197 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3198 if (Tmp == 1) return Tmp; 3199 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3200 Tmp = std::min( 3201 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3202 } 3203 return Tmp; 3204 } 3205 3206 case Instruction::Trunc: 3207 // FIXME: it's tricky to do anything useful for this, but it is an 3208 // important case for targets like X86. 3209 break; 3210 3211 case Instruction::ExtractElement: 3212 // Look through extract element. At the moment we keep this simple and 3213 // skip tracking the specific element. But at least we might find 3214 // information valid for all elements of the vector (for example if vector 3215 // is sign extended, shifted, etc). 3216 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3217 3218 case Instruction::ShuffleVector: { 3219 // Collect the minimum number of sign bits that are shared by every vector 3220 // element referenced by the shuffle. 3221 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3222 if (!Shuf) { 3223 // FIXME: Add support for shufflevector constant expressions. 3224 return 1; 3225 } 3226 APInt DemandedLHS, DemandedRHS; 3227 // For undef elements, we don't know anything about the common state of 3228 // the shuffle result. 3229 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3230 return 1; 3231 Tmp = std::numeric_limits<unsigned>::max(); 3232 if (!!DemandedLHS) { 3233 const Value *LHS = Shuf->getOperand(0); 3234 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3235 } 3236 // If we don't know anything, early out and try computeKnownBits 3237 // fall-back. 3238 if (Tmp == 1) 3239 break; 3240 if (!!DemandedRHS) { 3241 const Value *RHS = Shuf->getOperand(1); 3242 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3243 Tmp = std::min(Tmp, Tmp2); 3244 } 3245 // If we don't know anything, early out and try computeKnownBits 3246 // fall-back. 3247 if (Tmp == 1) 3248 break; 3249 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3250 return Tmp; 3251 } 3252 case Instruction::Call: { 3253 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3254 switch (II->getIntrinsicID()) { 3255 default: break; 3256 case Intrinsic::abs: 3257 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3258 if (Tmp == 1) break; 3259 3260 // Absolute value reduces number of sign bits by at most 1. 3261 return Tmp - 1; 3262 case Intrinsic::smin: 3263 case Intrinsic::smax: { 3264 const APInt *CLow, *CHigh; 3265 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 3266 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3267 } 3268 } 3269 } 3270 } 3271 } 3272 } 3273 3274 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3275 // use this information. 3276 3277 // If we can examine all elements of a vector constant successfully, we're 3278 // done (we can't do any better than that). If not, keep trying. 3279 if (unsigned VecSignBits = 3280 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3281 return VecSignBits; 3282 3283 KnownBits Known(TyBits); 3284 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3285 3286 // If we know that the sign bit is either zero or one, determine the number of 3287 // identical bits in the top of the input value. 3288 return std::max(FirstAnswer, Known.countMinSignBits()); 3289 } 3290 3291 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3292 const TargetLibraryInfo *TLI) { 3293 const Function *F = CB.getCalledFunction(); 3294 if (!F) 3295 return Intrinsic::not_intrinsic; 3296 3297 if (F->isIntrinsic()) 3298 return F->getIntrinsicID(); 3299 3300 // We are going to infer semantics of a library function based on mapping it 3301 // to an LLVM intrinsic. Check that the library function is available from 3302 // this callbase and in this environment. 3303 LibFunc Func; 3304 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3305 !CB.onlyReadsMemory()) 3306 return Intrinsic::not_intrinsic; 3307 3308 switch (Func) { 3309 default: 3310 break; 3311 case LibFunc_sin: 3312 case LibFunc_sinf: 3313 case LibFunc_sinl: 3314 return Intrinsic::sin; 3315 case LibFunc_cos: 3316 case LibFunc_cosf: 3317 case LibFunc_cosl: 3318 return Intrinsic::cos; 3319 case LibFunc_exp: 3320 case LibFunc_expf: 3321 case LibFunc_expl: 3322 return Intrinsic::exp; 3323 case LibFunc_exp2: 3324 case LibFunc_exp2f: 3325 case LibFunc_exp2l: 3326 return Intrinsic::exp2; 3327 case LibFunc_log: 3328 case LibFunc_logf: 3329 case LibFunc_logl: 3330 return Intrinsic::log; 3331 case LibFunc_log10: 3332 case LibFunc_log10f: 3333 case LibFunc_log10l: 3334 return Intrinsic::log10; 3335 case LibFunc_log2: 3336 case LibFunc_log2f: 3337 case LibFunc_log2l: 3338 return Intrinsic::log2; 3339 case LibFunc_fabs: 3340 case LibFunc_fabsf: 3341 case LibFunc_fabsl: 3342 return Intrinsic::fabs; 3343 case LibFunc_fmin: 3344 case LibFunc_fminf: 3345 case LibFunc_fminl: 3346 return Intrinsic::minnum; 3347 case LibFunc_fmax: 3348 case LibFunc_fmaxf: 3349 case LibFunc_fmaxl: 3350 return Intrinsic::maxnum; 3351 case LibFunc_copysign: 3352 case LibFunc_copysignf: 3353 case LibFunc_copysignl: 3354 return Intrinsic::copysign; 3355 case LibFunc_floor: 3356 case LibFunc_floorf: 3357 case LibFunc_floorl: 3358 return Intrinsic::floor; 3359 case LibFunc_ceil: 3360 case LibFunc_ceilf: 3361 case LibFunc_ceill: 3362 return Intrinsic::ceil; 3363 case LibFunc_trunc: 3364 case LibFunc_truncf: 3365 case LibFunc_truncl: 3366 return Intrinsic::trunc; 3367 case LibFunc_rint: 3368 case LibFunc_rintf: 3369 case LibFunc_rintl: 3370 return Intrinsic::rint; 3371 case LibFunc_nearbyint: 3372 case LibFunc_nearbyintf: 3373 case LibFunc_nearbyintl: 3374 return Intrinsic::nearbyint; 3375 case LibFunc_round: 3376 case LibFunc_roundf: 3377 case LibFunc_roundl: 3378 return Intrinsic::round; 3379 case LibFunc_roundeven: 3380 case LibFunc_roundevenf: 3381 case LibFunc_roundevenl: 3382 return Intrinsic::roundeven; 3383 case LibFunc_pow: 3384 case LibFunc_powf: 3385 case LibFunc_powl: 3386 return Intrinsic::pow; 3387 case LibFunc_sqrt: 3388 case LibFunc_sqrtf: 3389 case LibFunc_sqrtl: 3390 return Intrinsic::sqrt; 3391 } 3392 3393 return Intrinsic::not_intrinsic; 3394 } 3395 3396 /// Return true if we can prove that the specified FP value is never equal to 3397 /// -0.0. 3398 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3399 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3400 /// the same as +0.0 in floating-point ops. 3401 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3402 unsigned Depth) { 3403 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3404 return !CFP->getValueAPF().isNegZero(); 3405 3406 if (Depth == MaxAnalysisRecursionDepth) 3407 return false; 3408 3409 auto *Op = dyn_cast<Operator>(V); 3410 if (!Op) 3411 return false; 3412 3413 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3414 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3415 return true; 3416 3417 // sitofp and uitofp turn into +0.0 for zero. 3418 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3419 return true; 3420 3421 if (auto *Call = dyn_cast<CallInst>(Op)) { 3422 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3423 switch (IID) { 3424 default: 3425 break; 3426 // sqrt(-0.0) = -0.0, no other negative results are possible. 3427 case Intrinsic::sqrt: 3428 case Intrinsic::canonicalize: 3429 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3430 case Intrinsic::experimental_constrained_sqrt: { 3431 // NOTE: This rounding mode restriction may be too strict. 3432 const auto *CI = cast<ConstrainedFPIntrinsic>(Call); 3433 if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) 3434 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3435 else 3436 return false; 3437 } 3438 // fabs(x) != -0.0 3439 case Intrinsic::fabs: 3440 return true; 3441 // sitofp and uitofp turn into +0.0 for zero. 3442 case Intrinsic::experimental_constrained_sitofp: 3443 case Intrinsic::experimental_constrained_uitofp: 3444 return true; 3445 } 3446 } 3447 3448 return false; 3449 } 3450 3451 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3452 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3453 /// bit despite comparing equal. 3454 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3455 const TargetLibraryInfo *TLI, 3456 bool SignBitOnly, 3457 unsigned Depth) { 3458 // TODO: This function does not do the right thing when SignBitOnly is true 3459 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3460 // which flips the sign bits of NaNs. See 3461 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3462 3463 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3464 return !CFP->getValueAPF().isNegative() || 3465 (!SignBitOnly && CFP->getValueAPF().isZero()); 3466 } 3467 3468 // Handle vector of constants. 3469 if (auto *CV = dyn_cast<Constant>(V)) { 3470 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3471 unsigned NumElts = CVFVTy->getNumElements(); 3472 for (unsigned i = 0; i != NumElts; ++i) { 3473 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3474 if (!CFP) 3475 return false; 3476 if (CFP->getValueAPF().isNegative() && 3477 (SignBitOnly || !CFP->getValueAPF().isZero())) 3478 return false; 3479 } 3480 3481 // All non-negative ConstantFPs. 3482 return true; 3483 } 3484 } 3485 3486 if (Depth == MaxAnalysisRecursionDepth) 3487 return false; 3488 3489 const Operator *I = dyn_cast<Operator>(V); 3490 if (!I) 3491 return false; 3492 3493 switch (I->getOpcode()) { 3494 default: 3495 break; 3496 // Unsigned integers are always nonnegative. 3497 case Instruction::UIToFP: 3498 return true; 3499 case Instruction::FMul: 3500 case Instruction::FDiv: 3501 // X * X is always non-negative or a NaN. 3502 // X / X is always exactly 1.0 or a NaN. 3503 if (I->getOperand(0) == I->getOperand(1) && 3504 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3505 return true; 3506 3507 LLVM_FALLTHROUGH; 3508 case Instruction::FAdd: 3509 case Instruction::FRem: 3510 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3511 Depth + 1) && 3512 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3513 Depth + 1); 3514 case Instruction::Select: 3515 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3516 Depth + 1) && 3517 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3518 Depth + 1); 3519 case Instruction::FPExt: 3520 case Instruction::FPTrunc: 3521 // Widening/narrowing never change sign. 3522 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3523 Depth + 1); 3524 case Instruction::ExtractElement: 3525 // Look through extract element. At the moment we keep this simple and skip 3526 // tracking the specific element. But at least we might find information 3527 // valid for all elements of the vector. 3528 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3529 Depth + 1); 3530 case Instruction::Call: 3531 const auto *CI = cast<CallInst>(I); 3532 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3533 switch (IID) { 3534 default: 3535 break; 3536 case Intrinsic::maxnum: { 3537 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3538 auto isPositiveNum = [&](Value *V) { 3539 if (SignBitOnly) { 3540 // With SignBitOnly, this is tricky because the result of 3541 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3542 // a constant strictly greater than 0.0. 3543 const APFloat *C; 3544 return match(V, m_APFloat(C)) && 3545 *C > APFloat::getZero(C->getSemantics()); 3546 } 3547 3548 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3549 // maxnum can't be ordered-less-than-zero. 3550 return isKnownNeverNaN(V, TLI) && 3551 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3552 }; 3553 3554 // TODO: This could be improved. We could also check that neither operand 3555 // has its sign bit set (and at least 1 is not-NAN?). 3556 return isPositiveNum(V0) || isPositiveNum(V1); 3557 } 3558 3559 case Intrinsic::maximum: 3560 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3561 Depth + 1) || 3562 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3563 Depth + 1); 3564 case Intrinsic::minnum: 3565 case Intrinsic::minimum: 3566 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3567 Depth + 1) && 3568 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3569 Depth + 1); 3570 case Intrinsic::exp: 3571 case Intrinsic::exp2: 3572 case Intrinsic::fabs: 3573 return true; 3574 3575 case Intrinsic::sqrt: 3576 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3577 if (!SignBitOnly) 3578 return true; 3579 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3580 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3581 3582 case Intrinsic::powi: 3583 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3584 // powi(x,n) is non-negative if n is even. 3585 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3586 return true; 3587 } 3588 // TODO: This is not correct. Given that exp is an integer, here are the 3589 // ways that pow can return a negative value: 3590 // 3591 // pow(x, exp) --> negative if exp is odd and x is negative. 3592 // pow(-0, exp) --> -inf if exp is negative odd. 3593 // pow(-0, exp) --> -0 if exp is positive odd. 3594 // pow(-inf, exp) --> -0 if exp is negative odd. 3595 // pow(-inf, exp) --> -inf if exp is positive odd. 3596 // 3597 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3598 // but we must return false if x == -0. Unfortunately we do not currently 3599 // have a way of expressing this constraint. See details in 3600 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3601 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3602 Depth + 1); 3603 3604 case Intrinsic::fma: 3605 case Intrinsic::fmuladd: 3606 // x*x+y is non-negative if y is non-negative. 3607 return I->getOperand(0) == I->getOperand(1) && 3608 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3609 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3610 Depth + 1); 3611 } 3612 break; 3613 } 3614 return false; 3615 } 3616 3617 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3618 const TargetLibraryInfo *TLI) { 3619 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3620 } 3621 3622 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3623 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3624 } 3625 3626 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3627 unsigned Depth) { 3628 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3629 3630 // If we're told that infinities won't happen, assume they won't. 3631 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3632 if (FPMathOp->hasNoInfs()) 3633 return true; 3634 3635 // Handle scalar constants. 3636 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3637 return !CFP->isInfinity(); 3638 3639 if (Depth == MaxAnalysisRecursionDepth) 3640 return false; 3641 3642 if (auto *Inst = dyn_cast<Instruction>(V)) { 3643 switch (Inst->getOpcode()) { 3644 case Instruction::Select: { 3645 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3646 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3647 } 3648 case Instruction::SIToFP: 3649 case Instruction::UIToFP: { 3650 // Get width of largest magnitude integer (remove a bit if signed). 3651 // This still works for a signed minimum value because the largest FP 3652 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3653 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3654 if (Inst->getOpcode() == Instruction::SIToFP) 3655 --IntSize; 3656 3657 // If the exponent of the largest finite FP value can hold the largest 3658 // integer, the result of the cast must be finite. 3659 Type *FPTy = Inst->getType()->getScalarType(); 3660 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3661 } 3662 default: 3663 break; 3664 } 3665 } 3666 3667 // try to handle fixed width vector constants 3668 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3669 if (VFVTy && isa<Constant>(V)) { 3670 // For vectors, verify that each element is not infinity. 3671 unsigned NumElts = VFVTy->getNumElements(); 3672 for (unsigned i = 0; i != NumElts; ++i) { 3673 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3674 if (!Elt) 3675 return false; 3676 if (isa<UndefValue>(Elt)) 3677 continue; 3678 auto *CElt = dyn_cast<ConstantFP>(Elt); 3679 if (!CElt || CElt->isInfinity()) 3680 return false; 3681 } 3682 // All elements were confirmed non-infinity or undefined. 3683 return true; 3684 } 3685 3686 // was not able to prove that V never contains infinity 3687 return false; 3688 } 3689 3690 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3691 unsigned Depth) { 3692 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3693 3694 // If we're told that NaNs won't happen, assume they won't. 3695 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3696 if (FPMathOp->hasNoNaNs()) 3697 return true; 3698 3699 // Handle scalar constants. 3700 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3701 return !CFP->isNaN(); 3702 3703 if (Depth == MaxAnalysisRecursionDepth) 3704 return false; 3705 3706 if (auto *Inst = dyn_cast<Instruction>(V)) { 3707 switch (Inst->getOpcode()) { 3708 case Instruction::FAdd: 3709 case Instruction::FSub: 3710 // Adding positive and negative infinity produces NaN. 3711 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3712 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3713 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3714 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3715 3716 case Instruction::FMul: 3717 // Zero multiplied with infinity produces NaN. 3718 // FIXME: If neither side can be zero fmul never produces NaN. 3719 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3720 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3721 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3722 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3723 3724 case Instruction::FDiv: 3725 case Instruction::FRem: 3726 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3727 return false; 3728 3729 case Instruction::Select: { 3730 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3731 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3732 } 3733 case Instruction::SIToFP: 3734 case Instruction::UIToFP: 3735 return true; 3736 case Instruction::FPTrunc: 3737 case Instruction::FPExt: 3738 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3739 default: 3740 break; 3741 } 3742 } 3743 3744 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3745 switch (II->getIntrinsicID()) { 3746 case Intrinsic::canonicalize: 3747 case Intrinsic::fabs: 3748 case Intrinsic::copysign: 3749 case Intrinsic::exp: 3750 case Intrinsic::exp2: 3751 case Intrinsic::floor: 3752 case Intrinsic::ceil: 3753 case Intrinsic::trunc: 3754 case Intrinsic::rint: 3755 case Intrinsic::nearbyint: 3756 case Intrinsic::round: 3757 case Intrinsic::roundeven: 3758 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3759 case Intrinsic::sqrt: 3760 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3761 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3762 case Intrinsic::minnum: 3763 case Intrinsic::maxnum: 3764 // If either operand is not NaN, the result is not NaN. 3765 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3766 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3767 default: 3768 return false; 3769 } 3770 } 3771 3772 // Try to handle fixed width vector constants 3773 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3774 if (VFVTy && isa<Constant>(V)) { 3775 // For vectors, verify that each element is not NaN. 3776 unsigned NumElts = VFVTy->getNumElements(); 3777 for (unsigned i = 0; i != NumElts; ++i) { 3778 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3779 if (!Elt) 3780 return false; 3781 if (isa<UndefValue>(Elt)) 3782 continue; 3783 auto *CElt = dyn_cast<ConstantFP>(Elt); 3784 if (!CElt || CElt->isNaN()) 3785 return false; 3786 } 3787 // All elements were confirmed not-NaN or undefined. 3788 return true; 3789 } 3790 3791 // Was not able to prove that V never contains NaN 3792 return false; 3793 } 3794 3795 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3796 3797 // All byte-wide stores are splatable, even of arbitrary variables. 3798 if (V->getType()->isIntegerTy(8)) 3799 return V; 3800 3801 LLVMContext &Ctx = V->getContext(); 3802 3803 // Undef don't care. 3804 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3805 if (isa<UndefValue>(V)) 3806 return UndefInt8; 3807 3808 // Return Undef for zero-sized type. 3809 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3810 return UndefInt8; 3811 3812 Constant *C = dyn_cast<Constant>(V); 3813 if (!C) { 3814 // Conceptually, we could handle things like: 3815 // %a = zext i8 %X to i16 3816 // %b = shl i16 %a, 8 3817 // %c = or i16 %a, %b 3818 // but until there is an example that actually needs this, it doesn't seem 3819 // worth worrying about. 3820 return nullptr; 3821 } 3822 3823 // Handle 'null' ConstantArrayZero etc. 3824 if (C->isNullValue()) 3825 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3826 3827 // Constant floating-point values can be handled as integer values if the 3828 // corresponding integer value is "byteable". An important case is 0.0. 3829 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3830 Type *Ty = nullptr; 3831 if (CFP->getType()->isHalfTy()) 3832 Ty = Type::getInt16Ty(Ctx); 3833 else if (CFP->getType()->isFloatTy()) 3834 Ty = Type::getInt32Ty(Ctx); 3835 else if (CFP->getType()->isDoubleTy()) 3836 Ty = Type::getInt64Ty(Ctx); 3837 // Don't handle long double formats, which have strange constraints. 3838 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3839 : nullptr; 3840 } 3841 3842 // We can handle constant integers that are multiple of 8 bits. 3843 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3844 if (CI->getBitWidth() % 8 == 0) { 3845 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3846 if (!CI->getValue().isSplat(8)) 3847 return nullptr; 3848 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3849 } 3850 } 3851 3852 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3853 if (CE->getOpcode() == Instruction::IntToPtr) { 3854 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3855 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3856 return isBytewiseValue( 3857 ConstantExpr::getIntegerCast(CE->getOperand(0), 3858 Type::getIntNTy(Ctx, BitWidth), false), 3859 DL); 3860 } 3861 } 3862 } 3863 3864 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3865 if (LHS == RHS) 3866 return LHS; 3867 if (!LHS || !RHS) 3868 return nullptr; 3869 if (LHS == UndefInt8) 3870 return RHS; 3871 if (RHS == UndefInt8) 3872 return LHS; 3873 return nullptr; 3874 }; 3875 3876 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3877 Value *Val = UndefInt8; 3878 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3879 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3880 return nullptr; 3881 return Val; 3882 } 3883 3884 if (isa<ConstantAggregate>(C)) { 3885 Value *Val = UndefInt8; 3886 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3887 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3888 return nullptr; 3889 return Val; 3890 } 3891 3892 // Don't try to handle the handful of other constants. 3893 return nullptr; 3894 } 3895 3896 // This is the recursive version of BuildSubAggregate. It takes a few different 3897 // arguments. Idxs is the index within the nested struct From that we are 3898 // looking at now (which is of type IndexedType). IdxSkip is the number of 3899 // indices from Idxs that should be left out when inserting into the resulting 3900 // struct. To is the result struct built so far, new insertvalue instructions 3901 // build on that. 3902 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3903 SmallVectorImpl<unsigned> &Idxs, 3904 unsigned IdxSkip, 3905 Instruction *InsertBefore) { 3906 StructType *STy = dyn_cast<StructType>(IndexedType); 3907 if (STy) { 3908 // Save the original To argument so we can modify it 3909 Value *OrigTo = To; 3910 // General case, the type indexed by Idxs is a struct 3911 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3912 // Process each struct element recursively 3913 Idxs.push_back(i); 3914 Value *PrevTo = To; 3915 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3916 InsertBefore); 3917 Idxs.pop_back(); 3918 if (!To) { 3919 // Couldn't find any inserted value for this index? Cleanup 3920 while (PrevTo != OrigTo) { 3921 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3922 PrevTo = Del->getAggregateOperand(); 3923 Del->eraseFromParent(); 3924 } 3925 // Stop processing elements 3926 break; 3927 } 3928 } 3929 // If we successfully found a value for each of our subaggregates 3930 if (To) 3931 return To; 3932 } 3933 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3934 // the struct's elements had a value that was inserted directly. In the latter 3935 // case, perhaps we can't determine each of the subelements individually, but 3936 // we might be able to find the complete struct somewhere. 3937 3938 // Find the value that is at that particular spot 3939 Value *V = FindInsertedValue(From, Idxs); 3940 3941 if (!V) 3942 return nullptr; 3943 3944 // Insert the value in the new (sub) aggregate 3945 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3946 "tmp", InsertBefore); 3947 } 3948 3949 // This helper takes a nested struct and extracts a part of it (which is again a 3950 // struct) into a new value. For example, given the struct: 3951 // { a, { b, { c, d }, e } } 3952 // and the indices "1, 1" this returns 3953 // { c, d }. 3954 // 3955 // It does this by inserting an insertvalue for each element in the resulting 3956 // struct, as opposed to just inserting a single struct. This will only work if 3957 // each of the elements of the substruct are known (ie, inserted into From by an 3958 // insertvalue instruction somewhere). 3959 // 3960 // All inserted insertvalue instructions are inserted before InsertBefore 3961 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3962 Instruction *InsertBefore) { 3963 assert(InsertBefore && "Must have someplace to insert!"); 3964 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3965 idx_range); 3966 Value *To = UndefValue::get(IndexedType); 3967 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3968 unsigned IdxSkip = Idxs.size(); 3969 3970 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3971 } 3972 3973 /// Given an aggregate and a sequence of indices, see if the scalar value 3974 /// indexed is already around as a register, for example if it was inserted 3975 /// directly into the aggregate. 3976 /// 3977 /// If InsertBefore is not null, this function will duplicate (modified) 3978 /// insertvalues when a part of a nested struct is extracted. 3979 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3980 Instruction *InsertBefore) { 3981 // Nothing to index? Just return V then (this is useful at the end of our 3982 // recursion). 3983 if (idx_range.empty()) 3984 return V; 3985 // We have indices, so V should have an indexable type. 3986 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3987 "Not looking at a struct or array?"); 3988 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3989 "Invalid indices for type?"); 3990 3991 if (Constant *C = dyn_cast<Constant>(V)) { 3992 C = C->getAggregateElement(idx_range[0]); 3993 if (!C) return nullptr; 3994 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3995 } 3996 3997 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3998 // Loop the indices for the insertvalue instruction in parallel with the 3999 // requested indices 4000 const unsigned *req_idx = idx_range.begin(); 4001 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4002 i != e; ++i, ++req_idx) { 4003 if (req_idx == idx_range.end()) { 4004 // We can't handle this without inserting insertvalues 4005 if (!InsertBefore) 4006 return nullptr; 4007 4008 // The requested index identifies a part of a nested aggregate. Handle 4009 // this specially. For example, 4010 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4011 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4012 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4013 // This can be changed into 4014 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4015 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4016 // which allows the unused 0,0 element from the nested struct to be 4017 // removed. 4018 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4019 InsertBefore); 4020 } 4021 4022 // This insert value inserts something else than what we are looking for. 4023 // See if the (aggregate) value inserted into has the value we are 4024 // looking for, then. 4025 if (*req_idx != *i) 4026 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4027 InsertBefore); 4028 } 4029 // If we end up here, the indices of the insertvalue match with those 4030 // requested (though possibly only partially). Now we recursively look at 4031 // the inserted value, passing any remaining indices. 4032 return FindInsertedValue(I->getInsertedValueOperand(), 4033 makeArrayRef(req_idx, idx_range.end()), 4034 InsertBefore); 4035 } 4036 4037 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4038 // If we're extracting a value from an aggregate that was extracted from 4039 // something else, we can extract from that something else directly instead. 4040 // However, we will need to chain I's indices with the requested indices. 4041 4042 // Calculate the number of indices required 4043 unsigned size = I->getNumIndices() + idx_range.size(); 4044 // Allocate some space to put the new indices in 4045 SmallVector<unsigned, 5> Idxs; 4046 Idxs.reserve(size); 4047 // Add indices from the extract value instruction 4048 Idxs.append(I->idx_begin(), I->idx_end()); 4049 4050 // Add requested indices 4051 Idxs.append(idx_range.begin(), idx_range.end()); 4052 4053 assert(Idxs.size() == size 4054 && "Number of indices added not correct?"); 4055 4056 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4057 } 4058 // Otherwise, we don't know (such as, extracting from a function return value 4059 // or load instruction) 4060 return nullptr; 4061 } 4062 4063 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4064 unsigned CharSize) { 4065 // Make sure the GEP has exactly three arguments. 4066 if (GEP->getNumOperands() != 3) 4067 return false; 4068 4069 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4070 // CharSize. 4071 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4072 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4073 return false; 4074 4075 // Check to make sure that the first operand of the GEP is an integer and 4076 // has value 0 so that we are sure we're indexing into the initializer. 4077 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4078 if (!FirstIdx || !FirstIdx->isZero()) 4079 return false; 4080 4081 return true; 4082 } 4083 4084 bool llvm::getConstantDataArrayInfo(const Value *V, 4085 ConstantDataArraySlice &Slice, 4086 unsigned ElementSize, uint64_t Offset) { 4087 assert(V); 4088 4089 // Look through bitcast instructions and geps. 4090 V = V->stripPointerCasts(); 4091 4092 // If the value is a GEP instruction or constant expression, treat it as an 4093 // offset. 4094 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4095 // The GEP operator should be based on a pointer to string constant, and is 4096 // indexing into the string constant. 4097 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4098 return false; 4099 4100 // If the second index isn't a ConstantInt, then this is a variable index 4101 // into the array. If this occurs, we can't say anything meaningful about 4102 // the string. 4103 uint64_t StartIdx = 0; 4104 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4105 StartIdx = CI->getZExtValue(); 4106 else 4107 return false; 4108 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4109 StartIdx + Offset); 4110 } 4111 4112 // The GEP instruction, constant or instruction, must reference a global 4113 // variable that is a constant and is initialized. The referenced constant 4114 // initializer is the array that we'll use for optimization. 4115 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4116 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4117 return false; 4118 4119 const ConstantDataArray *Array; 4120 ArrayType *ArrayTy; 4121 if (GV->getInitializer()->isNullValue()) { 4122 Type *GVTy = GV->getValueType(); 4123 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4124 // A zeroinitializer for the array; there is no ConstantDataArray. 4125 Array = nullptr; 4126 } else { 4127 const DataLayout &DL = GV->getParent()->getDataLayout(); 4128 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4129 uint64_t Length = SizeInBytes / (ElementSize / 8); 4130 if (Length <= Offset) 4131 return false; 4132 4133 Slice.Array = nullptr; 4134 Slice.Offset = 0; 4135 Slice.Length = Length - Offset; 4136 return true; 4137 } 4138 } else { 4139 // This must be a ConstantDataArray. 4140 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4141 if (!Array) 4142 return false; 4143 ArrayTy = Array->getType(); 4144 } 4145 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4146 return false; 4147 4148 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4149 if (Offset > NumElts) 4150 return false; 4151 4152 Slice.Array = Array; 4153 Slice.Offset = Offset; 4154 Slice.Length = NumElts - Offset; 4155 return true; 4156 } 4157 4158 /// This function computes the length of a null-terminated C string pointed to 4159 /// by V. If successful, it returns true and returns the string in Str. 4160 /// If unsuccessful, it returns false. 4161 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4162 uint64_t Offset, bool TrimAtNul) { 4163 ConstantDataArraySlice Slice; 4164 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4165 return false; 4166 4167 if (Slice.Array == nullptr) { 4168 if (TrimAtNul) { 4169 Str = StringRef(); 4170 return true; 4171 } 4172 if (Slice.Length == 1) { 4173 Str = StringRef("", 1); 4174 return true; 4175 } 4176 // We cannot instantiate a StringRef as we do not have an appropriate string 4177 // of 0s at hand. 4178 return false; 4179 } 4180 4181 // Start out with the entire array in the StringRef. 4182 Str = Slice.Array->getAsString(); 4183 // Skip over 'offset' bytes. 4184 Str = Str.substr(Slice.Offset); 4185 4186 if (TrimAtNul) { 4187 // Trim off the \0 and anything after it. If the array is not nul 4188 // terminated, we just return the whole end of string. The client may know 4189 // some other way that the string is length-bound. 4190 Str = Str.substr(0, Str.find('\0')); 4191 } 4192 return true; 4193 } 4194 4195 // These next two are very similar to the above, but also look through PHI 4196 // nodes. 4197 // TODO: See if we can integrate these two together. 4198 4199 /// If we can compute the length of the string pointed to by 4200 /// the specified pointer, return 'len+1'. If we can't, return 0. 4201 static uint64_t GetStringLengthH(const Value *V, 4202 SmallPtrSetImpl<const PHINode*> &PHIs, 4203 unsigned CharSize) { 4204 // Look through noop bitcast instructions. 4205 V = V->stripPointerCasts(); 4206 4207 // If this is a PHI node, there are two cases: either we have already seen it 4208 // or we haven't. 4209 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4210 if (!PHIs.insert(PN).second) 4211 return ~0ULL; // already in the set. 4212 4213 // If it was new, see if all the input strings are the same length. 4214 uint64_t LenSoFar = ~0ULL; 4215 for (Value *IncValue : PN->incoming_values()) { 4216 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4217 if (Len == 0) return 0; // Unknown length -> unknown. 4218 4219 if (Len == ~0ULL) continue; 4220 4221 if (Len != LenSoFar && LenSoFar != ~0ULL) 4222 return 0; // Disagree -> unknown. 4223 LenSoFar = Len; 4224 } 4225 4226 // Success, all agree. 4227 return LenSoFar; 4228 } 4229 4230 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4231 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4232 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4233 if (Len1 == 0) return 0; 4234 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4235 if (Len2 == 0) return 0; 4236 if (Len1 == ~0ULL) return Len2; 4237 if (Len2 == ~0ULL) return Len1; 4238 if (Len1 != Len2) return 0; 4239 return Len1; 4240 } 4241 4242 // Otherwise, see if we can read the string. 4243 ConstantDataArraySlice Slice; 4244 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4245 return 0; 4246 4247 if (Slice.Array == nullptr) 4248 return 1; 4249 4250 // Search for nul characters 4251 unsigned NullIndex = 0; 4252 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4253 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4254 break; 4255 } 4256 4257 return NullIndex + 1; 4258 } 4259 4260 /// If we can compute the length of the string pointed to by 4261 /// the specified pointer, return 'len+1'. If we can't, return 0. 4262 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4263 if (!V->getType()->isPointerTy()) 4264 return 0; 4265 4266 SmallPtrSet<const PHINode*, 32> PHIs; 4267 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4268 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4269 // an empty string as a length. 4270 return Len == ~0ULL ? 1 : Len; 4271 } 4272 4273 const Value * 4274 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4275 bool MustPreserveNullness) { 4276 assert(Call && 4277 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4278 if (const Value *RV = Call->getReturnedArgOperand()) 4279 return RV; 4280 // This can be used only as a aliasing property. 4281 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4282 Call, MustPreserveNullness)) 4283 return Call->getArgOperand(0); 4284 return nullptr; 4285 } 4286 4287 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4288 const CallBase *Call, bool MustPreserveNullness) { 4289 switch (Call->getIntrinsicID()) { 4290 case Intrinsic::launder_invariant_group: 4291 case Intrinsic::strip_invariant_group: 4292 case Intrinsic::aarch64_irg: 4293 case Intrinsic::aarch64_tagp: 4294 return true; 4295 case Intrinsic::ptrmask: 4296 return !MustPreserveNullness; 4297 default: 4298 return false; 4299 } 4300 } 4301 4302 /// \p PN defines a loop-variant pointer to an object. Check if the 4303 /// previous iteration of the loop was referring to the same object as \p PN. 4304 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4305 const LoopInfo *LI) { 4306 // Find the loop-defined value. 4307 Loop *L = LI->getLoopFor(PN->getParent()); 4308 if (PN->getNumIncomingValues() != 2) 4309 return true; 4310 4311 // Find the value from previous iteration. 4312 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4313 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4314 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4315 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4316 return true; 4317 4318 // If a new pointer is loaded in the loop, the pointer references a different 4319 // object in every iteration. E.g.: 4320 // for (i) 4321 // int *p = a[i]; 4322 // ... 4323 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4324 if (!L->isLoopInvariant(Load->getPointerOperand())) 4325 return false; 4326 return true; 4327 } 4328 4329 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4330 if (!V->getType()->isPointerTy()) 4331 return V; 4332 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4333 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4334 V = GEP->getPointerOperand(); 4335 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4336 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4337 V = cast<Operator>(V)->getOperand(0); 4338 if (!V->getType()->isPointerTy()) 4339 return V; 4340 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4341 if (GA->isInterposable()) 4342 return V; 4343 V = GA->getAliasee(); 4344 } else { 4345 if (auto *PHI = dyn_cast<PHINode>(V)) { 4346 // Look through single-arg phi nodes created by LCSSA. 4347 if (PHI->getNumIncomingValues() == 1) { 4348 V = PHI->getIncomingValue(0); 4349 continue; 4350 } 4351 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4352 // CaptureTracking can know about special capturing properties of some 4353 // intrinsics like launder.invariant.group, that can't be expressed with 4354 // the attributes, but have properties like returning aliasing pointer. 4355 // Because some analysis may assume that nocaptured pointer is not 4356 // returned from some special intrinsic (because function would have to 4357 // be marked with returns attribute), it is crucial to use this function 4358 // because it should be in sync with CaptureTracking. Not using it may 4359 // cause weird miscompilations where 2 aliasing pointers are assumed to 4360 // noalias. 4361 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4362 V = RP; 4363 continue; 4364 } 4365 } 4366 4367 return V; 4368 } 4369 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4370 } 4371 return V; 4372 } 4373 4374 void llvm::getUnderlyingObjects(const Value *V, 4375 SmallVectorImpl<const Value *> &Objects, 4376 LoopInfo *LI, unsigned MaxLookup) { 4377 SmallPtrSet<const Value *, 4> Visited; 4378 SmallVector<const Value *, 4> Worklist; 4379 Worklist.push_back(V); 4380 do { 4381 const Value *P = Worklist.pop_back_val(); 4382 P = getUnderlyingObject(P, MaxLookup); 4383 4384 if (!Visited.insert(P).second) 4385 continue; 4386 4387 if (auto *SI = dyn_cast<SelectInst>(P)) { 4388 Worklist.push_back(SI->getTrueValue()); 4389 Worklist.push_back(SI->getFalseValue()); 4390 continue; 4391 } 4392 4393 if (auto *PN = dyn_cast<PHINode>(P)) { 4394 // If this PHI changes the underlying object in every iteration of the 4395 // loop, don't look through it. Consider: 4396 // int **A; 4397 // for (i) { 4398 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4399 // Curr = A[i]; 4400 // *Prev, *Curr; 4401 // 4402 // Prev is tracking Curr one iteration behind so they refer to different 4403 // underlying objects. 4404 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4405 isSameUnderlyingObjectInLoop(PN, LI)) 4406 append_range(Worklist, PN->incoming_values()); 4407 continue; 4408 } 4409 4410 Objects.push_back(P); 4411 } while (!Worklist.empty()); 4412 } 4413 4414 /// This is the function that does the work of looking through basic 4415 /// ptrtoint+arithmetic+inttoptr sequences. 4416 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4417 do { 4418 if (const Operator *U = dyn_cast<Operator>(V)) { 4419 // If we find a ptrtoint, we can transfer control back to the 4420 // regular getUnderlyingObjectFromInt. 4421 if (U->getOpcode() == Instruction::PtrToInt) 4422 return U->getOperand(0); 4423 // If we find an add of a constant, a multiplied value, or a phi, it's 4424 // likely that the other operand will lead us to the base 4425 // object. We don't have to worry about the case where the 4426 // object address is somehow being computed by the multiply, 4427 // because our callers only care when the result is an 4428 // identifiable object. 4429 if (U->getOpcode() != Instruction::Add || 4430 (!isa<ConstantInt>(U->getOperand(1)) && 4431 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4432 !isa<PHINode>(U->getOperand(1)))) 4433 return V; 4434 V = U->getOperand(0); 4435 } else { 4436 return V; 4437 } 4438 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4439 } while (true); 4440 } 4441 4442 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4443 /// ptrtoint+arithmetic+inttoptr sequences. 4444 /// It returns false if unidentified object is found in getUnderlyingObjects. 4445 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4446 SmallVectorImpl<Value *> &Objects) { 4447 SmallPtrSet<const Value *, 16> Visited; 4448 SmallVector<const Value *, 4> Working(1, V); 4449 do { 4450 V = Working.pop_back_val(); 4451 4452 SmallVector<const Value *, 4> Objs; 4453 getUnderlyingObjects(V, Objs); 4454 4455 for (const Value *V : Objs) { 4456 if (!Visited.insert(V).second) 4457 continue; 4458 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4459 const Value *O = 4460 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4461 if (O->getType()->isPointerTy()) { 4462 Working.push_back(O); 4463 continue; 4464 } 4465 } 4466 // If getUnderlyingObjects fails to find an identifiable object, 4467 // getUnderlyingObjectsForCodeGen also fails for safety. 4468 if (!isIdentifiedObject(V)) { 4469 Objects.clear(); 4470 return false; 4471 } 4472 Objects.push_back(const_cast<Value *>(V)); 4473 } 4474 } while (!Working.empty()); 4475 return true; 4476 } 4477 4478 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4479 AllocaInst *Result = nullptr; 4480 SmallPtrSet<Value *, 4> Visited; 4481 SmallVector<Value *, 4> Worklist; 4482 4483 auto AddWork = [&](Value *V) { 4484 if (Visited.insert(V).second) 4485 Worklist.push_back(V); 4486 }; 4487 4488 AddWork(V); 4489 do { 4490 V = Worklist.pop_back_val(); 4491 assert(Visited.count(V)); 4492 4493 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4494 if (Result && Result != AI) 4495 return nullptr; 4496 Result = AI; 4497 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4498 AddWork(CI->getOperand(0)); 4499 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4500 for (Value *IncValue : PN->incoming_values()) 4501 AddWork(IncValue); 4502 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4503 AddWork(SI->getTrueValue()); 4504 AddWork(SI->getFalseValue()); 4505 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4506 if (OffsetZero && !GEP->hasAllZeroIndices()) 4507 return nullptr; 4508 AddWork(GEP->getPointerOperand()); 4509 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4510 Value *Returned = CB->getReturnedArgOperand(); 4511 if (Returned) 4512 AddWork(Returned); 4513 else 4514 return nullptr; 4515 } else { 4516 return nullptr; 4517 } 4518 } while (!Worklist.empty()); 4519 4520 return Result; 4521 } 4522 4523 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4524 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4525 for (const User *U : V->users()) { 4526 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4527 if (!II) 4528 return false; 4529 4530 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4531 continue; 4532 4533 if (AllowDroppable && II->isDroppable()) 4534 continue; 4535 4536 return false; 4537 } 4538 return true; 4539 } 4540 4541 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4542 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4543 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4544 } 4545 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4546 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4547 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4548 } 4549 4550 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4551 if (!LI.isUnordered()) 4552 return true; 4553 const Function &F = *LI.getFunction(); 4554 // Speculative load may create a race that did not exist in the source. 4555 return F.hasFnAttribute(Attribute::SanitizeThread) || 4556 // Speculative load may load data from dirty regions. 4557 F.hasFnAttribute(Attribute::SanitizeAddress) || 4558 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4559 } 4560 4561 4562 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4563 const Instruction *CtxI, 4564 const DominatorTree *DT, 4565 const TargetLibraryInfo *TLI) { 4566 const Operator *Inst = dyn_cast<Operator>(V); 4567 if (!Inst) 4568 return false; 4569 4570 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4571 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4572 if (C->canTrap()) 4573 return false; 4574 4575 switch (Inst->getOpcode()) { 4576 default: 4577 return true; 4578 case Instruction::UDiv: 4579 case Instruction::URem: { 4580 // x / y is undefined if y == 0. 4581 const APInt *V; 4582 if (match(Inst->getOperand(1), m_APInt(V))) 4583 return *V != 0; 4584 return false; 4585 } 4586 case Instruction::SDiv: 4587 case Instruction::SRem: { 4588 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4589 const APInt *Numerator, *Denominator; 4590 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4591 return false; 4592 // We cannot hoist this division if the denominator is 0. 4593 if (*Denominator == 0) 4594 return false; 4595 // It's safe to hoist if the denominator is not 0 or -1. 4596 if (!Denominator->isAllOnes()) 4597 return true; 4598 // At this point we know that the denominator is -1. It is safe to hoist as 4599 // long we know that the numerator is not INT_MIN. 4600 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4601 return !Numerator->isMinSignedValue(); 4602 // The numerator *might* be MinSignedValue. 4603 return false; 4604 } 4605 case Instruction::Load: { 4606 const LoadInst *LI = cast<LoadInst>(Inst); 4607 if (mustSuppressSpeculation(*LI)) 4608 return false; 4609 const DataLayout &DL = LI->getModule()->getDataLayout(); 4610 return isDereferenceableAndAlignedPointer( 4611 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4612 TLI); 4613 } 4614 case Instruction::Call: { 4615 auto *CI = cast<const CallInst>(Inst); 4616 const Function *Callee = CI->getCalledFunction(); 4617 4618 // The called function could have undefined behavior or side-effects, even 4619 // if marked readnone nounwind. 4620 return Callee && Callee->isSpeculatable(); 4621 } 4622 case Instruction::VAArg: 4623 case Instruction::Alloca: 4624 case Instruction::Invoke: 4625 case Instruction::CallBr: 4626 case Instruction::PHI: 4627 case Instruction::Store: 4628 case Instruction::Ret: 4629 case Instruction::Br: 4630 case Instruction::IndirectBr: 4631 case Instruction::Switch: 4632 case Instruction::Unreachable: 4633 case Instruction::Fence: 4634 case Instruction::AtomicRMW: 4635 case Instruction::AtomicCmpXchg: 4636 case Instruction::LandingPad: 4637 case Instruction::Resume: 4638 case Instruction::CatchSwitch: 4639 case Instruction::CatchPad: 4640 case Instruction::CatchRet: 4641 case Instruction::CleanupPad: 4642 case Instruction::CleanupRet: 4643 return false; // Misc instructions which have effects 4644 } 4645 } 4646 4647 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { 4648 if (I.mayReadOrWriteMemory()) 4649 // Memory dependency possible 4650 return true; 4651 if (!isSafeToSpeculativelyExecute(&I)) 4652 // Can't move above a maythrow call or infinite loop. Or if an 4653 // inalloca alloca, above a stacksave call. 4654 return true; 4655 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4656 // 1) Can't reorder two inf-loop calls, even if readonly 4657 // 2) Also can't reorder an inf-loop call below a instruction which isn't 4658 // safe to speculative execute. (Inverse of above) 4659 return true; 4660 return false; 4661 } 4662 4663 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4664 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4665 switch (OR) { 4666 case ConstantRange::OverflowResult::MayOverflow: 4667 return OverflowResult::MayOverflow; 4668 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4669 return OverflowResult::AlwaysOverflowsLow; 4670 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4671 return OverflowResult::AlwaysOverflowsHigh; 4672 case ConstantRange::OverflowResult::NeverOverflows: 4673 return OverflowResult::NeverOverflows; 4674 } 4675 llvm_unreachable("Unknown OverflowResult"); 4676 } 4677 4678 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4679 static ConstantRange computeConstantRangeIncludingKnownBits( 4680 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4681 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4682 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4683 KnownBits Known = computeKnownBits( 4684 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4685 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4686 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4687 ConstantRange::PreferredRangeType RangeType = 4688 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4689 return CR1.intersectWith(CR2, RangeType); 4690 } 4691 4692 OverflowResult llvm::computeOverflowForUnsignedMul( 4693 const Value *LHS, const Value *RHS, const DataLayout &DL, 4694 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4695 bool UseInstrInfo) { 4696 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4697 nullptr, UseInstrInfo); 4698 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4699 nullptr, UseInstrInfo); 4700 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4701 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4702 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4703 } 4704 4705 OverflowResult 4706 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4707 const DataLayout &DL, AssumptionCache *AC, 4708 const Instruction *CxtI, 4709 const DominatorTree *DT, bool UseInstrInfo) { 4710 // Multiplying n * m significant bits yields a result of n + m significant 4711 // bits. If the total number of significant bits does not exceed the 4712 // result bit width (minus 1), there is no overflow. 4713 // This means if we have enough leading sign bits in the operands 4714 // we can guarantee that the result does not overflow. 4715 // Ref: "Hacker's Delight" by Henry Warren 4716 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4717 4718 // Note that underestimating the number of sign bits gives a more 4719 // conservative answer. 4720 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4721 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4722 4723 // First handle the easy case: if we have enough sign bits there's 4724 // definitely no overflow. 4725 if (SignBits > BitWidth + 1) 4726 return OverflowResult::NeverOverflows; 4727 4728 // There are two ambiguous cases where there can be no overflow: 4729 // SignBits == BitWidth + 1 and 4730 // SignBits == BitWidth 4731 // The second case is difficult to check, therefore we only handle the 4732 // first case. 4733 if (SignBits == BitWidth + 1) { 4734 // It overflows only when both arguments are negative and the true 4735 // product is exactly the minimum negative number. 4736 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4737 // For simplicity we just check if at least one side is not negative. 4738 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4739 nullptr, UseInstrInfo); 4740 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4741 nullptr, UseInstrInfo); 4742 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4743 return OverflowResult::NeverOverflows; 4744 } 4745 return OverflowResult::MayOverflow; 4746 } 4747 4748 OverflowResult llvm::computeOverflowForUnsignedAdd( 4749 const Value *LHS, const Value *RHS, const DataLayout &DL, 4750 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4751 bool UseInstrInfo) { 4752 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4753 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4754 nullptr, UseInstrInfo); 4755 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4756 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4757 nullptr, UseInstrInfo); 4758 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4759 } 4760 4761 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4762 const Value *RHS, 4763 const AddOperator *Add, 4764 const DataLayout &DL, 4765 AssumptionCache *AC, 4766 const Instruction *CxtI, 4767 const DominatorTree *DT) { 4768 if (Add && Add->hasNoSignedWrap()) { 4769 return OverflowResult::NeverOverflows; 4770 } 4771 4772 // If LHS and RHS each have at least two sign bits, the addition will look 4773 // like 4774 // 4775 // XX..... + 4776 // YY..... 4777 // 4778 // If the carry into the most significant position is 0, X and Y can't both 4779 // be 1 and therefore the carry out of the addition is also 0. 4780 // 4781 // If the carry into the most significant position is 1, X and Y can't both 4782 // be 0 and therefore the carry out of the addition is also 1. 4783 // 4784 // Since the carry into the most significant position is always equal to 4785 // the carry out of the addition, there is no signed overflow. 4786 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4787 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4788 return OverflowResult::NeverOverflows; 4789 4790 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4791 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4792 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4793 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4794 OverflowResult OR = 4795 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4796 if (OR != OverflowResult::MayOverflow) 4797 return OR; 4798 4799 // The remaining code needs Add to be available. Early returns if not so. 4800 if (!Add) 4801 return OverflowResult::MayOverflow; 4802 4803 // If the sign of Add is the same as at least one of the operands, this add 4804 // CANNOT overflow. If this can be determined from the known bits of the 4805 // operands the above signedAddMayOverflow() check will have already done so. 4806 // The only other way to improve on the known bits is from an assumption, so 4807 // call computeKnownBitsFromAssume() directly. 4808 bool LHSOrRHSKnownNonNegative = 4809 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4810 bool LHSOrRHSKnownNegative = 4811 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4812 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4813 KnownBits AddKnown(LHSRange.getBitWidth()); 4814 computeKnownBitsFromAssume( 4815 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4816 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4817 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4818 return OverflowResult::NeverOverflows; 4819 } 4820 4821 return OverflowResult::MayOverflow; 4822 } 4823 4824 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4825 const Value *RHS, 4826 const DataLayout &DL, 4827 AssumptionCache *AC, 4828 const Instruction *CxtI, 4829 const DominatorTree *DT) { 4830 // Checking for conditions implied by dominating conditions may be expensive. 4831 // Limit it to usub_with_overflow calls for now. 4832 if (match(CxtI, 4833 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4834 if (auto C = 4835 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4836 if (*C) 4837 return OverflowResult::NeverOverflows; 4838 return OverflowResult::AlwaysOverflowsLow; 4839 } 4840 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4841 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4842 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4843 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4844 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4845 } 4846 4847 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4848 const Value *RHS, 4849 const DataLayout &DL, 4850 AssumptionCache *AC, 4851 const Instruction *CxtI, 4852 const DominatorTree *DT) { 4853 // If LHS and RHS each have at least two sign bits, the subtraction 4854 // cannot overflow. 4855 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4856 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4857 return OverflowResult::NeverOverflows; 4858 4859 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4860 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4861 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4862 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4863 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4864 } 4865 4866 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4867 const DominatorTree &DT) { 4868 SmallVector<const BranchInst *, 2> GuardingBranches; 4869 SmallVector<const ExtractValueInst *, 2> Results; 4870 4871 for (const User *U : WO->users()) { 4872 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4873 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4874 4875 if (EVI->getIndices()[0] == 0) 4876 Results.push_back(EVI); 4877 else { 4878 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4879 4880 for (const auto *U : EVI->users()) 4881 if (const auto *B = dyn_cast<BranchInst>(U)) { 4882 assert(B->isConditional() && "How else is it using an i1?"); 4883 GuardingBranches.push_back(B); 4884 } 4885 } 4886 } else { 4887 // We are using the aggregate directly in a way we don't want to analyze 4888 // here (storing it to a global, say). 4889 return false; 4890 } 4891 } 4892 4893 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4894 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4895 if (!NoWrapEdge.isSingleEdge()) 4896 return false; 4897 4898 // Check if all users of the add are provably no-wrap. 4899 for (const auto *Result : Results) { 4900 // If the extractvalue itself is not executed on overflow, the we don't 4901 // need to check each use separately, since domination is transitive. 4902 if (DT.dominates(NoWrapEdge, Result->getParent())) 4903 continue; 4904 4905 for (auto &RU : Result->uses()) 4906 if (!DT.dominates(NoWrapEdge, RU)) 4907 return false; 4908 } 4909 4910 return true; 4911 }; 4912 4913 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4914 } 4915 4916 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4917 bool ConsiderFlags) { 4918 4919 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 4920 return true; 4921 4922 unsigned Opcode = Op->getOpcode(); 4923 4924 // Check whether opcode is a poison/undef-generating operation 4925 switch (Opcode) { 4926 case Instruction::Shl: 4927 case Instruction::AShr: 4928 case Instruction::LShr: { 4929 // Shifts return poison if shiftwidth is larger than the bitwidth. 4930 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4931 SmallVector<Constant *, 4> ShiftAmounts; 4932 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4933 unsigned NumElts = FVTy->getNumElements(); 4934 for (unsigned i = 0; i < NumElts; ++i) 4935 ShiftAmounts.push_back(C->getAggregateElement(i)); 4936 } else if (isa<ScalableVectorType>(C->getType())) 4937 return true; // Can't tell, just return true to be safe 4938 else 4939 ShiftAmounts.push_back(C); 4940 4941 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4942 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4943 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4944 }); 4945 return !Safe; 4946 } 4947 return true; 4948 } 4949 case Instruction::FPToSI: 4950 case Instruction::FPToUI: 4951 // fptosi/ui yields poison if the resulting value does not fit in the 4952 // destination type. 4953 return true; 4954 case Instruction::Call: 4955 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4956 switch (II->getIntrinsicID()) { 4957 // TODO: Add more intrinsics. 4958 case Intrinsic::ctpop: 4959 case Intrinsic::sadd_with_overflow: 4960 case Intrinsic::ssub_with_overflow: 4961 case Intrinsic::smul_with_overflow: 4962 case Intrinsic::uadd_with_overflow: 4963 case Intrinsic::usub_with_overflow: 4964 case Intrinsic::umul_with_overflow: 4965 return false; 4966 } 4967 } 4968 LLVM_FALLTHROUGH; 4969 case Instruction::CallBr: 4970 case Instruction::Invoke: { 4971 const auto *CB = cast<CallBase>(Op); 4972 return !CB->hasRetAttr(Attribute::NoUndef); 4973 } 4974 case Instruction::InsertElement: 4975 case Instruction::ExtractElement: { 4976 // If index exceeds the length of the vector, it returns poison 4977 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4978 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4979 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4980 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4981 return true; 4982 return false; 4983 } 4984 case Instruction::ShuffleVector: { 4985 // shufflevector may return undef. 4986 if (PoisonOnly) 4987 return false; 4988 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4989 ? cast<ConstantExpr>(Op)->getShuffleMask() 4990 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4991 return is_contained(Mask, UndefMaskElem); 4992 } 4993 case Instruction::FNeg: 4994 case Instruction::PHI: 4995 case Instruction::Select: 4996 case Instruction::URem: 4997 case Instruction::SRem: 4998 case Instruction::ExtractValue: 4999 case Instruction::InsertValue: 5000 case Instruction::Freeze: 5001 case Instruction::ICmp: 5002 case Instruction::FCmp: 5003 return false; 5004 case Instruction::GetElementPtr: 5005 // inbounds is handled above 5006 // TODO: what about inrange on constexpr? 5007 return false; 5008 default: { 5009 const auto *CE = dyn_cast<ConstantExpr>(Op); 5010 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5011 return false; 5012 else if (Instruction::isBinaryOp(Opcode)) 5013 return false; 5014 // Be conservative and return true. 5015 return true; 5016 } 5017 } 5018 } 5019 5020 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5021 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5022 } 5023 5024 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5025 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5026 } 5027 5028 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5029 const Value *V, unsigned Depth) { 5030 if (ValAssumedPoison == V) 5031 return true; 5032 5033 const unsigned MaxDepth = 2; 5034 if (Depth >= MaxDepth) 5035 return false; 5036 5037 if (const auto *I = dyn_cast<Instruction>(V)) { 5038 if (propagatesPoison(cast<Operator>(I))) 5039 return any_of(I->operands(), [=](const Value *Op) { 5040 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5041 }); 5042 5043 // 'select ValAssumedPoison, _, _' is poison. 5044 if (const auto *SI = dyn_cast<SelectInst>(I)) 5045 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5046 Depth + 1); 5047 // V = extractvalue V0, idx 5048 // V2 = extractvalue V0, idx2 5049 // V0's elements are all poison or not. (e.g., add_with_overflow) 5050 const WithOverflowInst *II; 5051 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5052 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5053 llvm::is_contained(II->args(), ValAssumedPoison))) 5054 return true; 5055 } 5056 return false; 5057 } 5058 5059 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5060 unsigned Depth) { 5061 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5062 return true; 5063 5064 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5065 return true; 5066 5067 const unsigned MaxDepth = 2; 5068 if (Depth >= MaxDepth) 5069 return false; 5070 5071 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5072 if (I && !canCreatePoison(cast<Operator>(I))) { 5073 return all_of(I->operands(), [=](const Value *Op) { 5074 return impliesPoison(Op, V, Depth + 1); 5075 }); 5076 } 5077 return false; 5078 } 5079 5080 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5081 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5082 } 5083 5084 static bool programUndefinedIfUndefOrPoison(const Value *V, 5085 bool PoisonOnly); 5086 5087 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5088 AssumptionCache *AC, 5089 const Instruction *CtxI, 5090 const DominatorTree *DT, 5091 unsigned Depth, bool PoisonOnly) { 5092 if (Depth >= MaxAnalysisRecursionDepth) 5093 return false; 5094 5095 if (isa<MetadataAsValue>(V)) 5096 return false; 5097 5098 if (const auto *A = dyn_cast<Argument>(V)) { 5099 if (A->hasAttribute(Attribute::NoUndef)) 5100 return true; 5101 } 5102 5103 if (auto *C = dyn_cast<Constant>(V)) { 5104 if (isa<UndefValue>(C)) 5105 return PoisonOnly && !isa<PoisonValue>(C); 5106 5107 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5108 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5109 return true; 5110 5111 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5112 return (PoisonOnly ? !C->containsPoisonElement() 5113 : !C->containsUndefOrPoisonElement()) && 5114 !C->containsConstantExpression(); 5115 } 5116 5117 // Strip cast operations from a pointer value. 5118 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5119 // inbounds with zero offset. To guarantee that the result isn't poison, the 5120 // stripped pointer is checked as it has to be pointing into an allocated 5121 // object or be null `null` to ensure `inbounds` getelement pointers with a 5122 // zero offset could not produce poison. 5123 // It can strip off addrspacecast that do not change bit representation as 5124 // well. We believe that such addrspacecast is equivalent to no-op. 5125 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5126 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5127 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5128 return true; 5129 5130 auto OpCheck = [&](const Value *V) { 5131 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5132 PoisonOnly); 5133 }; 5134 5135 if (auto *Opr = dyn_cast<Operator>(V)) { 5136 // If the value is a freeze instruction, then it can never 5137 // be undef or poison. 5138 if (isa<FreezeInst>(V)) 5139 return true; 5140 5141 if (const auto *CB = dyn_cast<CallBase>(V)) { 5142 if (CB->hasRetAttr(Attribute::NoUndef)) 5143 return true; 5144 } 5145 5146 if (const auto *PN = dyn_cast<PHINode>(V)) { 5147 unsigned Num = PN->getNumIncomingValues(); 5148 bool IsWellDefined = true; 5149 for (unsigned i = 0; i < Num; ++i) { 5150 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5151 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5152 DT, Depth + 1, PoisonOnly)) { 5153 IsWellDefined = false; 5154 break; 5155 } 5156 } 5157 if (IsWellDefined) 5158 return true; 5159 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5160 return true; 5161 } 5162 5163 if (auto *I = dyn_cast<LoadInst>(V)) 5164 if (I->getMetadata(LLVMContext::MD_noundef)) 5165 return true; 5166 5167 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5168 return true; 5169 5170 // CxtI may be null or a cloned instruction. 5171 if (!CtxI || !CtxI->getParent() || !DT) 5172 return false; 5173 5174 auto *DNode = DT->getNode(CtxI->getParent()); 5175 if (!DNode) 5176 // Unreachable block 5177 return false; 5178 5179 // If V is used as a branch condition before reaching CtxI, V cannot be 5180 // undef or poison. 5181 // br V, BB1, BB2 5182 // BB1: 5183 // CtxI ; V cannot be undef or poison here 5184 auto *Dominator = DNode->getIDom(); 5185 while (Dominator) { 5186 auto *TI = Dominator->getBlock()->getTerminator(); 5187 5188 Value *Cond = nullptr; 5189 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5190 if (BI->isConditional()) 5191 Cond = BI->getCondition(); 5192 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5193 Cond = SI->getCondition(); 5194 } 5195 5196 if (Cond) { 5197 if (Cond == V) 5198 return true; 5199 else if (PoisonOnly && isa<Operator>(Cond)) { 5200 // For poison, we can analyze further 5201 auto *Opr = cast<Operator>(Cond); 5202 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5203 return true; 5204 } 5205 } 5206 5207 Dominator = Dominator->getIDom(); 5208 } 5209 5210 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5211 return true; 5212 5213 return false; 5214 } 5215 5216 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5217 const Instruction *CtxI, 5218 const DominatorTree *DT, 5219 unsigned Depth) { 5220 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5221 } 5222 5223 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5224 const Instruction *CtxI, 5225 const DominatorTree *DT, unsigned Depth) { 5226 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5227 } 5228 5229 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5230 const DataLayout &DL, 5231 AssumptionCache *AC, 5232 const Instruction *CxtI, 5233 const DominatorTree *DT) { 5234 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5235 Add, DL, AC, CxtI, DT); 5236 } 5237 5238 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5239 const Value *RHS, 5240 const DataLayout &DL, 5241 AssumptionCache *AC, 5242 const Instruction *CxtI, 5243 const DominatorTree *DT) { 5244 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5245 } 5246 5247 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5248 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5249 // of time because it's possible for another thread to interfere with it for an 5250 // arbitrary length of time, but programs aren't allowed to rely on that. 5251 5252 // If there is no successor, then execution can't transfer to it. 5253 if (isa<ReturnInst>(I)) 5254 return false; 5255 if (isa<UnreachableInst>(I)) 5256 return false; 5257 5258 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5259 // Instruction::willReturn. 5260 // 5261 // FIXME: Move this check into Instruction::willReturn. 5262 if (isa<CatchPadInst>(I)) { 5263 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5264 default: 5265 // A catchpad may invoke exception object constructors and such, which 5266 // in some languages can be arbitrary code, so be conservative by default. 5267 return false; 5268 case EHPersonality::CoreCLR: 5269 // For CoreCLR, it just involves a type test. 5270 return true; 5271 } 5272 } 5273 5274 // An instruction that returns without throwing must transfer control flow 5275 // to a successor. 5276 return !I->mayThrow() && I->willReturn(); 5277 } 5278 5279 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5280 // TODO: This is slightly conservative for invoke instruction since exiting 5281 // via an exception *is* normal control for them. 5282 for (const Instruction &I : *BB) 5283 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5284 return false; 5285 return true; 5286 } 5287 5288 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5289 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5290 unsigned ScanLimit) { 5291 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5292 ScanLimit); 5293 } 5294 5295 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5296 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5297 assert(ScanLimit && "scan limit must be non-zero"); 5298 for (const Instruction &I : Range) { 5299 if (isa<DbgInfoIntrinsic>(I)) 5300 continue; 5301 if (--ScanLimit == 0) 5302 return false; 5303 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5304 return false; 5305 } 5306 return true; 5307 } 5308 5309 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5310 const Loop *L) { 5311 // The loop header is guaranteed to be executed for every iteration. 5312 // 5313 // FIXME: Relax this constraint to cover all basic blocks that are 5314 // guaranteed to be executed at every iteration. 5315 if (I->getParent() != L->getHeader()) return false; 5316 5317 for (const Instruction &LI : *L->getHeader()) { 5318 if (&LI == I) return true; 5319 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5320 } 5321 llvm_unreachable("Instruction not contained in its own parent basic block."); 5322 } 5323 5324 bool llvm::propagatesPoison(const Operator *I) { 5325 switch (I->getOpcode()) { 5326 case Instruction::Freeze: 5327 case Instruction::Select: 5328 case Instruction::PHI: 5329 case Instruction::Invoke: 5330 return false; 5331 case Instruction::Call: 5332 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5333 switch (II->getIntrinsicID()) { 5334 // TODO: Add more intrinsics. 5335 case Intrinsic::sadd_with_overflow: 5336 case Intrinsic::ssub_with_overflow: 5337 case Intrinsic::smul_with_overflow: 5338 case Intrinsic::uadd_with_overflow: 5339 case Intrinsic::usub_with_overflow: 5340 case Intrinsic::umul_with_overflow: 5341 // If an input is a vector containing a poison element, the 5342 // two output vectors (calculated results, overflow bits)' 5343 // corresponding lanes are poison. 5344 return true; 5345 case Intrinsic::ctpop: 5346 return true; 5347 } 5348 } 5349 return false; 5350 case Instruction::ICmp: 5351 case Instruction::FCmp: 5352 case Instruction::GetElementPtr: 5353 return true; 5354 default: 5355 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5356 return true; 5357 5358 // Be conservative and return false. 5359 return false; 5360 } 5361 } 5362 5363 void llvm::getGuaranteedWellDefinedOps( 5364 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5365 switch (I->getOpcode()) { 5366 case Instruction::Store: 5367 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5368 break; 5369 5370 case Instruction::Load: 5371 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5372 break; 5373 5374 // Since dereferenceable attribute imply noundef, atomic operations 5375 // also implicitly have noundef pointers too 5376 case Instruction::AtomicCmpXchg: 5377 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5378 break; 5379 5380 case Instruction::AtomicRMW: 5381 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5382 break; 5383 5384 case Instruction::Call: 5385 case Instruction::Invoke: { 5386 const CallBase *CB = cast<CallBase>(I); 5387 if (CB->isIndirectCall()) 5388 Operands.insert(CB->getCalledOperand()); 5389 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5390 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5391 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5392 Operands.insert(CB->getArgOperand(i)); 5393 } 5394 break; 5395 } 5396 case Instruction::Ret: 5397 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5398 Operands.insert(I->getOperand(0)); 5399 break; 5400 default: 5401 break; 5402 } 5403 } 5404 5405 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5406 SmallPtrSetImpl<const Value *> &Operands) { 5407 getGuaranteedWellDefinedOps(I, Operands); 5408 switch (I->getOpcode()) { 5409 // Divisors of these operations are allowed to be partially undef. 5410 case Instruction::UDiv: 5411 case Instruction::SDiv: 5412 case Instruction::URem: 5413 case Instruction::SRem: 5414 Operands.insert(I->getOperand(1)); 5415 break; 5416 case Instruction::Switch: 5417 if (BranchOnPoisonAsUB) 5418 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5419 break; 5420 case Instruction::Br: { 5421 auto *BR = cast<BranchInst>(I); 5422 if (BranchOnPoisonAsUB && BR->isConditional()) 5423 Operands.insert(BR->getCondition()); 5424 break; 5425 } 5426 default: 5427 break; 5428 } 5429 } 5430 5431 bool llvm::mustTriggerUB(const Instruction *I, 5432 const SmallSet<const Value *, 16>& KnownPoison) { 5433 SmallPtrSet<const Value *, 4> NonPoisonOps; 5434 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5435 5436 for (const auto *V : NonPoisonOps) 5437 if (KnownPoison.count(V)) 5438 return true; 5439 5440 return false; 5441 } 5442 5443 static bool programUndefinedIfUndefOrPoison(const Value *V, 5444 bool PoisonOnly) { 5445 // We currently only look for uses of values within the same basic 5446 // block, as that makes it easier to guarantee that the uses will be 5447 // executed given that Inst is executed. 5448 // 5449 // FIXME: Expand this to consider uses beyond the same basic block. To do 5450 // this, look out for the distinction between post-dominance and strong 5451 // post-dominance. 5452 const BasicBlock *BB = nullptr; 5453 BasicBlock::const_iterator Begin; 5454 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5455 BB = Inst->getParent(); 5456 Begin = Inst->getIterator(); 5457 Begin++; 5458 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5459 BB = &Arg->getParent()->getEntryBlock(); 5460 Begin = BB->begin(); 5461 } else { 5462 return false; 5463 } 5464 5465 // Limit number of instructions we look at, to avoid scanning through large 5466 // blocks. The current limit is chosen arbitrarily. 5467 unsigned ScanLimit = 32; 5468 BasicBlock::const_iterator End = BB->end(); 5469 5470 if (!PoisonOnly) { 5471 // Since undef does not propagate eagerly, be conservative & just check 5472 // whether a value is directly passed to an instruction that must take 5473 // well-defined operands. 5474 5475 for (auto &I : make_range(Begin, End)) { 5476 if (isa<DbgInfoIntrinsic>(I)) 5477 continue; 5478 if (--ScanLimit == 0) 5479 break; 5480 5481 SmallPtrSet<const Value *, 4> WellDefinedOps; 5482 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5483 if (WellDefinedOps.contains(V)) 5484 return true; 5485 5486 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5487 break; 5488 } 5489 return false; 5490 } 5491 5492 // Set of instructions that we have proved will yield poison if Inst 5493 // does. 5494 SmallSet<const Value *, 16> YieldsPoison; 5495 SmallSet<const BasicBlock *, 4> Visited; 5496 5497 YieldsPoison.insert(V); 5498 auto Propagate = [&](const User *User) { 5499 if (propagatesPoison(cast<Operator>(User))) 5500 YieldsPoison.insert(User); 5501 }; 5502 for_each(V->users(), Propagate); 5503 Visited.insert(BB); 5504 5505 while (true) { 5506 for (auto &I : make_range(Begin, End)) { 5507 if (isa<DbgInfoIntrinsic>(I)) 5508 continue; 5509 if (--ScanLimit == 0) 5510 return false; 5511 if (mustTriggerUB(&I, YieldsPoison)) 5512 return true; 5513 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5514 return false; 5515 5516 // Mark poison that propagates from I through uses of I. 5517 if (YieldsPoison.count(&I)) 5518 for_each(I.users(), Propagate); 5519 } 5520 5521 BB = BB->getSingleSuccessor(); 5522 if (!BB || !Visited.insert(BB).second) 5523 break; 5524 5525 Begin = BB->getFirstNonPHI()->getIterator(); 5526 End = BB->end(); 5527 } 5528 return false; 5529 } 5530 5531 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5532 return ::programUndefinedIfUndefOrPoison(Inst, false); 5533 } 5534 5535 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5536 return ::programUndefinedIfUndefOrPoison(Inst, true); 5537 } 5538 5539 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5540 if (FMF.noNaNs()) 5541 return true; 5542 5543 if (auto *C = dyn_cast<ConstantFP>(V)) 5544 return !C->isNaN(); 5545 5546 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5547 if (!C->getElementType()->isFloatingPointTy()) 5548 return false; 5549 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5550 if (C->getElementAsAPFloat(I).isNaN()) 5551 return false; 5552 } 5553 return true; 5554 } 5555 5556 if (isa<ConstantAggregateZero>(V)) 5557 return true; 5558 5559 return false; 5560 } 5561 5562 static bool isKnownNonZero(const Value *V) { 5563 if (auto *C = dyn_cast<ConstantFP>(V)) 5564 return !C->isZero(); 5565 5566 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5567 if (!C->getElementType()->isFloatingPointTy()) 5568 return false; 5569 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5570 if (C->getElementAsAPFloat(I).isZero()) 5571 return false; 5572 } 5573 return true; 5574 } 5575 5576 return false; 5577 } 5578 5579 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5580 /// Given non-min/max outer cmp/select from the clamp pattern this 5581 /// function recognizes if it can be substitued by a "canonical" min/max 5582 /// pattern. 5583 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5584 Value *CmpLHS, Value *CmpRHS, 5585 Value *TrueVal, Value *FalseVal, 5586 Value *&LHS, Value *&RHS) { 5587 // Try to match 5588 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5589 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5590 // and return description of the outer Max/Min. 5591 5592 // First, check if select has inverse order: 5593 if (CmpRHS == FalseVal) { 5594 std::swap(TrueVal, FalseVal); 5595 Pred = CmpInst::getInversePredicate(Pred); 5596 } 5597 5598 // Assume success now. If there's no match, callers should not use these anyway. 5599 LHS = TrueVal; 5600 RHS = FalseVal; 5601 5602 const APFloat *FC1; 5603 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5604 return {SPF_UNKNOWN, SPNB_NA, false}; 5605 5606 const APFloat *FC2; 5607 switch (Pred) { 5608 case CmpInst::FCMP_OLT: 5609 case CmpInst::FCMP_OLE: 5610 case CmpInst::FCMP_ULT: 5611 case CmpInst::FCMP_ULE: 5612 if (match(FalseVal, 5613 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5614 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5615 *FC1 < *FC2) 5616 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5617 break; 5618 case CmpInst::FCMP_OGT: 5619 case CmpInst::FCMP_OGE: 5620 case CmpInst::FCMP_UGT: 5621 case CmpInst::FCMP_UGE: 5622 if (match(FalseVal, 5623 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5624 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5625 *FC1 > *FC2) 5626 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5627 break; 5628 default: 5629 break; 5630 } 5631 5632 return {SPF_UNKNOWN, SPNB_NA, false}; 5633 } 5634 5635 /// Recognize variations of: 5636 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5637 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5638 Value *CmpLHS, Value *CmpRHS, 5639 Value *TrueVal, Value *FalseVal) { 5640 // Swap the select operands and predicate to match the patterns below. 5641 if (CmpRHS != TrueVal) { 5642 Pred = ICmpInst::getSwappedPredicate(Pred); 5643 std::swap(TrueVal, FalseVal); 5644 } 5645 const APInt *C1; 5646 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5647 const APInt *C2; 5648 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5649 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5650 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5651 return {SPF_SMAX, SPNB_NA, false}; 5652 5653 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5654 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5655 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5656 return {SPF_SMIN, SPNB_NA, false}; 5657 5658 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5659 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5660 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5661 return {SPF_UMAX, SPNB_NA, false}; 5662 5663 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5664 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5665 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5666 return {SPF_UMIN, SPNB_NA, false}; 5667 } 5668 return {SPF_UNKNOWN, SPNB_NA, false}; 5669 } 5670 5671 /// Recognize variations of: 5672 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5673 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5674 Value *CmpLHS, Value *CmpRHS, 5675 Value *TVal, Value *FVal, 5676 unsigned Depth) { 5677 // TODO: Allow FP min/max with nnan/nsz. 5678 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5679 5680 Value *A = nullptr, *B = nullptr; 5681 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5682 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5683 return {SPF_UNKNOWN, SPNB_NA, false}; 5684 5685 Value *C = nullptr, *D = nullptr; 5686 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5687 if (L.Flavor != R.Flavor) 5688 return {SPF_UNKNOWN, SPNB_NA, false}; 5689 5690 // We have something like: x Pred y ? min(a, b) : min(c, d). 5691 // Try to match the compare to the min/max operations of the select operands. 5692 // First, make sure we have the right compare predicate. 5693 switch (L.Flavor) { 5694 case SPF_SMIN: 5695 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5696 Pred = ICmpInst::getSwappedPredicate(Pred); 5697 std::swap(CmpLHS, CmpRHS); 5698 } 5699 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5700 break; 5701 return {SPF_UNKNOWN, SPNB_NA, false}; 5702 case SPF_SMAX: 5703 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5704 Pred = ICmpInst::getSwappedPredicate(Pred); 5705 std::swap(CmpLHS, CmpRHS); 5706 } 5707 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5708 break; 5709 return {SPF_UNKNOWN, SPNB_NA, false}; 5710 case SPF_UMIN: 5711 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5712 Pred = ICmpInst::getSwappedPredicate(Pred); 5713 std::swap(CmpLHS, CmpRHS); 5714 } 5715 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5716 break; 5717 return {SPF_UNKNOWN, SPNB_NA, false}; 5718 case SPF_UMAX: 5719 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5720 Pred = ICmpInst::getSwappedPredicate(Pred); 5721 std::swap(CmpLHS, CmpRHS); 5722 } 5723 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5724 break; 5725 return {SPF_UNKNOWN, SPNB_NA, false}; 5726 default: 5727 return {SPF_UNKNOWN, SPNB_NA, false}; 5728 } 5729 5730 // If there is a common operand in the already matched min/max and the other 5731 // min/max operands match the compare operands (either directly or inverted), 5732 // then this is min/max of the same flavor. 5733 5734 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5735 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5736 if (D == B) { 5737 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5738 match(A, m_Not(m_Specific(CmpRHS))))) 5739 return {L.Flavor, SPNB_NA, false}; 5740 } 5741 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5742 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5743 if (C == B) { 5744 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5745 match(A, m_Not(m_Specific(CmpRHS))))) 5746 return {L.Flavor, SPNB_NA, false}; 5747 } 5748 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5749 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5750 if (D == A) { 5751 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5752 match(B, m_Not(m_Specific(CmpRHS))))) 5753 return {L.Flavor, SPNB_NA, false}; 5754 } 5755 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5756 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5757 if (C == A) { 5758 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5759 match(B, m_Not(m_Specific(CmpRHS))))) 5760 return {L.Flavor, SPNB_NA, false}; 5761 } 5762 5763 return {SPF_UNKNOWN, SPNB_NA, false}; 5764 } 5765 5766 /// If the input value is the result of a 'not' op, constant integer, or vector 5767 /// splat of a constant integer, return the bitwise-not source value. 5768 /// TODO: This could be extended to handle non-splat vector integer constants. 5769 static Value *getNotValue(Value *V) { 5770 Value *NotV; 5771 if (match(V, m_Not(m_Value(NotV)))) 5772 return NotV; 5773 5774 const APInt *C; 5775 if (match(V, m_APInt(C))) 5776 return ConstantInt::get(V->getType(), ~(*C)); 5777 5778 return nullptr; 5779 } 5780 5781 /// Match non-obvious integer minimum and maximum sequences. 5782 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5783 Value *CmpLHS, Value *CmpRHS, 5784 Value *TrueVal, Value *FalseVal, 5785 Value *&LHS, Value *&RHS, 5786 unsigned Depth) { 5787 // Assume success. If there's no match, callers should not use these anyway. 5788 LHS = TrueVal; 5789 RHS = FalseVal; 5790 5791 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5792 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5793 return SPR; 5794 5795 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5796 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5797 return SPR; 5798 5799 // Look through 'not' ops to find disguised min/max. 5800 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5801 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5802 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5803 switch (Pred) { 5804 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5805 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5806 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5807 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5808 default: break; 5809 } 5810 } 5811 5812 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5813 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5814 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5815 switch (Pred) { 5816 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5817 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5818 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5819 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5820 default: break; 5821 } 5822 } 5823 5824 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5825 return {SPF_UNKNOWN, SPNB_NA, false}; 5826 5827 const APInt *C1; 5828 if (!match(CmpRHS, m_APInt(C1))) 5829 return {SPF_UNKNOWN, SPNB_NA, false}; 5830 5831 // An unsigned min/max can be written with a signed compare. 5832 const APInt *C2; 5833 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5834 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5835 // Is the sign bit set? 5836 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5837 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5838 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5839 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5840 5841 // Is the sign bit clear? 5842 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5843 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5844 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5845 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5846 } 5847 5848 return {SPF_UNKNOWN, SPNB_NA, false}; 5849 } 5850 5851 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5852 assert(X && Y && "Invalid operand"); 5853 5854 // X = sub (0, Y) || X = sub nsw (0, Y) 5855 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5856 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5857 return true; 5858 5859 // Y = sub (0, X) || Y = sub nsw (0, X) 5860 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5861 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5862 return true; 5863 5864 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5865 Value *A, *B; 5866 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5867 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5868 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5869 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5870 } 5871 5872 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5873 FastMathFlags FMF, 5874 Value *CmpLHS, Value *CmpRHS, 5875 Value *TrueVal, Value *FalseVal, 5876 Value *&LHS, Value *&RHS, 5877 unsigned Depth) { 5878 if (CmpInst::isFPPredicate(Pred)) { 5879 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5880 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5881 // purpose of identifying min/max. Disregard vector constants with undefined 5882 // elements because those can not be back-propagated for analysis. 5883 Value *OutputZeroVal = nullptr; 5884 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5885 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5886 OutputZeroVal = TrueVal; 5887 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5888 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5889 OutputZeroVal = FalseVal; 5890 5891 if (OutputZeroVal) { 5892 if (match(CmpLHS, m_AnyZeroFP())) 5893 CmpLHS = OutputZeroVal; 5894 if (match(CmpRHS, m_AnyZeroFP())) 5895 CmpRHS = OutputZeroVal; 5896 } 5897 } 5898 5899 LHS = CmpLHS; 5900 RHS = CmpRHS; 5901 5902 // Signed zero may return inconsistent results between implementations. 5903 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5904 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5905 // Therefore, we behave conservatively and only proceed if at least one of the 5906 // operands is known to not be zero or if we don't care about signed zero. 5907 switch (Pred) { 5908 default: break; 5909 // FIXME: Include OGT/OLT/UGT/ULT. 5910 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5911 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5912 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5913 !isKnownNonZero(CmpRHS)) 5914 return {SPF_UNKNOWN, SPNB_NA, false}; 5915 } 5916 5917 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5918 bool Ordered = false; 5919 5920 // When given one NaN and one non-NaN input: 5921 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5922 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5923 // ordered comparison fails), which could be NaN or non-NaN. 5924 // so here we discover exactly what NaN behavior is required/accepted. 5925 if (CmpInst::isFPPredicate(Pred)) { 5926 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5927 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5928 5929 if (LHSSafe && RHSSafe) { 5930 // Both operands are known non-NaN. 5931 NaNBehavior = SPNB_RETURNS_ANY; 5932 } else if (CmpInst::isOrdered(Pred)) { 5933 // An ordered comparison will return false when given a NaN, so it 5934 // returns the RHS. 5935 Ordered = true; 5936 if (LHSSafe) 5937 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5938 NaNBehavior = SPNB_RETURNS_NAN; 5939 else if (RHSSafe) 5940 NaNBehavior = SPNB_RETURNS_OTHER; 5941 else 5942 // Completely unsafe. 5943 return {SPF_UNKNOWN, SPNB_NA, false}; 5944 } else { 5945 Ordered = false; 5946 // An unordered comparison will return true when given a NaN, so it 5947 // returns the LHS. 5948 if (LHSSafe) 5949 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5950 NaNBehavior = SPNB_RETURNS_OTHER; 5951 else if (RHSSafe) 5952 NaNBehavior = SPNB_RETURNS_NAN; 5953 else 5954 // Completely unsafe. 5955 return {SPF_UNKNOWN, SPNB_NA, false}; 5956 } 5957 } 5958 5959 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5960 std::swap(CmpLHS, CmpRHS); 5961 Pred = CmpInst::getSwappedPredicate(Pred); 5962 if (NaNBehavior == SPNB_RETURNS_NAN) 5963 NaNBehavior = SPNB_RETURNS_OTHER; 5964 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5965 NaNBehavior = SPNB_RETURNS_NAN; 5966 Ordered = !Ordered; 5967 } 5968 5969 // ([if]cmp X, Y) ? X : Y 5970 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5971 switch (Pred) { 5972 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5973 case ICmpInst::ICMP_UGT: 5974 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5975 case ICmpInst::ICMP_SGT: 5976 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5977 case ICmpInst::ICMP_ULT: 5978 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5979 case ICmpInst::ICMP_SLT: 5980 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5981 case FCmpInst::FCMP_UGT: 5982 case FCmpInst::FCMP_UGE: 5983 case FCmpInst::FCMP_OGT: 5984 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5985 case FCmpInst::FCMP_ULT: 5986 case FCmpInst::FCMP_ULE: 5987 case FCmpInst::FCMP_OLT: 5988 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5989 } 5990 } 5991 5992 if (isKnownNegation(TrueVal, FalseVal)) { 5993 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5994 // match against either LHS or sext(LHS). 5995 auto MaybeSExtCmpLHS = 5996 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5997 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5998 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5999 if (match(TrueVal, MaybeSExtCmpLHS)) { 6000 // Set the return values. If the compare uses the negated value (-X >s 0), 6001 // swap the return values because the negated value is always 'RHS'. 6002 LHS = TrueVal; 6003 RHS = FalseVal; 6004 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6005 std::swap(LHS, RHS); 6006 6007 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6008 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6009 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6010 return {SPF_ABS, SPNB_NA, false}; 6011 6012 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6013 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6014 return {SPF_ABS, SPNB_NA, false}; 6015 6016 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6017 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6018 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6019 return {SPF_NABS, SPNB_NA, false}; 6020 } 6021 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6022 // Set the return values. If the compare uses the negated value (-X >s 0), 6023 // swap the return values because the negated value is always 'RHS'. 6024 LHS = FalseVal; 6025 RHS = TrueVal; 6026 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6027 std::swap(LHS, RHS); 6028 6029 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6030 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6031 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6032 return {SPF_NABS, SPNB_NA, false}; 6033 6034 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6035 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6036 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6037 return {SPF_ABS, SPNB_NA, false}; 6038 } 6039 } 6040 6041 if (CmpInst::isIntPredicate(Pred)) 6042 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6043 6044 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6045 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6046 // semantics than minNum. Be conservative in such case. 6047 if (NaNBehavior != SPNB_RETURNS_ANY || 6048 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6049 !isKnownNonZero(CmpRHS))) 6050 return {SPF_UNKNOWN, SPNB_NA, false}; 6051 6052 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6053 } 6054 6055 /// Helps to match a select pattern in case of a type mismatch. 6056 /// 6057 /// The function processes the case when type of true and false values of a 6058 /// select instruction differs from type of the cmp instruction operands because 6059 /// of a cast instruction. The function checks if it is legal to move the cast 6060 /// operation after "select". If yes, it returns the new second value of 6061 /// "select" (with the assumption that cast is moved): 6062 /// 1. As operand of cast instruction when both values of "select" are same cast 6063 /// instructions. 6064 /// 2. As restored constant (by applying reverse cast operation) when the first 6065 /// value of the "select" is a cast operation and the second value is a 6066 /// constant. 6067 /// NOTE: We return only the new second value because the first value could be 6068 /// accessed as operand of cast instruction. 6069 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6070 Instruction::CastOps *CastOp) { 6071 auto *Cast1 = dyn_cast<CastInst>(V1); 6072 if (!Cast1) 6073 return nullptr; 6074 6075 *CastOp = Cast1->getOpcode(); 6076 Type *SrcTy = Cast1->getSrcTy(); 6077 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6078 // If V1 and V2 are both the same cast from the same type, look through V1. 6079 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6080 return Cast2->getOperand(0); 6081 return nullptr; 6082 } 6083 6084 auto *C = dyn_cast<Constant>(V2); 6085 if (!C) 6086 return nullptr; 6087 6088 Constant *CastedTo = nullptr; 6089 switch (*CastOp) { 6090 case Instruction::ZExt: 6091 if (CmpI->isUnsigned()) 6092 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6093 break; 6094 case Instruction::SExt: 6095 if (CmpI->isSigned()) 6096 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6097 break; 6098 case Instruction::Trunc: 6099 Constant *CmpConst; 6100 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6101 CmpConst->getType() == SrcTy) { 6102 // Here we have the following case: 6103 // 6104 // %cond = cmp iN %x, CmpConst 6105 // %tr = trunc iN %x to iK 6106 // %narrowsel = select i1 %cond, iK %t, iK C 6107 // 6108 // We can always move trunc after select operation: 6109 // 6110 // %cond = cmp iN %x, CmpConst 6111 // %widesel = select i1 %cond, iN %x, iN CmpConst 6112 // %tr = trunc iN %widesel to iK 6113 // 6114 // Note that C could be extended in any way because we don't care about 6115 // upper bits after truncation. It can't be abs pattern, because it would 6116 // look like: 6117 // 6118 // select i1 %cond, x, -x. 6119 // 6120 // So only min/max pattern could be matched. Such match requires widened C 6121 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6122 // CmpConst == C is checked below. 6123 CastedTo = CmpConst; 6124 } else { 6125 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6126 } 6127 break; 6128 case Instruction::FPTrunc: 6129 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6130 break; 6131 case Instruction::FPExt: 6132 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6133 break; 6134 case Instruction::FPToUI: 6135 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6136 break; 6137 case Instruction::FPToSI: 6138 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6139 break; 6140 case Instruction::UIToFP: 6141 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6142 break; 6143 case Instruction::SIToFP: 6144 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6145 break; 6146 default: 6147 break; 6148 } 6149 6150 if (!CastedTo) 6151 return nullptr; 6152 6153 // Make sure the cast doesn't lose any information. 6154 Constant *CastedBack = 6155 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6156 if (CastedBack != C) 6157 return nullptr; 6158 6159 return CastedTo; 6160 } 6161 6162 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6163 Instruction::CastOps *CastOp, 6164 unsigned Depth) { 6165 if (Depth >= MaxAnalysisRecursionDepth) 6166 return {SPF_UNKNOWN, SPNB_NA, false}; 6167 6168 SelectInst *SI = dyn_cast<SelectInst>(V); 6169 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6170 6171 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6172 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6173 6174 Value *TrueVal = SI->getTrueValue(); 6175 Value *FalseVal = SI->getFalseValue(); 6176 6177 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6178 CastOp, Depth); 6179 } 6180 6181 SelectPatternResult llvm::matchDecomposedSelectPattern( 6182 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6183 Instruction::CastOps *CastOp, unsigned Depth) { 6184 CmpInst::Predicate Pred = CmpI->getPredicate(); 6185 Value *CmpLHS = CmpI->getOperand(0); 6186 Value *CmpRHS = CmpI->getOperand(1); 6187 FastMathFlags FMF; 6188 if (isa<FPMathOperator>(CmpI)) 6189 FMF = CmpI->getFastMathFlags(); 6190 6191 // Bail out early. 6192 if (CmpI->isEquality()) 6193 return {SPF_UNKNOWN, SPNB_NA, false}; 6194 6195 // Deal with type mismatches. 6196 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6197 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6198 // If this is a potential fmin/fmax with a cast to integer, then ignore 6199 // -0.0 because there is no corresponding integer value. 6200 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6201 FMF.setNoSignedZeros(); 6202 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6203 cast<CastInst>(TrueVal)->getOperand(0), C, 6204 LHS, RHS, Depth); 6205 } 6206 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6207 // If this is a potential fmin/fmax with a cast to integer, then ignore 6208 // -0.0 because there is no corresponding integer value. 6209 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6210 FMF.setNoSignedZeros(); 6211 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6212 C, cast<CastInst>(FalseVal)->getOperand(0), 6213 LHS, RHS, Depth); 6214 } 6215 } 6216 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6217 LHS, RHS, Depth); 6218 } 6219 6220 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6221 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6222 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6223 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6224 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6225 if (SPF == SPF_FMINNUM) 6226 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6227 if (SPF == SPF_FMAXNUM) 6228 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6229 llvm_unreachable("unhandled!"); 6230 } 6231 6232 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6233 if (SPF == SPF_SMIN) return SPF_SMAX; 6234 if (SPF == SPF_UMIN) return SPF_UMAX; 6235 if (SPF == SPF_SMAX) return SPF_SMIN; 6236 if (SPF == SPF_UMAX) return SPF_UMIN; 6237 llvm_unreachable("unhandled!"); 6238 } 6239 6240 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6241 switch (MinMaxID) { 6242 case Intrinsic::smax: return Intrinsic::smin; 6243 case Intrinsic::smin: return Intrinsic::smax; 6244 case Intrinsic::umax: return Intrinsic::umin; 6245 case Intrinsic::umin: return Intrinsic::umax; 6246 default: llvm_unreachable("Unexpected intrinsic"); 6247 } 6248 } 6249 6250 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6251 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6252 } 6253 6254 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6255 switch (SPF) { 6256 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6257 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6258 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6259 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6260 default: llvm_unreachable("Unexpected flavor"); 6261 } 6262 } 6263 6264 std::pair<Intrinsic::ID, bool> 6265 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6266 // Check if VL contains select instructions that can be folded into a min/max 6267 // vector intrinsic and return the intrinsic if it is possible. 6268 // TODO: Support floating point min/max. 6269 bool AllCmpSingleUse = true; 6270 SelectPatternResult SelectPattern; 6271 SelectPattern.Flavor = SPF_UNKNOWN; 6272 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6273 Value *LHS, *RHS; 6274 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6275 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6276 CurrentPattern.Flavor == SPF_FMINNUM || 6277 CurrentPattern.Flavor == SPF_FMAXNUM || 6278 !I->getType()->isIntOrIntVectorTy()) 6279 return false; 6280 if (SelectPattern.Flavor != SPF_UNKNOWN && 6281 SelectPattern.Flavor != CurrentPattern.Flavor) 6282 return false; 6283 SelectPattern = CurrentPattern; 6284 AllCmpSingleUse &= 6285 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6286 return true; 6287 })) { 6288 switch (SelectPattern.Flavor) { 6289 case SPF_SMIN: 6290 return {Intrinsic::smin, AllCmpSingleUse}; 6291 case SPF_UMIN: 6292 return {Intrinsic::umin, AllCmpSingleUse}; 6293 case SPF_SMAX: 6294 return {Intrinsic::smax, AllCmpSingleUse}; 6295 case SPF_UMAX: 6296 return {Intrinsic::umax, AllCmpSingleUse}; 6297 default: 6298 llvm_unreachable("unexpected select pattern flavor"); 6299 } 6300 } 6301 return {Intrinsic::not_intrinsic, false}; 6302 } 6303 6304 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6305 Value *&Start, Value *&Step) { 6306 // Handle the case of a simple two-predecessor recurrence PHI. 6307 // There's a lot more that could theoretically be done here, but 6308 // this is sufficient to catch some interesting cases. 6309 if (P->getNumIncomingValues() != 2) 6310 return false; 6311 6312 for (unsigned i = 0; i != 2; ++i) { 6313 Value *L = P->getIncomingValue(i); 6314 Value *R = P->getIncomingValue(!i); 6315 Operator *LU = dyn_cast<Operator>(L); 6316 if (!LU) 6317 continue; 6318 unsigned Opcode = LU->getOpcode(); 6319 6320 switch (Opcode) { 6321 default: 6322 continue; 6323 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6324 case Instruction::LShr: 6325 case Instruction::AShr: 6326 case Instruction::Shl: 6327 case Instruction::Add: 6328 case Instruction::Sub: 6329 case Instruction::And: 6330 case Instruction::Or: 6331 case Instruction::Mul: { 6332 Value *LL = LU->getOperand(0); 6333 Value *LR = LU->getOperand(1); 6334 // Find a recurrence. 6335 if (LL == P) 6336 L = LR; 6337 else if (LR == P) 6338 L = LL; 6339 else 6340 continue; // Check for recurrence with L and R flipped. 6341 6342 break; // Match! 6343 } 6344 }; 6345 6346 // We have matched a recurrence of the form: 6347 // %iv = [R, %entry], [%iv.next, %backedge] 6348 // %iv.next = binop %iv, L 6349 // OR 6350 // %iv = [R, %entry], [%iv.next, %backedge] 6351 // %iv.next = binop L, %iv 6352 BO = cast<BinaryOperator>(LU); 6353 Start = R; 6354 Step = L; 6355 return true; 6356 } 6357 return false; 6358 } 6359 6360 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6361 Value *&Start, Value *&Step) { 6362 BinaryOperator *BO = nullptr; 6363 P = dyn_cast<PHINode>(I->getOperand(0)); 6364 if (!P) 6365 P = dyn_cast<PHINode>(I->getOperand(1)); 6366 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6367 } 6368 6369 /// Return true if "icmp Pred LHS RHS" is always true. 6370 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6371 const Value *RHS, const DataLayout &DL, 6372 unsigned Depth) { 6373 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6374 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6375 return true; 6376 6377 switch (Pred) { 6378 default: 6379 return false; 6380 6381 case CmpInst::ICMP_SLE: { 6382 const APInt *C; 6383 6384 // LHS s<= LHS +_{nsw} C if C >= 0 6385 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6386 return !C->isNegative(); 6387 return false; 6388 } 6389 6390 case CmpInst::ICMP_ULE: { 6391 const APInt *C; 6392 6393 // LHS u<= LHS +_{nuw} C for any C 6394 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6395 return true; 6396 6397 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6398 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6399 const Value *&X, 6400 const APInt *&CA, const APInt *&CB) { 6401 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6402 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6403 return true; 6404 6405 // If X & C == 0 then (X | C) == X +_{nuw} C 6406 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6407 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6408 KnownBits Known(CA->getBitWidth()); 6409 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6410 /*CxtI*/ nullptr, /*DT*/ nullptr); 6411 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6412 return true; 6413 } 6414 6415 return false; 6416 }; 6417 6418 const Value *X; 6419 const APInt *CLHS, *CRHS; 6420 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6421 return CLHS->ule(*CRHS); 6422 6423 return false; 6424 } 6425 } 6426 } 6427 6428 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6429 /// ALHS ARHS" is true. Otherwise, return None. 6430 static Optional<bool> 6431 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6432 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6433 const DataLayout &DL, unsigned Depth) { 6434 switch (Pred) { 6435 default: 6436 return None; 6437 6438 case CmpInst::ICMP_SLT: 6439 case CmpInst::ICMP_SLE: 6440 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6441 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6442 return true; 6443 return None; 6444 6445 case CmpInst::ICMP_ULT: 6446 case CmpInst::ICMP_ULE: 6447 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6448 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6449 return true; 6450 return None; 6451 } 6452 } 6453 6454 /// Return true if the operands of the two compares match. IsSwappedOps is true 6455 /// when the operands match, but are swapped. 6456 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6457 const Value *BLHS, const Value *BRHS, 6458 bool &IsSwappedOps) { 6459 6460 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6461 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6462 return IsMatchingOps || IsSwappedOps; 6463 } 6464 6465 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6466 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6467 /// Otherwise, return None if we can't infer anything. 6468 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6469 CmpInst::Predicate BPred, 6470 bool AreSwappedOps) { 6471 // Canonicalize the predicate as if the operands were not commuted. 6472 if (AreSwappedOps) 6473 BPred = ICmpInst::getSwappedPredicate(BPred); 6474 6475 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6476 return true; 6477 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6478 return false; 6479 6480 return None; 6481 } 6482 6483 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6484 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6485 /// Otherwise, return None if we can't infer anything. 6486 static Optional<bool> 6487 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6488 const ConstantInt *C1, 6489 CmpInst::Predicate BPred, 6490 const ConstantInt *C2) { 6491 ConstantRange DomCR = 6492 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6493 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6494 ConstantRange Intersection = DomCR.intersectWith(CR); 6495 ConstantRange Difference = DomCR.difference(CR); 6496 if (Intersection.isEmptySet()) 6497 return false; 6498 if (Difference.isEmptySet()) 6499 return true; 6500 return None; 6501 } 6502 6503 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6504 /// false. Otherwise, return None if we can't infer anything. 6505 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6506 CmpInst::Predicate BPred, 6507 const Value *BLHS, const Value *BRHS, 6508 const DataLayout &DL, bool LHSIsTrue, 6509 unsigned Depth) { 6510 Value *ALHS = LHS->getOperand(0); 6511 Value *ARHS = LHS->getOperand(1); 6512 6513 // The rest of the logic assumes the LHS condition is true. If that's not the 6514 // case, invert the predicate to make it so. 6515 CmpInst::Predicate APred = 6516 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6517 6518 // Can we infer anything when the two compares have matching operands? 6519 bool AreSwappedOps; 6520 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6521 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6522 APred, BPred, AreSwappedOps)) 6523 return Implication; 6524 // No amount of additional analysis will infer the second condition, so 6525 // early exit. 6526 return None; 6527 } 6528 6529 // Can we infer anything when the LHS operands match and the RHS operands are 6530 // constants (not necessarily matching)? 6531 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6532 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6533 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6534 return Implication; 6535 // No amount of additional analysis will infer the second condition, so 6536 // early exit. 6537 return None; 6538 } 6539 6540 if (APred == BPred) 6541 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6542 return None; 6543 } 6544 6545 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6546 /// false. Otherwise, return None if we can't infer anything. We expect the 6547 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6548 static Optional<bool> 6549 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6550 const Value *RHSOp0, const Value *RHSOp1, 6551 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6552 // The LHS must be an 'or', 'and', or a 'select' instruction. 6553 assert((LHS->getOpcode() == Instruction::And || 6554 LHS->getOpcode() == Instruction::Or || 6555 LHS->getOpcode() == Instruction::Select) && 6556 "Expected LHS to be 'and', 'or', or 'select'."); 6557 6558 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6559 6560 // If the result of an 'or' is false, then we know both legs of the 'or' are 6561 // false. Similarly, if the result of an 'and' is true, then we know both 6562 // legs of the 'and' are true. 6563 const Value *ALHS, *ARHS; 6564 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6565 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6566 // FIXME: Make this non-recursion. 6567 if (Optional<bool> Implication = isImpliedCondition( 6568 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6569 return Implication; 6570 if (Optional<bool> Implication = isImpliedCondition( 6571 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6572 return Implication; 6573 return None; 6574 } 6575 return None; 6576 } 6577 6578 Optional<bool> 6579 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6580 const Value *RHSOp0, const Value *RHSOp1, 6581 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6582 // Bail out when we hit the limit. 6583 if (Depth == MaxAnalysisRecursionDepth) 6584 return None; 6585 6586 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6587 // example. 6588 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6589 return None; 6590 6591 Type *OpTy = LHS->getType(); 6592 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6593 6594 // FIXME: Extending the code below to handle vectors. 6595 if (OpTy->isVectorTy()) 6596 return None; 6597 6598 assert(OpTy->isIntegerTy(1) && "implied by above"); 6599 6600 // Both LHS and RHS are icmps. 6601 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6602 if (LHSCmp) 6603 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6604 Depth); 6605 6606 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6607 /// the RHS to be an icmp. 6608 /// FIXME: Add support for and/or/select on the RHS. 6609 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6610 if ((LHSI->getOpcode() == Instruction::And || 6611 LHSI->getOpcode() == Instruction::Or || 6612 LHSI->getOpcode() == Instruction::Select)) 6613 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6614 Depth); 6615 } 6616 return None; 6617 } 6618 6619 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6620 const DataLayout &DL, bool LHSIsTrue, 6621 unsigned Depth) { 6622 // LHS ==> RHS by definition 6623 if (LHS == RHS) 6624 return LHSIsTrue; 6625 6626 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6627 if (RHSCmp) 6628 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6629 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6630 LHSIsTrue, Depth); 6631 return None; 6632 } 6633 6634 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6635 // condition dominating ContextI or nullptr, if no condition is found. 6636 static std::pair<Value *, bool> 6637 getDomPredecessorCondition(const Instruction *ContextI) { 6638 if (!ContextI || !ContextI->getParent()) 6639 return {nullptr, false}; 6640 6641 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6642 // dominator tree (eg, from a SimplifyQuery) instead? 6643 const BasicBlock *ContextBB = ContextI->getParent(); 6644 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6645 if (!PredBB) 6646 return {nullptr, false}; 6647 6648 // We need a conditional branch in the predecessor. 6649 Value *PredCond; 6650 BasicBlock *TrueBB, *FalseBB; 6651 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6652 return {nullptr, false}; 6653 6654 // The branch should get simplified. Don't bother simplifying this condition. 6655 if (TrueBB == FalseBB) 6656 return {nullptr, false}; 6657 6658 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6659 "Predecessor block does not point to successor?"); 6660 6661 // Is this condition implied by the predecessor condition? 6662 return {PredCond, TrueBB == ContextBB}; 6663 } 6664 6665 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6666 const Instruction *ContextI, 6667 const DataLayout &DL) { 6668 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6669 auto PredCond = getDomPredecessorCondition(ContextI); 6670 if (PredCond.first) 6671 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6672 return None; 6673 } 6674 6675 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6676 const Value *LHS, const Value *RHS, 6677 const Instruction *ContextI, 6678 const DataLayout &DL) { 6679 auto PredCond = getDomPredecessorCondition(ContextI); 6680 if (PredCond.first) 6681 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6682 PredCond.second); 6683 return None; 6684 } 6685 6686 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6687 APInt &Upper, const InstrInfoQuery &IIQ, 6688 bool PreferSignedRange) { 6689 unsigned Width = Lower.getBitWidth(); 6690 const APInt *C; 6691 switch (BO.getOpcode()) { 6692 case Instruction::Add: 6693 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6694 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6695 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6696 6697 // If the caller expects a signed compare, then try to use a signed range. 6698 // Otherwise if both no-wraps are set, use the unsigned range because it 6699 // is never larger than the signed range. Example: 6700 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6701 if (PreferSignedRange && HasNSW && HasNUW) 6702 HasNUW = false; 6703 6704 if (HasNUW) { 6705 // 'add nuw x, C' produces [C, UINT_MAX]. 6706 Lower = *C; 6707 } else if (HasNSW) { 6708 if (C->isNegative()) { 6709 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6710 Lower = APInt::getSignedMinValue(Width); 6711 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6712 } else { 6713 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6714 Lower = APInt::getSignedMinValue(Width) + *C; 6715 Upper = APInt::getSignedMaxValue(Width) + 1; 6716 } 6717 } 6718 } 6719 break; 6720 6721 case Instruction::And: 6722 if (match(BO.getOperand(1), m_APInt(C))) 6723 // 'and x, C' produces [0, C]. 6724 Upper = *C + 1; 6725 break; 6726 6727 case Instruction::Or: 6728 if (match(BO.getOperand(1), m_APInt(C))) 6729 // 'or x, C' produces [C, UINT_MAX]. 6730 Lower = *C; 6731 break; 6732 6733 case Instruction::AShr: 6734 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6735 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6736 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6737 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6738 } else if (match(BO.getOperand(0), m_APInt(C))) { 6739 unsigned ShiftAmount = Width - 1; 6740 if (!C->isZero() && IIQ.isExact(&BO)) 6741 ShiftAmount = C->countTrailingZeros(); 6742 if (C->isNegative()) { 6743 // 'ashr C, x' produces [C, C >> (Width-1)] 6744 Lower = *C; 6745 Upper = C->ashr(ShiftAmount) + 1; 6746 } else { 6747 // 'ashr C, x' produces [C >> (Width-1), C] 6748 Lower = C->ashr(ShiftAmount); 6749 Upper = *C + 1; 6750 } 6751 } 6752 break; 6753 6754 case Instruction::LShr: 6755 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6756 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6757 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6758 } else if (match(BO.getOperand(0), m_APInt(C))) { 6759 // 'lshr C, x' produces [C >> (Width-1), C]. 6760 unsigned ShiftAmount = Width - 1; 6761 if (!C->isZero() && IIQ.isExact(&BO)) 6762 ShiftAmount = C->countTrailingZeros(); 6763 Lower = C->lshr(ShiftAmount); 6764 Upper = *C + 1; 6765 } 6766 break; 6767 6768 case Instruction::Shl: 6769 if (match(BO.getOperand(0), m_APInt(C))) { 6770 if (IIQ.hasNoUnsignedWrap(&BO)) { 6771 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6772 Lower = *C; 6773 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6774 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6775 if (C->isNegative()) { 6776 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6777 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6778 Lower = C->shl(ShiftAmount); 6779 Upper = *C + 1; 6780 } else { 6781 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6782 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6783 Lower = *C; 6784 Upper = C->shl(ShiftAmount) + 1; 6785 } 6786 } 6787 } 6788 break; 6789 6790 case Instruction::SDiv: 6791 if (match(BO.getOperand(1), m_APInt(C))) { 6792 APInt IntMin = APInt::getSignedMinValue(Width); 6793 APInt IntMax = APInt::getSignedMaxValue(Width); 6794 if (C->isAllOnes()) { 6795 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6796 // where C != -1 and C != 0 and C != 1 6797 Lower = IntMin + 1; 6798 Upper = IntMax + 1; 6799 } else if (C->countLeadingZeros() < Width - 1) { 6800 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6801 // where C != -1 and C != 0 and C != 1 6802 Lower = IntMin.sdiv(*C); 6803 Upper = IntMax.sdiv(*C); 6804 if (Lower.sgt(Upper)) 6805 std::swap(Lower, Upper); 6806 Upper = Upper + 1; 6807 assert(Upper != Lower && "Upper part of range has wrapped!"); 6808 } 6809 } else if (match(BO.getOperand(0), m_APInt(C))) { 6810 if (C->isMinSignedValue()) { 6811 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6812 Lower = *C; 6813 Upper = Lower.lshr(1) + 1; 6814 } else { 6815 // 'sdiv C, x' produces [-|C|, |C|]. 6816 Upper = C->abs() + 1; 6817 Lower = (-Upper) + 1; 6818 } 6819 } 6820 break; 6821 6822 case Instruction::UDiv: 6823 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6824 // 'udiv x, C' produces [0, UINT_MAX / C]. 6825 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6826 } else if (match(BO.getOperand(0), m_APInt(C))) { 6827 // 'udiv C, x' produces [0, C]. 6828 Upper = *C + 1; 6829 } 6830 break; 6831 6832 case Instruction::SRem: 6833 if (match(BO.getOperand(1), m_APInt(C))) { 6834 // 'srem x, C' produces (-|C|, |C|). 6835 Upper = C->abs(); 6836 Lower = (-Upper) + 1; 6837 } 6838 break; 6839 6840 case Instruction::URem: 6841 if (match(BO.getOperand(1), m_APInt(C))) 6842 // 'urem x, C' produces [0, C). 6843 Upper = *C; 6844 break; 6845 6846 default: 6847 break; 6848 } 6849 } 6850 6851 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6852 APInt &Upper) { 6853 unsigned Width = Lower.getBitWidth(); 6854 const APInt *C; 6855 switch (II.getIntrinsicID()) { 6856 case Intrinsic::ctpop: 6857 case Intrinsic::ctlz: 6858 case Intrinsic::cttz: 6859 // Maximum of set/clear bits is the bit width. 6860 assert(Lower == 0 && "Expected lower bound to be zero"); 6861 Upper = Width + 1; 6862 break; 6863 case Intrinsic::uadd_sat: 6864 // uadd.sat(x, C) produces [C, UINT_MAX]. 6865 if (match(II.getOperand(0), m_APInt(C)) || 6866 match(II.getOperand(1), m_APInt(C))) 6867 Lower = *C; 6868 break; 6869 case Intrinsic::sadd_sat: 6870 if (match(II.getOperand(0), m_APInt(C)) || 6871 match(II.getOperand(1), m_APInt(C))) { 6872 if (C->isNegative()) { 6873 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6874 Lower = APInt::getSignedMinValue(Width); 6875 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6876 } else { 6877 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6878 Lower = APInt::getSignedMinValue(Width) + *C; 6879 Upper = APInt::getSignedMaxValue(Width) + 1; 6880 } 6881 } 6882 break; 6883 case Intrinsic::usub_sat: 6884 // usub.sat(C, x) produces [0, C]. 6885 if (match(II.getOperand(0), m_APInt(C))) 6886 Upper = *C + 1; 6887 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6888 else if (match(II.getOperand(1), m_APInt(C))) 6889 Upper = APInt::getMaxValue(Width) - *C + 1; 6890 break; 6891 case Intrinsic::ssub_sat: 6892 if (match(II.getOperand(0), m_APInt(C))) { 6893 if (C->isNegative()) { 6894 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6895 Lower = APInt::getSignedMinValue(Width); 6896 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6897 } else { 6898 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6899 Lower = *C - APInt::getSignedMaxValue(Width); 6900 Upper = APInt::getSignedMaxValue(Width) + 1; 6901 } 6902 } else if (match(II.getOperand(1), m_APInt(C))) { 6903 if (C->isNegative()) { 6904 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6905 Lower = APInt::getSignedMinValue(Width) - *C; 6906 Upper = APInt::getSignedMaxValue(Width) + 1; 6907 } else { 6908 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6909 Lower = APInt::getSignedMinValue(Width); 6910 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6911 } 6912 } 6913 break; 6914 case Intrinsic::umin: 6915 case Intrinsic::umax: 6916 case Intrinsic::smin: 6917 case Intrinsic::smax: 6918 if (!match(II.getOperand(0), m_APInt(C)) && 6919 !match(II.getOperand(1), m_APInt(C))) 6920 break; 6921 6922 switch (II.getIntrinsicID()) { 6923 case Intrinsic::umin: 6924 Upper = *C + 1; 6925 break; 6926 case Intrinsic::umax: 6927 Lower = *C; 6928 break; 6929 case Intrinsic::smin: 6930 Lower = APInt::getSignedMinValue(Width); 6931 Upper = *C + 1; 6932 break; 6933 case Intrinsic::smax: 6934 Lower = *C; 6935 Upper = APInt::getSignedMaxValue(Width) + 1; 6936 break; 6937 default: 6938 llvm_unreachable("Must be min/max intrinsic"); 6939 } 6940 break; 6941 case Intrinsic::abs: 6942 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6943 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6944 if (match(II.getOperand(1), m_One())) 6945 Upper = APInt::getSignedMaxValue(Width) + 1; 6946 else 6947 Upper = APInt::getSignedMinValue(Width) + 1; 6948 break; 6949 default: 6950 break; 6951 } 6952 } 6953 6954 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6955 APInt &Upper, const InstrInfoQuery &IIQ) { 6956 const Value *LHS = nullptr, *RHS = nullptr; 6957 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6958 if (R.Flavor == SPF_UNKNOWN) 6959 return; 6960 6961 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6962 6963 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6964 // If the negation part of the abs (in RHS) has the NSW flag, 6965 // then the result of abs(X) is [0..SIGNED_MAX], 6966 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6967 Lower = APInt::getZero(BitWidth); 6968 if (match(RHS, m_Neg(m_Specific(LHS))) && 6969 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6970 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6971 else 6972 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6973 return; 6974 } 6975 6976 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6977 // The result of -abs(X) is <= 0. 6978 Lower = APInt::getSignedMinValue(BitWidth); 6979 Upper = APInt(BitWidth, 1); 6980 return; 6981 } 6982 6983 const APInt *C; 6984 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6985 return; 6986 6987 switch (R.Flavor) { 6988 case SPF_UMIN: 6989 Upper = *C + 1; 6990 break; 6991 case SPF_UMAX: 6992 Lower = *C; 6993 break; 6994 case SPF_SMIN: 6995 Lower = APInt::getSignedMinValue(BitWidth); 6996 Upper = *C + 1; 6997 break; 6998 case SPF_SMAX: 6999 Lower = *C; 7000 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7001 break; 7002 default: 7003 break; 7004 } 7005 } 7006 7007 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 7008 // The maximum representable value of a half is 65504. For floats the maximum 7009 // value is 3.4e38 which requires roughly 129 bits. 7010 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 7011 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 7012 return; 7013 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 7014 Lower = APInt(BitWidth, -65504); 7015 Upper = APInt(BitWidth, 65505); 7016 } 7017 7018 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 7019 // For a fptoui the lower limit is left as 0. 7020 Upper = APInt(BitWidth, 65505); 7021 } 7022 } 7023 7024 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 7025 bool UseInstrInfo, AssumptionCache *AC, 7026 const Instruction *CtxI, 7027 const DominatorTree *DT, 7028 unsigned Depth) { 7029 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7030 7031 if (Depth == MaxAnalysisRecursionDepth) 7032 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7033 7034 const APInt *C; 7035 if (match(V, m_APInt(C))) 7036 return ConstantRange(*C); 7037 7038 InstrInfoQuery IIQ(UseInstrInfo); 7039 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7040 APInt Lower = APInt(BitWidth, 0); 7041 APInt Upper = APInt(BitWidth, 0); 7042 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7043 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7044 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7045 setLimitsForIntrinsic(*II, Lower, Upper); 7046 else if (auto *SI = dyn_cast<SelectInst>(V)) 7047 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7048 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7049 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7050 7051 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7052 7053 if (auto *I = dyn_cast<Instruction>(V)) 7054 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7055 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7056 7057 if (CtxI && AC) { 7058 // Try to restrict the range based on information from assumptions. 7059 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7060 if (!AssumeVH) 7061 continue; 7062 CallInst *I = cast<CallInst>(AssumeVH); 7063 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7064 "Got assumption for the wrong function!"); 7065 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7066 "must be an assume intrinsic"); 7067 7068 if (!isValidAssumeForContext(I, CtxI, DT)) 7069 continue; 7070 Value *Arg = I->getArgOperand(0); 7071 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7072 // Currently we just use information from comparisons. 7073 if (!Cmp || Cmp->getOperand(0) != V) 7074 continue; 7075 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7076 ConstantRange RHS = 7077 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7078 UseInstrInfo, AC, I, DT, Depth + 1); 7079 CR = CR.intersectWith( 7080 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7081 } 7082 } 7083 7084 return CR; 7085 } 7086 7087 static Optional<int64_t> 7088 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7089 // Skip over the first indices. 7090 gep_type_iterator GTI = gep_type_begin(GEP); 7091 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7092 /*skip along*/; 7093 7094 // Compute the offset implied by the rest of the indices. 7095 int64_t Offset = 0; 7096 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7097 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7098 if (!OpC) 7099 return None; 7100 if (OpC->isZero()) 7101 continue; // No offset. 7102 7103 // Handle struct indices, which add their field offset to the pointer. 7104 if (StructType *STy = GTI.getStructTypeOrNull()) { 7105 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7106 continue; 7107 } 7108 7109 // Otherwise, we have a sequential type like an array or fixed-length 7110 // vector. Multiply the index by the ElementSize. 7111 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7112 if (Size.isScalable()) 7113 return None; 7114 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7115 } 7116 7117 return Offset; 7118 } 7119 7120 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7121 const DataLayout &DL) { 7122 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 7123 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 7124 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 7125 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 7126 7127 // Handle the trivial case first. 7128 if (Ptr1 == Ptr2) 7129 return Offset2.getSExtValue() - Offset1.getSExtValue(); 7130 7131 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7132 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7133 7134 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7135 // base. After that base, they may have some number of common (and 7136 // potentially variable) indices. After that they handle some constant 7137 // offset, which determines their offset from each other. At this point, we 7138 // handle no other case. 7139 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7140 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7141 return None; 7142 7143 // Skip any common indices and track the GEP types. 7144 unsigned Idx = 1; 7145 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7146 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7147 break; 7148 7149 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 7150 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 7151 if (!IOffset1 || !IOffset2) 7152 return None; 7153 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 7154 Offset1.getSExtValue(); 7155 } 7156