1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Support/GetElementPtrTypeIterator.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/PatternMatch.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include <cstring> 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 const unsigned MaxDepth = 6; 34 35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 36 /// unknown returns 0). For vector types, returns the element type's bitwidth. 37 static unsigned getBitWidth(const Type *Ty, const TargetData *TD) { 38 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 39 return BitWidth; 40 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 41 return TD ? TD->getPointerSizeInBits() : 0; 42 } 43 44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 45 /// known to be either zero or one and return them in the KnownZero/KnownOne 46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 47 /// processing. 48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 49 /// we cannot optimize based on the assumption that it is zero without changing 50 /// it to be an explicit zero. If we don't change it to zero, other code could 51 /// optimized based on the contradictory assumption that it is non-zero. 52 /// Because instcombine aggressively folds operations with undef args anyway, 53 /// this won't lose us code quality. 54 /// 55 /// This function is defined on values with integer type, values with pointer 56 /// type (but only if TD is non-null), and vectors of integers. In the case 57 /// where V is a vector, the mask, known zero, and known one values are the 58 /// same width as the vector element, and the bit is set only if it is true 59 /// for all of the elements in the vector. 60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 61 APInt &KnownZero, APInt &KnownOne, 62 const TargetData *TD, unsigned Depth) { 63 assert(V && "No Value?"); 64 assert(Depth <= MaxDepth && "Limit Search Depth"); 65 unsigned BitWidth = Mask.getBitWidth(); 66 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy()) 67 && "Not integer or pointer type!"); 68 assert((!TD || 69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 70 (!V->getType()->isIntOrIntVectorTy() || 71 V->getType()->getScalarSizeInBits() == BitWidth) && 72 KnownZero.getBitWidth() == BitWidth && 73 KnownOne.getBitWidth() == BitWidth && 74 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 75 76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 77 // We know all of the bits for a constant! 78 KnownOne = CI->getValue() & Mask; 79 KnownZero = ~KnownOne & Mask; 80 return; 81 } 82 // Null and aggregate-zero are all-zeros. 83 if (isa<ConstantPointerNull>(V) || 84 isa<ConstantAggregateZero>(V)) { 85 KnownOne.clearAllBits(); 86 KnownZero = Mask; 87 return; 88 } 89 // Handle a constant vector by taking the intersection of the known bits of 90 // each element. 91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 92 KnownZero.setAllBits(); KnownOne.setAllBits(); 93 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, 96 TD, Depth); 97 KnownZero &= KnownZero2; 98 KnownOne &= KnownOne2; 99 } 100 return; 101 } 102 // The address of an aligned GlobalValue has trailing zeros. 103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 104 unsigned Align = GV->getAlignment(); 105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { 106 const Type *ObjectType = GV->getType()->getElementType(); 107 // If the object is defined in the current Module, we'll be giving 108 // it the preferred alignment. Otherwise, we have to assume that it 109 // may only have the minimum ABI alignment. 110 if (!GV->isDeclaration() && !GV->mayBeOverridden()) 111 Align = TD->getPrefTypeAlignment(ObjectType); 112 else 113 Align = TD->getABITypeAlignment(ObjectType); 114 } 115 if (Align > 0) 116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 117 CountTrailingZeros_32(Align)); 118 else 119 KnownZero.clearAllBits(); 120 KnownOne.clearAllBits(); 121 return; 122 } 123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 124 // the bits of its aliasee. 125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 126 if (GA->mayBeOverridden()) { 127 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 128 } else { 129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 130 TD, Depth+1); 131 } 132 return; 133 } 134 135 KnownZero.clearAllBits(); KnownOne.clearAllBits(); // Start out not knowing anything. 136 137 if (Depth == MaxDepth || Mask == 0) 138 return; // Limit search depth. 139 140 Operator *I = dyn_cast<Operator>(V); 141 if (!I) return; 142 143 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 144 switch (I->getOpcode()) { 145 default: break; 146 case Instruction::And: { 147 // If either the LHS or the RHS are Zero, the result is zero. 148 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 149 APInt Mask2(Mask & ~KnownZero); 150 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 151 Depth+1); 152 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 154 155 // Output known-1 bits are only known if set in both the LHS & RHS. 156 KnownOne &= KnownOne2; 157 // Output known-0 are known to be clear if zero in either the LHS | RHS. 158 KnownZero |= KnownZero2; 159 return; 160 } 161 case Instruction::Or: { 162 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 163 APInt Mask2(Mask & ~KnownOne); 164 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 165 Depth+1); 166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 167 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 168 169 // Output known-0 bits are only known if clear in both the LHS & RHS. 170 KnownZero &= KnownZero2; 171 // Output known-1 are known to be set if set in either the LHS | RHS. 172 KnownOne |= KnownOne2; 173 return; 174 } 175 case Instruction::Xor: { 176 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 177 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 178 Depth+1); 179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 180 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 181 182 // Output known-0 bits are known if clear or set in both the LHS & RHS. 183 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 184 // Output known-1 are known to be set if set in only one of the LHS, RHS. 185 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 186 KnownZero = KnownZeroOut; 187 return; 188 } 189 case Instruction::Mul: { 190 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 191 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); 192 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 193 Depth+1); 194 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 195 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 196 197 // If low bits are zero in either operand, output low known-0 bits. 198 // Also compute a conserative estimate for high known-0 bits. 199 // More trickiness is possible, but this is sufficient for the 200 // interesting case of alignment computation. 201 KnownOne.clearAllBits(); 202 unsigned TrailZ = KnownZero.countTrailingOnes() + 203 KnownZero2.countTrailingOnes(); 204 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 205 KnownZero2.countLeadingOnes(), 206 BitWidth) - BitWidth; 207 208 TrailZ = std::min(TrailZ, BitWidth); 209 LeadZ = std::min(LeadZ, BitWidth); 210 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 211 APInt::getHighBitsSet(BitWidth, LeadZ); 212 KnownZero &= Mask; 213 return; 214 } 215 case Instruction::UDiv: { 216 // For the purposes of computing leading zeros we can conservatively 217 // treat a udiv as a logical right shift by the power of 2 known to 218 // be less than the denominator. 219 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 220 ComputeMaskedBits(I->getOperand(0), 221 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 222 unsigned LeadZ = KnownZero2.countLeadingOnes(); 223 224 KnownOne2.clearAllBits(); 225 KnownZero2.clearAllBits(); 226 ComputeMaskedBits(I->getOperand(1), 227 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 228 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 229 if (RHSUnknownLeadingOnes != BitWidth) 230 LeadZ = std::min(BitWidth, 231 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 232 233 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 234 return; 235 } 236 case Instruction::Select: 237 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 238 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 239 Depth+1); 240 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 241 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 242 243 // Only known if known in both the LHS and RHS. 244 KnownOne &= KnownOne2; 245 KnownZero &= KnownZero2; 246 return; 247 case Instruction::FPTrunc: 248 case Instruction::FPExt: 249 case Instruction::FPToUI: 250 case Instruction::FPToSI: 251 case Instruction::SIToFP: 252 case Instruction::UIToFP: 253 return; // Can't work with floating point. 254 case Instruction::PtrToInt: 255 case Instruction::IntToPtr: 256 // We can't handle these if we don't know the pointer size. 257 if (!TD) return; 258 // FALL THROUGH and handle them the same as zext/trunc. 259 case Instruction::ZExt: 260 case Instruction::Trunc: { 261 const Type *SrcTy = I->getOperand(0)->getType(); 262 263 unsigned SrcBitWidth; 264 // Note that we handle pointer operands here because of inttoptr/ptrtoint 265 // which fall through here. 266 if (SrcTy->isPointerTy()) 267 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 268 else 269 SrcBitWidth = SrcTy->getScalarSizeInBits(); 270 271 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 272 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 273 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 274 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 275 Depth+1); 276 KnownZero = KnownZero.zextOrTrunc(BitWidth); 277 KnownOne = KnownOne.zextOrTrunc(BitWidth); 278 // Any top bits are known to be zero. 279 if (BitWidth > SrcBitWidth) 280 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 281 return; 282 } 283 case Instruction::BitCast: { 284 const Type *SrcTy = I->getOperand(0)->getType(); 285 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 286 // TODO: For now, not handling conversions like: 287 // (bitcast i64 %x to <2 x i32>) 288 !I->getType()->isVectorTy()) { 289 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 290 Depth+1); 291 return; 292 } 293 break; 294 } 295 case Instruction::SExt: { 296 // Compute the bits in the result that are not present in the input. 297 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 298 299 APInt MaskIn = Mask.trunc(SrcBitWidth); 300 KnownZero = KnownZero.trunc(SrcBitWidth); 301 KnownOne = KnownOne.trunc(SrcBitWidth); 302 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 303 Depth+1); 304 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 305 KnownZero = KnownZero.zext(BitWidth); 306 KnownOne = KnownOne.zext(BitWidth); 307 308 // If the sign bit of the input is known set or clear, then we know the 309 // top bits of the result. 310 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 311 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 312 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 313 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 314 return; 315 } 316 case Instruction::Shl: 317 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 318 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 319 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 320 APInt Mask2(Mask.lshr(ShiftAmt)); 321 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 322 Depth+1); 323 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 324 KnownZero <<= ShiftAmt; 325 KnownOne <<= ShiftAmt; 326 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 327 return; 328 } 329 break; 330 case Instruction::LShr: 331 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 332 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 333 // Compute the new bits that are at the top now. 334 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 335 336 // Unsigned shift right. 337 APInt Mask2(Mask.shl(ShiftAmt)); 338 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 339 Depth+1); 340 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 341 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 342 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 343 // high bits known zero. 344 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 345 return; 346 } 347 break; 348 case Instruction::AShr: 349 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 350 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 351 // Compute the new bits that are at the top now. 352 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 353 354 // Signed shift right. 355 APInt Mask2(Mask.shl(ShiftAmt)); 356 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 357 Depth+1); 358 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 359 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 360 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 361 362 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 363 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 364 KnownZero |= HighBits; 365 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 366 KnownOne |= HighBits; 367 return; 368 } 369 break; 370 case Instruction::Sub: { 371 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { 372 // We know that the top bits of C-X are clear if X contains less bits 373 // than C (i.e. no wrap-around can happen). For example, 20-X is 374 // positive if we can prove that X is >= 0 and < 16. 375 if (!CLHS->getValue().isNegative()) { 376 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 377 // NLZ can't be BitWidth with no sign bit 378 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 379 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, 380 TD, Depth+1); 381 382 // If all of the MaskV bits are known to be zero, then we know the 383 // output top bits are zero, because we now know that the output is 384 // from [0-C]. 385 if ((KnownZero2 & MaskV) == MaskV) { 386 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 387 // Top bits known zero. 388 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 389 } 390 } 391 } 392 } 393 // fall through 394 case Instruction::Add: { 395 // If one of the operands has trailing zeros, then the bits that the 396 // other operand has in those bit positions will be preserved in the 397 // result. For an add, this works with either operand. For a subtract, 398 // this only works if the known zeros are in the right operand. 399 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 400 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 401 BitWidth - Mask.countLeadingZeros()); 402 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 403 Depth+1); 404 assert((LHSKnownZero & LHSKnownOne) == 0 && 405 "Bits known to be one AND zero?"); 406 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 407 408 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, 409 Depth+1); 410 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 411 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 412 413 // Determine which operand has more trailing zeros, and use that 414 // many bits from the other operand. 415 if (LHSKnownZeroOut > RHSKnownZeroOut) { 416 if (I->getOpcode() == Instruction::Add) { 417 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 418 KnownZero |= KnownZero2 & Mask; 419 KnownOne |= KnownOne2 & Mask; 420 } else { 421 // If the known zeros are in the left operand for a subtract, 422 // fall back to the minimum known zeros in both operands. 423 KnownZero |= APInt::getLowBitsSet(BitWidth, 424 std::min(LHSKnownZeroOut, 425 RHSKnownZeroOut)); 426 } 427 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 428 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 429 KnownZero |= LHSKnownZero & Mask; 430 KnownOne |= LHSKnownOne & Mask; 431 } 432 433 // Are we still trying to solve for the sign bit? 434 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){ 435 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I); 436 if (OBO->hasNoSignedWrap()) { 437 if (I->getOpcode() == Instruction::Add) { 438 // Adding two positive numbers can't wrap into negative 439 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 440 KnownZero |= APInt::getSignBit(BitWidth); 441 // and adding two negative numbers can't wrap into positive. 442 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 443 KnownOne |= APInt::getSignBit(BitWidth); 444 } else { 445 // Subtracting a negative number from a positive one can't wrap 446 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 447 KnownZero |= APInt::getSignBit(BitWidth); 448 // neither can subtracting a positive number from a negative one. 449 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 450 KnownOne |= APInt::getSignBit(BitWidth); 451 } 452 } 453 } 454 455 return; 456 } 457 case Instruction::SRem: 458 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 459 APInt RA = Rem->getValue().abs(); 460 if (RA.isPowerOf2()) { 461 APInt LowBits = RA - 1; 462 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 463 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 464 Depth+1); 465 466 // The low bits of the first operand are unchanged by the srem. 467 KnownZero = KnownZero2 & LowBits; 468 KnownOne = KnownOne2 & LowBits; 469 470 // If the first operand is non-negative or has all low bits zero, then 471 // the upper bits are all zero. 472 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 473 KnownZero |= ~LowBits; 474 475 // If the first operand is negative and not all low bits are zero, then 476 // the upper bits are all one. 477 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 478 KnownOne |= ~LowBits; 479 480 KnownZero &= Mask; 481 KnownOne &= Mask; 482 483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 484 } 485 } 486 487 // The sign bit is the LHS's sign bit, except when the result of the 488 // remainder is zero. 489 if (Mask.isNegative() && KnownZero.isNonNegative()) { 490 APInt Mask2 = APInt::getSignBit(BitWidth); 491 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 492 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 493 Depth+1); 494 // If it's known zero, our sign bit is also zero. 495 if (LHSKnownZero.isNegative()) 496 KnownZero |= LHSKnownZero; 497 } 498 499 break; 500 case Instruction::URem: { 501 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 502 APInt RA = Rem->getValue(); 503 if (RA.isPowerOf2()) { 504 APInt LowBits = (RA - 1); 505 APInt Mask2 = LowBits & Mask; 506 KnownZero |= ~LowBits & Mask; 507 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 508 Depth+1); 509 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 510 break; 511 } 512 } 513 514 // Since the result is less than or equal to either operand, any leading 515 // zero bits in either operand must also exist in the result. 516 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 517 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 518 TD, Depth+1); 519 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 520 TD, Depth+1); 521 522 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 523 KnownZero2.countLeadingOnes()); 524 KnownOne.clearAllBits(); 525 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 526 break; 527 } 528 529 case Instruction::Alloca: { 530 AllocaInst *AI = cast<AllocaInst>(V); 531 unsigned Align = AI->getAlignment(); 532 if (Align == 0 && TD) 533 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 534 535 if (Align > 0) 536 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 537 CountTrailingZeros_32(Align)); 538 break; 539 } 540 case Instruction::GetElementPtr: { 541 // Analyze all of the subscripts of this getelementptr instruction 542 // to determine if we can prove known low zero bits. 543 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 544 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 545 ComputeMaskedBits(I->getOperand(0), LocalMask, 546 LocalKnownZero, LocalKnownOne, TD, Depth+1); 547 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 548 549 gep_type_iterator GTI = gep_type_begin(I); 550 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 551 Value *Index = I->getOperand(i); 552 if (const StructType *STy = dyn_cast<StructType>(*GTI)) { 553 // Handle struct member offset arithmetic. 554 if (!TD) return; 555 const StructLayout *SL = TD->getStructLayout(STy); 556 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 557 uint64_t Offset = SL->getElementOffset(Idx); 558 TrailZ = std::min(TrailZ, 559 CountTrailingZeros_64(Offset)); 560 } else { 561 // Handle array index arithmetic. 562 const Type *IndexedTy = GTI.getIndexedType(); 563 if (!IndexedTy->isSized()) return; 564 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 565 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 566 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 567 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 568 ComputeMaskedBits(Index, LocalMask, 569 LocalKnownZero, LocalKnownOne, TD, Depth+1); 570 TrailZ = std::min(TrailZ, 571 unsigned(CountTrailingZeros_64(TypeSize) + 572 LocalKnownZero.countTrailingOnes())); 573 } 574 } 575 576 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 577 break; 578 } 579 case Instruction::PHI: { 580 PHINode *P = cast<PHINode>(I); 581 // Handle the case of a simple two-predecessor recurrence PHI. 582 // There's a lot more that could theoretically be done here, but 583 // this is sufficient to catch some interesting cases. 584 if (P->getNumIncomingValues() == 2) { 585 for (unsigned i = 0; i != 2; ++i) { 586 Value *L = P->getIncomingValue(i); 587 Value *R = P->getIncomingValue(!i); 588 Operator *LU = dyn_cast<Operator>(L); 589 if (!LU) 590 continue; 591 unsigned Opcode = LU->getOpcode(); 592 // Check for operations that have the property that if 593 // both their operands have low zero bits, the result 594 // will have low zero bits. 595 if (Opcode == Instruction::Add || 596 Opcode == Instruction::Sub || 597 Opcode == Instruction::And || 598 Opcode == Instruction::Or || 599 Opcode == Instruction::Mul) { 600 Value *LL = LU->getOperand(0); 601 Value *LR = LU->getOperand(1); 602 // Find a recurrence. 603 if (LL == I) 604 L = LR; 605 else if (LR == I) 606 L = LL; 607 else 608 break; 609 // Ok, we have a PHI of the form L op= R. Check for low 610 // zero bits. 611 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 612 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 613 Mask2 = APInt::getLowBitsSet(BitWidth, 614 KnownZero2.countTrailingOnes()); 615 616 // We need to take the minimum number of known bits 617 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 618 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 619 620 KnownZero = Mask & 621 APInt::getLowBitsSet(BitWidth, 622 std::min(KnownZero2.countTrailingOnes(), 623 KnownZero3.countTrailingOnes())); 624 break; 625 } 626 } 627 } 628 629 // Unreachable blocks may have zero-operand PHI nodes. 630 if (P->getNumIncomingValues() == 0) 631 return; 632 633 // Otherwise take the unions of the known bit sets of the operands, 634 // taking conservative care to avoid excessive recursion. 635 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 636 // Skip if every incoming value references to ourself. 637 if (P->hasConstantValue() == P) 638 break; 639 640 KnownZero = APInt::getAllOnesValue(BitWidth); 641 KnownOne = APInt::getAllOnesValue(BitWidth); 642 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 643 // Skip direct self references. 644 if (P->getIncomingValue(i) == P) continue; 645 646 KnownZero2 = APInt(BitWidth, 0); 647 KnownOne2 = APInt(BitWidth, 0); 648 // Recurse, but cap the recursion to one level, because we don't 649 // want to waste time spinning around in loops. 650 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 651 KnownZero2, KnownOne2, TD, MaxDepth-1); 652 KnownZero &= KnownZero2; 653 KnownOne &= KnownOne2; 654 // If all bits have been ruled out, there's no need to check 655 // more operands. 656 if (!KnownZero && !KnownOne) 657 break; 658 } 659 } 660 break; 661 } 662 case Instruction::Call: 663 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 664 switch (II->getIntrinsicID()) { 665 default: break; 666 case Intrinsic::ctpop: 667 case Intrinsic::ctlz: 668 case Intrinsic::cttz: { 669 unsigned LowBits = Log2_32(BitWidth)+1; 670 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 671 break; 672 } 673 } 674 } 675 break; 676 } 677 } 678 679 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 680 /// one. Convenience wrapper around ComputeMaskedBits. 681 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 682 const TargetData *TD, unsigned Depth) { 683 unsigned BitWidth = getBitWidth(V->getType(), TD); 684 if (!BitWidth) { 685 KnownZero = false; 686 KnownOne = false; 687 return; 688 } 689 APInt ZeroBits(BitWidth, 0); 690 APInt OneBits(BitWidth, 0); 691 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 692 Depth); 693 KnownOne = OneBits[BitWidth - 1]; 694 KnownZero = ZeroBits[BitWidth - 1]; 695 } 696 697 /// isPowerOfTwo - Return true if the given value is known to have exactly one 698 /// bit set when defined. For vectors return true if every element is known to 699 /// be a power of two when defined. Supports values with integer or pointer 700 /// types and vectors of integers. 701 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) { 702 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 703 return CI->getValue().isPowerOf2(); 704 // TODO: Handle vector constants. 705 706 // 1 << X is clearly a power of two if the one is not shifted off the end. If 707 // it is shifted off the end then the result is undefined. 708 if (match(V, m_Shl(m_One(), m_Value()))) 709 return true; 710 711 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 712 // bottom. If it is shifted off the bottom then the result is undefined. 713 if (match(V, m_LShr(m_SignBit(), m_Value()))) 714 return true; 715 716 // The remaining tests are all recursive, so bail out if we hit the limit. 717 if (Depth++ == MaxDepth) 718 return false; 719 720 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 721 return isPowerOfTwo(ZI->getOperand(0), TD, Depth); 722 723 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 724 return isPowerOfTwo(SI->getTrueValue(), TD, Depth) && 725 isPowerOfTwo(SI->getFalseValue(), TD, Depth); 726 727 // An exact divide or right shift can only shift off zero bits, so the result 728 // is a power of two only if the first operand is a power of two and not 729 // copying a sign bit (sdiv int_min, 2). 730 if (match(V, m_LShr(m_Value(), m_Value())) || 731 match(V, m_UDiv(m_Value(), m_Value()))) { 732 PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V); 733 if (PEO->isExact()) 734 return isPowerOfTwo(PEO->getOperand(0), TD, Depth); 735 } 736 737 return false; 738 } 739 740 /// isKnownNonZero - Return true if the given value is known to be non-zero 741 /// when defined. For vectors return true if every element is known to be 742 /// non-zero when defined. Supports values with integer or pointer type and 743 /// vectors of integers. 744 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 745 if (Constant *C = dyn_cast<Constant>(V)) { 746 if (C->isNullValue()) 747 return false; 748 if (isa<ConstantInt>(C)) 749 // Must be non-zero due to null test above. 750 return true; 751 // TODO: Handle vectors 752 return false; 753 } 754 755 // The remaining tests are all recursive, so bail out if we hit the limit. 756 if (Depth++ == MaxDepth) 757 return false; 758 759 unsigned BitWidth = getBitWidth(V->getType(), TD); 760 761 // X | Y != 0 if X != 0 or Y != 0. 762 Value *X = 0, *Y = 0; 763 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 764 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 765 766 // ext X != 0 if X != 0. 767 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 768 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 769 770 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 771 // if the lowest bit is shifted off the end. 772 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 773 // shl nuw can't remove any non-zero bits. 774 BinaryOperator *BO = cast<BinaryOperator>(V); 775 if (BO->hasNoUnsignedWrap()) 776 return isKnownNonZero(X, TD, Depth); 777 778 APInt KnownZero(BitWidth, 0); 779 APInt KnownOne(BitWidth, 0); 780 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 781 if (KnownOne[0]) 782 return true; 783 } 784 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 785 // defined if the sign bit is shifted off the end. 786 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 787 // shr exact can only shift out zero bits. 788 BinaryOperator *BO = cast<BinaryOperator>(V); 789 if (BO->isExact()) 790 return isKnownNonZero(X, TD, Depth); 791 792 bool XKnownNonNegative, XKnownNegative; 793 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 794 if (XKnownNegative) 795 return true; 796 } 797 // div exact can only produce a zero if the dividend is zero. 798 else if (match(V, m_IDiv(m_Value(X), m_Value()))) { 799 BinaryOperator *BO = cast<BinaryOperator>(V); 800 if (BO->isExact()) 801 return isKnownNonZero(X, TD, Depth); 802 } 803 // X + Y. 804 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 805 bool XKnownNonNegative, XKnownNegative; 806 bool YKnownNonNegative, YKnownNegative; 807 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 808 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 809 810 // If X and Y are both non-negative (as signed values) then their sum is not 811 // zero unless both X and Y are zero. 812 if (XKnownNonNegative && YKnownNonNegative) 813 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 814 return true; 815 816 // If X and Y are both negative (as signed values) then their sum is not 817 // zero unless both X and Y equal INT_MIN. 818 if (BitWidth && XKnownNegative && YKnownNegative) { 819 APInt KnownZero(BitWidth, 0); 820 APInt KnownOne(BitWidth, 0); 821 APInt Mask = APInt::getSignedMaxValue(BitWidth); 822 // The sign bit of X is set. If some other bit is set then X is not equal 823 // to INT_MIN. 824 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 825 if ((KnownOne & Mask) != 0) 826 return true; 827 // The sign bit of Y is set. If some other bit is set then Y is not equal 828 // to INT_MIN. 829 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 830 if ((KnownOne & Mask) != 0) 831 return true; 832 } 833 834 // The sum of a non-negative number and a power of two is not zero. 835 if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth)) 836 return true; 837 if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth)) 838 return true; 839 } 840 // (C ? X : Y) != 0 if X != 0 and Y != 0. 841 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 842 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 843 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 844 return true; 845 } 846 847 if (!BitWidth) return false; 848 APInt KnownZero(BitWidth, 0); 849 APInt KnownOne(BitWidth, 0); 850 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 851 TD, Depth); 852 return KnownOne != 0; 853 } 854 855 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 856 /// this predicate to simplify operations downstream. Mask is known to be zero 857 /// for bits that V cannot have. 858 /// 859 /// This function is defined on values with integer type, values with pointer 860 /// type (but only if TD is non-null), and vectors of integers. In the case 861 /// where V is a vector, the mask, known zero, and known one values are the 862 /// same width as the vector element, and the bit is set only if it is true 863 /// for all of the elements in the vector. 864 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 865 const TargetData *TD, unsigned Depth) { 866 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 867 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 868 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 869 return (KnownZero & Mask) == Mask; 870 } 871 872 873 874 /// ComputeNumSignBits - Return the number of times the sign bit of the 875 /// register is replicated into the other bits. We know that at least 1 bit 876 /// is always equal to the sign bit (itself), but other cases can give us 877 /// information. For example, immediately after an "ashr X, 2", we know that 878 /// the top 3 bits are all equal to each other, so we return 3. 879 /// 880 /// 'Op' must have a scalar integer type. 881 /// 882 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 883 unsigned Depth) { 884 assert((TD || V->getType()->isIntOrIntVectorTy()) && 885 "ComputeNumSignBits requires a TargetData object to operate " 886 "on non-integer values!"); 887 const Type *Ty = V->getType(); 888 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 889 Ty->getScalarSizeInBits(); 890 unsigned Tmp, Tmp2; 891 unsigned FirstAnswer = 1; 892 893 // Note that ConstantInt is handled by the general ComputeMaskedBits case 894 // below. 895 896 if (Depth == 6) 897 return 1; // Limit search depth. 898 899 Operator *U = dyn_cast<Operator>(V); 900 switch (Operator::getOpcode(V)) { 901 default: break; 902 case Instruction::SExt: 903 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 904 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 905 906 case Instruction::AShr: 907 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 908 // ashr X, C -> adds C sign bits. 909 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 910 Tmp += C->getZExtValue(); 911 if (Tmp > TyBits) Tmp = TyBits; 912 } 913 // vector ashr X, <C, C, C, C> -> adds C sign bits 914 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) { 915 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { 916 Tmp += CI->getZExtValue(); 917 if (Tmp > TyBits) Tmp = TyBits; 918 } 919 } 920 return Tmp; 921 case Instruction::Shl: 922 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 923 // shl destroys sign bits. 924 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 925 if (C->getZExtValue() >= TyBits || // Bad shift. 926 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 927 return Tmp - C->getZExtValue(); 928 } 929 break; 930 case Instruction::And: 931 case Instruction::Or: 932 case Instruction::Xor: // NOT is handled here. 933 // Logical binary ops preserve the number of sign bits at the worst. 934 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 935 if (Tmp != 1) { 936 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 937 FirstAnswer = std::min(Tmp, Tmp2); 938 // We computed what we know about the sign bits as our first 939 // answer. Now proceed to the generic code that uses 940 // ComputeMaskedBits, and pick whichever answer is better. 941 } 942 break; 943 944 case Instruction::Select: 945 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 946 if (Tmp == 1) return 1; // Early out. 947 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 948 return std::min(Tmp, Tmp2); 949 950 case Instruction::Add: 951 // Add can have at most one carry bit. Thus we know that the output 952 // is, at worst, one more bit than the inputs. 953 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 954 if (Tmp == 1) return 1; // Early out. 955 956 // Special case decrementing a value (ADD X, -1): 957 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 958 if (CRHS->isAllOnesValue()) { 959 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 960 APInt Mask = APInt::getAllOnesValue(TyBits); 961 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 962 Depth+1); 963 964 // If the input is known to be 0 or 1, the output is 0/-1, which is all 965 // sign bits set. 966 if ((KnownZero | APInt(TyBits, 1)) == Mask) 967 return TyBits; 968 969 // If we are subtracting one from a positive number, there is no carry 970 // out of the result. 971 if (KnownZero.isNegative()) 972 return Tmp; 973 } 974 975 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 976 if (Tmp2 == 1) return 1; 977 return std::min(Tmp, Tmp2)-1; 978 979 case Instruction::Sub: 980 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 981 if (Tmp2 == 1) return 1; 982 983 // Handle NEG. 984 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 985 if (CLHS->isNullValue()) { 986 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 987 APInt Mask = APInt::getAllOnesValue(TyBits); 988 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 989 TD, Depth+1); 990 // If the input is known to be 0 or 1, the output is 0/-1, which is all 991 // sign bits set. 992 if ((KnownZero | APInt(TyBits, 1)) == Mask) 993 return TyBits; 994 995 // If the input is known to be positive (the sign bit is known clear), 996 // the output of the NEG has the same number of sign bits as the input. 997 if (KnownZero.isNegative()) 998 return Tmp2; 999 1000 // Otherwise, we treat this like a SUB. 1001 } 1002 1003 // Sub can have at most one carry bit. Thus we know that the output 1004 // is, at worst, one more bit than the inputs. 1005 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1006 if (Tmp == 1) return 1; // Early out. 1007 return std::min(Tmp, Tmp2)-1; 1008 1009 case Instruction::PHI: { 1010 PHINode *PN = cast<PHINode>(U); 1011 // Don't analyze large in-degree PHIs. 1012 if (PN->getNumIncomingValues() > 4) break; 1013 1014 // Take the minimum of all incoming values. This can't infinitely loop 1015 // because of our depth threshold. 1016 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1017 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1018 if (Tmp == 1) return Tmp; 1019 Tmp = std::min(Tmp, 1020 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1021 } 1022 return Tmp; 1023 } 1024 1025 case Instruction::Trunc: 1026 // FIXME: it's tricky to do anything useful for this, but it is an important 1027 // case for targets like X86. 1028 break; 1029 } 1030 1031 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1032 // use this information. 1033 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1034 APInt Mask = APInt::getAllOnesValue(TyBits); 1035 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1036 1037 if (KnownZero.isNegative()) { // sign bit is 0 1038 Mask = KnownZero; 1039 } else if (KnownOne.isNegative()) { // sign bit is 1; 1040 Mask = KnownOne; 1041 } else { 1042 // Nothing known. 1043 return FirstAnswer; 1044 } 1045 1046 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1047 // the number of identical bits in the top of the input value. 1048 Mask = ~Mask; 1049 Mask <<= Mask.getBitWidth()-TyBits; 1050 // Return # leading zeros. We use 'min' here in case Val was zero before 1051 // shifting. We don't want to return '64' as for an i32 "0". 1052 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1053 } 1054 1055 /// ComputeMultiple - This function computes the integer multiple of Base that 1056 /// equals V. If successful, it returns true and returns the multiple in 1057 /// Multiple. If unsuccessful, it returns false. It looks 1058 /// through SExt instructions only if LookThroughSExt is true. 1059 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1060 bool LookThroughSExt, unsigned Depth) { 1061 const unsigned MaxDepth = 6; 1062 1063 assert(V && "No Value?"); 1064 assert(Depth <= MaxDepth && "Limit Search Depth"); 1065 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1066 1067 const Type *T = V->getType(); 1068 1069 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1070 1071 if (Base == 0) 1072 return false; 1073 1074 if (Base == 1) { 1075 Multiple = V; 1076 return true; 1077 } 1078 1079 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1080 Constant *BaseVal = ConstantInt::get(T, Base); 1081 if (CO && CO == BaseVal) { 1082 // Multiple is 1. 1083 Multiple = ConstantInt::get(T, 1); 1084 return true; 1085 } 1086 1087 if (CI && CI->getZExtValue() % Base == 0) { 1088 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1089 return true; 1090 } 1091 1092 if (Depth == MaxDepth) return false; // Limit search depth. 1093 1094 Operator *I = dyn_cast<Operator>(V); 1095 if (!I) return false; 1096 1097 switch (I->getOpcode()) { 1098 default: break; 1099 case Instruction::SExt: 1100 if (!LookThroughSExt) return false; 1101 // otherwise fall through to ZExt 1102 case Instruction::ZExt: 1103 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1104 LookThroughSExt, Depth+1); 1105 case Instruction::Shl: 1106 case Instruction::Mul: { 1107 Value *Op0 = I->getOperand(0); 1108 Value *Op1 = I->getOperand(1); 1109 1110 if (I->getOpcode() == Instruction::Shl) { 1111 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1112 if (!Op1CI) return false; 1113 // Turn Op0 << Op1 into Op0 * 2^Op1 1114 APInt Op1Int = Op1CI->getValue(); 1115 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1116 APInt API(Op1Int.getBitWidth(), 0); 1117 API.setBit(BitToSet); 1118 Op1 = ConstantInt::get(V->getContext(), API); 1119 } 1120 1121 Value *Mul0 = NULL; 1122 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1123 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1124 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1125 if (Op1C->getType()->getPrimitiveSizeInBits() < 1126 MulC->getType()->getPrimitiveSizeInBits()) 1127 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1128 if (Op1C->getType()->getPrimitiveSizeInBits() > 1129 MulC->getType()->getPrimitiveSizeInBits()) 1130 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1131 1132 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1133 Multiple = ConstantExpr::getMul(MulC, Op1C); 1134 return true; 1135 } 1136 1137 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1138 if (Mul0CI->getValue() == 1) { 1139 // V == Base * Op1, so return Op1 1140 Multiple = Op1; 1141 return true; 1142 } 1143 } 1144 1145 Value *Mul1 = NULL; 1146 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1147 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1148 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1149 if (Op0C->getType()->getPrimitiveSizeInBits() < 1150 MulC->getType()->getPrimitiveSizeInBits()) 1151 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1152 if (Op0C->getType()->getPrimitiveSizeInBits() > 1153 MulC->getType()->getPrimitiveSizeInBits()) 1154 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1155 1156 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1157 Multiple = ConstantExpr::getMul(MulC, Op0C); 1158 return true; 1159 } 1160 1161 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1162 if (Mul1CI->getValue() == 1) { 1163 // V == Base * Op0, so return Op0 1164 Multiple = Op0; 1165 return true; 1166 } 1167 } 1168 } 1169 } 1170 1171 // We could not determine if V is a multiple of Base. 1172 return false; 1173 } 1174 1175 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1176 /// value is never equal to -0.0. 1177 /// 1178 /// NOTE: this function will need to be revisited when we support non-default 1179 /// rounding modes! 1180 /// 1181 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1182 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1183 return !CFP->getValueAPF().isNegZero(); 1184 1185 if (Depth == 6) 1186 return 1; // Limit search depth. 1187 1188 const Operator *I = dyn_cast<Operator>(V); 1189 if (I == 0) return false; 1190 1191 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1192 if (I->getOpcode() == Instruction::FAdd && 1193 isa<ConstantFP>(I->getOperand(1)) && 1194 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1195 return true; 1196 1197 // sitofp and uitofp turn into +0.0 for zero. 1198 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1199 return true; 1200 1201 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1202 // sqrt(-0.0) = -0.0, no other negative results are possible. 1203 if (II->getIntrinsicID() == Intrinsic::sqrt) 1204 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1205 1206 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1207 if (const Function *F = CI->getCalledFunction()) { 1208 if (F->isDeclaration()) { 1209 // abs(x) != -0.0 1210 if (F->getName() == "abs") return true; 1211 // fabs[lf](x) != -0.0 1212 if (F->getName() == "fabs") return true; 1213 if (F->getName() == "fabsf") return true; 1214 if (F->getName() == "fabsl") return true; 1215 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1216 F->getName() == "sqrtl") 1217 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1218 } 1219 } 1220 1221 return false; 1222 } 1223 1224 /// isBytewiseValue - If the specified value can be set by repeating the same 1225 /// byte in memory, return the i8 value that it is represented with. This is 1226 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1227 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1228 /// byte store (e.g. i16 0x1234), return null. 1229 Value *llvm::isBytewiseValue(Value *V) { 1230 // All byte-wide stores are splatable, even of arbitrary variables. 1231 if (V->getType()->isIntegerTy(8)) return V; 1232 1233 // Handle 'null' ConstantArrayZero etc. 1234 if (Constant *C = dyn_cast<Constant>(V)) 1235 if (C->isNullValue()) 1236 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1237 1238 // Constant float and double values can be handled as integer values if the 1239 // corresponding integer value is "byteable". An important case is 0.0. 1240 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1241 if (CFP->getType()->isFloatTy()) 1242 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1243 if (CFP->getType()->isDoubleTy()) 1244 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1245 // Don't handle long double formats, which have strange constraints. 1246 } 1247 1248 // We can handle constant integers that are power of two in size and a 1249 // multiple of 8 bits. 1250 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1251 unsigned Width = CI->getBitWidth(); 1252 if (isPowerOf2_32(Width) && Width > 8) { 1253 // We can handle this value if the recursive binary decomposition is the 1254 // same at all levels. 1255 APInt Val = CI->getValue(); 1256 APInt Val2; 1257 while (Val.getBitWidth() != 8) { 1258 unsigned NextWidth = Val.getBitWidth()/2; 1259 Val2 = Val.lshr(NextWidth); 1260 Val2 = Val2.trunc(Val.getBitWidth()/2); 1261 Val = Val.trunc(Val.getBitWidth()/2); 1262 1263 // If the top/bottom halves aren't the same, reject it. 1264 if (Val != Val2) 1265 return 0; 1266 } 1267 return ConstantInt::get(V->getContext(), Val); 1268 } 1269 } 1270 1271 // A ConstantArray is splatable if all its members are equal and also 1272 // splatable. 1273 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1274 if (CA->getNumOperands() == 0) 1275 return 0; 1276 1277 Value *Val = isBytewiseValue(CA->getOperand(0)); 1278 if (!Val) 1279 return 0; 1280 1281 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I) 1282 if (CA->getOperand(I-1) != CA->getOperand(I)) 1283 return 0; 1284 1285 return Val; 1286 } 1287 1288 // Conceptually, we could handle things like: 1289 // %a = zext i8 %X to i16 1290 // %b = shl i16 %a, 8 1291 // %c = or i16 %a, %b 1292 // but until there is an example that actually needs this, it doesn't seem 1293 // worth worrying about. 1294 return 0; 1295 } 1296 1297 1298 // This is the recursive version of BuildSubAggregate. It takes a few different 1299 // arguments. Idxs is the index within the nested struct From that we are 1300 // looking at now (which is of type IndexedType). IdxSkip is the number of 1301 // indices from Idxs that should be left out when inserting into the resulting 1302 // struct. To is the result struct built so far, new insertvalue instructions 1303 // build on that. 1304 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, 1305 SmallVector<unsigned, 10> &Idxs, 1306 unsigned IdxSkip, 1307 Instruction *InsertBefore) { 1308 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1309 if (STy) { 1310 // Save the original To argument so we can modify it 1311 Value *OrigTo = To; 1312 // General case, the type indexed by Idxs is a struct 1313 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1314 // Process each struct element recursively 1315 Idxs.push_back(i); 1316 Value *PrevTo = To; 1317 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1318 InsertBefore); 1319 Idxs.pop_back(); 1320 if (!To) { 1321 // Couldn't find any inserted value for this index? Cleanup 1322 while (PrevTo != OrigTo) { 1323 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1324 PrevTo = Del->getAggregateOperand(); 1325 Del->eraseFromParent(); 1326 } 1327 // Stop processing elements 1328 break; 1329 } 1330 } 1331 // If we successfully found a value for each of our subaggregates 1332 if (To) 1333 return To; 1334 } 1335 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1336 // the struct's elements had a value that was inserted directly. In the latter 1337 // case, perhaps we can't determine each of the subelements individually, but 1338 // we might be able to find the complete struct somewhere. 1339 1340 // Find the value that is at that particular spot 1341 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end()); 1342 1343 if (!V) 1344 return NULL; 1345 1346 // Insert the value in the new (sub) aggregrate 1347 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip, 1348 Idxs.end(), "tmp", InsertBefore); 1349 } 1350 1351 // This helper takes a nested struct and extracts a part of it (which is again a 1352 // struct) into a new value. For example, given the struct: 1353 // { a, { b, { c, d }, e } } 1354 // and the indices "1, 1" this returns 1355 // { c, d }. 1356 // 1357 // It does this by inserting an insertvalue for each element in the resulting 1358 // struct, as opposed to just inserting a single struct. This will only work if 1359 // each of the elements of the substruct are known (ie, inserted into From by an 1360 // insertvalue instruction somewhere). 1361 // 1362 // All inserted insertvalue instructions are inserted before InsertBefore 1363 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, 1364 const unsigned *idx_end, 1365 Instruction *InsertBefore) { 1366 assert(InsertBefore && "Must have someplace to insert!"); 1367 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1368 idx_begin, 1369 idx_end); 1370 Value *To = UndefValue::get(IndexedType); 1371 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); 1372 unsigned IdxSkip = Idxs.size(); 1373 1374 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1375 } 1376 1377 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1378 /// the scalar value indexed is already around as a register, for example if it 1379 /// were inserted directly into the aggregrate. 1380 /// 1381 /// If InsertBefore is not null, this function will duplicate (modified) 1382 /// insertvalues when a part of a nested struct is extracted. 1383 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, 1384 const unsigned *idx_end, Instruction *InsertBefore) { 1385 // Nothing to index? Just return V then (this is useful at the end of our 1386 // recursion) 1387 if (idx_begin == idx_end) 1388 return V; 1389 // We have indices, so V should have an indexable type 1390 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) 1391 && "Not looking at a struct or array?"); 1392 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end) 1393 && "Invalid indices for type?"); 1394 const CompositeType *PTy = cast<CompositeType>(V->getType()); 1395 1396 if (isa<UndefValue>(V)) 1397 return UndefValue::get(ExtractValueInst::getIndexedType(PTy, 1398 idx_begin, 1399 idx_end)); 1400 else if (isa<ConstantAggregateZero>(V)) 1401 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, 1402 idx_begin, 1403 idx_end)); 1404 else if (Constant *C = dyn_cast<Constant>(V)) { 1405 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) 1406 // Recursively process this constant 1407 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, 1408 idx_end, InsertBefore); 1409 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1410 // Loop the indices for the insertvalue instruction in parallel with the 1411 // requested indices 1412 const unsigned *req_idx = idx_begin; 1413 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1414 i != e; ++i, ++req_idx) { 1415 if (req_idx == idx_end) { 1416 if (InsertBefore) 1417 // The requested index identifies a part of a nested aggregate. Handle 1418 // this specially. For example, 1419 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1420 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1421 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1422 // This can be changed into 1423 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1424 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1425 // which allows the unused 0,0 element from the nested struct to be 1426 // removed. 1427 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); 1428 else 1429 // We can't handle this without inserting insertvalues 1430 return 0; 1431 } 1432 1433 // This insert value inserts something else than what we are looking for. 1434 // See if the (aggregrate) value inserted into has the value we are 1435 // looking for, then. 1436 if (*req_idx != *i) 1437 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, 1438 InsertBefore); 1439 } 1440 // If we end up here, the indices of the insertvalue match with those 1441 // requested (though possibly only partially). Now we recursively look at 1442 // the inserted value, passing any remaining indices. 1443 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, 1444 InsertBefore); 1445 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1446 // If we're extracting a value from an aggregrate that was extracted from 1447 // something else, we can extract from that something else directly instead. 1448 // However, we will need to chain I's indices with the requested indices. 1449 1450 // Calculate the number of indices required 1451 unsigned size = I->getNumIndices() + (idx_end - idx_begin); 1452 // Allocate some space to put the new indices in 1453 SmallVector<unsigned, 5> Idxs; 1454 Idxs.reserve(size); 1455 // Add indices from the extract value instruction 1456 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1457 i != e; ++i) 1458 Idxs.push_back(*i); 1459 1460 // Add requested indices 1461 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i) 1462 Idxs.push_back(*i); 1463 1464 assert(Idxs.size() == size 1465 && "Number of indices added not correct?"); 1466 1467 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(), 1468 InsertBefore); 1469 } 1470 // Otherwise, we don't know (such as, extracting from a function return value 1471 // or load instruction) 1472 return 0; 1473 } 1474 1475 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1476 /// it can be expressed as a base pointer plus a constant offset. Return the 1477 /// base and offset to the caller. 1478 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1479 const TargetData &TD) { 1480 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1481 if (PtrOp == 0) return Ptr; 1482 1483 // Just look through bitcasts. 1484 if (PtrOp->getOpcode() == Instruction::BitCast) 1485 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1486 1487 // If this is a GEP with constant indices, we can look through it. 1488 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1489 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1490 1491 gep_type_iterator GTI = gep_type_begin(GEP); 1492 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1493 ++I, ++GTI) { 1494 ConstantInt *OpC = cast<ConstantInt>(*I); 1495 if (OpC->isZero()) continue; 1496 1497 // Handle a struct and array indices which add their offset to the pointer. 1498 if (const StructType *STy = dyn_cast<StructType>(*GTI)) { 1499 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1500 } else { 1501 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1502 Offset += OpC->getSExtValue()*Size; 1503 } 1504 } 1505 1506 // Re-sign extend from the pointer size if needed to get overflow edge cases 1507 // right. 1508 unsigned PtrSize = TD.getPointerSizeInBits(); 1509 if (PtrSize < 64) 1510 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1511 1512 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1513 } 1514 1515 1516 /// GetConstantStringInfo - This function computes the length of a 1517 /// null-terminated C string pointed to by V. If successful, it returns true 1518 /// and returns the string in Str. If unsuccessful, it returns false. 1519 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str, 1520 uint64_t Offset, 1521 bool StopAtNul) { 1522 // If V is NULL then return false; 1523 if (V == NULL) return false; 1524 1525 // Look through bitcast instructions. 1526 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1527 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); 1528 1529 // If the value is not a GEP instruction nor a constant expression with a 1530 // GEP instruction, then return false because ConstantArray can't occur 1531 // any other way 1532 const User *GEP = 0; 1533 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1534 GEP = GEPI; 1535 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1536 if (CE->getOpcode() == Instruction::BitCast) 1537 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); 1538 if (CE->getOpcode() != Instruction::GetElementPtr) 1539 return false; 1540 GEP = CE; 1541 } 1542 1543 if (GEP) { 1544 // Make sure the GEP has exactly three arguments. 1545 if (GEP->getNumOperands() != 3) 1546 return false; 1547 1548 // Make sure the index-ee is a pointer to array of i8. 1549 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1550 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1551 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1552 return false; 1553 1554 // Check to make sure that the first operand of the GEP is an integer and 1555 // has value 0 so that we are sure we're indexing into the initializer. 1556 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1557 if (FirstIdx == 0 || !FirstIdx->isZero()) 1558 return false; 1559 1560 // If the second index isn't a ConstantInt, then this is a variable index 1561 // into the array. If this occurs, we can't say anything meaningful about 1562 // the string. 1563 uint64_t StartIdx = 0; 1564 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1565 StartIdx = CI->getZExtValue(); 1566 else 1567 return false; 1568 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, 1569 StopAtNul); 1570 } 1571 1572 // The GEP instruction, constant or instruction, must reference a global 1573 // variable that is a constant and is initialized. The referenced constant 1574 // initializer is the array that we'll use for optimization. 1575 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V); 1576 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1577 return false; 1578 const Constant *GlobalInit = GV->getInitializer(); 1579 1580 // Handle the ConstantAggregateZero case 1581 if (isa<ConstantAggregateZero>(GlobalInit)) { 1582 // This is a degenerate case. The initializer is constant zero so the 1583 // length of the string must be zero. 1584 Str.clear(); 1585 return true; 1586 } 1587 1588 // Must be a Constant Array 1589 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1590 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8)) 1591 return false; 1592 1593 // Get the number of elements in the array 1594 uint64_t NumElts = Array->getType()->getNumElements(); 1595 1596 if (Offset > NumElts) 1597 return false; 1598 1599 // Traverse the constant array from 'Offset' which is the place the GEP refers 1600 // to in the array. 1601 Str.reserve(NumElts-Offset); 1602 for (unsigned i = Offset; i != NumElts; ++i) { 1603 const Constant *Elt = Array->getOperand(i); 1604 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1605 if (!CI) // This array isn't suitable, non-int initializer. 1606 return false; 1607 if (StopAtNul && CI->isZero()) 1608 return true; // we found end of string, success! 1609 Str += (char)CI->getZExtValue(); 1610 } 1611 1612 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. 1613 return true; 1614 } 1615 1616 // These next two are very similar to the above, but also look through PHI 1617 // nodes. 1618 // TODO: See if we can integrate these two together. 1619 1620 /// GetStringLengthH - If we can compute the length of the string pointed to by 1621 /// the specified pointer, return 'len+1'. If we can't, return 0. 1622 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1623 // Look through noop bitcast instructions. 1624 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1625 return GetStringLengthH(BCI->getOperand(0), PHIs); 1626 1627 // If this is a PHI node, there are two cases: either we have already seen it 1628 // or we haven't. 1629 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1630 if (!PHIs.insert(PN)) 1631 return ~0ULL; // already in the set. 1632 1633 // If it was new, see if all the input strings are the same length. 1634 uint64_t LenSoFar = ~0ULL; 1635 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1636 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1637 if (Len == 0) return 0; // Unknown length -> unknown. 1638 1639 if (Len == ~0ULL) continue; 1640 1641 if (Len != LenSoFar && LenSoFar != ~0ULL) 1642 return 0; // Disagree -> unknown. 1643 LenSoFar = Len; 1644 } 1645 1646 // Success, all agree. 1647 return LenSoFar; 1648 } 1649 1650 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1651 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1652 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1653 if (Len1 == 0) return 0; 1654 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1655 if (Len2 == 0) return 0; 1656 if (Len1 == ~0ULL) return Len2; 1657 if (Len2 == ~0ULL) return Len1; 1658 if (Len1 != Len2) return 0; 1659 return Len1; 1660 } 1661 1662 // If the value is not a GEP instruction nor a constant expression with a 1663 // GEP instruction, then return unknown. 1664 User *GEP = 0; 1665 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1666 GEP = GEPI; 1667 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1668 if (CE->getOpcode() != Instruction::GetElementPtr) 1669 return 0; 1670 GEP = CE; 1671 } else { 1672 return 0; 1673 } 1674 1675 // Make sure the GEP has exactly three arguments. 1676 if (GEP->getNumOperands() != 3) 1677 return 0; 1678 1679 // Check to make sure that the first operand of the GEP is an integer and 1680 // has value 0 so that we are sure we're indexing into the initializer. 1681 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { 1682 if (!Idx->isZero()) 1683 return 0; 1684 } else 1685 return 0; 1686 1687 // If the second index isn't a ConstantInt, then this is a variable index 1688 // into the array. If this occurs, we can't say anything meaningful about 1689 // the string. 1690 uint64_t StartIdx = 0; 1691 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1692 StartIdx = CI->getZExtValue(); 1693 else 1694 return 0; 1695 1696 // The GEP instruction, constant or instruction, must reference a global 1697 // variable that is a constant and is initialized. The referenced constant 1698 // initializer is the array that we'll use for optimization. 1699 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1700 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1701 GV->mayBeOverridden()) 1702 return 0; 1703 Constant *GlobalInit = GV->getInitializer(); 1704 1705 // Handle the ConstantAggregateZero case, which is a degenerate case. The 1706 // initializer is constant zero so the length of the string must be zero. 1707 if (isa<ConstantAggregateZero>(GlobalInit)) 1708 return 1; // Len = 0 offset by 1. 1709 1710 // Must be a Constant Array 1711 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1712 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8)) 1713 return false; 1714 1715 // Get the number of elements in the array 1716 uint64_t NumElts = Array->getType()->getNumElements(); 1717 1718 // Traverse the constant array from StartIdx (derived above) which is 1719 // the place the GEP refers to in the array. 1720 for (unsigned i = StartIdx; i != NumElts; ++i) { 1721 Constant *Elt = Array->getOperand(i); 1722 ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1723 if (!CI) // This array isn't suitable, non-int initializer. 1724 return 0; 1725 if (CI->isZero()) 1726 return i-StartIdx+1; // We found end of string, success! 1727 } 1728 1729 return 0; // The array isn't null terminated, conservatively return 'unknown'. 1730 } 1731 1732 /// GetStringLength - If we can compute the length of the string pointed to by 1733 /// the specified pointer, return 'len+1'. If we can't, return 0. 1734 uint64_t llvm::GetStringLength(Value *V) { 1735 if (!V->getType()->isPointerTy()) return 0; 1736 1737 SmallPtrSet<PHINode*, 32> PHIs; 1738 uint64_t Len = GetStringLengthH(V, PHIs); 1739 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1740 // an empty string as a length. 1741 return Len == ~0ULL ? 1 : Len; 1742 } 1743 1744 Value * 1745 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1746 if (!V->getType()->isPointerTy()) 1747 return V; 1748 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1749 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1750 V = GEP->getPointerOperand(); 1751 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1752 V = cast<Operator>(V)->getOperand(0); 1753 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1754 if (GA->mayBeOverridden()) 1755 return V; 1756 V = GA->getAliasee(); 1757 } else { 1758 // See if InstructionSimplify knows any relevant tricks. 1759 if (Instruction *I = dyn_cast<Instruction>(V)) 1760 // TODO: Acquire a DominatorTree and use it. 1761 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1762 V = Simplified; 1763 continue; 1764 } 1765 1766 return V; 1767 } 1768 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1769 } 1770 return V; 1771 } 1772