1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/ConstantRange.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/GetElementPtrTypeIterator.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Statepoint.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/MathExtras.h" 40 #include <algorithm> 41 #include <array> 42 #include <cstring> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 const unsigned MaxDepth = 6; 47 48 // Controls the number of uses of the value searched for possible 49 // dominating comparisons. 50 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 51 cl::Hidden, cl::init(20)); 52 53 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 54 /// 0). For vector types, returns the element type's bitwidth. 55 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 56 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 57 return BitWidth; 58 59 return DL.getPointerTypeSizeInBits(Ty); 60 } 61 62 namespace { 63 // Simplifying using an assume can only be done in a particular control-flow 64 // context (the context instruction provides that context). If an assume and 65 // the context instruction are not in the same block then the DT helps in 66 // figuring out if we can use it. 67 struct Query { 68 const DataLayout &DL; 69 AssumptionCache *AC; 70 const Instruction *CxtI; 71 const DominatorTree *DT; 72 73 /// Set of assumptions that should be excluded from further queries. 74 /// This is because of the potential for mutual recursion to cause 75 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 76 /// classic case of this is assume(x = y), which will attempt to determine 77 /// bits in x from bits in y, which will attempt to determine bits in y from 78 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 79 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 80 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 81 /// on. 82 std::array<const Value*, MaxDepth> Excluded; 83 unsigned NumExcluded; 84 85 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 86 const DominatorTree *DT) 87 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 88 89 Query(const Query &Q, const Value *NewExcl) 90 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 91 Excluded = Q.Excluded; 92 Excluded[NumExcluded++] = NewExcl; 93 assert(NumExcluded <= Excluded.size()); 94 } 95 96 bool isExcluded(const Value *Value) const { 97 if (NumExcluded == 0) 98 return false; 99 auto End = Excluded.begin() + NumExcluded; 100 return std::find(Excluded.begin(), End, Value) != End; 101 } 102 }; 103 } // end anonymous namespace 104 105 // Given the provided Value and, potentially, a context instruction, return 106 // the preferred context instruction (if any). 107 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 108 // If we've been provided with a context instruction, then use that (provided 109 // it has been inserted). 110 if (CxtI && CxtI->getParent()) 111 return CxtI; 112 113 // If the value is really an already-inserted instruction, then use that. 114 CxtI = dyn_cast<Instruction>(V); 115 if (CxtI && CxtI->getParent()) 116 return CxtI; 117 118 return nullptr; 119 } 120 121 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 122 unsigned Depth, const Query &Q); 123 124 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 125 const DataLayout &DL, unsigned Depth, 126 AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT) { 128 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 129 Query(DL, AC, safeCxtI(V, CxtI), DT)); 130 } 131 132 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 133 AssumptionCache *AC, const Instruction *CxtI, 134 const DominatorTree *DT) { 135 assert(LHS->getType() == RHS->getType() && 136 "LHS and RHS should have the same type"); 137 assert(LHS->getType()->isIntOrIntVectorTy() && 138 "LHS and RHS should be integers"); 139 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 140 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 141 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 142 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 143 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 144 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 145 } 146 147 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 148 unsigned Depth, const Query &Q); 149 150 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 151 const DataLayout &DL, unsigned Depth, 152 AssumptionCache *AC, const Instruction *CxtI, 153 const DominatorTree *DT) { 154 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 155 Query(DL, AC, safeCxtI(V, CxtI), DT)); 156 } 157 158 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 159 const Query &Q); 160 161 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 162 unsigned Depth, AssumptionCache *AC, 163 const Instruction *CxtI, 164 const DominatorTree *DT) { 165 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 166 Query(DL, AC, safeCxtI(V, CxtI), DT)); 167 } 168 169 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q); 170 171 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 172 AssumptionCache *AC, const Instruction *CxtI, 173 const DominatorTree *DT) { 174 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 175 } 176 177 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 178 AssumptionCache *AC, const Instruction *CxtI, 179 const DominatorTree *DT) { 180 bool NonNegative, Negative; 181 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 182 return NonNegative; 183 } 184 185 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q); 186 187 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 188 AssumptionCache *AC, const Instruction *CxtI, 189 const DominatorTree *DT) { 190 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 191 safeCxtI(V1, safeCxtI(V2, CxtI)), 192 DT)); 193 } 194 195 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 196 const Query &Q); 197 198 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 199 unsigned Depth, AssumptionCache *AC, 200 const Instruction *CxtI, const DominatorTree *DT) { 201 return ::MaskedValueIsZero(V, Mask, Depth, 202 Query(DL, AC, safeCxtI(V, CxtI), DT)); 203 } 204 205 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q); 206 207 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 208 unsigned Depth, AssumptionCache *AC, 209 const Instruction *CxtI, 210 const DominatorTree *DT) { 211 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 212 } 213 214 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 215 APInt &KnownZero, APInt &KnownOne, 216 APInt &KnownZero2, APInt &KnownOne2, 217 unsigned Depth, const Query &Q) { 218 if (!Add) { 219 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 220 // We know that the top bits of C-X are clear if X contains less bits 221 // than C (i.e. no wrap-around can happen). For example, 20-X is 222 // positive if we can prove that X is >= 0 and < 16. 223 if (!CLHS->getValue().isNegative()) { 224 unsigned BitWidth = KnownZero.getBitWidth(); 225 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 226 // NLZ can't be BitWidth with no sign bit 227 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 228 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 229 230 // If all of the MaskV bits are known to be zero, then we know the 231 // output top bits are zero, because we now know that the output is 232 // from [0-C]. 233 if ((KnownZero2 & MaskV) == MaskV) { 234 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 235 // Top bits known zero. 236 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 237 } 238 } 239 } 240 } 241 242 unsigned BitWidth = KnownZero.getBitWidth(); 243 244 // If an initial sequence of bits in the result is not needed, the 245 // corresponding bits in the operands are not needed. 246 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 247 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 248 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 249 250 // Carry in a 1 for a subtract, rather than a 0. 251 APInt CarryIn(BitWidth, 0); 252 if (!Add) { 253 // Sum = LHS + ~RHS + 1 254 std::swap(KnownZero2, KnownOne2); 255 CarryIn.setBit(0); 256 } 257 258 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 259 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 260 261 // Compute known bits of the carry. 262 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 263 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 264 265 // Compute set of known bits (where all three relevant bits are known). 266 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 267 APInt RHSKnown = KnownZero2 | KnownOne2; 268 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 269 APInt Known = LHSKnown & RHSKnown & CarryKnown; 270 271 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 272 "known bits of sum differ"); 273 274 // Compute known bits of the result. 275 KnownZero = ~PossibleSumOne & Known; 276 KnownOne = PossibleSumOne & Known; 277 278 // Are we still trying to solve for the sign bit? 279 if (!Known.isNegative()) { 280 if (NSW) { 281 // Adding two non-negative numbers, or subtracting a negative number from 282 // a non-negative one, can't wrap into negative. 283 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 284 KnownZero |= APInt::getSignBit(BitWidth); 285 // Adding two negative numbers, or subtracting a non-negative number from 286 // a negative one, can't wrap into non-negative. 287 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 288 KnownOne |= APInt::getSignBit(BitWidth); 289 } 290 } 291 } 292 293 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 294 APInt &KnownZero, APInt &KnownOne, 295 APInt &KnownZero2, APInt &KnownOne2, 296 unsigned Depth, const Query &Q) { 297 unsigned BitWidth = KnownZero.getBitWidth(); 298 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 299 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 300 301 bool isKnownNegative = false; 302 bool isKnownNonNegative = false; 303 // If the multiplication is known not to overflow, compute the sign bit. 304 if (NSW) { 305 if (Op0 == Op1) { 306 // The product of a number with itself is non-negative. 307 isKnownNonNegative = true; 308 } else { 309 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 310 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 311 bool isKnownNegativeOp1 = KnownOne.isNegative(); 312 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 313 // The product of two numbers with the same sign is non-negative. 314 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 315 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 316 // The product of a negative number and a non-negative number is either 317 // negative or zero. 318 if (!isKnownNonNegative) 319 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 320 isKnownNonZero(Op0, Depth, Q)) || 321 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 322 isKnownNonZero(Op1, Depth, Q)); 323 } 324 } 325 326 // If low bits are zero in either operand, output low known-0 bits. 327 // Also compute a conservative estimate for high known-0 bits. 328 // More trickiness is possible, but this is sufficient for the 329 // interesting case of alignment computation. 330 KnownOne.clearAllBits(); 331 unsigned TrailZ = KnownZero.countTrailingOnes() + 332 KnownZero2.countTrailingOnes(); 333 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 334 KnownZero2.countLeadingOnes(), 335 BitWidth) - BitWidth; 336 337 TrailZ = std::min(TrailZ, BitWidth); 338 LeadZ = std::min(LeadZ, BitWidth); 339 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 340 APInt::getHighBitsSet(BitWidth, LeadZ); 341 342 // Only make use of no-wrap flags if we failed to compute the sign bit 343 // directly. This matters if the multiplication always overflows, in 344 // which case we prefer to follow the result of the direct computation, 345 // though as the program is invoking undefined behaviour we can choose 346 // whatever we like here. 347 if (isKnownNonNegative && !KnownOne.isNegative()) 348 KnownZero.setBit(BitWidth - 1); 349 else if (isKnownNegative && !KnownZero.isNegative()) 350 KnownOne.setBit(BitWidth - 1); 351 } 352 353 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 354 APInt &KnownZero, 355 APInt &KnownOne) { 356 unsigned BitWidth = KnownZero.getBitWidth(); 357 unsigned NumRanges = Ranges.getNumOperands() / 2; 358 assert(NumRanges >= 1); 359 360 KnownZero.setAllBits(); 361 KnownOne.setAllBits(); 362 363 for (unsigned i = 0; i < NumRanges; ++i) { 364 ConstantInt *Lower = 365 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 366 ConstantInt *Upper = 367 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 368 ConstantRange Range(Lower->getValue(), Upper->getValue()); 369 370 // The first CommonPrefixBits of all values in Range are equal. 371 unsigned CommonPrefixBits = 372 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 373 374 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 375 KnownOne &= Range.getUnsignedMax() & Mask; 376 KnownZero &= ~Range.getUnsignedMax() & Mask; 377 } 378 } 379 380 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 381 SmallVector<const Value *, 16> WorkSet(1, I); 382 SmallPtrSet<const Value *, 32> Visited; 383 SmallPtrSet<const Value *, 16> EphValues; 384 385 // The instruction defining an assumption's condition itself is always 386 // considered ephemeral to that assumption (even if it has other 387 // non-ephemeral users). See r246696's test case for an example. 388 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 389 return true; 390 391 while (!WorkSet.empty()) { 392 const Value *V = WorkSet.pop_back_val(); 393 if (!Visited.insert(V).second) 394 continue; 395 396 // If all uses of this value are ephemeral, then so is this value. 397 if (std::all_of(V->user_begin(), V->user_end(), 398 [&](const User *U) { return EphValues.count(U); })) { 399 if (V == E) 400 return true; 401 402 EphValues.insert(V); 403 if (const User *U = dyn_cast<User>(V)) 404 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 405 J != JE; ++J) { 406 if (isSafeToSpeculativelyExecute(*J)) 407 WorkSet.push_back(*J); 408 } 409 } 410 } 411 412 return false; 413 } 414 415 // Is this an intrinsic that cannot be speculated but also cannot trap? 416 static bool isAssumeLikeIntrinsic(const Instruction *I) { 417 if (const CallInst *CI = dyn_cast<CallInst>(I)) 418 if (Function *F = CI->getCalledFunction()) 419 switch (F->getIntrinsicID()) { 420 default: break; 421 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 422 case Intrinsic::assume: 423 case Intrinsic::dbg_declare: 424 case Intrinsic::dbg_value: 425 case Intrinsic::invariant_start: 426 case Intrinsic::invariant_end: 427 case Intrinsic::lifetime_start: 428 case Intrinsic::lifetime_end: 429 case Intrinsic::objectsize: 430 case Intrinsic::ptr_annotation: 431 case Intrinsic::var_annotation: 432 return true; 433 } 434 435 return false; 436 } 437 438 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI, 439 const DominatorTree *DT) { 440 Instruction *Inv = cast<Instruction>(V); 441 442 // There are two restrictions on the use of an assume: 443 // 1. The assume must dominate the context (or the control flow must 444 // reach the assume whenever it reaches the context). 445 // 2. The context must not be in the assume's set of ephemeral values 446 // (otherwise we will use the assume to prove that the condition 447 // feeding the assume is trivially true, thus causing the removal of 448 // the assume). 449 450 if (DT) { 451 if (DT->dominates(Inv, CxtI)) { 452 return true; 453 } else if (Inv->getParent() == CxtI->getParent()) { 454 // The context comes first, but they're both in the same block. Make sure 455 // there is nothing in between that might interrupt the control flow. 456 for (BasicBlock::const_iterator I = 457 std::next(BasicBlock::const_iterator(CxtI)), 458 IE(Inv); I != IE; ++I) 459 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 460 return false; 461 462 return !isEphemeralValueOf(Inv, CxtI); 463 } 464 465 return false; 466 } 467 468 // When we don't have a DT, we do a limited search... 469 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 470 return true; 471 } else if (Inv->getParent() == CxtI->getParent()) { 472 // Search forward from the assume until we reach the context (or the end 473 // of the block); the common case is that the assume will come first. 474 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 475 IE = Inv->getParent()->end(); I != IE; ++I) 476 if (&*I == CxtI) 477 return true; 478 479 // The context must come first... 480 for (BasicBlock::const_iterator I = 481 std::next(BasicBlock::const_iterator(CxtI)), 482 IE(Inv); I != IE; ++I) 483 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 484 return false; 485 486 return !isEphemeralValueOf(Inv, CxtI); 487 } 488 489 return false; 490 } 491 492 bool llvm::isValidAssumeForContext(const Instruction *I, 493 const Instruction *CxtI, 494 const DominatorTree *DT) { 495 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT); 496 } 497 498 template<typename LHS, typename RHS> 499 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 500 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 501 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 502 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 503 } 504 505 template<typename LHS, typename RHS> 506 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 507 BinaryOp_match<RHS, LHS, Instruction::And>> 508 m_c_And(const LHS &L, const RHS &R) { 509 return m_CombineOr(m_And(L, R), m_And(R, L)); 510 } 511 512 template<typename LHS, typename RHS> 513 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 514 BinaryOp_match<RHS, LHS, Instruction::Or>> 515 m_c_Or(const LHS &L, const RHS &R) { 516 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 517 } 518 519 template<typename LHS, typename RHS> 520 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 521 BinaryOp_match<RHS, LHS, Instruction::Xor>> 522 m_c_Xor(const LHS &L, const RHS &R) { 523 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 524 } 525 526 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 527 APInt &KnownOne, unsigned Depth, 528 const Query &Q) { 529 // Use of assumptions is context-sensitive. If we don't have a context, we 530 // cannot use them! 531 if (!Q.AC || !Q.CxtI) 532 return; 533 534 unsigned BitWidth = KnownZero.getBitWidth(); 535 536 for (auto &AssumeVH : Q.AC->assumptions()) { 537 if (!AssumeVH) 538 continue; 539 CallInst *I = cast<CallInst>(AssumeVH); 540 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 541 "Got assumption for the wrong function!"); 542 if (Q.isExcluded(I)) 543 continue; 544 545 // Warning: This loop can end up being somewhat performance sensetive. 546 // We're running this loop for once for each value queried resulting in a 547 // runtime of ~O(#assumes * #values). 548 549 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 550 "must be an assume intrinsic"); 551 552 Value *Arg = I->getArgOperand(0); 553 554 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 555 assert(BitWidth == 1 && "assume operand is not i1?"); 556 KnownZero.clearAllBits(); 557 KnownOne.setAllBits(); 558 return; 559 } 560 561 // The remaining tests are all recursive, so bail out if we hit the limit. 562 if (Depth == MaxDepth) 563 continue; 564 565 Value *A, *B; 566 auto m_V = m_CombineOr(m_Specific(V), 567 m_CombineOr(m_PtrToInt(m_Specific(V)), 568 m_BitCast(m_Specific(V)))); 569 570 CmpInst::Predicate Pred; 571 ConstantInt *C; 572 // assume(v = a) 573 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 574 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 575 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 576 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 577 KnownZero |= RHSKnownZero; 578 KnownOne |= RHSKnownOne; 579 // assume(v & b = a) 580 } else if (match(Arg, 581 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 582 Pred == ICmpInst::ICMP_EQ && 583 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 586 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 587 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 588 589 // For those bits in the mask that are known to be one, we can propagate 590 // known bits from the RHS to V. 591 KnownZero |= RHSKnownZero & MaskKnownOne; 592 KnownOne |= RHSKnownOne & MaskKnownOne; 593 // assume(~(v & b) = a) 594 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 595 m_Value(A))) && 596 Pred == ICmpInst::ICMP_EQ && 597 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 598 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 599 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 600 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 601 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 602 603 // For those bits in the mask that are known to be one, we can propagate 604 // inverted known bits from the RHS to V. 605 KnownZero |= RHSKnownOne & MaskKnownOne; 606 KnownOne |= RHSKnownZero & MaskKnownOne; 607 // assume(v | b = a) 608 } else if (match(Arg, 609 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 610 Pred == ICmpInst::ICMP_EQ && 611 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 612 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 613 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 614 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 615 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 616 617 // For those bits in B that are known to be zero, we can propagate known 618 // bits from the RHS to V. 619 KnownZero |= RHSKnownZero & BKnownZero; 620 KnownOne |= RHSKnownOne & BKnownZero; 621 // assume(~(v | b) = a) 622 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 623 m_Value(A))) && 624 Pred == ICmpInst::ICMP_EQ && 625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 626 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 627 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 628 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 629 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 630 631 // For those bits in B that are known to be zero, we can propagate 632 // inverted known bits from the RHS to V. 633 KnownZero |= RHSKnownOne & BKnownZero; 634 KnownOne |= RHSKnownZero & BKnownZero; 635 // assume(v ^ b = a) 636 } else if (match(Arg, 637 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 638 Pred == ICmpInst::ICMP_EQ && 639 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 640 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 641 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 642 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 643 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 644 645 // For those bits in B that are known to be zero, we can propagate known 646 // bits from the RHS to V. For those bits in B that are known to be one, 647 // we can propagate inverted known bits from the RHS to V. 648 KnownZero |= RHSKnownZero & BKnownZero; 649 KnownOne |= RHSKnownOne & BKnownZero; 650 KnownZero |= RHSKnownOne & BKnownOne; 651 KnownOne |= RHSKnownZero & BKnownOne; 652 // assume(~(v ^ b) = a) 653 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 654 m_Value(A))) && 655 Pred == ICmpInst::ICMP_EQ && 656 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 657 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 658 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 659 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 660 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 661 662 // For those bits in B that are known to be zero, we can propagate 663 // inverted known bits from the RHS to V. For those bits in B that are 664 // known to be one, we can propagate known bits from the RHS to V. 665 KnownZero |= RHSKnownOne & BKnownZero; 666 KnownOne |= RHSKnownZero & BKnownZero; 667 KnownZero |= RHSKnownZero & BKnownOne; 668 KnownOne |= RHSKnownOne & BKnownOne; 669 // assume(v << c = a) 670 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 671 m_Value(A))) && 672 Pred == ICmpInst::ICMP_EQ && 673 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 674 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 675 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 676 // For those bits in RHS that are known, we can propagate them to known 677 // bits in V shifted to the right by C. 678 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 679 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 680 // assume(~(v << c) = a) 681 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 682 m_Value(A))) && 683 Pred == ICmpInst::ICMP_EQ && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 686 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 687 // For those bits in RHS that are known, we can propagate them inverted 688 // to known bits in V shifted to the right by C. 689 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 690 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 691 // assume(v >> c = a) 692 } else if (match(Arg, 693 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 694 m_AShr(m_V, m_ConstantInt(C))), 695 m_Value(A))) && 696 Pred == ICmpInst::ICMP_EQ && 697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 700 // For those bits in RHS that are known, we can propagate them to known 701 // bits in V shifted to the right by C. 702 KnownZero |= RHSKnownZero << C->getZExtValue(); 703 KnownOne |= RHSKnownOne << C->getZExtValue(); 704 // assume(~(v >> c) = a) 705 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 706 m_LShr(m_V, m_ConstantInt(C)), 707 m_AShr(m_V, m_ConstantInt(C)))), 708 m_Value(A))) && 709 Pred == ICmpInst::ICMP_EQ && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 712 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 713 // For those bits in RHS that are known, we can propagate them inverted 714 // to known bits in V shifted to the right by C. 715 KnownZero |= RHSKnownOne << C->getZExtValue(); 716 KnownOne |= RHSKnownZero << C->getZExtValue(); 717 // assume(v >=_s c) where c is non-negative 718 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 719 Pred == ICmpInst::ICMP_SGE && 720 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 721 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 722 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 723 724 if (RHSKnownZero.isNegative()) { 725 // We know that the sign bit is zero. 726 KnownZero |= APInt::getSignBit(BitWidth); 727 } 728 // assume(v >_s c) where c is at least -1. 729 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 730 Pred == ICmpInst::ICMP_SGT && 731 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 732 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 733 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 734 735 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 736 // We know that the sign bit is zero. 737 KnownZero |= APInt::getSignBit(BitWidth); 738 } 739 // assume(v <=_s c) where c is negative 740 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 741 Pred == ICmpInst::ICMP_SLE && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 744 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 745 746 if (RHSKnownOne.isNegative()) { 747 // We know that the sign bit is one. 748 KnownOne |= APInt::getSignBit(BitWidth); 749 } 750 // assume(v <_s c) where c is non-positive 751 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 752 Pred == ICmpInst::ICMP_SLT && 753 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 754 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 755 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 756 757 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 758 // We know that the sign bit is one. 759 KnownOne |= APInt::getSignBit(BitWidth); 760 } 761 // assume(v <=_u c) 762 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 763 Pred == ICmpInst::ICMP_ULE && 764 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 765 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 766 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 767 768 // Whatever high bits in c are zero are known to be zero. 769 KnownZero |= 770 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 771 // assume(v <_u c) 772 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 773 Pred == ICmpInst::ICMP_ULT && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 776 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 777 778 // Whatever high bits in c are zero are known to be zero (if c is a power 779 // of 2, then one more). 780 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 781 KnownZero |= 782 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 783 else 784 KnownZero |= 785 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 786 } 787 } 788 } 789 790 // Compute known bits from a shift operator, including those with a 791 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 792 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 793 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 794 // functors that, given the known-zero or known-one bits respectively, and a 795 // shift amount, compute the implied known-zero or known-one bits of the shift 796 // operator's result respectively for that shift amount. The results from calling 797 // KZF and KOF are conservatively combined for all permitted shift amounts. 798 template <typename KZFunctor, typename KOFunctor> 799 static void computeKnownBitsFromShiftOperator(Operator *I, 800 APInt &KnownZero, APInt &KnownOne, 801 APInt &KnownZero2, APInt &KnownOne2, 802 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) { 803 unsigned BitWidth = KnownZero.getBitWidth(); 804 805 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 806 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 807 808 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 809 KnownZero = KZF(KnownZero, ShiftAmt); 810 KnownOne = KOF(KnownOne, ShiftAmt); 811 return; 812 } 813 814 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 815 816 // Note: We cannot use KnownZero.getLimitedValue() here, because if 817 // BitWidth > 64 and any upper bits are known, we'll end up returning the 818 // limit value (which implies all bits are known). 819 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 820 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 821 822 // It would be more-clearly correct to use the two temporaries for this 823 // calculation. Reusing the APInts here to prevent unnecessary allocations. 824 KnownZero.clearAllBits(); 825 KnownOne.clearAllBits(); 826 827 // If we know the shifter operand is nonzero, we can sometimes infer more 828 // known bits. However this is expensive to compute, so be lazy about it and 829 // only compute it when absolutely necessary. 830 Optional<bool> ShifterOperandIsNonZero; 831 832 // Early exit if we can't constrain any well-defined shift amount. 833 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 834 ShifterOperandIsNonZero = 835 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 836 if (!*ShifterOperandIsNonZero) 837 return; 838 } 839 840 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 841 842 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 843 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 844 // Combine the shifted known input bits only for those shift amounts 845 // compatible with its known constraints. 846 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 847 continue; 848 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 849 continue; 850 // If we know the shifter is nonzero, we may be able to infer more known 851 // bits. This check is sunk down as far as possible to avoid the expensive 852 // call to isKnownNonZero if the cheaper checks above fail. 853 if (ShiftAmt == 0) { 854 if (!ShifterOperandIsNonZero.hasValue()) 855 ShifterOperandIsNonZero = 856 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 857 if (*ShifterOperandIsNonZero) 858 continue; 859 } 860 861 KnownZero &= KZF(KnownZero2, ShiftAmt); 862 KnownOne &= KOF(KnownOne2, ShiftAmt); 863 } 864 865 // If there are no compatible shift amounts, then we've proven that the shift 866 // amount must be >= the BitWidth, and the result is undefined. We could 867 // return anything we'd like, but we need to make sure the sets of known bits 868 // stay disjoint (it should be better for some other code to actually 869 // propagate the undef than to pick a value here using known bits). 870 if ((KnownZero & KnownOne) != 0) { 871 KnownZero.clearAllBits(); 872 KnownOne.clearAllBits(); 873 } 874 } 875 876 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 877 APInt &KnownOne, unsigned Depth, 878 const Query &Q) { 879 unsigned BitWidth = KnownZero.getBitWidth(); 880 881 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 882 switch (I->getOpcode()) { 883 default: break; 884 case Instruction::Load: 885 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 886 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 887 break; 888 case Instruction::And: { 889 // If either the LHS or the RHS are Zero, the result is zero. 890 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 891 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 892 893 // Output known-1 bits are only known if set in both the LHS & RHS. 894 KnownOne &= KnownOne2; 895 // Output known-0 are known to be clear if zero in either the LHS | RHS. 896 KnownZero |= KnownZero2; 897 898 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 899 // here we handle the more general case of adding any odd number by 900 // matching the form add(x, add(x, y)) where y is odd. 901 // TODO: This could be generalized to clearing any bit set in y where the 902 // following bit is known to be unset in y. 903 Value *Y = nullptr; 904 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 905 m_Value(Y))) || 906 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 907 m_Value(Y)))) { 908 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 909 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 910 if (KnownOne3.countTrailingOnes() > 0) 911 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 912 } 913 break; 914 } 915 case Instruction::Or: { 916 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 917 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 918 919 // Output known-0 bits are only known if clear in both the LHS & RHS. 920 KnownZero &= KnownZero2; 921 // Output known-1 are known to be set if set in either the LHS | RHS. 922 KnownOne |= KnownOne2; 923 break; 924 } 925 case Instruction::Xor: { 926 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 927 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 928 929 // Output known-0 bits are known if clear or set in both the LHS & RHS. 930 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 931 // Output known-1 are known to be set if set in only one of the LHS, RHS. 932 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 933 KnownZero = KnownZeroOut; 934 break; 935 } 936 case Instruction::Mul: { 937 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 938 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 939 KnownOne, KnownZero2, KnownOne2, Depth, Q); 940 break; 941 } 942 case Instruction::UDiv: { 943 // For the purposes of computing leading zeros we can conservatively 944 // treat a udiv as a logical right shift by the power of 2 known to 945 // be less than the denominator. 946 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 947 unsigned LeadZ = KnownZero2.countLeadingOnes(); 948 949 KnownOne2.clearAllBits(); 950 KnownZero2.clearAllBits(); 951 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 952 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 953 if (RHSUnknownLeadingOnes != BitWidth) 954 LeadZ = std::min(BitWidth, 955 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 956 957 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 958 break; 959 } 960 case Instruction::Select: 961 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 962 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 963 964 // Only known if known in both the LHS and RHS. 965 KnownOne &= KnownOne2; 966 KnownZero &= KnownZero2; 967 break; 968 case Instruction::FPTrunc: 969 case Instruction::FPExt: 970 case Instruction::FPToUI: 971 case Instruction::FPToSI: 972 case Instruction::SIToFP: 973 case Instruction::UIToFP: 974 break; // Can't work with floating point. 975 case Instruction::PtrToInt: 976 case Instruction::IntToPtr: 977 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 978 // FALL THROUGH and handle them the same as zext/trunc. 979 case Instruction::ZExt: 980 case Instruction::Trunc: { 981 Type *SrcTy = I->getOperand(0)->getType(); 982 983 unsigned SrcBitWidth; 984 // Note that we handle pointer operands here because of inttoptr/ptrtoint 985 // which fall through here. 986 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 987 988 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 989 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 990 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 991 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 992 KnownZero = KnownZero.zextOrTrunc(BitWidth); 993 KnownOne = KnownOne.zextOrTrunc(BitWidth); 994 // Any top bits are known to be zero. 995 if (BitWidth > SrcBitWidth) 996 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 997 break; 998 } 999 case Instruction::BitCast: { 1000 Type *SrcTy = I->getOperand(0)->getType(); 1001 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1002 SrcTy->isFloatingPointTy()) && 1003 // TODO: For now, not handling conversions like: 1004 // (bitcast i64 %x to <2 x i32>) 1005 !I->getType()->isVectorTy()) { 1006 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1007 break; 1008 } 1009 break; 1010 } 1011 case Instruction::SExt: { 1012 // Compute the bits in the result that are not present in the input. 1013 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1014 1015 KnownZero = KnownZero.trunc(SrcBitWidth); 1016 KnownOne = KnownOne.trunc(SrcBitWidth); 1017 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1018 KnownZero = KnownZero.zext(BitWidth); 1019 KnownOne = KnownOne.zext(BitWidth); 1020 1021 // If the sign bit of the input is known set or clear, then we know the 1022 // top bits of the result. 1023 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1024 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1025 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1026 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1027 break; 1028 } 1029 case Instruction::Shl: { 1030 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1031 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1032 return (KnownZero << ShiftAmt) | 1033 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1034 }; 1035 1036 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1037 return KnownOne << ShiftAmt; 1038 }; 1039 1040 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1041 KnownZero2, KnownOne2, Depth, Q, KZF, 1042 KOF); 1043 break; 1044 } 1045 case Instruction::LShr: { 1046 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1047 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1048 return APIntOps::lshr(KnownZero, ShiftAmt) | 1049 // High bits known zero. 1050 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1051 }; 1052 1053 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1054 return APIntOps::lshr(KnownOne, ShiftAmt); 1055 }; 1056 1057 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1058 KnownZero2, KnownOne2, Depth, Q, KZF, 1059 KOF); 1060 break; 1061 } 1062 case Instruction::AShr: { 1063 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1064 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1065 return APIntOps::ashr(KnownZero, ShiftAmt); 1066 }; 1067 1068 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1069 return APIntOps::ashr(KnownOne, ShiftAmt); 1070 }; 1071 1072 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1073 KnownZero2, KnownOne2, Depth, Q, KZF, 1074 KOF); 1075 break; 1076 } 1077 case Instruction::Sub: { 1078 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1079 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1080 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1081 Q); 1082 break; 1083 } 1084 case Instruction::Add: { 1085 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1086 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1087 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1088 Q); 1089 break; 1090 } 1091 case Instruction::SRem: 1092 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1093 APInt RA = Rem->getValue().abs(); 1094 if (RA.isPowerOf2()) { 1095 APInt LowBits = RA - 1; 1096 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1097 Q); 1098 1099 // The low bits of the first operand are unchanged by the srem. 1100 KnownZero = KnownZero2 & LowBits; 1101 KnownOne = KnownOne2 & LowBits; 1102 1103 // If the first operand is non-negative or has all low bits zero, then 1104 // the upper bits are all zero. 1105 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1106 KnownZero |= ~LowBits; 1107 1108 // If the first operand is negative and not all low bits are zero, then 1109 // the upper bits are all one. 1110 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1111 KnownOne |= ~LowBits; 1112 1113 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1114 } 1115 } 1116 1117 // The sign bit is the LHS's sign bit, except when the result of the 1118 // remainder is zero. 1119 if (KnownZero.isNonNegative()) { 1120 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1121 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1122 Q); 1123 // If it's known zero, our sign bit is also zero. 1124 if (LHSKnownZero.isNegative()) 1125 KnownZero.setBit(BitWidth - 1); 1126 } 1127 1128 break; 1129 case Instruction::URem: { 1130 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1131 APInt RA = Rem->getValue(); 1132 if (RA.isPowerOf2()) { 1133 APInt LowBits = (RA - 1); 1134 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1135 KnownZero |= ~LowBits; 1136 KnownOne &= LowBits; 1137 break; 1138 } 1139 } 1140 1141 // Since the result is less than or equal to either operand, any leading 1142 // zero bits in either operand must also exist in the result. 1143 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1144 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1145 1146 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1147 KnownZero2.countLeadingOnes()); 1148 KnownOne.clearAllBits(); 1149 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1150 break; 1151 } 1152 1153 case Instruction::Alloca: { 1154 AllocaInst *AI = cast<AllocaInst>(I); 1155 unsigned Align = AI->getAlignment(); 1156 if (Align == 0) 1157 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1158 1159 if (Align > 0) 1160 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1161 break; 1162 } 1163 case Instruction::GetElementPtr: { 1164 // Analyze all of the subscripts of this getelementptr instruction 1165 // to determine if we can prove known low zero bits. 1166 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1167 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1168 Q); 1169 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1170 1171 gep_type_iterator GTI = gep_type_begin(I); 1172 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1173 Value *Index = I->getOperand(i); 1174 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1175 // Handle struct member offset arithmetic. 1176 1177 // Handle case when index is vector zeroinitializer 1178 Constant *CIndex = cast<Constant>(Index); 1179 if (CIndex->isZeroValue()) 1180 continue; 1181 1182 if (CIndex->getType()->isVectorTy()) 1183 Index = CIndex->getSplatValue(); 1184 1185 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1186 const StructLayout *SL = Q.DL.getStructLayout(STy); 1187 uint64_t Offset = SL->getElementOffset(Idx); 1188 TrailZ = std::min<unsigned>(TrailZ, 1189 countTrailingZeros(Offset)); 1190 } else { 1191 // Handle array index arithmetic. 1192 Type *IndexedTy = GTI.getIndexedType(); 1193 if (!IndexedTy->isSized()) { 1194 TrailZ = 0; 1195 break; 1196 } 1197 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1198 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1199 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1200 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1201 TrailZ = std::min(TrailZ, 1202 unsigned(countTrailingZeros(TypeSize) + 1203 LocalKnownZero.countTrailingOnes())); 1204 } 1205 } 1206 1207 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1208 break; 1209 } 1210 case Instruction::PHI: { 1211 PHINode *P = cast<PHINode>(I); 1212 // Handle the case of a simple two-predecessor recurrence PHI. 1213 // There's a lot more that could theoretically be done here, but 1214 // this is sufficient to catch some interesting cases. 1215 if (P->getNumIncomingValues() == 2) { 1216 for (unsigned i = 0; i != 2; ++i) { 1217 Value *L = P->getIncomingValue(i); 1218 Value *R = P->getIncomingValue(!i); 1219 Operator *LU = dyn_cast<Operator>(L); 1220 if (!LU) 1221 continue; 1222 unsigned Opcode = LU->getOpcode(); 1223 // Check for operations that have the property that if 1224 // both their operands have low zero bits, the result 1225 // will have low zero bits. 1226 if (Opcode == Instruction::Add || 1227 Opcode == Instruction::Sub || 1228 Opcode == Instruction::And || 1229 Opcode == Instruction::Or || 1230 Opcode == Instruction::Mul) { 1231 Value *LL = LU->getOperand(0); 1232 Value *LR = LU->getOperand(1); 1233 // Find a recurrence. 1234 if (LL == I) 1235 L = LR; 1236 else if (LR == I) 1237 L = LL; 1238 else 1239 break; 1240 // Ok, we have a PHI of the form L op= R. Check for low 1241 // zero bits. 1242 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1243 1244 // We need to take the minimum number of known bits 1245 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1246 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1247 1248 KnownZero = APInt::getLowBitsSet(BitWidth, 1249 std::min(KnownZero2.countTrailingOnes(), 1250 KnownZero3.countTrailingOnes())); 1251 break; 1252 } 1253 } 1254 } 1255 1256 // Unreachable blocks may have zero-operand PHI nodes. 1257 if (P->getNumIncomingValues() == 0) 1258 break; 1259 1260 // Otherwise take the unions of the known bit sets of the operands, 1261 // taking conservative care to avoid excessive recursion. 1262 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1263 // Skip if every incoming value references to ourself. 1264 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1265 break; 1266 1267 KnownZero = APInt::getAllOnesValue(BitWidth); 1268 KnownOne = APInt::getAllOnesValue(BitWidth); 1269 for (Value *IncValue : P->incoming_values()) { 1270 // Skip direct self references. 1271 if (IncValue == P) continue; 1272 1273 KnownZero2 = APInt(BitWidth, 0); 1274 KnownOne2 = APInt(BitWidth, 0); 1275 // Recurse, but cap the recursion to one level, because we don't 1276 // want to waste time spinning around in loops. 1277 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1278 KnownZero &= KnownZero2; 1279 KnownOne &= KnownOne2; 1280 // If all bits have been ruled out, there's no need to check 1281 // more operands. 1282 if (!KnownZero && !KnownOne) 1283 break; 1284 } 1285 } 1286 break; 1287 } 1288 case Instruction::Call: 1289 case Instruction::Invoke: 1290 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1291 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1292 // If a range metadata is attached to this IntrinsicInst, intersect the 1293 // explicit range specified by the metadata and the implicit range of 1294 // the intrinsic. 1295 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1296 switch (II->getIntrinsicID()) { 1297 default: break; 1298 case Intrinsic::bswap: 1299 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1300 KnownZero |= KnownZero2.byteSwap(); 1301 KnownOne |= KnownOne2.byteSwap(); 1302 break; 1303 case Intrinsic::ctlz: 1304 case Intrinsic::cttz: { 1305 unsigned LowBits = Log2_32(BitWidth)+1; 1306 // If this call is undefined for 0, the result will be less than 2^n. 1307 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1308 LowBits -= 1; 1309 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1310 break; 1311 } 1312 case Intrinsic::ctpop: { 1313 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1314 // We can bound the space the count needs. Also, bits known to be zero 1315 // can't contribute to the population. 1316 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1317 unsigned LeadingZeros = 1318 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1319 assert(LeadingZeros <= BitWidth); 1320 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1321 KnownOne &= ~KnownZero; 1322 // TODO: we could bound KnownOne using the lower bound on the number 1323 // of bits which might be set provided by popcnt KnownOne2. 1324 break; 1325 } 1326 case Intrinsic::fabs: { 1327 Type *Ty = II->getType(); 1328 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1329 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1330 break; 1331 } 1332 case Intrinsic::x86_sse42_crc32_64_64: 1333 KnownZero |= APInt::getHighBitsSet(64, 32); 1334 break; 1335 } 1336 } 1337 break; 1338 case Instruction::ExtractValue: 1339 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1340 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1341 if (EVI->getNumIndices() != 1) break; 1342 if (EVI->getIndices()[0] == 0) { 1343 switch (II->getIntrinsicID()) { 1344 default: break; 1345 case Intrinsic::uadd_with_overflow: 1346 case Intrinsic::sadd_with_overflow: 1347 computeKnownBitsAddSub(true, II->getArgOperand(0), 1348 II->getArgOperand(1), false, KnownZero, 1349 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1350 break; 1351 case Intrinsic::usub_with_overflow: 1352 case Intrinsic::ssub_with_overflow: 1353 computeKnownBitsAddSub(false, II->getArgOperand(0), 1354 II->getArgOperand(1), false, KnownZero, 1355 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1356 break; 1357 case Intrinsic::umul_with_overflow: 1358 case Intrinsic::smul_with_overflow: 1359 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1360 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1361 Q); 1362 break; 1363 } 1364 } 1365 } 1366 } 1367 } 1368 1369 /// Determine which bits of V are known to be either zero or one and return 1370 /// them in the KnownZero/KnownOne bit sets. 1371 /// 1372 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1373 /// we cannot optimize based on the assumption that it is zero without changing 1374 /// it to be an explicit zero. If we don't change it to zero, other code could 1375 /// optimized based on the contradictory assumption that it is non-zero. 1376 /// Because instcombine aggressively folds operations with undef args anyway, 1377 /// this won't lose us code quality. 1378 /// 1379 /// This function is defined on values with integer type, values with pointer 1380 /// type, and vectors of integers. In the case 1381 /// where V is a vector, known zero, and known one values are the 1382 /// same width as the vector element, and the bit is set only if it is true 1383 /// for all of the elements in the vector. 1384 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1385 unsigned Depth, const Query &Q) { 1386 assert(V && "No Value?"); 1387 assert(Depth <= MaxDepth && "Limit Search Depth"); 1388 unsigned BitWidth = KnownZero.getBitWidth(); 1389 1390 assert((V->getType()->isIntOrIntVectorTy() || 1391 V->getType()->isFPOrFPVectorTy() || 1392 V->getType()->getScalarType()->isPointerTy()) && 1393 "Not integer, floating point, or pointer type!"); 1394 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1395 (!V->getType()->isIntOrIntVectorTy() || 1396 V->getType()->getScalarSizeInBits() == BitWidth) && 1397 KnownZero.getBitWidth() == BitWidth && 1398 KnownOne.getBitWidth() == BitWidth && 1399 "V, KnownOne and KnownZero should have same BitWidth"); 1400 1401 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1402 // We know all of the bits for a constant! 1403 KnownOne = CI->getValue(); 1404 KnownZero = ~KnownOne; 1405 return; 1406 } 1407 // Null and aggregate-zero are all-zeros. 1408 if (isa<ConstantPointerNull>(V) || 1409 isa<ConstantAggregateZero>(V)) { 1410 KnownOne.clearAllBits(); 1411 KnownZero = APInt::getAllOnesValue(BitWidth); 1412 return; 1413 } 1414 // Handle a constant vector by taking the intersection of the known bits of 1415 // each element. There is no real need to handle ConstantVector here, because 1416 // we don't handle undef in any particularly useful way. 1417 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1418 // We know that CDS must be a vector of integers. Take the intersection of 1419 // each element. 1420 KnownZero.setAllBits(); KnownOne.setAllBits(); 1421 APInt Elt(KnownZero.getBitWidth(), 0); 1422 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1423 Elt = CDS->getElementAsInteger(i); 1424 KnownZero &= ~Elt; 1425 KnownOne &= Elt; 1426 } 1427 return; 1428 } 1429 1430 // Start out not knowing anything. 1431 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1432 1433 // Limit search depth. 1434 // All recursive calls that increase depth must come after this. 1435 if (Depth == MaxDepth) 1436 return; 1437 1438 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1439 // the bits of its aliasee. 1440 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1441 if (!GA->mayBeOverridden()) 1442 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1443 return; 1444 } 1445 1446 if (Operator *I = dyn_cast<Operator>(V)) 1447 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1448 1449 // Aligned pointers have trailing zeros - refine KnownZero set 1450 if (V->getType()->isPointerTy()) { 1451 unsigned Align = V->getPointerAlignment(Q.DL); 1452 if (Align) 1453 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1454 } 1455 1456 // computeKnownBitsFromAssume strictly refines KnownZero and 1457 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1458 1459 // Check whether a nearby assume intrinsic can determine some known bits. 1460 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1461 1462 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1463 } 1464 1465 /// Determine whether the sign bit is known to be zero or one. 1466 /// Convenience wrapper around computeKnownBits. 1467 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1468 unsigned Depth, const Query &Q) { 1469 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1470 if (!BitWidth) { 1471 KnownZero = false; 1472 KnownOne = false; 1473 return; 1474 } 1475 APInt ZeroBits(BitWidth, 0); 1476 APInt OneBits(BitWidth, 0); 1477 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1478 KnownOne = OneBits[BitWidth - 1]; 1479 KnownZero = ZeroBits[BitWidth - 1]; 1480 } 1481 1482 /// Return true if the given value is known to have exactly one 1483 /// bit set when defined. For vectors return true if every element is known to 1484 /// be a power of two when defined. Supports values with integer or pointer 1485 /// types and vectors of integers. 1486 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1487 const Query &Q) { 1488 if (Constant *C = dyn_cast<Constant>(V)) { 1489 if (C->isNullValue()) 1490 return OrZero; 1491 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1492 return CI->getValue().isPowerOf2(); 1493 // TODO: Handle vector constants. 1494 } 1495 1496 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1497 // it is shifted off the end then the result is undefined. 1498 if (match(V, m_Shl(m_One(), m_Value()))) 1499 return true; 1500 1501 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1502 // bottom. If it is shifted off the bottom then the result is undefined. 1503 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1504 return true; 1505 1506 // The remaining tests are all recursive, so bail out if we hit the limit. 1507 if (Depth++ == MaxDepth) 1508 return false; 1509 1510 Value *X = nullptr, *Y = nullptr; 1511 // A shift left or a logical shift right of a power of two is a power of two 1512 // or zero. 1513 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1514 match(V, m_LShr(m_Value(X), m_Value())))) 1515 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1516 1517 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1518 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1519 1520 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1521 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1522 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1523 1524 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1525 // A power of two and'd with anything is a power of two or zero. 1526 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1527 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1528 return true; 1529 // X & (-X) is always a power of two or zero. 1530 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1531 return true; 1532 return false; 1533 } 1534 1535 // Adding a power-of-two or zero to the same power-of-two or zero yields 1536 // either the original power-of-two, a larger power-of-two or zero. 1537 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1538 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1539 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1540 if (match(X, m_And(m_Specific(Y), m_Value())) || 1541 match(X, m_And(m_Value(), m_Specific(Y)))) 1542 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1543 return true; 1544 if (match(Y, m_And(m_Specific(X), m_Value())) || 1545 match(Y, m_And(m_Value(), m_Specific(X)))) 1546 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1547 return true; 1548 1549 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1550 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1551 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1552 1553 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1554 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1555 // If i8 V is a power of two or zero: 1556 // ZeroBits: 1 1 1 0 1 1 1 1 1557 // ~ZeroBits: 0 0 0 1 0 0 0 0 1558 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1559 // If OrZero isn't set, we cannot give back a zero result. 1560 // Make sure either the LHS or RHS has a bit set. 1561 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1562 return true; 1563 } 1564 } 1565 1566 // An exact divide or right shift can only shift off zero bits, so the result 1567 // is a power of two only if the first operand is a power of two and not 1568 // copying a sign bit (sdiv int_min, 2). 1569 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1570 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1571 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1572 Depth, Q); 1573 } 1574 1575 return false; 1576 } 1577 1578 /// \brief Test whether a GEP's result is known to be non-null. 1579 /// 1580 /// Uses properties inherent in a GEP to try to determine whether it is known 1581 /// to be non-null. 1582 /// 1583 /// Currently this routine does not support vector GEPs. 1584 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth, 1585 const Query &Q) { 1586 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1587 return false; 1588 1589 // FIXME: Support vector-GEPs. 1590 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1591 1592 // If the base pointer is non-null, we cannot walk to a null address with an 1593 // inbounds GEP in address space zero. 1594 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1595 return true; 1596 1597 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1598 // If so, then the GEP cannot produce a null pointer, as doing so would 1599 // inherently violate the inbounds contract within address space zero. 1600 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1601 GTI != GTE; ++GTI) { 1602 // Struct types are easy -- they must always be indexed by a constant. 1603 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1604 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1605 unsigned ElementIdx = OpC->getZExtValue(); 1606 const StructLayout *SL = Q.DL.getStructLayout(STy); 1607 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1608 if (ElementOffset > 0) 1609 return true; 1610 continue; 1611 } 1612 1613 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1614 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1615 continue; 1616 1617 // Fast path the constant operand case both for efficiency and so we don't 1618 // increment Depth when just zipping down an all-constant GEP. 1619 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1620 if (!OpC->isZero()) 1621 return true; 1622 continue; 1623 } 1624 1625 // We post-increment Depth here because while isKnownNonZero increments it 1626 // as well, when we pop back up that increment won't persist. We don't want 1627 // to recurse 10k times just because we have 10k GEP operands. We don't 1628 // bail completely out because we want to handle constant GEPs regardless 1629 // of depth. 1630 if (Depth++ >= MaxDepth) 1631 continue; 1632 1633 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1634 return true; 1635 } 1636 1637 return false; 1638 } 1639 1640 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1641 /// ensure that the value it's attached to is never Value? 'RangeType' is 1642 /// is the type of the value described by the range. 1643 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1644 const APInt& Value) { 1645 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1646 assert(NumRanges >= 1); 1647 for (unsigned i = 0; i < NumRanges; ++i) { 1648 ConstantInt *Lower = 1649 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1650 ConstantInt *Upper = 1651 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1652 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1653 if (Range.contains(Value)) 1654 return false; 1655 } 1656 return true; 1657 } 1658 1659 /// Return true if the given value is known to be non-zero when defined. 1660 /// For vectors return true if every element is known to be non-zero when 1661 /// defined. Supports values with integer or pointer type and vectors of 1662 /// integers. 1663 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) { 1664 if (Constant *C = dyn_cast<Constant>(V)) { 1665 if (C->isNullValue()) 1666 return false; 1667 if (isa<ConstantInt>(C)) 1668 // Must be non-zero due to null test above. 1669 return true; 1670 // TODO: Handle vectors 1671 return false; 1672 } 1673 1674 if (Instruction* I = dyn_cast<Instruction>(V)) { 1675 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1676 // If the possible ranges don't contain zero, then the value is 1677 // definitely non-zero. 1678 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1679 const APInt ZeroValue(Ty->getBitWidth(), 0); 1680 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1681 return true; 1682 } 1683 } 1684 } 1685 1686 // The remaining tests are all recursive, so bail out if we hit the limit. 1687 if (Depth++ >= MaxDepth) 1688 return false; 1689 1690 // Check for pointer simplifications. 1691 if (V->getType()->isPointerTy()) { 1692 if (isKnownNonNull(V)) 1693 return true; 1694 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1695 if (isGEPKnownNonNull(GEP, Depth, Q)) 1696 return true; 1697 } 1698 1699 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1700 1701 // X | Y != 0 if X != 0 or Y != 0. 1702 Value *X = nullptr, *Y = nullptr; 1703 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1704 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1705 1706 // ext X != 0 if X != 0. 1707 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1708 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1709 1710 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1711 // if the lowest bit is shifted off the end. 1712 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1713 // shl nuw can't remove any non-zero bits. 1714 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1715 if (BO->hasNoUnsignedWrap()) 1716 return isKnownNonZero(X, Depth, Q); 1717 1718 APInt KnownZero(BitWidth, 0); 1719 APInt KnownOne(BitWidth, 0); 1720 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1721 if (KnownOne[0]) 1722 return true; 1723 } 1724 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1725 // defined if the sign bit is shifted off the end. 1726 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1727 // shr exact can only shift out zero bits. 1728 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1729 if (BO->isExact()) 1730 return isKnownNonZero(X, Depth, Q); 1731 1732 bool XKnownNonNegative, XKnownNegative; 1733 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1734 if (XKnownNegative) 1735 return true; 1736 1737 // If the shifter operand is a constant, and all of the bits shifted 1738 // out are known to be zero, and X is known non-zero then at least one 1739 // non-zero bit must remain. 1740 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1741 APInt KnownZero(BitWidth, 0); 1742 APInt KnownOne(BitWidth, 0); 1743 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1744 1745 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1746 // Is there a known one in the portion not shifted out? 1747 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1748 return true; 1749 // Are all the bits to be shifted out known zero? 1750 if (KnownZero.countTrailingOnes() >= ShiftVal) 1751 return isKnownNonZero(X, Depth, Q); 1752 } 1753 } 1754 // div exact can only produce a zero if the dividend is zero. 1755 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1756 return isKnownNonZero(X, Depth, Q); 1757 } 1758 // X + Y. 1759 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1760 bool XKnownNonNegative, XKnownNegative; 1761 bool YKnownNonNegative, YKnownNegative; 1762 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1763 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1764 1765 // If X and Y are both non-negative (as signed values) then their sum is not 1766 // zero unless both X and Y are zero. 1767 if (XKnownNonNegative && YKnownNonNegative) 1768 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1769 return true; 1770 1771 // If X and Y are both negative (as signed values) then their sum is not 1772 // zero unless both X and Y equal INT_MIN. 1773 if (BitWidth && XKnownNegative && YKnownNegative) { 1774 APInt KnownZero(BitWidth, 0); 1775 APInt KnownOne(BitWidth, 0); 1776 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1777 // The sign bit of X is set. If some other bit is set then X is not equal 1778 // to INT_MIN. 1779 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1780 if ((KnownOne & Mask) != 0) 1781 return true; 1782 // The sign bit of Y is set. If some other bit is set then Y is not equal 1783 // to INT_MIN. 1784 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1785 if ((KnownOne & Mask) != 0) 1786 return true; 1787 } 1788 1789 // The sum of a non-negative number and a power of two is not zero. 1790 if (XKnownNonNegative && 1791 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1792 return true; 1793 if (YKnownNonNegative && 1794 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1795 return true; 1796 } 1797 // X * Y. 1798 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1799 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1800 // If X and Y are non-zero then so is X * Y as long as the multiplication 1801 // does not overflow. 1802 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1803 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1804 return true; 1805 } 1806 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1807 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1808 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1809 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1810 return true; 1811 } 1812 // PHI 1813 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1814 // Try and detect a recurrence that monotonically increases from a 1815 // starting value, as these are common as induction variables. 1816 if (PN->getNumIncomingValues() == 2) { 1817 Value *Start = PN->getIncomingValue(0); 1818 Value *Induction = PN->getIncomingValue(1); 1819 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1820 std::swap(Start, Induction); 1821 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1822 if (!C->isZero() && !C->isNegative()) { 1823 ConstantInt *X; 1824 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1825 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1826 !X->isNegative()) 1827 return true; 1828 } 1829 } 1830 } 1831 // Check if all incoming values are non-zero constant. 1832 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1833 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1834 }); 1835 if (AllNonZeroConstants) 1836 return true; 1837 } 1838 1839 if (!BitWidth) return false; 1840 APInt KnownZero(BitWidth, 0); 1841 APInt KnownOne(BitWidth, 0); 1842 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1843 return KnownOne != 0; 1844 } 1845 1846 /// Return true if V2 == V1 + X, where X is known non-zero. 1847 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) { 1848 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1849 if (!BO || BO->getOpcode() != Instruction::Add) 1850 return false; 1851 Value *Op = nullptr; 1852 if (V2 == BO->getOperand(0)) 1853 Op = BO->getOperand(1); 1854 else if (V2 == BO->getOperand(1)) 1855 Op = BO->getOperand(0); 1856 else 1857 return false; 1858 return isKnownNonZero(Op, 0, Q); 1859 } 1860 1861 /// Return true if it is known that V1 != V2. 1862 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) { 1863 if (V1->getType()->isVectorTy() || V1 == V2) 1864 return false; 1865 if (V1->getType() != V2->getType()) 1866 // We can't look through casts yet. 1867 return false; 1868 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1869 return true; 1870 1871 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1872 // Are any known bits in V1 contradictory to known bits in V2? If V1 1873 // has a known zero where V2 has a known one, they must not be equal. 1874 auto BitWidth = Ty->getBitWidth(); 1875 APInt KnownZero1(BitWidth, 0); 1876 APInt KnownOne1(BitWidth, 0); 1877 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1878 APInt KnownZero2(BitWidth, 0); 1879 APInt KnownOne2(BitWidth, 0); 1880 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1881 1882 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1883 if (OppositeBits.getBoolValue()) 1884 return true; 1885 } 1886 return false; 1887 } 1888 1889 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1890 /// simplify operations downstream. Mask is known to be zero for bits that V 1891 /// cannot have. 1892 /// 1893 /// This function is defined on values with integer type, values with pointer 1894 /// type, and vectors of integers. In the case 1895 /// where V is a vector, the mask, known zero, and known one values are the 1896 /// same width as the vector element, and the bit is set only if it is true 1897 /// for all of the elements in the vector. 1898 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 1899 const Query &Q) { 1900 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1901 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1902 return (KnownZero & Mask) == Mask; 1903 } 1904 1905 1906 1907 /// Return the number of times the sign bit of the register is replicated into 1908 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1909 /// (itself), but other cases can give us information. For example, immediately 1910 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1911 /// other, so we return 3. 1912 /// 1913 /// 'Op' must have a scalar integer type. 1914 /// 1915 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) { 1916 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 1917 unsigned Tmp, Tmp2; 1918 unsigned FirstAnswer = 1; 1919 1920 // Note that ConstantInt is handled by the general computeKnownBits case 1921 // below. 1922 1923 if (Depth == 6) 1924 return 1; // Limit search depth. 1925 1926 Operator *U = dyn_cast<Operator>(V); 1927 switch (Operator::getOpcode(V)) { 1928 default: break; 1929 case Instruction::SExt: 1930 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1931 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 1932 1933 case Instruction::SDiv: { 1934 const APInt *Denominator; 1935 // sdiv X, C -> adds log(C) sign bits. 1936 if (match(U->getOperand(1), m_APInt(Denominator))) { 1937 1938 // Ignore non-positive denominator. 1939 if (!Denominator->isStrictlyPositive()) 1940 break; 1941 1942 // Calculate the incoming numerator bits. 1943 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1944 1945 // Add floor(log(C)) bits to the numerator bits. 1946 return std::min(TyBits, NumBits + Denominator->logBase2()); 1947 } 1948 break; 1949 } 1950 1951 case Instruction::SRem: { 1952 const APInt *Denominator; 1953 // srem X, C -> we know that the result is within [-C+1,C) when C is a 1954 // positive constant. This let us put a lower bound on the number of sign 1955 // bits. 1956 if (match(U->getOperand(1), m_APInt(Denominator))) { 1957 1958 // Ignore non-positive denominator. 1959 if (!Denominator->isStrictlyPositive()) 1960 break; 1961 1962 // Calculate the incoming numerator bits. SRem by a positive constant 1963 // can't lower the number of sign bits. 1964 unsigned NumrBits = 1965 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1966 1967 // Calculate the leading sign bit constraints by examining the 1968 // denominator. Given that the denominator is positive, there are two 1969 // cases: 1970 // 1971 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 1972 // (1 << ceilLogBase2(C)). 1973 // 1974 // 2. the numerator is negative. Then the result range is (-C,0] and 1975 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 1976 // 1977 // Thus a lower bound on the number of sign bits is `TyBits - 1978 // ceilLogBase2(C)`. 1979 1980 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 1981 return std::max(NumrBits, ResBits); 1982 } 1983 break; 1984 } 1985 1986 case Instruction::AShr: { 1987 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1988 // ashr X, C -> adds C sign bits. Vectors too. 1989 const APInt *ShAmt; 1990 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1991 Tmp += ShAmt->getZExtValue(); 1992 if (Tmp > TyBits) Tmp = TyBits; 1993 } 1994 return Tmp; 1995 } 1996 case Instruction::Shl: { 1997 const APInt *ShAmt; 1998 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1999 // shl destroys sign bits. 2000 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2001 Tmp2 = ShAmt->getZExtValue(); 2002 if (Tmp2 >= TyBits || // Bad shift. 2003 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2004 return Tmp - Tmp2; 2005 } 2006 break; 2007 } 2008 case Instruction::And: 2009 case Instruction::Or: 2010 case Instruction::Xor: // NOT is handled here. 2011 // Logical binary ops preserve the number of sign bits at the worst. 2012 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2013 if (Tmp != 1) { 2014 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2015 FirstAnswer = std::min(Tmp, Tmp2); 2016 // We computed what we know about the sign bits as our first 2017 // answer. Now proceed to the generic code that uses 2018 // computeKnownBits, and pick whichever answer is better. 2019 } 2020 break; 2021 2022 case Instruction::Select: 2023 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2024 if (Tmp == 1) return 1; // Early out. 2025 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2026 return std::min(Tmp, Tmp2); 2027 2028 case Instruction::Add: 2029 // Add can have at most one carry bit. Thus we know that the output 2030 // is, at worst, one more bit than the inputs. 2031 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2032 if (Tmp == 1) return 1; // Early out. 2033 2034 // Special case decrementing a value (ADD X, -1): 2035 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2036 if (CRHS->isAllOnesValue()) { 2037 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2038 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2039 2040 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2041 // sign bits set. 2042 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2043 return TyBits; 2044 2045 // If we are subtracting one from a positive number, there is no carry 2046 // out of the result. 2047 if (KnownZero.isNegative()) 2048 return Tmp; 2049 } 2050 2051 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2052 if (Tmp2 == 1) return 1; 2053 return std::min(Tmp, Tmp2)-1; 2054 2055 case Instruction::Sub: 2056 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2057 if (Tmp2 == 1) return 1; 2058 2059 // Handle NEG. 2060 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2061 if (CLHS->isNullValue()) { 2062 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2063 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2064 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2065 // sign bits set. 2066 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2067 return TyBits; 2068 2069 // If the input is known to be positive (the sign bit is known clear), 2070 // the output of the NEG has the same number of sign bits as the input. 2071 if (KnownZero.isNegative()) 2072 return Tmp2; 2073 2074 // Otherwise, we treat this like a SUB. 2075 } 2076 2077 // Sub can have at most one carry bit. Thus we know that the output 2078 // is, at worst, one more bit than the inputs. 2079 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2080 if (Tmp == 1) return 1; // Early out. 2081 return std::min(Tmp, Tmp2)-1; 2082 2083 case Instruction::PHI: { 2084 PHINode *PN = cast<PHINode>(U); 2085 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2086 // Don't analyze large in-degree PHIs. 2087 if (NumIncomingValues > 4) break; 2088 // Unreachable blocks may have zero-operand PHI nodes. 2089 if (NumIncomingValues == 0) break; 2090 2091 // Take the minimum of all incoming values. This can't infinitely loop 2092 // because of our depth threshold. 2093 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2094 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2095 if (Tmp == 1) return Tmp; 2096 Tmp = std::min( 2097 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2098 } 2099 return Tmp; 2100 } 2101 2102 case Instruction::Trunc: 2103 // FIXME: it's tricky to do anything useful for this, but it is an important 2104 // case for targets like X86. 2105 break; 2106 } 2107 2108 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2109 // use this information. 2110 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2111 APInt Mask; 2112 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2113 2114 if (KnownZero.isNegative()) { // sign bit is 0 2115 Mask = KnownZero; 2116 } else if (KnownOne.isNegative()) { // sign bit is 1; 2117 Mask = KnownOne; 2118 } else { 2119 // Nothing known. 2120 return FirstAnswer; 2121 } 2122 2123 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2124 // the number of identical bits in the top of the input value. 2125 Mask = ~Mask; 2126 Mask <<= Mask.getBitWidth()-TyBits; 2127 // Return # leading zeros. We use 'min' here in case Val was zero before 2128 // shifting. We don't want to return '64' as for an i32 "0". 2129 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2130 } 2131 2132 /// This function computes the integer multiple of Base that equals V. 2133 /// If successful, it returns true and returns the multiple in 2134 /// Multiple. If unsuccessful, it returns false. It looks 2135 /// through SExt instructions only if LookThroughSExt is true. 2136 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2137 bool LookThroughSExt, unsigned Depth) { 2138 const unsigned MaxDepth = 6; 2139 2140 assert(V && "No Value?"); 2141 assert(Depth <= MaxDepth && "Limit Search Depth"); 2142 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2143 2144 Type *T = V->getType(); 2145 2146 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2147 2148 if (Base == 0) 2149 return false; 2150 2151 if (Base == 1) { 2152 Multiple = V; 2153 return true; 2154 } 2155 2156 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2157 Constant *BaseVal = ConstantInt::get(T, Base); 2158 if (CO && CO == BaseVal) { 2159 // Multiple is 1. 2160 Multiple = ConstantInt::get(T, 1); 2161 return true; 2162 } 2163 2164 if (CI && CI->getZExtValue() % Base == 0) { 2165 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2166 return true; 2167 } 2168 2169 if (Depth == MaxDepth) return false; // Limit search depth. 2170 2171 Operator *I = dyn_cast<Operator>(V); 2172 if (!I) return false; 2173 2174 switch (I->getOpcode()) { 2175 default: break; 2176 case Instruction::SExt: 2177 if (!LookThroughSExt) return false; 2178 // otherwise fall through to ZExt 2179 case Instruction::ZExt: 2180 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2181 LookThroughSExt, Depth+1); 2182 case Instruction::Shl: 2183 case Instruction::Mul: { 2184 Value *Op0 = I->getOperand(0); 2185 Value *Op1 = I->getOperand(1); 2186 2187 if (I->getOpcode() == Instruction::Shl) { 2188 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2189 if (!Op1CI) return false; 2190 // Turn Op0 << Op1 into Op0 * 2^Op1 2191 APInt Op1Int = Op1CI->getValue(); 2192 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2193 APInt API(Op1Int.getBitWidth(), 0); 2194 API.setBit(BitToSet); 2195 Op1 = ConstantInt::get(V->getContext(), API); 2196 } 2197 2198 Value *Mul0 = nullptr; 2199 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2200 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2201 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2202 if (Op1C->getType()->getPrimitiveSizeInBits() < 2203 MulC->getType()->getPrimitiveSizeInBits()) 2204 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2205 if (Op1C->getType()->getPrimitiveSizeInBits() > 2206 MulC->getType()->getPrimitiveSizeInBits()) 2207 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2208 2209 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2210 Multiple = ConstantExpr::getMul(MulC, Op1C); 2211 return true; 2212 } 2213 2214 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2215 if (Mul0CI->getValue() == 1) { 2216 // V == Base * Op1, so return Op1 2217 Multiple = Op1; 2218 return true; 2219 } 2220 } 2221 2222 Value *Mul1 = nullptr; 2223 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2224 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2225 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2226 if (Op0C->getType()->getPrimitiveSizeInBits() < 2227 MulC->getType()->getPrimitiveSizeInBits()) 2228 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2229 if (Op0C->getType()->getPrimitiveSizeInBits() > 2230 MulC->getType()->getPrimitiveSizeInBits()) 2231 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2232 2233 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2234 Multiple = ConstantExpr::getMul(MulC, Op0C); 2235 return true; 2236 } 2237 2238 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2239 if (Mul1CI->getValue() == 1) { 2240 // V == Base * Op0, so return Op0 2241 Multiple = Op0; 2242 return true; 2243 } 2244 } 2245 } 2246 } 2247 2248 // We could not determine if V is a multiple of Base. 2249 return false; 2250 } 2251 2252 /// Return true if we can prove that the specified FP value is never equal to 2253 /// -0.0. 2254 /// 2255 /// NOTE: this function will need to be revisited when we support non-default 2256 /// rounding modes! 2257 /// 2258 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2259 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2260 return !CFP->getValueAPF().isNegZero(); 2261 2262 // FIXME: Magic number! At the least, this should be given a name because it's 2263 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2264 // expose it as a parameter, so it can be used for testing / experimenting. 2265 if (Depth == 6) 2266 return false; // Limit search depth. 2267 2268 const Operator *I = dyn_cast<Operator>(V); 2269 if (!I) return false; 2270 2271 // Check if the nsz fast-math flag is set 2272 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2273 if (FPO->hasNoSignedZeros()) 2274 return true; 2275 2276 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2277 if (I->getOpcode() == Instruction::FAdd) 2278 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2279 if (CFP->isNullValue()) 2280 return true; 2281 2282 // sitofp and uitofp turn into +0.0 for zero. 2283 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2284 return true; 2285 2286 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2287 // sqrt(-0.0) = -0.0, no other negative results are possible. 2288 if (II->getIntrinsicID() == Intrinsic::sqrt) 2289 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2290 2291 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2292 if (const Function *F = CI->getCalledFunction()) { 2293 if (F->isDeclaration()) { 2294 // abs(x) != -0.0 2295 if (F->getName() == "abs") return true; 2296 // fabs[lf](x) != -0.0 2297 if (F->getName() == "fabs") return true; 2298 if (F->getName() == "fabsf") return true; 2299 if (F->getName() == "fabsl") return true; 2300 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2301 F->getName() == "sqrtl") 2302 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2303 } 2304 } 2305 2306 return false; 2307 } 2308 2309 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2310 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2311 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2312 2313 // FIXME: Magic number! At the least, this should be given a name because it's 2314 // used similarly in CannotBeNegativeZero(). A better fix may be to 2315 // expose it as a parameter, so it can be used for testing / experimenting. 2316 if (Depth == 6) 2317 return false; // Limit search depth. 2318 2319 const Operator *I = dyn_cast<Operator>(V); 2320 if (!I) return false; 2321 2322 switch (I->getOpcode()) { 2323 default: break; 2324 // Unsigned integers are always nonnegative. 2325 case Instruction::UIToFP: 2326 return true; 2327 case Instruction::FMul: 2328 // x*x is always non-negative or a NaN. 2329 if (I->getOperand(0) == I->getOperand(1)) 2330 return true; 2331 // Fall through 2332 case Instruction::FAdd: 2333 case Instruction::FDiv: 2334 case Instruction::FRem: 2335 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2336 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2337 case Instruction::Select: 2338 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) && 2339 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2340 case Instruction::FPExt: 2341 case Instruction::FPTrunc: 2342 // Widening/narrowing never change sign. 2343 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2344 case Instruction::Call: 2345 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2346 switch (II->getIntrinsicID()) { 2347 default: break; 2348 case Intrinsic::maxnum: 2349 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) || 2350 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2351 case Intrinsic::minnum: 2352 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2353 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2354 case Intrinsic::exp: 2355 case Intrinsic::exp2: 2356 case Intrinsic::fabs: 2357 case Intrinsic::sqrt: 2358 return true; 2359 case Intrinsic::powi: 2360 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2361 // powi(x,n) is non-negative if n is even. 2362 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2363 return true; 2364 } 2365 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2366 case Intrinsic::fma: 2367 case Intrinsic::fmuladd: 2368 // x*x+y is non-negative if y is non-negative. 2369 return I->getOperand(0) == I->getOperand(1) && 2370 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2371 } 2372 break; 2373 } 2374 return false; 2375 } 2376 2377 /// If the specified value can be set by repeating the same byte in memory, 2378 /// return the i8 value that it is represented with. This is 2379 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2380 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2381 /// byte store (e.g. i16 0x1234), return null. 2382 Value *llvm::isBytewiseValue(Value *V) { 2383 // All byte-wide stores are splatable, even of arbitrary variables. 2384 if (V->getType()->isIntegerTy(8)) return V; 2385 2386 // Handle 'null' ConstantArrayZero etc. 2387 if (Constant *C = dyn_cast<Constant>(V)) 2388 if (C->isNullValue()) 2389 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2390 2391 // Constant float and double values can be handled as integer values if the 2392 // corresponding integer value is "byteable". An important case is 0.0. 2393 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2394 if (CFP->getType()->isFloatTy()) 2395 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2396 if (CFP->getType()->isDoubleTy()) 2397 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2398 // Don't handle long double formats, which have strange constraints. 2399 } 2400 2401 // We can handle constant integers that are multiple of 8 bits. 2402 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2403 if (CI->getBitWidth() % 8 == 0) { 2404 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2405 2406 if (!CI->getValue().isSplat(8)) 2407 return nullptr; 2408 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2409 } 2410 } 2411 2412 // A ConstantDataArray/Vector is splatable if all its members are equal and 2413 // also splatable. 2414 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2415 Value *Elt = CA->getElementAsConstant(0); 2416 Value *Val = isBytewiseValue(Elt); 2417 if (!Val) 2418 return nullptr; 2419 2420 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2421 if (CA->getElementAsConstant(I) != Elt) 2422 return nullptr; 2423 2424 return Val; 2425 } 2426 2427 // Conceptually, we could handle things like: 2428 // %a = zext i8 %X to i16 2429 // %b = shl i16 %a, 8 2430 // %c = or i16 %a, %b 2431 // but until there is an example that actually needs this, it doesn't seem 2432 // worth worrying about. 2433 return nullptr; 2434 } 2435 2436 2437 // This is the recursive version of BuildSubAggregate. It takes a few different 2438 // arguments. Idxs is the index within the nested struct From that we are 2439 // looking at now (which is of type IndexedType). IdxSkip is the number of 2440 // indices from Idxs that should be left out when inserting into the resulting 2441 // struct. To is the result struct built so far, new insertvalue instructions 2442 // build on that. 2443 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2444 SmallVectorImpl<unsigned> &Idxs, 2445 unsigned IdxSkip, 2446 Instruction *InsertBefore) { 2447 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2448 if (STy) { 2449 // Save the original To argument so we can modify it 2450 Value *OrigTo = To; 2451 // General case, the type indexed by Idxs is a struct 2452 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2453 // Process each struct element recursively 2454 Idxs.push_back(i); 2455 Value *PrevTo = To; 2456 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2457 InsertBefore); 2458 Idxs.pop_back(); 2459 if (!To) { 2460 // Couldn't find any inserted value for this index? Cleanup 2461 while (PrevTo != OrigTo) { 2462 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2463 PrevTo = Del->getAggregateOperand(); 2464 Del->eraseFromParent(); 2465 } 2466 // Stop processing elements 2467 break; 2468 } 2469 } 2470 // If we successfully found a value for each of our subaggregates 2471 if (To) 2472 return To; 2473 } 2474 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2475 // the struct's elements had a value that was inserted directly. In the latter 2476 // case, perhaps we can't determine each of the subelements individually, but 2477 // we might be able to find the complete struct somewhere. 2478 2479 // Find the value that is at that particular spot 2480 Value *V = FindInsertedValue(From, Idxs); 2481 2482 if (!V) 2483 return nullptr; 2484 2485 // Insert the value in the new (sub) aggregrate 2486 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2487 "tmp", InsertBefore); 2488 } 2489 2490 // This helper takes a nested struct and extracts a part of it (which is again a 2491 // struct) into a new value. For example, given the struct: 2492 // { a, { b, { c, d }, e } } 2493 // and the indices "1, 1" this returns 2494 // { c, d }. 2495 // 2496 // It does this by inserting an insertvalue for each element in the resulting 2497 // struct, as opposed to just inserting a single struct. This will only work if 2498 // each of the elements of the substruct are known (ie, inserted into From by an 2499 // insertvalue instruction somewhere). 2500 // 2501 // All inserted insertvalue instructions are inserted before InsertBefore 2502 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2503 Instruction *InsertBefore) { 2504 assert(InsertBefore && "Must have someplace to insert!"); 2505 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2506 idx_range); 2507 Value *To = UndefValue::get(IndexedType); 2508 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2509 unsigned IdxSkip = Idxs.size(); 2510 2511 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2512 } 2513 2514 /// Given an aggregrate and an sequence of indices, see if 2515 /// the scalar value indexed is already around as a register, for example if it 2516 /// were inserted directly into the aggregrate. 2517 /// 2518 /// If InsertBefore is not null, this function will duplicate (modified) 2519 /// insertvalues when a part of a nested struct is extracted. 2520 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2521 Instruction *InsertBefore) { 2522 // Nothing to index? Just return V then (this is useful at the end of our 2523 // recursion). 2524 if (idx_range.empty()) 2525 return V; 2526 // We have indices, so V should have an indexable type. 2527 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2528 "Not looking at a struct or array?"); 2529 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2530 "Invalid indices for type?"); 2531 2532 if (Constant *C = dyn_cast<Constant>(V)) { 2533 C = C->getAggregateElement(idx_range[0]); 2534 if (!C) return nullptr; 2535 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2536 } 2537 2538 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2539 // Loop the indices for the insertvalue instruction in parallel with the 2540 // requested indices 2541 const unsigned *req_idx = idx_range.begin(); 2542 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2543 i != e; ++i, ++req_idx) { 2544 if (req_idx == idx_range.end()) { 2545 // We can't handle this without inserting insertvalues 2546 if (!InsertBefore) 2547 return nullptr; 2548 2549 // The requested index identifies a part of a nested aggregate. Handle 2550 // this specially. For example, 2551 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2552 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2553 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2554 // This can be changed into 2555 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2556 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2557 // which allows the unused 0,0 element from the nested struct to be 2558 // removed. 2559 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2560 InsertBefore); 2561 } 2562 2563 // This insert value inserts something else than what we are looking for. 2564 // See if the (aggregate) value inserted into has the value we are 2565 // looking for, then. 2566 if (*req_idx != *i) 2567 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2568 InsertBefore); 2569 } 2570 // If we end up here, the indices of the insertvalue match with those 2571 // requested (though possibly only partially). Now we recursively look at 2572 // the inserted value, passing any remaining indices. 2573 return FindInsertedValue(I->getInsertedValueOperand(), 2574 makeArrayRef(req_idx, idx_range.end()), 2575 InsertBefore); 2576 } 2577 2578 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2579 // If we're extracting a value from an aggregate that was extracted from 2580 // something else, we can extract from that something else directly instead. 2581 // However, we will need to chain I's indices with the requested indices. 2582 2583 // Calculate the number of indices required 2584 unsigned size = I->getNumIndices() + idx_range.size(); 2585 // Allocate some space to put the new indices in 2586 SmallVector<unsigned, 5> Idxs; 2587 Idxs.reserve(size); 2588 // Add indices from the extract value instruction 2589 Idxs.append(I->idx_begin(), I->idx_end()); 2590 2591 // Add requested indices 2592 Idxs.append(idx_range.begin(), idx_range.end()); 2593 2594 assert(Idxs.size() == size 2595 && "Number of indices added not correct?"); 2596 2597 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2598 } 2599 // Otherwise, we don't know (such as, extracting from a function return value 2600 // or load instruction) 2601 return nullptr; 2602 } 2603 2604 /// Analyze the specified pointer to see if it can be expressed as a base 2605 /// pointer plus a constant offset. Return the base and offset to the caller. 2606 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2607 const DataLayout &DL) { 2608 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2609 APInt ByteOffset(BitWidth, 0); 2610 2611 // We walk up the defs but use a visited set to handle unreachable code. In 2612 // that case, we stop after accumulating the cycle once (not that it 2613 // matters). 2614 SmallPtrSet<Value *, 16> Visited; 2615 while (Visited.insert(Ptr).second) { 2616 if (Ptr->getType()->isVectorTy()) 2617 break; 2618 2619 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2620 APInt GEPOffset(BitWidth, 0); 2621 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2622 break; 2623 2624 ByteOffset += GEPOffset; 2625 2626 Ptr = GEP->getPointerOperand(); 2627 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2628 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2629 Ptr = cast<Operator>(Ptr)->getOperand(0); 2630 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2631 if (GA->mayBeOverridden()) 2632 break; 2633 Ptr = GA->getAliasee(); 2634 } else { 2635 break; 2636 } 2637 } 2638 Offset = ByteOffset.getSExtValue(); 2639 return Ptr; 2640 } 2641 2642 2643 /// This function computes the length of a null-terminated C string pointed to 2644 /// by V. If successful, it returns true and returns the string in Str. 2645 /// If unsuccessful, it returns false. 2646 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2647 uint64_t Offset, bool TrimAtNul) { 2648 assert(V); 2649 2650 // Look through bitcast instructions and geps. 2651 V = V->stripPointerCasts(); 2652 2653 // If the value is a GEP instruction or constant expression, treat it as an 2654 // offset. 2655 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2656 // Make sure the GEP has exactly three arguments. 2657 if (GEP->getNumOperands() != 3) 2658 return false; 2659 2660 // Make sure the index-ee is a pointer to array of i8. 2661 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2662 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2663 return false; 2664 2665 // Check to make sure that the first operand of the GEP is an integer and 2666 // has value 0 so that we are sure we're indexing into the initializer. 2667 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2668 if (!FirstIdx || !FirstIdx->isZero()) 2669 return false; 2670 2671 // If the second index isn't a ConstantInt, then this is a variable index 2672 // into the array. If this occurs, we can't say anything meaningful about 2673 // the string. 2674 uint64_t StartIdx = 0; 2675 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2676 StartIdx = CI->getZExtValue(); 2677 else 2678 return false; 2679 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2680 TrimAtNul); 2681 } 2682 2683 // The GEP instruction, constant or instruction, must reference a global 2684 // variable that is a constant and is initialized. The referenced constant 2685 // initializer is the array that we'll use for optimization. 2686 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2687 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2688 return false; 2689 2690 // Handle the all-zeros case 2691 if (GV->getInitializer()->isNullValue()) { 2692 // This is a degenerate case. The initializer is constant zero so the 2693 // length of the string must be zero. 2694 Str = ""; 2695 return true; 2696 } 2697 2698 // Must be a Constant Array 2699 const ConstantDataArray *Array = 2700 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2701 if (!Array || !Array->isString()) 2702 return false; 2703 2704 // Get the number of elements in the array 2705 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2706 2707 // Start out with the entire array in the StringRef. 2708 Str = Array->getAsString(); 2709 2710 if (Offset > NumElts) 2711 return false; 2712 2713 // Skip over 'offset' bytes. 2714 Str = Str.substr(Offset); 2715 2716 if (TrimAtNul) { 2717 // Trim off the \0 and anything after it. If the array is not nul 2718 // terminated, we just return the whole end of string. The client may know 2719 // some other way that the string is length-bound. 2720 Str = Str.substr(0, Str.find('\0')); 2721 } 2722 return true; 2723 } 2724 2725 // These next two are very similar to the above, but also look through PHI 2726 // nodes. 2727 // TODO: See if we can integrate these two together. 2728 2729 /// If we can compute the length of the string pointed to by 2730 /// the specified pointer, return 'len+1'. If we can't, return 0. 2731 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2732 // Look through noop bitcast instructions. 2733 V = V->stripPointerCasts(); 2734 2735 // If this is a PHI node, there are two cases: either we have already seen it 2736 // or we haven't. 2737 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2738 if (!PHIs.insert(PN).second) 2739 return ~0ULL; // already in the set. 2740 2741 // If it was new, see if all the input strings are the same length. 2742 uint64_t LenSoFar = ~0ULL; 2743 for (Value *IncValue : PN->incoming_values()) { 2744 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2745 if (Len == 0) return 0; // Unknown length -> unknown. 2746 2747 if (Len == ~0ULL) continue; 2748 2749 if (Len != LenSoFar && LenSoFar != ~0ULL) 2750 return 0; // Disagree -> unknown. 2751 LenSoFar = Len; 2752 } 2753 2754 // Success, all agree. 2755 return LenSoFar; 2756 } 2757 2758 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2759 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2760 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2761 if (Len1 == 0) return 0; 2762 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2763 if (Len2 == 0) return 0; 2764 if (Len1 == ~0ULL) return Len2; 2765 if (Len2 == ~0ULL) return Len1; 2766 if (Len1 != Len2) return 0; 2767 return Len1; 2768 } 2769 2770 // Otherwise, see if we can read the string. 2771 StringRef StrData; 2772 if (!getConstantStringInfo(V, StrData)) 2773 return 0; 2774 2775 return StrData.size()+1; 2776 } 2777 2778 /// If we can compute the length of the string pointed to by 2779 /// the specified pointer, return 'len+1'. If we can't, return 0. 2780 uint64_t llvm::GetStringLength(Value *V) { 2781 if (!V->getType()->isPointerTy()) return 0; 2782 2783 SmallPtrSet<PHINode*, 32> PHIs; 2784 uint64_t Len = GetStringLengthH(V, PHIs); 2785 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2786 // an empty string as a length. 2787 return Len == ~0ULL ? 1 : Len; 2788 } 2789 2790 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2791 /// previous iteration of the loop was referring to the same object as \p PN. 2792 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2793 // Find the loop-defined value. 2794 Loop *L = LI->getLoopFor(PN->getParent()); 2795 if (PN->getNumIncomingValues() != 2) 2796 return true; 2797 2798 // Find the value from previous iteration. 2799 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2800 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2801 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2802 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2803 return true; 2804 2805 // If a new pointer is loaded in the loop, the pointer references a different 2806 // object in every iteration. E.g.: 2807 // for (i) 2808 // int *p = a[i]; 2809 // ... 2810 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2811 if (!L->isLoopInvariant(Load->getPointerOperand())) 2812 return false; 2813 return true; 2814 } 2815 2816 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2817 unsigned MaxLookup) { 2818 if (!V->getType()->isPointerTy()) 2819 return V; 2820 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2821 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2822 V = GEP->getPointerOperand(); 2823 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2824 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2825 V = cast<Operator>(V)->getOperand(0); 2826 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2827 if (GA->mayBeOverridden()) 2828 return V; 2829 V = GA->getAliasee(); 2830 } else { 2831 // See if InstructionSimplify knows any relevant tricks. 2832 if (Instruction *I = dyn_cast<Instruction>(V)) 2833 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2834 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2835 V = Simplified; 2836 continue; 2837 } 2838 2839 return V; 2840 } 2841 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2842 } 2843 return V; 2844 } 2845 2846 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2847 const DataLayout &DL, LoopInfo *LI, 2848 unsigned MaxLookup) { 2849 SmallPtrSet<Value *, 4> Visited; 2850 SmallVector<Value *, 4> Worklist; 2851 Worklist.push_back(V); 2852 do { 2853 Value *P = Worklist.pop_back_val(); 2854 P = GetUnderlyingObject(P, DL, MaxLookup); 2855 2856 if (!Visited.insert(P).second) 2857 continue; 2858 2859 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2860 Worklist.push_back(SI->getTrueValue()); 2861 Worklist.push_back(SI->getFalseValue()); 2862 continue; 2863 } 2864 2865 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2866 // If this PHI changes the underlying object in every iteration of the 2867 // loop, don't look through it. Consider: 2868 // int **A; 2869 // for (i) { 2870 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2871 // Curr = A[i]; 2872 // *Prev, *Curr; 2873 // 2874 // Prev is tracking Curr one iteration behind so they refer to different 2875 // underlying objects. 2876 if (!LI || !LI->isLoopHeader(PN->getParent()) || 2877 isSameUnderlyingObjectInLoop(PN, LI)) 2878 for (Value *IncValue : PN->incoming_values()) 2879 Worklist.push_back(IncValue); 2880 continue; 2881 } 2882 2883 Objects.push_back(P); 2884 } while (!Worklist.empty()); 2885 } 2886 2887 /// Return true if the only users of this pointer are lifetime markers. 2888 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2889 for (const User *U : V->users()) { 2890 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2891 if (!II) return false; 2892 2893 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2894 II->getIntrinsicID() != Intrinsic::lifetime_end) 2895 return false; 2896 } 2897 return true; 2898 } 2899 2900 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 2901 const Instruction *CtxI, 2902 const DominatorTree *DT, 2903 const TargetLibraryInfo *TLI) { 2904 const Operator *Inst = dyn_cast<Operator>(V); 2905 if (!Inst) 2906 return false; 2907 2908 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 2909 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 2910 if (C->canTrap()) 2911 return false; 2912 2913 switch (Inst->getOpcode()) { 2914 default: 2915 return true; 2916 case Instruction::UDiv: 2917 case Instruction::URem: { 2918 // x / y is undefined if y == 0. 2919 const APInt *V; 2920 if (match(Inst->getOperand(1), m_APInt(V))) 2921 return *V != 0; 2922 return false; 2923 } 2924 case Instruction::SDiv: 2925 case Instruction::SRem: { 2926 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 2927 const APInt *Numerator, *Denominator; 2928 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 2929 return false; 2930 // We cannot hoist this division if the denominator is 0. 2931 if (*Denominator == 0) 2932 return false; 2933 // It's safe to hoist if the denominator is not 0 or -1. 2934 if (*Denominator != -1) 2935 return true; 2936 // At this point we know that the denominator is -1. It is safe to hoist as 2937 // long we know that the numerator is not INT_MIN. 2938 if (match(Inst->getOperand(0), m_APInt(Numerator))) 2939 return !Numerator->isMinSignedValue(); 2940 // The numerator *might* be MinSignedValue. 2941 return false; 2942 } 2943 case Instruction::Load: { 2944 const LoadInst *LI = cast<LoadInst>(Inst); 2945 if (!LI->isUnordered() || 2946 // Speculative load may create a race that did not exist in the source. 2947 LI->getParent()->getParent()->hasFnAttribute( 2948 Attribute::SanitizeThread) || 2949 // Speculative load may load data from dirty regions. 2950 LI->getParent()->getParent()->hasFnAttribute( 2951 Attribute::SanitizeAddress)) 2952 return false; 2953 const DataLayout &DL = LI->getModule()->getDataLayout(); 2954 return isDereferenceableAndAlignedPointer( 2955 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 2956 } 2957 case Instruction::Call: { 2958 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2959 switch (II->getIntrinsicID()) { 2960 // These synthetic intrinsics have no side-effects and just mark 2961 // information about their operands. 2962 // FIXME: There are other no-op synthetic instructions that potentially 2963 // should be considered at least *safe* to speculate... 2964 case Intrinsic::dbg_declare: 2965 case Intrinsic::dbg_value: 2966 return true; 2967 2968 case Intrinsic::bswap: 2969 case Intrinsic::ctlz: 2970 case Intrinsic::ctpop: 2971 case Intrinsic::cttz: 2972 case Intrinsic::objectsize: 2973 case Intrinsic::sadd_with_overflow: 2974 case Intrinsic::smul_with_overflow: 2975 case Intrinsic::ssub_with_overflow: 2976 case Intrinsic::uadd_with_overflow: 2977 case Intrinsic::umul_with_overflow: 2978 case Intrinsic::usub_with_overflow: 2979 return true; 2980 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2981 // errno like libm sqrt would. 2982 case Intrinsic::sqrt: 2983 case Intrinsic::fma: 2984 case Intrinsic::fmuladd: 2985 case Intrinsic::fabs: 2986 case Intrinsic::minnum: 2987 case Intrinsic::maxnum: 2988 return true; 2989 // TODO: some fp intrinsics are marked as having the same error handling 2990 // as libm. They're safe to speculate when they won't error. 2991 // TODO: are convert_{from,to}_fp16 safe? 2992 // TODO: can we list target-specific intrinsics here? 2993 default: break; 2994 } 2995 } 2996 return false; // The called function could have undefined behavior or 2997 // side-effects, even if marked readnone nounwind. 2998 } 2999 case Instruction::VAArg: 3000 case Instruction::Alloca: 3001 case Instruction::Invoke: 3002 case Instruction::PHI: 3003 case Instruction::Store: 3004 case Instruction::Ret: 3005 case Instruction::Br: 3006 case Instruction::IndirectBr: 3007 case Instruction::Switch: 3008 case Instruction::Unreachable: 3009 case Instruction::Fence: 3010 case Instruction::AtomicRMW: 3011 case Instruction::AtomicCmpXchg: 3012 case Instruction::LandingPad: 3013 case Instruction::Resume: 3014 case Instruction::CatchSwitch: 3015 case Instruction::CatchPad: 3016 case Instruction::CatchRet: 3017 case Instruction::CleanupPad: 3018 case Instruction::CleanupRet: 3019 return false; // Misc instructions which have effects 3020 } 3021 } 3022 3023 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3024 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3025 } 3026 3027 /// Return true if we know that the specified value is never null. 3028 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3029 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3030 3031 // Alloca never returns null, malloc might. 3032 if (isa<AllocaInst>(V)) return true; 3033 3034 // A byval, inalloca, or nonnull argument is never null. 3035 if (const Argument *A = dyn_cast<Argument>(V)) 3036 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3037 3038 // A global variable in address space 0 is non null unless extern weak. 3039 // Other address spaces may have null as a valid address for a global, 3040 // so we can't assume anything. 3041 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3042 return !GV->hasExternalWeakLinkage() && 3043 GV->getType()->getAddressSpace() == 0; 3044 3045 // A Load tagged w/nonnull metadata is never null. 3046 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3047 return LI->getMetadata(LLVMContext::MD_nonnull); 3048 3049 if (auto CS = ImmutableCallSite(V)) 3050 if (CS.isReturnNonNull()) 3051 return true; 3052 3053 return false; 3054 } 3055 3056 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3057 const Instruction *CtxI, 3058 const DominatorTree *DT) { 3059 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3060 3061 unsigned NumUsesExplored = 0; 3062 for (auto U : V->users()) { 3063 // Avoid massive lists 3064 if (NumUsesExplored >= DomConditionsMaxUses) 3065 break; 3066 NumUsesExplored++; 3067 // Consider only compare instructions uniquely controlling a branch 3068 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3069 if (!Cmp) 3070 continue; 3071 3072 for (auto *CmpU : Cmp->users()) { 3073 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3074 if (!BI) 3075 continue; 3076 3077 assert(BI->isConditional() && "uses a comparison!"); 3078 3079 BasicBlock *NonNullSuccessor = nullptr; 3080 CmpInst::Predicate Pred; 3081 3082 if (match(const_cast<ICmpInst*>(Cmp), 3083 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3084 if (Pred == ICmpInst::ICMP_EQ) 3085 NonNullSuccessor = BI->getSuccessor(1); 3086 else if (Pred == ICmpInst::ICMP_NE) 3087 NonNullSuccessor = BI->getSuccessor(0); 3088 } 3089 3090 if (NonNullSuccessor) { 3091 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3092 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3093 return true; 3094 } 3095 } 3096 } 3097 3098 return false; 3099 } 3100 3101 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3102 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3103 if (isKnownNonNull(V, TLI)) 3104 return true; 3105 3106 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3107 } 3108 3109 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3110 const DataLayout &DL, 3111 AssumptionCache *AC, 3112 const Instruction *CxtI, 3113 const DominatorTree *DT) { 3114 // Multiplying n * m significant bits yields a result of n + m significant 3115 // bits. If the total number of significant bits does not exceed the 3116 // result bit width (minus 1), there is no overflow. 3117 // This means if we have enough leading zero bits in the operands 3118 // we can guarantee that the result does not overflow. 3119 // Ref: "Hacker's Delight" by Henry Warren 3120 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3121 APInt LHSKnownZero(BitWidth, 0); 3122 APInt LHSKnownOne(BitWidth, 0); 3123 APInt RHSKnownZero(BitWidth, 0); 3124 APInt RHSKnownOne(BitWidth, 0); 3125 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3126 DT); 3127 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3128 DT); 3129 // Note that underestimating the number of zero bits gives a more 3130 // conservative answer. 3131 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3132 RHSKnownZero.countLeadingOnes(); 3133 // First handle the easy case: if we have enough zero bits there's 3134 // definitely no overflow. 3135 if (ZeroBits >= BitWidth) 3136 return OverflowResult::NeverOverflows; 3137 3138 // Get the largest possible values for each operand. 3139 APInt LHSMax = ~LHSKnownZero; 3140 APInt RHSMax = ~RHSKnownZero; 3141 3142 // We know the multiply operation doesn't overflow if the maximum values for 3143 // each operand will not overflow after we multiply them together. 3144 bool MaxOverflow; 3145 LHSMax.umul_ov(RHSMax, MaxOverflow); 3146 if (!MaxOverflow) 3147 return OverflowResult::NeverOverflows; 3148 3149 // We know it always overflows if multiplying the smallest possible values for 3150 // the operands also results in overflow. 3151 bool MinOverflow; 3152 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3153 if (MinOverflow) 3154 return OverflowResult::AlwaysOverflows; 3155 3156 return OverflowResult::MayOverflow; 3157 } 3158 3159 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3160 const DataLayout &DL, 3161 AssumptionCache *AC, 3162 const Instruction *CxtI, 3163 const DominatorTree *DT) { 3164 bool LHSKnownNonNegative, LHSKnownNegative; 3165 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3166 AC, CxtI, DT); 3167 if (LHSKnownNonNegative || LHSKnownNegative) { 3168 bool RHSKnownNonNegative, RHSKnownNegative; 3169 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3170 AC, CxtI, DT); 3171 3172 if (LHSKnownNegative && RHSKnownNegative) { 3173 // The sign bit is set in both cases: this MUST overflow. 3174 // Create a simple add instruction, and insert it into the struct. 3175 return OverflowResult::AlwaysOverflows; 3176 } 3177 3178 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3179 // The sign bit is clear in both cases: this CANNOT overflow. 3180 // Create a simple add instruction, and insert it into the struct. 3181 return OverflowResult::NeverOverflows; 3182 } 3183 } 3184 3185 return OverflowResult::MayOverflow; 3186 } 3187 3188 static OverflowResult computeOverflowForSignedAdd( 3189 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3190 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3191 if (Add && Add->hasNoSignedWrap()) { 3192 return OverflowResult::NeverOverflows; 3193 } 3194 3195 bool LHSKnownNonNegative, LHSKnownNegative; 3196 bool RHSKnownNonNegative, RHSKnownNegative; 3197 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3198 AC, CxtI, DT); 3199 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3200 AC, CxtI, DT); 3201 3202 if ((LHSKnownNonNegative && RHSKnownNegative) || 3203 (LHSKnownNegative && RHSKnownNonNegative)) { 3204 // The sign bits are opposite: this CANNOT overflow. 3205 return OverflowResult::NeverOverflows; 3206 } 3207 3208 // The remaining code needs Add to be available. Early returns if not so. 3209 if (!Add) 3210 return OverflowResult::MayOverflow; 3211 3212 // If the sign of Add is the same as at least one of the operands, this add 3213 // CANNOT overflow. This is particularly useful when the sum is 3214 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3215 // operands. 3216 bool LHSOrRHSKnownNonNegative = 3217 (LHSKnownNonNegative || RHSKnownNonNegative); 3218 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3219 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3220 bool AddKnownNonNegative, AddKnownNegative; 3221 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3222 /*Depth=*/0, AC, CxtI, DT); 3223 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3224 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3225 return OverflowResult::NeverOverflows; 3226 } 3227 } 3228 3229 return OverflowResult::MayOverflow; 3230 } 3231 3232 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3233 const DataLayout &DL, 3234 AssumptionCache *AC, 3235 const Instruction *CxtI, 3236 const DominatorTree *DT) { 3237 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3238 Add, DL, AC, CxtI, DT); 3239 } 3240 3241 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3242 const DataLayout &DL, 3243 AssumptionCache *AC, 3244 const Instruction *CxtI, 3245 const DominatorTree *DT) { 3246 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3247 } 3248 3249 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3250 // FIXME: This conservative implementation can be relaxed. E.g. most 3251 // atomic operations are guaranteed to terminate on most platforms 3252 // and most functions terminate. 3253 3254 return !I->isAtomic() && // atomics may never succeed on some platforms 3255 !isa<CallInst>(I) && // could throw and might not terminate 3256 !isa<InvokeInst>(I) && // might not terminate and could throw to 3257 // non-successor (see bug 24185 for details). 3258 !isa<ResumeInst>(I) && // has no successors 3259 !isa<ReturnInst>(I); // has no successors 3260 } 3261 3262 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3263 const Loop *L) { 3264 // The loop header is guaranteed to be executed for every iteration. 3265 // 3266 // FIXME: Relax this constraint to cover all basic blocks that are 3267 // guaranteed to be executed at every iteration. 3268 if (I->getParent() != L->getHeader()) return false; 3269 3270 for (const Instruction &LI : *L->getHeader()) { 3271 if (&LI == I) return true; 3272 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3273 } 3274 llvm_unreachable("Instruction not contained in its own parent basic block."); 3275 } 3276 3277 bool llvm::propagatesFullPoison(const Instruction *I) { 3278 switch (I->getOpcode()) { 3279 case Instruction::Add: 3280 case Instruction::Sub: 3281 case Instruction::Xor: 3282 case Instruction::Trunc: 3283 case Instruction::BitCast: 3284 case Instruction::AddrSpaceCast: 3285 // These operations all propagate poison unconditionally. Note that poison 3286 // is not any particular value, so xor or subtraction of poison with 3287 // itself still yields poison, not zero. 3288 return true; 3289 3290 case Instruction::AShr: 3291 case Instruction::SExt: 3292 // For these operations, one bit of the input is replicated across 3293 // multiple output bits. A replicated poison bit is still poison. 3294 return true; 3295 3296 case Instruction::Shl: { 3297 // Left shift *by* a poison value is poison. The number of 3298 // positions to shift is unsigned, so no negative values are 3299 // possible there. Left shift by zero places preserves poison. So 3300 // it only remains to consider left shift of poison by a positive 3301 // number of places. 3302 // 3303 // A left shift by a positive number of places leaves the lowest order bit 3304 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3305 // make the poison operand violate that flag, yielding a fresh full-poison 3306 // value. 3307 auto *OBO = cast<OverflowingBinaryOperator>(I); 3308 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3309 } 3310 3311 case Instruction::Mul: { 3312 // A multiplication by zero yields a non-poison zero result, so we need to 3313 // rule out zero as an operand. Conservatively, multiplication by a 3314 // non-zero constant is not multiplication by zero. 3315 // 3316 // Multiplication by a non-zero constant can leave some bits 3317 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3318 // order bit unpoisoned. So we need to consider that. 3319 // 3320 // Multiplication by 1 preserves poison. If the multiplication has a 3321 // no-wrap flag, then we can make the poison operand violate that flag 3322 // when multiplied by any integer other than 0 and 1. 3323 auto *OBO = cast<OverflowingBinaryOperator>(I); 3324 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3325 for (Value *V : OBO->operands()) { 3326 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3327 // A ConstantInt cannot yield poison, so we can assume that it is 3328 // the other operand that is poison. 3329 return !CI->isZero(); 3330 } 3331 } 3332 } 3333 return false; 3334 } 3335 3336 case Instruction::GetElementPtr: 3337 // A GEP implicitly represents a sequence of additions, subtractions, 3338 // truncations, sign extensions and multiplications. The multiplications 3339 // are by the non-zero sizes of some set of types, so we do not have to be 3340 // concerned with multiplication by zero. If the GEP is in-bounds, then 3341 // these operations are implicitly no-signed-wrap so poison is propagated 3342 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3343 return cast<GEPOperator>(I)->isInBounds(); 3344 3345 default: 3346 return false; 3347 } 3348 } 3349 3350 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3351 switch (I->getOpcode()) { 3352 case Instruction::Store: 3353 return cast<StoreInst>(I)->getPointerOperand(); 3354 3355 case Instruction::Load: 3356 return cast<LoadInst>(I)->getPointerOperand(); 3357 3358 case Instruction::AtomicCmpXchg: 3359 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3360 3361 case Instruction::AtomicRMW: 3362 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3363 3364 case Instruction::UDiv: 3365 case Instruction::SDiv: 3366 case Instruction::URem: 3367 case Instruction::SRem: 3368 return I->getOperand(1); 3369 3370 default: 3371 return nullptr; 3372 } 3373 } 3374 3375 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3376 // We currently only look for uses of poison values within the same basic 3377 // block, as that makes it easier to guarantee that the uses will be 3378 // executed given that PoisonI is executed. 3379 // 3380 // FIXME: Expand this to consider uses beyond the same basic block. To do 3381 // this, look out for the distinction between post-dominance and strong 3382 // post-dominance. 3383 const BasicBlock *BB = PoisonI->getParent(); 3384 3385 // Set of instructions that we have proved will yield poison if PoisonI 3386 // does. 3387 SmallSet<const Value *, 16> YieldsPoison; 3388 YieldsPoison.insert(PoisonI); 3389 3390 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3391 I != E; ++I) { 3392 if (&*I != PoisonI) { 3393 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3394 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3395 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3396 return false; 3397 } 3398 3399 // Mark poison that propagates from I through uses of I. 3400 if (YieldsPoison.count(&*I)) { 3401 for (const User *User : I->users()) { 3402 const Instruction *UserI = cast<Instruction>(User); 3403 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3404 YieldsPoison.insert(User); 3405 } 3406 } 3407 } 3408 return false; 3409 } 3410 3411 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3412 if (FMF.noNaNs()) 3413 return true; 3414 3415 if (auto *C = dyn_cast<ConstantFP>(V)) 3416 return !C->isNaN(); 3417 return false; 3418 } 3419 3420 static bool isKnownNonZero(Value *V) { 3421 if (auto *C = dyn_cast<ConstantFP>(V)) 3422 return !C->isZero(); 3423 return false; 3424 } 3425 3426 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3427 FastMathFlags FMF, 3428 Value *CmpLHS, Value *CmpRHS, 3429 Value *TrueVal, Value *FalseVal, 3430 Value *&LHS, Value *&RHS) { 3431 LHS = CmpLHS; 3432 RHS = CmpRHS; 3433 3434 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3435 // return inconsistent results between implementations. 3436 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3437 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3438 // Therefore we behave conservatively and only proceed if at least one of the 3439 // operands is known to not be zero, or if we don't care about signed zeroes. 3440 switch (Pred) { 3441 default: break; 3442 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3443 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3444 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3445 !isKnownNonZero(CmpRHS)) 3446 return {SPF_UNKNOWN, SPNB_NA, false}; 3447 } 3448 3449 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3450 bool Ordered = false; 3451 3452 // When given one NaN and one non-NaN input: 3453 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3454 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3455 // ordered comparison fails), which could be NaN or non-NaN. 3456 // so here we discover exactly what NaN behavior is required/accepted. 3457 if (CmpInst::isFPPredicate(Pred)) { 3458 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3459 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3460 3461 if (LHSSafe && RHSSafe) { 3462 // Both operands are known non-NaN. 3463 NaNBehavior = SPNB_RETURNS_ANY; 3464 } else if (CmpInst::isOrdered(Pred)) { 3465 // An ordered comparison will return false when given a NaN, so it 3466 // returns the RHS. 3467 Ordered = true; 3468 if (LHSSafe) 3469 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3470 NaNBehavior = SPNB_RETURNS_NAN; 3471 else if (RHSSafe) 3472 NaNBehavior = SPNB_RETURNS_OTHER; 3473 else 3474 // Completely unsafe. 3475 return {SPF_UNKNOWN, SPNB_NA, false}; 3476 } else { 3477 Ordered = false; 3478 // An unordered comparison will return true when given a NaN, so it 3479 // returns the LHS. 3480 if (LHSSafe) 3481 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3482 NaNBehavior = SPNB_RETURNS_OTHER; 3483 else if (RHSSafe) 3484 NaNBehavior = SPNB_RETURNS_NAN; 3485 else 3486 // Completely unsafe. 3487 return {SPF_UNKNOWN, SPNB_NA, false}; 3488 } 3489 } 3490 3491 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3492 std::swap(CmpLHS, CmpRHS); 3493 Pred = CmpInst::getSwappedPredicate(Pred); 3494 if (NaNBehavior == SPNB_RETURNS_NAN) 3495 NaNBehavior = SPNB_RETURNS_OTHER; 3496 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3497 NaNBehavior = SPNB_RETURNS_NAN; 3498 Ordered = !Ordered; 3499 } 3500 3501 // ([if]cmp X, Y) ? X : Y 3502 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3503 switch (Pred) { 3504 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3505 case ICmpInst::ICMP_UGT: 3506 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3507 case ICmpInst::ICMP_SGT: 3508 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3509 case ICmpInst::ICMP_ULT: 3510 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3511 case ICmpInst::ICMP_SLT: 3512 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3513 case FCmpInst::FCMP_UGT: 3514 case FCmpInst::FCMP_UGE: 3515 case FCmpInst::FCMP_OGT: 3516 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3517 case FCmpInst::FCMP_ULT: 3518 case FCmpInst::FCMP_ULE: 3519 case FCmpInst::FCMP_OLT: 3520 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3521 } 3522 } 3523 3524 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3525 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3526 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3527 3528 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3529 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3530 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3531 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3532 } 3533 3534 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3535 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3536 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3537 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3538 } 3539 } 3540 3541 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3542 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3543 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3544 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3545 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3546 LHS = TrueVal; 3547 RHS = FalseVal; 3548 return {SPF_SMIN, SPNB_NA, false}; 3549 } 3550 } 3551 } 3552 3553 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3554 3555 return {SPF_UNKNOWN, SPNB_NA, false}; 3556 } 3557 3558 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3559 Instruction::CastOps *CastOp) { 3560 CastInst *CI = dyn_cast<CastInst>(V1); 3561 Constant *C = dyn_cast<Constant>(V2); 3562 CastInst *CI2 = dyn_cast<CastInst>(V2); 3563 if (!CI) 3564 return nullptr; 3565 *CastOp = CI->getOpcode(); 3566 3567 if (CI2) { 3568 // If V1 and V2 are both the same cast from the same type, we can look 3569 // through V1. 3570 if (CI2->getOpcode() == CI->getOpcode() && 3571 CI2->getSrcTy() == CI->getSrcTy()) 3572 return CI2->getOperand(0); 3573 return nullptr; 3574 } else if (!C) { 3575 return nullptr; 3576 } 3577 3578 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3579 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3580 // This is only valid if the truncated value can be sign-extended 3581 // back to the original value. 3582 if (ConstantExpr::getSExt(T, C->getType()) == C) 3583 return T; 3584 return nullptr; 3585 } 3586 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3587 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3588 3589 if (isa<TruncInst>(CI)) 3590 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3591 3592 if (isa<FPToUIInst>(CI)) 3593 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3594 3595 if (isa<FPToSIInst>(CI)) 3596 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3597 3598 if (isa<UIToFPInst>(CI)) 3599 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3600 3601 if (isa<SIToFPInst>(CI)) 3602 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3603 3604 if (isa<FPTruncInst>(CI)) 3605 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3606 3607 if (isa<FPExtInst>(CI)) 3608 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3609 3610 return nullptr; 3611 } 3612 3613 SelectPatternResult llvm::matchSelectPattern(Value *V, 3614 Value *&LHS, Value *&RHS, 3615 Instruction::CastOps *CastOp) { 3616 SelectInst *SI = dyn_cast<SelectInst>(V); 3617 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3618 3619 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3620 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3621 3622 CmpInst::Predicate Pred = CmpI->getPredicate(); 3623 Value *CmpLHS = CmpI->getOperand(0); 3624 Value *CmpRHS = CmpI->getOperand(1); 3625 Value *TrueVal = SI->getTrueValue(); 3626 Value *FalseVal = SI->getFalseValue(); 3627 FastMathFlags FMF; 3628 if (isa<FPMathOperator>(CmpI)) 3629 FMF = CmpI->getFastMathFlags(); 3630 3631 // Bail out early. 3632 if (CmpI->isEquality()) 3633 return {SPF_UNKNOWN, SPNB_NA, false}; 3634 3635 // Deal with type mismatches. 3636 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3637 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3638 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3639 cast<CastInst>(TrueVal)->getOperand(0), C, 3640 LHS, RHS); 3641 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3642 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3643 C, cast<CastInst>(FalseVal)->getOperand(0), 3644 LHS, RHS); 3645 } 3646 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3647 LHS, RHS); 3648 } 3649 3650 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 3651 const unsigned NumRanges = Ranges.getNumOperands() / 2; 3652 assert(NumRanges >= 1 && "Must have at least one range!"); 3653 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 3654 3655 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 3656 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 3657 3658 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 3659 3660 for (unsigned i = 1; i < NumRanges; ++i) { 3661 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 3662 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 3663 3664 // Note: unionWith will potentially create a range that contains values not 3665 // contained in any of the original N ranges. 3666 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 3667 } 3668 3669 return CR; 3670 } 3671 3672 /// Return true if "icmp Pred LHS RHS" is always true. 3673 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 3674 const DataLayout &DL, unsigned Depth, 3675 AssumptionCache *AC, const Instruction *CxtI, 3676 const DominatorTree *DT) { 3677 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 3678 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 3679 return true; 3680 3681 switch (Pred) { 3682 default: 3683 return false; 3684 3685 case CmpInst::ICMP_SLE: { 3686 const APInt *C; 3687 3688 // LHS s<= LHS +_{nsw} C if C >= 0 3689 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 3690 return !C->isNegative(); 3691 return false; 3692 } 3693 3694 case CmpInst::ICMP_ULE: { 3695 const APInt *C; 3696 3697 // LHS u<= LHS +_{nuw} C for any C 3698 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 3699 return true; 3700 3701 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 3702 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X, 3703 const APInt *&CA, const APInt *&CB) { 3704 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 3705 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 3706 return true; 3707 3708 // If X & C == 0 then (X | C) == X +_{nuw} C 3709 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 3710 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 3711 unsigned BitWidth = CA->getBitWidth(); 3712 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3713 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 3714 3715 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 3716 return true; 3717 } 3718 3719 return false; 3720 }; 3721 3722 Value *X; 3723 const APInt *CLHS, *CRHS; 3724 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 3725 return CLHS->ule(*CRHS); 3726 3727 return false; 3728 } 3729 } 3730 } 3731 3732 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 3733 /// ALHS ARHS" is true. 3734 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, 3735 Value *ARHS, Value *BLHS, Value *BRHS, 3736 const DataLayout &DL, unsigned Depth, 3737 AssumptionCache *AC, const Instruction *CxtI, 3738 const DominatorTree *DT) { 3739 switch (Pred) { 3740 default: 3741 return false; 3742 3743 case CmpInst::ICMP_SLT: 3744 case CmpInst::ICMP_SLE: 3745 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 3746 DT) && 3747 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, 3748 DT); 3749 3750 case CmpInst::ICMP_ULT: 3751 case CmpInst::ICMP_ULE: 3752 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 3753 DT) && 3754 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, 3755 DT); 3756 } 3757 } 3758 3759 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, 3760 unsigned Depth, AssumptionCache *AC, 3761 const Instruction *CxtI, 3762 const DominatorTree *DT) { 3763 assert(LHS->getType() == RHS->getType() && "mismatched type"); 3764 Type *OpTy = LHS->getType(); 3765 assert(OpTy->getScalarType()->isIntegerTy(1)); 3766 3767 // LHS ==> RHS by definition 3768 if (LHS == RHS) return true; 3769 3770 if (OpTy->isVectorTy()) 3771 // TODO: extending the code below to handle vectors 3772 return false; 3773 assert(OpTy->isIntegerTy(1) && "implied by above"); 3774 3775 ICmpInst::Predicate APred, BPred; 3776 Value *ALHS, *ARHS; 3777 Value *BLHS, *BRHS; 3778 3779 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 3780 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 3781 return false; 3782 3783 if (APred == BPred) 3784 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 3785 CxtI, DT); 3786 3787 return false; 3788 } 3789