1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Support/GetElementPtrTypeIterator.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/PatternMatch.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include <cstring> 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 const unsigned MaxDepth = 6; 34 35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 36 /// unknown returns 0). For vector types, returns the element type's bitwidth. 37 static unsigned getBitWidth(Type *Ty, const TargetData *TD) { 38 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 39 return BitWidth; 40 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 41 return TD ? TD->getPointerSizeInBits() : 0; 42 } 43 44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 45 /// known to be either zero or one and return them in the KnownZero/KnownOne 46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 47 /// processing. 48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 49 /// we cannot optimize based on the assumption that it is zero without changing 50 /// it to be an explicit zero. If we don't change it to zero, other code could 51 /// optimized based on the contradictory assumption that it is non-zero. 52 /// Because instcombine aggressively folds operations with undef args anyway, 53 /// this won't lose us code quality. 54 /// 55 /// This function is defined on values with integer type, values with pointer 56 /// type (but only if TD is non-null), and vectors of integers. In the case 57 /// where V is a vector, the mask, known zero, and known one values are the 58 /// same width as the vector element, and the bit is set only if it is true 59 /// for all of the elements in the vector. 60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 61 APInt &KnownZero, APInt &KnownOne, 62 const TargetData *TD, unsigned Depth) { 63 assert(V && "No Value?"); 64 assert(Depth <= MaxDepth && "Limit Search Depth"); 65 unsigned BitWidth = Mask.getBitWidth(); 66 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy()) 67 && "Not integer or pointer type!"); 68 assert((!TD || 69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 70 (!V->getType()->isIntOrIntVectorTy() || 71 V->getType()->getScalarSizeInBits() == BitWidth) && 72 KnownZero.getBitWidth() == BitWidth && 73 KnownOne.getBitWidth() == BitWidth && 74 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 75 76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 77 // We know all of the bits for a constant! 78 KnownOne = CI->getValue() & Mask; 79 KnownZero = ~KnownOne & Mask; 80 return; 81 } 82 // Null and aggregate-zero are all-zeros. 83 if (isa<ConstantPointerNull>(V) || 84 isa<ConstantAggregateZero>(V)) { 85 KnownOne.clearAllBits(); 86 KnownZero = Mask; 87 return; 88 } 89 // Handle a constant vector by taking the intersection of the known bits of 90 // each element. 91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 92 KnownZero.setAllBits(); KnownOne.setAllBits(); 93 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, 96 TD, Depth); 97 KnownZero &= KnownZero2; 98 KnownOne &= KnownOne2; 99 } 100 return; 101 } 102 // The address of an aligned GlobalValue has trailing zeros. 103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 104 unsigned Align = GV->getAlignment(); 105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { 106 Type *ObjectType = GV->getType()->getElementType(); 107 // If the object is defined in the current Module, we'll be giving 108 // it the preferred alignment. Otherwise, we have to assume that it 109 // may only have the minimum ABI alignment. 110 if (!GV->isDeclaration() && !GV->mayBeOverridden()) 111 Align = TD->getPrefTypeAlignment(ObjectType); 112 else 113 Align = TD->getABITypeAlignment(ObjectType); 114 } 115 if (Align > 0) 116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 117 CountTrailingZeros_32(Align)); 118 else 119 KnownZero.clearAllBits(); 120 KnownOne.clearAllBits(); 121 return; 122 } 123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 124 // the bits of its aliasee. 125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 126 if (GA->mayBeOverridden()) { 127 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 128 } else { 129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 130 TD, Depth+1); 131 } 132 return; 133 } 134 135 if (Argument *A = dyn_cast<Argument>(V)) { 136 // Get alignment information off byval arguments if specified in the IR. 137 if (A->hasByValAttr()) 138 if (unsigned Align = A->getParamAlignment()) 139 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 140 CountTrailingZeros_32(Align)); 141 return; 142 } 143 144 // Start out not knowing anything. 145 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 146 147 if (Depth == MaxDepth || Mask == 0) 148 return; // Limit search depth. 149 150 Operator *I = dyn_cast<Operator>(V); 151 if (!I) return; 152 153 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 154 switch (I->getOpcode()) { 155 default: break; 156 case Instruction::And: { 157 // If either the LHS or the RHS are Zero, the result is zero. 158 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 159 APInt Mask2(Mask & ~KnownZero); 160 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 161 Depth+1); 162 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 163 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 164 165 // Output known-1 bits are only known if set in both the LHS & RHS. 166 KnownOne &= KnownOne2; 167 // Output known-0 are known to be clear if zero in either the LHS | RHS. 168 KnownZero |= KnownZero2; 169 return; 170 } 171 case Instruction::Or: { 172 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 173 APInt Mask2(Mask & ~KnownOne); 174 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 175 Depth+1); 176 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 177 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 178 179 // Output known-0 bits are only known if clear in both the LHS & RHS. 180 KnownZero &= KnownZero2; 181 // Output known-1 are known to be set if set in either the LHS | RHS. 182 KnownOne |= KnownOne2; 183 return; 184 } 185 case Instruction::Xor: { 186 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 187 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 188 Depth+1); 189 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 190 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 191 192 // Output known-0 bits are known if clear or set in both the LHS & RHS. 193 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 194 // Output known-1 are known to be set if set in only one of the LHS, RHS. 195 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 196 KnownZero = KnownZeroOut; 197 return; 198 } 199 case Instruction::Mul: { 200 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 201 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); 202 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 203 Depth+1); 204 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 205 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 206 207 bool isKnownNegative = false; 208 bool isKnownNonNegative = false; 209 // If the multiplication is known not to overflow, compute the sign bit. 210 if (Mask.isNegative() && 211 cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) { 212 Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); 213 if (Op1 == Op2) { 214 // The product of a number with itself is non-negative. 215 isKnownNonNegative = true; 216 } else { 217 bool isKnownNonNegative1 = KnownZero.isNegative(); 218 bool isKnownNonNegative2 = KnownZero2.isNegative(); 219 bool isKnownNegative1 = KnownOne.isNegative(); 220 bool isKnownNegative2 = KnownOne2.isNegative(); 221 // The product of two numbers with the same sign is non-negative. 222 isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || 223 (isKnownNonNegative1 && isKnownNonNegative2); 224 // The product of a negative number and a non-negative number is either 225 // negative or zero. 226 if (!isKnownNonNegative) 227 isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && 228 isKnownNonZero(Op2, TD, Depth)) || 229 (isKnownNegative2 && isKnownNonNegative1 && 230 isKnownNonZero(Op1, TD, Depth)); 231 } 232 } 233 234 // If low bits are zero in either operand, output low known-0 bits. 235 // Also compute a conserative estimate for high known-0 bits. 236 // More trickiness is possible, but this is sufficient for the 237 // interesting case of alignment computation. 238 KnownOne.clearAllBits(); 239 unsigned TrailZ = KnownZero.countTrailingOnes() + 240 KnownZero2.countTrailingOnes(); 241 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 242 KnownZero2.countLeadingOnes(), 243 BitWidth) - BitWidth; 244 245 TrailZ = std::min(TrailZ, BitWidth); 246 LeadZ = std::min(LeadZ, BitWidth); 247 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 248 APInt::getHighBitsSet(BitWidth, LeadZ); 249 KnownZero &= Mask; 250 251 if (isKnownNonNegative) 252 KnownZero.setBit(BitWidth - 1); 253 else if (isKnownNegative) 254 KnownOne.setBit(BitWidth - 1); 255 256 return; 257 } 258 case Instruction::UDiv: { 259 // For the purposes of computing leading zeros we can conservatively 260 // treat a udiv as a logical right shift by the power of 2 known to 261 // be less than the denominator. 262 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 263 ComputeMaskedBits(I->getOperand(0), 264 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 265 unsigned LeadZ = KnownZero2.countLeadingOnes(); 266 267 KnownOne2.clearAllBits(); 268 KnownZero2.clearAllBits(); 269 ComputeMaskedBits(I->getOperand(1), 270 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 271 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 272 if (RHSUnknownLeadingOnes != BitWidth) 273 LeadZ = std::min(BitWidth, 274 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 275 276 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 277 return; 278 } 279 case Instruction::Select: 280 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 281 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 282 Depth+1); 283 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 284 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 285 286 // Only known if known in both the LHS and RHS. 287 KnownOne &= KnownOne2; 288 KnownZero &= KnownZero2; 289 return; 290 case Instruction::FPTrunc: 291 case Instruction::FPExt: 292 case Instruction::FPToUI: 293 case Instruction::FPToSI: 294 case Instruction::SIToFP: 295 case Instruction::UIToFP: 296 return; // Can't work with floating point. 297 case Instruction::PtrToInt: 298 case Instruction::IntToPtr: 299 // We can't handle these if we don't know the pointer size. 300 if (!TD) return; 301 // FALL THROUGH and handle them the same as zext/trunc. 302 case Instruction::ZExt: 303 case Instruction::Trunc: { 304 Type *SrcTy = I->getOperand(0)->getType(); 305 306 unsigned SrcBitWidth; 307 // Note that we handle pointer operands here because of inttoptr/ptrtoint 308 // which fall through here. 309 if (SrcTy->isPointerTy()) 310 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 311 else 312 SrcBitWidth = SrcTy->getScalarSizeInBits(); 313 314 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 315 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 316 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 317 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 318 Depth+1); 319 KnownZero = KnownZero.zextOrTrunc(BitWidth); 320 KnownOne = KnownOne.zextOrTrunc(BitWidth); 321 // Any top bits are known to be zero. 322 if (BitWidth > SrcBitWidth) 323 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 324 return; 325 } 326 case Instruction::BitCast: { 327 Type *SrcTy = I->getOperand(0)->getType(); 328 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 329 // TODO: For now, not handling conversions like: 330 // (bitcast i64 %x to <2 x i32>) 331 !I->getType()->isVectorTy()) { 332 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 333 Depth+1); 334 return; 335 } 336 break; 337 } 338 case Instruction::SExt: { 339 // Compute the bits in the result that are not present in the input. 340 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 341 342 APInt MaskIn = Mask.trunc(SrcBitWidth); 343 KnownZero = KnownZero.trunc(SrcBitWidth); 344 KnownOne = KnownOne.trunc(SrcBitWidth); 345 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 346 Depth+1); 347 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 348 KnownZero = KnownZero.zext(BitWidth); 349 KnownOne = KnownOne.zext(BitWidth); 350 351 // If the sign bit of the input is known set or clear, then we know the 352 // top bits of the result. 353 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 354 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 355 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 356 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 357 return; 358 } 359 case Instruction::Shl: 360 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 361 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 362 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 363 APInt Mask2(Mask.lshr(ShiftAmt)); 364 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 365 Depth+1); 366 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 367 KnownZero <<= ShiftAmt; 368 KnownOne <<= ShiftAmt; 369 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 370 return; 371 } 372 break; 373 case Instruction::LShr: 374 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 375 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 376 // Compute the new bits that are at the top now. 377 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 378 379 // Unsigned shift right. 380 APInt Mask2(Mask.shl(ShiftAmt)); 381 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 382 Depth+1); 383 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 384 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 385 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 386 // high bits known zero. 387 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 388 return; 389 } 390 break; 391 case Instruction::AShr: 392 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 393 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 394 // Compute the new bits that are at the top now. 395 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 396 397 // Signed shift right. 398 APInt Mask2(Mask.shl(ShiftAmt)); 399 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 400 Depth+1); 401 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 402 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 403 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 404 405 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 406 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 407 KnownZero |= HighBits; 408 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 409 KnownOne |= HighBits; 410 return; 411 } 412 break; 413 case Instruction::Sub: { 414 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { 415 // We know that the top bits of C-X are clear if X contains less bits 416 // than C (i.e. no wrap-around can happen). For example, 20-X is 417 // positive if we can prove that X is >= 0 and < 16. 418 if (!CLHS->getValue().isNegative()) { 419 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 420 // NLZ can't be BitWidth with no sign bit 421 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 422 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, 423 TD, Depth+1); 424 425 // If all of the MaskV bits are known to be zero, then we know the 426 // output top bits are zero, because we now know that the output is 427 // from [0-C]. 428 if ((KnownZero2 & MaskV) == MaskV) { 429 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 430 // Top bits known zero. 431 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 432 } 433 } 434 } 435 } 436 // fall through 437 case Instruction::Add: { 438 // If one of the operands has trailing zeros, then the bits that the 439 // other operand has in those bit positions will be preserved in the 440 // result. For an add, this works with either operand. For a subtract, 441 // this only works if the known zeros are in the right operand. 442 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 443 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 444 BitWidth - Mask.countLeadingZeros()); 445 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 446 Depth+1); 447 assert((LHSKnownZero & LHSKnownOne) == 0 && 448 "Bits known to be one AND zero?"); 449 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 450 451 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, 452 Depth+1); 453 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 454 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 455 456 // Determine which operand has more trailing zeros, and use that 457 // many bits from the other operand. 458 if (LHSKnownZeroOut > RHSKnownZeroOut) { 459 if (I->getOpcode() == Instruction::Add) { 460 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 461 KnownZero |= KnownZero2 & Mask; 462 KnownOne |= KnownOne2 & Mask; 463 } else { 464 // If the known zeros are in the left operand for a subtract, 465 // fall back to the minimum known zeros in both operands. 466 KnownZero |= APInt::getLowBitsSet(BitWidth, 467 std::min(LHSKnownZeroOut, 468 RHSKnownZeroOut)); 469 } 470 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 471 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 472 KnownZero |= LHSKnownZero & Mask; 473 KnownOne |= LHSKnownOne & Mask; 474 } 475 476 // Are we still trying to solve for the sign bit? 477 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){ 478 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I); 479 if (OBO->hasNoSignedWrap()) { 480 if (I->getOpcode() == Instruction::Add) { 481 // Adding two positive numbers can't wrap into negative 482 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 483 KnownZero |= APInt::getSignBit(BitWidth); 484 // and adding two negative numbers can't wrap into positive. 485 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 486 KnownOne |= APInt::getSignBit(BitWidth); 487 } else { 488 // Subtracting a negative number from a positive one can't wrap 489 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 490 KnownZero |= APInt::getSignBit(BitWidth); 491 // neither can subtracting a positive number from a negative one. 492 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 493 KnownOne |= APInt::getSignBit(BitWidth); 494 } 495 } 496 } 497 498 return; 499 } 500 case Instruction::SRem: 501 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 502 APInt RA = Rem->getValue().abs(); 503 if (RA.isPowerOf2()) { 504 APInt LowBits = RA - 1; 505 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 506 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 507 Depth+1); 508 509 // The low bits of the first operand are unchanged by the srem. 510 KnownZero = KnownZero2 & LowBits; 511 KnownOne = KnownOne2 & LowBits; 512 513 // If the first operand is non-negative or has all low bits zero, then 514 // the upper bits are all zero. 515 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 516 KnownZero |= ~LowBits; 517 518 // If the first operand is negative and not all low bits are zero, then 519 // the upper bits are all one. 520 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 521 KnownOne |= ~LowBits; 522 523 KnownZero &= Mask; 524 KnownOne &= Mask; 525 526 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 527 } 528 } 529 530 // The sign bit is the LHS's sign bit, except when the result of the 531 // remainder is zero. 532 if (Mask.isNegative() && KnownZero.isNonNegative()) { 533 APInt Mask2 = APInt::getSignBit(BitWidth); 534 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 535 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 536 Depth+1); 537 // If it's known zero, our sign bit is also zero. 538 if (LHSKnownZero.isNegative()) 539 KnownZero |= LHSKnownZero; 540 } 541 542 break; 543 case Instruction::URem: { 544 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 545 APInt RA = Rem->getValue(); 546 if (RA.isPowerOf2()) { 547 APInt LowBits = (RA - 1); 548 APInt Mask2 = LowBits & Mask; 549 KnownZero |= ~LowBits & Mask; 550 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 551 Depth+1); 552 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 553 break; 554 } 555 } 556 557 // Since the result is less than or equal to either operand, any leading 558 // zero bits in either operand must also exist in the result. 559 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 560 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 561 TD, Depth+1); 562 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 563 TD, Depth+1); 564 565 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 566 KnownZero2.countLeadingOnes()); 567 KnownOne.clearAllBits(); 568 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 569 break; 570 } 571 572 case Instruction::Alloca: { 573 AllocaInst *AI = cast<AllocaInst>(V); 574 unsigned Align = AI->getAlignment(); 575 if (Align == 0 && TD) 576 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 577 578 if (Align > 0) 579 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 580 CountTrailingZeros_32(Align)); 581 break; 582 } 583 case Instruction::GetElementPtr: { 584 // Analyze all of the subscripts of this getelementptr instruction 585 // to determine if we can prove known low zero bits. 586 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 587 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 588 ComputeMaskedBits(I->getOperand(0), LocalMask, 589 LocalKnownZero, LocalKnownOne, TD, Depth+1); 590 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 591 592 gep_type_iterator GTI = gep_type_begin(I); 593 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 594 Value *Index = I->getOperand(i); 595 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 596 // Handle struct member offset arithmetic. 597 if (!TD) return; 598 const StructLayout *SL = TD->getStructLayout(STy); 599 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 600 uint64_t Offset = SL->getElementOffset(Idx); 601 TrailZ = std::min(TrailZ, 602 CountTrailingZeros_64(Offset)); 603 } else { 604 // Handle array index arithmetic. 605 Type *IndexedTy = GTI.getIndexedType(); 606 if (!IndexedTy->isSized()) return; 607 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 608 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 609 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 610 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 611 ComputeMaskedBits(Index, LocalMask, 612 LocalKnownZero, LocalKnownOne, TD, Depth+1); 613 TrailZ = std::min(TrailZ, 614 unsigned(CountTrailingZeros_64(TypeSize) + 615 LocalKnownZero.countTrailingOnes())); 616 } 617 } 618 619 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 620 break; 621 } 622 case Instruction::PHI: { 623 PHINode *P = cast<PHINode>(I); 624 // Handle the case of a simple two-predecessor recurrence PHI. 625 // There's a lot more that could theoretically be done here, but 626 // this is sufficient to catch some interesting cases. 627 if (P->getNumIncomingValues() == 2) { 628 for (unsigned i = 0; i != 2; ++i) { 629 Value *L = P->getIncomingValue(i); 630 Value *R = P->getIncomingValue(!i); 631 Operator *LU = dyn_cast<Operator>(L); 632 if (!LU) 633 continue; 634 unsigned Opcode = LU->getOpcode(); 635 // Check for operations that have the property that if 636 // both their operands have low zero bits, the result 637 // will have low zero bits. 638 if (Opcode == Instruction::Add || 639 Opcode == Instruction::Sub || 640 Opcode == Instruction::And || 641 Opcode == Instruction::Or || 642 Opcode == Instruction::Mul) { 643 Value *LL = LU->getOperand(0); 644 Value *LR = LU->getOperand(1); 645 // Find a recurrence. 646 if (LL == I) 647 L = LR; 648 else if (LR == I) 649 L = LL; 650 else 651 break; 652 // Ok, we have a PHI of the form L op= R. Check for low 653 // zero bits. 654 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 655 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 656 Mask2 = APInt::getLowBitsSet(BitWidth, 657 KnownZero2.countTrailingOnes()); 658 659 // We need to take the minimum number of known bits 660 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 661 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 662 663 KnownZero = Mask & 664 APInt::getLowBitsSet(BitWidth, 665 std::min(KnownZero2.countTrailingOnes(), 666 KnownZero3.countTrailingOnes())); 667 break; 668 } 669 } 670 } 671 672 // Unreachable blocks may have zero-operand PHI nodes. 673 if (P->getNumIncomingValues() == 0) 674 return; 675 676 // Otherwise take the unions of the known bit sets of the operands, 677 // taking conservative care to avoid excessive recursion. 678 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 679 // Skip if every incoming value references to ourself. 680 if (P->hasConstantValue() == P) 681 break; 682 683 KnownZero = APInt::getAllOnesValue(BitWidth); 684 KnownOne = APInt::getAllOnesValue(BitWidth); 685 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 686 // Skip direct self references. 687 if (P->getIncomingValue(i) == P) continue; 688 689 KnownZero2 = APInt(BitWidth, 0); 690 KnownOne2 = APInt(BitWidth, 0); 691 // Recurse, but cap the recursion to one level, because we don't 692 // want to waste time spinning around in loops. 693 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 694 KnownZero2, KnownOne2, TD, MaxDepth-1); 695 KnownZero &= KnownZero2; 696 KnownOne &= KnownOne2; 697 // If all bits have been ruled out, there's no need to check 698 // more operands. 699 if (!KnownZero && !KnownOne) 700 break; 701 } 702 } 703 break; 704 } 705 case Instruction::Call: 706 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 707 switch (II->getIntrinsicID()) { 708 default: break; 709 case Intrinsic::ctpop: 710 case Intrinsic::ctlz: 711 case Intrinsic::cttz: { 712 unsigned LowBits = Log2_32(BitWidth)+1; 713 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 714 break; 715 } 716 case Intrinsic::x86_sse42_crc32_64_8: 717 case Intrinsic::x86_sse42_crc32_64_64: 718 KnownZero = APInt::getHighBitsSet(64, 32); 719 break; 720 } 721 } 722 break; 723 } 724 } 725 726 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 727 /// one. Convenience wrapper around ComputeMaskedBits. 728 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 729 const TargetData *TD, unsigned Depth) { 730 unsigned BitWidth = getBitWidth(V->getType(), TD); 731 if (!BitWidth) { 732 KnownZero = false; 733 KnownOne = false; 734 return; 735 } 736 APInt ZeroBits(BitWidth, 0); 737 APInt OneBits(BitWidth, 0); 738 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 739 Depth); 740 KnownOne = OneBits[BitWidth - 1]; 741 KnownZero = ZeroBits[BitWidth - 1]; 742 } 743 744 /// isPowerOfTwo - Return true if the given value is known to have exactly one 745 /// bit set when defined. For vectors return true if every element is known to 746 /// be a power of two when defined. Supports values with integer or pointer 747 /// types and vectors of integers. 748 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero, 749 unsigned Depth) { 750 if (Constant *C = dyn_cast<Constant>(V)) { 751 if (C->isNullValue()) 752 return OrZero; 753 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 754 return CI->getValue().isPowerOf2(); 755 // TODO: Handle vector constants. 756 } 757 758 // 1 << X is clearly a power of two if the one is not shifted off the end. If 759 // it is shifted off the end then the result is undefined. 760 if (match(V, m_Shl(m_One(), m_Value()))) 761 return true; 762 763 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 764 // bottom. If it is shifted off the bottom then the result is undefined. 765 if (match(V, m_LShr(m_SignBit(), m_Value()))) 766 return true; 767 768 // The remaining tests are all recursive, so bail out if we hit the limit. 769 if (Depth++ == MaxDepth) 770 return false; 771 772 Value *X = 0, *Y = 0; 773 // A shift of a power of two is a power of two or zero. 774 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 775 match(V, m_Shr(m_Value(X), m_Value())))) 776 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth); 777 778 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 779 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth); 780 781 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 782 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) && 783 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth); 784 785 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 786 // A power of two and'd with anything is a power of two or zero. 787 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) || 788 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth)) 789 return true; 790 // X & (-X) is always a power of two or zero. 791 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 792 return true; 793 return false; 794 } 795 796 // An exact divide or right shift can only shift off zero bits, so the result 797 // is a power of two only if the first operand is a power of two and not 798 // copying a sign bit (sdiv int_min, 2). 799 if (match(V, m_LShr(m_Value(), m_Value())) || 800 match(V, m_UDiv(m_Value(), m_Value()))) { 801 PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V); 802 if (PEO->isExact()) 803 return isPowerOfTwo(PEO->getOperand(0), TD, OrZero, Depth); 804 } 805 806 return false; 807 } 808 809 /// isKnownNonZero - Return true if the given value is known to be non-zero 810 /// when defined. For vectors return true if every element is known to be 811 /// non-zero when defined. Supports values with integer or pointer type and 812 /// vectors of integers. 813 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 814 if (Constant *C = dyn_cast<Constant>(V)) { 815 if (C->isNullValue()) 816 return false; 817 if (isa<ConstantInt>(C)) 818 // Must be non-zero due to null test above. 819 return true; 820 // TODO: Handle vectors 821 return false; 822 } 823 824 // The remaining tests are all recursive, so bail out if we hit the limit. 825 if (Depth++ >= MaxDepth) 826 return false; 827 828 unsigned BitWidth = getBitWidth(V->getType(), TD); 829 830 // X | Y != 0 if X != 0 or Y != 0. 831 Value *X = 0, *Y = 0; 832 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 833 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 834 835 // ext X != 0 if X != 0. 836 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 837 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 838 839 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 840 // if the lowest bit is shifted off the end. 841 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 842 // shl nuw can't remove any non-zero bits. 843 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 844 if (BO->hasNoUnsignedWrap()) 845 return isKnownNonZero(X, TD, Depth); 846 847 APInt KnownZero(BitWidth, 0); 848 APInt KnownOne(BitWidth, 0); 849 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 850 if (KnownOne[0]) 851 return true; 852 } 853 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 854 // defined if the sign bit is shifted off the end. 855 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 856 // shr exact can only shift out zero bits. 857 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 858 if (BO->isExact()) 859 return isKnownNonZero(X, TD, Depth); 860 861 bool XKnownNonNegative, XKnownNegative; 862 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 863 if (XKnownNegative) 864 return true; 865 } 866 // div exact can only produce a zero if the dividend is zero. 867 else if (match(V, m_IDiv(m_Value(X), m_Value()))) { 868 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 869 if (BO->isExact()) 870 return isKnownNonZero(X, TD, Depth); 871 } 872 // X + Y. 873 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 874 bool XKnownNonNegative, XKnownNegative; 875 bool YKnownNonNegative, YKnownNegative; 876 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 877 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 878 879 // If X and Y are both non-negative (as signed values) then their sum is not 880 // zero unless both X and Y are zero. 881 if (XKnownNonNegative && YKnownNonNegative) 882 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 883 return true; 884 885 // If X and Y are both negative (as signed values) then their sum is not 886 // zero unless both X and Y equal INT_MIN. 887 if (BitWidth && XKnownNegative && YKnownNegative) { 888 APInt KnownZero(BitWidth, 0); 889 APInt KnownOne(BitWidth, 0); 890 APInt Mask = APInt::getSignedMaxValue(BitWidth); 891 // The sign bit of X is set. If some other bit is set then X is not equal 892 // to INT_MIN. 893 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 894 if ((KnownOne & Mask) != 0) 895 return true; 896 // The sign bit of Y is set. If some other bit is set then Y is not equal 897 // to INT_MIN. 898 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 899 if ((KnownOne & Mask) != 0) 900 return true; 901 } 902 903 // The sum of a non-negative number and a power of two is not zero. 904 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth)) 905 return true; 906 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) 907 return true; 908 } 909 // X * Y. 910 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 911 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 912 // If X and Y are non-zero then so is X * Y as long as the multiplication 913 // does not overflow. 914 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 915 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 916 return true; 917 } 918 // (C ? X : Y) != 0 if X != 0 and Y != 0. 919 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 920 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 921 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 922 return true; 923 } 924 925 if (!BitWidth) return false; 926 APInt KnownZero(BitWidth, 0); 927 APInt KnownOne(BitWidth, 0); 928 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 929 TD, Depth); 930 return KnownOne != 0; 931 } 932 933 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 934 /// this predicate to simplify operations downstream. Mask is known to be zero 935 /// for bits that V cannot have. 936 /// 937 /// This function is defined on values with integer type, values with pointer 938 /// type (but only if TD is non-null), and vectors of integers. In the case 939 /// where V is a vector, the mask, known zero, and known one values are the 940 /// same width as the vector element, and the bit is set only if it is true 941 /// for all of the elements in the vector. 942 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 943 const TargetData *TD, unsigned Depth) { 944 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 945 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 946 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 947 return (KnownZero & Mask) == Mask; 948 } 949 950 951 952 /// ComputeNumSignBits - Return the number of times the sign bit of the 953 /// register is replicated into the other bits. We know that at least 1 bit 954 /// is always equal to the sign bit (itself), but other cases can give us 955 /// information. For example, immediately after an "ashr X, 2", we know that 956 /// the top 3 bits are all equal to each other, so we return 3. 957 /// 958 /// 'Op' must have a scalar integer type. 959 /// 960 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 961 unsigned Depth) { 962 assert((TD || V->getType()->isIntOrIntVectorTy()) && 963 "ComputeNumSignBits requires a TargetData object to operate " 964 "on non-integer values!"); 965 Type *Ty = V->getType(); 966 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 967 Ty->getScalarSizeInBits(); 968 unsigned Tmp, Tmp2; 969 unsigned FirstAnswer = 1; 970 971 // Note that ConstantInt is handled by the general ComputeMaskedBits case 972 // below. 973 974 if (Depth == 6) 975 return 1; // Limit search depth. 976 977 Operator *U = dyn_cast<Operator>(V); 978 switch (Operator::getOpcode(V)) { 979 default: break; 980 case Instruction::SExt: 981 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 982 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 983 984 case Instruction::AShr: 985 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 986 // ashr X, C -> adds C sign bits. 987 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 988 Tmp += C->getZExtValue(); 989 if (Tmp > TyBits) Tmp = TyBits; 990 } 991 // vector ashr X, <C, C, C, C> -> adds C sign bits 992 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) { 993 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { 994 Tmp += CI->getZExtValue(); 995 if (Tmp > TyBits) Tmp = TyBits; 996 } 997 } 998 return Tmp; 999 case Instruction::Shl: 1000 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 1001 // shl destroys sign bits. 1002 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1003 if (C->getZExtValue() >= TyBits || // Bad shift. 1004 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 1005 return Tmp - C->getZExtValue(); 1006 } 1007 break; 1008 case Instruction::And: 1009 case Instruction::Or: 1010 case Instruction::Xor: // NOT is handled here. 1011 // Logical binary ops preserve the number of sign bits at the worst. 1012 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1013 if (Tmp != 1) { 1014 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1015 FirstAnswer = std::min(Tmp, Tmp2); 1016 // We computed what we know about the sign bits as our first 1017 // answer. Now proceed to the generic code that uses 1018 // ComputeMaskedBits, and pick whichever answer is better. 1019 } 1020 break; 1021 1022 case Instruction::Select: 1023 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1024 if (Tmp == 1) return 1; // Early out. 1025 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1026 return std::min(Tmp, Tmp2); 1027 1028 case Instruction::Add: 1029 // Add can have at most one carry bit. Thus we know that the output 1030 // is, at worst, one more bit than the inputs. 1031 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1032 if (Tmp == 1) return 1; // Early out. 1033 1034 // Special case decrementing a value (ADD X, -1): 1035 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1036 if (CRHS->isAllOnesValue()) { 1037 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1038 APInt Mask = APInt::getAllOnesValue(TyBits); 1039 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 1040 Depth+1); 1041 1042 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1043 // sign bits set. 1044 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1045 return TyBits; 1046 1047 // If we are subtracting one from a positive number, there is no carry 1048 // out of the result. 1049 if (KnownZero.isNegative()) 1050 return Tmp; 1051 } 1052 1053 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1054 if (Tmp2 == 1) return 1; 1055 return std::min(Tmp, Tmp2)-1; 1056 1057 case Instruction::Sub: 1058 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1059 if (Tmp2 == 1) return 1; 1060 1061 // Handle NEG. 1062 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1063 if (CLHS->isNullValue()) { 1064 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1065 APInt Mask = APInt::getAllOnesValue(TyBits); 1066 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 1067 TD, Depth+1); 1068 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1069 // sign bits set. 1070 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1071 return TyBits; 1072 1073 // If the input is known to be positive (the sign bit is known clear), 1074 // the output of the NEG has the same number of sign bits as the input. 1075 if (KnownZero.isNegative()) 1076 return Tmp2; 1077 1078 // Otherwise, we treat this like a SUB. 1079 } 1080 1081 // Sub can have at most one carry bit. Thus we know that the output 1082 // is, at worst, one more bit than the inputs. 1083 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1084 if (Tmp == 1) return 1; // Early out. 1085 return std::min(Tmp, Tmp2)-1; 1086 1087 case Instruction::PHI: { 1088 PHINode *PN = cast<PHINode>(U); 1089 // Don't analyze large in-degree PHIs. 1090 if (PN->getNumIncomingValues() > 4) break; 1091 1092 // Take the minimum of all incoming values. This can't infinitely loop 1093 // because of our depth threshold. 1094 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1095 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1096 if (Tmp == 1) return Tmp; 1097 Tmp = std::min(Tmp, 1098 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1099 } 1100 return Tmp; 1101 } 1102 1103 case Instruction::Trunc: 1104 // FIXME: it's tricky to do anything useful for this, but it is an important 1105 // case for targets like X86. 1106 break; 1107 } 1108 1109 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1110 // use this information. 1111 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1112 APInt Mask = APInt::getAllOnesValue(TyBits); 1113 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1114 1115 if (KnownZero.isNegative()) { // sign bit is 0 1116 Mask = KnownZero; 1117 } else if (KnownOne.isNegative()) { // sign bit is 1; 1118 Mask = KnownOne; 1119 } else { 1120 // Nothing known. 1121 return FirstAnswer; 1122 } 1123 1124 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1125 // the number of identical bits in the top of the input value. 1126 Mask = ~Mask; 1127 Mask <<= Mask.getBitWidth()-TyBits; 1128 // Return # leading zeros. We use 'min' here in case Val was zero before 1129 // shifting. We don't want to return '64' as for an i32 "0". 1130 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1131 } 1132 1133 /// ComputeMultiple - This function computes the integer multiple of Base that 1134 /// equals V. If successful, it returns true and returns the multiple in 1135 /// Multiple. If unsuccessful, it returns false. It looks 1136 /// through SExt instructions only if LookThroughSExt is true. 1137 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1138 bool LookThroughSExt, unsigned Depth) { 1139 const unsigned MaxDepth = 6; 1140 1141 assert(V && "No Value?"); 1142 assert(Depth <= MaxDepth && "Limit Search Depth"); 1143 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1144 1145 Type *T = V->getType(); 1146 1147 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1148 1149 if (Base == 0) 1150 return false; 1151 1152 if (Base == 1) { 1153 Multiple = V; 1154 return true; 1155 } 1156 1157 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1158 Constant *BaseVal = ConstantInt::get(T, Base); 1159 if (CO && CO == BaseVal) { 1160 // Multiple is 1. 1161 Multiple = ConstantInt::get(T, 1); 1162 return true; 1163 } 1164 1165 if (CI && CI->getZExtValue() % Base == 0) { 1166 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1167 return true; 1168 } 1169 1170 if (Depth == MaxDepth) return false; // Limit search depth. 1171 1172 Operator *I = dyn_cast<Operator>(V); 1173 if (!I) return false; 1174 1175 switch (I->getOpcode()) { 1176 default: break; 1177 case Instruction::SExt: 1178 if (!LookThroughSExt) return false; 1179 // otherwise fall through to ZExt 1180 case Instruction::ZExt: 1181 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1182 LookThroughSExt, Depth+1); 1183 case Instruction::Shl: 1184 case Instruction::Mul: { 1185 Value *Op0 = I->getOperand(0); 1186 Value *Op1 = I->getOperand(1); 1187 1188 if (I->getOpcode() == Instruction::Shl) { 1189 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1190 if (!Op1CI) return false; 1191 // Turn Op0 << Op1 into Op0 * 2^Op1 1192 APInt Op1Int = Op1CI->getValue(); 1193 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1194 APInt API(Op1Int.getBitWidth(), 0); 1195 API.setBit(BitToSet); 1196 Op1 = ConstantInt::get(V->getContext(), API); 1197 } 1198 1199 Value *Mul0 = NULL; 1200 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1201 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1202 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1203 if (Op1C->getType()->getPrimitiveSizeInBits() < 1204 MulC->getType()->getPrimitiveSizeInBits()) 1205 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1206 if (Op1C->getType()->getPrimitiveSizeInBits() > 1207 MulC->getType()->getPrimitiveSizeInBits()) 1208 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1209 1210 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1211 Multiple = ConstantExpr::getMul(MulC, Op1C); 1212 return true; 1213 } 1214 1215 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1216 if (Mul0CI->getValue() == 1) { 1217 // V == Base * Op1, so return Op1 1218 Multiple = Op1; 1219 return true; 1220 } 1221 } 1222 1223 Value *Mul1 = NULL; 1224 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1225 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1226 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1227 if (Op0C->getType()->getPrimitiveSizeInBits() < 1228 MulC->getType()->getPrimitiveSizeInBits()) 1229 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1230 if (Op0C->getType()->getPrimitiveSizeInBits() > 1231 MulC->getType()->getPrimitiveSizeInBits()) 1232 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1233 1234 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1235 Multiple = ConstantExpr::getMul(MulC, Op0C); 1236 return true; 1237 } 1238 1239 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1240 if (Mul1CI->getValue() == 1) { 1241 // V == Base * Op0, so return Op0 1242 Multiple = Op0; 1243 return true; 1244 } 1245 } 1246 } 1247 } 1248 1249 // We could not determine if V is a multiple of Base. 1250 return false; 1251 } 1252 1253 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1254 /// value is never equal to -0.0. 1255 /// 1256 /// NOTE: this function will need to be revisited when we support non-default 1257 /// rounding modes! 1258 /// 1259 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1260 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1261 return !CFP->getValueAPF().isNegZero(); 1262 1263 if (Depth == 6) 1264 return 1; // Limit search depth. 1265 1266 const Operator *I = dyn_cast<Operator>(V); 1267 if (I == 0) return false; 1268 1269 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1270 if (I->getOpcode() == Instruction::FAdd && 1271 isa<ConstantFP>(I->getOperand(1)) && 1272 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1273 return true; 1274 1275 // sitofp and uitofp turn into +0.0 for zero. 1276 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1277 return true; 1278 1279 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1280 // sqrt(-0.0) = -0.0, no other negative results are possible. 1281 if (II->getIntrinsicID() == Intrinsic::sqrt) 1282 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1283 1284 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1285 if (const Function *F = CI->getCalledFunction()) { 1286 if (F->isDeclaration()) { 1287 // abs(x) != -0.0 1288 if (F->getName() == "abs") return true; 1289 // fabs[lf](x) != -0.0 1290 if (F->getName() == "fabs") return true; 1291 if (F->getName() == "fabsf") return true; 1292 if (F->getName() == "fabsl") return true; 1293 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1294 F->getName() == "sqrtl") 1295 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1296 } 1297 } 1298 1299 return false; 1300 } 1301 1302 /// isBytewiseValue - If the specified value can be set by repeating the same 1303 /// byte in memory, return the i8 value that it is represented with. This is 1304 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1305 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1306 /// byte store (e.g. i16 0x1234), return null. 1307 Value *llvm::isBytewiseValue(Value *V) { 1308 // All byte-wide stores are splatable, even of arbitrary variables. 1309 if (V->getType()->isIntegerTy(8)) return V; 1310 1311 // Handle 'null' ConstantArrayZero etc. 1312 if (Constant *C = dyn_cast<Constant>(V)) 1313 if (C->isNullValue()) 1314 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1315 1316 // Constant float and double values can be handled as integer values if the 1317 // corresponding integer value is "byteable". An important case is 0.0. 1318 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1319 if (CFP->getType()->isFloatTy()) 1320 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1321 if (CFP->getType()->isDoubleTy()) 1322 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1323 // Don't handle long double formats, which have strange constraints. 1324 } 1325 1326 // We can handle constant integers that are power of two in size and a 1327 // multiple of 8 bits. 1328 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1329 unsigned Width = CI->getBitWidth(); 1330 if (isPowerOf2_32(Width) && Width > 8) { 1331 // We can handle this value if the recursive binary decomposition is the 1332 // same at all levels. 1333 APInt Val = CI->getValue(); 1334 APInt Val2; 1335 while (Val.getBitWidth() != 8) { 1336 unsigned NextWidth = Val.getBitWidth()/2; 1337 Val2 = Val.lshr(NextWidth); 1338 Val2 = Val2.trunc(Val.getBitWidth()/2); 1339 Val = Val.trunc(Val.getBitWidth()/2); 1340 1341 // If the top/bottom halves aren't the same, reject it. 1342 if (Val != Val2) 1343 return 0; 1344 } 1345 return ConstantInt::get(V->getContext(), Val); 1346 } 1347 } 1348 1349 // A ConstantArray is splatable if all its members are equal and also 1350 // splatable. 1351 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1352 if (CA->getNumOperands() == 0) 1353 return 0; 1354 1355 Value *Val = isBytewiseValue(CA->getOperand(0)); 1356 if (!Val) 1357 return 0; 1358 1359 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I) 1360 if (CA->getOperand(I-1) != CA->getOperand(I)) 1361 return 0; 1362 1363 return Val; 1364 } 1365 1366 // Conceptually, we could handle things like: 1367 // %a = zext i8 %X to i16 1368 // %b = shl i16 %a, 8 1369 // %c = or i16 %a, %b 1370 // but until there is an example that actually needs this, it doesn't seem 1371 // worth worrying about. 1372 return 0; 1373 } 1374 1375 1376 // This is the recursive version of BuildSubAggregate. It takes a few different 1377 // arguments. Idxs is the index within the nested struct From that we are 1378 // looking at now (which is of type IndexedType). IdxSkip is the number of 1379 // indices from Idxs that should be left out when inserting into the resulting 1380 // struct. To is the result struct built so far, new insertvalue instructions 1381 // build on that. 1382 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1383 SmallVector<unsigned, 10> &Idxs, 1384 unsigned IdxSkip, 1385 Instruction *InsertBefore) { 1386 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1387 if (STy) { 1388 // Save the original To argument so we can modify it 1389 Value *OrigTo = To; 1390 // General case, the type indexed by Idxs is a struct 1391 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1392 // Process each struct element recursively 1393 Idxs.push_back(i); 1394 Value *PrevTo = To; 1395 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1396 InsertBefore); 1397 Idxs.pop_back(); 1398 if (!To) { 1399 // Couldn't find any inserted value for this index? Cleanup 1400 while (PrevTo != OrigTo) { 1401 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1402 PrevTo = Del->getAggregateOperand(); 1403 Del->eraseFromParent(); 1404 } 1405 // Stop processing elements 1406 break; 1407 } 1408 } 1409 // If we successfully found a value for each of our subaggregates 1410 if (To) 1411 return To; 1412 } 1413 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1414 // the struct's elements had a value that was inserted directly. In the latter 1415 // case, perhaps we can't determine each of the subelements individually, but 1416 // we might be able to find the complete struct somewhere. 1417 1418 // Find the value that is at that particular spot 1419 Value *V = FindInsertedValue(From, Idxs); 1420 1421 if (!V) 1422 return NULL; 1423 1424 // Insert the value in the new (sub) aggregrate 1425 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1426 "tmp", InsertBefore); 1427 } 1428 1429 // This helper takes a nested struct and extracts a part of it (which is again a 1430 // struct) into a new value. For example, given the struct: 1431 // { a, { b, { c, d }, e } } 1432 // and the indices "1, 1" this returns 1433 // { c, d }. 1434 // 1435 // It does this by inserting an insertvalue for each element in the resulting 1436 // struct, as opposed to just inserting a single struct. This will only work if 1437 // each of the elements of the substruct are known (ie, inserted into From by an 1438 // insertvalue instruction somewhere). 1439 // 1440 // All inserted insertvalue instructions are inserted before InsertBefore 1441 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1442 Instruction *InsertBefore) { 1443 assert(InsertBefore && "Must have someplace to insert!"); 1444 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1445 idx_range); 1446 Value *To = UndefValue::get(IndexedType); 1447 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1448 unsigned IdxSkip = Idxs.size(); 1449 1450 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1451 } 1452 1453 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1454 /// the scalar value indexed is already around as a register, for example if it 1455 /// were inserted directly into the aggregrate. 1456 /// 1457 /// If InsertBefore is not null, this function will duplicate (modified) 1458 /// insertvalues when a part of a nested struct is extracted. 1459 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1460 Instruction *InsertBefore) { 1461 // Nothing to index? Just return V then (this is useful at the end of our 1462 // recursion) 1463 if (idx_range.empty()) 1464 return V; 1465 // We have indices, so V should have an indexable type 1466 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) 1467 && "Not looking at a struct or array?"); 1468 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) 1469 && "Invalid indices for type?"); 1470 CompositeType *PTy = cast<CompositeType>(V->getType()); 1471 1472 if (isa<UndefValue>(V)) 1473 return UndefValue::get(ExtractValueInst::getIndexedType(PTy, 1474 idx_range)); 1475 else if (isa<ConstantAggregateZero>(V)) 1476 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, 1477 idx_range)); 1478 else if (Constant *C = dyn_cast<Constant>(V)) { 1479 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) 1480 // Recursively process this constant 1481 return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1), 1482 InsertBefore); 1483 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1484 // Loop the indices for the insertvalue instruction in parallel with the 1485 // requested indices 1486 const unsigned *req_idx = idx_range.begin(); 1487 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1488 i != e; ++i, ++req_idx) { 1489 if (req_idx == idx_range.end()) { 1490 if (InsertBefore) 1491 // The requested index identifies a part of a nested aggregate. Handle 1492 // this specially. For example, 1493 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1494 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1495 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1496 // This can be changed into 1497 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1498 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1499 // which allows the unused 0,0 element from the nested struct to be 1500 // removed. 1501 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1502 InsertBefore); 1503 else 1504 // We can't handle this without inserting insertvalues 1505 return 0; 1506 } 1507 1508 // This insert value inserts something else than what we are looking for. 1509 // See if the (aggregrate) value inserted into has the value we are 1510 // looking for, then. 1511 if (*req_idx != *i) 1512 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1513 InsertBefore); 1514 } 1515 // If we end up here, the indices of the insertvalue match with those 1516 // requested (though possibly only partially). Now we recursively look at 1517 // the inserted value, passing any remaining indices. 1518 return FindInsertedValue(I->getInsertedValueOperand(), 1519 makeArrayRef(req_idx, idx_range.end()), 1520 InsertBefore); 1521 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1522 // If we're extracting a value from an aggregrate that was extracted from 1523 // something else, we can extract from that something else directly instead. 1524 // However, we will need to chain I's indices with the requested indices. 1525 1526 // Calculate the number of indices required 1527 unsigned size = I->getNumIndices() + idx_range.size(); 1528 // Allocate some space to put the new indices in 1529 SmallVector<unsigned, 5> Idxs; 1530 Idxs.reserve(size); 1531 // Add indices from the extract value instruction 1532 Idxs.append(I->idx_begin(), I->idx_end()); 1533 1534 // Add requested indices 1535 Idxs.append(idx_range.begin(), idx_range.end()); 1536 1537 assert(Idxs.size() == size 1538 && "Number of indices added not correct?"); 1539 1540 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1541 } 1542 // Otherwise, we don't know (such as, extracting from a function return value 1543 // or load instruction) 1544 return 0; 1545 } 1546 1547 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1548 /// it can be expressed as a base pointer plus a constant offset. Return the 1549 /// base and offset to the caller. 1550 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1551 const TargetData &TD) { 1552 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1553 if (PtrOp == 0) return Ptr; 1554 1555 // Just look through bitcasts. 1556 if (PtrOp->getOpcode() == Instruction::BitCast) 1557 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1558 1559 // If this is a GEP with constant indices, we can look through it. 1560 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1561 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1562 1563 gep_type_iterator GTI = gep_type_begin(GEP); 1564 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1565 ++I, ++GTI) { 1566 ConstantInt *OpC = cast<ConstantInt>(*I); 1567 if (OpC->isZero()) continue; 1568 1569 // Handle a struct and array indices which add their offset to the pointer. 1570 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1571 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1572 } else { 1573 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1574 Offset += OpC->getSExtValue()*Size; 1575 } 1576 } 1577 1578 // Re-sign extend from the pointer size if needed to get overflow edge cases 1579 // right. 1580 unsigned PtrSize = TD.getPointerSizeInBits(); 1581 if (PtrSize < 64) 1582 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1583 1584 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1585 } 1586 1587 1588 /// GetConstantStringInfo - This function computes the length of a 1589 /// null-terminated C string pointed to by V. If successful, it returns true 1590 /// and returns the string in Str. If unsuccessful, it returns false. 1591 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str, 1592 uint64_t Offset, bool StopAtNul) { 1593 // If V is NULL then return false; 1594 if (V == NULL) return false; 1595 1596 // Look through bitcast instructions. 1597 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1598 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); 1599 1600 // If the value is not a GEP instruction nor a constant expression with a 1601 // GEP instruction, then return false because ConstantArray can't occur 1602 // any other way. 1603 const User *GEP = 0; 1604 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1605 GEP = GEPI; 1606 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1607 if (CE->getOpcode() == Instruction::BitCast) 1608 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); 1609 if (CE->getOpcode() != Instruction::GetElementPtr) 1610 return false; 1611 GEP = CE; 1612 } 1613 1614 if (GEP) { 1615 // Make sure the GEP has exactly three arguments. 1616 if (GEP->getNumOperands() != 3) 1617 return false; 1618 1619 // Make sure the index-ee is a pointer to array of i8. 1620 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1621 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1622 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1623 return false; 1624 1625 // Check to make sure that the first operand of the GEP is an integer and 1626 // has value 0 so that we are sure we're indexing into the initializer. 1627 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1628 if (FirstIdx == 0 || !FirstIdx->isZero()) 1629 return false; 1630 1631 // If the second index isn't a ConstantInt, then this is a variable index 1632 // into the array. If this occurs, we can't say anything meaningful about 1633 // the string. 1634 uint64_t StartIdx = 0; 1635 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1636 StartIdx = CI->getZExtValue(); 1637 else 1638 return false; 1639 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, 1640 StopAtNul); 1641 } 1642 1643 // The GEP instruction, constant or instruction, must reference a global 1644 // variable that is a constant and is initialized. The referenced constant 1645 // initializer is the array that we'll use for optimization. 1646 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V); 1647 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1648 return false; 1649 const Constant *GlobalInit = GV->getInitializer(); 1650 1651 // Handle the all-zeros case 1652 if (GlobalInit->isNullValue()) { 1653 // This is a degenerate case. The initializer is constant zero so the 1654 // length of the string must be zero. 1655 Str.clear(); 1656 return true; 1657 } 1658 1659 // Must be a Constant Array 1660 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1661 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8)) 1662 return false; 1663 1664 // Get the number of elements in the array 1665 uint64_t NumElts = Array->getType()->getNumElements(); 1666 1667 if (Offset > NumElts) 1668 return false; 1669 1670 // Traverse the constant array from 'Offset' which is the place the GEP refers 1671 // to in the array. 1672 Str.reserve(NumElts-Offset); 1673 for (unsigned i = Offset; i != NumElts; ++i) { 1674 const Constant *Elt = Array->getOperand(i); 1675 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1676 if (!CI) // This array isn't suitable, non-int initializer. 1677 return false; 1678 if (StopAtNul && CI->isZero()) 1679 return true; // we found end of string, success! 1680 Str += (char)CI->getZExtValue(); 1681 } 1682 1683 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. 1684 return true; 1685 } 1686 1687 // These next two are very similar to the above, but also look through PHI 1688 // nodes. 1689 // TODO: See if we can integrate these two together. 1690 1691 /// GetStringLengthH - If we can compute the length of the string pointed to by 1692 /// the specified pointer, return 'len+1'. If we can't, return 0. 1693 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1694 // Look through noop bitcast instructions. 1695 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1696 return GetStringLengthH(BCI->getOperand(0), PHIs); 1697 1698 // If this is a PHI node, there are two cases: either we have already seen it 1699 // or we haven't. 1700 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1701 if (!PHIs.insert(PN)) 1702 return ~0ULL; // already in the set. 1703 1704 // If it was new, see if all the input strings are the same length. 1705 uint64_t LenSoFar = ~0ULL; 1706 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1707 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1708 if (Len == 0) return 0; // Unknown length -> unknown. 1709 1710 if (Len == ~0ULL) continue; 1711 1712 if (Len != LenSoFar && LenSoFar != ~0ULL) 1713 return 0; // Disagree -> unknown. 1714 LenSoFar = Len; 1715 } 1716 1717 // Success, all agree. 1718 return LenSoFar; 1719 } 1720 1721 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1722 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1723 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1724 if (Len1 == 0) return 0; 1725 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1726 if (Len2 == 0) return 0; 1727 if (Len1 == ~0ULL) return Len2; 1728 if (Len2 == ~0ULL) return Len1; 1729 if (Len1 != Len2) return 0; 1730 return Len1; 1731 } 1732 1733 // As a special-case, "@string = constant i8 0" is also a string with zero 1734 // length, not wrapped in a bitcast or GEP. 1735 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 1736 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1737 if (GV->getInitializer()->isNullValue()) return 1; 1738 return 0; 1739 } 1740 1741 // If the value is not a GEP instruction nor a constant expression with a 1742 // GEP instruction, then return unknown. 1743 User *GEP = 0; 1744 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1745 GEP = GEPI; 1746 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1747 if (CE->getOpcode() != Instruction::GetElementPtr) 1748 return 0; 1749 GEP = CE; 1750 } else { 1751 return 0; 1752 } 1753 1754 // Make sure the GEP has exactly three arguments. 1755 if (GEP->getNumOperands() != 3) 1756 return 0; 1757 1758 // Check to make sure that the first operand of the GEP is an integer and 1759 // has value 0 so that we are sure we're indexing into the initializer. 1760 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { 1761 if (!Idx->isZero()) 1762 return 0; 1763 } else 1764 return 0; 1765 1766 // If the second index isn't a ConstantInt, then this is a variable index 1767 // into the array. If this occurs, we can't say anything meaningful about 1768 // the string. 1769 uint64_t StartIdx = 0; 1770 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1771 StartIdx = CI->getZExtValue(); 1772 else 1773 return 0; 1774 1775 // The GEP instruction, constant or instruction, must reference a global 1776 // variable that is a constant and is initialized. The referenced constant 1777 // initializer is the array that we'll use for optimization. 1778 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1779 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1780 GV->mayBeOverridden()) 1781 return 0; 1782 Constant *GlobalInit = GV->getInitializer(); 1783 1784 // Handle the ConstantAggregateZero case, which is a degenerate case. The 1785 // initializer is constant zero so the length of the string must be zero. 1786 if (isa<ConstantAggregateZero>(GlobalInit)) 1787 return 1; // Len = 0 offset by 1. 1788 1789 // Must be a Constant Array 1790 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1791 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8)) 1792 return false; 1793 1794 // Get the number of elements in the array 1795 uint64_t NumElts = Array->getType()->getNumElements(); 1796 1797 // Traverse the constant array from StartIdx (derived above) which is 1798 // the place the GEP refers to in the array. 1799 for (unsigned i = StartIdx; i != NumElts; ++i) { 1800 Constant *Elt = Array->getOperand(i); 1801 ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1802 if (!CI) // This array isn't suitable, non-int initializer. 1803 return 0; 1804 if (CI->isZero()) 1805 return i-StartIdx+1; // We found end of string, success! 1806 } 1807 1808 return 0; // The array isn't null terminated, conservatively return 'unknown'. 1809 } 1810 1811 /// GetStringLength - If we can compute the length of the string pointed to by 1812 /// the specified pointer, return 'len+1'. If we can't, return 0. 1813 uint64_t llvm::GetStringLength(Value *V) { 1814 if (!V->getType()->isPointerTy()) return 0; 1815 1816 SmallPtrSet<PHINode*, 32> PHIs; 1817 uint64_t Len = GetStringLengthH(V, PHIs); 1818 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1819 // an empty string as a length. 1820 return Len == ~0ULL ? 1 : Len; 1821 } 1822 1823 Value * 1824 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1825 if (!V->getType()->isPointerTy()) 1826 return V; 1827 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1828 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1829 V = GEP->getPointerOperand(); 1830 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1831 V = cast<Operator>(V)->getOperand(0); 1832 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1833 if (GA->mayBeOverridden()) 1834 return V; 1835 V = GA->getAliasee(); 1836 } else { 1837 // See if InstructionSimplify knows any relevant tricks. 1838 if (Instruction *I = dyn_cast<Instruction>(V)) 1839 // TODO: Acquire a DominatorTree and use it. 1840 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1841 V = Simplified; 1842 continue; 1843 } 1844 1845 return V; 1846 } 1847 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1848 } 1849 return V; 1850 } 1851 1852 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1853 /// are lifetime markers. 1854 /// 1855 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1856 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1857 UI != UE; ++UI) { 1858 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1859 if (!II) return false; 1860 1861 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1862 II->getIntrinsicID() != Intrinsic::lifetime_end) 1863 return false; 1864 } 1865 return true; 1866 } 1867