1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 357 const DataLayout &DL, AssumptionCache *AC, 358 const Instruction *CxtI, const DominatorTree *DT, 359 bool UseInstrInfo) { 360 return ::isKnownNonEqual(V1, V2, 0, 361 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 362 UseInstrInfo, /*ORE=*/nullptr)); 363 } 364 365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 366 const Query &Q); 367 368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 369 const DataLayout &DL, unsigned Depth, 370 AssumptionCache *AC, const Instruction *CxtI, 371 const DominatorTree *DT, bool UseInstrInfo) { 372 return ::MaskedValueIsZero( 373 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 374 } 375 376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 377 unsigned Depth, const Query &Q); 378 379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 380 const Query &Q) { 381 // FIXME: We currently have no way to represent the DemandedElts of a scalable 382 // vector 383 if (isa<ScalableVectorType>(V->getType())) 384 return 1; 385 386 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 387 APInt DemandedElts = 388 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 389 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 390 } 391 392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 393 unsigned Depth, AssumptionCache *AC, 394 const Instruction *CxtI, 395 const DominatorTree *DT, bool UseInstrInfo) { 396 return ::ComputeNumSignBits( 397 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 398 } 399 400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 401 bool NSW, const APInt &DemandedElts, 402 KnownBits &KnownOut, KnownBits &Known2, 403 unsigned Depth, const Query &Q) { 404 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 405 406 // If one operand is unknown and we have no nowrap information, 407 // the result will be unknown independently of the second operand. 408 if (KnownOut.isUnknown() && !NSW) 409 return; 410 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 413 } 414 415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 416 const APInt &DemandedElts, KnownBits &Known, 417 KnownBits &Known2, unsigned Depth, 418 const Query &Q) { 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = 441 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 442 Known2.isNonZero()) || 443 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 444 } 445 } 446 447 Known = KnownBits::computeForMul(Known, Known2); 448 449 // Only make use of no-wrap flags if we failed to compute the sign bit 450 // directly. This matters if the multiplication always overflows, in 451 // which case we prefer to follow the result of the direct computation, 452 // though as the program is invoking undefined behaviour we can choose 453 // whatever we like here. 454 if (isKnownNonNegative && !Known.isNegative()) 455 Known.makeNonNegative(); 456 else if (isKnownNegative && !Known.isNonNegative()) 457 Known.makeNegative(); 458 } 459 460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 461 KnownBits &Known) { 462 unsigned BitWidth = Known.getBitWidth(); 463 unsigned NumRanges = Ranges.getNumOperands() / 2; 464 assert(NumRanges >= 1); 465 466 Known.Zero.setAllBits(); 467 Known.One.setAllBits(); 468 469 for (unsigned i = 0; i < NumRanges; ++i) { 470 ConstantInt *Lower = 471 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 472 ConstantInt *Upper = 473 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 474 ConstantRange Range(Lower->getValue(), Upper->getValue()); 475 476 // The first CommonPrefixBits of all values in Range are equal. 477 unsigned CommonPrefixBits = 478 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 479 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 480 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 481 Known.One &= UnsignedMax & Mask; 482 Known.Zero &= ~UnsignedMax & Mask; 483 } 484 } 485 486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 487 SmallVector<const Value *, 16> WorkSet(1, I); 488 SmallPtrSet<const Value *, 32> Visited; 489 SmallPtrSet<const Value *, 16> EphValues; 490 491 // The instruction defining an assumption's condition itself is always 492 // considered ephemeral to that assumption (even if it has other 493 // non-ephemeral users). See r246696's test case for an example. 494 if (is_contained(I->operands(), E)) 495 return true; 496 497 while (!WorkSet.empty()) { 498 const Value *V = WorkSet.pop_back_val(); 499 if (!Visited.insert(V).second) 500 continue; 501 502 // If all uses of this value are ephemeral, then so is this value. 503 if (llvm::all_of(V->users(), [&](const User *U) { 504 return EphValues.count(U); 505 })) { 506 if (V == E) 507 return true; 508 509 if (V == I || isSafeToSpeculativelyExecute(V)) { 510 EphValues.insert(V); 511 if (const User *U = dyn_cast<User>(V)) 512 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 513 J != JE; ++J) 514 WorkSet.push_back(*J); 515 } 516 } 517 } 518 519 return false; 520 } 521 522 // Is this an intrinsic that cannot be speculated but also cannot trap? 523 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 524 if (const CallInst *CI = dyn_cast<CallInst>(I)) 525 if (Function *F = CI->getCalledFunction()) 526 switch (F->getIntrinsicID()) { 527 default: break; 528 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 529 case Intrinsic::assume: 530 case Intrinsic::sideeffect: 531 case Intrinsic::pseudoprobe: 532 case Intrinsic::dbg_declare: 533 case Intrinsic::dbg_value: 534 case Intrinsic::dbg_label: 535 case Intrinsic::invariant_start: 536 case Intrinsic::invariant_end: 537 case Intrinsic::lifetime_start: 538 case Intrinsic::lifetime_end: 539 case Intrinsic::objectsize: 540 case Intrinsic::ptr_annotation: 541 case Intrinsic::var_annotation: 542 return true; 543 } 544 545 return false; 546 } 547 548 bool llvm::isValidAssumeForContext(const Instruction *Inv, 549 const Instruction *CxtI, 550 const DominatorTree *DT) { 551 // There are two restrictions on the use of an assume: 552 // 1. The assume must dominate the context (or the control flow must 553 // reach the assume whenever it reaches the context). 554 // 2. The context must not be in the assume's set of ephemeral values 555 // (otherwise we will use the assume to prove that the condition 556 // feeding the assume is trivially true, thus causing the removal of 557 // the assume). 558 559 if (Inv->getParent() == CxtI->getParent()) { 560 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 561 // in the BB. 562 if (Inv->comesBefore(CxtI)) 563 return true; 564 565 // Don't let an assume affect itself - this would cause the problems 566 // `isEphemeralValueOf` is trying to prevent, and it would also make 567 // the loop below go out of bounds. 568 if (Inv == CxtI) 569 return false; 570 571 // The context comes first, but they're both in the same block. 572 // Make sure there is nothing in between that might interrupt 573 // the control flow, not even CxtI itself. 574 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 575 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 576 return false; 577 578 return !isEphemeralValueOf(Inv, CxtI); 579 } 580 581 // Inv and CxtI are in different blocks. 582 if (DT) { 583 if (DT->dominates(Inv, CxtI)) 584 return true; 585 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 586 // We don't have a DT, but this trivially dominates. 587 return true; 588 } 589 590 return false; 591 } 592 593 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 594 // Use of assumptions is context-sensitive. If we don't have a context, we 595 // cannot use them! 596 if (!Q.AC || !Q.CxtI) 597 return false; 598 599 // Note that the patterns below need to be kept in sync with the code 600 // in AssumptionCache::updateAffectedValues. 601 602 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 603 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 604 605 Value *RHS; 606 CmpInst::Predicate Pred; 607 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 608 return false; 609 // assume(v u> y) -> assume(v != 0) 610 if (Pred == ICmpInst::ICMP_UGT) 611 return true; 612 613 // assume(v != 0) 614 // We special-case this one to ensure that we handle `assume(v != null)`. 615 if (Pred == ICmpInst::ICMP_NE) 616 return match(RHS, m_Zero()); 617 618 // All other predicates - rely on generic ConstantRange handling. 619 ConstantInt *CI; 620 if (!match(RHS, m_ConstantInt(CI))) 621 return false; 622 ConstantRange RHSRange(CI->getValue()); 623 ConstantRange TrueValues = 624 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 625 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 626 }; 627 628 if (Q.CxtI && V->getType()->isPointerTy()) { 629 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 630 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 631 V->getType()->getPointerAddressSpace())) 632 AttrKinds.push_back(Attribute::Dereferenceable); 633 634 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 635 return true; 636 } 637 638 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 639 if (!AssumeVH) 640 continue; 641 CallInst *I = cast<CallInst>(AssumeVH); 642 assert(I->getFunction() == Q.CxtI->getFunction() && 643 "Got assumption for the wrong function!"); 644 if (Q.isExcluded(I)) 645 continue; 646 647 // Warning: This loop can end up being somewhat performance sensitive. 648 // We're running this loop for once for each value queried resulting in a 649 // runtime of ~O(#assumes * #values). 650 651 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 652 "must be an assume intrinsic"); 653 654 Value *Arg = I->getArgOperand(0); 655 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 656 if (!Cmp) 657 continue; 658 659 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 660 return true; 661 } 662 663 return false; 664 } 665 666 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 667 unsigned Depth, const Query &Q) { 668 // Use of assumptions is context-sensitive. If we don't have a context, we 669 // cannot use them! 670 if (!Q.AC || !Q.CxtI) 671 return; 672 673 unsigned BitWidth = Known.getBitWidth(); 674 675 // Refine Known set if the pointer alignment is set by assume bundles. 676 if (V->getType()->isPointerTy()) { 677 if (RetainedKnowledge RK = getKnowledgeValidInContext( 678 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 679 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 680 } 681 } 682 683 // Note that the patterns below need to be kept in sync with the code 684 // in AssumptionCache::updateAffectedValues. 685 686 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 687 if (!AssumeVH) 688 continue; 689 CallInst *I = cast<CallInst>(AssumeVH); 690 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 691 "Got assumption for the wrong function!"); 692 if (Q.isExcluded(I)) 693 continue; 694 695 // Warning: This loop can end up being somewhat performance sensitive. 696 // We're running this loop for once for each value queried resulting in a 697 // runtime of ~O(#assumes * #values). 698 699 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 700 "must be an assume intrinsic"); 701 702 Value *Arg = I->getArgOperand(0); 703 704 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 705 assert(BitWidth == 1 && "assume operand is not i1?"); 706 Known.setAllOnes(); 707 return; 708 } 709 if (match(Arg, m_Not(m_Specific(V))) && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 assert(BitWidth == 1 && "assume operand is not i1?"); 712 Known.setAllZero(); 713 return; 714 } 715 716 // The remaining tests are all recursive, so bail out if we hit the limit. 717 if (Depth == MaxAnalysisRecursionDepth) 718 continue; 719 720 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 721 if (!Cmp) 722 continue; 723 724 // Note that ptrtoint may change the bitwidth. 725 Value *A, *B; 726 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 727 728 CmpInst::Predicate Pred; 729 uint64_t C; 730 switch (Cmp->getPredicate()) { 731 default: 732 break; 733 case ICmpInst::ICMP_EQ: 734 // assume(v = a) 735 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 Known.Zero |= RHSKnown.Zero; 740 Known.One |= RHSKnown.One; 741 // assume(v & b = a) 742 } else if (match(Cmp, 743 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 744 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 745 KnownBits RHSKnown = 746 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 KnownBits MaskKnown = 748 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 749 750 // For those bits in the mask that are known to be one, we can propagate 751 // known bits from the RHS to V. 752 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 753 Known.One |= RHSKnown.One & MaskKnown.One; 754 // assume(~(v & b) = a) 755 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 756 m_Value(A))) && 757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 758 KnownBits RHSKnown = 759 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 KnownBits MaskKnown = 761 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 762 763 // For those bits in the mask that are known to be one, we can propagate 764 // inverted known bits from the RHS to V. 765 Known.Zero |= RHSKnown.One & MaskKnown.One; 766 Known.One |= RHSKnown.Zero & MaskKnown.One; 767 // assume(v | b = a) 768 } else if (match(Cmp, 769 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 770 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 771 KnownBits RHSKnown = 772 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 KnownBits BKnown = 774 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 775 776 // For those bits in B that are known to be zero, we can propagate known 777 // bits from the RHS to V. 778 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 779 Known.One |= RHSKnown.One & BKnown.Zero; 780 // assume(~(v | b) = a) 781 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 782 m_Value(A))) && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 KnownBits RHSKnown = 785 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 KnownBits BKnown = 787 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 788 789 // For those bits in B that are known to be zero, we can propagate 790 // inverted known bits from the RHS to V. 791 Known.Zero |= RHSKnown.One & BKnown.Zero; 792 Known.One |= RHSKnown.Zero & BKnown.Zero; 793 // assume(v ^ b = a) 794 } else if (match(Cmp, 795 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 796 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 797 KnownBits RHSKnown = 798 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 KnownBits BKnown = 800 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 802 // For those bits in B that are known to be zero, we can propagate known 803 // bits from the RHS to V. For those bits in B that are known to be one, 804 // we can propagate inverted known bits from the RHS to V. 805 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 806 Known.One |= RHSKnown.One & BKnown.Zero; 807 Known.Zero |= RHSKnown.One & BKnown.One; 808 Known.One |= RHSKnown.Zero & BKnown.One; 809 // assume(~(v ^ b) = a) 810 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 811 m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown = 814 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 KnownBits BKnown = 816 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 817 818 // For those bits in B that are known to be zero, we can propagate 819 // inverted known bits from the RHS to V. For those bits in B that are 820 // known to be one, we can propagate known bits from the RHS to V. 821 Known.Zero |= RHSKnown.One & BKnown.Zero; 822 Known.One |= RHSKnown.Zero & BKnown.Zero; 823 Known.Zero |= RHSKnown.Zero & BKnown.One; 824 Known.One |= RHSKnown.One & BKnown.One; 825 // assume(v << c = a) 826 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 827 m_Value(A))) && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 829 KnownBits RHSKnown = 830 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 831 832 // For those bits in RHS that are known, we can propagate them to known 833 // bits in V shifted to the right by C. 834 RHSKnown.Zero.lshrInPlace(C); 835 Known.Zero |= RHSKnown.Zero; 836 RHSKnown.One.lshrInPlace(C); 837 Known.One |= RHSKnown.One; 838 // assume(~(v << c) = a) 839 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 840 m_Value(A))) && 841 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 842 KnownBits RHSKnown = 843 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 844 // For those bits in RHS that are known, we can propagate them inverted 845 // to known bits in V shifted to the right by C. 846 RHSKnown.One.lshrInPlace(C); 847 Known.Zero |= RHSKnown.One; 848 RHSKnown.Zero.lshrInPlace(C); 849 Known.One |= RHSKnown.Zero; 850 // assume(v >> c = a) 851 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 852 m_Value(A))) && 853 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 854 KnownBits RHSKnown = 855 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 856 // For those bits in RHS that are known, we can propagate them to known 857 // bits in V shifted to the right by C. 858 Known.Zero |= RHSKnown.Zero << C; 859 Known.One |= RHSKnown.One << C; 860 // assume(~(v >> c) = a) 861 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 862 m_Value(A))) && 863 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 864 KnownBits RHSKnown = 865 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 866 // For those bits in RHS that are known, we can propagate them inverted 867 // to known bits in V shifted to the right by C. 868 Known.Zero |= RHSKnown.One << C; 869 Known.One |= RHSKnown.Zero << C; 870 } 871 break; 872 case ICmpInst::ICMP_SGE: 873 // assume(v >=_s c) where c is non-negative 874 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 875 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 876 KnownBits RHSKnown = 877 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 878 879 if (RHSKnown.isNonNegative()) { 880 // We know that the sign bit is zero. 881 Known.makeNonNegative(); 882 } 883 } 884 break; 885 case ICmpInst::ICMP_SGT: 886 // assume(v >_s c) where c is at least -1. 887 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 888 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 889 KnownBits RHSKnown = 890 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 891 892 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 893 // We know that the sign bit is zero. 894 Known.makeNonNegative(); 895 } 896 } 897 break; 898 case ICmpInst::ICMP_SLE: 899 // assume(v <=_s c) where c is negative 900 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 901 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 902 KnownBits RHSKnown = 903 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 904 905 if (RHSKnown.isNegative()) { 906 // We know that the sign bit is one. 907 Known.makeNegative(); 908 } 909 } 910 break; 911 case ICmpInst::ICMP_SLT: 912 // assume(v <_s c) where c is non-positive 913 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 914 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 915 KnownBits RHSKnown = 916 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 917 918 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 919 // We know that the sign bit is one. 920 Known.makeNegative(); 921 } 922 } 923 break; 924 case ICmpInst::ICMP_ULE: 925 // assume(v <=_u c) 926 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 927 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 928 KnownBits RHSKnown = 929 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 930 931 // Whatever high bits in c are zero are known to be zero. 932 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 933 } 934 break; 935 case ICmpInst::ICMP_ULT: 936 // assume(v <_u c) 937 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 938 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 939 KnownBits RHSKnown = 940 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 941 942 // If the RHS is known zero, then this assumption must be wrong (nothing 943 // is unsigned less than zero). Signal a conflict and get out of here. 944 if (RHSKnown.isZero()) { 945 Known.Zero.setAllBits(); 946 Known.One.setAllBits(); 947 break; 948 } 949 950 // Whatever high bits in c are zero are known to be zero (if c is a power 951 // of 2, then one more). 952 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 954 else 955 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 956 } 957 break; 958 } 959 } 960 961 // If assumptions conflict with each other or previous known bits, then we 962 // have a logical fallacy. It's possible that the assumption is not reachable, 963 // so this isn't a real bug. On the other hand, the program may have undefined 964 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 965 // clear out the known bits, try to warn the user, and hope for the best. 966 if (Known.Zero.intersects(Known.One)) { 967 Known.resetAll(); 968 969 if (Q.ORE) 970 Q.ORE->emit([&]() { 971 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 972 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 973 CxtI) 974 << "Detected conflicting code assumptions. Program may " 975 "have undefined behavior, or compiler may have " 976 "internal error."; 977 }); 978 } 979 } 980 981 /// Compute known bits from a shift operator, including those with a 982 /// non-constant shift amount. Known is the output of this function. Known2 is a 983 /// pre-allocated temporary with the same bit width as Known and on return 984 /// contains the known bit of the shift value source. KF is an 985 /// operator-specific function that, given the known-bits and a shift amount, 986 /// compute the implied known-bits of the shift operator's result respectively 987 /// for that shift amount. The results from calling KF are conservatively 988 /// combined for all permitted shift amounts. 989 static void computeKnownBitsFromShiftOperator( 990 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 991 KnownBits &Known2, unsigned Depth, const Query &Q, 992 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 993 unsigned BitWidth = Known.getBitWidth(); 994 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 995 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 996 997 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 998 // BitWidth > 64 and any upper bits are known, we'll end up returning the 999 // limit value (which implies all bits are known). 1000 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1001 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1002 bool ShiftAmtIsConstant = Known.isConstant(); 1003 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1004 1005 if (ShiftAmtIsConstant) { 1006 Known = KF(Known2, Known); 1007 1008 // If the known bits conflict, this must be an overflowing left shift, so 1009 // the shift result is poison. We can return anything we want. Choose 0 for 1010 // the best folding opportunity. 1011 if (Known.hasConflict()) 1012 Known.setAllZero(); 1013 1014 return; 1015 } 1016 1017 // If the shift amount could be greater than or equal to the bit-width of the 1018 // LHS, the value could be poison, but bail out because the check below is 1019 // expensive. 1020 // TODO: Should we just carry on? 1021 if (MaxShiftAmtIsOutOfRange) { 1022 Known.resetAll(); 1023 return; 1024 } 1025 1026 // It would be more-clearly correct to use the two temporaries for this 1027 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1028 Known.resetAll(); 1029 1030 // If we know the shifter operand is nonzero, we can sometimes infer more 1031 // known bits. However this is expensive to compute, so be lazy about it and 1032 // only compute it when absolutely necessary. 1033 Optional<bool> ShifterOperandIsNonZero; 1034 1035 // Early exit if we can't constrain any well-defined shift amount. 1036 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1037 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1038 ShifterOperandIsNonZero = 1039 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1040 if (!*ShifterOperandIsNonZero) 1041 return; 1042 } 1043 1044 Known.Zero.setAllBits(); 1045 Known.One.setAllBits(); 1046 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1047 // Combine the shifted known input bits only for those shift amounts 1048 // compatible with its known constraints. 1049 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1050 continue; 1051 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1052 continue; 1053 // If we know the shifter is nonzero, we may be able to infer more known 1054 // bits. This check is sunk down as far as possible to avoid the expensive 1055 // call to isKnownNonZero if the cheaper checks above fail. 1056 if (ShiftAmt == 0) { 1057 if (!ShifterOperandIsNonZero.hasValue()) 1058 ShifterOperandIsNonZero = 1059 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1060 if (*ShifterOperandIsNonZero) 1061 continue; 1062 } 1063 1064 Known = KnownBits::commonBits( 1065 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1066 } 1067 1068 // If the known bits conflict, the result is poison. Return a 0 and hope the 1069 // caller can further optimize that. 1070 if (Known.hasConflict()) 1071 Known.setAllZero(); 1072 } 1073 1074 static void computeKnownBitsFromOperator(const Operator *I, 1075 const APInt &DemandedElts, 1076 KnownBits &Known, unsigned Depth, 1077 const Query &Q) { 1078 unsigned BitWidth = Known.getBitWidth(); 1079 1080 KnownBits Known2(BitWidth); 1081 switch (I->getOpcode()) { 1082 default: break; 1083 case Instruction::Load: 1084 if (MDNode *MD = 1085 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1086 computeKnownBitsFromRangeMetadata(*MD, Known); 1087 break; 1088 case Instruction::And: { 1089 // If either the LHS or the RHS are Zero, the result is zero. 1090 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1091 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1092 1093 Known &= Known2; 1094 1095 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1096 // here we handle the more general case of adding any odd number by 1097 // matching the form add(x, add(x, y)) where y is odd. 1098 // TODO: This could be generalized to clearing any bit set in y where the 1099 // following bit is known to be unset in y. 1100 Value *X = nullptr, *Y = nullptr; 1101 if (!Known.Zero[0] && !Known.One[0] && 1102 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1103 Known2.resetAll(); 1104 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1105 if (Known2.countMinTrailingOnes() > 0) 1106 Known.Zero.setBit(0); 1107 } 1108 break; 1109 } 1110 case Instruction::Or: 1111 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1112 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1113 1114 Known |= Known2; 1115 break; 1116 case Instruction::Xor: 1117 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1118 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1119 1120 Known ^= Known2; 1121 break; 1122 case Instruction::Mul: { 1123 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1124 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1125 Known, Known2, Depth, Q); 1126 break; 1127 } 1128 case Instruction::UDiv: { 1129 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1130 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1131 Known = KnownBits::udiv(Known, Known2); 1132 break; 1133 } 1134 case Instruction::Select: { 1135 const Value *LHS = nullptr, *RHS = nullptr; 1136 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1137 if (SelectPatternResult::isMinOrMax(SPF)) { 1138 computeKnownBits(RHS, Known, Depth + 1, Q); 1139 computeKnownBits(LHS, Known2, Depth + 1, Q); 1140 switch (SPF) { 1141 default: 1142 llvm_unreachable("Unhandled select pattern flavor!"); 1143 case SPF_SMAX: 1144 Known = KnownBits::smax(Known, Known2); 1145 break; 1146 case SPF_SMIN: 1147 Known = KnownBits::smin(Known, Known2); 1148 break; 1149 case SPF_UMAX: 1150 Known = KnownBits::umax(Known, Known2); 1151 break; 1152 case SPF_UMIN: 1153 Known = KnownBits::umin(Known, Known2); 1154 break; 1155 } 1156 break; 1157 } 1158 1159 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1160 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1161 1162 // Only known if known in both the LHS and RHS. 1163 Known = KnownBits::commonBits(Known, Known2); 1164 1165 if (SPF == SPF_ABS) { 1166 // RHS from matchSelectPattern returns the negation part of abs pattern. 1167 // If the negate has an NSW flag we can assume the sign bit of the result 1168 // will be 0 because that makes abs(INT_MIN) undefined. 1169 if (match(RHS, m_Neg(m_Specific(LHS))) && 1170 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1171 Known.Zero.setSignBit(); 1172 } 1173 1174 break; 1175 } 1176 case Instruction::FPTrunc: 1177 case Instruction::FPExt: 1178 case Instruction::FPToUI: 1179 case Instruction::FPToSI: 1180 case Instruction::SIToFP: 1181 case Instruction::UIToFP: 1182 break; // Can't work with floating point. 1183 case Instruction::PtrToInt: 1184 case Instruction::IntToPtr: 1185 // Fall through and handle them the same as zext/trunc. 1186 LLVM_FALLTHROUGH; 1187 case Instruction::ZExt: 1188 case Instruction::Trunc: { 1189 Type *SrcTy = I->getOperand(0)->getType(); 1190 1191 unsigned SrcBitWidth; 1192 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1193 // which fall through here. 1194 Type *ScalarTy = SrcTy->getScalarType(); 1195 SrcBitWidth = ScalarTy->isPointerTy() ? 1196 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1197 Q.DL.getTypeSizeInBits(ScalarTy); 1198 1199 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1200 Known = Known.anyextOrTrunc(SrcBitWidth); 1201 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1202 Known = Known.zextOrTrunc(BitWidth); 1203 break; 1204 } 1205 case Instruction::BitCast: { 1206 Type *SrcTy = I->getOperand(0)->getType(); 1207 if (SrcTy->isIntOrPtrTy() && 1208 // TODO: For now, not handling conversions like: 1209 // (bitcast i64 %x to <2 x i32>) 1210 !I->getType()->isVectorTy()) { 1211 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1212 break; 1213 } 1214 break; 1215 } 1216 case Instruction::SExt: { 1217 // Compute the bits in the result that are not present in the input. 1218 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1219 1220 Known = Known.trunc(SrcBitWidth); 1221 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1222 // If the sign bit of the input is known set or clear, then we know the 1223 // top bits of the result. 1224 Known = Known.sext(BitWidth); 1225 break; 1226 } 1227 case Instruction::Shl: { 1228 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1229 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1230 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1231 // If this shift has "nsw" keyword, then the result is either a poison 1232 // value or has the same sign bit as the first operand. 1233 if (NSW) { 1234 if (KnownVal.Zero.isSignBitSet()) 1235 Result.Zero.setSignBit(); 1236 if (KnownVal.One.isSignBitSet()) 1237 Result.One.setSignBit(); 1238 } 1239 return Result; 1240 }; 1241 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1242 KF); 1243 break; 1244 } 1245 case Instruction::LShr: { 1246 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1247 return KnownBits::lshr(KnownVal, KnownAmt); 1248 }; 1249 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1250 KF); 1251 break; 1252 } 1253 case Instruction::AShr: { 1254 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1255 return KnownBits::ashr(KnownVal, KnownAmt); 1256 }; 1257 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1258 KF); 1259 break; 1260 } 1261 case Instruction::Sub: { 1262 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1263 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1264 DemandedElts, Known, Known2, Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 DemandedElts, Known, Known2, Depth, Q); 1271 break; 1272 } 1273 case Instruction::SRem: 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 Known = KnownBits::srem(Known, Known2); 1277 break; 1278 1279 case Instruction::URem: 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1282 Known = KnownBits::urem(Known, Known2); 1283 break; 1284 case Instruction::Alloca: 1285 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1286 break; 1287 case Instruction::GetElementPtr: { 1288 // Analyze all of the subscripts of this getelementptr instruction 1289 // to determine if we can prove known low zero bits. 1290 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1291 // Accumulate the constant indices in a separate variable 1292 // to minimize the number of calls to computeForAddSub. 1293 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1294 1295 gep_type_iterator GTI = gep_type_begin(I); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor.Zero = ~TypeSizeInBytes; 1351 ScalingFactor.One = TypeSizeInBytes; 1352 } 1353 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 // Note that inbounds does *not* guarantee nsw for the addition, as only 1361 // the offset is signed, while the base address is unsigned. 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1364 } 1365 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1366 KnownBits Index(BitWidth); 1367 Index.Zero = ~AccConstIndices; 1368 Index.One = AccConstIndices; 1369 Known = KnownBits::computeForAddSub( 1370 /*Add=*/true, /*NSW=*/false, Known, Index); 1371 } 1372 break; 1373 } 1374 case Instruction::PHI: { 1375 const PHINode *P = cast<PHINode>(I); 1376 // Handle the case of a simple two-predecessor recurrence PHI. 1377 // There's a lot more that could theoretically be done here, but 1378 // this is sufficient to catch some interesting cases. 1379 if (P->getNumIncomingValues() == 2) { 1380 for (unsigned i = 0; i != 2; ++i) { 1381 Value *L = P->getIncomingValue(i); 1382 Value *R = P->getIncomingValue(!i); 1383 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1384 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1385 Operator *LU = dyn_cast<Operator>(L); 1386 if (!LU) 1387 continue; 1388 unsigned Opcode = LU->getOpcode(); 1389 // Check for operations that have the property that if 1390 // both their operands have low zero bits, the result 1391 // will have low zero bits. 1392 if (Opcode == Instruction::Add || 1393 Opcode == Instruction::Sub || 1394 Opcode == Instruction::And || 1395 Opcode == Instruction::Or || 1396 Opcode == Instruction::Mul) { 1397 Value *LL = LU->getOperand(0); 1398 Value *LR = LU->getOperand(1); 1399 // Find a recurrence. 1400 if (LL == I) 1401 L = LR; 1402 else if (LR == I) 1403 L = LL; 1404 else 1405 continue; // Check for recurrence with L and R flipped. 1406 1407 // Change the context instruction to the "edge" that flows into the 1408 // phi. This is important because that is where the value is actually 1409 // "evaluated" even though it is used later somewhere else. (see also 1410 // D69571). 1411 Query RecQ = Q; 1412 1413 // Ok, we have a PHI of the form L op= R. Check for low 1414 // zero bits. 1415 RecQ.CxtI = RInst; 1416 computeKnownBits(R, Known2, Depth + 1, RecQ); 1417 1418 // We need to take the minimum number of known bits 1419 KnownBits Known3(BitWidth); 1420 RecQ.CxtI = LInst; 1421 computeKnownBits(L, Known3, Depth + 1, RecQ); 1422 1423 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1424 Known3.countMinTrailingZeros())); 1425 1426 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1427 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1428 // If initial value of recurrence is nonnegative, and we are adding 1429 // a nonnegative number with nsw, the result can only be nonnegative 1430 // or poison value regardless of the number of times we execute the 1431 // add in phi recurrence. If initial value is negative and we are 1432 // adding a negative number with nsw, the result can only be 1433 // negative or poison value. Similar arguments apply to sub and mul. 1434 // 1435 // (add non-negative, non-negative) --> non-negative 1436 // (add negative, negative) --> negative 1437 if (Opcode == Instruction::Add) { 1438 if (Known2.isNonNegative() && Known3.isNonNegative()) 1439 Known.makeNonNegative(); 1440 else if (Known2.isNegative() && Known3.isNegative()) 1441 Known.makeNegative(); 1442 } 1443 1444 // (sub nsw non-negative, negative) --> non-negative 1445 // (sub nsw negative, non-negative) --> negative 1446 else if (Opcode == Instruction::Sub && LL == I) { 1447 if (Known2.isNonNegative() && Known3.isNegative()) 1448 Known.makeNonNegative(); 1449 else if (Known2.isNegative() && Known3.isNonNegative()) 1450 Known.makeNegative(); 1451 } 1452 1453 // (mul nsw non-negative, non-negative) --> non-negative 1454 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1455 Known3.isNonNegative()) 1456 Known.makeNonNegative(); 1457 } 1458 1459 break; 1460 } 1461 } 1462 } 1463 1464 // Unreachable blocks may have zero-operand PHI nodes. 1465 if (P->getNumIncomingValues() == 0) 1466 break; 1467 1468 // Otherwise take the unions of the known bit sets of the operands, 1469 // taking conservative care to avoid excessive recursion. 1470 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1471 // Skip if every incoming value references to ourself. 1472 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1473 break; 1474 1475 Known.Zero.setAllBits(); 1476 Known.One.setAllBits(); 1477 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1478 Value *IncValue = P->getIncomingValue(u); 1479 // Skip direct self references. 1480 if (IncValue == P) continue; 1481 1482 // Change the context instruction to the "edge" that flows into the 1483 // phi. This is important because that is where the value is actually 1484 // "evaluated" even though it is used later somewhere else. (see also 1485 // D69571). 1486 Query RecQ = Q; 1487 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1488 1489 Known2 = KnownBits(BitWidth); 1490 // Recurse, but cap the recursion to one level, because we don't 1491 // want to waste time spinning around in loops. 1492 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1493 Known = KnownBits::commonBits(Known, Known2); 1494 // If all bits have been ruled out, there's no need to check 1495 // more operands. 1496 if (Known.isUnknown()) 1497 break; 1498 } 1499 } 1500 break; 1501 } 1502 case Instruction::Call: 1503 case Instruction::Invoke: 1504 // If range metadata is attached to this call, set known bits from that, 1505 // and then intersect with known bits based on other properties of the 1506 // function. 1507 if (MDNode *MD = 1508 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1509 computeKnownBitsFromRangeMetadata(*MD, Known); 1510 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1511 computeKnownBits(RV, Known2, Depth + 1, Q); 1512 Known.Zero |= Known2.Zero; 1513 Known.One |= Known2.One; 1514 } 1515 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1516 switch (II->getIntrinsicID()) { 1517 default: break; 1518 case Intrinsic::abs: { 1519 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1520 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1521 Known = Known2.abs(IntMinIsPoison); 1522 break; 1523 } 1524 case Intrinsic::bitreverse: 1525 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1526 Known.Zero |= Known2.Zero.reverseBits(); 1527 Known.One |= Known2.One.reverseBits(); 1528 break; 1529 case Intrinsic::bswap: 1530 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1531 Known.Zero |= Known2.Zero.byteSwap(); 1532 Known.One |= Known2.One.byteSwap(); 1533 break; 1534 case Intrinsic::ctlz: { 1535 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1536 // If we have a known 1, its position is our upper bound. 1537 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1538 // If this call is undefined for 0, the result will be less than 2^n. 1539 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1540 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1541 unsigned LowBits = Log2_32(PossibleLZ)+1; 1542 Known.Zero.setBitsFrom(LowBits); 1543 break; 1544 } 1545 case Intrinsic::cttz: { 1546 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1547 // If we have a known 1, its position is our upper bound. 1548 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1549 // If this call is undefined for 0, the result will be less than 2^n. 1550 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1551 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1552 unsigned LowBits = Log2_32(PossibleTZ)+1; 1553 Known.Zero.setBitsFrom(LowBits); 1554 break; 1555 } 1556 case Intrinsic::ctpop: { 1557 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1558 // We can bound the space the count needs. Also, bits known to be zero 1559 // can't contribute to the population. 1560 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1561 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1562 Known.Zero.setBitsFrom(LowBits); 1563 // TODO: we could bound KnownOne using the lower bound on the number 1564 // of bits which might be set provided by popcnt KnownOne2. 1565 break; 1566 } 1567 case Intrinsic::fshr: 1568 case Intrinsic::fshl: { 1569 const APInt *SA; 1570 if (!match(I->getOperand(2), m_APInt(SA))) 1571 break; 1572 1573 // Normalize to funnel shift left. 1574 uint64_t ShiftAmt = SA->urem(BitWidth); 1575 if (II->getIntrinsicID() == Intrinsic::fshr) 1576 ShiftAmt = BitWidth - ShiftAmt; 1577 1578 KnownBits Known3(BitWidth); 1579 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1580 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1581 1582 Known.Zero = 1583 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1584 Known.One = 1585 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1586 break; 1587 } 1588 case Intrinsic::uadd_sat: 1589 case Intrinsic::usub_sat: { 1590 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1591 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1592 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1593 1594 // Add: Leading ones of either operand are preserved. 1595 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1596 // as leading zeros in the result. 1597 unsigned LeadingKnown; 1598 if (IsAdd) 1599 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1600 Known2.countMinLeadingOnes()); 1601 else 1602 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1603 Known2.countMinLeadingOnes()); 1604 1605 Known = KnownBits::computeForAddSub( 1606 IsAdd, /* NSW */ false, Known, Known2); 1607 1608 // We select between the operation result and all-ones/zero 1609 // respectively, so we can preserve known ones/zeros. 1610 if (IsAdd) { 1611 Known.One.setHighBits(LeadingKnown); 1612 Known.Zero.clearAllBits(); 1613 } else { 1614 Known.Zero.setHighBits(LeadingKnown); 1615 Known.One.clearAllBits(); 1616 } 1617 break; 1618 } 1619 case Intrinsic::umin: 1620 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1621 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1622 Known = KnownBits::umin(Known, Known2); 1623 break; 1624 case Intrinsic::umax: 1625 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1626 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1627 Known = KnownBits::umax(Known, Known2); 1628 break; 1629 case Intrinsic::smin: 1630 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1631 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1632 Known = KnownBits::smin(Known, Known2); 1633 break; 1634 case Intrinsic::smax: 1635 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1636 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1637 Known = KnownBits::smax(Known, Known2); 1638 break; 1639 case Intrinsic::x86_sse42_crc32_64_64: 1640 Known.Zero.setBitsFrom(32); 1641 break; 1642 } 1643 } 1644 break; 1645 case Instruction::ShuffleVector: { 1646 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1647 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1648 if (!Shuf) { 1649 Known.resetAll(); 1650 return; 1651 } 1652 // For undef elements, we don't know anything about the common state of 1653 // the shuffle result. 1654 APInt DemandedLHS, DemandedRHS; 1655 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1656 Known.resetAll(); 1657 return; 1658 } 1659 Known.One.setAllBits(); 1660 Known.Zero.setAllBits(); 1661 if (!!DemandedLHS) { 1662 const Value *LHS = Shuf->getOperand(0); 1663 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1664 // If we don't know any bits, early out. 1665 if (Known.isUnknown()) 1666 break; 1667 } 1668 if (!!DemandedRHS) { 1669 const Value *RHS = Shuf->getOperand(1); 1670 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1671 Known = KnownBits::commonBits(Known, Known2); 1672 } 1673 break; 1674 } 1675 case Instruction::InsertElement: { 1676 const Value *Vec = I->getOperand(0); 1677 const Value *Elt = I->getOperand(1); 1678 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1679 // Early out if the index is non-constant or out-of-range. 1680 unsigned NumElts = DemandedElts.getBitWidth(); 1681 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1682 Known.resetAll(); 1683 return; 1684 } 1685 Known.One.setAllBits(); 1686 Known.Zero.setAllBits(); 1687 unsigned EltIdx = CIdx->getZExtValue(); 1688 // Do we demand the inserted element? 1689 if (DemandedElts[EltIdx]) { 1690 computeKnownBits(Elt, Known, Depth + 1, Q); 1691 // If we don't know any bits, early out. 1692 if (Known.isUnknown()) 1693 break; 1694 } 1695 // We don't need the base vector element that has been inserted. 1696 APInt DemandedVecElts = DemandedElts; 1697 DemandedVecElts.clearBit(EltIdx); 1698 if (!!DemandedVecElts) { 1699 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1700 Known = KnownBits::commonBits(Known, Known2); 1701 } 1702 break; 1703 } 1704 case Instruction::ExtractElement: { 1705 // Look through extract element. If the index is non-constant or 1706 // out-of-range demand all elements, otherwise just the extracted element. 1707 const Value *Vec = I->getOperand(0); 1708 const Value *Idx = I->getOperand(1); 1709 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1710 if (isa<ScalableVectorType>(Vec->getType())) { 1711 // FIXME: there's probably *something* we can do with scalable vectors 1712 Known.resetAll(); 1713 break; 1714 } 1715 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1716 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1717 if (CIdx && CIdx->getValue().ult(NumElts)) 1718 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1719 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1720 break; 1721 } 1722 case Instruction::ExtractValue: 1723 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1724 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1725 if (EVI->getNumIndices() != 1) break; 1726 if (EVI->getIndices()[0] == 0) { 1727 switch (II->getIntrinsicID()) { 1728 default: break; 1729 case Intrinsic::uadd_with_overflow: 1730 case Intrinsic::sadd_with_overflow: 1731 computeKnownBitsAddSub(true, II->getArgOperand(0), 1732 II->getArgOperand(1), false, DemandedElts, 1733 Known, Known2, Depth, Q); 1734 break; 1735 case Intrinsic::usub_with_overflow: 1736 case Intrinsic::ssub_with_overflow: 1737 computeKnownBitsAddSub(false, II->getArgOperand(0), 1738 II->getArgOperand(1), false, DemandedElts, 1739 Known, Known2, Depth, Q); 1740 break; 1741 case Intrinsic::umul_with_overflow: 1742 case Intrinsic::smul_with_overflow: 1743 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1744 DemandedElts, Known, Known2, Depth, Q); 1745 break; 1746 } 1747 } 1748 } 1749 break; 1750 case Instruction::Freeze: 1751 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1752 Depth + 1)) 1753 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1754 break; 1755 } 1756 } 1757 1758 /// Determine which bits of V are known to be either zero or one and return 1759 /// them. 1760 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1761 unsigned Depth, const Query &Q) { 1762 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1763 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1764 return Known; 1765 } 1766 1767 /// Determine which bits of V are known to be either zero or one and return 1768 /// them. 1769 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1770 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1771 computeKnownBits(V, Known, Depth, Q); 1772 return Known; 1773 } 1774 1775 /// Determine which bits of V are known to be either zero or one and return 1776 /// them in the Known bit set. 1777 /// 1778 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1779 /// we cannot optimize based on the assumption that it is zero without changing 1780 /// it to be an explicit zero. If we don't change it to zero, other code could 1781 /// optimized based on the contradictory assumption that it is non-zero. 1782 /// Because instcombine aggressively folds operations with undef args anyway, 1783 /// this won't lose us code quality. 1784 /// 1785 /// This function is defined on values with integer type, values with pointer 1786 /// type, and vectors of integers. In the case 1787 /// where V is a vector, known zero, and known one values are the 1788 /// same width as the vector element, and the bit is set only if it is true 1789 /// for all of the demanded elements in the vector specified by DemandedElts. 1790 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1791 KnownBits &Known, unsigned Depth, const Query &Q) { 1792 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1793 // No demanded elts or V is a scalable vector, better to assume we don't 1794 // know anything. 1795 Known.resetAll(); 1796 return; 1797 } 1798 1799 assert(V && "No Value?"); 1800 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1801 1802 #ifndef NDEBUG 1803 Type *Ty = V->getType(); 1804 unsigned BitWidth = Known.getBitWidth(); 1805 1806 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1807 "Not integer or pointer type!"); 1808 1809 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1810 assert( 1811 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1812 "DemandedElt width should equal the fixed vector number of elements"); 1813 } else { 1814 assert(DemandedElts == APInt(1, 1) && 1815 "DemandedElt width should be 1 for scalars"); 1816 } 1817 1818 Type *ScalarTy = Ty->getScalarType(); 1819 if (ScalarTy->isPointerTy()) { 1820 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1821 "V and Known should have same BitWidth"); 1822 } else { 1823 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1824 "V and Known should have same BitWidth"); 1825 } 1826 #endif 1827 1828 const APInt *C; 1829 if (match(V, m_APInt(C))) { 1830 // We know all of the bits for a scalar constant or a splat vector constant! 1831 Known.One = *C; 1832 Known.Zero = ~Known.One; 1833 return; 1834 } 1835 // Null and aggregate-zero are all-zeros. 1836 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1837 Known.setAllZero(); 1838 return; 1839 } 1840 // Handle a constant vector by taking the intersection of the known bits of 1841 // each element. 1842 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1843 // We know that CDV must be a vector of integers. Take the intersection of 1844 // each element. 1845 Known.Zero.setAllBits(); Known.One.setAllBits(); 1846 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1847 if (!DemandedElts[i]) 1848 continue; 1849 APInt Elt = CDV->getElementAsAPInt(i); 1850 Known.Zero &= ~Elt; 1851 Known.One &= Elt; 1852 } 1853 return; 1854 } 1855 1856 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1857 // We know that CV must be a vector of integers. Take the intersection of 1858 // each element. 1859 Known.Zero.setAllBits(); Known.One.setAllBits(); 1860 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1861 if (!DemandedElts[i]) 1862 continue; 1863 Constant *Element = CV->getAggregateElement(i); 1864 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1865 if (!ElementCI) { 1866 Known.resetAll(); 1867 return; 1868 } 1869 const APInt &Elt = ElementCI->getValue(); 1870 Known.Zero &= ~Elt; 1871 Known.One &= Elt; 1872 } 1873 return; 1874 } 1875 1876 // Start out not knowing anything. 1877 Known.resetAll(); 1878 1879 // We can't imply anything about undefs. 1880 if (isa<UndefValue>(V)) 1881 return; 1882 1883 // There's no point in looking through other users of ConstantData for 1884 // assumptions. Confirm that we've handled them all. 1885 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1886 1887 // All recursive calls that increase depth must come after this. 1888 if (Depth == MaxAnalysisRecursionDepth) 1889 return; 1890 1891 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1892 // the bits of its aliasee. 1893 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1894 if (!GA->isInterposable()) 1895 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1896 return; 1897 } 1898 1899 if (const Operator *I = dyn_cast<Operator>(V)) 1900 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1901 1902 // Aligned pointers have trailing zeros - refine Known.Zero set 1903 if (isa<PointerType>(V->getType())) { 1904 Align Alignment = V->getPointerAlignment(Q.DL); 1905 Known.Zero.setLowBits(Log2(Alignment)); 1906 } 1907 1908 // computeKnownBitsFromAssume strictly refines Known. 1909 // Therefore, we run them after computeKnownBitsFromOperator. 1910 1911 // Check whether a nearby assume intrinsic can determine some known bits. 1912 computeKnownBitsFromAssume(V, Known, Depth, Q); 1913 1914 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1915 } 1916 1917 /// Return true if the given value is known to have exactly one 1918 /// bit set when defined. For vectors return true if every element is known to 1919 /// be a power of two when defined. Supports values with integer or pointer 1920 /// types and vectors of integers. 1921 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1922 const Query &Q) { 1923 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1924 1925 // Attempt to match against constants. 1926 if (OrZero && match(V, m_Power2OrZero())) 1927 return true; 1928 if (match(V, m_Power2())) 1929 return true; 1930 1931 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1932 // it is shifted off the end then the result is undefined. 1933 if (match(V, m_Shl(m_One(), m_Value()))) 1934 return true; 1935 1936 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1937 // the bottom. If it is shifted off the bottom then the result is undefined. 1938 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1939 return true; 1940 1941 // The remaining tests are all recursive, so bail out if we hit the limit. 1942 if (Depth++ == MaxAnalysisRecursionDepth) 1943 return false; 1944 1945 Value *X = nullptr, *Y = nullptr; 1946 // A shift left or a logical shift right of a power of two is a power of two 1947 // or zero. 1948 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1949 match(V, m_LShr(m_Value(X), m_Value())))) 1950 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1951 1952 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1953 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1954 1955 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1956 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1957 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1958 1959 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1960 // A power of two and'd with anything is a power of two or zero. 1961 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1962 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1963 return true; 1964 // X & (-X) is always a power of two or zero. 1965 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1966 return true; 1967 return false; 1968 } 1969 1970 // Adding a power-of-two or zero to the same power-of-two or zero yields 1971 // either the original power-of-two, a larger power-of-two or zero. 1972 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1973 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1974 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1975 Q.IIQ.hasNoSignedWrap(VOBO)) { 1976 if (match(X, m_And(m_Specific(Y), m_Value())) || 1977 match(X, m_And(m_Value(), m_Specific(Y)))) 1978 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1979 return true; 1980 if (match(Y, m_And(m_Specific(X), m_Value())) || 1981 match(Y, m_And(m_Value(), m_Specific(X)))) 1982 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1983 return true; 1984 1985 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1986 KnownBits LHSBits(BitWidth); 1987 computeKnownBits(X, LHSBits, Depth, Q); 1988 1989 KnownBits RHSBits(BitWidth); 1990 computeKnownBits(Y, RHSBits, Depth, Q); 1991 // If i8 V is a power of two or zero: 1992 // ZeroBits: 1 1 1 0 1 1 1 1 1993 // ~ZeroBits: 0 0 0 1 0 0 0 0 1994 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1995 // If OrZero isn't set, we cannot give back a zero result. 1996 // Make sure either the LHS or RHS has a bit set. 1997 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1998 return true; 1999 } 2000 } 2001 2002 // An exact divide or right shift can only shift off zero bits, so the result 2003 // is a power of two only if the first operand is a power of two and not 2004 // copying a sign bit (sdiv int_min, 2). 2005 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2006 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2007 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2008 Depth, Q); 2009 } 2010 2011 return false; 2012 } 2013 2014 /// Test whether a GEP's result is known to be non-null. 2015 /// 2016 /// Uses properties inherent in a GEP to try to determine whether it is known 2017 /// to be non-null. 2018 /// 2019 /// Currently this routine does not support vector GEPs. 2020 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2021 const Query &Q) { 2022 const Function *F = nullptr; 2023 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2024 F = I->getFunction(); 2025 2026 if (!GEP->isInBounds() || 2027 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2028 return false; 2029 2030 // FIXME: Support vector-GEPs. 2031 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2032 2033 // If the base pointer is non-null, we cannot walk to a null address with an 2034 // inbounds GEP in address space zero. 2035 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2036 return true; 2037 2038 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2039 // If so, then the GEP cannot produce a null pointer, as doing so would 2040 // inherently violate the inbounds contract within address space zero. 2041 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2042 GTI != GTE; ++GTI) { 2043 // Struct types are easy -- they must always be indexed by a constant. 2044 if (StructType *STy = GTI.getStructTypeOrNull()) { 2045 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2046 unsigned ElementIdx = OpC->getZExtValue(); 2047 const StructLayout *SL = Q.DL.getStructLayout(STy); 2048 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2049 if (ElementOffset > 0) 2050 return true; 2051 continue; 2052 } 2053 2054 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2055 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2056 continue; 2057 2058 // Fast path the constant operand case both for efficiency and so we don't 2059 // increment Depth when just zipping down an all-constant GEP. 2060 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2061 if (!OpC->isZero()) 2062 return true; 2063 continue; 2064 } 2065 2066 // We post-increment Depth here because while isKnownNonZero increments it 2067 // as well, when we pop back up that increment won't persist. We don't want 2068 // to recurse 10k times just because we have 10k GEP operands. We don't 2069 // bail completely out because we want to handle constant GEPs regardless 2070 // of depth. 2071 if (Depth++ >= MaxAnalysisRecursionDepth) 2072 continue; 2073 2074 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2075 return true; 2076 } 2077 2078 return false; 2079 } 2080 2081 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2082 const Instruction *CtxI, 2083 const DominatorTree *DT) { 2084 if (isa<Constant>(V)) 2085 return false; 2086 2087 if (!CtxI || !DT) 2088 return false; 2089 2090 unsigned NumUsesExplored = 0; 2091 for (auto *U : V->users()) { 2092 // Avoid massive lists 2093 if (NumUsesExplored >= DomConditionsMaxUses) 2094 break; 2095 NumUsesExplored++; 2096 2097 // If the value is used as an argument to a call or invoke, then argument 2098 // attributes may provide an answer about null-ness. 2099 if (const auto *CB = dyn_cast<CallBase>(U)) 2100 if (auto *CalledFunc = CB->getCalledFunction()) 2101 for (const Argument &Arg : CalledFunc->args()) 2102 if (CB->getArgOperand(Arg.getArgNo()) == V && 2103 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2104 return true; 2105 2106 // If the value is used as a load/store, then the pointer must be non null. 2107 if (V == getLoadStorePointerOperand(U)) { 2108 const Instruction *I = cast<Instruction>(U); 2109 if (!NullPointerIsDefined(I->getFunction(), 2110 V->getType()->getPointerAddressSpace()) && 2111 DT->dominates(I, CtxI)) 2112 return true; 2113 } 2114 2115 // Consider only compare instructions uniquely controlling a branch 2116 CmpInst::Predicate Pred; 2117 if (!match(const_cast<User *>(U), 2118 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2119 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2120 continue; 2121 2122 SmallVector<const User *, 4> WorkList; 2123 SmallPtrSet<const User *, 4> Visited; 2124 for (auto *CmpU : U->users()) { 2125 assert(WorkList.empty() && "Should be!"); 2126 if (Visited.insert(CmpU).second) 2127 WorkList.push_back(CmpU); 2128 2129 while (!WorkList.empty()) { 2130 auto *Curr = WorkList.pop_back_val(); 2131 2132 // If a user is an AND, add all its users to the work list. We only 2133 // propagate "pred != null" condition through AND because it is only 2134 // correct to assume that all conditions of AND are met in true branch. 2135 // TODO: Support similar logic of OR and EQ predicate? 2136 if (Pred == ICmpInst::ICMP_NE) 2137 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2138 if (BO->getOpcode() == Instruction::And) { 2139 for (auto *BOU : BO->users()) 2140 if (Visited.insert(BOU).second) 2141 WorkList.push_back(BOU); 2142 continue; 2143 } 2144 2145 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2146 assert(BI->isConditional() && "uses a comparison!"); 2147 2148 BasicBlock *NonNullSuccessor = 2149 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2150 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2151 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2152 return true; 2153 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2154 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2155 return true; 2156 } 2157 } 2158 } 2159 } 2160 2161 return false; 2162 } 2163 2164 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2165 /// ensure that the value it's attached to is never Value? 'RangeType' is 2166 /// is the type of the value described by the range. 2167 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2168 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2169 assert(NumRanges >= 1); 2170 for (unsigned i = 0; i < NumRanges; ++i) { 2171 ConstantInt *Lower = 2172 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2173 ConstantInt *Upper = 2174 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2175 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2176 if (Range.contains(Value)) 2177 return false; 2178 } 2179 return true; 2180 } 2181 2182 /// Return true if the given value is known to be non-zero when defined. For 2183 /// vectors, return true if every demanded element is known to be non-zero when 2184 /// defined. For pointers, if the context instruction and dominator tree are 2185 /// specified, perform context-sensitive analysis and return true if the 2186 /// pointer couldn't possibly be null at the specified instruction. 2187 /// Supports values with integer or pointer type and vectors of integers. 2188 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2189 const Query &Q) { 2190 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2191 // vector 2192 if (isa<ScalableVectorType>(V->getType())) 2193 return false; 2194 2195 if (auto *C = dyn_cast<Constant>(V)) { 2196 if (C->isNullValue()) 2197 return false; 2198 if (isa<ConstantInt>(C)) 2199 // Must be non-zero due to null test above. 2200 return true; 2201 2202 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2203 // See the comment for IntToPtr/PtrToInt instructions below. 2204 if (CE->getOpcode() == Instruction::IntToPtr || 2205 CE->getOpcode() == Instruction::PtrToInt) 2206 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2207 .getFixedSize() <= 2208 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2209 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2210 } 2211 2212 // For constant vectors, check that all elements are undefined or known 2213 // non-zero to determine that the whole vector is known non-zero. 2214 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2215 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2216 if (!DemandedElts[i]) 2217 continue; 2218 Constant *Elt = C->getAggregateElement(i); 2219 if (!Elt || Elt->isNullValue()) 2220 return false; 2221 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2222 return false; 2223 } 2224 return true; 2225 } 2226 2227 // A global variable in address space 0 is non null unless extern weak 2228 // or an absolute symbol reference. Other address spaces may have null as a 2229 // valid address for a global, so we can't assume anything. 2230 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2231 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2232 GV->getType()->getAddressSpace() == 0) 2233 return true; 2234 } else 2235 return false; 2236 } 2237 2238 if (auto *I = dyn_cast<Instruction>(V)) { 2239 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2240 // If the possible ranges don't contain zero, then the value is 2241 // definitely non-zero. 2242 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2243 const APInt ZeroValue(Ty->getBitWidth(), 0); 2244 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2245 return true; 2246 } 2247 } 2248 } 2249 2250 if (isKnownNonZeroFromAssume(V, Q)) 2251 return true; 2252 2253 // Some of the tests below are recursive, so bail out if we hit the limit. 2254 if (Depth++ >= MaxAnalysisRecursionDepth) 2255 return false; 2256 2257 // Check for pointer simplifications. 2258 2259 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2260 // Alloca never returns null, malloc might. 2261 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2262 return true; 2263 2264 // A byval, inalloca may not be null in a non-default addres space. A 2265 // nonnull argument is assumed never 0. 2266 if (const Argument *A = dyn_cast<Argument>(V)) { 2267 if (((A->hasPassPointeeByValueCopyAttr() && 2268 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2269 A->hasNonNullAttr())) 2270 return true; 2271 } 2272 2273 // A Load tagged with nonnull metadata is never null. 2274 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2275 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2276 return true; 2277 2278 if (const auto *Call = dyn_cast<CallBase>(V)) { 2279 if (Call->isReturnNonNull()) 2280 return true; 2281 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2282 return isKnownNonZero(RP, Depth, Q); 2283 } 2284 } 2285 2286 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2287 return true; 2288 2289 // Check for recursive pointer simplifications. 2290 if (V->getType()->isPointerTy()) { 2291 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2292 // do not alter the value, or at least not the nullness property of the 2293 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2294 // 2295 // Note that we have to take special care to avoid looking through 2296 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2297 // as casts that can alter the value, e.g., AddrSpaceCasts. 2298 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2299 return isGEPKnownNonNull(GEP, Depth, Q); 2300 2301 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2302 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2303 2304 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2305 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2306 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2307 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2308 } 2309 2310 // Similar to int2ptr above, we can look through ptr2int here if the cast 2311 // is a no-op or an extend and not a truncate. 2312 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2313 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2314 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2315 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2316 2317 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2318 2319 // X | Y != 0 if X != 0 or Y != 0. 2320 Value *X = nullptr, *Y = nullptr; 2321 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2322 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2323 isKnownNonZero(Y, DemandedElts, Depth, Q); 2324 2325 // ext X != 0 if X != 0. 2326 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2327 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2328 2329 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2330 // if the lowest bit is shifted off the end. 2331 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2332 // shl nuw can't remove any non-zero bits. 2333 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2334 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2335 return isKnownNonZero(X, Depth, Q); 2336 2337 KnownBits Known(BitWidth); 2338 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2339 if (Known.One[0]) 2340 return true; 2341 } 2342 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2343 // defined if the sign bit is shifted off the end. 2344 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2345 // shr exact can only shift out zero bits. 2346 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2347 if (BO->isExact()) 2348 return isKnownNonZero(X, Depth, Q); 2349 2350 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2351 if (Known.isNegative()) 2352 return true; 2353 2354 // If the shifter operand is a constant, and all of the bits shifted 2355 // out are known to be zero, and X is known non-zero then at least one 2356 // non-zero bit must remain. 2357 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2358 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2359 // Is there a known one in the portion not shifted out? 2360 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2361 return true; 2362 // Are all the bits to be shifted out known zero? 2363 if (Known.countMinTrailingZeros() >= ShiftVal) 2364 return isKnownNonZero(X, DemandedElts, Depth, Q); 2365 } 2366 } 2367 // div exact can only produce a zero if the dividend is zero. 2368 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2369 return isKnownNonZero(X, DemandedElts, Depth, Q); 2370 } 2371 // X + Y. 2372 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2373 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2374 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2375 2376 // If X and Y are both non-negative (as signed values) then their sum is not 2377 // zero unless both X and Y are zero. 2378 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2379 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2380 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2381 return true; 2382 2383 // If X and Y are both negative (as signed values) then their sum is not 2384 // zero unless both X and Y equal INT_MIN. 2385 if (XKnown.isNegative() && YKnown.isNegative()) { 2386 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2387 // The sign bit of X is set. If some other bit is set then X is not equal 2388 // to INT_MIN. 2389 if (XKnown.One.intersects(Mask)) 2390 return true; 2391 // The sign bit of Y is set. If some other bit is set then Y is not equal 2392 // to INT_MIN. 2393 if (YKnown.One.intersects(Mask)) 2394 return true; 2395 } 2396 2397 // The sum of a non-negative number and a power of two is not zero. 2398 if (XKnown.isNonNegative() && 2399 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2400 return true; 2401 if (YKnown.isNonNegative() && 2402 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2403 return true; 2404 } 2405 // X * Y. 2406 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2407 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2408 // If X and Y are non-zero then so is X * Y as long as the multiplication 2409 // does not overflow. 2410 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2411 isKnownNonZero(X, DemandedElts, Depth, Q) && 2412 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2413 return true; 2414 } 2415 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2416 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2417 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2418 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2419 return true; 2420 } 2421 // PHI 2422 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2423 // Try and detect a recurrence that monotonically increases from a 2424 // starting value, as these are common as induction variables. 2425 if (PN->getNumIncomingValues() == 2) { 2426 Value *Start = PN->getIncomingValue(0); 2427 Value *Induction = PN->getIncomingValue(1); 2428 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2429 std::swap(Start, Induction); 2430 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2431 if (!C->isZero() && !C->isNegative()) { 2432 ConstantInt *X; 2433 if (Q.IIQ.UseInstrInfo && 2434 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2435 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2436 !X->isNegative()) 2437 return true; 2438 } 2439 } 2440 } 2441 // Check if all incoming values are non-zero using recursion. 2442 Query RecQ = Q; 2443 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2444 return llvm::all_of(PN->operands(), [&](const Use &U) { 2445 if (U.get() == PN) 2446 return true; 2447 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2448 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2449 }); 2450 } 2451 // ExtractElement 2452 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2453 const Value *Vec = EEI->getVectorOperand(); 2454 const Value *Idx = EEI->getIndexOperand(); 2455 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2456 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2457 unsigned NumElts = VecTy->getNumElements(); 2458 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2459 if (CIdx && CIdx->getValue().ult(NumElts)) 2460 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2461 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2462 } 2463 } 2464 // Freeze 2465 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2466 auto *Op = FI->getOperand(0); 2467 if (isKnownNonZero(Op, Depth, Q) && 2468 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2469 return true; 2470 } 2471 2472 KnownBits Known(BitWidth); 2473 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2474 return Known.One != 0; 2475 } 2476 2477 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2478 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2479 // vector 2480 if (isa<ScalableVectorType>(V->getType())) 2481 return false; 2482 2483 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2484 APInt DemandedElts = 2485 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2486 return isKnownNonZero(V, DemandedElts, Depth, Q); 2487 } 2488 2489 /// Return true if V2 == V1 + X, where X is known non-zero. 2490 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2491 const Query &Q) { 2492 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2493 if (!BO || BO->getOpcode() != Instruction::Add) 2494 return false; 2495 Value *Op = nullptr; 2496 if (V2 == BO->getOperand(0)) 2497 Op = BO->getOperand(1); 2498 else if (V2 == BO->getOperand(1)) 2499 Op = BO->getOperand(0); 2500 else 2501 return false; 2502 return isKnownNonZero(Op, Depth + 1, Q); 2503 } 2504 2505 2506 /// Return true if it is known that V1 != V2. 2507 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2508 const Query &Q) { 2509 if (V1 == V2) 2510 return false; 2511 if (V1->getType() != V2->getType()) 2512 // We can't look through casts yet. 2513 return false; 2514 2515 if (Depth >= MaxAnalysisRecursionDepth) 2516 return false; 2517 2518 // See if we can recurse through (exactly one of) our operands. This 2519 // requires our operation be 1-to-1 and map every input value to exactly 2520 // one output value. Such an operation is invertible. 2521 auto *O1 = dyn_cast<Operator>(V1); 2522 auto *O2 = dyn_cast<Operator>(V2); 2523 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2524 switch (O1->getOpcode()) { 2525 default: break; 2526 case Instruction::Add: 2527 case Instruction::Sub: 2528 // Assume operand order has been canonicalized 2529 if (O1->getOperand(0) == O2->getOperand(0)) 2530 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2531 Depth + 1, Q); 2532 if (O1->getOperand(1) == O2->getOperand(1)) 2533 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2534 Depth + 1, Q); 2535 break; 2536 case Instruction::Mul: 2537 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2538 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2539 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2540 if ((!cast<BinaryOperator>(O1)->hasNoUnsignedWrap() || 2541 !cast<BinaryOperator>(O2)->hasNoUnsignedWrap()) && 2542 (!cast<BinaryOperator>(O1)->hasNoSignedWrap() || 2543 !cast<BinaryOperator>(O2)->hasNoSignedWrap())) 2544 break; 2545 2546 // Assume operand order has been canonicalized 2547 if (O1->getOperand(1) == O2->getOperand(1) && 2548 isa<ConstantInt>(O1->getOperand(1)) && 2549 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2550 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2551 Depth + 1, Q); 2552 break; 2553 case Instruction::SExt: 2554 case Instruction::ZExt: 2555 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2556 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2557 Depth + 1, Q); 2558 break; 2559 }; 2560 } 2561 2562 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2563 return true; 2564 2565 if (V1->getType()->isIntOrIntVectorTy()) { 2566 // Are any known bits in V1 contradictory to known bits in V2? If V1 2567 // has a known zero where V2 has a known one, they must not be equal. 2568 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2569 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2570 2571 if (Known1.Zero.intersects(Known2.One) || 2572 Known2.Zero.intersects(Known1.One)) 2573 return true; 2574 } 2575 return false; 2576 } 2577 2578 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2579 /// simplify operations downstream. Mask is known to be zero for bits that V 2580 /// cannot have. 2581 /// 2582 /// This function is defined on values with integer type, values with pointer 2583 /// type, and vectors of integers. In the case 2584 /// where V is a vector, the mask, known zero, and known one values are the 2585 /// same width as the vector element, and the bit is set only if it is true 2586 /// for all of the elements in the vector. 2587 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2588 const Query &Q) { 2589 KnownBits Known(Mask.getBitWidth()); 2590 computeKnownBits(V, Known, Depth, Q); 2591 return Mask.isSubsetOf(Known.Zero); 2592 } 2593 2594 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2595 // Returns the input and lower/upper bounds. 2596 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2597 const APInt *&CLow, const APInt *&CHigh) { 2598 assert(isa<Operator>(Select) && 2599 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2600 "Input should be a Select!"); 2601 2602 const Value *LHS = nullptr, *RHS = nullptr; 2603 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2604 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2605 return false; 2606 2607 if (!match(RHS, m_APInt(CLow))) 2608 return false; 2609 2610 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2611 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2612 if (getInverseMinMaxFlavor(SPF) != SPF2) 2613 return false; 2614 2615 if (!match(RHS2, m_APInt(CHigh))) 2616 return false; 2617 2618 if (SPF == SPF_SMIN) 2619 std::swap(CLow, CHigh); 2620 2621 In = LHS2; 2622 return CLow->sle(*CHigh); 2623 } 2624 2625 /// For vector constants, loop over the elements and find the constant with the 2626 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2627 /// or if any element was not analyzed; otherwise, return the count for the 2628 /// element with the minimum number of sign bits. 2629 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2630 const APInt &DemandedElts, 2631 unsigned TyBits) { 2632 const auto *CV = dyn_cast<Constant>(V); 2633 if (!CV || !isa<FixedVectorType>(CV->getType())) 2634 return 0; 2635 2636 unsigned MinSignBits = TyBits; 2637 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2638 for (unsigned i = 0; i != NumElts; ++i) { 2639 if (!DemandedElts[i]) 2640 continue; 2641 // If we find a non-ConstantInt, bail out. 2642 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2643 if (!Elt) 2644 return 0; 2645 2646 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2647 } 2648 2649 return MinSignBits; 2650 } 2651 2652 static unsigned ComputeNumSignBitsImpl(const Value *V, 2653 const APInt &DemandedElts, 2654 unsigned Depth, const Query &Q); 2655 2656 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2657 unsigned Depth, const Query &Q) { 2658 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2659 assert(Result > 0 && "At least one sign bit needs to be present!"); 2660 return Result; 2661 } 2662 2663 /// Return the number of times the sign bit of the register is replicated into 2664 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2665 /// (itself), but other cases can give us information. For example, immediately 2666 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2667 /// other, so we return 3. For vectors, return the number of sign bits for the 2668 /// vector element with the minimum number of known sign bits of the demanded 2669 /// elements in the vector specified by DemandedElts. 2670 static unsigned ComputeNumSignBitsImpl(const Value *V, 2671 const APInt &DemandedElts, 2672 unsigned Depth, const Query &Q) { 2673 Type *Ty = V->getType(); 2674 2675 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2676 // vector 2677 if (isa<ScalableVectorType>(Ty)) 2678 return 1; 2679 2680 #ifndef NDEBUG 2681 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2682 2683 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2684 assert( 2685 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2686 "DemandedElt width should equal the fixed vector number of elements"); 2687 } else { 2688 assert(DemandedElts == APInt(1, 1) && 2689 "DemandedElt width should be 1 for scalars"); 2690 } 2691 #endif 2692 2693 // We return the minimum number of sign bits that are guaranteed to be present 2694 // in V, so for undef we have to conservatively return 1. We don't have the 2695 // same behavior for poison though -- that's a FIXME today. 2696 2697 Type *ScalarTy = Ty->getScalarType(); 2698 unsigned TyBits = ScalarTy->isPointerTy() ? 2699 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2700 Q.DL.getTypeSizeInBits(ScalarTy); 2701 2702 unsigned Tmp, Tmp2; 2703 unsigned FirstAnswer = 1; 2704 2705 // Note that ConstantInt is handled by the general computeKnownBits case 2706 // below. 2707 2708 if (Depth == MaxAnalysisRecursionDepth) 2709 return 1; 2710 2711 if (auto *U = dyn_cast<Operator>(V)) { 2712 switch (Operator::getOpcode(V)) { 2713 default: break; 2714 case Instruction::SExt: 2715 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2716 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2717 2718 case Instruction::SDiv: { 2719 const APInt *Denominator; 2720 // sdiv X, C -> adds log(C) sign bits. 2721 if (match(U->getOperand(1), m_APInt(Denominator))) { 2722 2723 // Ignore non-positive denominator. 2724 if (!Denominator->isStrictlyPositive()) 2725 break; 2726 2727 // Calculate the incoming numerator bits. 2728 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2729 2730 // Add floor(log(C)) bits to the numerator bits. 2731 return std::min(TyBits, NumBits + Denominator->logBase2()); 2732 } 2733 break; 2734 } 2735 2736 case Instruction::SRem: { 2737 const APInt *Denominator; 2738 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2739 // positive constant. This let us put a lower bound on the number of sign 2740 // bits. 2741 if (match(U->getOperand(1), m_APInt(Denominator))) { 2742 2743 // Ignore non-positive denominator. 2744 if (!Denominator->isStrictlyPositive()) 2745 break; 2746 2747 // Calculate the incoming numerator bits. SRem by a positive constant 2748 // can't lower the number of sign bits. 2749 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2750 2751 // Calculate the leading sign bit constraints by examining the 2752 // denominator. Given that the denominator is positive, there are two 2753 // cases: 2754 // 2755 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2756 // (1 << ceilLogBase2(C)). 2757 // 2758 // 2. the numerator is negative. Then the result range is (-C,0] and 2759 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2760 // 2761 // Thus a lower bound on the number of sign bits is `TyBits - 2762 // ceilLogBase2(C)`. 2763 2764 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2765 return std::max(NumrBits, ResBits); 2766 } 2767 break; 2768 } 2769 2770 case Instruction::AShr: { 2771 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2772 // ashr X, C -> adds C sign bits. Vectors too. 2773 const APInt *ShAmt; 2774 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2775 if (ShAmt->uge(TyBits)) 2776 break; // Bad shift. 2777 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2778 Tmp += ShAmtLimited; 2779 if (Tmp > TyBits) Tmp = TyBits; 2780 } 2781 return Tmp; 2782 } 2783 case Instruction::Shl: { 2784 const APInt *ShAmt; 2785 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2786 // shl destroys sign bits. 2787 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2788 if (ShAmt->uge(TyBits) || // Bad shift. 2789 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2790 Tmp2 = ShAmt->getZExtValue(); 2791 return Tmp - Tmp2; 2792 } 2793 break; 2794 } 2795 case Instruction::And: 2796 case Instruction::Or: 2797 case Instruction::Xor: // NOT is handled here. 2798 // Logical binary ops preserve the number of sign bits at the worst. 2799 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2800 if (Tmp != 1) { 2801 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2802 FirstAnswer = std::min(Tmp, Tmp2); 2803 // We computed what we know about the sign bits as our first 2804 // answer. Now proceed to the generic code that uses 2805 // computeKnownBits, and pick whichever answer is better. 2806 } 2807 break; 2808 2809 case Instruction::Select: { 2810 // If we have a clamp pattern, we know that the number of sign bits will 2811 // be the minimum of the clamp min/max range. 2812 const Value *X; 2813 const APInt *CLow, *CHigh; 2814 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2815 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2816 2817 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2818 if (Tmp == 1) break; 2819 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2820 return std::min(Tmp, Tmp2); 2821 } 2822 2823 case Instruction::Add: 2824 // Add can have at most one carry bit. Thus we know that the output 2825 // is, at worst, one more bit than the inputs. 2826 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2827 if (Tmp == 1) break; 2828 2829 // Special case decrementing a value (ADD X, -1): 2830 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2831 if (CRHS->isAllOnesValue()) { 2832 KnownBits Known(TyBits); 2833 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2834 2835 // If the input is known to be 0 or 1, the output is 0/-1, which is 2836 // all sign bits set. 2837 if ((Known.Zero | 1).isAllOnesValue()) 2838 return TyBits; 2839 2840 // If we are subtracting one from a positive number, there is no carry 2841 // out of the result. 2842 if (Known.isNonNegative()) 2843 return Tmp; 2844 } 2845 2846 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2847 if (Tmp2 == 1) break; 2848 return std::min(Tmp, Tmp2) - 1; 2849 2850 case Instruction::Sub: 2851 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2852 if (Tmp2 == 1) break; 2853 2854 // Handle NEG. 2855 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2856 if (CLHS->isNullValue()) { 2857 KnownBits Known(TyBits); 2858 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2859 // If the input is known to be 0 or 1, the output is 0/-1, which is 2860 // all sign bits set. 2861 if ((Known.Zero | 1).isAllOnesValue()) 2862 return TyBits; 2863 2864 // If the input is known to be positive (the sign bit is known clear), 2865 // the output of the NEG has the same number of sign bits as the 2866 // input. 2867 if (Known.isNonNegative()) 2868 return Tmp2; 2869 2870 // Otherwise, we treat this like a SUB. 2871 } 2872 2873 // Sub can have at most one carry bit. Thus we know that the output 2874 // is, at worst, one more bit than the inputs. 2875 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2876 if (Tmp == 1) break; 2877 return std::min(Tmp, Tmp2) - 1; 2878 2879 case Instruction::Mul: { 2880 // The output of the Mul can be at most twice the valid bits in the 2881 // inputs. 2882 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2883 if (SignBitsOp0 == 1) break; 2884 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2885 if (SignBitsOp1 == 1) break; 2886 unsigned OutValidBits = 2887 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2888 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2889 } 2890 2891 case Instruction::PHI: { 2892 const PHINode *PN = cast<PHINode>(U); 2893 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2894 // Don't analyze large in-degree PHIs. 2895 if (NumIncomingValues > 4) break; 2896 // Unreachable blocks may have zero-operand PHI nodes. 2897 if (NumIncomingValues == 0) break; 2898 2899 // Take the minimum of all incoming values. This can't infinitely loop 2900 // because of our depth threshold. 2901 Query RecQ = Q; 2902 Tmp = TyBits; 2903 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2904 if (Tmp == 1) return Tmp; 2905 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2906 Tmp = std::min( 2907 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2908 } 2909 return Tmp; 2910 } 2911 2912 case Instruction::Trunc: 2913 // FIXME: it's tricky to do anything useful for this, but it is an 2914 // important case for targets like X86. 2915 break; 2916 2917 case Instruction::ExtractElement: 2918 // Look through extract element. At the moment we keep this simple and 2919 // skip tracking the specific element. But at least we might find 2920 // information valid for all elements of the vector (for example if vector 2921 // is sign extended, shifted, etc). 2922 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2923 2924 case Instruction::ShuffleVector: { 2925 // Collect the minimum number of sign bits that are shared by every vector 2926 // element referenced by the shuffle. 2927 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2928 if (!Shuf) { 2929 // FIXME: Add support for shufflevector constant expressions. 2930 return 1; 2931 } 2932 APInt DemandedLHS, DemandedRHS; 2933 // For undef elements, we don't know anything about the common state of 2934 // the shuffle result. 2935 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2936 return 1; 2937 Tmp = std::numeric_limits<unsigned>::max(); 2938 if (!!DemandedLHS) { 2939 const Value *LHS = Shuf->getOperand(0); 2940 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2941 } 2942 // If we don't know anything, early out and try computeKnownBits 2943 // fall-back. 2944 if (Tmp == 1) 2945 break; 2946 if (!!DemandedRHS) { 2947 const Value *RHS = Shuf->getOperand(1); 2948 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2949 Tmp = std::min(Tmp, Tmp2); 2950 } 2951 // If we don't know anything, early out and try computeKnownBits 2952 // fall-back. 2953 if (Tmp == 1) 2954 break; 2955 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2956 return Tmp; 2957 } 2958 case Instruction::Call: { 2959 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2960 switch (II->getIntrinsicID()) { 2961 default: break; 2962 case Intrinsic::abs: 2963 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2964 if (Tmp == 1) break; 2965 2966 // Absolute value reduces number of sign bits by at most 1. 2967 return Tmp - 1; 2968 } 2969 } 2970 } 2971 } 2972 } 2973 2974 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2975 // use this information. 2976 2977 // If we can examine all elements of a vector constant successfully, we're 2978 // done (we can't do any better than that). If not, keep trying. 2979 if (unsigned VecSignBits = 2980 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2981 return VecSignBits; 2982 2983 KnownBits Known(TyBits); 2984 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2985 2986 // If we know that the sign bit is either zero or one, determine the number of 2987 // identical bits in the top of the input value. 2988 return std::max(FirstAnswer, Known.countMinSignBits()); 2989 } 2990 2991 /// This function computes the integer multiple of Base that equals V. 2992 /// If successful, it returns true and returns the multiple in 2993 /// Multiple. If unsuccessful, it returns false. It looks 2994 /// through SExt instructions only if LookThroughSExt is true. 2995 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2996 bool LookThroughSExt, unsigned Depth) { 2997 assert(V && "No Value?"); 2998 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2999 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3000 3001 Type *T = V->getType(); 3002 3003 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3004 3005 if (Base == 0) 3006 return false; 3007 3008 if (Base == 1) { 3009 Multiple = V; 3010 return true; 3011 } 3012 3013 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3014 Constant *BaseVal = ConstantInt::get(T, Base); 3015 if (CO && CO == BaseVal) { 3016 // Multiple is 1. 3017 Multiple = ConstantInt::get(T, 1); 3018 return true; 3019 } 3020 3021 if (CI && CI->getZExtValue() % Base == 0) { 3022 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3023 return true; 3024 } 3025 3026 if (Depth == MaxAnalysisRecursionDepth) return false; 3027 3028 Operator *I = dyn_cast<Operator>(V); 3029 if (!I) return false; 3030 3031 switch (I->getOpcode()) { 3032 default: break; 3033 case Instruction::SExt: 3034 if (!LookThroughSExt) return false; 3035 // otherwise fall through to ZExt 3036 LLVM_FALLTHROUGH; 3037 case Instruction::ZExt: 3038 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3039 LookThroughSExt, Depth+1); 3040 case Instruction::Shl: 3041 case Instruction::Mul: { 3042 Value *Op0 = I->getOperand(0); 3043 Value *Op1 = I->getOperand(1); 3044 3045 if (I->getOpcode() == Instruction::Shl) { 3046 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3047 if (!Op1CI) return false; 3048 // Turn Op0 << Op1 into Op0 * 2^Op1 3049 APInt Op1Int = Op1CI->getValue(); 3050 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3051 APInt API(Op1Int.getBitWidth(), 0); 3052 API.setBit(BitToSet); 3053 Op1 = ConstantInt::get(V->getContext(), API); 3054 } 3055 3056 Value *Mul0 = nullptr; 3057 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3058 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3059 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3060 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3061 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3062 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3063 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3064 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3065 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3066 3067 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3068 Multiple = ConstantExpr::getMul(MulC, Op1C); 3069 return true; 3070 } 3071 3072 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3073 if (Mul0CI->getValue() == 1) { 3074 // V == Base * Op1, so return Op1 3075 Multiple = Op1; 3076 return true; 3077 } 3078 } 3079 3080 Value *Mul1 = nullptr; 3081 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3082 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3083 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3084 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3085 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3086 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3087 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3088 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3089 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3090 3091 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3092 Multiple = ConstantExpr::getMul(MulC, Op0C); 3093 return true; 3094 } 3095 3096 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3097 if (Mul1CI->getValue() == 1) { 3098 // V == Base * Op0, so return Op0 3099 Multiple = Op0; 3100 return true; 3101 } 3102 } 3103 } 3104 } 3105 3106 // We could not determine if V is a multiple of Base. 3107 return false; 3108 } 3109 3110 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3111 const TargetLibraryInfo *TLI) { 3112 const Function *F = CB.getCalledFunction(); 3113 if (!F) 3114 return Intrinsic::not_intrinsic; 3115 3116 if (F->isIntrinsic()) 3117 return F->getIntrinsicID(); 3118 3119 // We are going to infer semantics of a library function based on mapping it 3120 // to an LLVM intrinsic. Check that the library function is available from 3121 // this callbase and in this environment. 3122 LibFunc Func; 3123 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3124 !CB.onlyReadsMemory()) 3125 return Intrinsic::not_intrinsic; 3126 3127 switch (Func) { 3128 default: 3129 break; 3130 case LibFunc_sin: 3131 case LibFunc_sinf: 3132 case LibFunc_sinl: 3133 return Intrinsic::sin; 3134 case LibFunc_cos: 3135 case LibFunc_cosf: 3136 case LibFunc_cosl: 3137 return Intrinsic::cos; 3138 case LibFunc_exp: 3139 case LibFunc_expf: 3140 case LibFunc_expl: 3141 return Intrinsic::exp; 3142 case LibFunc_exp2: 3143 case LibFunc_exp2f: 3144 case LibFunc_exp2l: 3145 return Intrinsic::exp2; 3146 case LibFunc_log: 3147 case LibFunc_logf: 3148 case LibFunc_logl: 3149 return Intrinsic::log; 3150 case LibFunc_log10: 3151 case LibFunc_log10f: 3152 case LibFunc_log10l: 3153 return Intrinsic::log10; 3154 case LibFunc_log2: 3155 case LibFunc_log2f: 3156 case LibFunc_log2l: 3157 return Intrinsic::log2; 3158 case LibFunc_fabs: 3159 case LibFunc_fabsf: 3160 case LibFunc_fabsl: 3161 return Intrinsic::fabs; 3162 case LibFunc_fmin: 3163 case LibFunc_fminf: 3164 case LibFunc_fminl: 3165 return Intrinsic::minnum; 3166 case LibFunc_fmax: 3167 case LibFunc_fmaxf: 3168 case LibFunc_fmaxl: 3169 return Intrinsic::maxnum; 3170 case LibFunc_copysign: 3171 case LibFunc_copysignf: 3172 case LibFunc_copysignl: 3173 return Intrinsic::copysign; 3174 case LibFunc_floor: 3175 case LibFunc_floorf: 3176 case LibFunc_floorl: 3177 return Intrinsic::floor; 3178 case LibFunc_ceil: 3179 case LibFunc_ceilf: 3180 case LibFunc_ceill: 3181 return Intrinsic::ceil; 3182 case LibFunc_trunc: 3183 case LibFunc_truncf: 3184 case LibFunc_truncl: 3185 return Intrinsic::trunc; 3186 case LibFunc_rint: 3187 case LibFunc_rintf: 3188 case LibFunc_rintl: 3189 return Intrinsic::rint; 3190 case LibFunc_nearbyint: 3191 case LibFunc_nearbyintf: 3192 case LibFunc_nearbyintl: 3193 return Intrinsic::nearbyint; 3194 case LibFunc_round: 3195 case LibFunc_roundf: 3196 case LibFunc_roundl: 3197 return Intrinsic::round; 3198 case LibFunc_roundeven: 3199 case LibFunc_roundevenf: 3200 case LibFunc_roundevenl: 3201 return Intrinsic::roundeven; 3202 case LibFunc_pow: 3203 case LibFunc_powf: 3204 case LibFunc_powl: 3205 return Intrinsic::pow; 3206 case LibFunc_sqrt: 3207 case LibFunc_sqrtf: 3208 case LibFunc_sqrtl: 3209 return Intrinsic::sqrt; 3210 } 3211 3212 return Intrinsic::not_intrinsic; 3213 } 3214 3215 /// Return true if we can prove that the specified FP value is never equal to 3216 /// -0.0. 3217 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3218 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3219 /// the same as +0.0 in floating-point ops. 3220 /// 3221 /// NOTE: this function will need to be revisited when we support non-default 3222 /// rounding modes! 3223 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3224 unsigned Depth) { 3225 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3226 return !CFP->getValueAPF().isNegZero(); 3227 3228 if (Depth == MaxAnalysisRecursionDepth) 3229 return false; 3230 3231 auto *Op = dyn_cast<Operator>(V); 3232 if (!Op) 3233 return false; 3234 3235 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3236 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3237 return true; 3238 3239 // sitofp and uitofp turn into +0.0 for zero. 3240 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3241 return true; 3242 3243 if (auto *Call = dyn_cast<CallInst>(Op)) { 3244 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3245 switch (IID) { 3246 default: 3247 break; 3248 // sqrt(-0.0) = -0.0, no other negative results are possible. 3249 case Intrinsic::sqrt: 3250 case Intrinsic::canonicalize: 3251 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3252 // fabs(x) != -0.0 3253 case Intrinsic::fabs: 3254 return true; 3255 } 3256 } 3257 3258 return false; 3259 } 3260 3261 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3262 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3263 /// bit despite comparing equal. 3264 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3265 const TargetLibraryInfo *TLI, 3266 bool SignBitOnly, 3267 unsigned Depth) { 3268 // TODO: This function does not do the right thing when SignBitOnly is true 3269 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3270 // which flips the sign bits of NaNs. See 3271 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3272 3273 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3274 return !CFP->getValueAPF().isNegative() || 3275 (!SignBitOnly && CFP->getValueAPF().isZero()); 3276 } 3277 3278 // Handle vector of constants. 3279 if (auto *CV = dyn_cast<Constant>(V)) { 3280 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3281 unsigned NumElts = CVFVTy->getNumElements(); 3282 for (unsigned i = 0; i != NumElts; ++i) { 3283 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3284 if (!CFP) 3285 return false; 3286 if (CFP->getValueAPF().isNegative() && 3287 (SignBitOnly || !CFP->getValueAPF().isZero())) 3288 return false; 3289 } 3290 3291 // All non-negative ConstantFPs. 3292 return true; 3293 } 3294 } 3295 3296 if (Depth == MaxAnalysisRecursionDepth) 3297 return false; 3298 3299 const Operator *I = dyn_cast<Operator>(V); 3300 if (!I) 3301 return false; 3302 3303 switch (I->getOpcode()) { 3304 default: 3305 break; 3306 // Unsigned integers are always nonnegative. 3307 case Instruction::UIToFP: 3308 return true; 3309 case Instruction::FMul: 3310 case Instruction::FDiv: 3311 // X * X is always non-negative or a NaN. 3312 // X / X is always exactly 1.0 or a NaN. 3313 if (I->getOperand(0) == I->getOperand(1) && 3314 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3315 return true; 3316 3317 LLVM_FALLTHROUGH; 3318 case Instruction::FAdd: 3319 case Instruction::FRem: 3320 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3321 Depth + 1) && 3322 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3323 Depth + 1); 3324 case Instruction::Select: 3325 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3326 Depth + 1) && 3327 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3328 Depth + 1); 3329 case Instruction::FPExt: 3330 case Instruction::FPTrunc: 3331 // Widening/narrowing never change sign. 3332 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3333 Depth + 1); 3334 case Instruction::ExtractElement: 3335 // Look through extract element. At the moment we keep this simple and skip 3336 // tracking the specific element. But at least we might find information 3337 // valid for all elements of the vector. 3338 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3339 Depth + 1); 3340 case Instruction::Call: 3341 const auto *CI = cast<CallInst>(I); 3342 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3343 switch (IID) { 3344 default: 3345 break; 3346 case Intrinsic::maxnum: { 3347 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3348 auto isPositiveNum = [&](Value *V) { 3349 if (SignBitOnly) { 3350 // With SignBitOnly, this is tricky because the result of 3351 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3352 // a constant strictly greater than 0.0. 3353 const APFloat *C; 3354 return match(V, m_APFloat(C)) && 3355 *C > APFloat::getZero(C->getSemantics()); 3356 } 3357 3358 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3359 // maxnum can't be ordered-less-than-zero. 3360 return isKnownNeverNaN(V, TLI) && 3361 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3362 }; 3363 3364 // TODO: This could be improved. We could also check that neither operand 3365 // has its sign bit set (and at least 1 is not-NAN?). 3366 return isPositiveNum(V0) || isPositiveNum(V1); 3367 } 3368 3369 case Intrinsic::maximum: 3370 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3371 Depth + 1) || 3372 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3373 Depth + 1); 3374 case Intrinsic::minnum: 3375 case Intrinsic::minimum: 3376 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3377 Depth + 1) && 3378 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3379 Depth + 1); 3380 case Intrinsic::exp: 3381 case Intrinsic::exp2: 3382 case Intrinsic::fabs: 3383 return true; 3384 3385 case Intrinsic::sqrt: 3386 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3387 if (!SignBitOnly) 3388 return true; 3389 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3390 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3391 3392 case Intrinsic::powi: 3393 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3394 // powi(x,n) is non-negative if n is even. 3395 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3396 return true; 3397 } 3398 // TODO: This is not correct. Given that exp is an integer, here are the 3399 // ways that pow can return a negative value: 3400 // 3401 // pow(x, exp) --> negative if exp is odd and x is negative. 3402 // pow(-0, exp) --> -inf if exp is negative odd. 3403 // pow(-0, exp) --> -0 if exp is positive odd. 3404 // pow(-inf, exp) --> -0 if exp is negative odd. 3405 // pow(-inf, exp) --> -inf if exp is positive odd. 3406 // 3407 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3408 // but we must return false if x == -0. Unfortunately we do not currently 3409 // have a way of expressing this constraint. See details in 3410 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3411 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3412 Depth + 1); 3413 3414 case Intrinsic::fma: 3415 case Intrinsic::fmuladd: 3416 // x*x+y is non-negative if y is non-negative. 3417 return I->getOperand(0) == I->getOperand(1) && 3418 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3419 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3420 Depth + 1); 3421 } 3422 break; 3423 } 3424 return false; 3425 } 3426 3427 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3428 const TargetLibraryInfo *TLI) { 3429 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3430 } 3431 3432 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3433 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3434 } 3435 3436 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3437 unsigned Depth) { 3438 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3439 3440 // If we're told that infinities won't happen, assume they won't. 3441 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3442 if (FPMathOp->hasNoInfs()) 3443 return true; 3444 3445 // Handle scalar constants. 3446 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3447 return !CFP->isInfinity(); 3448 3449 if (Depth == MaxAnalysisRecursionDepth) 3450 return false; 3451 3452 if (auto *Inst = dyn_cast<Instruction>(V)) { 3453 switch (Inst->getOpcode()) { 3454 case Instruction::Select: { 3455 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3456 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3457 } 3458 case Instruction::SIToFP: 3459 case Instruction::UIToFP: { 3460 // Get width of largest magnitude integer (remove a bit if signed). 3461 // This still works for a signed minimum value because the largest FP 3462 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3463 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3464 if (Inst->getOpcode() == Instruction::SIToFP) 3465 --IntSize; 3466 3467 // If the exponent of the largest finite FP value can hold the largest 3468 // integer, the result of the cast must be finite. 3469 Type *FPTy = Inst->getType()->getScalarType(); 3470 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3471 } 3472 default: 3473 break; 3474 } 3475 } 3476 3477 // try to handle fixed width vector constants 3478 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3479 if (VFVTy && isa<Constant>(V)) { 3480 // For vectors, verify that each element is not infinity. 3481 unsigned NumElts = VFVTy->getNumElements(); 3482 for (unsigned i = 0; i != NumElts; ++i) { 3483 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3484 if (!Elt) 3485 return false; 3486 if (isa<UndefValue>(Elt)) 3487 continue; 3488 auto *CElt = dyn_cast<ConstantFP>(Elt); 3489 if (!CElt || CElt->isInfinity()) 3490 return false; 3491 } 3492 // All elements were confirmed non-infinity or undefined. 3493 return true; 3494 } 3495 3496 // was not able to prove that V never contains infinity 3497 return false; 3498 } 3499 3500 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3501 unsigned Depth) { 3502 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3503 3504 // If we're told that NaNs won't happen, assume they won't. 3505 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3506 if (FPMathOp->hasNoNaNs()) 3507 return true; 3508 3509 // Handle scalar constants. 3510 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3511 return !CFP->isNaN(); 3512 3513 if (Depth == MaxAnalysisRecursionDepth) 3514 return false; 3515 3516 if (auto *Inst = dyn_cast<Instruction>(V)) { 3517 switch (Inst->getOpcode()) { 3518 case Instruction::FAdd: 3519 case Instruction::FSub: 3520 // Adding positive and negative infinity produces NaN. 3521 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3522 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3523 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3524 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3525 3526 case Instruction::FMul: 3527 // Zero multiplied with infinity produces NaN. 3528 // FIXME: If neither side can be zero fmul never produces NaN. 3529 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3530 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3531 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3532 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3533 3534 case Instruction::FDiv: 3535 case Instruction::FRem: 3536 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3537 return false; 3538 3539 case Instruction::Select: { 3540 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3541 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3542 } 3543 case Instruction::SIToFP: 3544 case Instruction::UIToFP: 3545 return true; 3546 case Instruction::FPTrunc: 3547 case Instruction::FPExt: 3548 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3549 default: 3550 break; 3551 } 3552 } 3553 3554 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3555 switch (II->getIntrinsicID()) { 3556 case Intrinsic::canonicalize: 3557 case Intrinsic::fabs: 3558 case Intrinsic::copysign: 3559 case Intrinsic::exp: 3560 case Intrinsic::exp2: 3561 case Intrinsic::floor: 3562 case Intrinsic::ceil: 3563 case Intrinsic::trunc: 3564 case Intrinsic::rint: 3565 case Intrinsic::nearbyint: 3566 case Intrinsic::round: 3567 case Intrinsic::roundeven: 3568 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3569 case Intrinsic::sqrt: 3570 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3571 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3572 case Intrinsic::minnum: 3573 case Intrinsic::maxnum: 3574 // If either operand is not NaN, the result is not NaN. 3575 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3576 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3577 default: 3578 return false; 3579 } 3580 } 3581 3582 // Try to handle fixed width vector constants 3583 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3584 if (VFVTy && isa<Constant>(V)) { 3585 // For vectors, verify that each element is not NaN. 3586 unsigned NumElts = VFVTy->getNumElements(); 3587 for (unsigned i = 0; i != NumElts; ++i) { 3588 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3589 if (!Elt) 3590 return false; 3591 if (isa<UndefValue>(Elt)) 3592 continue; 3593 auto *CElt = dyn_cast<ConstantFP>(Elt); 3594 if (!CElt || CElt->isNaN()) 3595 return false; 3596 } 3597 // All elements were confirmed not-NaN or undefined. 3598 return true; 3599 } 3600 3601 // Was not able to prove that V never contains NaN 3602 return false; 3603 } 3604 3605 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3606 3607 // All byte-wide stores are splatable, even of arbitrary variables. 3608 if (V->getType()->isIntegerTy(8)) 3609 return V; 3610 3611 LLVMContext &Ctx = V->getContext(); 3612 3613 // Undef don't care. 3614 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3615 if (isa<UndefValue>(V)) 3616 return UndefInt8; 3617 3618 // Return Undef for zero-sized type. 3619 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3620 return UndefInt8; 3621 3622 Constant *C = dyn_cast<Constant>(V); 3623 if (!C) { 3624 // Conceptually, we could handle things like: 3625 // %a = zext i8 %X to i16 3626 // %b = shl i16 %a, 8 3627 // %c = or i16 %a, %b 3628 // but until there is an example that actually needs this, it doesn't seem 3629 // worth worrying about. 3630 return nullptr; 3631 } 3632 3633 // Handle 'null' ConstantArrayZero etc. 3634 if (C->isNullValue()) 3635 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3636 3637 // Constant floating-point values can be handled as integer values if the 3638 // corresponding integer value is "byteable". An important case is 0.0. 3639 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3640 Type *Ty = nullptr; 3641 if (CFP->getType()->isHalfTy()) 3642 Ty = Type::getInt16Ty(Ctx); 3643 else if (CFP->getType()->isFloatTy()) 3644 Ty = Type::getInt32Ty(Ctx); 3645 else if (CFP->getType()->isDoubleTy()) 3646 Ty = Type::getInt64Ty(Ctx); 3647 // Don't handle long double formats, which have strange constraints. 3648 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3649 : nullptr; 3650 } 3651 3652 // We can handle constant integers that are multiple of 8 bits. 3653 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3654 if (CI->getBitWidth() % 8 == 0) { 3655 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3656 if (!CI->getValue().isSplat(8)) 3657 return nullptr; 3658 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3659 } 3660 } 3661 3662 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3663 if (CE->getOpcode() == Instruction::IntToPtr) { 3664 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3665 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3666 return isBytewiseValue( 3667 ConstantExpr::getIntegerCast(CE->getOperand(0), 3668 Type::getIntNTy(Ctx, BitWidth), false), 3669 DL); 3670 } 3671 } 3672 } 3673 3674 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3675 if (LHS == RHS) 3676 return LHS; 3677 if (!LHS || !RHS) 3678 return nullptr; 3679 if (LHS == UndefInt8) 3680 return RHS; 3681 if (RHS == UndefInt8) 3682 return LHS; 3683 return nullptr; 3684 }; 3685 3686 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3687 Value *Val = UndefInt8; 3688 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3689 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3690 return nullptr; 3691 return Val; 3692 } 3693 3694 if (isa<ConstantAggregate>(C)) { 3695 Value *Val = UndefInt8; 3696 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3697 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3698 return nullptr; 3699 return Val; 3700 } 3701 3702 // Don't try to handle the handful of other constants. 3703 return nullptr; 3704 } 3705 3706 // This is the recursive version of BuildSubAggregate. It takes a few different 3707 // arguments. Idxs is the index within the nested struct From that we are 3708 // looking at now (which is of type IndexedType). IdxSkip is the number of 3709 // indices from Idxs that should be left out when inserting into the resulting 3710 // struct. To is the result struct built so far, new insertvalue instructions 3711 // build on that. 3712 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3713 SmallVectorImpl<unsigned> &Idxs, 3714 unsigned IdxSkip, 3715 Instruction *InsertBefore) { 3716 StructType *STy = dyn_cast<StructType>(IndexedType); 3717 if (STy) { 3718 // Save the original To argument so we can modify it 3719 Value *OrigTo = To; 3720 // General case, the type indexed by Idxs is a struct 3721 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3722 // Process each struct element recursively 3723 Idxs.push_back(i); 3724 Value *PrevTo = To; 3725 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3726 InsertBefore); 3727 Idxs.pop_back(); 3728 if (!To) { 3729 // Couldn't find any inserted value for this index? Cleanup 3730 while (PrevTo != OrigTo) { 3731 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3732 PrevTo = Del->getAggregateOperand(); 3733 Del->eraseFromParent(); 3734 } 3735 // Stop processing elements 3736 break; 3737 } 3738 } 3739 // If we successfully found a value for each of our subaggregates 3740 if (To) 3741 return To; 3742 } 3743 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3744 // the struct's elements had a value that was inserted directly. In the latter 3745 // case, perhaps we can't determine each of the subelements individually, but 3746 // we might be able to find the complete struct somewhere. 3747 3748 // Find the value that is at that particular spot 3749 Value *V = FindInsertedValue(From, Idxs); 3750 3751 if (!V) 3752 return nullptr; 3753 3754 // Insert the value in the new (sub) aggregate 3755 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3756 "tmp", InsertBefore); 3757 } 3758 3759 // This helper takes a nested struct and extracts a part of it (which is again a 3760 // struct) into a new value. For example, given the struct: 3761 // { a, { b, { c, d }, e } } 3762 // and the indices "1, 1" this returns 3763 // { c, d }. 3764 // 3765 // It does this by inserting an insertvalue for each element in the resulting 3766 // struct, as opposed to just inserting a single struct. This will only work if 3767 // each of the elements of the substruct are known (ie, inserted into From by an 3768 // insertvalue instruction somewhere). 3769 // 3770 // All inserted insertvalue instructions are inserted before InsertBefore 3771 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3772 Instruction *InsertBefore) { 3773 assert(InsertBefore && "Must have someplace to insert!"); 3774 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3775 idx_range); 3776 Value *To = UndefValue::get(IndexedType); 3777 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3778 unsigned IdxSkip = Idxs.size(); 3779 3780 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3781 } 3782 3783 /// Given an aggregate and a sequence of indices, see if the scalar value 3784 /// indexed is already around as a register, for example if it was inserted 3785 /// directly into the aggregate. 3786 /// 3787 /// If InsertBefore is not null, this function will duplicate (modified) 3788 /// insertvalues when a part of a nested struct is extracted. 3789 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3790 Instruction *InsertBefore) { 3791 // Nothing to index? Just return V then (this is useful at the end of our 3792 // recursion). 3793 if (idx_range.empty()) 3794 return V; 3795 // We have indices, so V should have an indexable type. 3796 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3797 "Not looking at a struct or array?"); 3798 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3799 "Invalid indices for type?"); 3800 3801 if (Constant *C = dyn_cast<Constant>(V)) { 3802 C = C->getAggregateElement(idx_range[0]); 3803 if (!C) return nullptr; 3804 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3805 } 3806 3807 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3808 // Loop the indices for the insertvalue instruction in parallel with the 3809 // requested indices 3810 const unsigned *req_idx = idx_range.begin(); 3811 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3812 i != e; ++i, ++req_idx) { 3813 if (req_idx == idx_range.end()) { 3814 // We can't handle this without inserting insertvalues 3815 if (!InsertBefore) 3816 return nullptr; 3817 3818 // The requested index identifies a part of a nested aggregate. Handle 3819 // this specially. For example, 3820 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3821 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3822 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3823 // This can be changed into 3824 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3825 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3826 // which allows the unused 0,0 element from the nested struct to be 3827 // removed. 3828 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3829 InsertBefore); 3830 } 3831 3832 // This insert value inserts something else than what we are looking for. 3833 // See if the (aggregate) value inserted into has the value we are 3834 // looking for, then. 3835 if (*req_idx != *i) 3836 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3837 InsertBefore); 3838 } 3839 // If we end up here, the indices of the insertvalue match with those 3840 // requested (though possibly only partially). Now we recursively look at 3841 // the inserted value, passing any remaining indices. 3842 return FindInsertedValue(I->getInsertedValueOperand(), 3843 makeArrayRef(req_idx, idx_range.end()), 3844 InsertBefore); 3845 } 3846 3847 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3848 // If we're extracting a value from an aggregate that was extracted from 3849 // something else, we can extract from that something else directly instead. 3850 // However, we will need to chain I's indices with the requested indices. 3851 3852 // Calculate the number of indices required 3853 unsigned size = I->getNumIndices() + idx_range.size(); 3854 // Allocate some space to put the new indices in 3855 SmallVector<unsigned, 5> Idxs; 3856 Idxs.reserve(size); 3857 // Add indices from the extract value instruction 3858 Idxs.append(I->idx_begin(), I->idx_end()); 3859 3860 // Add requested indices 3861 Idxs.append(idx_range.begin(), idx_range.end()); 3862 3863 assert(Idxs.size() == size 3864 && "Number of indices added not correct?"); 3865 3866 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3867 } 3868 // Otherwise, we don't know (such as, extracting from a function return value 3869 // or load instruction) 3870 return nullptr; 3871 } 3872 3873 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3874 unsigned CharSize) { 3875 // Make sure the GEP has exactly three arguments. 3876 if (GEP->getNumOperands() != 3) 3877 return false; 3878 3879 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3880 // CharSize. 3881 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3882 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3883 return false; 3884 3885 // Check to make sure that the first operand of the GEP is an integer and 3886 // has value 0 so that we are sure we're indexing into the initializer. 3887 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3888 if (!FirstIdx || !FirstIdx->isZero()) 3889 return false; 3890 3891 return true; 3892 } 3893 3894 bool llvm::getConstantDataArrayInfo(const Value *V, 3895 ConstantDataArraySlice &Slice, 3896 unsigned ElementSize, uint64_t Offset) { 3897 assert(V); 3898 3899 // Look through bitcast instructions and geps. 3900 V = V->stripPointerCasts(); 3901 3902 // If the value is a GEP instruction or constant expression, treat it as an 3903 // offset. 3904 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3905 // The GEP operator should be based on a pointer to string constant, and is 3906 // indexing into the string constant. 3907 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3908 return false; 3909 3910 // If the second index isn't a ConstantInt, then this is a variable index 3911 // into the array. If this occurs, we can't say anything meaningful about 3912 // the string. 3913 uint64_t StartIdx = 0; 3914 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3915 StartIdx = CI->getZExtValue(); 3916 else 3917 return false; 3918 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3919 StartIdx + Offset); 3920 } 3921 3922 // The GEP instruction, constant or instruction, must reference a global 3923 // variable that is a constant and is initialized. The referenced constant 3924 // initializer is the array that we'll use for optimization. 3925 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3926 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3927 return false; 3928 3929 const ConstantDataArray *Array; 3930 ArrayType *ArrayTy; 3931 if (GV->getInitializer()->isNullValue()) { 3932 Type *GVTy = GV->getValueType(); 3933 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3934 // A zeroinitializer for the array; there is no ConstantDataArray. 3935 Array = nullptr; 3936 } else { 3937 const DataLayout &DL = GV->getParent()->getDataLayout(); 3938 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3939 uint64_t Length = SizeInBytes / (ElementSize / 8); 3940 if (Length <= Offset) 3941 return false; 3942 3943 Slice.Array = nullptr; 3944 Slice.Offset = 0; 3945 Slice.Length = Length - Offset; 3946 return true; 3947 } 3948 } else { 3949 // This must be a ConstantDataArray. 3950 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3951 if (!Array) 3952 return false; 3953 ArrayTy = Array->getType(); 3954 } 3955 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3956 return false; 3957 3958 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3959 if (Offset > NumElts) 3960 return false; 3961 3962 Slice.Array = Array; 3963 Slice.Offset = Offset; 3964 Slice.Length = NumElts - Offset; 3965 return true; 3966 } 3967 3968 /// This function computes the length of a null-terminated C string pointed to 3969 /// by V. If successful, it returns true and returns the string in Str. 3970 /// If unsuccessful, it returns false. 3971 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3972 uint64_t Offset, bool TrimAtNul) { 3973 ConstantDataArraySlice Slice; 3974 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3975 return false; 3976 3977 if (Slice.Array == nullptr) { 3978 if (TrimAtNul) { 3979 Str = StringRef(); 3980 return true; 3981 } 3982 if (Slice.Length == 1) { 3983 Str = StringRef("", 1); 3984 return true; 3985 } 3986 // We cannot instantiate a StringRef as we do not have an appropriate string 3987 // of 0s at hand. 3988 return false; 3989 } 3990 3991 // Start out with the entire array in the StringRef. 3992 Str = Slice.Array->getAsString(); 3993 // Skip over 'offset' bytes. 3994 Str = Str.substr(Slice.Offset); 3995 3996 if (TrimAtNul) { 3997 // Trim off the \0 and anything after it. If the array is not nul 3998 // terminated, we just return the whole end of string. The client may know 3999 // some other way that the string is length-bound. 4000 Str = Str.substr(0, Str.find('\0')); 4001 } 4002 return true; 4003 } 4004 4005 // These next two are very similar to the above, but also look through PHI 4006 // nodes. 4007 // TODO: See if we can integrate these two together. 4008 4009 /// If we can compute the length of the string pointed to by 4010 /// the specified pointer, return 'len+1'. If we can't, return 0. 4011 static uint64_t GetStringLengthH(const Value *V, 4012 SmallPtrSetImpl<const PHINode*> &PHIs, 4013 unsigned CharSize) { 4014 // Look through noop bitcast instructions. 4015 V = V->stripPointerCasts(); 4016 4017 // If this is a PHI node, there are two cases: either we have already seen it 4018 // or we haven't. 4019 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4020 if (!PHIs.insert(PN).second) 4021 return ~0ULL; // already in the set. 4022 4023 // If it was new, see if all the input strings are the same length. 4024 uint64_t LenSoFar = ~0ULL; 4025 for (Value *IncValue : PN->incoming_values()) { 4026 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4027 if (Len == 0) return 0; // Unknown length -> unknown. 4028 4029 if (Len == ~0ULL) continue; 4030 4031 if (Len != LenSoFar && LenSoFar != ~0ULL) 4032 return 0; // Disagree -> unknown. 4033 LenSoFar = Len; 4034 } 4035 4036 // Success, all agree. 4037 return LenSoFar; 4038 } 4039 4040 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4041 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4042 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4043 if (Len1 == 0) return 0; 4044 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4045 if (Len2 == 0) return 0; 4046 if (Len1 == ~0ULL) return Len2; 4047 if (Len2 == ~0ULL) return Len1; 4048 if (Len1 != Len2) return 0; 4049 return Len1; 4050 } 4051 4052 // Otherwise, see if we can read the string. 4053 ConstantDataArraySlice Slice; 4054 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4055 return 0; 4056 4057 if (Slice.Array == nullptr) 4058 return 1; 4059 4060 // Search for nul characters 4061 unsigned NullIndex = 0; 4062 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4063 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4064 break; 4065 } 4066 4067 return NullIndex + 1; 4068 } 4069 4070 /// If we can compute the length of the string pointed to by 4071 /// the specified pointer, return 'len+1'. If we can't, return 0. 4072 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4073 if (!V->getType()->isPointerTy()) 4074 return 0; 4075 4076 SmallPtrSet<const PHINode*, 32> PHIs; 4077 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4078 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4079 // an empty string as a length. 4080 return Len == ~0ULL ? 1 : Len; 4081 } 4082 4083 const Value * 4084 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4085 bool MustPreserveNullness) { 4086 assert(Call && 4087 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4088 if (const Value *RV = Call->getReturnedArgOperand()) 4089 return RV; 4090 // This can be used only as a aliasing property. 4091 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4092 Call, MustPreserveNullness)) 4093 return Call->getArgOperand(0); 4094 return nullptr; 4095 } 4096 4097 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4098 const CallBase *Call, bool MustPreserveNullness) { 4099 switch (Call->getIntrinsicID()) { 4100 case Intrinsic::launder_invariant_group: 4101 case Intrinsic::strip_invariant_group: 4102 case Intrinsic::aarch64_irg: 4103 case Intrinsic::aarch64_tagp: 4104 return true; 4105 case Intrinsic::ptrmask: 4106 return !MustPreserveNullness; 4107 default: 4108 return false; 4109 } 4110 } 4111 4112 /// \p PN defines a loop-variant pointer to an object. Check if the 4113 /// previous iteration of the loop was referring to the same object as \p PN. 4114 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4115 const LoopInfo *LI) { 4116 // Find the loop-defined value. 4117 Loop *L = LI->getLoopFor(PN->getParent()); 4118 if (PN->getNumIncomingValues() != 2) 4119 return true; 4120 4121 // Find the value from previous iteration. 4122 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4123 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4124 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4125 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4126 return true; 4127 4128 // If a new pointer is loaded in the loop, the pointer references a different 4129 // object in every iteration. E.g.: 4130 // for (i) 4131 // int *p = a[i]; 4132 // ... 4133 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4134 if (!L->isLoopInvariant(Load->getPointerOperand())) 4135 return false; 4136 return true; 4137 } 4138 4139 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4140 if (!V->getType()->isPointerTy()) 4141 return V; 4142 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4143 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4144 V = GEP->getPointerOperand(); 4145 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4146 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4147 V = cast<Operator>(V)->getOperand(0); 4148 if (!V->getType()->isPointerTy()) 4149 return V; 4150 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4151 if (GA->isInterposable()) 4152 return V; 4153 V = GA->getAliasee(); 4154 } else { 4155 if (auto *PHI = dyn_cast<PHINode>(V)) { 4156 // Look through single-arg phi nodes created by LCSSA. 4157 if (PHI->getNumIncomingValues() == 1) { 4158 V = PHI->getIncomingValue(0); 4159 continue; 4160 } 4161 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4162 // CaptureTracking can know about special capturing properties of some 4163 // intrinsics like launder.invariant.group, that can't be expressed with 4164 // the attributes, but have properties like returning aliasing pointer. 4165 // Because some analysis may assume that nocaptured pointer is not 4166 // returned from some special intrinsic (because function would have to 4167 // be marked with returns attribute), it is crucial to use this function 4168 // because it should be in sync with CaptureTracking. Not using it may 4169 // cause weird miscompilations where 2 aliasing pointers are assumed to 4170 // noalias. 4171 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4172 V = RP; 4173 continue; 4174 } 4175 } 4176 4177 return V; 4178 } 4179 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4180 } 4181 return V; 4182 } 4183 4184 void llvm::getUnderlyingObjects(const Value *V, 4185 SmallVectorImpl<const Value *> &Objects, 4186 LoopInfo *LI, unsigned MaxLookup) { 4187 SmallPtrSet<const Value *, 4> Visited; 4188 SmallVector<const Value *, 4> Worklist; 4189 Worklist.push_back(V); 4190 do { 4191 const Value *P = Worklist.pop_back_val(); 4192 P = getUnderlyingObject(P, MaxLookup); 4193 4194 if (!Visited.insert(P).second) 4195 continue; 4196 4197 if (auto *SI = dyn_cast<SelectInst>(P)) { 4198 Worklist.push_back(SI->getTrueValue()); 4199 Worklist.push_back(SI->getFalseValue()); 4200 continue; 4201 } 4202 4203 if (auto *PN = dyn_cast<PHINode>(P)) { 4204 // If this PHI changes the underlying object in every iteration of the 4205 // loop, don't look through it. Consider: 4206 // int **A; 4207 // for (i) { 4208 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4209 // Curr = A[i]; 4210 // *Prev, *Curr; 4211 // 4212 // Prev is tracking Curr one iteration behind so they refer to different 4213 // underlying objects. 4214 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4215 isSameUnderlyingObjectInLoop(PN, LI)) 4216 for (Value *IncValue : PN->incoming_values()) 4217 Worklist.push_back(IncValue); 4218 continue; 4219 } 4220 4221 Objects.push_back(P); 4222 } while (!Worklist.empty()); 4223 } 4224 4225 /// This is the function that does the work of looking through basic 4226 /// ptrtoint+arithmetic+inttoptr sequences. 4227 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4228 do { 4229 if (const Operator *U = dyn_cast<Operator>(V)) { 4230 // If we find a ptrtoint, we can transfer control back to the 4231 // regular getUnderlyingObjectFromInt. 4232 if (U->getOpcode() == Instruction::PtrToInt) 4233 return U->getOperand(0); 4234 // If we find an add of a constant, a multiplied value, or a phi, it's 4235 // likely that the other operand will lead us to the base 4236 // object. We don't have to worry about the case where the 4237 // object address is somehow being computed by the multiply, 4238 // because our callers only care when the result is an 4239 // identifiable object. 4240 if (U->getOpcode() != Instruction::Add || 4241 (!isa<ConstantInt>(U->getOperand(1)) && 4242 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4243 !isa<PHINode>(U->getOperand(1)))) 4244 return V; 4245 V = U->getOperand(0); 4246 } else { 4247 return V; 4248 } 4249 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4250 } while (true); 4251 } 4252 4253 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4254 /// ptrtoint+arithmetic+inttoptr sequences. 4255 /// It returns false if unidentified object is found in getUnderlyingObjects. 4256 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4257 SmallVectorImpl<Value *> &Objects) { 4258 SmallPtrSet<const Value *, 16> Visited; 4259 SmallVector<const Value *, 4> Working(1, V); 4260 do { 4261 V = Working.pop_back_val(); 4262 4263 SmallVector<const Value *, 4> Objs; 4264 getUnderlyingObjects(V, Objs); 4265 4266 for (const Value *V : Objs) { 4267 if (!Visited.insert(V).second) 4268 continue; 4269 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4270 const Value *O = 4271 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4272 if (O->getType()->isPointerTy()) { 4273 Working.push_back(O); 4274 continue; 4275 } 4276 } 4277 // If getUnderlyingObjects fails to find an identifiable object, 4278 // getUnderlyingObjectsForCodeGen also fails for safety. 4279 if (!isIdentifiedObject(V)) { 4280 Objects.clear(); 4281 return false; 4282 } 4283 Objects.push_back(const_cast<Value *>(V)); 4284 } 4285 } while (!Working.empty()); 4286 return true; 4287 } 4288 4289 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4290 AllocaInst *Result = nullptr; 4291 SmallPtrSet<Value *, 4> Visited; 4292 SmallVector<Value *, 4> Worklist; 4293 4294 auto AddWork = [&](Value *V) { 4295 if (Visited.insert(V).second) 4296 Worklist.push_back(V); 4297 }; 4298 4299 AddWork(V); 4300 do { 4301 V = Worklist.pop_back_val(); 4302 assert(Visited.count(V)); 4303 4304 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4305 if (Result && Result != AI) 4306 return nullptr; 4307 Result = AI; 4308 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4309 AddWork(CI->getOperand(0)); 4310 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4311 for (Value *IncValue : PN->incoming_values()) 4312 AddWork(IncValue); 4313 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4314 AddWork(SI->getTrueValue()); 4315 AddWork(SI->getFalseValue()); 4316 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4317 if (OffsetZero && !GEP->hasAllZeroIndices()) 4318 return nullptr; 4319 AddWork(GEP->getPointerOperand()); 4320 } else { 4321 return nullptr; 4322 } 4323 } while (!Worklist.empty()); 4324 4325 return Result; 4326 } 4327 4328 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4329 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4330 for (const User *U : V->users()) { 4331 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4332 if (!II) 4333 return false; 4334 4335 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4336 continue; 4337 4338 if (AllowDroppable && II->isDroppable()) 4339 continue; 4340 4341 return false; 4342 } 4343 return true; 4344 } 4345 4346 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4347 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4348 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4349 } 4350 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4351 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4352 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4353 } 4354 4355 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4356 if (!LI.isUnordered()) 4357 return true; 4358 const Function &F = *LI.getFunction(); 4359 // Speculative load may create a race that did not exist in the source. 4360 return F.hasFnAttribute(Attribute::SanitizeThread) || 4361 // Speculative load may load data from dirty regions. 4362 F.hasFnAttribute(Attribute::SanitizeAddress) || 4363 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4364 } 4365 4366 4367 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4368 const Instruction *CtxI, 4369 const DominatorTree *DT) { 4370 const Operator *Inst = dyn_cast<Operator>(V); 4371 if (!Inst) 4372 return false; 4373 4374 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4375 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4376 if (C->canTrap()) 4377 return false; 4378 4379 switch (Inst->getOpcode()) { 4380 default: 4381 return true; 4382 case Instruction::UDiv: 4383 case Instruction::URem: { 4384 // x / y is undefined if y == 0. 4385 const APInt *V; 4386 if (match(Inst->getOperand(1), m_APInt(V))) 4387 return *V != 0; 4388 return false; 4389 } 4390 case Instruction::SDiv: 4391 case Instruction::SRem: { 4392 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4393 const APInt *Numerator, *Denominator; 4394 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4395 return false; 4396 // We cannot hoist this division if the denominator is 0. 4397 if (*Denominator == 0) 4398 return false; 4399 // It's safe to hoist if the denominator is not 0 or -1. 4400 if (*Denominator != -1) 4401 return true; 4402 // At this point we know that the denominator is -1. It is safe to hoist as 4403 // long we know that the numerator is not INT_MIN. 4404 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4405 return !Numerator->isMinSignedValue(); 4406 // The numerator *might* be MinSignedValue. 4407 return false; 4408 } 4409 case Instruction::Load: { 4410 const LoadInst *LI = cast<LoadInst>(Inst); 4411 if (mustSuppressSpeculation(*LI)) 4412 return false; 4413 const DataLayout &DL = LI->getModule()->getDataLayout(); 4414 return isDereferenceableAndAlignedPointer( 4415 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4416 DL, CtxI, DT); 4417 } 4418 case Instruction::Call: { 4419 auto *CI = cast<const CallInst>(Inst); 4420 const Function *Callee = CI->getCalledFunction(); 4421 4422 // The called function could have undefined behavior or side-effects, even 4423 // if marked readnone nounwind. 4424 return Callee && Callee->isSpeculatable(); 4425 } 4426 case Instruction::VAArg: 4427 case Instruction::Alloca: 4428 case Instruction::Invoke: 4429 case Instruction::CallBr: 4430 case Instruction::PHI: 4431 case Instruction::Store: 4432 case Instruction::Ret: 4433 case Instruction::Br: 4434 case Instruction::IndirectBr: 4435 case Instruction::Switch: 4436 case Instruction::Unreachable: 4437 case Instruction::Fence: 4438 case Instruction::AtomicRMW: 4439 case Instruction::AtomicCmpXchg: 4440 case Instruction::LandingPad: 4441 case Instruction::Resume: 4442 case Instruction::CatchSwitch: 4443 case Instruction::CatchPad: 4444 case Instruction::CatchRet: 4445 case Instruction::CleanupPad: 4446 case Instruction::CleanupRet: 4447 return false; // Misc instructions which have effects 4448 } 4449 } 4450 4451 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4452 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4453 } 4454 4455 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4456 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4457 switch (OR) { 4458 case ConstantRange::OverflowResult::MayOverflow: 4459 return OverflowResult::MayOverflow; 4460 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4461 return OverflowResult::AlwaysOverflowsLow; 4462 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4463 return OverflowResult::AlwaysOverflowsHigh; 4464 case ConstantRange::OverflowResult::NeverOverflows: 4465 return OverflowResult::NeverOverflows; 4466 } 4467 llvm_unreachable("Unknown OverflowResult"); 4468 } 4469 4470 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4471 static ConstantRange computeConstantRangeIncludingKnownBits( 4472 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4473 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4474 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4475 KnownBits Known = computeKnownBits( 4476 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4477 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4478 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4479 ConstantRange::PreferredRangeType RangeType = 4480 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4481 return CR1.intersectWith(CR2, RangeType); 4482 } 4483 4484 OverflowResult llvm::computeOverflowForUnsignedMul( 4485 const Value *LHS, const Value *RHS, const DataLayout &DL, 4486 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4487 bool UseInstrInfo) { 4488 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4489 nullptr, UseInstrInfo); 4490 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4491 nullptr, UseInstrInfo); 4492 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4493 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4494 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4495 } 4496 4497 OverflowResult 4498 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4499 const DataLayout &DL, AssumptionCache *AC, 4500 const Instruction *CxtI, 4501 const DominatorTree *DT, bool UseInstrInfo) { 4502 // Multiplying n * m significant bits yields a result of n + m significant 4503 // bits. If the total number of significant bits does not exceed the 4504 // result bit width (minus 1), there is no overflow. 4505 // This means if we have enough leading sign bits in the operands 4506 // we can guarantee that the result does not overflow. 4507 // Ref: "Hacker's Delight" by Henry Warren 4508 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4509 4510 // Note that underestimating the number of sign bits gives a more 4511 // conservative answer. 4512 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4513 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4514 4515 // First handle the easy case: if we have enough sign bits there's 4516 // definitely no overflow. 4517 if (SignBits > BitWidth + 1) 4518 return OverflowResult::NeverOverflows; 4519 4520 // There are two ambiguous cases where there can be no overflow: 4521 // SignBits == BitWidth + 1 and 4522 // SignBits == BitWidth 4523 // The second case is difficult to check, therefore we only handle the 4524 // first case. 4525 if (SignBits == BitWidth + 1) { 4526 // It overflows only when both arguments are negative and the true 4527 // product is exactly the minimum negative number. 4528 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4529 // For simplicity we just check if at least one side is not negative. 4530 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4531 nullptr, UseInstrInfo); 4532 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4533 nullptr, UseInstrInfo); 4534 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4535 return OverflowResult::NeverOverflows; 4536 } 4537 return OverflowResult::MayOverflow; 4538 } 4539 4540 OverflowResult llvm::computeOverflowForUnsignedAdd( 4541 const Value *LHS, const Value *RHS, const DataLayout &DL, 4542 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4543 bool UseInstrInfo) { 4544 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4545 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4546 nullptr, UseInstrInfo); 4547 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4548 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4549 nullptr, UseInstrInfo); 4550 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4551 } 4552 4553 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4554 const Value *RHS, 4555 const AddOperator *Add, 4556 const DataLayout &DL, 4557 AssumptionCache *AC, 4558 const Instruction *CxtI, 4559 const DominatorTree *DT) { 4560 if (Add && Add->hasNoSignedWrap()) { 4561 return OverflowResult::NeverOverflows; 4562 } 4563 4564 // If LHS and RHS each have at least two sign bits, the addition will look 4565 // like 4566 // 4567 // XX..... + 4568 // YY..... 4569 // 4570 // If the carry into the most significant position is 0, X and Y can't both 4571 // be 1 and therefore the carry out of the addition is also 0. 4572 // 4573 // If the carry into the most significant position is 1, X and Y can't both 4574 // be 0 and therefore the carry out of the addition is also 1. 4575 // 4576 // Since the carry into the most significant position is always equal to 4577 // the carry out of the addition, there is no signed overflow. 4578 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4579 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4580 return OverflowResult::NeverOverflows; 4581 4582 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4583 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4584 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4585 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4586 OverflowResult OR = 4587 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4588 if (OR != OverflowResult::MayOverflow) 4589 return OR; 4590 4591 // The remaining code needs Add to be available. Early returns if not so. 4592 if (!Add) 4593 return OverflowResult::MayOverflow; 4594 4595 // If the sign of Add is the same as at least one of the operands, this add 4596 // CANNOT overflow. If this can be determined from the known bits of the 4597 // operands the above signedAddMayOverflow() check will have already done so. 4598 // The only other way to improve on the known bits is from an assumption, so 4599 // call computeKnownBitsFromAssume() directly. 4600 bool LHSOrRHSKnownNonNegative = 4601 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4602 bool LHSOrRHSKnownNegative = 4603 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4604 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4605 KnownBits AddKnown(LHSRange.getBitWidth()); 4606 computeKnownBitsFromAssume( 4607 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4608 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4609 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4610 return OverflowResult::NeverOverflows; 4611 } 4612 4613 return OverflowResult::MayOverflow; 4614 } 4615 4616 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4617 const Value *RHS, 4618 const DataLayout &DL, 4619 AssumptionCache *AC, 4620 const Instruction *CxtI, 4621 const DominatorTree *DT) { 4622 // Checking for conditions implied by dominating conditions may be expensive. 4623 // Limit it to usub_with_overflow calls for now. 4624 if (match(CxtI, 4625 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4626 if (auto C = 4627 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4628 if (*C) 4629 return OverflowResult::NeverOverflows; 4630 return OverflowResult::AlwaysOverflowsLow; 4631 } 4632 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4633 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4634 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4635 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4636 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4637 } 4638 4639 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4640 const Value *RHS, 4641 const DataLayout &DL, 4642 AssumptionCache *AC, 4643 const Instruction *CxtI, 4644 const DominatorTree *DT) { 4645 // If LHS and RHS each have at least two sign bits, the subtraction 4646 // cannot overflow. 4647 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4648 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4649 return OverflowResult::NeverOverflows; 4650 4651 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4652 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4653 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4654 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4655 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4656 } 4657 4658 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4659 const DominatorTree &DT) { 4660 SmallVector<const BranchInst *, 2> GuardingBranches; 4661 SmallVector<const ExtractValueInst *, 2> Results; 4662 4663 for (const User *U : WO->users()) { 4664 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4665 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4666 4667 if (EVI->getIndices()[0] == 0) 4668 Results.push_back(EVI); 4669 else { 4670 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4671 4672 for (const auto *U : EVI->users()) 4673 if (const auto *B = dyn_cast<BranchInst>(U)) { 4674 assert(B->isConditional() && "How else is it using an i1?"); 4675 GuardingBranches.push_back(B); 4676 } 4677 } 4678 } else { 4679 // We are using the aggregate directly in a way we don't want to analyze 4680 // here (storing it to a global, say). 4681 return false; 4682 } 4683 } 4684 4685 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4686 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4687 if (!NoWrapEdge.isSingleEdge()) 4688 return false; 4689 4690 // Check if all users of the add are provably no-wrap. 4691 for (const auto *Result : Results) { 4692 // If the extractvalue itself is not executed on overflow, the we don't 4693 // need to check each use separately, since domination is transitive. 4694 if (DT.dominates(NoWrapEdge, Result->getParent())) 4695 continue; 4696 4697 for (auto &RU : Result->uses()) 4698 if (!DT.dominates(NoWrapEdge, RU)) 4699 return false; 4700 } 4701 4702 return true; 4703 }; 4704 4705 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4706 } 4707 4708 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4709 // See whether I has flags that may create poison 4710 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4711 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4712 return true; 4713 } 4714 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4715 if (ExactOp->isExact()) 4716 return true; 4717 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4718 auto FMF = FP->getFastMathFlags(); 4719 if (FMF.noNaNs() || FMF.noInfs()) 4720 return true; 4721 } 4722 4723 unsigned Opcode = Op->getOpcode(); 4724 4725 // Check whether opcode is a poison/undef-generating operation 4726 switch (Opcode) { 4727 case Instruction::Shl: 4728 case Instruction::AShr: 4729 case Instruction::LShr: { 4730 // Shifts return poison if shiftwidth is larger than the bitwidth. 4731 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4732 SmallVector<Constant *, 4> ShiftAmounts; 4733 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4734 unsigned NumElts = FVTy->getNumElements(); 4735 for (unsigned i = 0; i < NumElts; ++i) 4736 ShiftAmounts.push_back(C->getAggregateElement(i)); 4737 } else if (isa<ScalableVectorType>(C->getType())) 4738 return true; // Can't tell, just return true to be safe 4739 else 4740 ShiftAmounts.push_back(C); 4741 4742 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4743 auto *CI = dyn_cast<ConstantInt>(C); 4744 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4745 }); 4746 return !Safe; 4747 } 4748 return true; 4749 } 4750 case Instruction::FPToSI: 4751 case Instruction::FPToUI: 4752 // fptosi/ui yields poison if the resulting value does not fit in the 4753 // destination type. 4754 return true; 4755 case Instruction::Call: 4756 case Instruction::CallBr: 4757 case Instruction::Invoke: { 4758 const auto *CB = cast<CallBase>(Op); 4759 return !CB->hasRetAttr(Attribute::NoUndef); 4760 } 4761 case Instruction::InsertElement: 4762 case Instruction::ExtractElement: { 4763 // If index exceeds the length of the vector, it returns poison 4764 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4765 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4766 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4767 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4768 return true; 4769 return false; 4770 } 4771 case Instruction::ShuffleVector: { 4772 // shufflevector may return undef. 4773 if (PoisonOnly) 4774 return false; 4775 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4776 ? cast<ConstantExpr>(Op)->getShuffleMask() 4777 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4778 return is_contained(Mask, UndefMaskElem); 4779 } 4780 case Instruction::FNeg: 4781 case Instruction::PHI: 4782 case Instruction::Select: 4783 case Instruction::URem: 4784 case Instruction::SRem: 4785 case Instruction::ExtractValue: 4786 case Instruction::InsertValue: 4787 case Instruction::Freeze: 4788 case Instruction::ICmp: 4789 case Instruction::FCmp: 4790 return false; 4791 case Instruction::GetElementPtr: { 4792 const auto *GEP = cast<GEPOperator>(Op); 4793 return GEP->isInBounds(); 4794 } 4795 default: { 4796 const auto *CE = dyn_cast<ConstantExpr>(Op); 4797 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4798 return false; 4799 else if (Instruction::isBinaryOp(Opcode)) 4800 return false; 4801 // Be conservative and return true. 4802 return true; 4803 } 4804 } 4805 } 4806 4807 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4808 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4809 } 4810 4811 bool llvm::canCreatePoison(const Operator *Op) { 4812 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4813 } 4814 4815 static bool programUndefinedIfUndefOrPoison(const Value *V, 4816 bool PoisonOnly); 4817 4818 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4819 AssumptionCache *AC, 4820 const Instruction *CtxI, 4821 const DominatorTree *DT, 4822 unsigned Depth, bool PoisonOnly) { 4823 if (Depth >= MaxAnalysisRecursionDepth) 4824 return false; 4825 4826 if (isa<MetadataAsValue>(V)) 4827 return false; 4828 4829 if (const auto *A = dyn_cast<Argument>(V)) { 4830 if (A->hasAttribute(Attribute::NoUndef)) 4831 return true; 4832 } 4833 4834 if (auto *C = dyn_cast<Constant>(V)) { 4835 if (isa<UndefValue>(C)) 4836 return PoisonOnly; 4837 4838 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4839 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4840 return true; 4841 4842 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4843 return (PoisonOnly || !C->containsUndefElement()) && 4844 !C->containsConstantExpression(); 4845 } 4846 4847 // Strip cast operations from a pointer value. 4848 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4849 // inbounds with zero offset. To guarantee that the result isn't poison, the 4850 // stripped pointer is checked as it has to be pointing into an allocated 4851 // object or be null `null` to ensure `inbounds` getelement pointers with a 4852 // zero offset could not produce poison. 4853 // It can strip off addrspacecast that do not change bit representation as 4854 // well. We believe that such addrspacecast is equivalent to no-op. 4855 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4856 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4857 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4858 return true; 4859 4860 auto OpCheck = [&](const Value *V) { 4861 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4862 PoisonOnly); 4863 }; 4864 4865 if (auto *Opr = dyn_cast<Operator>(V)) { 4866 // If the value is a freeze instruction, then it can never 4867 // be undef or poison. 4868 if (isa<FreezeInst>(V)) 4869 return true; 4870 4871 if (const auto *CB = dyn_cast<CallBase>(V)) { 4872 if (CB->hasRetAttr(Attribute::NoUndef)) 4873 return true; 4874 } 4875 4876 if (const auto *PN = dyn_cast<PHINode>(V)) { 4877 unsigned Num = PN->getNumIncomingValues(); 4878 bool IsWellDefined = true; 4879 for (unsigned i = 0; i < Num; ++i) { 4880 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4881 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4882 DT, Depth + 1, PoisonOnly)) { 4883 IsWellDefined = false; 4884 break; 4885 } 4886 } 4887 if (IsWellDefined) 4888 return true; 4889 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4890 return true; 4891 } 4892 4893 if (auto *I = dyn_cast<LoadInst>(V)) 4894 if (I->getMetadata(LLVMContext::MD_noundef)) 4895 return true; 4896 4897 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4898 return true; 4899 4900 // CxtI may be null or a cloned instruction. 4901 if (!CtxI || !CtxI->getParent() || !DT) 4902 return false; 4903 4904 auto *DNode = DT->getNode(CtxI->getParent()); 4905 if (!DNode) 4906 // Unreachable block 4907 return false; 4908 4909 // If V is used as a branch condition before reaching CtxI, V cannot be 4910 // undef or poison. 4911 // br V, BB1, BB2 4912 // BB1: 4913 // CtxI ; V cannot be undef or poison here 4914 auto *Dominator = DNode->getIDom(); 4915 while (Dominator) { 4916 auto *TI = Dominator->getBlock()->getTerminator(); 4917 4918 Value *Cond = nullptr; 4919 if (auto BI = dyn_cast<BranchInst>(TI)) { 4920 if (BI->isConditional()) 4921 Cond = BI->getCondition(); 4922 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4923 Cond = SI->getCondition(); 4924 } 4925 4926 if (Cond) { 4927 if (Cond == V) 4928 return true; 4929 else if (PoisonOnly && isa<Operator>(Cond)) { 4930 // For poison, we can analyze further 4931 auto *Opr = cast<Operator>(Cond); 4932 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 4933 return true; 4934 } 4935 } 4936 4937 Dominator = Dominator->getIDom(); 4938 } 4939 4940 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4941 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4942 return true; 4943 4944 return false; 4945 } 4946 4947 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4948 const Instruction *CtxI, 4949 const DominatorTree *DT, 4950 unsigned Depth) { 4951 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4952 } 4953 4954 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4955 const Instruction *CtxI, 4956 const DominatorTree *DT, unsigned Depth) { 4957 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4958 } 4959 4960 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4961 const DataLayout &DL, 4962 AssumptionCache *AC, 4963 const Instruction *CxtI, 4964 const DominatorTree *DT) { 4965 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4966 Add, DL, AC, CxtI, DT); 4967 } 4968 4969 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4970 const Value *RHS, 4971 const DataLayout &DL, 4972 AssumptionCache *AC, 4973 const Instruction *CxtI, 4974 const DominatorTree *DT) { 4975 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4976 } 4977 4978 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4979 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4980 // of time because it's possible for another thread to interfere with it for an 4981 // arbitrary length of time, but programs aren't allowed to rely on that. 4982 4983 // If there is no successor, then execution can't transfer to it. 4984 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4985 return !CRI->unwindsToCaller(); 4986 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4987 return !CatchSwitch->unwindsToCaller(); 4988 if (isa<ResumeInst>(I)) 4989 return false; 4990 if (isa<ReturnInst>(I)) 4991 return false; 4992 if (isa<UnreachableInst>(I)) 4993 return false; 4994 4995 // Calls can throw, or contain an infinite loop, or kill the process. 4996 if (const auto *CB = dyn_cast<CallBase>(I)) { 4997 // Call sites that throw have implicit non-local control flow. 4998 if (!CB->doesNotThrow()) 4999 return false; 5000 5001 // A function which doens't throw and has "willreturn" attribute will 5002 // always return. 5003 if (CB->hasFnAttr(Attribute::WillReturn)) 5004 return true; 5005 5006 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5007 // etc. and thus not return. However, LLVM already assumes that 5008 // 5009 // - Thread exiting actions are modeled as writes to memory invisible to 5010 // the program. 5011 // 5012 // - Loops that don't have side effects (side effects are volatile/atomic 5013 // stores and IO) always terminate (see http://llvm.org/PR965). 5014 // Furthermore IO itself is also modeled as writes to memory invisible to 5015 // the program. 5016 // 5017 // We rely on those assumptions here, and use the memory effects of the call 5018 // target as a proxy for checking that it always returns. 5019 5020 // FIXME: This isn't aggressive enough; a call which only writes to a global 5021 // is guaranteed to return. 5022 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5023 } 5024 5025 // Other instructions return normally. 5026 return true; 5027 } 5028 5029 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5030 // TODO: This is slightly conservative for invoke instruction since exiting 5031 // via an exception *is* normal control for them. 5032 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5033 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5034 return false; 5035 return true; 5036 } 5037 5038 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5039 const Loop *L) { 5040 // The loop header is guaranteed to be executed for every iteration. 5041 // 5042 // FIXME: Relax this constraint to cover all basic blocks that are 5043 // guaranteed to be executed at every iteration. 5044 if (I->getParent() != L->getHeader()) return false; 5045 5046 for (const Instruction &LI : *L->getHeader()) { 5047 if (&LI == I) return true; 5048 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5049 } 5050 llvm_unreachable("Instruction not contained in its own parent basic block."); 5051 } 5052 5053 bool llvm::propagatesPoison(const Operator *I) { 5054 switch (I->getOpcode()) { 5055 case Instruction::Freeze: 5056 case Instruction::Select: 5057 case Instruction::PHI: 5058 case Instruction::Call: 5059 case Instruction::Invoke: 5060 return false; 5061 case Instruction::ICmp: 5062 case Instruction::FCmp: 5063 case Instruction::GetElementPtr: 5064 return true; 5065 default: 5066 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5067 return true; 5068 5069 // Be conservative and return false. 5070 return false; 5071 } 5072 } 5073 5074 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5075 SmallPtrSetImpl<const Value *> &Operands) { 5076 switch (I->getOpcode()) { 5077 case Instruction::Store: 5078 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5079 break; 5080 5081 case Instruction::Load: 5082 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5083 break; 5084 5085 case Instruction::AtomicCmpXchg: 5086 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5087 break; 5088 5089 case Instruction::AtomicRMW: 5090 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5091 break; 5092 5093 case Instruction::UDiv: 5094 case Instruction::SDiv: 5095 case Instruction::URem: 5096 case Instruction::SRem: 5097 Operands.insert(I->getOperand(1)); 5098 break; 5099 5100 case Instruction::Call: 5101 case Instruction::Invoke: { 5102 const CallBase *CB = cast<CallBase>(I); 5103 if (CB->isIndirectCall()) 5104 Operands.insert(CB->getCalledOperand()); 5105 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5106 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5107 Operands.insert(CB->getArgOperand(i)); 5108 } 5109 break; 5110 } 5111 5112 default: 5113 break; 5114 } 5115 } 5116 5117 bool llvm::mustTriggerUB(const Instruction *I, 5118 const SmallSet<const Value *, 16>& KnownPoison) { 5119 SmallPtrSet<const Value *, 4> NonPoisonOps; 5120 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5121 5122 for (const auto *V : NonPoisonOps) 5123 if (KnownPoison.count(V)) 5124 return true; 5125 5126 return false; 5127 } 5128 5129 static bool programUndefinedIfUndefOrPoison(const Value *V, 5130 bool PoisonOnly) { 5131 // We currently only look for uses of values within the same basic 5132 // block, as that makes it easier to guarantee that the uses will be 5133 // executed given that Inst is executed. 5134 // 5135 // FIXME: Expand this to consider uses beyond the same basic block. To do 5136 // this, look out for the distinction between post-dominance and strong 5137 // post-dominance. 5138 const BasicBlock *BB = nullptr; 5139 BasicBlock::const_iterator Begin; 5140 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5141 BB = Inst->getParent(); 5142 Begin = Inst->getIterator(); 5143 Begin++; 5144 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5145 BB = &Arg->getParent()->getEntryBlock(); 5146 Begin = BB->begin(); 5147 } else { 5148 return false; 5149 } 5150 5151 BasicBlock::const_iterator End = BB->end(); 5152 5153 if (!PoisonOnly) { 5154 // Be conservative & just check whether a value is passed to a noundef 5155 // argument. 5156 // Instructions that raise UB with a poison operand are well-defined 5157 // or have unclear semantics when the input is partially undef. 5158 // For example, 'udiv x, (undef | 1)' isn't UB. 5159 5160 for (auto &I : make_range(Begin, End)) { 5161 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5162 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5163 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5164 CB->getArgOperand(i) == V) 5165 return true; 5166 } 5167 } 5168 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5169 break; 5170 } 5171 return false; 5172 } 5173 5174 // Set of instructions that we have proved will yield poison if Inst 5175 // does. 5176 SmallSet<const Value *, 16> YieldsPoison; 5177 SmallSet<const BasicBlock *, 4> Visited; 5178 5179 YieldsPoison.insert(V); 5180 auto Propagate = [&](const User *User) { 5181 if (propagatesPoison(cast<Operator>(User))) 5182 YieldsPoison.insert(User); 5183 }; 5184 for_each(V->users(), Propagate); 5185 Visited.insert(BB); 5186 5187 unsigned Iter = 0; 5188 while (Iter++ < MaxAnalysisRecursionDepth) { 5189 for (auto &I : make_range(Begin, End)) { 5190 if (mustTriggerUB(&I, YieldsPoison)) 5191 return true; 5192 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5193 return false; 5194 5195 // Mark poison that propagates from I through uses of I. 5196 if (YieldsPoison.count(&I)) 5197 for_each(I.users(), Propagate); 5198 } 5199 5200 if (auto *NextBB = BB->getSingleSuccessor()) { 5201 if (Visited.insert(NextBB).second) { 5202 BB = NextBB; 5203 Begin = BB->getFirstNonPHI()->getIterator(); 5204 End = BB->end(); 5205 continue; 5206 } 5207 } 5208 5209 break; 5210 } 5211 return false; 5212 } 5213 5214 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5215 return ::programUndefinedIfUndefOrPoison(Inst, false); 5216 } 5217 5218 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5219 return ::programUndefinedIfUndefOrPoison(Inst, true); 5220 } 5221 5222 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5223 if (FMF.noNaNs()) 5224 return true; 5225 5226 if (auto *C = dyn_cast<ConstantFP>(V)) 5227 return !C->isNaN(); 5228 5229 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5230 if (!C->getElementType()->isFloatingPointTy()) 5231 return false; 5232 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5233 if (C->getElementAsAPFloat(I).isNaN()) 5234 return false; 5235 } 5236 return true; 5237 } 5238 5239 if (isa<ConstantAggregateZero>(V)) 5240 return true; 5241 5242 return false; 5243 } 5244 5245 static bool isKnownNonZero(const Value *V) { 5246 if (auto *C = dyn_cast<ConstantFP>(V)) 5247 return !C->isZero(); 5248 5249 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5250 if (!C->getElementType()->isFloatingPointTy()) 5251 return false; 5252 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5253 if (C->getElementAsAPFloat(I).isZero()) 5254 return false; 5255 } 5256 return true; 5257 } 5258 5259 return false; 5260 } 5261 5262 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5263 /// Given non-min/max outer cmp/select from the clamp pattern this 5264 /// function recognizes if it can be substitued by a "canonical" min/max 5265 /// pattern. 5266 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5267 Value *CmpLHS, Value *CmpRHS, 5268 Value *TrueVal, Value *FalseVal, 5269 Value *&LHS, Value *&RHS) { 5270 // Try to match 5271 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5272 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5273 // and return description of the outer Max/Min. 5274 5275 // First, check if select has inverse order: 5276 if (CmpRHS == FalseVal) { 5277 std::swap(TrueVal, FalseVal); 5278 Pred = CmpInst::getInversePredicate(Pred); 5279 } 5280 5281 // Assume success now. If there's no match, callers should not use these anyway. 5282 LHS = TrueVal; 5283 RHS = FalseVal; 5284 5285 const APFloat *FC1; 5286 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5287 return {SPF_UNKNOWN, SPNB_NA, false}; 5288 5289 const APFloat *FC2; 5290 switch (Pred) { 5291 case CmpInst::FCMP_OLT: 5292 case CmpInst::FCMP_OLE: 5293 case CmpInst::FCMP_ULT: 5294 case CmpInst::FCMP_ULE: 5295 if (match(FalseVal, 5296 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5297 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5298 *FC1 < *FC2) 5299 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5300 break; 5301 case CmpInst::FCMP_OGT: 5302 case CmpInst::FCMP_OGE: 5303 case CmpInst::FCMP_UGT: 5304 case CmpInst::FCMP_UGE: 5305 if (match(FalseVal, 5306 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5307 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5308 *FC1 > *FC2) 5309 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5310 break; 5311 default: 5312 break; 5313 } 5314 5315 return {SPF_UNKNOWN, SPNB_NA, false}; 5316 } 5317 5318 /// Recognize variations of: 5319 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5320 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5321 Value *CmpLHS, Value *CmpRHS, 5322 Value *TrueVal, Value *FalseVal) { 5323 // Swap the select operands and predicate to match the patterns below. 5324 if (CmpRHS != TrueVal) { 5325 Pred = ICmpInst::getSwappedPredicate(Pred); 5326 std::swap(TrueVal, FalseVal); 5327 } 5328 const APInt *C1; 5329 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5330 const APInt *C2; 5331 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5332 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5333 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5334 return {SPF_SMAX, SPNB_NA, false}; 5335 5336 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5337 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5338 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5339 return {SPF_SMIN, SPNB_NA, false}; 5340 5341 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5342 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5343 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5344 return {SPF_UMAX, SPNB_NA, false}; 5345 5346 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5347 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5348 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5349 return {SPF_UMIN, SPNB_NA, false}; 5350 } 5351 return {SPF_UNKNOWN, SPNB_NA, false}; 5352 } 5353 5354 /// Recognize variations of: 5355 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5356 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5357 Value *CmpLHS, Value *CmpRHS, 5358 Value *TVal, Value *FVal, 5359 unsigned Depth) { 5360 // TODO: Allow FP min/max with nnan/nsz. 5361 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5362 5363 Value *A = nullptr, *B = nullptr; 5364 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5365 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5366 return {SPF_UNKNOWN, SPNB_NA, false}; 5367 5368 Value *C = nullptr, *D = nullptr; 5369 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5370 if (L.Flavor != R.Flavor) 5371 return {SPF_UNKNOWN, SPNB_NA, false}; 5372 5373 // We have something like: x Pred y ? min(a, b) : min(c, d). 5374 // Try to match the compare to the min/max operations of the select operands. 5375 // First, make sure we have the right compare predicate. 5376 switch (L.Flavor) { 5377 case SPF_SMIN: 5378 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5379 Pred = ICmpInst::getSwappedPredicate(Pred); 5380 std::swap(CmpLHS, CmpRHS); 5381 } 5382 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5383 break; 5384 return {SPF_UNKNOWN, SPNB_NA, false}; 5385 case SPF_SMAX: 5386 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5387 Pred = ICmpInst::getSwappedPredicate(Pred); 5388 std::swap(CmpLHS, CmpRHS); 5389 } 5390 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5391 break; 5392 return {SPF_UNKNOWN, SPNB_NA, false}; 5393 case SPF_UMIN: 5394 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5395 Pred = ICmpInst::getSwappedPredicate(Pred); 5396 std::swap(CmpLHS, CmpRHS); 5397 } 5398 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5399 break; 5400 return {SPF_UNKNOWN, SPNB_NA, false}; 5401 case SPF_UMAX: 5402 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5403 Pred = ICmpInst::getSwappedPredicate(Pred); 5404 std::swap(CmpLHS, CmpRHS); 5405 } 5406 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5407 break; 5408 return {SPF_UNKNOWN, SPNB_NA, false}; 5409 default: 5410 return {SPF_UNKNOWN, SPNB_NA, false}; 5411 } 5412 5413 // If there is a common operand in the already matched min/max and the other 5414 // min/max operands match the compare operands (either directly or inverted), 5415 // then this is min/max of the same flavor. 5416 5417 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5418 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5419 if (D == B) { 5420 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5421 match(A, m_Not(m_Specific(CmpRHS))))) 5422 return {L.Flavor, SPNB_NA, false}; 5423 } 5424 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5425 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5426 if (C == B) { 5427 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5428 match(A, m_Not(m_Specific(CmpRHS))))) 5429 return {L.Flavor, SPNB_NA, false}; 5430 } 5431 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5432 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5433 if (D == A) { 5434 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5435 match(B, m_Not(m_Specific(CmpRHS))))) 5436 return {L.Flavor, SPNB_NA, false}; 5437 } 5438 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5439 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5440 if (C == A) { 5441 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5442 match(B, m_Not(m_Specific(CmpRHS))))) 5443 return {L.Flavor, SPNB_NA, false}; 5444 } 5445 5446 return {SPF_UNKNOWN, SPNB_NA, false}; 5447 } 5448 5449 /// If the input value is the result of a 'not' op, constant integer, or vector 5450 /// splat of a constant integer, return the bitwise-not source value. 5451 /// TODO: This could be extended to handle non-splat vector integer constants. 5452 static Value *getNotValue(Value *V) { 5453 Value *NotV; 5454 if (match(V, m_Not(m_Value(NotV)))) 5455 return NotV; 5456 5457 const APInt *C; 5458 if (match(V, m_APInt(C))) 5459 return ConstantInt::get(V->getType(), ~(*C)); 5460 5461 return nullptr; 5462 } 5463 5464 /// Match non-obvious integer minimum and maximum sequences. 5465 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5466 Value *CmpLHS, Value *CmpRHS, 5467 Value *TrueVal, Value *FalseVal, 5468 Value *&LHS, Value *&RHS, 5469 unsigned Depth) { 5470 // Assume success. If there's no match, callers should not use these anyway. 5471 LHS = TrueVal; 5472 RHS = FalseVal; 5473 5474 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5475 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5476 return SPR; 5477 5478 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5479 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5480 return SPR; 5481 5482 // Look through 'not' ops to find disguised min/max. 5483 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5484 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5485 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5486 switch (Pred) { 5487 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5488 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5489 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5490 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5491 default: break; 5492 } 5493 } 5494 5495 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5496 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5497 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5498 switch (Pred) { 5499 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5500 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5501 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5502 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5503 default: break; 5504 } 5505 } 5506 5507 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5508 return {SPF_UNKNOWN, SPNB_NA, false}; 5509 5510 // Z = X -nsw Y 5511 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5512 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5513 if (match(TrueVal, m_Zero()) && 5514 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5515 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5516 5517 // Z = X -nsw Y 5518 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5519 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5520 if (match(FalseVal, m_Zero()) && 5521 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5522 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5523 5524 const APInt *C1; 5525 if (!match(CmpRHS, m_APInt(C1))) 5526 return {SPF_UNKNOWN, SPNB_NA, false}; 5527 5528 // An unsigned min/max can be written with a signed compare. 5529 const APInt *C2; 5530 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5531 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5532 // Is the sign bit set? 5533 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5534 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5535 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5536 C2->isMaxSignedValue()) 5537 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5538 5539 // Is the sign bit clear? 5540 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5541 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5542 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5543 C2->isMinSignedValue()) 5544 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5545 } 5546 5547 return {SPF_UNKNOWN, SPNB_NA, false}; 5548 } 5549 5550 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5551 assert(X && Y && "Invalid operand"); 5552 5553 // X = sub (0, Y) || X = sub nsw (0, Y) 5554 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5555 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5556 return true; 5557 5558 // Y = sub (0, X) || Y = sub nsw (0, X) 5559 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5560 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5561 return true; 5562 5563 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5564 Value *A, *B; 5565 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5566 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5567 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5568 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5569 } 5570 5571 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5572 FastMathFlags FMF, 5573 Value *CmpLHS, Value *CmpRHS, 5574 Value *TrueVal, Value *FalseVal, 5575 Value *&LHS, Value *&RHS, 5576 unsigned Depth) { 5577 if (CmpInst::isFPPredicate(Pred)) { 5578 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5579 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5580 // purpose of identifying min/max. Disregard vector constants with undefined 5581 // elements because those can not be back-propagated for analysis. 5582 Value *OutputZeroVal = nullptr; 5583 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5584 !cast<Constant>(TrueVal)->containsUndefElement()) 5585 OutputZeroVal = TrueVal; 5586 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5587 !cast<Constant>(FalseVal)->containsUndefElement()) 5588 OutputZeroVal = FalseVal; 5589 5590 if (OutputZeroVal) { 5591 if (match(CmpLHS, m_AnyZeroFP())) 5592 CmpLHS = OutputZeroVal; 5593 if (match(CmpRHS, m_AnyZeroFP())) 5594 CmpRHS = OutputZeroVal; 5595 } 5596 } 5597 5598 LHS = CmpLHS; 5599 RHS = CmpRHS; 5600 5601 // Signed zero may return inconsistent results between implementations. 5602 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5603 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5604 // Therefore, we behave conservatively and only proceed if at least one of the 5605 // operands is known to not be zero or if we don't care about signed zero. 5606 switch (Pred) { 5607 default: break; 5608 // FIXME: Include OGT/OLT/UGT/ULT. 5609 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5610 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5611 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5612 !isKnownNonZero(CmpRHS)) 5613 return {SPF_UNKNOWN, SPNB_NA, false}; 5614 } 5615 5616 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5617 bool Ordered = false; 5618 5619 // When given one NaN and one non-NaN input: 5620 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5621 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5622 // ordered comparison fails), which could be NaN or non-NaN. 5623 // so here we discover exactly what NaN behavior is required/accepted. 5624 if (CmpInst::isFPPredicate(Pred)) { 5625 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5626 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5627 5628 if (LHSSafe && RHSSafe) { 5629 // Both operands are known non-NaN. 5630 NaNBehavior = SPNB_RETURNS_ANY; 5631 } else if (CmpInst::isOrdered(Pred)) { 5632 // An ordered comparison will return false when given a NaN, so it 5633 // returns the RHS. 5634 Ordered = true; 5635 if (LHSSafe) 5636 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5637 NaNBehavior = SPNB_RETURNS_NAN; 5638 else if (RHSSafe) 5639 NaNBehavior = SPNB_RETURNS_OTHER; 5640 else 5641 // Completely unsafe. 5642 return {SPF_UNKNOWN, SPNB_NA, false}; 5643 } else { 5644 Ordered = false; 5645 // An unordered comparison will return true when given a NaN, so it 5646 // returns the LHS. 5647 if (LHSSafe) 5648 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5649 NaNBehavior = SPNB_RETURNS_OTHER; 5650 else if (RHSSafe) 5651 NaNBehavior = SPNB_RETURNS_NAN; 5652 else 5653 // Completely unsafe. 5654 return {SPF_UNKNOWN, SPNB_NA, false}; 5655 } 5656 } 5657 5658 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5659 std::swap(CmpLHS, CmpRHS); 5660 Pred = CmpInst::getSwappedPredicate(Pred); 5661 if (NaNBehavior == SPNB_RETURNS_NAN) 5662 NaNBehavior = SPNB_RETURNS_OTHER; 5663 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5664 NaNBehavior = SPNB_RETURNS_NAN; 5665 Ordered = !Ordered; 5666 } 5667 5668 // ([if]cmp X, Y) ? X : Y 5669 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5670 switch (Pred) { 5671 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5672 case ICmpInst::ICMP_UGT: 5673 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5674 case ICmpInst::ICMP_SGT: 5675 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5676 case ICmpInst::ICMP_ULT: 5677 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5678 case ICmpInst::ICMP_SLT: 5679 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5680 case FCmpInst::FCMP_UGT: 5681 case FCmpInst::FCMP_UGE: 5682 case FCmpInst::FCMP_OGT: 5683 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5684 case FCmpInst::FCMP_ULT: 5685 case FCmpInst::FCMP_ULE: 5686 case FCmpInst::FCMP_OLT: 5687 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5688 } 5689 } 5690 5691 if (isKnownNegation(TrueVal, FalseVal)) { 5692 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5693 // match against either LHS or sext(LHS). 5694 auto MaybeSExtCmpLHS = 5695 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5696 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5697 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5698 if (match(TrueVal, MaybeSExtCmpLHS)) { 5699 // Set the return values. If the compare uses the negated value (-X >s 0), 5700 // swap the return values because the negated value is always 'RHS'. 5701 LHS = TrueVal; 5702 RHS = FalseVal; 5703 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5704 std::swap(LHS, RHS); 5705 5706 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5707 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5708 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5709 return {SPF_ABS, SPNB_NA, false}; 5710 5711 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5712 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5713 return {SPF_ABS, SPNB_NA, false}; 5714 5715 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5716 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5717 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5718 return {SPF_NABS, SPNB_NA, false}; 5719 } 5720 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5721 // Set the return values. If the compare uses the negated value (-X >s 0), 5722 // swap the return values because the negated value is always 'RHS'. 5723 LHS = FalseVal; 5724 RHS = TrueVal; 5725 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5726 std::swap(LHS, RHS); 5727 5728 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5729 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5730 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5731 return {SPF_NABS, SPNB_NA, false}; 5732 5733 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5734 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5735 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5736 return {SPF_ABS, SPNB_NA, false}; 5737 } 5738 } 5739 5740 if (CmpInst::isIntPredicate(Pred)) 5741 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5742 5743 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5744 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5745 // semantics than minNum. Be conservative in such case. 5746 if (NaNBehavior != SPNB_RETURNS_ANY || 5747 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5748 !isKnownNonZero(CmpRHS))) 5749 return {SPF_UNKNOWN, SPNB_NA, false}; 5750 5751 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5752 } 5753 5754 /// Helps to match a select pattern in case of a type mismatch. 5755 /// 5756 /// The function processes the case when type of true and false values of a 5757 /// select instruction differs from type of the cmp instruction operands because 5758 /// of a cast instruction. The function checks if it is legal to move the cast 5759 /// operation after "select". If yes, it returns the new second value of 5760 /// "select" (with the assumption that cast is moved): 5761 /// 1. As operand of cast instruction when both values of "select" are same cast 5762 /// instructions. 5763 /// 2. As restored constant (by applying reverse cast operation) when the first 5764 /// value of the "select" is a cast operation and the second value is a 5765 /// constant. 5766 /// NOTE: We return only the new second value because the first value could be 5767 /// accessed as operand of cast instruction. 5768 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5769 Instruction::CastOps *CastOp) { 5770 auto *Cast1 = dyn_cast<CastInst>(V1); 5771 if (!Cast1) 5772 return nullptr; 5773 5774 *CastOp = Cast1->getOpcode(); 5775 Type *SrcTy = Cast1->getSrcTy(); 5776 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5777 // If V1 and V2 are both the same cast from the same type, look through V1. 5778 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5779 return Cast2->getOperand(0); 5780 return nullptr; 5781 } 5782 5783 auto *C = dyn_cast<Constant>(V2); 5784 if (!C) 5785 return nullptr; 5786 5787 Constant *CastedTo = nullptr; 5788 switch (*CastOp) { 5789 case Instruction::ZExt: 5790 if (CmpI->isUnsigned()) 5791 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5792 break; 5793 case Instruction::SExt: 5794 if (CmpI->isSigned()) 5795 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5796 break; 5797 case Instruction::Trunc: 5798 Constant *CmpConst; 5799 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5800 CmpConst->getType() == SrcTy) { 5801 // Here we have the following case: 5802 // 5803 // %cond = cmp iN %x, CmpConst 5804 // %tr = trunc iN %x to iK 5805 // %narrowsel = select i1 %cond, iK %t, iK C 5806 // 5807 // We can always move trunc after select operation: 5808 // 5809 // %cond = cmp iN %x, CmpConst 5810 // %widesel = select i1 %cond, iN %x, iN CmpConst 5811 // %tr = trunc iN %widesel to iK 5812 // 5813 // Note that C could be extended in any way because we don't care about 5814 // upper bits after truncation. It can't be abs pattern, because it would 5815 // look like: 5816 // 5817 // select i1 %cond, x, -x. 5818 // 5819 // So only min/max pattern could be matched. Such match requires widened C 5820 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5821 // CmpConst == C is checked below. 5822 CastedTo = CmpConst; 5823 } else { 5824 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5825 } 5826 break; 5827 case Instruction::FPTrunc: 5828 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5829 break; 5830 case Instruction::FPExt: 5831 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5832 break; 5833 case Instruction::FPToUI: 5834 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5835 break; 5836 case Instruction::FPToSI: 5837 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5838 break; 5839 case Instruction::UIToFP: 5840 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5841 break; 5842 case Instruction::SIToFP: 5843 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5844 break; 5845 default: 5846 break; 5847 } 5848 5849 if (!CastedTo) 5850 return nullptr; 5851 5852 // Make sure the cast doesn't lose any information. 5853 Constant *CastedBack = 5854 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5855 if (CastedBack != C) 5856 return nullptr; 5857 5858 return CastedTo; 5859 } 5860 5861 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5862 Instruction::CastOps *CastOp, 5863 unsigned Depth) { 5864 if (Depth >= MaxAnalysisRecursionDepth) 5865 return {SPF_UNKNOWN, SPNB_NA, false}; 5866 5867 SelectInst *SI = dyn_cast<SelectInst>(V); 5868 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5869 5870 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5871 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5872 5873 Value *TrueVal = SI->getTrueValue(); 5874 Value *FalseVal = SI->getFalseValue(); 5875 5876 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5877 CastOp, Depth); 5878 } 5879 5880 SelectPatternResult llvm::matchDecomposedSelectPattern( 5881 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5882 Instruction::CastOps *CastOp, unsigned Depth) { 5883 CmpInst::Predicate Pred = CmpI->getPredicate(); 5884 Value *CmpLHS = CmpI->getOperand(0); 5885 Value *CmpRHS = CmpI->getOperand(1); 5886 FastMathFlags FMF; 5887 if (isa<FPMathOperator>(CmpI)) 5888 FMF = CmpI->getFastMathFlags(); 5889 5890 // Bail out early. 5891 if (CmpI->isEquality()) 5892 return {SPF_UNKNOWN, SPNB_NA, false}; 5893 5894 // Deal with type mismatches. 5895 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5896 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5897 // If this is a potential fmin/fmax with a cast to integer, then ignore 5898 // -0.0 because there is no corresponding integer value. 5899 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5900 FMF.setNoSignedZeros(); 5901 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5902 cast<CastInst>(TrueVal)->getOperand(0), C, 5903 LHS, RHS, Depth); 5904 } 5905 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5906 // If this is a potential fmin/fmax with a cast to integer, then ignore 5907 // -0.0 because there is no corresponding integer value. 5908 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5909 FMF.setNoSignedZeros(); 5910 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5911 C, cast<CastInst>(FalseVal)->getOperand(0), 5912 LHS, RHS, Depth); 5913 } 5914 } 5915 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5916 LHS, RHS, Depth); 5917 } 5918 5919 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5920 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5921 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5922 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5923 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5924 if (SPF == SPF_FMINNUM) 5925 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5926 if (SPF == SPF_FMAXNUM) 5927 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5928 llvm_unreachable("unhandled!"); 5929 } 5930 5931 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5932 if (SPF == SPF_SMIN) return SPF_SMAX; 5933 if (SPF == SPF_UMIN) return SPF_UMAX; 5934 if (SPF == SPF_SMAX) return SPF_SMIN; 5935 if (SPF == SPF_UMAX) return SPF_UMIN; 5936 llvm_unreachable("unhandled!"); 5937 } 5938 5939 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5940 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5941 } 5942 5943 std::pair<Intrinsic::ID, bool> 5944 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5945 // Check if VL contains select instructions that can be folded into a min/max 5946 // vector intrinsic and return the intrinsic if it is possible. 5947 // TODO: Support floating point min/max. 5948 bool AllCmpSingleUse = true; 5949 SelectPatternResult SelectPattern; 5950 SelectPattern.Flavor = SPF_UNKNOWN; 5951 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5952 Value *LHS, *RHS; 5953 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5954 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5955 CurrentPattern.Flavor == SPF_FMINNUM || 5956 CurrentPattern.Flavor == SPF_FMAXNUM || 5957 !I->getType()->isIntOrIntVectorTy()) 5958 return false; 5959 if (SelectPattern.Flavor != SPF_UNKNOWN && 5960 SelectPattern.Flavor != CurrentPattern.Flavor) 5961 return false; 5962 SelectPattern = CurrentPattern; 5963 AllCmpSingleUse &= 5964 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5965 return true; 5966 })) { 5967 switch (SelectPattern.Flavor) { 5968 case SPF_SMIN: 5969 return {Intrinsic::smin, AllCmpSingleUse}; 5970 case SPF_UMIN: 5971 return {Intrinsic::umin, AllCmpSingleUse}; 5972 case SPF_SMAX: 5973 return {Intrinsic::smax, AllCmpSingleUse}; 5974 case SPF_UMAX: 5975 return {Intrinsic::umax, AllCmpSingleUse}; 5976 default: 5977 llvm_unreachable("unexpected select pattern flavor"); 5978 } 5979 } 5980 return {Intrinsic::not_intrinsic, false}; 5981 } 5982 5983 /// Return true if "icmp Pred LHS RHS" is always true. 5984 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5985 const Value *RHS, const DataLayout &DL, 5986 unsigned Depth) { 5987 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5988 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5989 return true; 5990 5991 switch (Pred) { 5992 default: 5993 return false; 5994 5995 case CmpInst::ICMP_SLE: { 5996 const APInt *C; 5997 5998 // LHS s<= LHS +_{nsw} C if C >= 0 5999 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6000 return !C->isNegative(); 6001 return false; 6002 } 6003 6004 case CmpInst::ICMP_ULE: { 6005 const APInt *C; 6006 6007 // LHS u<= LHS +_{nuw} C for any C 6008 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6009 return true; 6010 6011 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6012 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6013 const Value *&X, 6014 const APInt *&CA, const APInt *&CB) { 6015 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6016 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6017 return true; 6018 6019 // If X & C == 0 then (X | C) == X +_{nuw} C 6020 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6021 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6022 KnownBits Known(CA->getBitWidth()); 6023 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6024 /*CxtI*/ nullptr, /*DT*/ nullptr); 6025 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6026 return true; 6027 } 6028 6029 return false; 6030 }; 6031 6032 const Value *X; 6033 const APInt *CLHS, *CRHS; 6034 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6035 return CLHS->ule(*CRHS); 6036 6037 return false; 6038 } 6039 } 6040 } 6041 6042 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6043 /// ALHS ARHS" is true. Otherwise, return None. 6044 static Optional<bool> 6045 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6046 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6047 const DataLayout &DL, unsigned Depth) { 6048 switch (Pred) { 6049 default: 6050 return None; 6051 6052 case CmpInst::ICMP_SLT: 6053 case CmpInst::ICMP_SLE: 6054 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6055 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6056 return true; 6057 return None; 6058 6059 case CmpInst::ICMP_ULT: 6060 case CmpInst::ICMP_ULE: 6061 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6062 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6063 return true; 6064 return None; 6065 } 6066 } 6067 6068 /// Return true if the operands of the two compares match. IsSwappedOps is true 6069 /// when the operands match, but are swapped. 6070 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6071 const Value *BLHS, const Value *BRHS, 6072 bool &IsSwappedOps) { 6073 6074 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6075 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6076 return IsMatchingOps || IsSwappedOps; 6077 } 6078 6079 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6080 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6081 /// Otherwise, return None if we can't infer anything. 6082 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6083 CmpInst::Predicate BPred, 6084 bool AreSwappedOps) { 6085 // Canonicalize the predicate as if the operands were not commuted. 6086 if (AreSwappedOps) 6087 BPred = ICmpInst::getSwappedPredicate(BPred); 6088 6089 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6090 return true; 6091 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6092 return false; 6093 6094 return None; 6095 } 6096 6097 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6098 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6099 /// Otherwise, return None if we can't infer anything. 6100 static Optional<bool> 6101 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6102 const ConstantInt *C1, 6103 CmpInst::Predicate BPred, 6104 const ConstantInt *C2) { 6105 ConstantRange DomCR = 6106 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6107 ConstantRange CR = 6108 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6109 ConstantRange Intersection = DomCR.intersectWith(CR); 6110 ConstantRange Difference = DomCR.difference(CR); 6111 if (Intersection.isEmptySet()) 6112 return false; 6113 if (Difference.isEmptySet()) 6114 return true; 6115 return None; 6116 } 6117 6118 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6119 /// false. Otherwise, return None if we can't infer anything. 6120 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6121 CmpInst::Predicate BPred, 6122 const Value *BLHS, const Value *BRHS, 6123 const DataLayout &DL, bool LHSIsTrue, 6124 unsigned Depth) { 6125 Value *ALHS = LHS->getOperand(0); 6126 Value *ARHS = LHS->getOperand(1); 6127 6128 // The rest of the logic assumes the LHS condition is true. If that's not the 6129 // case, invert the predicate to make it so. 6130 CmpInst::Predicate APred = 6131 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6132 6133 // Can we infer anything when the two compares have matching operands? 6134 bool AreSwappedOps; 6135 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6136 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6137 APred, BPred, AreSwappedOps)) 6138 return Implication; 6139 // No amount of additional analysis will infer the second condition, so 6140 // early exit. 6141 return None; 6142 } 6143 6144 // Can we infer anything when the LHS operands match and the RHS operands are 6145 // constants (not necessarily matching)? 6146 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6147 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6148 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6149 return Implication; 6150 // No amount of additional analysis will infer the second condition, so 6151 // early exit. 6152 return None; 6153 } 6154 6155 if (APred == BPred) 6156 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6157 return None; 6158 } 6159 6160 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6161 /// false. Otherwise, return None if we can't infer anything. We expect the 6162 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6163 static Optional<bool> 6164 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6165 const Value *RHSOp0, const Value *RHSOp1, 6166 6167 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6168 // The LHS must be an 'or' or an 'and' instruction. 6169 assert((LHS->getOpcode() == Instruction::And || 6170 LHS->getOpcode() == Instruction::Or) && 6171 "Expected LHS to be 'and' or 'or'."); 6172 6173 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6174 6175 // If the result of an 'or' is false, then we know both legs of the 'or' are 6176 // false. Similarly, if the result of an 'and' is true, then we know both 6177 // legs of the 'and' are true. 6178 Value *ALHS, *ARHS; 6179 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6180 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6181 // FIXME: Make this non-recursion. 6182 if (Optional<bool> Implication = isImpliedCondition( 6183 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6184 return Implication; 6185 if (Optional<bool> Implication = isImpliedCondition( 6186 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6187 return Implication; 6188 return None; 6189 } 6190 return None; 6191 } 6192 6193 Optional<bool> 6194 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6195 const Value *RHSOp0, const Value *RHSOp1, 6196 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6197 // Bail out when we hit the limit. 6198 if (Depth == MaxAnalysisRecursionDepth) 6199 return None; 6200 6201 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6202 // example. 6203 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6204 return None; 6205 6206 Type *OpTy = LHS->getType(); 6207 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6208 6209 // FIXME: Extending the code below to handle vectors. 6210 if (OpTy->isVectorTy()) 6211 return None; 6212 6213 assert(OpTy->isIntegerTy(1) && "implied by above"); 6214 6215 // Both LHS and RHS are icmps. 6216 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6217 if (LHSCmp) 6218 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6219 Depth); 6220 6221 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6222 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6223 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6224 if (LHSBO) { 6225 if ((LHSBO->getOpcode() == Instruction::And || 6226 LHSBO->getOpcode() == Instruction::Or)) 6227 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6228 Depth); 6229 } 6230 return None; 6231 } 6232 6233 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6234 const DataLayout &DL, bool LHSIsTrue, 6235 unsigned Depth) { 6236 // LHS ==> RHS by definition 6237 if (LHS == RHS) 6238 return LHSIsTrue; 6239 6240 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6241 if (RHSCmp) 6242 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6243 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6244 LHSIsTrue, Depth); 6245 return None; 6246 } 6247 6248 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6249 // condition dominating ContextI or nullptr, if no condition is found. 6250 static std::pair<Value *, bool> 6251 getDomPredecessorCondition(const Instruction *ContextI) { 6252 if (!ContextI || !ContextI->getParent()) 6253 return {nullptr, false}; 6254 6255 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6256 // dominator tree (eg, from a SimplifyQuery) instead? 6257 const BasicBlock *ContextBB = ContextI->getParent(); 6258 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6259 if (!PredBB) 6260 return {nullptr, false}; 6261 6262 // We need a conditional branch in the predecessor. 6263 Value *PredCond; 6264 BasicBlock *TrueBB, *FalseBB; 6265 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6266 return {nullptr, false}; 6267 6268 // The branch should get simplified. Don't bother simplifying this condition. 6269 if (TrueBB == FalseBB) 6270 return {nullptr, false}; 6271 6272 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6273 "Predecessor block does not point to successor?"); 6274 6275 // Is this condition implied by the predecessor condition? 6276 return {PredCond, TrueBB == ContextBB}; 6277 } 6278 6279 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6280 const Instruction *ContextI, 6281 const DataLayout &DL) { 6282 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6283 auto PredCond = getDomPredecessorCondition(ContextI); 6284 if (PredCond.first) 6285 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6286 return None; 6287 } 6288 6289 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6290 const Value *LHS, const Value *RHS, 6291 const Instruction *ContextI, 6292 const DataLayout &DL) { 6293 auto PredCond = getDomPredecessorCondition(ContextI); 6294 if (PredCond.first) 6295 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6296 PredCond.second); 6297 return None; 6298 } 6299 6300 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6301 APInt &Upper, const InstrInfoQuery &IIQ) { 6302 unsigned Width = Lower.getBitWidth(); 6303 const APInt *C; 6304 switch (BO.getOpcode()) { 6305 case Instruction::Add: 6306 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6307 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6308 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6309 // 'add nuw x, C' produces [C, UINT_MAX]. 6310 Lower = *C; 6311 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6312 if (C->isNegative()) { 6313 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6314 Lower = APInt::getSignedMinValue(Width); 6315 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6316 } else { 6317 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6318 Lower = APInt::getSignedMinValue(Width) + *C; 6319 Upper = APInt::getSignedMaxValue(Width) + 1; 6320 } 6321 } 6322 } 6323 break; 6324 6325 case Instruction::And: 6326 if (match(BO.getOperand(1), m_APInt(C))) 6327 // 'and x, C' produces [0, C]. 6328 Upper = *C + 1; 6329 break; 6330 6331 case Instruction::Or: 6332 if (match(BO.getOperand(1), m_APInt(C))) 6333 // 'or x, C' produces [C, UINT_MAX]. 6334 Lower = *C; 6335 break; 6336 6337 case Instruction::AShr: 6338 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6339 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6340 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6341 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6342 } else if (match(BO.getOperand(0), m_APInt(C))) { 6343 unsigned ShiftAmount = Width - 1; 6344 if (!C->isNullValue() && IIQ.isExact(&BO)) 6345 ShiftAmount = C->countTrailingZeros(); 6346 if (C->isNegative()) { 6347 // 'ashr C, x' produces [C, C >> (Width-1)] 6348 Lower = *C; 6349 Upper = C->ashr(ShiftAmount) + 1; 6350 } else { 6351 // 'ashr C, x' produces [C >> (Width-1), C] 6352 Lower = C->ashr(ShiftAmount); 6353 Upper = *C + 1; 6354 } 6355 } 6356 break; 6357 6358 case Instruction::LShr: 6359 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6360 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6361 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6362 } else if (match(BO.getOperand(0), m_APInt(C))) { 6363 // 'lshr C, x' produces [C >> (Width-1), C]. 6364 unsigned ShiftAmount = Width - 1; 6365 if (!C->isNullValue() && IIQ.isExact(&BO)) 6366 ShiftAmount = C->countTrailingZeros(); 6367 Lower = C->lshr(ShiftAmount); 6368 Upper = *C + 1; 6369 } 6370 break; 6371 6372 case Instruction::Shl: 6373 if (match(BO.getOperand(0), m_APInt(C))) { 6374 if (IIQ.hasNoUnsignedWrap(&BO)) { 6375 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6376 Lower = *C; 6377 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6378 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6379 if (C->isNegative()) { 6380 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6381 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6382 Lower = C->shl(ShiftAmount); 6383 Upper = *C + 1; 6384 } else { 6385 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6386 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6387 Lower = *C; 6388 Upper = C->shl(ShiftAmount) + 1; 6389 } 6390 } 6391 } 6392 break; 6393 6394 case Instruction::SDiv: 6395 if (match(BO.getOperand(1), m_APInt(C))) { 6396 APInt IntMin = APInt::getSignedMinValue(Width); 6397 APInt IntMax = APInt::getSignedMaxValue(Width); 6398 if (C->isAllOnesValue()) { 6399 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6400 // where C != -1 and C != 0 and C != 1 6401 Lower = IntMin + 1; 6402 Upper = IntMax + 1; 6403 } else if (C->countLeadingZeros() < Width - 1) { 6404 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6405 // where C != -1 and C != 0 and C != 1 6406 Lower = IntMin.sdiv(*C); 6407 Upper = IntMax.sdiv(*C); 6408 if (Lower.sgt(Upper)) 6409 std::swap(Lower, Upper); 6410 Upper = Upper + 1; 6411 assert(Upper != Lower && "Upper part of range has wrapped!"); 6412 } 6413 } else if (match(BO.getOperand(0), m_APInt(C))) { 6414 if (C->isMinSignedValue()) { 6415 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6416 Lower = *C; 6417 Upper = Lower.lshr(1) + 1; 6418 } else { 6419 // 'sdiv C, x' produces [-|C|, |C|]. 6420 Upper = C->abs() + 1; 6421 Lower = (-Upper) + 1; 6422 } 6423 } 6424 break; 6425 6426 case Instruction::UDiv: 6427 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6428 // 'udiv x, C' produces [0, UINT_MAX / C]. 6429 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6430 } else if (match(BO.getOperand(0), m_APInt(C))) { 6431 // 'udiv C, x' produces [0, C]. 6432 Upper = *C + 1; 6433 } 6434 break; 6435 6436 case Instruction::SRem: 6437 if (match(BO.getOperand(1), m_APInt(C))) { 6438 // 'srem x, C' produces (-|C|, |C|). 6439 Upper = C->abs(); 6440 Lower = (-Upper) + 1; 6441 } 6442 break; 6443 6444 case Instruction::URem: 6445 if (match(BO.getOperand(1), m_APInt(C))) 6446 // 'urem x, C' produces [0, C). 6447 Upper = *C; 6448 break; 6449 6450 default: 6451 break; 6452 } 6453 } 6454 6455 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6456 APInt &Upper) { 6457 unsigned Width = Lower.getBitWidth(); 6458 const APInt *C; 6459 switch (II.getIntrinsicID()) { 6460 case Intrinsic::ctpop: 6461 case Intrinsic::ctlz: 6462 case Intrinsic::cttz: 6463 // Maximum of set/clear bits is the bit width. 6464 assert(Lower == 0 && "Expected lower bound to be zero"); 6465 Upper = Width + 1; 6466 break; 6467 case Intrinsic::uadd_sat: 6468 // uadd.sat(x, C) produces [C, UINT_MAX]. 6469 if (match(II.getOperand(0), m_APInt(C)) || 6470 match(II.getOperand(1), m_APInt(C))) 6471 Lower = *C; 6472 break; 6473 case Intrinsic::sadd_sat: 6474 if (match(II.getOperand(0), m_APInt(C)) || 6475 match(II.getOperand(1), m_APInt(C))) { 6476 if (C->isNegative()) { 6477 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6478 Lower = APInt::getSignedMinValue(Width); 6479 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6480 } else { 6481 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6482 Lower = APInt::getSignedMinValue(Width) + *C; 6483 Upper = APInt::getSignedMaxValue(Width) + 1; 6484 } 6485 } 6486 break; 6487 case Intrinsic::usub_sat: 6488 // usub.sat(C, x) produces [0, C]. 6489 if (match(II.getOperand(0), m_APInt(C))) 6490 Upper = *C + 1; 6491 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6492 else if (match(II.getOperand(1), m_APInt(C))) 6493 Upper = APInt::getMaxValue(Width) - *C + 1; 6494 break; 6495 case Intrinsic::ssub_sat: 6496 if (match(II.getOperand(0), m_APInt(C))) { 6497 if (C->isNegative()) { 6498 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6499 Lower = APInt::getSignedMinValue(Width); 6500 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6501 } else { 6502 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6503 Lower = *C - APInt::getSignedMaxValue(Width); 6504 Upper = APInt::getSignedMaxValue(Width) + 1; 6505 } 6506 } else if (match(II.getOperand(1), m_APInt(C))) { 6507 if (C->isNegative()) { 6508 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6509 Lower = APInt::getSignedMinValue(Width) - *C; 6510 Upper = APInt::getSignedMaxValue(Width) + 1; 6511 } else { 6512 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6513 Lower = APInt::getSignedMinValue(Width); 6514 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6515 } 6516 } 6517 break; 6518 case Intrinsic::umin: 6519 case Intrinsic::umax: 6520 case Intrinsic::smin: 6521 case Intrinsic::smax: 6522 if (!match(II.getOperand(0), m_APInt(C)) && 6523 !match(II.getOperand(1), m_APInt(C))) 6524 break; 6525 6526 switch (II.getIntrinsicID()) { 6527 case Intrinsic::umin: 6528 Upper = *C + 1; 6529 break; 6530 case Intrinsic::umax: 6531 Lower = *C; 6532 break; 6533 case Intrinsic::smin: 6534 Lower = APInt::getSignedMinValue(Width); 6535 Upper = *C + 1; 6536 break; 6537 case Intrinsic::smax: 6538 Lower = *C; 6539 Upper = APInt::getSignedMaxValue(Width) + 1; 6540 break; 6541 default: 6542 llvm_unreachable("Must be min/max intrinsic"); 6543 } 6544 break; 6545 case Intrinsic::abs: 6546 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6547 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6548 if (match(II.getOperand(1), m_One())) 6549 Upper = APInt::getSignedMaxValue(Width) + 1; 6550 else 6551 Upper = APInt::getSignedMinValue(Width) + 1; 6552 break; 6553 default: 6554 break; 6555 } 6556 } 6557 6558 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6559 APInt &Upper, const InstrInfoQuery &IIQ) { 6560 const Value *LHS = nullptr, *RHS = nullptr; 6561 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6562 if (R.Flavor == SPF_UNKNOWN) 6563 return; 6564 6565 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6566 6567 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6568 // If the negation part of the abs (in RHS) has the NSW flag, 6569 // then the result of abs(X) is [0..SIGNED_MAX], 6570 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6571 Lower = APInt::getNullValue(BitWidth); 6572 if (match(RHS, m_Neg(m_Specific(LHS))) && 6573 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6574 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6575 else 6576 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6577 return; 6578 } 6579 6580 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6581 // The result of -abs(X) is <= 0. 6582 Lower = APInt::getSignedMinValue(BitWidth); 6583 Upper = APInt(BitWidth, 1); 6584 return; 6585 } 6586 6587 const APInt *C; 6588 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6589 return; 6590 6591 switch (R.Flavor) { 6592 case SPF_UMIN: 6593 Upper = *C + 1; 6594 break; 6595 case SPF_UMAX: 6596 Lower = *C; 6597 break; 6598 case SPF_SMIN: 6599 Lower = APInt::getSignedMinValue(BitWidth); 6600 Upper = *C + 1; 6601 break; 6602 case SPF_SMAX: 6603 Lower = *C; 6604 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6605 break; 6606 default: 6607 break; 6608 } 6609 } 6610 6611 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6612 AssumptionCache *AC, 6613 const Instruction *CtxI, 6614 unsigned Depth) { 6615 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6616 6617 if (Depth == MaxAnalysisRecursionDepth) 6618 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6619 6620 const APInt *C; 6621 if (match(V, m_APInt(C))) 6622 return ConstantRange(*C); 6623 6624 InstrInfoQuery IIQ(UseInstrInfo); 6625 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6626 APInt Lower = APInt(BitWidth, 0); 6627 APInt Upper = APInt(BitWidth, 0); 6628 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6629 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6630 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6631 setLimitsForIntrinsic(*II, Lower, Upper); 6632 else if (auto *SI = dyn_cast<SelectInst>(V)) 6633 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6634 6635 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6636 6637 if (auto *I = dyn_cast<Instruction>(V)) 6638 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6639 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6640 6641 if (CtxI && AC) { 6642 // Try to restrict the range based on information from assumptions. 6643 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6644 if (!AssumeVH) 6645 continue; 6646 CallInst *I = cast<CallInst>(AssumeVH); 6647 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6648 "Got assumption for the wrong function!"); 6649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6650 "must be an assume intrinsic"); 6651 6652 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6653 continue; 6654 Value *Arg = I->getArgOperand(0); 6655 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6656 // Currently we just use information from comparisons. 6657 if (!Cmp || Cmp->getOperand(0) != V) 6658 continue; 6659 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6660 AC, I, Depth + 1); 6661 CR = CR.intersectWith( 6662 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6663 } 6664 } 6665 6666 return CR; 6667 } 6668 6669 static Optional<int64_t> 6670 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6671 // Skip over the first indices. 6672 gep_type_iterator GTI = gep_type_begin(GEP); 6673 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6674 /*skip along*/; 6675 6676 // Compute the offset implied by the rest of the indices. 6677 int64_t Offset = 0; 6678 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6679 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6680 if (!OpC) 6681 return None; 6682 if (OpC->isZero()) 6683 continue; // No offset. 6684 6685 // Handle struct indices, which add their field offset to the pointer. 6686 if (StructType *STy = GTI.getStructTypeOrNull()) { 6687 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6688 continue; 6689 } 6690 6691 // Otherwise, we have a sequential type like an array or fixed-length 6692 // vector. Multiply the index by the ElementSize. 6693 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6694 if (Size.isScalable()) 6695 return None; 6696 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6697 } 6698 6699 return Offset; 6700 } 6701 6702 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6703 const DataLayout &DL) { 6704 Ptr1 = Ptr1->stripPointerCasts(); 6705 Ptr2 = Ptr2->stripPointerCasts(); 6706 6707 // Handle the trivial case first. 6708 if (Ptr1 == Ptr2) { 6709 return 0; 6710 } 6711 6712 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6713 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6714 6715 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6716 // as in "P" and "gep P, 1". 6717 // Also do this iteratively to handle the the following case: 6718 // Ptr_t1 = GEP Ptr1, c1 6719 // Ptr_t2 = GEP Ptr_t1, c2 6720 // Ptr2 = GEP Ptr_t2, c3 6721 // where we will return c1+c2+c3. 6722 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6723 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6724 // are the same, and return the difference between offsets. 6725 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6726 const Value *Ptr) -> Optional<int64_t> { 6727 const GEPOperator *GEP_T = GEP; 6728 int64_t OffsetVal = 0; 6729 bool HasSameBase = false; 6730 while (GEP_T) { 6731 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6732 if (!Offset) 6733 return None; 6734 OffsetVal += *Offset; 6735 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6736 if (Op0 == Ptr) { 6737 HasSameBase = true; 6738 break; 6739 } 6740 GEP_T = dyn_cast<GEPOperator>(Op0); 6741 } 6742 if (!HasSameBase) 6743 return None; 6744 return OffsetVal; 6745 }; 6746 6747 if (GEP1) { 6748 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6749 if (Offset) 6750 return -*Offset; 6751 } 6752 if (GEP2) { 6753 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6754 if (Offset) 6755 return Offset; 6756 } 6757 6758 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6759 // base. After that base, they may have some number of common (and 6760 // potentially variable) indices. After that they handle some constant 6761 // offset, which determines their offset from each other. At this point, we 6762 // handle no other case. 6763 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6764 return None; 6765 6766 // Skip any common indices and track the GEP types. 6767 unsigned Idx = 1; 6768 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6769 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6770 break; 6771 6772 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6773 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6774 if (!Offset1 || !Offset2) 6775 return None; 6776 return *Offset2 - *Offset1; 6777 } 6778