1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Support/GetElementPtrTypeIterator.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/PatternMatch.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include <cstring> 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 const unsigned MaxDepth = 6; 34 35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 36 /// unknown returns 0). For vector types, returns the element type's bitwidth. 37 static unsigned getBitWidth(Type *Ty, const TargetData *TD) { 38 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 39 return BitWidth; 40 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 41 return TD ? TD->getPointerSizeInBits() : 0; 42 } 43 44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 45 /// known to be either zero or one and return them in the KnownZero/KnownOne 46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 47 /// processing. 48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 49 /// we cannot optimize based on the assumption that it is zero without changing 50 /// it to be an explicit zero. If we don't change it to zero, other code could 51 /// optimized based on the contradictory assumption that it is non-zero. 52 /// Because instcombine aggressively folds operations with undef args anyway, 53 /// this won't lose us code quality. 54 /// 55 /// This function is defined on values with integer type, values with pointer 56 /// type (but only if TD is non-null), and vectors of integers. In the case 57 /// where V is a vector, the mask, known zero, and known one values are the 58 /// same width as the vector element, and the bit is set only if it is true 59 /// for all of the elements in the vector. 60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 61 APInt &KnownZero, APInt &KnownOne, 62 const TargetData *TD, unsigned Depth) { 63 assert(V && "No Value?"); 64 assert(Depth <= MaxDepth && "Limit Search Depth"); 65 unsigned BitWidth = Mask.getBitWidth(); 66 assert((V->getType()->isIntOrIntVectorTy() || 67 V->getType()->getScalarType()->isPointerTy()) && 68 "Not integer or pointer type!"); 69 assert((!TD || 70 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 71 (!V->getType()->isIntOrIntVectorTy() || 72 V->getType()->getScalarSizeInBits() == BitWidth) && 73 KnownZero.getBitWidth() == BitWidth && 74 KnownOne.getBitWidth() == BitWidth && 75 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 76 77 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 78 // We know all of the bits for a constant! 79 KnownOne = CI->getValue() & Mask; 80 KnownZero = ~KnownOne & Mask; 81 return; 82 } 83 // Null and aggregate-zero are all-zeros. 84 if (isa<ConstantPointerNull>(V) || 85 isa<ConstantAggregateZero>(V)) { 86 KnownOne.clearAllBits(); 87 KnownZero = Mask; 88 return; 89 } 90 // Handle a constant vector by taking the intersection of the known bits of 91 // each element. 92 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 93 KnownZero.setAllBits(); KnownOne.setAllBits(); 94 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 95 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 96 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, 97 TD, Depth); 98 KnownZero &= KnownZero2; 99 KnownOne &= KnownOne2; 100 } 101 return; 102 } 103 // The address of an aligned GlobalValue has trailing zeros. 104 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 105 unsigned Align = GV->getAlignment(); 106 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { 107 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 108 Type *ObjectType = GVar->getType()->getElementType(); 109 // If the object is defined in the current Module, we'll be giving 110 // it the preferred alignment. Otherwise, we have to assume that it 111 // may only have the minimum ABI alignment. 112 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 113 Align = TD->getPreferredAlignment(GVar); 114 else 115 Align = TD->getABITypeAlignment(ObjectType); 116 } 117 } 118 if (Align > 0) 119 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 120 CountTrailingZeros_32(Align)); 121 else 122 KnownZero.clearAllBits(); 123 KnownOne.clearAllBits(); 124 return; 125 } 126 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 127 // the bits of its aliasee. 128 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 129 if (GA->mayBeOverridden()) { 130 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 131 } else { 132 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 133 TD, Depth+1); 134 } 135 return; 136 } 137 138 if (Argument *A = dyn_cast<Argument>(V)) { 139 // Get alignment information off byval arguments if specified in the IR. 140 if (A->hasByValAttr()) 141 if (unsigned Align = A->getParamAlignment()) 142 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 143 CountTrailingZeros_32(Align)); 144 return; 145 } 146 147 // Start out not knowing anything. 148 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 149 150 if (Depth == MaxDepth || Mask == 0) 151 return; // Limit search depth. 152 153 Operator *I = dyn_cast<Operator>(V); 154 if (!I) return; 155 156 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 157 switch (I->getOpcode()) { 158 default: break; 159 case Instruction::And: { 160 // If either the LHS or the RHS are Zero, the result is zero. 161 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 162 APInt Mask2(Mask & ~KnownZero); 163 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 164 Depth+1); 165 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 166 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 167 168 // Output known-1 bits are only known if set in both the LHS & RHS. 169 KnownOne &= KnownOne2; 170 // Output known-0 are known to be clear if zero in either the LHS | RHS. 171 KnownZero |= KnownZero2; 172 return; 173 } 174 case Instruction::Or: { 175 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 176 APInt Mask2(Mask & ~KnownOne); 177 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 178 Depth+1); 179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 180 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 181 182 // Output known-0 bits are only known if clear in both the LHS & RHS. 183 KnownZero &= KnownZero2; 184 // Output known-1 are known to be set if set in either the LHS | RHS. 185 KnownOne |= KnownOne2; 186 return; 187 } 188 case Instruction::Xor: { 189 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 190 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 191 Depth+1); 192 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 193 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 194 195 // Output known-0 bits are known if clear or set in both the LHS & RHS. 196 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 197 // Output known-1 are known to be set if set in only one of the LHS, RHS. 198 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 199 KnownZero = KnownZeroOut; 200 return; 201 } 202 case Instruction::Mul: { 203 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 204 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); 205 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 206 Depth+1); 207 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 208 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 209 210 bool isKnownNegative = false; 211 bool isKnownNonNegative = false; 212 // If the multiplication is known not to overflow, compute the sign bit. 213 if (Mask.isNegative() && 214 cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) { 215 Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); 216 if (Op1 == Op2) { 217 // The product of a number with itself is non-negative. 218 isKnownNonNegative = true; 219 } else { 220 bool isKnownNonNegative1 = KnownZero.isNegative(); 221 bool isKnownNonNegative2 = KnownZero2.isNegative(); 222 bool isKnownNegative1 = KnownOne.isNegative(); 223 bool isKnownNegative2 = KnownOne2.isNegative(); 224 // The product of two numbers with the same sign is non-negative. 225 isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || 226 (isKnownNonNegative1 && isKnownNonNegative2); 227 // The product of a negative number and a non-negative number is either 228 // negative or zero. 229 if (!isKnownNonNegative) 230 isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && 231 isKnownNonZero(Op2, TD, Depth)) || 232 (isKnownNegative2 && isKnownNonNegative1 && 233 isKnownNonZero(Op1, TD, Depth)); 234 } 235 } 236 237 // If low bits are zero in either operand, output low known-0 bits. 238 // Also compute a conserative estimate for high known-0 bits. 239 // More trickiness is possible, but this is sufficient for the 240 // interesting case of alignment computation. 241 KnownOne.clearAllBits(); 242 unsigned TrailZ = KnownZero.countTrailingOnes() + 243 KnownZero2.countTrailingOnes(); 244 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 245 KnownZero2.countLeadingOnes(), 246 BitWidth) - BitWidth; 247 248 TrailZ = std::min(TrailZ, BitWidth); 249 LeadZ = std::min(LeadZ, BitWidth); 250 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 251 APInt::getHighBitsSet(BitWidth, LeadZ); 252 KnownZero &= Mask; 253 254 // Only make use of no-wrap flags if we failed to compute the sign bit 255 // directly. This matters if the multiplication always overflows, in 256 // which case we prefer to follow the result of the direct computation, 257 // though as the program is invoking undefined behaviour we can choose 258 // whatever we like here. 259 if (isKnownNonNegative && !KnownOne.isNegative()) 260 KnownZero.setBit(BitWidth - 1); 261 else if (isKnownNegative && !KnownZero.isNegative()) 262 KnownOne.setBit(BitWidth - 1); 263 264 return; 265 } 266 case Instruction::UDiv: { 267 // For the purposes of computing leading zeros we can conservatively 268 // treat a udiv as a logical right shift by the power of 2 known to 269 // be less than the denominator. 270 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 271 ComputeMaskedBits(I->getOperand(0), 272 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 273 unsigned LeadZ = KnownZero2.countLeadingOnes(); 274 275 KnownOne2.clearAllBits(); 276 KnownZero2.clearAllBits(); 277 ComputeMaskedBits(I->getOperand(1), 278 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 279 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 280 if (RHSUnknownLeadingOnes != BitWidth) 281 LeadZ = std::min(BitWidth, 282 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 283 284 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 285 return; 286 } 287 case Instruction::Select: 288 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 289 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 290 Depth+1); 291 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 292 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 293 294 // Only known if known in both the LHS and RHS. 295 KnownOne &= KnownOne2; 296 KnownZero &= KnownZero2; 297 return; 298 case Instruction::FPTrunc: 299 case Instruction::FPExt: 300 case Instruction::FPToUI: 301 case Instruction::FPToSI: 302 case Instruction::SIToFP: 303 case Instruction::UIToFP: 304 return; // Can't work with floating point. 305 case Instruction::PtrToInt: 306 case Instruction::IntToPtr: 307 // We can't handle these if we don't know the pointer size. 308 if (!TD) return; 309 // FALL THROUGH and handle them the same as zext/trunc. 310 case Instruction::ZExt: 311 case Instruction::Trunc: { 312 Type *SrcTy = I->getOperand(0)->getType(); 313 314 unsigned SrcBitWidth; 315 // Note that we handle pointer operands here because of inttoptr/ptrtoint 316 // which fall through here. 317 if (SrcTy->isPointerTy()) 318 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 319 else 320 SrcBitWidth = SrcTy->getScalarSizeInBits(); 321 322 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 323 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 324 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 325 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 326 Depth+1); 327 KnownZero = KnownZero.zextOrTrunc(BitWidth); 328 KnownOne = KnownOne.zextOrTrunc(BitWidth); 329 // Any top bits are known to be zero. 330 if (BitWidth > SrcBitWidth) 331 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 332 return; 333 } 334 case Instruction::BitCast: { 335 Type *SrcTy = I->getOperand(0)->getType(); 336 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 337 // TODO: For now, not handling conversions like: 338 // (bitcast i64 %x to <2 x i32>) 339 !I->getType()->isVectorTy()) { 340 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 341 Depth+1); 342 return; 343 } 344 break; 345 } 346 case Instruction::SExt: { 347 // Compute the bits in the result that are not present in the input. 348 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 349 350 APInt MaskIn = Mask.trunc(SrcBitWidth); 351 KnownZero = KnownZero.trunc(SrcBitWidth); 352 KnownOne = KnownOne.trunc(SrcBitWidth); 353 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 354 Depth+1); 355 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 356 KnownZero = KnownZero.zext(BitWidth); 357 KnownOne = KnownOne.zext(BitWidth); 358 359 // If the sign bit of the input is known set or clear, then we know the 360 // top bits of the result. 361 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 362 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 363 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 364 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 365 return; 366 } 367 case Instruction::Shl: 368 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 369 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 370 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 371 APInt Mask2(Mask.lshr(ShiftAmt)); 372 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 373 Depth+1); 374 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 375 KnownZero <<= ShiftAmt; 376 KnownOne <<= ShiftAmt; 377 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 378 return; 379 } 380 break; 381 case Instruction::LShr: 382 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 383 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 384 // Compute the new bits that are at the top now. 385 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 386 387 // Unsigned shift right. 388 APInt Mask2(Mask.shl(ShiftAmt)); 389 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 390 Depth+1); 391 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 392 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 393 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 394 // high bits known zero. 395 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 396 return; 397 } 398 break; 399 case Instruction::AShr: 400 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 401 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 402 // Compute the new bits that are at the top now. 403 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 404 405 // Signed shift right. 406 APInt Mask2(Mask.shl(ShiftAmt)); 407 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 408 Depth+1); 409 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 410 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 411 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 412 413 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 414 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 415 KnownZero |= HighBits; 416 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 417 KnownOne |= HighBits; 418 return; 419 } 420 break; 421 case Instruction::Sub: { 422 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { 423 // We know that the top bits of C-X are clear if X contains less bits 424 // than C (i.e. no wrap-around can happen). For example, 20-X is 425 // positive if we can prove that X is >= 0 and < 16. 426 if (!CLHS->getValue().isNegative()) { 427 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 428 // NLZ can't be BitWidth with no sign bit 429 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 430 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, 431 TD, Depth+1); 432 433 // If all of the MaskV bits are known to be zero, then we know the 434 // output top bits are zero, because we now know that the output is 435 // from [0-C]. 436 if ((KnownZero2 & MaskV) == MaskV) { 437 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 438 // Top bits known zero. 439 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 440 } 441 } 442 } 443 } 444 // fall through 445 case Instruction::Add: { 446 // If one of the operands has trailing zeros, then the bits that the 447 // other operand has in those bit positions will be preserved in the 448 // result. For an add, this works with either operand. For a subtract, 449 // this only works if the known zeros are in the right operand. 450 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 451 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 452 BitWidth - Mask.countLeadingZeros()); 453 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 454 Depth+1); 455 assert((LHSKnownZero & LHSKnownOne) == 0 && 456 "Bits known to be one AND zero?"); 457 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 458 459 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, 460 Depth+1); 461 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 462 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 463 464 // Determine which operand has more trailing zeros, and use that 465 // many bits from the other operand. 466 if (LHSKnownZeroOut > RHSKnownZeroOut) { 467 if (I->getOpcode() == Instruction::Add) { 468 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 469 KnownZero |= KnownZero2 & Mask; 470 KnownOne |= KnownOne2 & Mask; 471 } else { 472 // If the known zeros are in the left operand for a subtract, 473 // fall back to the minimum known zeros in both operands. 474 KnownZero |= APInt::getLowBitsSet(BitWidth, 475 std::min(LHSKnownZeroOut, 476 RHSKnownZeroOut)); 477 } 478 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 479 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 480 KnownZero |= LHSKnownZero & Mask; 481 KnownOne |= LHSKnownOne & Mask; 482 } 483 484 // Are we still trying to solve for the sign bit? 485 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){ 486 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I); 487 if (OBO->hasNoSignedWrap()) { 488 if (I->getOpcode() == Instruction::Add) { 489 // Adding two positive numbers can't wrap into negative 490 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 491 KnownZero |= APInt::getSignBit(BitWidth); 492 // and adding two negative numbers can't wrap into positive. 493 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 494 KnownOne |= APInt::getSignBit(BitWidth); 495 } else { 496 // Subtracting a negative number from a positive one can't wrap 497 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 498 KnownZero |= APInt::getSignBit(BitWidth); 499 // neither can subtracting a positive number from a negative one. 500 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 501 KnownOne |= APInt::getSignBit(BitWidth); 502 } 503 } 504 } 505 506 return; 507 } 508 case Instruction::SRem: 509 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 510 APInt RA = Rem->getValue().abs(); 511 if (RA.isPowerOf2()) { 512 APInt LowBits = RA - 1; 513 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 514 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 515 Depth+1); 516 517 // The low bits of the first operand are unchanged by the srem. 518 KnownZero = KnownZero2 & LowBits; 519 KnownOne = KnownOne2 & LowBits; 520 521 // If the first operand is non-negative or has all low bits zero, then 522 // the upper bits are all zero. 523 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 524 KnownZero |= ~LowBits; 525 526 // If the first operand is negative and not all low bits are zero, then 527 // the upper bits are all one. 528 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 529 KnownOne |= ~LowBits; 530 531 KnownZero &= Mask; 532 KnownOne &= Mask; 533 534 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 535 } 536 } 537 538 // The sign bit is the LHS's sign bit, except when the result of the 539 // remainder is zero. 540 if (Mask.isNegative() && KnownZero.isNonNegative()) { 541 APInt Mask2 = APInt::getSignBit(BitWidth); 542 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 543 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 544 Depth+1); 545 // If it's known zero, our sign bit is also zero. 546 if (LHSKnownZero.isNegative()) 547 KnownZero |= LHSKnownZero; 548 } 549 550 break; 551 case Instruction::URem: { 552 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 553 APInt RA = Rem->getValue(); 554 if (RA.isPowerOf2()) { 555 APInt LowBits = (RA - 1); 556 APInt Mask2 = LowBits & Mask; 557 KnownZero |= ~LowBits & Mask; 558 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 559 Depth+1); 560 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 561 break; 562 } 563 } 564 565 // Since the result is less than or equal to either operand, any leading 566 // zero bits in either operand must also exist in the result. 567 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 568 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 569 TD, Depth+1); 570 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 571 TD, Depth+1); 572 573 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 574 KnownZero2.countLeadingOnes()); 575 KnownOne.clearAllBits(); 576 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 577 break; 578 } 579 580 case Instruction::Alloca: { 581 AllocaInst *AI = cast<AllocaInst>(V); 582 unsigned Align = AI->getAlignment(); 583 if (Align == 0 && TD) 584 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 585 586 if (Align > 0) 587 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 588 CountTrailingZeros_32(Align)); 589 break; 590 } 591 case Instruction::GetElementPtr: { 592 // Analyze all of the subscripts of this getelementptr instruction 593 // to determine if we can prove known low zero bits. 594 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 595 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 596 ComputeMaskedBits(I->getOperand(0), LocalMask, 597 LocalKnownZero, LocalKnownOne, TD, Depth+1); 598 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 599 600 gep_type_iterator GTI = gep_type_begin(I); 601 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 602 Value *Index = I->getOperand(i); 603 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 604 // Handle struct member offset arithmetic. 605 if (!TD) return; 606 const StructLayout *SL = TD->getStructLayout(STy); 607 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 608 uint64_t Offset = SL->getElementOffset(Idx); 609 TrailZ = std::min(TrailZ, 610 CountTrailingZeros_64(Offset)); 611 } else { 612 // Handle array index arithmetic. 613 Type *IndexedTy = GTI.getIndexedType(); 614 if (!IndexedTy->isSized()) return; 615 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 616 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 617 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 618 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 619 ComputeMaskedBits(Index, LocalMask, 620 LocalKnownZero, LocalKnownOne, TD, Depth+1); 621 TrailZ = std::min(TrailZ, 622 unsigned(CountTrailingZeros_64(TypeSize) + 623 LocalKnownZero.countTrailingOnes())); 624 } 625 } 626 627 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 628 break; 629 } 630 case Instruction::PHI: { 631 PHINode *P = cast<PHINode>(I); 632 // Handle the case of a simple two-predecessor recurrence PHI. 633 // There's a lot more that could theoretically be done here, but 634 // this is sufficient to catch some interesting cases. 635 if (P->getNumIncomingValues() == 2) { 636 for (unsigned i = 0; i != 2; ++i) { 637 Value *L = P->getIncomingValue(i); 638 Value *R = P->getIncomingValue(!i); 639 Operator *LU = dyn_cast<Operator>(L); 640 if (!LU) 641 continue; 642 unsigned Opcode = LU->getOpcode(); 643 // Check for operations that have the property that if 644 // both their operands have low zero bits, the result 645 // will have low zero bits. 646 if (Opcode == Instruction::Add || 647 Opcode == Instruction::Sub || 648 Opcode == Instruction::And || 649 Opcode == Instruction::Or || 650 Opcode == Instruction::Mul) { 651 Value *LL = LU->getOperand(0); 652 Value *LR = LU->getOperand(1); 653 // Find a recurrence. 654 if (LL == I) 655 L = LR; 656 else if (LR == I) 657 L = LL; 658 else 659 break; 660 // Ok, we have a PHI of the form L op= R. Check for low 661 // zero bits. 662 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 663 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 664 Mask2 = APInt::getLowBitsSet(BitWidth, 665 KnownZero2.countTrailingOnes()); 666 667 // We need to take the minimum number of known bits 668 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 669 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 670 671 KnownZero = Mask & 672 APInt::getLowBitsSet(BitWidth, 673 std::min(KnownZero2.countTrailingOnes(), 674 KnownZero3.countTrailingOnes())); 675 break; 676 } 677 } 678 } 679 680 // Unreachable blocks may have zero-operand PHI nodes. 681 if (P->getNumIncomingValues() == 0) 682 return; 683 684 // Otherwise take the unions of the known bit sets of the operands, 685 // taking conservative care to avoid excessive recursion. 686 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 687 // Skip if every incoming value references to ourself. 688 if (P->hasConstantValue() == P) 689 break; 690 691 KnownZero = APInt::getAllOnesValue(BitWidth); 692 KnownOne = APInt::getAllOnesValue(BitWidth); 693 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 694 // Skip direct self references. 695 if (P->getIncomingValue(i) == P) continue; 696 697 KnownZero2 = APInt(BitWidth, 0); 698 KnownOne2 = APInt(BitWidth, 0); 699 // Recurse, but cap the recursion to one level, because we don't 700 // want to waste time spinning around in loops. 701 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 702 KnownZero2, KnownOne2, TD, MaxDepth-1); 703 KnownZero &= KnownZero2; 704 KnownOne &= KnownOne2; 705 // If all bits have been ruled out, there's no need to check 706 // more operands. 707 if (!KnownZero && !KnownOne) 708 break; 709 } 710 } 711 break; 712 } 713 case Instruction::Call: 714 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 715 switch (II->getIntrinsicID()) { 716 default: break; 717 case Intrinsic::ctlz: 718 case Intrinsic::cttz: { 719 unsigned LowBits = Log2_32(BitWidth)+1; 720 // If this call is undefined for 0, the result will be less than 2^n. 721 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 722 LowBits -= 1; 723 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 724 break; 725 } 726 case Intrinsic::ctpop: { 727 unsigned LowBits = Log2_32(BitWidth)+1; 728 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 729 break; 730 } 731 case Intrinsic::x86_sse42_crc32_64_8: 732 case Intrinsic::x86_sse42_crc32_64_64: 733 KnownZero = APInt::getHighBitsSet(64, 32); 734 break; 735 } 736 } 737 break; 738 } 739 } 740 741 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 742 /// one. Convenience wrapper around ComputeMaskedBits. 743 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 744 const TargetData *TD, unsigned Depth) { 745 unsigned BitWidth = getBitWidth(V->getType(), TD); 746 if (!BitWidth) { 747 KnownZero = false; 748 KnownOne = false; 749 return; 750 } 751 APInt ZeroBits(BitWidth, 0); 752 APInt OneBits(BitWidth, 0); 753 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 754 Depth); 755 KnownOne = OneBits[BitWidth - 1]; 756 KnownZero = ZeroBits[BitWidth - 1]; 757 } 758 759 /// isPowerOfTwo - Return true if the given value is known to have exactly one 760 /// bit set when defined. For vectors return true if every element is known to 761 /// be a power of two when defined. Supports values with integer or pointer 762 /// types and vectors of integers. 763 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero, 764 unsigned Depth) { 765 if (Constant *C = dyn_cast<Constant>(V)) { 766 if (C->isNullValue()) 767 return OrZero; 768 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 769 return CI->getValue().isPowerOf2(); 770 // TODO: Handle vector constants. 771 } 772 773 // 1 << X is clearly a power of two if the one is not shifted off the end. If 774 // it is shifted off the end then the result is undefined. 775 if (match(V, m_Shl(m_One(), m_Value()))) 776 return true; 777 778 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 779 // bottom. If it is shifted off the bottom then the result is undefined. 780 if (match(V, m_LShr(m_SignBit(), m_Value()))) 781 return true; 782 783 // The remaining tests are all recursive, so bail out if we hit the limit. 784 if (Depth++ == MaxDepth) 785 return false; 786 787 Value *X = 0, *Y = 0; 788 // A shift of a power of two is a power of two or zero. 789 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 790 match(V, m_Shr(m_Value(X), m_Value())))) 791 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth); 792 793 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 794 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth); 795 796 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 797 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) && 798 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth); 799 800 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 801 // A power of two and'd with anything is a power of two or zero. 802 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) || 803 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth)) 804 return true; 805 // X & (-X) is always a power of two or zero. 806 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 807 return true; 808 return false; 809 } 810 811 // An exact divide or right shift can only shift off zero bits, so the result 812 // is a power of two only if the first operand is a power of two and not 813 // copying a sign bit (sdiv int_min, 2). 814 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 815 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 816 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth); 817 } 818 819 return false; 820 } 821 822 /// isKnownNonZero - Return true if the given value is known to be non-zero 823 /// when defined. For vectors return true if every element is known to be 824 /// non-zero when defined. Supports values with integer or pointer type and 825 /// vectors of integers. 826 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 827 if (Constant *C = dyn_cast<Constant>(V)) { 828 if (C->isNullValue()) 829 return false; 830 if (isa<ConstantInt>(C)) 831 // Must be non-zero due to null test above. 832 return true; 833 // TODO: Handle vectors 834 return false; 835 } 836 837 // The remaining tests are all recursive, so bail out if we hit the limit. 838 if (Depth++ >= MaxDepth) 839 return false; 840 841 unsigned BitWidth = getBitWidth(V->getType(), TD); 842 843 // X | Y != 0 if X != 0 or Y != 0. 844 Value *X = 0, *Y = 0; 845 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 846 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 847 848 // ext X != 0 if X != 0. 849 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 850 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 851 852 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 853 // if the lowest bit is shifted off the end. 854 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 855 // shl nuw can't remove any non-zero bits. 856 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 857 if (BO->hasNoUnsignedWrap()) 858 return isKnownNonZero(X, TD, Depth); 859 860 APInt KnownZero(BitWidth, 0); 861 APInt KnownOne(BitWidth, 0); 862 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 863 if (KnownOne[0]) 864 return true; 865 } 866 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 867 // defined if the sign bit is shifted off the end. 868 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 869 // shr exact can only shift out zero bits. 870 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 871 if (BO->isExact()) 872 return isKnownNonZero(X, TD, Depth); 873 874 bool XKnownNonNegative, XKnownNegative; 875 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 876 if (XKnownNegative) 877 return true; 878 } 879 // div exact can only produce a zero if the dividend is zero. 880 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 881 return isKnownNonZero(X, TD, Depth); 882 } 883 // X + Y. 884 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 885 bool XKnownNonNegative, XKnownNegative; 886 bool YKnownNonNegative, YKnownNegative; 887 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 888 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 889 890 // If X and Y are both non-negative (as signed values) then their sum is not 891 // zero unless both X and Y are zero. 892 if (XKnownNonNegative && YKnownNonNegative) 893 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 894 return true; 895 896 // If X and Y are both negative (as signed values) then their sum is not 897 // zero unless both X and Y equal INT_MIN. 898 if (BitWidth && XKnownNegative && YKnownNegative) { 899 APInt KnownZero(BitWidth, 0); 900 APInt KnownOne(BitWidth, 0); 901 APInt Mask = APInt::getSignedMaxValue(BitWidth); 902 // The sign bit of X is set. If some other bit is set then X is not equal 903 // to INT_MIN. 904 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 905 if ((KnownOne & Mask) != 0) 906 return true; 907 // The sign bit of Y is set. If some other bit is set then Y is not equal 908 // to INT_MIN. 909 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 910 if ((KnownOne & Mask) != 0) 911 return true; 912 } 913 914 // The sum of a non-negative number and a power of two is not zero. 915 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth)) 916 return true; 917 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) 918 return true; 919 } 920 // X * Y. 921 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 922 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 923 // If X and Y are non-zero then so is X * Y as long as the multiplication 924 // does not overflow. 925 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 926 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 927 return true; 928 } 929 // (C ? X : Y) != 0 if X != 0 and Y != 0. 930 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 931 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 932 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 933 return true; 934 } 935 936 if (!BitWidth) return false; 937 APInt KnownZero(BitWidth, 0); 938 APInt KnownOne(BitWidth, 0); 939 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 940 TD, Depth); 941 return KnownOne != 0; 942 } 943 944 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 945 /// this predicate to simplify operations downstream. Mask is known to be zero 946 /// for bits that V cannot have. 947 /// 948 /// This function is defined on values with integer type, values with pointer 949 /// type (but only if TD is non-null), and vectors of integers. In the case 950 /// where V is a vector, the mask, known zero, and known one values are the 951 /// same width as the vector element, and the bit is set only if it is true 952 /// for all of the elements in the vector. 953 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 954 const TargetData *TD, unsigned Depth) { 955 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 956 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 957 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 958 return (KnownZero & Mask) == Mask; 959 } 960 961 962 963 /// ComputeNumSignBits - Return the number of times the sign bit of the 964 /// register is replicated into the other bits. We know that at least 1 bit 965 /// is always equal to the sign bit (itself), but other cases can give us 966 /// information. For example, immediately after an "ashr X, 2", we know that 967 /// the top 3 bits are all equal to each other, so we return 3. 968 /// 969 /// 'Op' must have a scalar integer type. 970 /// 971 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 972 unsigned Depth) { 973 assert((TD || V->getType()->isIntOrIntVectorTy()) && 974 "ComputeNumSignBits requires a TargetData object to operate " 975 "on non-integer values!"); 976 Type *Ty = V->getType(); 977 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 978 Ty->getScalarSizeInBits(); 979 unsigned Tmp, Tmp2; 980 unsigned FirstAnswer = 1; 981 982 // Note that ConstantInt is handled by the general ComputeMaskedBits case 983 // below. 984 985 if (Depth == 6) 986 return 1; // Limit search depth. 987 988 Operator *U = dyn_cast<Operator>(V); 989 switch (Operator::getOpcode(V)) { 990 default: break; 991 case Instruction::SExt: 992 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 993 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 994 995 case Instruction::AShr: 996 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 997 // ashr X, C -> adds C sign bits. 998 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 999 Tmp += C->getZExtValue(); 1000 if (Tmp > TyBits) Tmp = TyBits; 1001 } 1002 // vector ashr X, <C, C, C, C> -> adds C sign bits 1003 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) { 1004 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { 1005 Tmp += CI->getZExtValue(); 1006 if (Tmp > TyBits) Tmp = TyBits; 1007 } 1008 } 1009 return Tmp; 1010 case Instruction::Shl: 1011 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 1012 // shl destroys sign bits. 1013 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1014 if (C->getZExtValue() >= TyBits || // Bad shift. 1015 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 1016 return Tmp - C->getZExtValue(); 1017 } 1018 break; 1019 case Instruction::And: 1020 case Instruction::Or: 1021 case Instruction::Xor: // NOT is handled here. 1022 // Logical binary ops preserve the number of sign bits at the worst. 1023 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1024 if (Tmp != 1) { 1025 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1026 FirstAnswer = std::min(Tmp, Tmp2); 1027 // We computed what we know about the sign bits as our first 1028 // answer. Now proceed to the generic code that uses 1029 // ComputeMaskedBits, and pick whichever answer is better. 1030 } 1031 break; 1032 1033 case Instruction::Select: 1034 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1035 if (Tmp == 1) return 1; // Early out. 1036 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1037 return std::min(Tmp, Tmp2); 1038 1039 case Instruction::Add: 1040 // Add can have at most one carry bit. Thus we know that the output 1041 // is, at worst, one more bit than the inputs. 1042 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1043 if (Tmp == 1) return 1; // Early out. 1044 1045 // Special case decrementing a value (ADD X, -1): 1046 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1047 if (CRHS->isAllOnesValue()) { 1048 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1049 APInt Mask = APInt::getAllOnesValue(TyBits); 1050 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 1051 Depth+1); 1052 1053 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1054 // sign bits set. 1055 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1056 return TyBits; 1057 1058 // If we are subtracting one from a positive number, there is no carry 1059 // out of the result. 1060 if (KnownZero.isNegative()) 1061 return Tmp; 1062 } 1063 1064 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1065 if (Tmp2 == 1) return 1; 1066 return std::min(Tmp, Tmp2)-1; 1067 1068 case Instruction::Sub: 1069 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1070 if (Tmp2 == 1) return 1; 1071 1072 // Handle NEG. 1073 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1074 if (CLHS->isNullValue()) { 1075 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1076 APInt Mask = APInt::getAllOnesValue(TyBits); 1077 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 1078 TD, Depth+1); 1079 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1080 // sign bits set. 1081 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1082 return TyBits; 1083 1084 // If the input is known to be positive (the sign bit is known clear), 1085 // the output of the NEG has the same number of sign bits as the input. 1086 if (KnownZero.isNegative()) 1087 return Tmp2; 1088 1089 // Otherwise, we treat this like a SUB. 1090 } 1091 1092 // Sub can have at most one carry bit. Thus we know that the output 1093 // is, at worst, one more bit than the inputs. 1094 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1095 if (Tmp == 1) return 1; // Early out. 1096 return std::min(Tmp, Tmp2)-1; 1097 1098 case Instruction::PHI: { 1099 PHINode *PN = cast<PHINode>(U); 1100 // Don't analyze large in-degree PHIs. 1101 if (PN->getNumIncomingValues() > 4) break; 1102 1103 // Take the minimum of all incoming values. This can't infinitely loop 1104 // because of our depth threshold. 1105 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1106 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1107 if (Tmp == 1) return Tmp; 1108 Tmp = std::min(Tmp, 1109 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1110 } 1111 return Tmp; 1112 } 1113 1114 case Instruction::Trunc: 1115 // FIXME: it's tricky to do anything useful for this, but it is an important 1116 // case for targets like X86. 1117 break; 1118 } 1119 1120 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1121 // use this information. 1122 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1123 APInt Mask = APInt::getAllOnesValue(TyBits); 1124 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1125 1126 if (KnownZero.isNegative()) { // sign bit is 0 1127 Mask = KnownZero; 1128 } else if (KnownOne.isNegative()) { // sign bit is 1; 1129 Mask = KnownOne; 1130 } else { 1131 // Nothing known. 1132 return FirstAnswer; 1133 } 1134 1135 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1136 // the number of identical bits in the top of the input value. 1137 Mask = ~Mask; 1138 Mask <<= Mask.getBitWidth()-TyBits; 1139 // Return # leading zeros. We use 'min' here in case Val was zero before 1140 // shifting. We don't want to return '64' as for an i32 "0". 1141 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1142 } 1143 1144 /// ComputeMultiple - This function computes the integer multiple of Base that 1145 /// equals V. If successful, it returns true and returns the multiple in 1146 /// Multiple. If unsuccessful, it returns false. It looks 1147 /// through SExt instructions only if LookThroughSExt is true. 1148 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1149 bool LookThroughSExt, unsigned Depth) { 1150 const unsigned MaxDepth = 6; 1151 1152 assert(V && "No Value?"); 1153 assert(Depth <= MaxDepth && "Limit Search Depth"); 1154 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1155 1156 Type *T = V->getType(); 1157 1158 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1159 1160 if (Base == 0) 1161 return false; 1162 1163 if (Base == 1) { 1164 Multiple = V; 1165 return true; 1166 } 1167 1168 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1169 Constant *BaseVal = ConstantInt::get(T, Base); 1170 if (CO && CO == BaseVal) { 1171 // Multiple is 1. 1172 Multiple = ConstantInt::get(T, 1); 1173 return true; 1174 } 1175 1176 if (CI && CI->getZExtValue() % Base == 0) { 1177 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1178 return true; 1179 } 1180 1181 if (Depth == MaxDepth) return false; // Limit search depth. 1182 1183 Operator *I = dyn_cast<Operator>(V); 1184 if (!I) return false; 1185 1186 switch (I->getOpcode()) { 1187 default: break; 1188 case Instruction::SExt: 1189 if (!LookThroughSExt) return false; 1190 // otherwise fall through to ZExt 1191 case Instruction::ZExt: 1192 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1193 LookThroughSExt, Depth+1); 1194 case Instruction::Shl: 1195 case Instruction::Mul: { 1196 Value *Op0 = I->getOperand(0); 1197 Value *Op1 = I->getOperand(1); 1198 1199 if (I->getOpcode() == Instruction::Shl) { 1200 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1201 if (!Op1CI) return false; 1202 // Turn Op0 << Op1 into Op0 * 2^Op1 1203 APInt Op1Int = Op1CI->getValue(); 1204 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1205 APInt API(Op1Int.getBitWidth(), 0); 1206 API.setBit(BitToSet); 1207 Op1 = ConstantInt::get(V->getContext(), API); 1208 } 1209 1210 Value *Mul0 = NULL; 1211 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1212 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1213 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1214 if (Op1C->getType()->getPrimitiveSizeInBits() < 1215 MulC->getType()->getPrimitiveSizeInBits()) 1216 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1217 if (Op1C->getType()->getPrimitiveSizeInBits() > 1218 MulC->getType()->getPrimitiveSizeInBits()) 1219 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1220 1221 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1222 Multiple = ConstantExpr::getMul(MulC, Op1C); 1223 return true; 1224 } 1225 1226 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1227 if (Mul0CI->getValue() == 1) { 1228 // V == Base * Op1, so return Op1 1229 Multiple = Op1; 1230 return true; 1231 } 1232 } 1233 1234 Value *Mul1 = NULL; 1235 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1236 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1237 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1238 if (Op0C->getType()->getPrimitiveSizeInBits() < 1239 MulC->getType()->getPrimitiveSizeInBits()) 1240 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1241 if (Op0C->getType()->getPrimitiveSizeInBits() > 1242 MulC->getType()->getPrimitiveSizeInBits()) 1243 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1244 1245 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1246 Multiple = ConstantExpr::getMul(MulC, Op0C); 1247 return true; 1248 } 1249 1250 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1251 if (Mul1CI->getValue() == 1) { 1252 // V == Base * Op0, so return Op0 1253 Multiple = Op0; 1254 return true; 1255 } 1256 } 1257 } 1258 } 1259 1260 // We could not determine if V is a multiple of Base. 1261 return false; 1262 } 1263 1264 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1265 /// value is never equal to -0.0. 1266 /// 1267 /// NOTE: this function will need to be revisited when we support non-default 1268 /// rounding modes! 1269 /// 1270 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1271 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1272 return !CFP->getValueAPF().isNegZero(); 1273 1274 if (Depth == 6) 1275 return 1; // Limit search depth. 1276 1277 const Operator *I = dyn_cast<Operator>(V); 1278 if (I == 0) return false; 1279 1280 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1281 if (I->getOpcode() == Instruction::FAdd && 1282 isa<ConstantFP>(I->getOperand(1)) && 1283 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1284 return true; 1285 1286 // sitofp and uitofp turn into +0.0 for zero. 1287 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1288 return true; 1289 1290 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1291 // sqrt(-0.0) = -0.0, no other negative results are possible. 1292 if (II->getIntrinsicID() == Intrinsic::sqrt) 1293 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1294 1295 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1296 if (const Function *F = CI->getCalledFunction()) { 1297 if (F->isDeclaration()) { 1298 // abs(x) != -0.0 1299 if (F->getName() == "abs") return true; 1300 // fabs[lf](x) != -0.0 1301 if (F->getName() == "fabs") return true; 1302 if (F->getName() == "fabsf") return true; 1303 if (F->getName() == "fabsl") return true; 1304 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1305 F->getName() == "sqrtl") 1306 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1307 } 1308 } 1309 1310 return false; 1311 } 1312 1313 /// isBytewiseValue - If the specified value can be set by repeating the same 1314 /// byte in memory, return the i8 value that it is represented with. This is 1315 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1316 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1317 /// byte store (e.g. i16 0x1234), return null. 1318 Value *llvm::isBytewiseValue(Value *V) { 1319 // All byte-wide stores are splatable, even of arbitrary variables. 1320 if (V->getType()->isIntegerTy(8)) return V; 1321 1322 // Handle 'null' ConstantArrayZero etc. 1323 if (Constant *C = dyn_cast<Constant>(V)) 1324 if (C->isNullValue()) 1325 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1326 1327 // Constant float and double values can be handled as integer values if the 1328 // corresponding integer value is "byteable". An important case is 0.0. 1329 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1330 if (CFP->getType()->isFloatTy()) 1331 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1332 if (CFP->getType()->isDoubleTy()) 1333 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1334 // Don't handle long double formats, which have strange constraints. 1335 } 1336 1337 // We can handle constant integers that are power of two in size and a 1338 // multiple of 8 bits. 1339 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1340 unsigned Width = CI->getBitWidth(); 1341 if (isPowerOf2_32(Width) && Width > 8) { 1342 // We can handle this value if the recursive binary decomposition is the 1343 // same at all levels. 1344 APInt Val = CI->getValue(); 1345 APInt Val2; 1346 while (Val.getBitWidth() != 8) { 1347 unsigned NextWidth = Val.getBitWidth()/2; 1348 Val2 = Val.lshr(NextWidth); 1349 Val2 = Val2.trunc(Val.getBitWidth()/2); 1350 Val = Val.trunc(Val.getBitWidth()/2); 1351 1352 // If the top/bottom halves aren't the same, reject it. 1353 if (Val != Val2) 1354 return 0; 1355 } 1356 return ConstantInt::get(V->getContext(), Val); 1357 } 1358 } 1359 1360 // A ConstantArray is splatable if all its members are equal and also 1361 // splatable. 1362 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1363 if (CA->getNumOperands() == 0) 1364 return 0; 1365 1366 Value *Val = isBytewiseValue(CA->getOperand(0)); 1367 if (!Val) 1368 return 0; 1369 1370 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I) 1371 if (CA->getOperand(I-1) != CA->getOperand(I)) 1372 return 0; 1373 1374 return Val; 1375 } 1376 1377 // FIXME: Vector types (e.g., <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>). 1378 1379 // Conceptually, we could handle things like: 1380 // %a = zext i8 %X to i16 1381 // %b = shl i16 %a, 8 1382 // %c = or i16 %a, %b 1383 // but until there is an example that actually needs this, it doesn't seem 1384 // worth worrying about. 1385 return 0; 1386 } 1387 1388 1389 // This is the recursive version of BuildSubAggregate. It takes a few different 1390 // arguments. Idxs is the index within the nested struct From that we are 1391 // looking at now (which is of type IndexedType). IdxSkip is the number of 1392 // indices from Idxs that should be left out when inserting into the resulting 1393 // struct. To is the result struct built so far, new insertvalue instructions 1394 // build on that. 1395 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1396 SmallVector<unsigned, 10> &Idxs, 1397 unsigned IdxSkip, 1398 Instruction *InsertBefore) { 1399 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1400 if (STy) { 1401 // Save the original To argument so we can modify it 1402 Value *OrigTo = To; 1403 // General case, the type indexed by Idxs is a struct 1404 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1405 // Process each struct element recursively 1406 Idxs.push_back(i); 1407 Value *PrevTo = To; 1408 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1409 InsertBefore); 1410 Idxs.pop_back(); 1411 if (!To) { 1412 // Couldn't find any inserted value for this index? Cleanup 1413 while (PrevTo != OrigTo) { 1414 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1415 PrevTo = Del->getAggregateOperand(); 1416 Del->eraseFromParent(); 1417 } 1418 // Stop processing elements 1419 break; 1420 } 1421 } 1422 // If we successfully found a value for each of our subaggregates 1423 if (To) 1424 return To; 1425 } 1426 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1427 // the struct's elements had a value that was inserted directly. In the latter 1428 // case, perhaps we can't determine each of the subelements individually, but 1429 // we might be able to find the complete struct somewhere. 1430 1431 // Find the value that is at that particular spot 1432 Value *V = FindInsertedValue(From, Idxs); 1433 1434 if (!V) 1435 return NULL; 1436 1437 // Insert the value in the new (sub) aggregrate 1438 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1439 "tmp", InsertBefore); 1440 } 1441 1442 // This helper takes a nested struct and extracts a part of it (which is again a 1443 // struct) into a new value. For example, given the struct: 1444 // { a, { b, { c, d }, e } } 1445 // and the indices "1, 1" this returns 1446 // { c, d }. 1447 // 1448 // It does this by inserting an insertvalue for each element in the resulting 1449 // struct, as opposed to just inserting a single struct. This will only work if 1450 // each of the elements of the substruct are known (ie, inserted into From by an 1451 // insertvalue instruction somewhere). 1452 // 1453 // All inserted insertvalue instructions are inserted before InsertBefore 1454 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1455 Instruction *InsertBefore) { 1456 assert(InsertBefore && "Must have someplace to insert!"); 1457 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1458 idx_range); 1459 Value *To = UndefValue::get(IndexedType); 1460 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1461 unsigned IdxSkip = Idxs.size(); 1462 1463 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1464 } 1465 1466 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1467 /// the scalar value indexed is already around as a register, for example if it 1468 /// were inserted directly into the aggregrate. 1469 /// 1470 /// If InsertBefore is not null, this function will duplicate (modified) 1471 /// insertvalues when a part of a nested struct is extracted. 1472 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1473 Instruction *InsertBefore) { 1474 // Nothing to index? Just return V then (this is useful at the end of our 1475 // recursion) 1476 if (idx_range.empty()) 1477 return V; 1478 // We have indices, so V should have an indexable type 1479 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) 1480 && "Not looking at a struct or array?"); 1481 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) 1482 && "Invalid indices for type?"); 1483 CompositeType *PTy = cast<CompositeType>(V->getType()); 1484 1485 if (isa<UndefValue>(V)) 1486 return UndefValue::get(ExtractValueInst::getIndexedType(PTy, 1487 idx_range)); 1488 else if (isa<ConstantAggregateZero>(V)) 1489 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, 1490 idx_range)); 1491 else if (Constant *C = dyn_cast<Constant>(V)) { 1492 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) 1493 // Recursively process this constant 1494 return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1), 1495 InsertBefore); 1496 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1497 // Loop the indices for the insertvalue instruction in parallel with the 1498 // requested indices 1499 const unsigned *req_idx = idx_range.begin(); 1500 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1501 i != e; ++i, ++req_idx) { 1502 if (req_idx == idx_range.end()) { 1503 if (InsertBefore) 1504 // The requested index identifies a part of a nested aggregate. Handle 1505 // this specially. For example, 1506 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1507 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1508 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1509 // This can be changed into 1510 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1511 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1512 // which allows the unused 0,0 element from the nested struct to be 1513 // removed. 1514 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1515 InsertBefore); 1516 else 1517 // We can't handle this without inserting insertvalues 1518 return 0; 1519 } 1520 1521 // This insert value inserts something else than what we are looking for. 1522 // See if the (aggregrate) value inserted into has the value we are 1523 // looking for, then. 1524 if (*req_idx != *i) 1525 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1526 InsertBefore); 1527 } 1528 // If we end up here, the indices of the insertvalue match with those 1529 // requested (though possibly only partially). Now we recursively look at 1530 // the inserted value, passing any remaining indices. 1531 return FindInsertedValue(I->getInsertedValueOperand(), 1532 makeArrayRef(req_idx, idx_range.end()), 1533 InsertBefore); 1534 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1535 // If we're extracting a value from an aggregrate that was extracted from 1536 // something else, we can extract from that something else directly instead. 1537 // However, we will need to chain I's indices with the requested indices. 1538 1539 // Calculate the number of indices required 1540 unsigned size = I->getNumIndices() + idx_range.size(); 1541 // Allocate some space to put the new indices in 1542 SmallVector<unsigned, 5> Idxs; 1543 Idxs.reserve(size); 1544 // Add indices from the extract value instruction 1545 Idxs.append(I->idx_begin(), I->idx_end()); 1546 1547 // Add requested indices 1548 Idxs.append(idx_range.begin(), idx_range.end()); 1549 1550 assert(Idxs.size() == size 1551 && "Number of indices added not correct?"); 1552 1553 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1554 } 1555 // Otherwise, we don't know (such as, extracting from a function return value 1556 // or load instruction) 1557 return 0; 1558 } 1559 1560 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1561 /// it can be expressed as a base pointer plus a constant offset. Return the 1562 /// base and offset to the caller. 1563 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1564 const TargetData &TD) { 1565 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1566 if (PtrOp == 0 || Ptr->getType()->isVectorTy()) 1567 return Ptr; 1568 1569 // Just look through bitcasts. 1570 if (PtrOp->getOpcode() == Instruction::BitCast) 1571 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1572 1573 // If this is a GEP with constant indices, we can look through it. 1574 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1575 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1576 1577 gep_type_iterator GTI = gep_type_begin(GEP); 1578 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1579 ++I, ++GTI) { 1580 ConstantInt *OpC = cast<ConstantInt>(*I); 1581 if (OpC->isZero()) continue; 1582 1583 // Handle a struct and array indices which add their offset to the pointer. 1584 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1585 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1586 } else { 1587 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1588 Offset += OpC->getSExtValue()*Size; 1589 } 1590 } 1591 1592 // Re-sign extend from the pointer size if needed to get overflow edge cases 1593 // right. 1594 unsigned PtrSize = TD.getPointerSizeInBits(); 1595 if (PtrSize < 64) 1596 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1597 1598 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1599 } 1600 1601 1602 /// GetConstantStringInfo - This function computes the length of a 1603 /// null-terminated C string pointed to by V. If successful, it returns true 1604 /// and returns the string in Str. If unsuccessful, it returns false. 1605 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str, 1606 uint64_t Offset, bool StopAtNul) { 1607 // If V is NULL then return false; 1608 if (V == NULL) return false; 1609 1610 // Look through bitcast instructions. 1611 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1612 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); 1613 1614 // If the value is not a GEP instruction nor a constant expression with a 1615 // GEP instruction, then return false because ConstantArray can't occur 1616 // any other way. 1617 const User *GEP = 0; 1618 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1619 GEP = GEPI; 1620 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1621 if (CE->getOpcode() == Instruction::BitCast) 1622 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); 1623 if (CE->getOpcode() != Instruction::GetElementPtr) 1624 return false; 1625 GEP = CE; 1626 } 1627 1628 if (GEP) { 1629 // Make sure the GEP has exactly three arguments. 1630 if (GEP->getNumOperands() != 3) 1631 return false; 1632 1633 // Make sure the index-ee is a pointer to array of i8. 1634 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1635 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1636 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1637 return false; 1638 1639 // Check to make sure that the first operand of the GEP is an integer and 1640 // has value 0 so that we are sure we're indexing into the initializer. 1641 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1642 if (FirstIdx == 0 || !FirstIdx->isZero()) 1643 return false; 1644 1645 // If the second index isn't a ConstantInt, then this is a variable index 1646 // into the array. If this occurs, we can't say anything meaningful about 1647 // the string. 1648 uint64_t StartIdx = 0; 1649 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1650 StartIdx = CI->getZExtValue(); 1651 else 1652 return false; 1653 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, 1654 StopAtNul); 1655 } 1656 1657 // The GEP instruction, constant or instruction, must reference a global 1658 // variable that is a constant and is initialized. The referenced constant 1659 // initializer is the array that we'll use for optimization. 1660 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V); 1661 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1662 return false; 1663 const Constant *GlobalInit = GV->getInitializer(); 1664 1665 // Handle the all-zeros case 1666 if (GlobalInit->isNullValue()) { 1667 // This is a degenerate case. The initializer is constant zero so the 1668 // length of the string must be zero. 1669 Str.clear(); 1670 return true; 1671 } 1672 1673 // Must be a Constant Array 1674 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1675 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8)) 1676 return false; 1677 1678 // Get the number of elements in the array 1679 uint64_t NumElts = Array->getType()->getNumElements(); 1680 1681 if (Offset > NumElts) 1682 return false; 1683 1684 // Traverse the constant array from 'Offset' which is the place the GEP refers 1685 // to in the array. 1686 Str.reserve(NumElts-Offset); 1687 for (unsigned i = Offset; i != NumElts; ++i) { 1688 const Constant *Elt = Array->getOperand(i); 1689 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1690 if (!CI) // This array isn't suitable, non-int initializer. 1691 return false; 1692 if (StopAtNul && CI->isZero()) 1693 return true; // we found end of string, success! 1694 Str += (char)CI->getZExtValue(); 1695 } 1696 1697 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. 1698 return true; 1699 } 1700 1701 // These next two are very similar to the above, but also look through PHI 1702 // nodes. 1703 // TODO: See if we can integrate these two together. 1704 1705 /// GetStringLengthH - If we can compute the length of the string pointed to by 1706 /// the specified pointer, return 'len+1'. If we can't, return 0. 1707 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1708 // Look through noop bitcast instructions. 1709 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1710 return GetStringLengthH(BCI->getOperand(0), PHIs); 1711 1712 // If this is a PHI node, there are two cases: either we have already seen it 1713 // or we haven't. 1714 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1715 if (!PHIs.insert(PN)) 1716 return ~0ULL; // already in the set. 1717 1718 // If it was new, see if all the input strings are the same length. 1719 uint64_t LenSoFar = ~0ULL; 1720 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1721 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1722 if (Len == 0) return 0; // Unknown length -> unknown. 1723 1724 if (Len == ~0ULL) continue; 1725 1726 if (Len != LenSoFar && LenSoFar != ~0ULL) 1727 return 0; // Disagree -> unknown. 1728 LenSoFar = Len; 1729 } 1730 1731 // Success, all agree. 1732 return LenSoFar; 1733 } 1734 1735 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1736 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1737 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1738 if (Len1 == 0) return 0; 1739 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1740 if (Len2 == 0) return 0; 1741 if (Len1 == ~0ULL) return Len2; 1742 if (Len2 == ~0ULL) return Len1; 1743 if (Len1 != Len2) return 0; 1744 return Len1; 1745 } 1746 1747 // As a special-case, "@string = constant i8 0" is also a string with zero 1748 // length, not wrapped in a bitcast or GEP. 1749 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 1750 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1751 if (GV->getInitializer()->isNullValue()) return 1; 1752 return 0; 1753 } 1754 1755 // If the value is not a GEP instruction nor a constant expression with a 1756 // GEP instruction, then return unknown. 1757 User *GEP = 0; 1758 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1759 GEP = GEPI; 1760 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1761 if (CE->getOpcode() != Instruction::GetElementPtr) 1762 return 0; 1763 GEP = CE; 1764 } else { 1765 return 0; 1766 } 1767 1768 // Make sure the GEP has exactly three arguments. 1769 if (GEP->getNumOperands() != 3) 1770 return 0; 1771 1772 // Check to make sure that the first operand of the GEP is an integer and 1773 // has value 0 so that we are sure we're indexing into the initializer. 1774 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { 1775 if (!Idx->isZero()) 1776 return 0; 1777 } else 1778 return 0; 1779 1780 // If the second index isn't a ConstantInt, then this is a variable index 1781 // into the array. If this occurs, we can't say anything meaningful about 1782 // the string. 1783 uint64_t StartIdx = 0; 1784 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1785 StartIdx = CI->getZExtValue(); 1786 else 1787 return 0; 1788 1789 // The GEP instruction, constant or instruction, must reference a global 1790 // variable that is a constant and is initialized. The referenced constant 1791 // initializer is the array that we'll use for optimization. 1792 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1793 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1794 GV->mayBeOverridden()) 1795 return 0; 1796 Constant *GlobalInit = GV->getInitializer(); 1797 1798 // Handle the ConstantAggregateZero case, which is a degenerate case. The 1799 // initializer is constant zero so the length of the string must be zero. 1800 if (isa<ConstantAggregateZero>(GlobalInit)) 1801 return 1; // Len = 0 offset by 1. 1802 1803 // Must be a Constant Array 1804 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1805 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8)) 1806 return false; 1807 1808 // Get the number of elements in the array 1809 uint64_t NumElts = Array->getType()->getNumElements(); 1810 1811 // Traverse the constant array from StartIdx (derived above) which is 1812 // the place the GEP refers to in the array. 1813 for (unsigned i = StartIdx; i != NumElts; ++i) { 1814 Constant *Elt = Array->getOperand(i); 1815 ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1816 if (!CI) // This array isn't suitable, non-int initializer. 1817 return 0; 1818 if (CI->isZero()) 1819 return i-StartIdx+1; // We found end of string, success! 1820 } 1821 1822 return 0; // The array isn't null terminated, conservatively return 'unknown'. 1823 } 1824 1825 /// GetStringLength - If we can compute the length of the string pointed to by 1826 /// the specified pointer, return 'len+1'. If we can't, return 0. 1827 uint64_t llvm::GetStringLength(Value *V) { 1828 if (!V->getType()->isPointerTy()) return 0; 1829 1830 SmallPtrSet<PHINode*, 32> PHIs; 1831 uint64_t Len = GetStringLengthH(V, PHIs); 1832 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1833 // an empty string as a length. 1834 return Len == ~0ULL ? 1 : Len; 1835 } 1836 1837 Value * 1838 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1839 if (!V->getType()->isPointerTy()) 1840 return V; 1841 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1842 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1843 V = GEP->getPointerOperand(); 1844 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1845 V = cast<Operator>(V)->getOperand(0); 1846 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1847 if (GA->mayBeOverridden()) 1848 return V; 1849 V = GA->getAliasee(); 1850 } else { 1851 // See if InstructionSimplify knows any relevant tricks. 1852 if (Instruction *I = dyn_cast<Instruction>(V)) 1853 // TODO: Acquire a DominatorTree and use it. 1854 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1855 V = Simplified; 1856 continue; 1857 } 1858 1859 return V; 1860 } 1861 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1862 } 1863 return V; 1864 } 1865 1866 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1867 /// are lifetime markers. 1868 /// 1869 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1870 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1871 UI != UE; ++UI) { 1872 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1873 if (!II) return false; 1874 1875 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1876 II->getIntrinsicID() != Intrinsic::lifetime_end) 1877 return false; 1878 } 1879 return true; 1880 } 1881 1882 bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst, 1883 const TargetData *TD) { 1884 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1885 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1886 if (C->canTrap()) 1887 return false; 1888 1889 switch (Inst->getOpcode()) { 1890 default: 1891 return true; 1892 case Instruction::UDiv: 1893 case Instruction::URem: 1894 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1895 return isKnownNonZero(Inst->getOperand(1), TD); 1896 case Instruction::SDiv: 1897 case Instruction::SRem: { 1898 Value *Op = Inst->getOperand(1); 1899 // x / y is undefined if y == 0 1900 if (!isKnownNonZero(Op, TD)) 1901 return false; 1902 // x / y might be undefined if y == -1 1903 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1904 if (BitWidth == 0) 1905 return false; 1906 APInt KnownZero(BitWidth, 0); 1907 APInt KnownOne(BitWidth, 0); 1908 ComputeMaskedBits(Op, APInt::getAllOnesValue(BitWidth), 1909 KnownZero, KnownOne, TD); 1910 return !!KnownZero; 1911 } 1912 case Instruction::Load: { 1913 const LoadInst *LI = cast<LoadInst>(Inst); 1914 if (!LI->isUnordered()) 1915 return false; 1916 return LI->getPointerOperand()->isDereferenceablePointer(); 1917 } 1918 case Instruction::Call: { 1919 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1920 switch (II->getIntrinsicID()) { 1921 case Intrinsic::bswap: 1922 case Intrinsic::ctlz: 1923 case Intrinsic::ctpop: 1924 case Intrinsic::cttz: 1925 case Intrinsic::objectsize: 1926 case Intrinsic::sadd_with_overflow: 1927 case Intrinsic::smul_with_overflow: 1928 case Intrinsic::ssub_with_overflow: 1929 case Intrinsic::uadd_with_overflow: 1930 case Intrinsic::umul_with_overflow: 1931 case Intrinsic::usub_with_overflow: 1932 return true; 1933 // TODO: some fp intrinsics are marked as having the same error handling 1934 // as libm. They're safe to speculate when they won't error. 1935 // TODO: are convert_{from,to}_fp16 safe? 1936 // TODO: can we list target-specific intrinsics here? 1937 default: break; 1938 } 1939 } 1940 return false; // The called function could have undefined behavior or 1941 // side-effects, even if marked readnone nounwind. 1942 } 1943 case Instruction::VAArg: 1944 case Instruction::Alloca: 1945 case Instruction::Invoke: 1946 case Instruction::PHI: 1947 case Instruction::Store: 1948 case Instruction::Ret: 1949 case Instruction::Br: 1950 case Instruction::IndirectBr: 1951 case Instruction::Switch: 1952 case Instruction::Unwind: 1953 case Instruction::Unreachable: 1954 case Instruction::Fence: 1955 case Instruction::LandingPad: 1956 case Instruction::AtomicRMW: 1957 case Instruction::AtomicCmpXchg: 1958 case Instruction::Resume: 1959 return false; // Misc instructions which have effects 1960 } 1961 } 1962