1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/MathExtras.h" 36 #include <cstring> 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 const unsigned MaxDepth = 6; 41 42 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 43 /// 0). For vector types, returns the element type's bitwidth. 44 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 45 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 46 return BitWidth; 47 48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 49 } 50 51 // Many of these functions have internal versions that take an assumption 52 // exclusion set. This is because of the potential for mutual recursion to 53 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 54 // classic case of this is assume(x = y), which will attempt to determine 55 // bits in x from bits in y, which will attempt to determine bits in y from 56 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 57 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 58 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 59 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 60 61 namespace { 62 // Simplifying using an assume can only be done in a particular control-flow 63 // context (the context instruction provides that context). If an assume and 64 // the context instruction are not in the same block then the DT helps in 65 // figuring out if we can use it. 66 struct Query { 67 ExclInvsSet ExclInvs; 68 AssumptionCache *AC; 69 const Instruction *CxtI; 70 const DominatorTree *DT; 71 72 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 73 const DominatorTree *DT = nullptr) 74 : AC(AC), CxtI(CxtI), DT(DT) {} 75 76 Query(const Query &Q, const Value *NewExcl) 77 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 78 ExclInvs.insert(NewExcl); 79 } 80 }; 81 } // end anonymous namespace 82 83 // Given the provided Value and, potentially, a context instruction, return 84 // the preferred context instruction (if any). 85 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 86 // If we've been provided with a context instruction, then use that (provided 87 // it has been inserted). 88 if (CxtI && CxtI->getParent()) 89 return CxtI; 90 91 // If the value is really an already-inserted instruction, then use that. 92 CxtI = dyn_cast<Instruction>(V); 93 if (CxtI && CxtI->getParent()) 94 return CxtI; 95 96 return nullptr; 97 } 98 99 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 100 const DataLayout *TD, unsigned Depth, 101 const Query &Q); 102 103 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 104 const DataLayout *TD, unsigned Depth, 105 AssumptionCache *AC, const Instruction *CxtI, 106 const DominatorTree *DT) { 107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth, 108 Query(AC, safeCxtI(V, CxtI), DT)); 109 } 110 111 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 112 const DataLayout *TD, unsigned Depth, 113 const Query &Q); 114 115 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 116 const DataLayout *TD, unsigned Depth, 117 AssumptionCache *AC, const Instruction *CxtI, 118 const DominatorTree *DT) { 119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth, 120 Query(AC, safeCxtI(V, CxtI), DT)); 121 } 122 123 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 124 const Query &Q); 125 126 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 127 AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT) { 129 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 130 Query(AC, safeCxtI(V, CxtI), DT)); 131 } 132 133 static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 134 const Query &Q); 135 136 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 137 AssumptionCache *AC, const Instruction *CxtI, 138 const DominatorTree *DT) { 139 return ::isKnownNonZero(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 140 } 141 142 static bool MaskedValueIsZero(Value *V, const APInt &Mask, 143 const DataLayout *TD, unsigned Depth, 144 const Query &Q); 145 146 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout *TD, 147 unsigned Depth, AssumptionCache *AC, 148 const Instruction *CxtI, const DominatorTree *DT) { 149 return ::MaskedValueIsZero(V, Mask, TD, Depth, 150 Query(AC, safeCxtI(V, CxtI), DT)); 151 } 152 153 static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD, 154 unsigned Depth, const Query &Q); 155 156 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 157 unsigned Depth, AssumptionCache *AC, 158 const Instruction *CxtI, 159 const DominatorTree *DT) { 160 return ::ComputeNumSignBits(V, TD, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 161 } 162 163 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 164 APInt &KnownZero, APInt &KnownOne, 165 APInt &KnownZero2, APInt &KnownOne2, 166 const DataLayout *TD, unsigned Depth, 167 const Query &Q) { 168 if (!Add) { 169 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 170 // We know that the top bits of C-X are clear if X contains less bits 171 // than C (i.e. no wrap-around can happen). For example, 20-X is 172 // positive if we can prove that X is >= 0 and < 16. 173 if (!CLHS->getValue().isNegative()) { 174 unsigned BitWidth = KnownZero.getBitWidth(); 175 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 176 // NLZ can't be BitWidth with no sign bit 177 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 178 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q); 179 180 // If all of the MaskV bits are known to be zero, then we know the 181 // output top bits are zero, because we now know that the output is 182 // from [0-C]. 183 if ((KnownZero2 & MaskV) == MaskV) { 184 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 185 // Top bits known zero. 186 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 187 } 188 } 189 } 190 } 191 192 unsigned BitWidth = KnownZero.getBitWidth(); 193 194 // If an initial sequence of bits in the result is not needed, the 195 // corresponding bits in the operands are not needed. 196 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 197 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q); 198 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q); 199 200 // Carry in a 1 for a subtract, rather than a 0. 201 APInt CarryIn(BitWidth, 0); 202 if (!Add) { 203 // Sum = LHS + ~RHS + 1 204 std::swap(KnownZero2, KnownOne2); 205 CarryIn.setBit(0); 206 } 207 208 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 209 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 210 211 // Compute known bits of the carry. 212 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 213 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 214 215 // Compute set of known bits (where all three relevant bits are known). 216 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 217 APInt RHSKnown = KnownZero2 | KnownOne2; 218 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 219 APInt Known = LHSKnown & RHSKnown & CarryKnown; 220 221 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 222 "known bits of sum differ"); 223 224 // Compute known bits of the result. 225 KnownZero = ~PossibleSumOne & Known; 226 KnownOne = PossibleSumOne & Known; 227 228 // Are we still trying to solve for the sign bit? 229 if (!Known.isNegative()) { 230 if (NSW) { 231 // Adding two non-negative numbers, or subtracting a negative number from 232 // a non-negative one, can't wrap into negative. 233 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 234 KnownZero |= APInt::getSignBit(BitWidth); 235 // Adding two negative numbers, or subtracting a non-negative number from 236 // a negative one, can't wrap into non-negative. 237 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 238 KnownOne |= APInt::getSignBit(BitWidth); 239 } 240 } 241 } 242 243 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 244 APInt &KnownZero, APInt &KnownOne, 245 APInt &KnownZero2, APInt &KnownOne2, 246 const DataLayout *TD, unsigned Depth, 247 const Query &Q) { 248 unsigned BitWidth = KnownZero.getBitWidth(); 249 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q); 250 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q); 251 252 bool isKnownNegative = false; 253 bool isKnownNonNegative = false; 254 // If the multiplication is known not to overflow, compute the sign bit. 255 if (NSW) { 256 if (Op0 == Op1) { 257 // The product of a number with itself is non-negative. 258 isKnownNonNegative = true; 259 } else { 260 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 261 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 262 bool isKnownNegativeOp1 = KnownOne.isNegative(); 263 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 264 // The product of two numbers with the same sign is non-negative. 265 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 266 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 267 // The product of a negative number and a non-negative number is either 268 // negative or zero. 269 if (!isKnownNonNegative) 270 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 271 isKnownNonZero(Op0, TD, Depth, Q)) || 272 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 273 isKnownNonZero(Op1, TD, Depth, Q)); 274 } 275 } 276 277 // If low bits are zero in either operand, output low known-0 bits. 278 // Also compute a conserative estimate for high known-0 bits. 279 // More trickiness is possible, but this is sufficient for the 280 // interesting case of alignment computation. 281 KnownOne.clearAllBits(); 282 unsigned TrailZ = KnownZero.countTrailingOnes() + 283 KnownZero2.countTrailingOnes(); 284 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 285 KnownZero2.countLeadingOnes(), 286 BitWidth) - BitWidth; 287 288 TrailZ = std::min(TrailZ, BitWidth); 289 LeadZ = std::min(LeadZ, BitWidth); 290 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 291 APInt::getHighBitsSet(BitWidth, LeadZ); 292 293 // Only make use of no-wrap flags if we failed to compute the sign bit 294 // directly. This matters if the multiplication always overflows, in 295 // which case we prefer to follow the result of the direct computation, 296 // though as the program is invoking undefined behaviour we can choose 297 // whatever we like here. 298 if (isKnownNonNegative && !KnownOne.isNegative()) 299 KnownZero.setBit(BitWidth - 1); 300 else if (isKnownNegative && !KnownZero.isNegative()) 301 KnownOne.setBit(BitWidth - 1); 302 } 303 304 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 305 APInt &KnownZero) { 306 unsigned BitWidth = KnownZero.getBitWidth(); 307 unsigned NumRanges = Ranges.getNumOperands() / 2; 308 assert(NumRanges >= 1); 309 310 // Use the high end of the ranges to find leading zeros. 311 unsigned MinLeadingZeros = BitWidth; 312 for (unsigned i = 0; i < NumRanges; ++i) { 313 ConstantInt *Lower = 314 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 315 ConstantInt *Upper = 316 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 317 ConstantRange Range(Lower->getValue(), Upper->getValue()); 318 if (Range.isWrappedSet()) 319 MinLeadingZeros = 0; // -1 has no zeros 320 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 321 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 322 } 323 324 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 325 } 326 327 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 328 SmallVector<const Value *, 16> WorkSet(1, I); 329 SmallPtrSet<const Value *, 32> Visited; 330 SmallPtrSet<const Value *, 16> EphValues; 331 332 while (!WorkSet.empty()) { 333 const Value *V = WorkSet.pop_back_val(); 334 if (!Visited.insert(V).second) 335 continue; 336 337 // If all uses of this value are ephemeral, then so is this value. 338 bool FoundNEUse = false; 339 for (const User *I : V->users()) 340 if (!EphValues.count(I)) { 341 FoundNEUse = true; 342 break; 343 } 344 345 if (!FoundNEUse) { 346 if (V == E) 347 return true; 348 349 EphValues.insert(V); 350 if (const User *U = dyn_cast<User>(V)) 351 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 352 J != JE; ++J) { 353 if (isSafeToSpeculativelyExecute(*J)) 354 WorkSet.push_back(*J); 355 } 356 } 357 } 358 359 return false; 360 } 361 362 // Is this an intrinsic that cannot be speculated but also cannot trap? 363 static bool isAssumeLikeIntrinsic(const Instruction *I) { 364 if (const CallInst *CI = dyn_cast<CallInst>(I)) 365 if (Function *F = CI->getCalledFunction()) 366 switch (F->getIntrinsicID()) { 367 default: break; 368 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 369 case Intrinsic::assume: 370 case Intrinsic::dbg_declare: 371 case Intrinsic::dbg_value: 372 case Intrinsic::invariant_start: 373 case Intrinsic::invariant_end: 374 case Intrinsic::lifetime_start: 375 case Intrinsic::lifetime_end: 376 case Intrinsic::objectsize: 377 case Intrinsic::ptr_annotation: 378 case Intrinsic::var_annotation: 379 return true; 380 } 381 382 return false; 383 } 384 385 static bool isValidAssumeForContext(Value *V, const Query &Q, 386 const DataLayout *DL) { 387 Instruction *Inv = cast<Instruction>(V); 388 389 // There are two restrictions on the use of an assume: 390 // 1. The assume must dominate the context (or the control flow must 391 // reach the assume whenever it reaches the context). 392 // 2. The context must not be in the assume's set of ephemeral values 393 // (otherwise we will use the assume to prove that the condition 394 // feeding the assume is trivially true, thus causing the removal of 395 // the assume). 396 397 if (Q.DT) { 398 if (Q.DT->dominates(Inv, Q.CxtI)) { 399 return true; 400 } else if (Inv->getParent() == Q.CxtI->getParent()) { 401 // The context comes first, but they're both in the same block. Make sure 402 // there is nothing in between that might interrupt the control flow. 403 for (BasicBlock::const_iterator I = 404 std::next(BasicBlock::const_iterator(Q.CxtI)), 405 IE(Inv); I != IE; ++I) 406 if (!isSafeToSpeculativelyExecute(I, DL) && 407 !isAssumeLikeIntrinsic(I)) 408 return false; 409 410 return !isEphemeralValueOf(Inv, Q.CxtI); 411 } 412 413 return false; 414 } 415 416 // When we don't have a DT, we do a limited search... 417 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 418 return true; 419 } else if (Inv->getParent() == Q.CxtI->getParent()) { 420 // Search forward from the assume until we reach the context (or the end 421 // of the block); the common case is that the assume will come first. 422 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 423 IE = Inv->getParent()->end(); I != IE; ++I) 424 if (I == Q.CxtI) 425 return true; 426 427 // The context must come first... 428 for (BasicBlock::const_iterator I = 429 std::next(BasicBlock::const_iterator(Q.CxtI)), 430 IE(Inv); I != IE; ++I) 431 if (!isSafeToSpeculativelyExecute(I, DL) && 432 !isAssumeLikeIntrinsic(I)) 433 return false; 434 435 return !isEphemeralValueOf(Inv, Q.CxtI); 436 } 437 438 return false; 439 } 440 441 bool llvm::isValidAssumeForContext(const Instruction *I, 442 const Instruction *CxtI, 443 const DataLayout *DL, 444 const DominatorTree *DT) { 445 return ::isValidAssumeForContext(const_cast<Instruction*>(I), 446 Query(nullptr, CxtI, DT), DL); 447 } 448 449 template<typename LHS, typename RHS> 450 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 451 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 452 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 453 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 454 } 455 456 template<typename LHS, typename RHS> 457 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 458 BinaryOp_match<RHS, LHS, Instruction::And>> 459 m_c_And(const LHS &L, const RHS &R) { 460 return m_CombineOr(m_And(L, R), m_And(R, L)); 461 } 462 463 template<typename LHS, typename RHS> 464 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 465 BinaryOp_match<RHS, LHS, Instruction::Or>> 466 m_c_Or(const LHS &L, const RHS &R) { 467 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 468 } 469 470 template<typename LHS, typename RHS> 471 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 472 BinaryOp_match<RHS, LHS, Instruction::Xor>> 473 m_c_Xor(const LHS &L, const RHS &R) { 474 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 475 } 476 477 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 478 APInt &KnownOne, 479 const DataLayout *DL, 480 unsigned Depth, const Query &Q) { 481 // Use of assumptions is context-sensitive. If we don't have a context, we 482 // cannot use them! 483 if (!Q.AC || !Q.CxtI) 484 return; 485 486 unsigned BitWidth = KnownZero.getBitWidth(); 487 488 for (auto &AssumeVH : Q.AC->assumptions()) { 489 if (!AssumeVH) 490 continue; 491 CallInst *I = cast<CallInst>(AssumeVH); 492 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 493 "Got assumption for the wrong function!"); 494 if (Q.ExclInvs.count(I)) 495 continue; 496 497 // Warning: This loop can end up being somewhat performance sensetive. 498 // We're running this loop for once for each value queried resulting in a 499 // runtime of ~O(#assumes * #values). 500 501 assert(isa<IntrinsicInst>(I) && 502 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume && 503 "must be an assume intrinsic"); 504 505 Value *Arg = I->getArgOperand(0); 506 507 if (Arg == V && 508 isValidAssumeForContext(I, Q, DL)) { 509 assert(BitWidth == 1 && "assume operand is not i1?"); 510 KnownZero.clearAllBits(); 511 KnownOne.setAllBits(); 512 return; 513 } 514 515 // The remaining tests are all recursive, so bail out if we hit the limit. 516 if (Depth == MaxDepth) 517 continue; 518 519 Value *A, *B; 520 auto m_V = m_CombineOr(m_Specific(V), 521 m_CombineOr(m_PtrToInt(m_Specific(V)), 522 m_BitCast(m_Specific(V)))); 523 524 CmpInst::Predicate Pred; 525 ConstantInt *C; 526 // assume(v = a) 527 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 528 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 529 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 530 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 531 KnownZero |= RHSKnownZero; 532 KnownOne |= RHSKnownOne; 533 // assume(v & b = a) 534 } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), 535 m_Value(A))) && 536 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 537 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 538 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 539 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 540 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 541 542 // For those bits in the mask that are known to be one, we can propagate 543 // known bits from the RHS to V. 544 KnownZero |= RHSKnownZero & MaskKnownOne; 545 KnownOne |= RHSKnownOne & MaskKnownOne; 546 // assume(~(v & b) = a) 547 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 548 m_Value(A))) && 549 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 550 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 551 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 552 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 553 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 554 555 // For those bits in the mask that are known to be one, we can propagate 556 // inverted known bits from the RHS to V. 557 KnownZero |= RHSKnownOne & MaskKnownOne; 558 KnownOne |= RHSKnownZero & MaskKnownOne; 559 // assume(v | b = a) 560 } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), 561 m_Value(A))) && 562 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 563 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 564 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 565 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 566 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 567 568 // For those bits in B that are known to be zero, we can propagate known 569 // bits from the RHS to V. 570 KnownZero |= RHSKnownZero & BKnownZero; 571 KnownOne |= RHSKnownOne & BKnownZero; 572 // assume(~(v | b) = a) 573 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 574 m_Value(A))) && 575 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 576 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 577 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 578 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 579 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 580 581 // For those bits in B that are known to be zero, we can propagate 582 // inverted known bits from the RHS to V. 583 KnownZero |= RHSKnownOne & BKnownZero; 584 KnownOne |= RHSKnownZero & BKnownZero; 585 // assume(v ^ b = a) 586 } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), 587 m_Value(A))) && 588 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 589 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 590 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 591 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 592 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 593 594 // For those bits in B that are known to be zero, we can propagate known 595 // bits from the RHS to V. For those bits in B that are known to be one, 596 // we can propagate inverted known bits from the RHS to V. 597 KnownZero |= RHSKnownZero & BKnownZero; 598 KnownOne |= RHSKnownOne & BKnownZero; 599 KnownZero |= RHSKnownOne & BKnownOne; 600 KnownOne |= RHSKnownZero & BKnownOne; 601 // assume(~(v ^ b) = a) 602 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 603 m_Value(A))) && 604 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 608 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 609 610 // For those bits in B that are known to be zero, we can propagate 611 // inverted known bits from the RHS to V. For those bits in B that are 612 // known to be one, we can propagate known bits from the RHS to V. 613 KnownZero |= RHSKnownOne & BKnownZero; 614 KnownOne |= RHSKnownZero & BKnownZero; 615 KnownZero |= RHSKnownZero & BKnownOne; 616 KnownOne |= RHSKnownOne & BKnownOne; 617 // assume(v << c = a) 618 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 619 m_Value(A))) && 620 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 621 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 622 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 623 // For those bits in RHS that are known, we can propagate them to known 624 // bits in V shifted to the right by C. 625 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 626 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 627 // assume(~(v << c) = a) 628 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 629 m_Value(A))) && 630 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 631 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 632 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 633 // For those bits in RHS that are known, we can propagate them inverted 634 // to known bits in V shifted to the right by C. 635 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 636 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 637 // assume(v >> c = a) 638 } else if (match(Arg, 639 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 640 m_AShr(m_V, 641 m_ConstantInt(C))), 642 m_Value(A))) && 643 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 646 // For those bits in RHS that are known, we can propagate them to known 647 // bits in V shifted to the right by C. 648 KnownZero |= RHSKnownZero << C->getZExtValue(); 649 KnownOne |= RHSKnownOne << C->getZExtValue(); 650 // assume(~(v >> c) = a) 651 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 652 m_LShr(m_V, m_ConstantInt(C)), 653 m_AShr(m_V, m_ConstantInt(C)))), 654 m_Value(A))) && 655 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 656 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 657 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 658 // For those bits in RHS that are known, we can propagate them inverted 659 // to known bits in V shifted to the right by C. 660 KnownZero |= RHSKnownOne << C->getZExtValue(); 661 KnownOne |= RHSKnownZero << C->getZExtValue(); 662 // assume(v >=_s c) where c is non-negative 663 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 664 Pred == ICmpInst::ICMP_SGE && 665 isValidAssumeForContext(I, Q, DL)) { 666 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 667 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 668 669 if (RHSKnownZero.isNegative()) { 670 // We know that the sign bit is zero. 671 KnownZero |= APInt::getSignBit(BitWidth); 672 } 673 // assume(v >_s c) where c is at least -1. 674 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 675 Pred == ICmpInst::ICMP_SGT && 676 isValidAssumeForContext(I, Q, DL)) { 677 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 678 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 679 680 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 681 // We know that the sign bit is zero. 682 KnownZero |= APInt::getSignBit(BitWidth); 683 } 684 // assume(v <=_s c) where c is negative 685 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 686 Pred == ICmpInst::ICMP_SLE && 687 isValidAssumeForContext(I, Q, DL)) { 688 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 689 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 690 691 if (RHSKnownOne.isNegative()) { 692 // We know that the sign bit is one. 693 KnownOne |= APInt::getSignBit(BitWidth); 694 } 695 // assume(v <_s c) where c is non-positive 696 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 697 Pred == ICmpInst::ICMP_SLT && 698 isValidAssumeForContext(I, Q, DL)) { 699 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 700 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 701 702 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 703 // We know that the sign bit is one. 704 KnownOne |= APInt::getSignBit(BitWidth); 705 } 706 // assume(v <=_u c) 707 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 708 Pred == ICmpInst::ICMP_ULE && 709 isValidAssumeForContext(I, Q, DL)) { 710 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 711 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 712 713 // Whatever high bits in c are zero are known to be zero. 714 KnownZero |= 715 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 716 // assume(v <_u c) 717 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 718 Pred == ICmpInst::ICMP_ULT && 719 isValidAssumeForContext(I, Q, DL)) { 720 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 721 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 722 723 // Whatever high bits in c are zero are known to be zero (if c is a power 724 // of 2, then one more). 725 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I))) 726 KnownZero |= 727 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 728 else 729 KnownZero |= 730 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 731 } 732 } 733 } 734 735 /// Determine which bits of V are known to be either zero or one and return 736 /// them in the KnownZero/KnownOne bit sets. 737 /// 738 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 739 /// we cannot optimize based on the assumption that it is zero without changing 740 /// it to be an explicit zero. If we don't change it to zero, other code could 741 /// optimized based on the contradictory assumption that it is non-zero. 742 /// Because instcombine aggressively folds operations with undef args anyway, 743 /// this won't lose us code quality. 744 /// 745 /// This function is defined on values with integer type, values with pointer 746 /// type (but only if TD is non-null), and vectors of integers. In the case 747 /// where V is a vector, known zero, and known one values are the 748 /// same width as the vector element, and the bit is set only if it is true 749 /// for all of the elements in the vector. 750 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 751 const DataLayout *TD, unsigned Depth, 752 const Query &Q) { 753 assert(V && "No Value?"); 754 assert(Depth <= MaxDepth && "Limit Search Depth"); 755 unsigned BitWidth = KnownZero.getBitWidth(); 756 757 assert((V->getType()->isIntOrIntVectorTy() || 758 V->getType()->getScalarType()->isPointerTy()) && 759 "Not integer or pointer type!"); 760 assert((!TD || 761 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 762 (!V->getType()->isIntOrIntVectorTy() || 763 V->getType()->getScalarSizeInBits() == BitWidth) && 764 KnownZero.getBitWidth() == BitWidth && 765 KnownOne.getBitWidth() == BitWidth && 766 "V, KnownOne and KnownZero should have same BitWidth"); 767 768 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 769 // We know all of the bits for a constant! 770 KnownOne = CI->getValue(); 771 KnownZero = ~KnownOne; 772 return; 773 } 774 // Null and aggregate-zero are all-zeros. 775 if (isa<ConstantPointerNull>(V) || 776 isa<ConstantAggregateZero>(V)) { 777 KnownOne.clearAllBits(); 778 KnownZero = APInt::getAllOnesValue(BitWidth); 779 return; 780 } 781 // Handle a constant vector by taking the intersection of the known bits of 782 // each element. There is no real need to handle ConstantVector here, because 783 // we don't handle undef in any particularly useful way. 784 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 785 // We know that CDS must be a vector of integers. Take the intersection of 786 // each element. 787 KnownZero.setAllBits(); KnownOne.setAllBits(); 788 APInt Elt(KnownZero.getBitWidth(), 0); 789 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 790 Elt = CDS->getElementAsInteger(i); 791 KnownZero &= ~Elt; 792 KnownOne &= Elt; 793 } 794 return; 795 } 796 797 // The address of an aligned GlobalValue has trailing zeros. 798 if (auto *GO = dyn_cast<GlobalObject>(V)) { 799 unsigned Align = GO->getAlignment(); 800 if (Align == 0 && TD) { 801 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 802 Type *ObjectType = GVar->getType()->getElementType(); 803 if (ObjectType->isSized()) { 804 // If the object is defined in the current Module, we'll be giving 805 // it the preferred alignment. Otherwise, we have to assume that it 806 // may only have the minimum ABI alignment. 807 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 808 Align = TD->getPreferredAlignment(GVar); 809 else 810 Align = TD->getABITypeAlignment(ObjectType); 811 } 812 } 813 } 814 if (Align > 0) 815 KnownZero = APInt::getLowBitsSet(BitWidth, 816 countTrailingZeros(Align)); 817 else 818 KnownZero.clearAllBits(); 819 KnownOne.clearAllBits(); 820 return; 821 } 822 823 if (Argument *A = dyn_cast<Argument>(V)) { 824 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 825 826 if (!Align && TD && A->hasStructRetAttr()) { 827 // An sret parameter has at least the ABI alignment of the return type. 828 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 829 if (EltTy->isSized()) 830 Align = TD->getABITypeAlignment(EltTy); 831 } 832 833 if (Align) 834 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 835 else 836 KnownZero.clearAllBits(); 837 KnownOne.clearAllBits(); 838 839 // Don't give up yet... there might be an assumption that provides more 840 // information... 841 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q); 842 return; 843 } 844 845 // Start out not knowing anything. 846 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 847 848 // Limit search depth. 849 // All recursive calls that increase depth must come after this. 850 if (Depth == MaxDepth) 851 return; 852 853 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 854 // the bits of its aliasee. 855 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 856 if (!GA->mayBeOverridden()) 857 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth + 1, Q); 858 return; 859 } 860 861 // Check whether a nearby assume intrinsic can determine some known bits. 862 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q); 863 864 Operator *I = dyn_cast<Operator>(V); 865 if (!I) return; 866 867 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 868 switch (I->getOpcode()) { 869 default: break; 870 case Instruction::Load: 871 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 872 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 873 break; 874 case Instruction::And: { 875 // If either the LHS or the RHS are Zero, the result is zero. 876 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 877 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 878 879 // Output known-1 bits are only known if set in both the LHS & RHS. 880 KnownOne &= KnownOne2; 881 // Output known-0 are known to be clear if zero in either the LHS | RHS. 882 KnownZero |= KnownZero2; 883 break; 884 } 885 case Instruction::Or: { 886 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 887 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 888 889 // Output known-0 bits are only known if clear in both the LHS & RHS. 890 KnownZero &= KnownZero2; 891 // Output known-1 are known to be set if set in either the LHS | RHS. 892 KnownOne |= KnownOne2; 893 break; 894 } 895 case Instruction::Xor: { 896 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 897 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 898 899 // Output known-0 bits are known if clear or set in both the LHS & RHS. 900 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 901 // Output known-1 are known to be set if set in only one of the LHS, RHS. 902 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 903 KnownZero = KnownZeroOut; 904 break; 905 } 906 case Instruction::Mul: { 907 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 908 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, 909 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 910 Depth, Q); 911 break; 912 } 913 case Instruction::UDiv: { 914 // For the purposes of computing leading zeros we can conservatively 915 // treat a udiv as a logical right shift by the power of 2 known to 916 // be less than the denominator. 917 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 918 unsigned LeadZ = KnownZero2.countLeadingOnes(); 919 920 KnownOne2.clearAllBits(); 921 KnownZero2.clearAllBits(); 922 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 923 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 924 if (RHSUnknownLeadingOnes != BitWidth) 925 LeadZ = std::min(BitWidth, 926 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 927 928 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 929 break; 930 } 931 case Instruction::Select: 932 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q); 933 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 934 935 // Only known if known in both the LHS and RHS. 936 KnownOne &= KnownOne2; 937 KnownZero &= KnownZero2; 938 break; 939 case Instruction::FPTrunc: 940 case Instruction::FPExt: 941 case Instruction::FPToUI: 942 case Instruction::FPToSI: 943 case Instruction::SIToFP: 944 case Instruction::UIToFP: 945 break; // Can't work with floating point. 946 case Instruction::PtrToInt: 947 case Instruction::IntToPtr: 948 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 949 // We can't handle these if we don't know the pointer size. 950 if (!TD) break; 951 // FALL THROUGH and handle them the same as zext/trunc. 952 case Instruction::ZExt: 953 case Instruction::Trunc: { 954 Type *SrcTy = I->getOperand(0)->getType(); 955 956 unsigned SrcBitWidth; 957 // Note that we handle pointer operands here because of inttoptr/ptrtoint 958 // which fall through here. 959 if(TD) { 960 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 961 } else { 962 SrcBitWidth = SrcTy->getScalarSizeInBits(); 963 if (!SrcBitWidth) break; 964 } 965 966 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 967 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 968 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 969 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 970 KnownZero = KnownZero.zextOrTrunc(BitWidth); 971 KnownOne = KnownOne.zextOrTrunc(BitWidth); 972 // Any top bits are known to be zero. 973 if (BitWidth > SrcBitWidth) 974 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 975 break; 976 } 977 case Instruction::BitCast: { 978 Type *SrcTy = I->getOperand(0)->getType(); 979 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 980 // TODO: For now, not handling conversions like: 981 // (bitcast i64 %x to <2 x i32>) 982 !I->getType()->isVectorTy()) { 983 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 984 break; 985 } 986 break; 987 } 988 case Instruction::SExt: { 989 // Compute the bits in the result that are not present in the input. 990 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 991 992 KnownZero = KnownZero.trunc(SrcBitWidth); 993 KnownOne = KnownOne.trunc(SrcBitWidth); 994 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 995 KnownZero = KnownZero.zext(BitWidth); 996 KnownOne = KnownOne.zext(BitWidth); 997 998 // If the sign bit of the input is known set or clear, then we know the 999 // top bits of the result. 1000 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1001 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1002 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1003 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1004 break; 1005 } 1006 case Instruction::Shl: 1007 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1008 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1009 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1010 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1011 KnownZero <<= ShiftAmt; 1012 KnownOne <<= ShiftAmt; 1013 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1014 } 1015 break; 1016 case Instruction::LShr: 1017 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1018 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1019 // Compute the new bits that are at the top now. 1020 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1021 1022 // Unsigned shift right. 1023 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1024 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1025 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1026 // high bits known zero. 1027 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1028 } 1029 break; 1030 case Instruction::AShr: 1031 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1032 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1033 // Compute the new bits that are at the top now. 1034 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1035 1036 // Signed shift right. 1037 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1038 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1039 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1040 1041 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1042 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1043 KnownZero |= HighBits; 1044 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1045 KnownOne |= HighBits; 1046 } 1047 break; 1048 case Instruction::Sub: { 1049 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1050 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1051 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 1052 Depth, Q); 1053 break; 1054 } 1055 case Instruction::Add: { 1056 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1057 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1058 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 1059 Depth, Q); 1060 break; 1061 } 1062 case Instruction::SRem: 1063 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1064 APInt RA = Rem->getValue().abs(); 1065 if (RA.isPowerOf2()) { 1066 APInt LowBits = RA - 1; 1067 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, 1068 Depth+1, Q); 1069 1070 // The low bits of the first operand are unchanged by the srem. 1071 KnownZero = KnownZero2 & LowBits; 1072 KnownOne = KnownOne2 & LowBits; 1073 1074 // If the first operand is non-negative or has all low bits zero, then 1075 // the upper bits are all zero. 1076 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1077 KnownZero |= ~LowBits; 1078 1079 // If the first operand is negative and not all low bits are zero, then 1080 // the upper bits are all one. 1081 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1082 KnownOne |= ~LowBits; 1083 1084 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1085 } 1086 } 1087 1088 // The sign bit is the LHS's sign bit, except when the result of the 1089 // remainder is zero. 1090 if (KnownZero.isNonNegative()) { 1091 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1092 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 1093 Depth+1, Q); 1094 // If it's known zero, our sign bit is also zero. 1095 if (LHSKnownZero.isNegative()) 1096 KnownZero.setBit(BitWidth - 1); 1097 } 1098 1099 break; 1100 case Instruction::URem: { 1101 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1102 APInt RA = Rem->getValue(); 1103 if (RA.isPowerOf2()) { 1104 APInt LowBits = (RA - 1); 1105 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, 1106 Depth+1, Q); 1107 KnownZero |= ~LowBits; 1108 KnownOne &= LowBits; 1109 break; 1110 } 1111 } 1112 1113 // Since the result is less than or equal to either operand, any leading 1114 // zero bits in either operand must also exist in the result. 1115 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1116 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 1117 1118 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1119 KnownZero2.countLeadingOnes()); 1120 KnownOne.clearAllBits(); 1121 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1122 break; 1123 } 1124 1125 case Instruction::Alloca: { 1126 AllocaInst *AI = cast<AllocaInst>(V); 1127 unsigned Align = AI->getAlignment(); 1128 if (Align == 0 && TD) 1129 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 1130 1131 if (Align > 0) 1132 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1133 break; 1134 } 1135 case Instruction::GetElementPtr: { 1136 // Analyze all of the subscripts of this getelementptr instruction 1137 // to determine if we can prove known low zero bits. 1138 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1139 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 1140 Depth+1, Q); 1141 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1142 1143 gep_type_iterator GTI = gep_type_begin(I); 1144 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1145 Value *Index = I->getOperand(i); 1146 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1147 // Handle struct member offset arithmetic. 1148 if (!TD) { 1149 TrailZ = 0; 1150 break; 1151 } 1152 1153 // Handle case when index is vector zeroinitializer 1154 Constant *CIndex = cast<Constant>(Index); 1155 if (CIndex->isZeroValue()) 1156 continue; 1157 1158 if (CIndex->getType()->isVectorTy()) 1159 Index = CIndex->getSplatValue(); 1160 1161 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1162 const StructLayout *SL = TD->getStructLayout(STy); 1163 uint64_t Offset = SL->getElementOffset(Idx); 1164 TrailZ = std::min<unsigned>(TrailZ, 1165 countTrailingZeros(Offset)); 1166 } else { 1167 // Handle array index arithmetic. 1168 Type *IndexedTy = GTI.getIndexedType(); 1169 if (!IndexedTy->isSized()) { 1170 TrailZ = 0; 1171 break; 1172 } 1173 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1174 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 1175 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1176 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q); 1177 TrailZ = std::min(TrailZ, 1178 unsigned(countTrailingZeros(TypeSize) + 1179 LocalKnownZero.countTrailingOnes())); 1180 } 1181 } 1182 1183 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1184 break; 1185 } 1186 case Instruction::PHI: { 1187 PHINode *P = cast<PHINode>(I); 1188 // Handle the case of a simple two-predecessor recurrence PHI. 1189 // There's a lot more that could theoretically be done here, but 1190 // this is sufficient to catch some interesting cases. 1191 if (P->getNumIncomingValues() == 2) { 1192 for (unsigned i = 0; i != 2; ++i) { 1193 Value *L = P->getIncomingValue(i); 1194 Value *R = P->getIncomingValue(!i); 1195 Operator *LU = dyn_cast<Operator>(L); 1196 if (!LU) 1197 continue; 1198 unsigned Opcode = LU->getOpcode(); 1199 // Check for operations that have the property that if 1200 // both their operands have low zero bits, the result 1201 // will have low zero bits. 1202 if (Opcode == Instruction::Add || 1203 Opcode == Instruction::Sub || 1204 Opcode == Instruction::And || 1205 Opcode == Instruction::Or || 1206 Opcode == Instruction::Mul) { 1207 Value *LL = LU->getOperand(0); 1208 Value *LR = LU->getOperand(1); 1209 // Find a recurrence. 1210 if (LL == I) 1211 L = LR; 1212 else if (LR == I) 1213 L = LL; 1214 else 1215 break; 1216 // Ok, we have a PHI of the form L op= R. Check for low 1217 // zero bits. 1218 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q); 1219 1220 // We need to take the minimum number of known bits 1221 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1222 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q); 1223 1224 KnownZero = APInt::getLowBitsSet(BitWidth, 1225 std::min(KnownZero2.countTrailingOnes(), 1226 KnownZero3.countTrailingOnes())); 1227 break; 1228 } 1229 } 1230 } 1231 1232 // Unreachable blocks may have zero-operand PHI nodes. 1233 if (P->getNumIncomingValues() == 0) 1234 break; 1235 1236 // Otherwise take the unions of the known bit sets of the operands, 1237 // taking conservative care to avoid excessive recursion. 1238 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1239 // Skip if every incoming value references to ourself. 1240 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1241 break; 1242 1243 KnownZero = APInt::getAllOnesValue(BitWidth); 1244 KnownOne = APInt::getAllOnesValue(BitWidth); 1245 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 1246 // Skip direct self references. 1247 if (P->getIncomingValue(i) == P) continue; 1248 1249 KnownZero2 = APInt(BitWidth, 0); 1250 KnownOne2 = APInt(BitWidth, 0); 1251 // Recurse, but cap the recursion to one level, because we don't 1252 // want to waste time spinning around in loops. 1253 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 1254 MaxDepth-1, Q); 1255 KnownZero &= KnownZero2; 1256 KnownOne &= KnownOne2; 1257 // If all bits have been ruled out, there's no need to check 1258 // more operands. 1259 if (!KnownZero && !KnownOne) 1260 break; 1261 } 1262 } 1263 break; 1264 } 1265 case Instruction::Call: 1266 case Instruction::Invoke: 1267 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1268 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1269 // If a range metadata is attached to this IntrinsicInst, intersect the 1270 // explicit range specified by the metadata and the implicit range of 1271 // the intrinsic. 1272 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1273 switch (II->getIntrinsicID()) { 1274 default: break; 1275 case Intrinsic::ctlz: 1276 case Intrinsic::cttz: { 1277 unsigned LowBits = Log2_32(BitWidth)+1; 1278 // If this call is undefined for 0, the result will be less than 2^n. 1279 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1280 LowBits -= 1; 1281 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1282 break; 1283 } 1284 case Intrinsic::ctpop: { 1285 unsigned LowBits = Log2_32(BitWidth)+1; 1286 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1287 break; 1288 } 1289 case Intrinsic::x86_sse42_crc32_64_64: 1290 KnownZero |= APInt::getHighBitsSet(64, 32); 1291 break; 1292 } 1293 } 1294 break; 1295 case Instruction::ExtractValue: 1296 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1297 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1298 if (EVI->getNumIndices() != 1) break; 1299 if (EVI->getIndices()[0] == 0) { 1300 switch (II->getIntrinsicID()) { 1301 default: break; 1302 case Intrinsic::uadd_with_overflow: 1303 case Intrinsic::sadd_with_overflow: 1304 computeKnownBitsAddSub(true, II->getArgOperand(0), 1305 II->getArgOperand(1), false, KnownZero, 1306 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q); 1307 break; 1308 case Intrinsic::usub_with_overflow: 1309 case Intrinsic::ssub_with_overflow: 1310 computeKnownBitsAddSub(false, II->getArgOperand(0), 1311 II->getArgOperand(1), false, KnownZero, 1312 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q); 1313 break; 1314 case Intrinsic::umul_with_overflow: 1315 case Intrinsic::smul_with_overflow: 1316 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), 1317 false, KnownZero, KnownOne, 1318 KnownZero2, KnownOne2, TD, Depth, Q); 1319 break; 1320 } 1321 } 1322 } 1323 } 1324 1325 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1326 } 1327 1328 /// Determine whether the sign bit is known to be zero or one. 1329 /// Convenience wrapper around computeKnownBits. 1330 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1331 const DataLayout *TD, unsigned Depth, 1332 const Query &Q) { 1333 unsigned BitWidth = getBitWidth(V->getType(), TD); 1334 if (!BitWidth) { 1335 KnownZero = false; 1336 KnownOne = false; 1337 return; 1338 } 1339 APInt ZeroBits(BitWidth, 0); 1340 APInt OneBits(BitWidth, 0); 1341 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q); 1342 KnownOne = OneBits[BitWidth - 1]; 1343 KnownZero = ZeroBits[BitWidth - 1]; 1344 } 1345 1346 /// Return true if the given value is known to have exactly one 1347 /// bit set when defined. For vectors return true if every element is known to 1348 /// be a power of two when defined. Supports values with integer or pointer 1349 /// types and vectors of integers. 1350 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1351 const Query &Q) { 1352 if (Constant *C = dyn_cast<Constant>(V)) { 1353 if (C->isNullValue()) 1354 return OrZero; 1355 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1356 return CI->getValue().isPowerOf2(); 1357 // TODO: Handle vector constants. 1358 } 1359 1360 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1361 // it is shifted off the end then the result is undefined. 1362 if (match(V, m_Shl(m_One(), m_Value()))) 1363 return true; 1364 1365 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1366 // bottom. If it is shifted off the bottom then the result is undefined. 1367 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1368 return true; 1369 1370 // The remaining tests are all recursive, so bail out if we hit the limit. 1371 if (Depth++ == MaxDepth) 1372 return false; 1373 1374 Value *X = nullptr, *Y = nullptr; 1375 // A shift of a power of two is a power of two or zero. 1376 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1377 match(V, m_Shr(m_Value(X), m_Value())))) 1378 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q); 1379 1380 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1381 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1382 1383 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1384 return 1385 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1386 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1387 1388 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1389 // A power of two and'd with anything is a power of two or zero. 1390 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) || 1391 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q)) 1392 return true; 1393 // X & (-X) is always a power of two or zero. 1394 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1395 return true; 1396 return false; 1397 } 1398 1399 // Adding a power-of-two or zero to the same power-of-two or zero yields 1400 // either the original power-of-two, a larger power-of-two or zero. 1401 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1402 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1403 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1404 if (match(X, m_And(m_Specific(Y), m_Value())) || 1405 match(X, m_And(m_Value(), m_Specific(Y)))) 1406 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1407 return true; 1408 if (match(Y, m_And(m_Specific(X), m_Value())) || 1409 match(Y, m_And(m_Value(), m_Specific(X)))) 1410 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1411 return true; 1412 1413 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1414 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1415 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q); 1416 1417 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1418 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q); 1419 // If i8 V is a power of two or zero: 1420 // ZeroBits: 1 1 1 0 1 1 1 1 1421 // ~ZeroBits: 0 0 0 1 0 0 0 0 1422 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1423 // If OrZero isn't set, we cannot give back a zero result. 1424 // Make sure either the LHS or RHS has a bit set. 1425 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1426 return true; 1427 } 1428 } 1429 1430 // An exact divide or right shift can only shift off zero bits, so the result 1431 // is a power of two only if the first operand is a power of two and not 1432 // copying a sign bit (sdiv int_min, 2). 1433 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1434 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1435 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1436 Depth, Q); 1437 } 1438 1439 return false; 1440 } 1441 1442 /// \brief Test whether a GEP's result is known to be non-null. 1443 /// 1444 /// Uses properties inherent in a GEP to try to determine whether it is known 1445 /// to be non-null. 1446 /// 1447 /// Currently this routine does not support vector GEPs. 1448 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 1449 unsigned Depth, const Query &Q) { 1450 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1451 return false; 1452 1453 // FIXME: Support vector-GEPs. 1454 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1455 1456 // If the base pointer is non-null, we cannot walk to a null address with an 1457 // inbounds GEP in address space zero. 1458 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1459 return true; 1460 1461 // Past this, if we don't have DataLayout, we can't do much. 1462 if (!DL) 1463 return false; 1464 1465 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1466 // If so, then the GEP cannot produce a null pointer, as doing so would 1467 // inherently violate the inbounds contract within address space zero. 1468 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1469 GTI != GTE; ++GTI) { 1470 // Struct types are easy -- they must always be indexed by a constant. 1471 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1472 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1473 unsigned ElementIdx = OpC->getZExtValue(); 1474 const StructLayout *SL = DL->getStructLayout(STy); 1475 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1476 if (ElementOffset > 0) 1477 return true; 1478 continue; 1479 } 1480 1481 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1482 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 1483 continue; 1484 1485 // Fast path the constant operand case both for efficiency and so we don't 1486 // increment Depth when just zipping down an all-constant GEP. 1487 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1488 if (!OpC->isZero()) 1489 return true; 1490 continue; 1491 } 1492 1493 // We post-increment Depth here because while isKnownNonZero increments it 1494 // as well, when we pop back up that increment won't persist. We don't want 1495 // to recurse 10k times just because we have 10k GEP operands. We don't 1496 // bail completely out because we want to handle constant GEPs regardless 1497 // of depth. 1498 if (Depth++ >= MaxDepth) 1499 continue; 1500 1501 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1502 return true; 1503 } 1504 1505 return false; 1506 } 1507 1508 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1509 /// ensure that the value it's attached to is never Value? 'RangeType' is 1510 /// is the type of the value described by the range. 1511 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1512 const APInt& Value) { 1513 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1514 assert(NumRanges >= 1); 1515 for (unsigned i = 0; i < NumRanges; ++i) { 1516 ConstantInt *Lower = 1517 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1518 ConstantInt *Upper = 1519 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1520 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1521 if (Range.contains(Value)) 1522 return false; 1523 } 1524 return true; 1525 } 1526 1527 /// Return true if the given value is known to be non-zero when defined. 1528 /// For vectors return true if every element is known to be non-zero when 1529 /// defined. Supports values with integer or pointer type and vectors of 1530 /// integers. 1531 bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 1532 const Query &Q) { 1533 if (Constant *C = dyn_cast<Constant>(V)) { 1534 if (C->isNullValue()) 1535 return false; 1536 if (isa<ConstantInt>(C)) 1537 // Must be non-zero due to null test above. 1538 return true; 1539 // TODO: Handle vectors 1540 return false; 1541 } 1542 1543 if (Instruction* I = dyn_cast<Instruction>(V)) { 1544 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1545 // If the possible ranges don't contain zero, then the value is 1546 // definitely non-zero. 1547 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1548 const APInt ZeroValue(Ty->getBitWidth(), 0); 1549 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1550 return true; 1551 } 1552 } 1553 } 1554 1555 // The remaining tests are all recursive, so bail out if we hit the limit. 1556 if (Depth++ >= MaxDepth) 1557 return false; 1558 1559 // Check for pointer simplifications. 1560 if (V->getType()->isPointerTy()) { 1561 if (isKnownNonNull(V)) 1562 return true; 1563 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1564 if (isGEPKnownNonNull(GEP, TD, Depth, Q)) 1565 return true; 1566 } 1567 1568 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 1569 1570 // X | Y != 0 if X != 0 or Y != 0. 1571 Value *X = nullptr, *Y = nullptr; 1572 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1573 return isKnownNonZero(X, TD, Depth, Q) || 1574 isKnownNonZero(Y, TD, Depth, Q); 1575 1576 // ext X != 0 if X != 0. 1577 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1578 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q); 1579 1580 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1581 // if the lowest bit is shifted off the end. 1582 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1583 // shl nuw can't remove any non-zero bits. 1584 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1585 if (BO->hasNoUnsignedWrap()) 1586 return isKnownNonZero(X, TD, Depth, Q); 1587 1588 APInt KnownZero(BitWidth, 0); 1589 APInt KnownOne(BitWidth, 0); 1590 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q); 1591 if (KnownOne[0]) 1592 return true; 1593 } 1594 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1595 // defined if the sign bit is shifted off the end. 1596 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1597 // shr exact can only shift out zero bits. 1598 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1599 if (BO->isExact()) 1600 return isKnownNonZero(X, TD, Depth, Q); 1601 1602 bool XKnownNonNegative, XKnownNegative; 1603 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q); 1604 if (XKnownNegative) 1605 return true; 1606 } 1607 // div exact can only produce a zero if the dividend is zero. 1608 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1609 return isKnownNonZero(X, TD, Depth, Q); 1610 } 1611 // X + Y. 1612 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1613 bool XKnownNonNegative, XKnownNegative; 1614 bool YKnownNonNegative, YKnownNegative; 1615 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q); 1616 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q); 1617 1618 // If X and Y are both non-negative (as signed values) then their sum is not 1619 // zero unless both X and Y are zero. 1620 if (XKnownNonNegative && YKnownNonNegative) 1621 if (isKnownNonZero(X, TD, Depth, Q) || 1622 isKnownNonZero(Y, TD, Depth, Q)) 1623 return true; 1624 1625 // If X and Y are both negative (as signed values) then their sum is not 1626 // zero unless both X and Y equal INT_MIN. 1627 if (BitWidth && XKnownNegative && YKnownNegative) { 1628 APInt KnownZero(BitWidth, 0); 1629 APInt KnownOne(BitWidth, 0); 1630 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1631 // The sign bit of X is set. If some other bit is set then X is not equal 1632 // to INT_MIN. 1633 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q); 1634 if ((KnownOne & Mask) != 0) 1635 return true; 1636 // The sign bit of Y is set. If some other bit is set then Y is not equal 1637 // to INT_MIN. 1638 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q); 1639 if ((KnownOne & Mask) != 0) 1640 return true; 1641 } 1642 1643 // The sum of a non-negative number and a power of two is not zero. 1644 if (XKnownNonNegative && 1645 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q)) 1646 return true; 1647 if (YKnownNonNegative && 1648 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q)) 1649 return true; 1650 } 1651 // X * Y. 1652 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1653 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1654 // If X and Y are non-zero then so is X * Y as long as the multiplication 1655 // does not overflow. 1656 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1657 isKnownNonZero(X, TD, Depth, Q) && 1658 isKnownNonZero(Y, TD, Depth, Q)) 1659 return true; 1660 } 1661 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1662 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1663 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) && 1664 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q)) 1665 return true; 1666 } 1667 1668 if (!BitWidth) return false; 1669 APInt KnownZero(BitWidth, 0); 1670 APInt KnownOne(BitWidth, 0); 1671 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1672 return KnownOne != 0; 1673 } 1674 1675 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1676 /// simplify operations downstream. Mask is known to be zero for bits that V 1677 /// cannot have. 1678 /// 1679 /// This function is defined on values with integer type, values with pointer 1680 /// type (but only if TD is non-null), and vectors of integers. In the case 1681 /// where V is a vector, the mask, known zero, and known one values are the 1682 /// same width as the vector element, and the bit is set only if it is true 1683 /// for all of the elements in the vector. 1684 bool MaskedValueIsZero(Value *V, const APInt &Mask, 1685 const DataLayout *TD, unsigned Depth, 1686 const Query &Q) { 1687 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1688 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1689 return (KnownZero & Mask) == Mask; 1690 } 1691 1692 1693 1694 /// Return the number of times the sign bit of the register is replicated into 1695 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1696 /// (itself), but other cases can give us information. For example, immediately 1697 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1698 /// other, so we return 3. 1699 /// 1700 /// 'Op' must have a scalar integer type. 1701 /// 1702 unsigned ComputeNumSignBits(Value *V, const DataLayout *TD, 1703 unsigned Depth, const Query &Q) { 1704 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1705 "ComputeNumSignBits requires a DataLayout object to operate " 1706 "on non-integer values!"); 1707 Type *Ty = V->getType(); 1708 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1709 Ty->getScalarSizeInBits(); 1710 unsigned Tmp, Tmp2; 1711 unsigned FirstAnswer = 1; 1712 1713 // Note that ConstantInt is handled by the general computeKnownBits case 1714 // below. 1715 1716 if (Depth == 6) 1717 return 1; // Limit search depth. 1718 1719 Operator *U = dyn_cast<Operator>(V); 1720 switch (Operator::getOpcode(V)) { 1721 default: break; 1722 case Instruction::SExt: 1723 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1724 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp; 1725 1726 case Instruction::AShr: { 1727 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1728 // ashr X, C -> adds C sign bits. Vectors too. 1729 const APInt *ShAmt; 1730 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1731 Tmp += ShAmt->getZExtValue(); 1732 if (Tmp > TyBits) Tmp = TyBits; 1733 } 1734 return Tmp; 1735 } 1736 case Instruction::Shl: { 1737 const APInt *ShAmt; 1738 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1739 // shl destroys sign bits. 1740 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1741 Tmp2 = ShAmt->getZExtValue(); 1742 if (Tmp2 >= TyBits || // Bad shift. 1743 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1744 return Tmp - Tmp2; 1745 } 1746 break; 1747 } 1748 case Instruction::And: 1749 case Instruction::Or: 1750 case Instruction::Xor: // NOT is handled here. 1751 // Logical binary ops preserve the number of sign bits at the worst. 1752 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1753 if (Tmp != 1) { 1754 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1755 FirstAnswer = std::min(Tmp, Tmp2); 1756 // We computed what we know about the sign bits as our first 1757 // answer. Now proceed to the generic code that uses 1758 // computeKnownBits, and pick whichever answer is better. 1759 } 1760 break; 1761 1762 case Instruction::Select: 1763 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1764 if (Tmp == 1) return 1; // Early out. 1765 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q); 1766 return std::min(Tmp, Tmp2); 1767 1768 case Instruction::Add: 1769 // Add can have at most one carry bit. Thus we know that the output 1770 // is, at worst, one more bit than the inputs. 1771 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1772 if (Tmp == 1) return 1; // Early out. 1773 1774 // Special case decrementing a value (ADD X, -1): 1775 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 1776 if (CRHS->isAllOnesValue()) { 1777 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1778 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1779 1780 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1781 // sign bits set. 1782 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1783 return TyBits; 1784 1785 // If we are subtracting one from a positive number, there is no carry 1786 // out of the result. 1787 if (KnownZero.isNegative()) 1788 return Tmp; 1789 } 1790 1791 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1792 if (Tmp2 == 1) return 1; 1793 return std::min(Tmp, Tmp2)-1; 1794 1795 case Instruction::Sub: 1796 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1797 if (Tmp2 == 1) return 1; 1798 1799 // Handle NEG. 1800 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 1801 if (CLHS->isNullValue()) { 1802 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1803 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 1804 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1805 // sign bits set. 1806 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1807 return TyBits; 1808 1809 // If the input is known to be positive (the sign bit is known clear), 1810 // the output of the NEG has the same number of sign bits as the input. 1811 if (KnownZero.isNegative()) 1812 return Tmp2; 1813 1814 // Otherwise, we treat this like a SUB. 1815 } 1816 1817 // Sub can have at most one carry bit. Thus we know that the output 1818 // is, at worst, one more bit than the inputs. 1819 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1820 if (Tmp == 1) return 1; // Early out. 1821 return std::min(Tmp, Tmp2)-1; 1822 1823 case Instruction::PHI: { 1824 PHINode *PN = cast<PHINode>(U); 1825 unsigned NumIncomingValues = PN->getNumIncomingValues(); 1826 // Don't analyze large in-degree PHIs. 1827 if (NumIncomingValues > 4) break; 1828 // Unreachable blocks may have zero-operand PHI nodes. 1829 if (NumIncomingValues == 0) break; 1830 1831 // Take the minimum of all incoming values. This can't infinitely loop 1832 // because of our depth threshold. 1833 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q); 1834 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 1835 if (Tmp == 1) return Tmp; 1836 Tmp = std::min(Tmp, 1837 ComputeNumSignBits(PN->getIncomingValue(i), TD, 1838 Depth+1, Q)); 1839 } 1840 return Tmp; 1841 } 1842 1843 case Instruction::Trunc: 1844 // FIXME: it's tricky to do anything useful for this, but it is an important 1845 // case for targets like X86. 1846 break; 1847 } 1848 1849 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1850 // use this information. 1851 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1852 APInt Mask; 1853 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1854 1855 if (KnownZero.isNegative()) { // sign bit is 0 1856 Mask = KnownZero; 1857 } else if (KnownOne.isNegative()) { // sign bit is 1; 1858 Mask = KnownOne; 1859 } else { 1860 // Nothing known. 1861 return FirstAnswer; 1862 } 1863 1864 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1865 // the number of identical bits in the top of the input value. 1866 Mask = ~Mask; 1867 Mask <<= Mask.getBitWidth()-TyBits; 1868 // Return # leading zeros. We use 'min' here in case Val was zero before 1869 // shifting. We don't want to return '64' as for an i32 "0". 1870 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1871 } 1872 1873 /// This function computes the integer multiple of Base that equals V. 1874 /// If successful, it returns true and returns the multiple in 1875 /// Multiple. If unsuccessful, it returns false. It looks 1876 /// through SExt instructions only if LookThroughSExt is true. 1877 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1878 bool LookThroughSExt, unsigned Depth) { 1879 const unsigned MaxDepth = 6; 1880 1881 assert(V && "No Value?"); 1882 assert(Depth <= MaxDepth && "Limit Search Depth"); 1883 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1884 1885 Type *T = V->getType(); 1886 1887 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1888 1889 if (Base == 0) 1890 return false; 1891 1892 if (Base == 1) { 1893 Multiple = V; 1894 return true; 1895 } 1896 1897 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1898 Constant *BaseVal = ConstantInt::get(T, Base); 1899 if (CO && CO == BaseVal) { 1900 // Multiple is 1. 1901 Multiple = ConstantInt::get(T, 1); 1902 return true; 1903 } 1904 1905 if (CI && CI->getZExtValue() % Base == 0) { 1906 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1907 return true; 1908 } 1909 1910 if (Depth == MaxDepth) return false; // Limit search depth. 1911 1912 Operator *I = dyn_cast<Operator>(V); 1913 if (!I) return false; 1914 1915 switch (I->getOpcode()) { 1916 default: break; 1917 case Instruction::SExt: 1918 if (!LookThroughSExt) return false; 1919 // otherwise fall through to ZExt 1920 case Instruction::ZExt: 1921 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1922 LookThroughSExt, Depth+1); 1923 case Instruction::Shl: 1924 case Instruction::Mul: { 1925 Value *Op0 = I->getOperand(0); 1926 Value *Op1 = I->getOperand(1); 1927 1928 if (I->getOpcode() == Instruction::Shl) { 1929 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1930 if (!Op1CI) return false; 1931 // Turn Op0 << Op1 into Op0 * 2^Op1 1932 APInt Op1Int = Op1CI->getValue(); 1933 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1934 APInt API(Op1Int.getBitWidth(), 0); 1935 API.setBit(BitToSet); 1936 Op1 = ConstantInt::get(V->getContext(), API); 1937 } 1938 1939 Value *Mul0 = nullptr; 1940 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1941 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1942 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1943 if (Op1C->getType()->getPrimitiveSizeInBits() < 1944 MulC->getType()->getPrimitiveSizeInBits()) 1945 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1946 if (Op1C->getType()->getPrimitiveSizeInBits() > 1947 MulC->getType()->getPrimitiveSizeInBits()) 1948 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1949 1950 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1951 Multiple = ConstantExpr::getMul(MulC, Op1C); 1952 return true; 1953 } 1954 1955 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1956 if (Mul0CI->getValue() == 1) { 1957 // V == Base * Op1, so return Op1 1958 Multiple = Op1; 1959 return true; 1960 } 1961 } 1962 1963 Value *Mul1 = nullptr; 1964 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1965 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1966 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1967 if (Op0C->getType()->getPrimitiveSizeInBits() < 1968 MulC->getType()->getPrimitiveSizeInBits()) 1969 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1970 if (Op0C->getType()->getPrimitiveSizeInBits() > 1971 MulC->getType()->getPrimitiveSizeInBits()) 1972 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1973 1974 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1975 Multiple = ConstantExpr::getMul(MulC, Op0C); 1976 return true; 1977 } 1978 1979 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1980 if (Mul1CI->getValue() == 1) { 1981 // V == Base * Op0, so return Op0 1982 Multiple = Op0; 1983 return true; 1984 } 1985 } 1986 } 1987 } 1988 1989 // We could not determine if V is a multiple of Base. 1990 return false; 1991 } 1992 1993 /// Return true if we can prove that the specified FP value is never equal to 1994 /// -0.0. 1995 /// 1996 /// NOTE: this function will need to be revisited when we support non-default 1997 /// rounding modes! 1998 /// 1999 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2000 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2001 return !CFP->getValueAPF().isNegZero(); 2002 2003 if (Depth == 6) 2004 return 1; // Limit search depth. 2005 2006 const Operator *I = dyn_cast<Operator>(V); 2007 if (!I) return false; 2008 2009 // Check if the nsz fast-math flag is set 2010 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2011 if (FPO->hasNoSignedZeros()) 2012 return true; 2013 2014 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2015 if (I->getOpcode() == Instruction::FAdd) 2016 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2017 if (CFP->isNullValue()) 2018 return true; 2019 2020 // sitofp and uitofp turn into +0.0 for zero. 2021 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2022 return true; 2023 2024 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2025 // sqrt(-0.0) = -0.0, no other negative results are possible. 2026 if (II->getIntrinsicID() == Intrinsic::sqrt) 2027 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2028 2029 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2030 if (const Function *F = CI->getCalledFunction()) { 2031 if (F->isDeclaration()) { 2032 // abs(x) != -0.0 2033 if (F->getName() == "abs") return true; 2034 // fabs[lf](x) != -0.0 2035 if (F->getName() == "fabs") return true; 2036 if (F->getName() == "fabsf") return true; 2037 if (F->getName() == "fabsl") return true; 2038 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2039 F->getName() == "sqrtl") 2040 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2041 } 2042 } 2043 2044 return false; 2045 } 2046 2047 /// If the specified value can be set by repeating the same byte in memory, 2048 /// return the i8 value that it is represented with. This is 2049 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2050 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2051 /// byte store (e.g. i16 0x1234), return null. 2052 Value *llvm::isBytewiseValue(Value *V) { 2053 // All byte-wide stores are splatable, even of arbitrary variables. 2054 if (V->getType()->isIntegerTy(8)) return V; 2055 2056 // Handle 'null' ConstantArrayZero etc. 2057 if (Constant *C = dyn_cast<Constant>(V)) 2058 if (C->isNullValue()) 2059 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2060 2061 // Constant float and double values can be handled as integer values if the 2062 // corresponding integer value is "byteable". An important case is 0.0. 2063 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2064 if (CFP->getType()->isFloatTy()) 2065 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2066 if (CFP->getType()->isDoubleTy()) 2067 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2068 // Don't handle long double formats, which have strange constraints. 2069 } 2070 2071 // We can handle constant integers that are power of two in size and a 2072 // multiple of 8 bits. 2073 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2074 unsigned Width = CI->getBitWidth(); 2075 if (isPowerOf2_32(Width) && Width > 8) { 2076 // We can handle this value if the recursive binary decomposition is the 2077 // same at all levels. 2078 APInt Val = CI->getValue(); 2079 APInt Val2; 2080 while (Val.getBitWidth() != 8) { 2081 unsigned NextWidth = Val.getBitWidth()/2; 2082 Val2 = Val.lshr(NextWidth); 2083 Val2 = Val2.trunc(Val.getBitWidth()/2); 2084 Val = Val.trunc(Val.getBitWidth()/2); 2085 2086 // If the top/bottom halves aren't the same, reject it. 2087 if (Val != Val2) 2088 return nullptr; 2089 } 2090 return ConstantInt::get(V->getContext(), Val); 2091 } 2092 } 2093 2094 // A ConstantDataArray/Vector is splatable if all its members are equal and 2095 // also splatable. 2096 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2097 Value *Elt = CA->getElementAsConstant(0); 2098 Value *Val = isBytewiseValue(Elt); 2099 if (!Val) 2100 return nullptr; 2101 2102 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2103 if (CA->getElementAsConstant(I) != Elt) 2104 return nullptr; 2105 2106 return Val; 2107 } 2108 2109 // Conceptually, we could handle things like: 2110 // %a = zext i8 %X to i16 2111 // %b = shl i16 %a, 8 2112 // %c = or i16 %a, %b 2113 // but until there is an example that actually needs this, it doesn't seem 2114 // worth worrying about. 2115 return nullptr; 2116 } 2117 2118 2119 // This is the recursive version of BuildSubAggregate. It takes a few different 2120 // arguments. Idxs is the index within the nested struct From that we are 2121 // looking at now (which is of type IndexedType). IdxSkip is the number of 2122 // indices from Idxs that should be left out when inserting into the resulting 2123 // struct. To is the result struct built so far, new insertvalue instructions 2124 // build on that. 2125 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2126 SmallVectorImpl<unsigned> &Idxs, 2127 unsigned IdxSkip, 2128 Instruction *InsertBefore) { 2129 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2130 if (STy) { 2131 // Save the original To argument so we can modify it 2132 Value *OrigTo = To; 2133 // General case, the type indexed by Idxs is a struct 2134 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2135 // Process each struct element recursively 2136 Idxs.push_back(i); 2137 Value *PrevTo = To; 2138 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2139 InsertBefore); 2140 Idxs.pop_back(); 2141 if (!To) { 2142 // Couldn't find any inserted value for this index? Cleanup 2143 while (PrevTo != OrigTo) { 2144 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2145 PrevTo = Del->getAggregateOperand(); 2146 Del->eraseFromParent(); 2147 } 2148 // Stop processing elements 2149 break; 2150 } 2151 } 2152 // If we successfully found a value for each of our subaggregates 2153 if (To) 2154 return To; 2155 } 2156 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2157 // the struct's elements had a value that was inserted directly. In the latter 2158 // case, perhaps we can't determine each of the subelements individually, but 2159 // we might be able to find the complete struct somewhere. 2160 2161 // Find the value that is at that particular spot 2162 Value *V = FindInsertedValue(From, Idxs); 2163 2164 if (!V) 2165 return nullptr; 2166 2167 // Insert the value in the new (sub) aggregrate 2168 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2169 "tmp", InsertBefore); 2170 } 2171 2172 // This helper takes a nested struct and extracts a part of it (which is again a 2173 // struct) into a new value. For example, given the struct: 2174 // { a, { b, { c, d }, e } } 2175 // and the indices "1, 1" this returns 2176 // { c, d }. 2177 // 2178 // It does this by inserting an insertvalue for each element in the resulting 2179 // struct, as opposed to just inserting a single struct. This will only work if 2180 // each of the elements of the substruct are known (ie, inserted into From by an 2181 // insertvalue instruction somewhere). 2182 // 2183 // All inserted insertvalue instructions are inserted before InsertBefore 2184 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2185 Instruction *InsertBefore) { 2186 assert(InsertBefore && "Must have someplace to insert!"); 2187 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2188 idx_range); 2189 Value *To = UndefValue::get(IndexedType); 2190 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2191 unsigned IdxSkip = Idxs.size(); 2192 2193 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2194 } 2195 2196 /// Given an aggregrate and an sequence of indices, see if 2197 /// the scalar value indexed is already around as a register, for example if it 2198 /// were inserted directly into the aggregrate. 2199 /// 2200 /// If InsertBefore is not null, this function will duplicate (modified) 2201 /// insertvalues when a part of a nested struct is extracted. 2202 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2203 Instruction *InsertBefore) { 2204 // Nothing to index? Just return V then (this is useful at the end of our 2205 // recursion). 2206 if (idx_range.empty()) 2207 return V; 2208 // We have indices, so V should have an indexable type. 2209 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2210 "Not looking at a struct or array?"); 2211 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2212 "Invalid indices for type?"); 2213 2214 if (Constant *C = dyn_cast<Constant>(V)) { 2215 C = C->getAggregateElement(idx_range[0]); 2216 if (!C) return nullptr; 2217 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2218 } 2219 2220 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2221 // Loop the indices for the insertvalue instruction in parallel with the 2222 // requested indices 2223 const unsigned *req_idx = idx_range.begin(); 2224 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2225 i != e; ++i, ++req_idx) { 2226 if (req_idx == idx_range.end()) { 2227 // We can't handle this without inserting insertvalues 2228 if (!InsertBefore) 2229 return nullptr; 2230 2231 // The requested index identifies a part of a nested aggregate. Handle 2232 // this specially. For example, 2233 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2234 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2235 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2236 // This can be changed into 2237 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2238 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2239 // which allows the unused 0,0 element from the nested struct to be 2240 // removed. 2241 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2242 InsertBefore); 2243 } 2244 2245 // This insert value inserts something else than what we are looking for. 2246 // See if the (aggregrate) value inserted into has the value we are 2247 // looking for, then. 2248 if (*req_idx != *i) 2249 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2250 InsertBefore); 2251 } 2252 // If we end up here, the indices of the insertvalue match with those 2253 // requested (though possibly only partially). Now we recursively look at 2254 // the inserted value, passing any remaining indices. 2255 return FindInsertedValue(I->getInsertedValueOperand(), 2256 makeArrayRef(req_idx, idx_range.end()), 2257 InsertBefore); 2258 } 2259 2260 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2261 // If we're extracting a value from an aggregrate that was extracted from 2262 // something else, we can extract from that something else directly instead. 2263 // However, we will need to chain I's indices with the requested indices. 2264 2265 // Calculate the number of indices required 2266 unsigned size = I->getNumIndices() + idx_range.size(); 2267 // Allocate some space to put the new indices in 2268 SmallVector<unsigned, 5> Idxs; 2269 Idxs.reserve(size); 2270 // Add indices from the extract value instruction 2271 Idxs.append(I->idx_begin(), I->idx_end()); 2272 2273 // Add requested indices 2274 Idxs.append(idx_range.begin(), idx_range.end()); 2275 2276 assert(Idxs.size() == size 2277 && "Number of indices added not correct?"); 2278 2279 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2280 } 2281 // Otherwise, we don't know (such as, extracting from a function return value 2282 // or load instruction) 2283 return nullptr; 2284 } 2285 2286 /// Analyze the specified pointer to see if it can be expressed as a base 2287 /// pointer plus a constant offset. Return the base and offset to the caller. 2288 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2289 const DataLayout *DL) { 2290 // Without DataLayout, conservatively assume 64-bit offsets, which is 2291 // the widest we support. 2292 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 2293 APInt ByteOffset(BitWidth, 0); 2294 while (1) { 2295 if (Ptr->getType()->isVectorTy()) 2296 break; 2297 2298 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2299 if (DL) { 2300 APInt GEPOffset(BitWidth, 0); 2301 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 2302 break; 2303 2304 ByteOffset += GEPOffset; 2305 } 2306 2307 Ptr = GEP->getPointerOperand(); 2308 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2309 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2310 Ptr = cast<Operator>(Ptr)->getOperand(0); 2311 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2312 if (GA->mayBeOverridden()) 2313 break; 2314 Ptr = GA->getAliasee(); 2315 } else { 2316 break; 2317 } 2318 } 2319 Offset = ByteOffset.getSExtValue(); 2320 return Ptr; 2321 } 2322 2323 2324 /// This function computes the length of a null-terminated C string pointed to 2325 /// by V. If successful, it returns true and returns the string in Str. 2326 /// If unsuccessful, it returns false. 2327 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2328 uint64_t Offset, bool TrimAtNul) { 2329 assert(V); 2330 2331 // Look through bitcast instructions and geps. 2332 V = V->stripPointerCasts(); 2333 2334 // If the value is a GEP instructionor constant expression, treat it as an 2335 // offset. 2336 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2337 // Make sure the GEP has exactly three arguments. 2338 if (GEP->getNumOperands() != 3) 2339 return false; 2340 2341 // Make sure the index-ee is a pointer to array of i8. 2342 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2343 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2344 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2345 return false; 2346 2347 // Check to make sure that the first operand of the GEP is an integer and 2348 // has value 0 so that we are sure we're indexing into the initializer. 2349 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2350 if (!FirstIdx || !FirstIdx->isZero()) 2351 return false; 2352 2353 // If the second index isn't a ConstantInt, then this is a variable index 2354 // into the array. If this occurs, we can't say anything meaningful about 2355 // the string. 2356 uint64_t StartIdx = 0; 2357 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2358 StartIdx = CI->getZExtValue(); 2359 else 2360 return false; 2361 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 2362 } 2363 2364 // The GEP instruction, constant or instruction, must reference a global 2365 // variable that is a constant and is initialized. The referenced constant 2366 // initializer is the array that we'll use for optimization. 2367 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2368 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2369 return false; 2370 2371 // Handle the all-zeros case 2372 if (GV->getInitializer()->isNullValue()) { 2373 // This is a degenerate case. The initializer is constant zero so the 2374 // length of the string must be zero. 2375 Str = ""; 2376 return true; 2377 } 2378 2379 // Must be a Constant Array 2380 const ConstantDataArray *Array = 2381 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2382 if (!Array || !Array->isString()) 2383 return false; 2384 2385 // Get the number of elements in the array 2386 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2387 2388 // Start out with the entire array in the StringRef. 2389 Str = Array->getAsString(); 2390 2391 if (Offset > NumElts) 2392 return false; 2393 2394 // Skip over 'offset' bytes. 2395 Str = Str.substr(Offset); 2396 2397 if (TrimAtNul) { 2398 // Trim off the \0 and anything after it. If the array is not nul 2399 // terminated, we just return the whole end of string. The client may know 2400 // some other way that the string is length-bound. 2401 Str = Str.substr(0, Str.find('\0')); 2402 } 2403 return true; 2404 } 2405 2406 // These next two are very similar to the above, but also look through PHI 2407 // nodes. 2408 // TODO: See if we can integrate these two together. 2409 2410 /// If we can compute the length of the string pointed to by 2411 /// the specified pointer, return 'len+1'. If we can't, return 0. 2412 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2413 // Look through noop bitcast instructions. 2414 V = V->stripPointerCasts(); 2415 2416 // If this is a PHI node, there are two cases: either we have already seen it 2417 // or we haven't. 2418 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2419 if (!PHIs.insert(PN).second) 2420 return ~0ULL; // already in the set. 2421 2422 // If it was new, see if all the input strings are the same length. 2423 uint64_t LenSoFar = ~0ULL; 2424 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2425 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 2426 if (Len == 0) return 0; // Unknown length -> unknown. 2427 2428 if (Len == ~0ULL) continue; 2429 2430 if (Len != LenSoFar && LenSoFar != ~0ULL) 2431 return 0; // Disagree -> unknown. 2432 LenSoFar = Len; 2433 } 2434 2435 // Success, all agree. 2436 return LenSoFar; 2437 } 2438 2439 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2440 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2441 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2442 if (Len1 == 0) return 0; 2443 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2444 if (Len2 == 0) return 0; 2445 if (Len1 == ~0ULL) return Len2; 2446 if (Len2 == ~0ULL) return Len1; 2447 if (Len1 != Len2) return 0; 2448 return Len1; 2449 } 2450 2451 // Otherwise, see if we can read the string. 2452 StringRef StrData; 2453 if (!getConstantStringInfo(V, StrData)) 2454 return 0; 2455 2456 return StrData.size()+1; 2457 } 2458 2459 /// If we can compute the length of the string pointed to by 2460 /// the specified pointer, return 'len+1'. If we can't, return 0. 2461 uint64_t llvm::GetStringLength(Value *V) { 2462 if (!V->getType()->isPointerTy()) return 0; 2463 2464 SmallPtrSet<PHINode*, 32> PHIs; 2465 uint64_t Len = GetStringLengthH(V, PHIs); 2466 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2467 // an empty string as a length. 2468 return Len == ~0ULL ? 1 : Len; 2469 } 2470 2471 Value * 2472 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 2473 if (!V->getType()->isPointerTy()) 2474 return V; 2475 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2476 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2477 V = GEP->getPointerOperand(); 2478 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2479 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2480 V = cast<Operator>(V)->getOperand(0); 2481 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2482 if (GA->mayBeOverridden()) 2483 return V; 2484 V = GA->getAliasee(); 2485 } else { 2486 // See if InstructionSimplify knows any relevant tricks. 2487 if (Instruction *I = dyn_cast<Instruction>(V)) 2488 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2489 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { 2490 V = Simplified; 2491 continue; 2492 } 2493 2494 return V; 2495 } 2496 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2497 } 2498 return V; 2499 } 2500 2501 void 2502 llvm::GetUnderlyingObjects(Value *V, 2503 SmallVectorImpl<Value *> &Objects, 2504 const DataLayout *TD, 2505 unsigned MaxLookup) { 2506 SmallPtrSet<Value *, 4> Visited; 2507 SmallVector<Value *, 4> Worklist; 2508 Worklist.push_back(V); 2509 do { 2510 Value *P = Worklist.pop_back_val(); 2511 P = GetUnderlyingObject(P, TD, MaxLookup); 2512 2513 if (!Visited.insert(P).second) 2514 continue; 2515 2516 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2517 Worklist.push_back(SI->getTrueValue()); 2518 Worklist.push_back(SI->getFalseValue()); 2519 continue; 2520 } 2521 2522 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2523 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2524 Worklist.push_back(PN->getIncomingValue(i)); 2525 continue; 2526 } 2527 2528 Objects.push_back(P); 2529 } while (!Worklist.empty()); 2530 } 2531 2532 /// Return true if the only users of this pointer are lifetime markers. 2533 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2534 for (const User *U : V->users()) { 2535 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2536 if (!II) return false; 2537 2538 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2539 II->getIntrinsicID() != Intrinsic::lifetime_end) 2540 return false; 2541 } 2542 return true; 2543 } 2544 2545 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 2546 const DataLayout *TD) { 2547 const Operator *Inst = dyn_cast<Operator>(V); 2548 if (!Inst) 2549 return false; 2550 2551 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 2552 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 2553 if (C->canTrap()) 2554 return false; 2555 2556 switch (Inst->getOpcode()) { 2557 default: 2558 return true; 2559 case Instruction::UDiv: 2560 case Instruction::URem: { 2561 // x / y is undefined if y == 0. 2562 const APInt *V; 2563 if (match(Inst->getOperand(1), m_APInt(V))) 2564 return *V != 0; 2565 return false; 2566 } 2567 case Instruction::SDiv: 2568 case Instruction::SRem: { 2569 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 2570 const APInt *X, *Y; 2571 if (match(Inst->getOperand(1), m_APInt(Y))) { 2572 if (*Y != 0) { 2573 if (*Y == -1) { 2574 // The numerator can't be MinSignedValue if the denominator is -1. 2575 if (match(Inst->getOperand(0), m_APInt(X))) 2576 return !Y->isMinSignedValue(); 2577 // The numerator *might* be MinSignedValue. 2578 return false; 2579 } 2580 // The denominator is not 0 or -1, it's safe to proceed. 2581 return true; 2582 } 2583 } 2584 return false; 2585 } 2586 case Instruction::Load: { 2587 const LoadInst *LI = cast<LoadInst>(Inst); 2588 if (!LI->isUnordered() || 2589 // Speculative load may create a race that did not exist in the source. 2590 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2591 return false; 2592 return LI->getPointerOperand()->isDereferenceablePointer(TD); 2593 } 2594 case Instruction::Call: { 2595 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2596 switch (II->getIntrinsicID()) { 2597 // These synthetic intrinsics have no side-effects and just mark 2598 // information about their operands. 2599 // FIXME: There are other no-op synthetic instructions that potentially 2600 // should be considered at least *safe* to speculate... 2601 case Intrinsic::dbg_declare: 2602 case Intrinsic::dbg_value: 2603 return true; 2604 2605 case Intrinsic::bswap: 2606 case Intrinsic::ctlz: 2607 case Intrinsic::ctpop: 2608 case Intrinsic::cttz: 2609 case Intrinsic::objectsize: 2610 case Intrinsic::sadd_with_overflow: 2611 case Intrinsic::smul_with_overflow: 2612 case Intrinsic::ssub_with_overflow: 2613 case Intrinsic::uadd_with_overflow: 2614 case Intrinsic::umul_with_overflow: 2615 case Intrinsic::usub_with_overflow: 2616 return true; 2617 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2618 // errno like libm sqrt would. 2619 case Intrinsic::sqrt: 2620 case Intrinsic::fma: 2621 case Intrinsic::fmuladd: 2622 case Intrinsic::fabs: 2623 case Intrinsic::minnum: 2624 case Intrinsic::maxnum: 2625 return true; 2626 // TODO: some fp intrinsics are marked as having the same error handling 2627 // as libm. They're safe to speculate when they won't error. 2628 // TODO: are convert_{from,to}_fp16 safe? 2629 // TODO: can we list target-specific intrinsics here? 2630 default: break; 2631 } 2632 } 2633 return false; // The called function could have undefined behavior or 2634 // side-effects, even if marked readnone nounwind. 2635 } 2636 case Instruction::VAArg: 2637 case Instruction::Alloca: 2638 case Instruction::Invoke: 2639 case Instruction::PHI: 2640 case Instruction::Store: 2641 case Instruction::Ret: 2642 case Instruction::Br: 2643 case Instruction::IndirectBr: 2644 case Instruction::Switch: 2645 case Instruction::Unreachable: 2646 case Instruction::Fence: 2647 case Instruction::LandingPad: 2648 case Instruction::AtomicRMW: 2649 case Instruction::AtomicCmpXchg: 2650 case Instruction::Resume: 2651 return false; // Misc instructions which have effects 2652 } 2653 } 2654 2655 /// Return true if we know that the specified value is never null. 2656 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2657 // Alloca never returns null, malloc might. 2658 if (isa<AllocaInst>(V)) return true; 2659 2660 // A byval, inalloca, or nonnull argument is never null. 2661 if (const Argument *A = dyn_cast<Argument>(V)) 2662 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 2663 2664 // Global values are not null unless extern weak. 2665 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2666 return !GV->hasExternalWeakLinkage(); 2667 2668 // A Load tagged w/nonnull metadata is never null. 2669 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2670 return LI->getMetadata(LLVMContext::MD_nonnull); 2671 2672 if (ImmutableCallSite CS = V) 2673 if (CS.isReturnNonNull()) 2674 return true; 2675 2676 // operator new never returns null. 2677 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2678 return true; 2679 2680 return false; 2681 } 2682 2683 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 2684 const DataLayout *DL, 2685 AssumptionCache *AC, 2686 const Instruction *CxtI, 2687 const DominatorTree *DT) { 2688 // Multiplying n * m significant bits yields a result of n + m significant 2689 // bits. If the total number of significant bits does not exceed the 2690 // result bit width (minus 1), there is no overflow. 2691 // This means if we have enough leading zero bits in the operands 2692 // we can guarantee that the result does not overflow. 2693 // Ref: "Hacker's Delight" by Henry Warren 2694 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 2695 APInt LHSKnownZero(BitWidth, 0); 2696 APInt LHSKnownOne(BitWidth, 0); 2697 APInt RHSKnownZero(BitWidth, 0); 2698 APInt RHSKnownOne(BitWidth, 0); 2699 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 2700 DT); 2701 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 2702 DT); 2703 // Note that underestimating the number of zero bits gives a more 2704 // conservative answer. 2705 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 2706 RHSKnownZero.countLeadingOnes(); 2707 // First handle the easy case: if we have enough zero bits there's 2708 // definitely no overflow. 2709 if (ZeroBits >= BitWidth) 2710 return OverflowResult::NeverOverflows; 2711 2712 // Get the largest possible values for each operand. 2713 APInt LHSMax = ~LHSKnownZero; 2714 APInt RHSMax = ~RHSKnownZero; 2715 2716 // We know the multiply operation doesn't overflow if the maximum values for 2717 // each operand will not overflow after we multiply them together. 2718 bool MaxOverflow; 2719 LHSMax.umul_ov(RHSMax, MaxOverflow); 2720 if (!MaxOverflow) 2721 return OverflowResult::NeverOverflows; 2722 2723 // We know it always overflows if multiplying the smallest possible values for 2724 // the operands also results in overflow. 2725 bool MinOverflow; 2726 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 2727 if (MinOverflow) 2728 return OverflowResult::AlwaysOverflows; 2729 2730 return OverflowResult::MayOverflow; 2731 } 2732 2733 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 2734 const DataLayout *DL, 2735 AssumptionCache *AC, 2736 const Instruction *CxtI, 2737 const DominatorTree *DT) { 2738 bool LHSKnownNonNegative, LHSKnownNegative; 2739 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 2740 AC, CxtI, DT); 2741 if (LHSKnownNonNegative || LHSKnownNegative) { 2742 bool RHSKnownNonNegative, RHSKnownNegative; 2743 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 2744 AC, CxtI, DT); 2745 2746 if (LHSKnownNegative && RHSKnownNegative) { 2747 // The sign bit is set in both cases: this MUST overflow. 2748 // Create a simple add instruction, and insert it into the struct. 2749 return OverflowResult::AlwaysOverflows; 2750 } 2751 2752 if (LHSKnownNonNegative && RHSKnownNonNegative) { 2753 // The sign bit is clear in both cases: this CANNOT overflow. 2754 // Create a simple add instruction, and insert it into the struct. 2755 return OverflowResult::NeverOverflows; 2756 } 2757 } 2758 2759 return OverflowResult::MayOverflow; 2760 } 2761