1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known and on return 982 /// contains the known bit of the shift value source. KF is an 983 /// operator-specific function that, given the known-bits and a shift amount, 984 /// compute the implied known-bits of the shift operator's result respectively 985 /// for that shift amount. The results from calling KF are conservatively 986 /// combined for all permitted shift amounts. 987 static void computeKnownBitsFromShiftOperator( 988 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 989 KnownBits &Known2, unsigned Depth, const Query &Q, 990 function_ref<KnownBits(const KnownBits &, unsigned)> KF) { 991 unsigned BitWidth = Known.getBitWidth(); 992 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 993 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 994 995 if (Known.isConstant()) { 996 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 997 Known = KF(Known2, ShiftAmt); 998 999 // If the known bits conflict, this must be an overflowing left shift, so 1000 // the shift result is poison. We can return anything we want. Choose 0 for 1001 // the best folding opportunity. 1002 if (Known.hasConflict()) 1003 Known.setAllZero(); 1004 1005 return; 1006 } 1007 1008 // If the shift amount could be greater than or equal to the bit-width of the 1009 // LHS, the value could be poison, but bail out because the check below is 1010 // expensive. 1011 // TODO: Should we just carry on? 1012 if (Known.getMaxValue().uge(BitWidth)) { 1013 Known.resetAll(); 1014 return; 1015 } 1016 1017 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1018 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1019 // limit value (which implies all bits are known). 1020 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1021 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1022 1023 // It would be more-clearly correct to use the two temporaries for this 1024 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1025 Known.resetAll(); 1026 1027 // If we know the shifter operand is nonzero, we can sometimes infer more 1028 // known bits. However this is expensive to compute, so be lazy about it and 1029 // only compute it when absolutely necessary. 1030 Optional<bool> ShifterOperandIsNonZero; 1031 1032 // Early exit if we can't constrain any well-defined shift amount. 1033 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1034 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1035 ShifterOperandIsNonZero = 1036 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1037 if (!*ShifterOperandIsNonZero) 1038 return; 1039 } 1040 1041 Known.Zero.setAllBits(); 1042 Known.One.setAllBits(); 1043 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1044 // Combine the shifted known input bits only for those shift amounts 1045 // compatible with its known constraints. 1046 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1047 continue; 1048 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1049 continue; 1050 // If we know the shifter is nonzero, we may be able to infer more known 1051 // bits. This check is sunk down as far as possible to avoid the expensive 1052 // call to isKnownNonZero if the cheaper checks above fail. 1053 if (ShiftAmt == 0) { 1054 if (!ShifterOperandIsNonZero.hasValue()) 1055 ShifterOperandIsNonZero = 1056 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1057 if (*ShifterOperandIsNonZero) 1058 continue; 1059 } 1060 1061 Known = KnownBits::commonBits(Known, KF(Known2, ShiftAmt)); 1062 } 1063 1064 // If the known bits conflict, the result is poison. Return a 0 and hope the 1065 // caller can further optimize that. 1066 if (Known.hasConflict()) 1067 Known.setAllZero(); 1068 } 1069 1070 static void computeKnownBitsFromOperator(const Operator *I, 1071 const APInt &DemandedElts, 1072 KnownBits &Known, unsigned Depth, 1073 const Query &Q) { 1074 unsigned BitWidth = Known.getBitWidth(); 1075 1076 KnownBits Known2(BitWidth); 1077 switch (I->getOpcode()) { 1078 default: break; 1079 case Instruction::Load: 1080 if (MDNode *MD = 1081 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1082 computeKnownBitsFromRangeMetadata(*MD, Known); 1083 break; 1084 case Instruction::And: { 1085 // If either the LHS or the RHS are Zero, the result is zero. 1086 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1087 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1088 1089 Known &= Known2; 1090 1091 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1092 // here we handle the more general case of adding any odd number by 1093 // matching the form add(x, add(x, y)) where y is odd. 1094 // TODO: This could be generalized to clearing any bit set in y where the 1095 // following bit is known to be unset in y. 1096 Value *X = nullptr, *Y = nullptr; 1097 if (!Known.Zero[0] && !Known.One[0] && 1098 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1099 Known2.resetAll(); 1100 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1101 if (Known2.countMinTrailingOnes() > 0) 1102 Known.Zero.setBit(0); 1103 } 1104 break; 1105 } 1106 case Instruction::Or: 1107 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1108 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1109 1110 Known |= Known2; 1111 break; 1112 case Instruction::Xor: 1113 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1114 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1115 1116 Known ^= Known2; 1117 break; 1118 case Instruction::Mul: { 1119 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1120 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1121 Known, Known2, Depth, Q); 1122 break; 1123 } 1124 case Instruction::UDiv: { 1125 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1126 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1127 Known = KnownBits::udiv(Known, Known2); 1128 break; 1129 } 1130 case Instruction::Select: { 1131 const Value *LHS = nullptr, *RHS = nullptr; 1132 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1133 if (SelectPatternResult::isMinOrMax(SPF)) { 1134 computeKnownBits(RHS, Known, Depth + 1, Q); 1135 computeKnownBits(LHS, Known2, Depth + 1, Q); 1136 switch (SPF) { 1137 default: 1138 llvm_unreachable("Unhandled select pattern flavor!"); 1139 case SPF_SMAX: 1140 Known = KnownBits::smax(Known, Known2); 1141 break; 1142 case SPF_SMIN: 1143 Known = KnownBits::smin(Known, Known2); 1144 break; 1145 case SPF_UMAX: 1146 Known = KnownBits::umax(Known, Known2); 1147 break; 1148 case SPF_UMIN: 1149 Known = KnownBits::umin(Known, Known2); 1150 break; 1151 } 1152 break; 1153 } 1154 1155 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1157 1158 // Only known if known in both the LHS and RHS. 1159 Known = KnownBits::commonBits(Known, Known2); 1160 1161 if (SPF == SPF_ABS) { 1162 // RHS from matchSelectPattern returns the negation part of abs pattern. 1163 // If the negate has an NSW flag we can assume the sign bit of the result 1164 // will be 0 because that makes abs(INT_MIN) undefined. 1165 if (match(RHS, m_Neg(m_Specific(LHS))) && 1166 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1167 Known.Zero.setSignBit(); 1168 } 1169 1170 break; 1171 } 1172 case Instruction::FPTrunc: 1173 case Instruction::FPExt: 1174 case Instruction::FPToUI: 1175 case Instruction::FPToSI: 1176 case Instruction::SIToFP: 1177 case Instruction::UIToFP: 1178 break; // Can't work with floating point. 1179 case Instruction::PtrToInt: 1180 case Instruction::IntToPtr: 1181 // Fall through and handle them the same as zext/trunc. 1182 LLVM_FALLTHROUGH; 1183 case Instruction::ZExt: 1184 case Instruction::Trunc: { 1185 Type *SrcTy = I->getOperand(0)->getType(); 1186 1187 unsigned SrcBitWidth; 1188 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1189 // which fall through here. 1190 Type *ScalarTy = SrcTy->getScalarType(); 1191 SrcBitWidth = ScalarTy->isPointerTy() ? 1192 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1193 Q.DL.getTypeSizeInBits(ScalarTy); 1194 1195 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1196 Known = Known.anyextOrTrunc(SrcBitWidth); 1197 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1198 Known = Known.zextOrTrunc(BitWidth); 1199 break; 1200 } 1201 case Instruction::BitCast: { 1202 Type *SrcTy = I->getOperand(0)->getType(); 1203 if (SrcTy->isIntOrPtrTy() && 1204 // TODO: For now, not handling conversions like: 1205 // (bitcast i64 %x to <2 x i32>) 1206 !I->getType()->isVectorTy()) { 1207 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1208 break; 1209 } 1210 break; 1211 } 1212 case Instruction::SExt: { 1213 // Compute the bits in the result that are not present in the input. 1214 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1215 1216 Known = Known.trunc(SrcBitWidth); 1217 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1218 // If the sign bit of the input is known set or clear, then we know the 1219 // top bits of the result. 1220 Known = Known.sext(BitWidth); 1221 break; 1222 } 1223 case Instruction::Shl: { 1224 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1225 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1226 auto KF = [NSW](const KnownBits &KnownShiftVal, unsigned ShiftAmt) { 1227 KnownBits Result; 1228 Result.Zero = KnownShiftVal.Zero << ShiftAmt; 1229 Result.One = KnownShiftVal.One << ShiftAmt; 1230 // Low bits known zero. 1231 Result.Zero.setLowBits(ShiftAmt); 1232 // If this shift has "nsw" keyword, then the result is either a poison 1233 // value or has the same sign bit as the first operand. 1234 if (NSW) { 1235 if (KnownShiftVal.Zero.isSignBitSet()) 1236 Result.Zero.setSignBit(); 1237 if (KnownShiftVal.One.isSignBitSet()) 1238 Result.One.setSignBit(); 1239 } 1240 return Result; 1241 }; 1242 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1243 KF); 1244 break; 1245 } 1246 case Instruction::LShr: { 1247 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1248 auto KF = [](const KnownBits &KnownShiftVal, unsigned ShiftAmt) { 1249 KnownBits Result; 1250 Result.Zero = KnownShiftVal.Zero.lshr(ShiftAmt); 1251 Result.One = KnownShiftVal.One.lshr(ShiftAmt); 1252 // High bits known zero. 1253 Result.Zero.setHighBits(ShiftAmt); 1254 return Result; 1255 }; 1256 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1257 KF); 1258 break; 1259 } 1260 case Instruction::AShr: { 1261 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1262 auto KF = [](const KnownBits &KnownShiftVal, unsigned ShiftAmt) { 1263 KnownBits Result; 1264 Result.Zero = KnownShiftVal.Zero.ashr(ShiftAmt); 1265 Result.One = KnownShiftVal.One.ashr(ShiftAmt); 1266 return Result; 1267 }; 1268 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1269 KF); 1270 break; 1271 } 1272 case Instruction::Sub: { 1273 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1274 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1275 DemandedElts, Known, Known2, Depth, Q); 1276 break; 1277 } 1278 case Instruction::Add: { 1279 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1280 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1281 DemandedElts, Known, Known2, Depth, Q); 1282 break; 1283 } 1284 case Instruction::SRem: 1285 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1286 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1287 Known = KnownBits::srem(Known, Known2); 1288 break; 1289 1290 case Instruction::URem: 1291 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1292 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1293 Known = KnownBits::urem(Known, Known2); 1294 break; 1295 case Instruction::Alloca: 1296 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1297 break; 1298 case Instruction::GetElementPtr: { 1299 // Analyze all of the subscripts of this getelementptr instruction 1300 // to determine if we can prove known low zero bits. 1301 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1302 // Accumulate the constant indices in a separate variable 1303 // to minimize the number of calls to computeForAddSub. 1304 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1305 1306 gep_type_iterator GTI = gep_type_begin(I); 1307 // If the inbounds keyword is not present, the offsets are added to the 1308 // base address with silently-wrapping two’s complement arithmetic. 1309 bool IsInBounds = cast<GEPOperator>(I)->isInBounds(); 1310 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1311 // TrailZ can only become smaller, short-circuit if we hit zero. 1312 if (Known.isUnknown()) 1313 break; 1314 1315 Value *Index = I->getOperand(i); 1316 1317 // Handle case when index is zero. 1318 Constant *CIndex = dyn_cast<Constant>(Index); 1319 if (CIndex && CIndex->isZeroValue()) 1320 continue; 1321 1322 if (StructType *STy = GTI.getStructTypeOrNull()) { 1323 // Handle struct member offset arithmetic. 1324 1325 assert(CIndex && 1326 "Access to structure field must be known at compile time"); 1327 1328 if (CIndex->getType()->isVectorTy()) 1329 Index = CIndex->getSplatValue(); 1330 1331 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1332 const StructLayout *SL = Q.DL.getStructLayout(STy); 1333 uint64_t Offset = SL->getElementOffset(Idx); 1334 AccConstIndices += Offset; 1335 continue; 1336 } 1337 1338 // Handle array index arithmetic. 1339 Type *IndexedTy = GTI.getIndexedType(); 1340 if (!IndexedTy->isSized()) { 1341 Known.resetAll(); 1342 break; 1343 } 1344 1345 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1346 KnownBits IndexBits(IndexBitWidth); 1347 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1348 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1349 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1350 KnownBits ScalingFactor(IndexBitWidth); 1351 // Multiply by current sizeof type. 1352 // &A[i] == A + i * sizeof(*A[i]). 1353 if (IndexTypeSize.isScalable()) { 1354 // For scalable types the only thing we know about sizeof is 1355 // that this is a multiple of the minimum size. 1356 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1357 } else if (IndexBits.isConstant()) { 1358 APInt IndexConst = IndexBits.getConstant(); 1359 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1360 IndexConst *= ScalingFactor; 1361 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1362 continue; 1363 } else { 1364 ScalingFactor.Zero = ~TypeSizeInBytes; 1365 ScalingFactor.One = TypeSizeInBytes; 1366 } 1367 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1368 1369 // If the offsets have a different width from the pointer, according 1370 // to the language reference we need to sign-extend or truncate them 1371 // to the width of the pointer. 1372 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1373 1374 Known = KnownBits::computeForAddSub( 1375 /*Add=*/true, 1376 /*NSW=*/IsInBounds, Known, IndexBits); 1377 } 1378 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1379 KnownBits Index(BitWidth); 1380 Index.Zero = ~AccConstIndices; 1381 Index.One = AccConstIndices; 1382 Known = KnownBits::computeForAddSub( 1383 /*Add=*/true, 1384 /*NSW=*/IsInBounds, Known, Index); 1385 } 1386 break; 1387 } 1388 case Instruction::PHI: { 1389 const PHINode *P = cast<PHINode>(I); 1390 // Handle the case of a simple two-predecessor recurrence PHI. 1391 // There's a lot more that could theoretically be done here, but 1392 // this is sufficient to catch some interesting cases. 1393 if (P->getNumIncomingValues() == 2) { 1394 for (unsigned i = 0; i != 2; ++i) { 1395 Value *L = P->getIncomingValue(i); 1396 Value *R = P->getIncomingValue(!i); 1397 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1398 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1399 Operator *LU = dyn_cast<Operator>(L); 1400 if (!LU) 1401 continue; 1402 unsigned Opcode = LU->getOpcode(); 1403 // Check for operations that have the property that if 1404 // both their operands have low zero bits, the result 1405 // will have low zero bits. 1406 if (Opcode == Instruction::Add || 1407 Opcode == Instruction::Sub || 1408 Opcode == Instruction::And || 1409 Opcode == Instruction::Or || 1410 Opcode == Instruction::Mul) { 1411 Value *LL = LU->getOperand(0); 1412 Value *LR = LU->getOperand(1); 1413 // Find a recurrence. 1414 if (LL == I) 1415 L = LR; 1416 else if (LR == I) 1417 L = LL; 1418 else 1419 continue; // Check for recurrence with L and R flipped. 1420 1421 // Change the context instruction to the "edge" that flows into the 1422 // phi. This is important because that is where the value is actually 1423 // "evaluated" even though it is used later somewhere else. (see also 1424 // D69571). 1425 Query RecQ = Q; 1426 1427 // Ok, we have a PHI of the form L op= R. Check for low 1428 // zero bits. 1429 RecQ.CxtI = RInst; 1430 computeKnownBits(R, Known2, Depth + 1, RecQ); 1431 1432 // We need to take the minimum number of known bits 1433 KnownBits Known3(BitWidth); 1434 RecQ.CxtI = LInst; 1435 computeKnownBits(L, Known3, Depth + 1, RecQ); 1436 1437 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1438 Known3.countMinTrailingZeros())); 1439 1440 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1441 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1442 // If initial value of recurrence is nonnegative, and we are adding 1443 // a nonnegative number with nsw, the result can only be nonnegative 1444 // or poison value regardless of the number of times we execute the 1445 // add in phi recurrence. If initial value is negative and we are 1446 // adding a negative number with nsw, the result can only be 1447 // negative or poison value. Similar arguments apply to sub and mul. 1448 // 1449 // (add non-negative, non-negative) --> non-negative 1450 // (add negative, negative) --> negative 1451 if (Opcode == Instruction::Add) { 1452 if (Known2.isNonNegative() && Known3.isNonNegative()) 1453 Known.makeNonNegative(); 1454 else if (Known2.isNegative() && Known3.isNegative()) 1455 Known.makeNegative(); 1456 } 1457 1458 // (sub nsw non-negative, negative) --> non-negative 1459 // (sub nsw negative, non-negative) --> negative 1460 else if (Opcode == Instruction::Sub && LL == I) { 1461 if (Known2.isNonNegative() && Known3.isNegative()) 1462 Known.makeNonNegative(); 1463 else if (Known2.isNegative() && Known3.isNonNegative()) 1464 Known.makeNegative(); 1465 } 1466 1467 // (mul nsw non-negative, non-negative) --> non-negative 1468 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1469 Known3.isNonNegative()) 1470 Known.makeNonNegative(); 1471 } 1472 1473 break; 1474 } 1475 } 1476 } 1477 1478 // Unreachable blocks may have zero-operand PHI nodes. 1479 if (P->getNumIncomingValues() == 0) 1480 break; 1481 1482 // Otherwise take the unions of the known bit sets of the operands, 1483 // taking conservative care to avoid excessive recursion. 1484 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1485 // Skip if every incoming value references to ourself. 1486 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1487 break; 1488 1489 Known.Zero.setAllBits(); 1490 Known.One.setAllBits(); 1491 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1492 Value *IncValue = P->getIncomingValue(u); 1493 // Skip direct self references. 1494 if (IncValue == P) continue; 1495 1496 // Change the context instruction to the "edge" that flows into the 1497 // phi. This is important because that is where the value is actually 1498 // "evaluated" even though it is used later somewhere else. (see also 1499 // D69571). 1500 Query RecQ = Q; 1501 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1502 1503 Known2 = KnownBits(BitWidth); 1504 // Recurse, but cap the recursion to one level, because we don't 1505 // want to waste time spinning around in loops. 1506 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1507 Known = KnownBits::commonBits(Known, Known2); 1508 // If all bits have been ruled out, there's no need to check 1509 // more operands. 1510 if (Known.isUnknown()) 1511 break; 1512 } 1513 } 1514 break; 1515 } 1516 case Instruction::Call: 1517 case Instruction::Invoke: 1518 // If range metadata is attached to this call, set known bits from that, 1519 // and then intersect with known bits based on other properties of the 1520 // function. 1521 if (MDNode *MD = 1522 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1523 computeKnownBitsFromRangeMetadata(*MD, Known); 1524 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1525 computeKnownBits(RV, Known2, Depth + 1, Q); 1526 Known.Zero |= Known2.Zero; 1527 Known.One |= Known2.One; 1528 } 1529 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1530 switch (II->getIntrinsicID()) { 1531 default: break; 1532 case Intrinsic::abs: 1533 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1534 1535 // If the source's MSB is zero then we know the rest of the bits. 1536 if (Known2.isNonNegative()) { 1537 Known.Zero |= Known2.Zero; 1538 Known.One |= Known2.One; 1539 break; 1540 } 1541 1542 // Absolute value preserves trailing zero count. 1543 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1544 1545 // If this call is undefined for INT_MIN, the result is positive. We 1546 // also know it can't be INT_MIN if there is a set bit that isn't the 1547 // sign bit. 1548 Known2.One.clearSignBit(); 1549 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1550 Known.Zero.setSignBit(); 1551 // FIXME: Handle known negative input? 1552 // FIXME: Calculate the negated Known bits and combine them? 1553 break; 1554 case Intrinsic::bitreverse: 1555 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1556 Known.Zero |= Known2.Zero.reverseBits(); 1557 Known.One |= Known2.One.reverseBits(); 1558 break; 1559 case Intrinsic::bswap: 1560 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1561 Known.Zero |= Known2.Zero.byteSwap(); 1562 Known.One |= Known2.One.byteSwap(); 1563 break; 1564 case Intrinsic::ctlz: { 1565 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1566 // If we have a known 1, its position is our upper bound. 1567 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1568 // If this call is undefined for 0, the result will be less than 2^n. 1569 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1570 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1571 unsigned LowBits = Log2_32(PossibleLZ)+1; 1572 Known.Zero.setBitsFrom(LowBits); 1573 break; 1574 } 1575 case Intrinsic::cttz: { 1576 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1577 // If we have a known 1, its position is our upper bound. 1578 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1579 // If this call is undefined for 0, the result will be less than 2^n. 1580 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1581 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1582 unsigned LowBits = Log2_32(PossibleTZ)+1; 1583 Known.Zero.setBitsFrom(LowBits); 1584 break; 1585 } 1586 case Intrinsic::ctpop: { 1587 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1588 // We can bound the space the count needs. Also, bits known to be zero 1589 // can't contribute to the population. 1590 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1591 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1592 Known.Zero.setBitsFrom(LowBits); 1593 // TODO: we could bound KnownOne using the lower bound on the number 1594 // of bits which might be set provided by popcnt KnownOne2. 1595 break; 1596 } 1597 case Intrinsic::fshr: 1598 case Intrinsic::fshl: { 1599 const APInt *SA; 1600 if (!match(I->getOperand(2), m_APInt(SA))) 1601 break; 1602 1603 // Normalize to funnel shift left. 1604 uint64_t ShiftAmt = SA->urem(BitWidth); 1605 if (II->getIntrinsicID() == Intrinsic::fshr) 1606 ShiftAmt = BitWidth - ShiftAmt; 1607 1608 KnownBits Known3(BitWidth); 1609 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1610 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1611 1612 Known.Zero = 1613 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1614 Known.One = 1615 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1616 break; 1617 } 1618 case Intrinsic::uadd_sat: 1619 case Intrinsic::usub_sat: { 1620 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1621 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1622 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1623 1624 // Add: Leading ones of either operand are preserved. 1625 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1626 // as leading zeros in the result. 1627 unsigned LeadingKnown; 1628 if (IsAdd) 1629 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1630 Known2.countMinLeadingOnes()); 1631 else 1632 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1633 Known2.countMinLeadingOnes()); 1634 1635 Known = KnownBits::computeForAddSub( 1636 IsAdd, /* NSW */ false, Known, Known2); 1637 1638 // We select between the operation result and all-ones/zero 1639 // respectively, so we can preserve known ones/zeros. 1640 if (IsAdd) { 1641 Known.One.setHighBits(LeadingKnown); 1642 Known.Zero.clearAllBits(); 1643 } else { 1644 Known.Zero.setHighBits(LeadingKnown); 1645 Known.One.clearAllBits(); 1646 } 1647 break; 1648 } 1649 case Intrinsic::umin: 1650 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1651 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1652 Known = KnownBits::umin(Known, Known2); 1653 break; 1654 case Intrinsic::umax: 1655 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1656 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1657 Known = KnownBits::umax(Known, Known2); 1658 break; 1659 case Intrinsic::smin: 1660 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1661 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1662 Known = KnownBits::smin(Known, Known2); 1663 break; 1664 case Intrinsic::smax: 1665 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1666 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1667 Known = KnownBits::smax(Known, Known2); 1668 break; 1669 case Intrinsic::x86_sse42_crc32_64_64: 1670 Known.Zero.setBitsFrom(32); 1671 break; 1672 } 1673 } 1674 break; 1675 case Instruction::ShuffleVector: { 1676 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1677 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1678 if (!Shuf) { 1679 Known.resetAll(); 1680 return; 1681 } 1682 // For undef elements, we don't know anything about the common state of 1683 // the shuffle result. 1684 APInt DemandedLHS, DemandedRHS; 1685 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1686 Known.resetAll(); 1687 return; 1688 } 1689 Known.One.setAllBits(); 1690 Known.Zero.setAllBits(); 1691 if (!!DemandedLHS) { 1692 const Value *LHS = Shuf->getOperand(0); 1693 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1694 // If we don't know any bits, early out. 1695 if (Known.isUnknown()) 1696 break; 1697 } 1698 if (!!DemandedRHS) { 1699 const Value *RHS = Shuf->getOperand(1); 1700 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1701 Known = KnownBits::commonBits(Known, Known2); 1702 } 1703 break; 1704 } 1705 case Instruction::InsertElement: { 1706 const Value *Vec = I->getOperand(0); 1707 const Value *Elt = I->getOperand(1); 1708 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1709 // Early out if the index is non-constant or out-of-range. 1710 unsigned NumElts = DemandedElts.getBitWidth(); 1711 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1712 Known.resetAll(); 1713 return; 1714 } 1715 Known.One.setAllBits(); 1716 Known.Zero.setAllBits(); 1717 unsigned EltIdx = CIdx->getZExtValue(); 1718 // Do we demand the inserted element? 1719 if (DemandedElts[EltIdx]) { 1720 computeKnownBits(Elt, Known, Depth + 1, Q); 1721 // If we don't know any bits, early out. 1722 if (Known.isUnknown()) 1723 break; 1724 } 1725 // We don't need the base vector element that has been inserted. 1726 APInt DemandedVecElts = DemandedElts; 1727 DemandedVecElts.clearBit(EltIdx); 1728 if (!!DemandedVecElts) { 1729 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1730 Known = KnownBits::commonBits(Known, Known2); 1731 } 1732 break; 1733 } 1734 case Instruction::ExtractElement: { 1735 // Look through extract element. If the index is non-constant or 1736 // out-of-range demand all elements, otherwise just the extracted element. 1737 const Value *Vec = I->getOperand(0); 1738 const Value *Idx = I->getOperand(1); 1739 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1740 if (isa<ScalableVectorType>(Vec->getType())) { 1741 // FIXME: there's probably *something* we can do with scalable vectors 1742 Known.resetAll(); 1743 break; 1744 } 1745 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1746 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1747 if (CIdx && CIdx->getValue().ult(NumElts)) 1748 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1749 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1750 break; 1751 } 1752 case Instruction::ExtractValue: 1753 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1754 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1755 if (EVI->getNumIndices() != 1) break; 1756 if (EVI->getIndices()[0] == 0) { 1757 switch (II->getIntrinsicID()) { 1758 default: break; 1759 case Intrinsic::uadd_with_overflow: 1760 case Intrinsic::sadd_with_overflow: 1761 computeKnownBitsAddSub(true, II->getArgOperand(0), 1762 II->getArgOperand(1), false, DemandedElts, 1763 Known, Known2, Depth, Q); 1764 break; 1765 case Intrinsic::usub_with_overflow: 1766 case Intrinsic::ssub_with_overflow: 1767 computeKnownBitsAddSub(false, II->getArgOperand(0), 1768 II->getArgOperand(1), false, DemandedElts, 1769 Known, Known2, Depth, Q); 1770 break; 1771 case Intrinsic::umul_with_overflow: 1772 case Intrinsic::smul_with_overflow: 1773 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1774 DemandedElts, Known, Known2, Depth, Q); 1775 break; 1776 } 1777 } 1778 } 1779 break; 1780 case Instruction::Freeze: 1781 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1782 Depth + 1)) 1783 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1784 break; 1785 } 1786 } 1787 1788 /// Determine which bits of V are known to be either zero or one and return 1789 /// them. 1790 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1791 unsigned Depth, const Query &Q) { 1792 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1793 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1794 return Known; 1795 } 1796 1797 /// Determine which bits of V are known to be either zero or one and return 1798 /// them. 1799 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1800 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1801 computeKnownBits(V, Known, Depth, Q); 1802 return Known; 1803 } 1804 1805 /// Determine which bits of V are known to be either zero or one and return 1806 /// them in the Known bit set. 1807 /// 1808 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1809 /// we cannot optimize based on the assumption that it is zero without changing 1810 /// it to be an explicit zero. If we don't change it to zero, other code could 1811 /// optimized based on the contradictory assumption that it is non-zero. 1812 /// Because instcombine aggressively folds operations with undef args anyway, 1813 /// this won't lose us code quality. 1814 /// 1815 /// This function is defined on values with integer type, values with pointer 1816 /// type, and vectors of integers. In the case 1817 /// where V is a vector, known zero, and known one values are the 1818 /// same width as the vector element, and the bit is set only if it is true 1819 /// for all of the demanded elements in the vector specified by DemandedElts. 1820 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1821 KnownBits &Known, unsigned Depth, const Query &Q) { 1822 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1823 // No demanded elts or V is a scalable vector, better to assume we don't 1824 // know anything. 1825 Known.resetAll(); 1826 return; 1827 } 1828 1829 assert(V && "No Value?"); 1830 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1831 1832 #ifndef NDEBUG 1833 Type *Ty = V->getType(); 1834 unsigned BitWidth = Known.getBitWidth(); 1835 1836 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1837 "Not integer or pointer type!"); 1838 1839 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1840 assert( 1841 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1842 "DemandedElt width should equal the fixed vector number of elements"); 1843 } else { 1844 assert(DemandedElts == APInt(1, 1) && 1845 "DemandedElt width should be 1 for scalars"); 1846 } 1847 1848 Type *ScalarTy = Ty->getScalarType(); 1849 if (ScalarTy->isPointerTy()) { 1850 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1851 "V and Known should have same BitWidth"); 1852 } else { 1853 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1854 "V and Known should have same BitWidth"); 1855 } 1856 #endif 1857 1858 const APInt *C; 1859 if (match(V, m_APInt(C))) { 1860 // We know all of the bits for a scalar constant or a splat vector constant! 1861 Known.One = *C; 1862 Known.Zero = ~Known.One; 1863 return; 1864 } 1865 // Null and aggregate-zero are all-zeros. 1866 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1867 Known.setAllZero(); 1868 return; 1869 } 1870 // Handle a constant vector by taking the intersection of the known bits of 1871 // each element. 1872 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1873 // We know that CDV must be a vector of integers. Take the intersection of 1874 // each element. 1875 Known.Zero.setAllBits(); Known.One.setAllBits(); 1876 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1877 if (!DemandedElts[i]) 1878 continue; 1879 APInt Elt = CDV->getElementAsAPInt(i); 1880 Known.Zero &= ~Elt; 1881 Known.One &= Elt; 1882 } 1883 return; 1884 } 1885 1886 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1887 // We know that CV must be a vector of integers. Take the intersection of 1888 // each element. 1889 Known.Zero.setAllBits(); Known.One.setAllBits(); 1890 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1891 if (!DemandedElts[i]) 1892 continue; 1893 Constant *Element = CV->getAggregateElement(i); 1894 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1895 if (!ElementCI) { 1896 Known.resetAll(); 1897 return; 1898 } 1899 const APInt &Elt = ElementCI->getValue(); 1900 Known.Zero &= ~Elt; 1901 Known.One &= Elt; 1902 } 1903 return; 1904 } 1905 1906 // Start out not knowing anything. 1907 Known.resetAll(); 1908 1909 // We can't imply anything about undefs. 1910 if (isa<UndefValue>(V)) 1911 return; 1912 1913 // There's no point in looking through other users of ConstantData for 1914 // assumptions. Confirm that we've handled them all. 1915 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1916 1917 // All recursive calls that increase depth must come after this. 1918 if (Depth == MaxAnalysisRecursionDepth) 1919 return; 1920 1921 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1922 // the bits of its aliasee. 1923 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1924 if (!GA->isInterposable()) 1925 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1926 return; 1927 } 1928 1929 if (const Operator *I = dyn_cast<Operator>(V)) 1930 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1931 1932 // Aligned pointers have trailing zeros - refine Known.Zero set 1933 if (isa<PointerType>(V->getType())) { 1934 Align Alignment = V->getPointerAlignment(Q.DL); 1935 Known.Zero.setLowBits(Log2(Alignment)); 1936 } 1937 1938 // computeKnownBitsFromAssume strictly refines Known. 1939 // Therefore, we run them after computeKnownBitsFromOperator. 1940 1941 // Check whether a nearby assume intrinsic can determine some known bits. 1942 computeKnownBitsFromAssume(V, Known, Depth, Q); 1943 1944 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1945 } 1946 1947 /// Return true if the given value is known to have exactly one 1948 /// bit set when defined. For vectors return true if every element is known to 1949 /// be a power of two when defined. Supports values with integer or pointer 1950 /// types and vectors of integers. 1951 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1952 const Query &Q) { 1953 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1954 1955 // Attempt to match against constants. 1956 if (OrZero && match(V, m_Power2OrZero())) 1957 return true; 1958 if (match(V, m_Power2())) 1959 return true; 1960 1961 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1962 // it is shifted off the end then the result is undefined. 1963 if (match(V, m_Shl(m_One(), m_Value()))) 1964 return true; 1965 1966 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1967 // the bottom. If it is shifted off the bottom then the result is undefined. 1968 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1969 return true; 1970 1971 // The remaining tests are all recursive, so bail out if we hit the limit. 1972 if (Depth++ == MaxAnalysisRecursionDepth) 1973 return false; 1974 1975 Value *X = nullptr, *Y = nullptr; 1976 // A shift left or a logical shift right of a power of two is a power of two 1977 // or zero. 1978 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1979 match(V, m_LShr(m_Value(X), m_Value())))) 1980 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1981 1982 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1983 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1984 1985 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1986 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1987 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1988 1989 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1990 // A power of two and'd with anything is a power of two or zero. 1991 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1992 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1993 return true; 1994 // X & (-X) is always a power of two or zero. 1995 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1996 return true; 1997 return false; 1998 } 1999 2000 // Adding a power-of-two or zero to the same power-of-two or zero yields 2001 // either the original power-of-two, a larger power-of-two or zero. 2002 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2003 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2004 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2005 Q.IIQ.hasNoSignedWrap(VOBO)) { 2006 if (match(X, m_And(m_Specific(Y), m_Value())) || 2007 match(X, m_And(m_Value(), m_Specific(Y)))) 2008 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2009 return true; 2010 if (match(Y, m_And(m_Specific(X), m_Value())) || 2011 match(Y, m_And(m_Value(), m_Specific(X)))) 2012 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2013 return true; 2014 2015 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2016 KnownBits LHSBits(BitWidth); 2017 computeKnownBits(X, LHSBits, Depth, Q); 2018 2019 KnownBits RHSBits(BitWidth); 2020 computeKnownBits(Y, RHSBits, Depth, Q); 2021 // If i8 V is a power of two or zero: 2022 // ZeroBits: 1 1 1 0 1 1 1 1 2023 // ~ZeroBits: 0 0 0 1 0 0 0 0 2024 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2025 // If OrZero isn't set, we cannot give back a zero result. 2026 // Make sure either the LHS or RHS has a bit set. 2027 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2028 return true; 2029 } 2030 } 2031 2032 // An exact divide or right shift can only shift off zero bits, so the result 2033 // is a power of two only if the first operand is a power of two and not 2034 // copying a sign bit (sdiv int_min, 2). 2035 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2036 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2037 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2038 Depth, Q); 2039 } 2040 2041 return false; 2042 } 2043 2044 /// Test whether a GEP's result is known to be non-null. 2045 /// 2046 /// Uses properties inherent in a GEP to try to determine whether it is known 2047 /// to be non-null. 2048 /// 2049 /// Currently this routine does not support vector GEPs. 2050 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2051 const Query &Q) { 2052 const Function *F = nullptr; 2053 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2054 F = I->getFunction(); 2055 2056 if (!GEP->isInBounds() || 2057 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2058 return false; 2059 2060 // FIXME: Support vector-GEPs. 2061 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2062 2063 // If the base pointer is non-null, we cannot walk to a null address with an 2064 // inbounds GEP in address space zero. 2065 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2066 return true; 2067 2068 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2069 // If so, then the GEP cannot produce a null pointer, as doing so would 2070 // inherently violate the inbounds contract within address space zero. 2071 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2072 GTI != GTE; ++GTI) { 2073 // Struct types are easy -- they must always be indexed by a constant. 2074 if (StructType *STy = GTI.getStructTypeOrNull()) { 2075 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2076 unsigned ElementIdx = OpC->getZExtValue(); 2077 const StructLayout *SL = Q.DL.getStructLayout(STy); 2078 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2079 if (ElementOffset > 0) 2080 return true; 2081 continue; 2082 } 2083 2084 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2085 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2086 continue; 2087 2088 // Fast path the constant operand case both for efficiency and so we don't 2089 // increment Depth when just zipping down an all-constant GEP. 2090 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2091 if (!OpC->isZero()) 2092 return true; 2093 continue; 2094 } 2095 2096 // We post-increment Depth here because while isKnownNonZero increments it 2097 // as well, when we pop back up that increment won't persist. We don't want 2098 // to recurse 10k times just because we have 10k GEP operands. We don't 2099 // bail completely out because we want to handle constant GEPs regardless 2100 // of depth. 2101 if (Depth++ >= MaxAnalysisRecursionDepth) 2102 continue; 2103 2104 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2105 return true; 2106 } 2107 2108 return false; 2109 } 2110 2111 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2112 const Instruction *CtxI, 2113 const DominatorTree *DT) { 2114 if (isa<Constant>(V)) 2115 return false; 2116 2117 if (!CtxI || !DT) 2118 return false; 2119 2120 unsigned NumUsesExplored = 0; 2121 for (auto *U : V->users()) { 2122 // Avoid massive lists 2123 if (NumUsesExplored >= DomConditionsMaxUses) 2124 break; 2125 NumUsesExplored++; 2126 2127 // If the value is used as an argument to a call or invoke, then argument 2128 // attributes may provide an answer about null-ness. 2129 if (const auto *CB = dyn_cast<CallBase>(U)) 2130 if (auto *CalledFunc = CB->getCalledFunction()) 2131 for (const Argument &Arg : CalledFunc->args()) 2132 if (CB->getArgOperand(Arg.getArgNo()) == V && 2133 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2134 return true; 2135 2136 // If the value is used as a load/store, then the pointer must be non null. 2137 if (V == getLoadStorePointerOperand(U)) { 2138 const Instruction *I = cast<Instruction>(U); 2139 if (!NullPointerIsDefined(I->getFunction(), 2140 V->getType()->getPointerAddressSpace()) && 2141 DT->dominates(I, CtxI)) 2142 return true; 2143 } 2144 2145 // Consider only compare instructions uniquely controlling a branch 2146 CmpInst::Predicate Pred; 2147 if (!match(const_cast<User *>(U), 2148 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2149 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2150 continue; 2151 2152 SmallVector<const User *, 4> WorkList; 2153 SmallPtrSet<const User *, 4> Visited; 2154 for (auto *CmpU : U->users()) { 2155 assert(WorkList.empty() && "Should be!"); 2156 if (Visited.insert(CmpU).second) 2157 WorkList.push_back(CmpU); 2158 2159 while (!WorkList.empty()) { 2160 auto *Curr = WorkList.pop_back_val(); 2161 2162 // If a user is an AND, add all its users to the work list. We only 2163 // propagate "pred != null" condition through AND because it is only 2164 // correct to assume that all conditions of AND are met in true branch. 2165 // TODO: Support similar logic of OR and EQ predicate? 2166 if (Pred == ICmpInst::ICMP_NE) 2167 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2168 if (BO->getOpcode() == Instruction::And) { 2169 for (auto *BOU : BO->users()) 2170 if (Visited.insert(BOU).second) 2171 WorkList.push_back(BOU); 2172 continue; 2173 } 2174 2175 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2176 assert(BI->isConditional() && "uses a comparison!"); 2177 2178 BasicBlock *NonNullSuccessor = 2179 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2180 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2181 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2182 return true; 2183 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2184 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2185 return true; 2186 } 2187 } 2188 } 2189 } 2190 2191 return false; 2192 } 2193 2194 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2195 /// ensure that the value it's attached to is never Value? 'RangeType' is 2196 /// is the type of the value described by the range. 2197 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2198 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2199 assert(NumRanges >= 1); 2200 for (unsigned i = 0; i < NumRanges; ++i) { 2201 ConstantInt *Lower = 2202 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2203 ConstantInt *Upper = 2204 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2205 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2206 if (Range.contains(Value)) 2207 return false; 2208 } 2209 return true; 2210 } 2211 2212 /// Return true if the given value is known to be non-zero when defined. For 2213 /// vectors, return true if every demanded element is known to be non-zero when 2214 /// defined. For pointers, if the context instruction and dominator tree are 2215 /// specified, perform context-sensitive analysis and return true if the 2216 /// pointer couldn't possibly be null at the specified instruction. 2217 /// Supports values with integer or pointer type and vectors of integers. 2218 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2219 const Query &Q) { 2220 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2221 // vector 2222 if (isa<ScalableVectorType>(V->getType())) 2223 return false; 2224 2225 if (auto *C = dyn_cast<Constant>(V)) { 2226 if (C->isNullValue()) 2227 return false; 2228 if (isa<ConstantInt>(C)) 2229 // Must be non-zero due to null test above. 2230 return true; 2231 2232 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2233 // See the comment for IntToPtr/PtrToInt instructions below. 2234 if (CE->getOpcode() == Instruction::IntToPtr || 2235 CE->getOpcode() == Instruction::PtrToInt) 2236 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2237 .getFixedSize() <= 2238 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2239 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2240 } 2241 2242 // For constant vectors, check that all elements are undefined or known 2243 // non-zero to determine that the whole vector is known non-zero. 2244 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2245 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2246 if (!DemandedElts[i]) 2247 continue; 2248 Constant *Elt = C->getAggregateElement(i); 2249 if (!Elt || Elt->isNullValue()) 2250 return false; 2251 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2252 return false; 2253 } 2254 return true; 2255 } 2256 2257 // A global variable in address space 0 is non null unless extern weak 2258 // or an absolute symbol reference. Other address spaces may have null as a 2259 // valid address for a global, so we can't assume anything. 2260 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2261 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2262 GV->getType()->getAddressSpace() == 0) 2263 return true; 2264 } else 2265 return false; 2266 } 2267 2268 if (auto *I = dyn_cast<Instruction>(V)) { 2269 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2270 // If the possible ranges don't contain zero, then the value is 2271 // definitely non-zero. 2272 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2273 const APInt ZeroValue(Ty->getBitWidth(), 0); 2274 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2275 return true; 2276 } 2277 } 2278 } 2279 2280 if (isKnownNonZeroFromAssume(V, Q)) 2281 return true; 2282 2283 // Some of the tests below are recursive, so bail out if we hit the limit. 2284 if (Depth++ >= MaxAnalysisRecursionDepth) 2285 return false; 2286 2287 // Check for pointer simplifications. 2288 2289 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2290 // Alloca never returns null, malloc might. 2291 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2292 return true; 2293 2294 // A byval, inalloca may not be null in a non-default addres space. A 2295 // nonnull argument is assumed never 0. 2296 if (const Argument *A = dyn_cast<Argument>(V)) { 2297 if (((A->hasPassPointeeByValueCopyAttr() && 2298 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2299 A->hasNonNullAttr())) 2300 return true; 2301 } 2302 2303 // A Load tagged with nonnull metadata is never null. 2304 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2305 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2306 return true; 2307 2308 if (const auto *Call = dyn_cast<CallBase>(V)) { 2309 if (Call->isReturnNonNull()) 2310 return true; 2311 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2312 return isKnownNonZero(RP, Depth, Q); 2313 } 2314 } 2315 2316 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2317 return true; 2318 2319 // Check for recursive pointer simplifications. 2320 if (V->getType()->isPointerTy()) { 2321 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2322 // do not alter the value, or at least not the nullness property of the 2323 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2324 // 2325 // Note that we have to take special care to avoid looking through 2326 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2327 // as casts that can alter the value, e.g., AddrSpaceCasts. 2328 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2329 return isGEPKnownNonNull(GEP, Depth, Q); 2330 2331 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2332 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2333 2334 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2335 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2336 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2337 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2338 } 2339 2340 // Similar to int2ptr above, we can look through ptr2int here if the cast 2341 // is a no-op or an extend and not a truncate. 2342 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2343 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2344 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2345 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2346 2347 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2348 2349 // X | Y != 0 if X != 0 or Y != 0. 2350 Value *X = nullptr, *Y = nullptr; 2351 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2352 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2353 isKnownNonZero(Y, DemandedElts, Depth, Q); 2354 2355 // ext X != 0 if X != 0. 2356 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2357 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2358 2359 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2360 // if the lowest bit is shifted off the end. 2361 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2362 // shl nuw can't remove any non-zero bits. 2363 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2364 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2365 return isKnownNonZero(X, Depth, Q); 2366 2367 KnownBits Known(BitWidth); 2368 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2369 if (Known.One[0]) 2370 return true; 2371 } 2372 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2373 // defined if the sign bit is shifted off the end. 2374 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2375 // shr exact can only shift out zero bits. 2376 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2377 if (BO->isExact()) 2378 return isKnownNonZero(X, Depth, Q); 2379 2380 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2381 if (Known.isNegative()) 2382 return true; 2383 2384 // If the shifter operand is a constant, and all of the bits shifted 2385 // out are known to be zero, and X is known non-zero then at least one 2386 // non-zero bit must remain. 2387 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2388 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2389 // Is there a known one in the portion not shifted out? 2390 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2391 return true; 2392 // Are all the bits to be shifted out known zero? 2393 if (Known.countMinTrailingZeros() >= ShiftVal) 2394 return isKnownNonZero(X, DemandedElts, Depth, Q); 2395 } 2396 } 2397 // div exact can only produce a zero if the dividend is zero. 2398 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2399 return isKnownNonZero(X, DemandedElts, Depth, Q); 2400 } 2401 // X + Y. 2402 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2403 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2404 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2405 2406 // If X and Y are both non-negative (as signed values) then their sum is not 2407 // zero unless both X and Y are zero. 2408 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2409 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2410 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2411 return true; 2412 2413 // If X and Y are both negative (as signed values) then their sum is not 2414 // zero unless both X and Y equal INT_MIN. 2415 if (XKnown.isNegative() && YKnown.isNegative()) { 2416 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2417 // The sign bit of X is set. If some other bit is set then X is not equal 2418 // to INT_MIN. 2419 if (XKnown.One.intersects(Mask)) 2420 return true; 2421 // The sign bit of Y is set. If some other bit is set then Y is not equal 2422 // to INT_MIN. 2423 if (YKnown.One.intersects(Mask)) 2424 return true; 2425 } 2426 2427 // The sum of a non-negative number and a power of two is not zero. 2428 if (XKnown.isNonNegative() && 2429 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2430 return true; 2431 if (YKnown.isNonNegative() && 2432 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2433 return true; 2434 } 2435 // X * Y. 2436 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2437 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2438 // If X and Y are non-zero then so is X * Y as long as the multiplication 2439 // does not overflow. 2440 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2441 isKnownNonZero(X, DemandedElts, Depth, Q) && 2442 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2443 return true; 2444 } 2445 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2446 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2447 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2448 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2449 return true; 2450 } 2451 // PHI 2452 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2453 // Try and detect a recurrence that monotonically increases from a 2454 // starting value, as these are common as induction variables. 2455 if (PN->getNumIncomingValues() == 2) { 2456 Value *Start = PN->getIncomingValue(0); 2457 Value *Induction = PN->getIncomingValue(1); 2458 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2459 std::swap(Start, Induction); 2460 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2461 if (!C->isZero() && !C->isNegative()) { 2462 ConstantInt *X; 2463 if (Q.IIQ.UseInstrInfo && 2464 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2465 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2466 !X->isNegative()) 2467 return true; 2468 } 2469 } 2470 } 2471 // Check if all incoming values are non-zero using recursion. 2472 Query RecQ = Q; 2473 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2474 return llvm::all_of(PN->operands(), [&](const Use &U) { 2475 if (U.get() == PN) 2476 return true; 2477 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2478 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2479 }); 2480 } 2481 // ExtractElement 2482 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2483 const Value *Vec = EEI->getVectorOperand(); 2484 const Value *Idx = EEI->getIndexOperand(); 2485 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2486 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2487 unsigned NumElts = VecTy->getNumElements(); 2488 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2489 if (CIdx && CIdx->getValue().ult(NumElts)) 2490 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2491 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2492 } 2493 } 2494 // Freeze 2495 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2496 auto *Op = FI->getOperand(0); 2497 if (isKnownNonZero(Op, Depth, Q) && 2498 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2499 return true; 2500 } 2501 2502 KnownBits Known(BitWidth); 2503 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2504 return Known.One != 0; 2505 } 2506 2507 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2508 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2509 // vector 2510 if (isa<ScalableVectorType>(V->getType())) 2511 return false; 2512 2513 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2514 APInt DemandedElts = 2515 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2516 return isKnownNonZero(V, DemandedElts, Depth, Q); 2517 } 2518 2519 /// Return true if V2 == V1 + X, where X is known non-zero. 2520 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2521 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2522 if (!BO || BO->getOpcode() != Instruction::Add) 2523 return false; 2524 Value *Op = nullptr; 2525 if (V2 == BO->getOperand(0)) 2526 Op = BO->getOperand(1); 2527 else if (V2 == BO->getOperand(1)) 2528 Op = BO->getOperand(0); 2529 else 2530 return false; 2531 return isKnownNonZero(Op, 0, Q); 2532 } 2533 2534 /// Return true if it is known that V1 != V2. 2535 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2536 if (V1 == V2) 2537 return false; 2538 if (V1->getType() != V2->getType()) 2539 // We can't look through casts yet. 2540 return false; 2541 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2542 return true; 2543 2544 if (V1->getType()->isIntOrIntVectorTy()) { 2545 // Are any known bits in V1 contradictory to known bits in V2? If V1 2546 // has a known zero where V2 has a known one, they must not be equal. 2547 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2548 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2549 2550 if (Known1.Zero.intersects(Known2.One) || 2551 Known2.Zero.intersects(Known1.One)) 2552 return true; 2553 } 2554 return false; 2555 } 2556 2557 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2558 /// simplify operations downstream. Mask is known to be zero for bits that V 2559 /// cannot have. 2560 /// 2561 /// This function is defined on values with integer type, values with pointer 2562 /// type, and vectors of integers. In the case 2563 /// where V is a vector, the mask, known zero, and known one values are the 2564 /// same width as the vector element, and the bit is set only if it is true 2565 /// for all of the elements in the vector. 2566 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2567 const Query &Q) { 2568 KnownBits Known(Mask.getBitWidth()); 2569 computeKnownBits(V, Known, Depth, Q); 2570 return Mask.isSubsetOf(Known.Zero); 2571 } 2572 2573 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2574 // Returns the input and lower/upper bounds. 2575 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2576 const APInt *&CLow, const APInt *&CHigh) { 2577 assert(isa<Operator>(Select) && 2578 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2579 "Input should be a Select!"); 2580 2581 const Value *LHS = nullptr, *RHS = nullptr; 2582 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2583 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2584 return false; 2585 2586 if (!match(RHS, m_APInt(CLow))) 2587 return false; 2588 2589 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2590 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2591 if (getInverseMinMaxFlavor(SPF) != SPF2) 2592 return false; 2593 2594 if (!match(RHS2, m_APInt(CHigh))) 2595 return false; 2596 2597 if (SPF == SPF_SMIN) 2598 std::swap(CLow, CHigh); 2599 2600 In = LHS2; 2601 return CLow->sle(*CHigh); 2602 } 2603 2604 /// For vector constants, loop over the elements and find the constant with the 2605 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2606 /// or if any element was not analyzed; otherwise, return the count for the 2607 /// element with the minimum number of sign bits. 2608 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2609 const APInt &DemandedElts, 2610 unsigned TyBits) { 2611 const auto *CV = dyn_cast<Constant>(V); 2612 if (!CV || !isa<FixedVectorType>(CV->getType())) 2613 return 0; 2614 2615 unsigned MinSignBits = TyBits; 2616 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2617 for (unsigned i = 0; i != NumElts; ++i) { 2618 if (!DemandedElts[i]) 2619 continue; 2620 // If we find a non-ConstantInt, bail out. 2621 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2622 if (!Elt) 2623 return 0; 2624 2625 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2626 } 2627 2628 return MinSignBits; 2629 } 2630 2631 static unsigned ComputeNumSignBitsImpl(const Value *V, 2632 const APInt &DemandedElts, 2633 unsigned Depth, const Query &Q); 2634 2635 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2636 unsigned Depth, const Query &Q) { 2637 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2638 assert(Result > 0 && "At least one sign bit needs to be present!"); 2639 return Result; 2640 } 2641 2642 /// Return the number of times the sign bit of the register is replicated into 2643 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2644 /// (itself), but other cases can give us information. For example, immediately 2645 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2646 /// other, so we return 3. For vectors, return the number of sign bits for the 2647 /// vector element with the minimum number of known sign bits of the demanded 2648 /// elements in the vector specified by DemandedElts. 2649 static unsigned ComputeNumSignBitsImpl(const Value *V, 2650 const APInt &DemandedElts, 2651 unsigned Depth, const Query &Q) { 2652 Type *Ty = V->getType(); 2653 2654 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2655 // vector 2656 if (isa<ScalableVectorType>(Ty)) 2657 return 1; 2658 2659 #ifndef NDEBUG 2660 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2661 2662 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2663 assert( 2664 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2665 "DemandedElt width should equal the fixed vector number of elements"); 2666 } else { 2667 assert(DemandedElts == APInt(1, 1) && 2668 "DemandedElt width should be 1 for scalars"); 2669 } 2670 #endif 2671 2672 // We return the minimum number of sign bits that are guaranteed to be present 2673 // in V, so for undef we have to conservatively return 1. We don't have the 2674 // same behavior for poison though -- that's a FIXME today. 2675 2676 Type *ScalarTy = Ty->getScalarType(); 2677 unsigned TyBits = ScalarTy->isPointerTy() ? 2678 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2679 Q.DL.getTypeSizeInBits(ScalarTy); 2680 2681 unsigned Tmp, Tmp2; 2682 unsigned FirstAnswer = 1; 2683 2684 // Note that ConstantInt is handled by the general computeKnownBits case 2685 // below. 2686 2687 if (Depth == MaxAnalysisRecursionDepth) 2688 return 1; 2689 2690 if (auto *U = dyn_cast<Operator>(V)) { 2691 switch (Operator::getOpcode(V)) { 2692 default: break; 2693 case Instruction::SExt: 2694 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2695 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2696 2697 case Instruction::SDiv: { 2698 const APInt *Denominator; 2699 // sdiv X, C -> adds log(C) sign bits. 2700 if (match(U->getOperand(1), m_APInt(Denominator))) { 2701 2702 // Ignore non-positive denominator. 2703 if (!Denominator->isStrictlyPositive()) 2704 break; 2705 2706 // Calculate the incoming numerator bits. 2707 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2708 2709 // Add floor(log(C)) bits to the numerator bits. 2710 return std::min(TyBits, NumBits + Denominator->logBase2()); 2711 } 2712 break; 2713 } 2714 2715 case Instruction::SRem: { 2716 const APInt *Denominator; 2717 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2718 // positive constant. This let us put a lower bound on the number of sign 2719 // bits. 2720 if (match(U->getOperand(1), m_APInt(Denominator))) { 2721 2722 // Ignore non-positive denominator. 2723 if (!Denominator->isStrictlyPositive()) 2724 break; 2725 2726 // Calculate the incoming numerator bits. SRem by a positive constant 2727 // can't lower the number of sign bits. 2728 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2729 2730 // Calculate the leading sign bit constraints by examining the 2731 // denominator. Given that the denominator is positive, there are two 2732 // cases: 2733 // 2734 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2735 // (1 << ceilLogBase2(C)). 2736 // 2737 // 2. the numerator is negative. Then the result range is (-C,0] and 2738 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2739 // 2740 // Thus a lower bound on the number of sign bits is `TyBits - 2741 // ceilLogBase2(C)`. 2742 2743 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2744 return std::max(NumrBits, ResBits); 2745 } 2746 break; 2747 } 2748 2749 case Instruction::AShr: { 2750 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2751 // ashr X, C -> adds C sign bits. Vectors too. 2752 const APInt *ShAmt; 2753 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2754 if (ShAmt->uge(TyBits)) 2755 break; // Bad shift. 2756 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2757 Tmp += ShAmtLimited; 2758 if (Tmp > TyBits) Tmp = TyBits; 2759 } 2760 return Tmp; 2761 } 2762 case Instruction::Shl: { 2763 const APInt *ShAmt; 2764 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2765 // shl destroys sign bits. 2766 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2767 if (ShAmt->uge(TyBits) || // Bad shift. 2768 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2769 Tmp2 = ShAmt->getZExtValue(); 2770 return Tmp - Tmp2; 2771 } 2772 break; 2773 } 2774 case Instruction::And: 2775 case Instruction::Or: 2776 case Instruction::Xor: // NOT is handled here. 2777 // Logical binary ops preserve the number of sign bits at the worst. 2778 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2779 if (Tmp != 1) { 2780 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2781 FirstAnswer = std::min(Tmp, Tmp2); 2782 // We computed what we know about the sign bits as our first 2783 // answer. Now proceed to the generic code that uses 2784 // computeKnownBits, and pick whichever answer is better. 2785 } 2786 break; 2787 2788 case Instruction::Select: { 2789 // If we have a clamp pattern, we know that the number of sign bits will 2790 // be the minimum of the clamp min/max range. 2791 const Value *X; 2792 const APInt *CLow, *CHigh; 2793 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2794 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2795 2796 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2797 if (Tmp == 1) break; 2798 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2799 return std::min(Tmp, Tmp2); 2800 } 2801 2802 case Instruction::Add: 2803 // Add can have at most one carry bit. Thus we know that the output 2804 // is, at worst, one more bit than the inputs. 2805 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2806 if (Tmp == 1) break; 2807 2808 // Special case decrementing a value (ADD X, -1): 2809 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2810 if (CRHS->isAllOnesValue()) { 2811 KnownBits Known(TyBits); 2812 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2813 2814 // If the input is known to be 0 or 1, the output is 0/-1, which is 2815 // all sign bits set. 2816 if ((Known.Zero | 1).isAllOnesValue()) 2817 return TyBits; 2818 2819 // If we are subtracting one from a positive number, there is no carry 2820 // out of the result. 2821 if (Known.isNonNegative()) 2822 return Tmp; 2823 } 2824 2825 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2826 if (Tmp2 == 1) break; 2827 return std::min(Tmp, Tmp2) - 1; 2828 2829 case Instruction::Sub: 2830 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2831 if (Tmp2 == 1) break; 2832 2833 // Handle NEG. 2834 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2835 if (CLHS->isNullValue()) { 2836 KnownBits Known(TyBits); 2837 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2838 // If the input is known to be 0 or 1, the output is 0/-1, which is 2839 // all sign bits set. 2840 if ((Known.Zero | 1).isAllOnesValue()) 2841 return TyBits; 2842 2843 // If the input is known to be positive (the sign bit is known clear), 2844 // the output of the NEG has the same number of sign bits as the 2845 // input. 2846 if (Known.isNonNegative()) 2847 return Tmp2; 2848 2849 // Otherwise, we treat this like a SUB. 2850 } 2851 2852 // Sub can have at most one carry bit. Thus we know that the output 2853 // is, at worst, one more bit than the inputs. 2854 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2855 if (Tmp == 1) break; 2856 return std::min(Tmp, Tmp2) - 1; 2857 2858 case Instruction::Mul: { 2859 // The output of the Mul can be at most twice the valid bits in the 2860 // inputs. 2861 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2862 if (SignBitsOp0 == 1) break; 2863 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2864 if (SignBitsOp1 == 1) break; 2865 unsigned OutValidBits = 2866 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2867 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2868 } 2869 2870 case Instruction::PHI: { 2871 const PHINode *PN = cast<PHINode>(U); 2872 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2873 // Don't analyze large in-degree PHIs. 2874 if (NumIncomingValues > 4) break; 2875 // Unreachable blocks may have zero-operand PHI nodes. 2876 if (NumIncomingValues == 0) break; 2877 2878 // Take the minimum of all incoming values. This can't infinitely loop 2879 // because of our depth threshold. 2880 Query RecQ = Q; 2881 Tmp = TyBits; 2882 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2883 if (Tmp == 1) return Tmp; 2884 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2885 Tmp = std::min( 2886 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2887 } 2888 return Tmp; 2889 } 2890 2891 case Instruction::Trunc: 2892 // FIXME: it's tricky to do anything useful for this, but it is an 2893 // important case for targets like X86. 2894 break; 2895 2896 case Instruction::ExtractElement: 2897 // Look through extract element. At the moment we keep this simple and 2898 // skip tracking the specific element. But at least we might find 2899 // information valid for all elements of the vector (for example if vector 2900 // is sign extended, shifted, etc). 2901 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2902 2903 case Instruction::ShuffleVector: { 2904 // Collect the minimum number of sign bits that are shared by every vector 2905 // element referenced by the shuffle. 2906 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2907 if (!Shuf) { 2908 // FIXME: Add support for shufflevector constant expressions. 2909 return 1; 2910 } 2911 APInt DemandedLHS, DemandedRHS; 2912 // For undef elements, we don't know anything about the common state of 2913 // the shuffle result. 2914 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2915 return 1; 2916 Tmp = std::numeric_limits<unsigned>::max(); 2917 if (!!DemandedLHS) { 2918 const Value *LHS = Shuf->getOperand(0); 2919 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2920 } 2921 // If we don't know anything, early out and try computeKnownBits 2922 // fall-back. 2923 if (Tmp == 1) 2924 break; 2925 if (!!DemandedRHS) { 2926 const Value *RHS = Shuf->getOperand(1); 2927 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2928 Tmp = std::min(Tmp, Tmp2); 2929 } 2930 // If we don't know anything, early out and try computeKnownBits 2931 // fall-back. 2932 if (Tmp == 1) 2933 break; 2934 assert(Tmp <= Ty->getScalarSizeInBits() && 2935 "Failed to determine minimum sign bits"); 2936 return Tmp; 2937 } 2938 case Instruction::Call: { 2939 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2940 switch (II->getIntrinsicID()) { 2941 default: break; 2942 case Intrinsic::abs: 2943 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2944 if (Tmp == 1) break; 2945 2946 // Absolute value reduces number of sign bits by at most 1. 2947 return Tmp - 1; 2948 } 2949 } 2950 } 2951 } 2952 } 2953 2954 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2955 // use this information. 2956 2957 // If we can examine all elements of a vector constant successfully, we're 2958 // done (we can't do any better than that). If not, keep trying. 2959 if (unsigned VecSignBits = 2960 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2961 return VecSignBits; 2962 2963 KnownBits Known(TyBits); 2964 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2965 2966 // If we know that the sign bit is either zero or one, determine the number of 2967 // identical bits in the top of the input value. 2968 return std::max(FirstAnswer, Known.countMinSignBits()); 2969 } 2970 2971 /// This function computes the integer multiple of Base that equals V. 2972 /// If successful, it returns true and returns the multiple in 2973 /// Multiple. If unsuccessful, it returns false. It looks 2974 /// through SExt instructions only if LookThroughSExt is true. 2975 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2976 bool LookThroughSExt, unsigned Depth) { 2977 assert(V && "No Value?"); 2978 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2979 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2980 2981 Type *T = V->getType(); 2982 2983 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2984 2985 if (Base == 0) 2986 return false; 2987 2988 if (Base == 1) { 2989 Multiple = V; 2990 return true; 2991 } 2992 2993 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2994 Constant *BaseVal = ConstantInt::get(T, Base); 2995 if (CO && CO == BaseVal) { 2996 // Multiple is 1. 2997 Multiple = ConstantInt::get(T, 1); 2998 return true; 2999 } 3000 3001 if (CI && CI->getZExtValue() % Base == 0) { 3002 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3003 return true; 3004 } 3005 3006 if (Depth == MaxAnalysisRecursionDepth) return false; 3007 3008 Operator *I = dyn_cast<Operator>(V); 3009 if (!I) return false; 3010 3011 switch (I->getOpcode()) { 3012 default: break; 3013 case Instruction::SExt: 3014 if (!LookThroughSExt) return false; 3015 // otherwise fall through to ZExt 3016 LLVM_FALLTHROUGH; 3017 case Instruction::ZExt: 3018 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3019 LookThroughSExt, Depth+1); 3020 case Instruction::Shl: 3021 case Instruction::Mul: { 3022 Value *Op0 = I->getOperand(0); 3023 Value *Op1 = I->getOperand(1); 3024 3025 if (I->getOpcode() == Instruction::Shl) { 3026 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3027 if (!Op1CI) return false; 3028 // Turn Op0 << Op1 into Op0 * 2^Op1 3029 APInt Op1Int = Op1CI->getValue(); 3030 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3031 APInt API(Op1Int.getBitWidth(), 0); 3032 API.setBit(BitToSet); 3033 Op1 = ConstantInt::get(V->getContext(), API); 3034 } 3035 3036 Value *Mul0 = nullptr; 3037 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3038 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3039 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3040 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3041 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3042 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3043 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3044 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3045 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3046 3047 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3048 Multiple = ConstantExpr::getMul(MulC, Op1C); 3049 return true; 3050 } 3051 3052 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3053 if (Mul0CI->getValue() == 1) { 3054 // V == Base * Op1, so return Op1 3055 Multiple = Op1; 3056 return true; 3057 } 3058 } 3059 3060 Value *Mul1 = nullptr; 3061 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3062 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3063 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3064 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3065 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3066 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3067 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3068 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3069 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3070 3071 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3072 Multiple = ConstantExpr::getMul(MulC, Op0C); 3073 return true; 3074 } 3075 3076 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3077 if (Mul1CI->getValue() == 1) { 3078 // V == Base * Op0, so return Op0 3079 Multiple = Op0; 3080 return true; 3081 } 3082 } 3083 } 3084 } 3085 3086 // We could not determine if V is a multiple of Base. 3087 return false; 3088 } 3089 3090 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3091 const TargetLibraryInfo *TLI) { 3092 const Function *F = CB.getCalledFunction(); 3093 if (!F) 3094 return Intrinsic::not_intrinsic; 3095 3096 if (F->isIntrinsic()) 3097 return F->getIntrinsicID(); 3098 3099 // We are going to infer semantics of a library function based on mapping it 3100 // to an LLVM intrinsic. Check that the library function is available from 3101 // this callbase and in this environment. 3102 LibFunc Func; 3103 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3104 !CB.onlyReadsMemory()) 3105 return Intrinsic::not_intrinsic; 3106 3107 switch (Func) { 3108 default: 3109 break; 3110 case LibFunc_sin: 3111 case LibFunc_sinf: 3112 case LibFunc_sinl: 3113 return Intrinsic::sin; 3114 case LibFunc_cos: 3115 case LibFunc_cosf: 3116 case LibFunc_cosl: 3117 return Intrinsic::cos; 3118 case LibFunc_exp: 3119 case LibFunc_expf: 3120 case LibFunc_expl: 3121 return Intrinsic::exp; 3122 case LibFunc_exp2: 3123 case LibFunc_exp2f: 3124 case LibFunc_exp2l: 3125 return Intrinsic::exp2; 3126 case LibFunc_log: 3127 case LibFunc_logf: 3128 case LibFunc_logl: 3129 return Intrinsic::log; 3130 case LibFunc_log10: 3131 case LibFunc_log10f: 3132 case LibFunc_log10l: 3133 return Intrinsic::log10; 3134 case LibFunc_log2: 3135 case LibFunc_log2f: 3136 case LibFunc_log2l: 3137 return Intrinsic::log2; 3138 case LibFunc_fabs: 3139 case LibFunc_fabsf: 3140 case LibFunc_fabsl: 3141 return Intrinsic::fabs; 3142 case LibFunc_fmin: 3143 case LibFunc_fminf: 3144 case LibFunc_fminl: 3145 return Intrinsic::minnum; 3146 case LibFunc_fmax: 3147 case LibFunc_fmaxf: 3148 case LibFunc_fmaxl: 3149 return Intrinsic::maxnum; 3150 case LibFunc_copysign: 3151 case LibFunc_copysignf: 3152 case LibFunc_copysignl: 3153 return Intrinsic::copysign; 3154 case LibFunc_floor: 3155 case LibFunc_floorf: 3156 case LibFunc_floorl: 3157 return Intrinsic::floor; 3158 case LibFunc_ceil: 3159 case LibFunc_ceilf: 3160 case LibFunc_ceill: 3161 return Intrinsic::ceil; 3162 case LibFunc_trunc: 3163 case LibFunc_truncf: 3164 case LibFunc_truncl: 3165 return Intrinsic::trunc; 3166 case LibFunc_rint: 3167 case LibFunc_rintf: 3168 case LibFunc_rintl: 3169 return Intrinsic::rint; 3170 case LibFunc_nearbyint: 3171 case LibFunc_nearbyintf: 3172 case LibFunc_nearbyintl: 3173 return Intrinsic::nearbyint; 3174 case LibFunc_round: 3175 case LibFunc_roundf: 3176 case LibFunc_roundl: 3177 return Intrinsic::round; 3178 case LibFunc_roundeven: 3179 case LibFunc_roundevenf: 3180 case LibFunc_roundevenl: 3181 return Intrinsic::roundeven; 3182 case LibFunc_pow: 3183 case LibFunc_powf: 3184 case LibFunc_powl: 3185 return Intrinsic::pow; 3186 case LibFunc_sqrt: 3187 case LibFunc_sqrtf: 3188 case LibFunc_sqrtl: 3189 return Intrinsic::sqrt; 3190 } 3191 3192 return Intrinsic::not_intrinsic; 3193 } 3194 3195 /// Return true if we can prove that the specified FP value is never equal to 3196 /// -0.0. 3197 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3198 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3199 /// the same as +0.0 in floating-point ops. 3200 /// 3201 /// NOTE: this function will need to be revisited when we support non-default 3202 /// rounding modes! 3203 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3204 unsigned Depth) { 3205 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3206 return !CFP->getValueAPF().isNegZero(); 3207 3208 if (Depth == MaxAnalysisRecursionDepth) 3209 return false; 3210 3211 auto *Op = dyn_cast<Operator>(V); 3212 if (!Op) 3213 return false; 3214 3215 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3216 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3217 return true; 3218 3219 // sitofp and uitofp turn into +0.0 for zero. 3220 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3221 return true; 3222 3223 if (auto *Call = dyn_cast<CallInst>(Op)) { 3224 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3225 switch (IID) { 3226 default: 3227 break; 3228 // sqrt(-0.0) = -0.0, no other negative results are possible. 3229 case Intrinsic::sqrt: 3230 case Intrinsic::canonicalize: 3231 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3232 // fabs(x) != -0.0 3233 case Intrinsic::fabs: 3234 return true; 3235 } 3236 } 3237 3238 return false; 3239 } 3240 3241 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3242 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3243 /// bit despite comparing equal. 3244 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3245 const TargetLibraryInfo *TLI, 3246 bool SignBitOnly, 3247 unsigned Depth) { 3248 // TODO: This function does not do the right thing when SignBitOnly is true 3249 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3250 // which flips the sign bits of NaNs. See 3251 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3252 3253 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3254 return !CFP->getValueAPF().isNegative() || 3255 (!SignBitOnly && CFP->getValueAPF().isZero()); 3256 } 3257 3258 // Handle vector of constants. 3259 if (auto *CV = dyn_cast<Constant>(V)) { 3260 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3261 unsigned NumElts = CVFVTy->getNumElements(); 3262 for (unsigned i = 0; i != NumElts; ++i) { 3263 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3264 if (!CFP) 3265 return false; 3266 if (CFP->getValueAPF().isNegative() && 3267 (SignBitOnly || !CFP->getValueAPF().isZero())) 3268 return false; 3269 } 3270 3271 // All non-negative ConstantFPs. 3272 return true; 3273 } 3274 } 3275 3276 if (Depth == MaxAnalysisRecursionDepth) 3277 return false; 3278 3279 const Operator *I = dyn_cast<Operator>(V); 3280 if (!I) 3281 return false; 3282 3283 switch (I->getOpcode()) { 3284 default: 3285 break; 3286 // Unsigned integers are always nonnegative. 3287 case Instruction::UIToFP: 3288 return true; 3289 case Instruction::FMul: 3290 case Instruction::FDiv: 3291 // X * X is always non-negative or a NaN. 3292 // X / X is always exactly 1.0 or a NaN. 3293 if (I->getOperand(0) == I->getOperand(1) && 3294 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3295 return true; 3296 3297 LLVM_FALLTHROUGH; 3298 case Instruction::FAdd: 3299 case Instruction::FRem: 3300 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3301 Depth + 1) && 3302 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3303 Depth + 1); 3304 case Instruction::Select: 3305 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3306 Depth + 1) && 3307 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3308 Depth + 1); 3309 case Instruction::FPExt: 3310 case Instruction::FPTrunc: 3311 // Widening/narrowing never change sign. 3312 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3313 Depth + 1); 3314 case Instruction::ExtractElement: 3315 // Look through extract element. At the moment we keep this simple and skip 3316 // tracking the specific element. But at least we might find information 3317 // valid for all elements of the vector. 3318 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3319 Depth + 1); 3320 case Instruction::Call: 3321 const auto *CI = cast<CallInst>(I); 3322 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3323 switch (IID) { 3324 default: 3325 break; 3326 case Intrinsic::maxnum: { 3327 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3328 auto isPositiveNum = [&](Value *V) { 3329 if (SignBitOnly) { 3330 // With SignBitOnly, this is tricky because the result of 3331 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3332 // a constant strictly greater than 0.0. 3333 const APFloat *C; 3334 return match(V, m_APFloat(C)) && 3335 *C > APFloat::getZero(C->getSemantics()); 3336 } 3337 3338 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3339 // maxnum can't be ordered-less-than-zero. 3340 return isKnownNeverNaN(V, TLI) && 3341 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3342 }; 3343 3344 // TODO: This could be improved. We could also check that neither operand 3345 // has its sign bit set (and at least 1 is not-NAN?). 3346 return isPositiveNum(V0) || isPositiveNum(V1); 3347 } 3348 3349 case Intrinsic::maximum: 3350 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3351 Depth + 1) || 3352 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3353 Depth + 1); 3354 case Intrinsic::minnum: 3355 case Intrinsic::minimum: 3356 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3357 Depth + 1) && 3358 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3359 Depth + 1); 3360 case Intrinsic::exp: 3361 case Intrinsic::exp2: 3362 case Intrinsic::fabs: 3363 return true; 3364 3365 case Intrinsic::sqrt: 3366 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3367 if (!SignBitOnly) 3368 return true; 3369 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3370 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3371 3372 case Intrinsic::powi: 3373 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3374 // powi(x,n) is non-negative if n is even. 3375 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3376 return true; 3377 } 3378 // TODO: This is not correct. Given that exp is an integer, here are the 3379 // ways that pow can return a negative value: 3380 // 3381 // pow(x, exp) --> negative if exp is odd and x is negative. 3382 // pow(-0, exp) --> -inf if exp is negative odd. 3383 // pow(-0, exp) --> -0 if exp is positive odd. 3384 // pow(-inf, exp) --> -0 if exp is negative odd. 3385 // pow(-inf, exp) --> -inf if exp is positive odd. 3386 // 3387 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3388 // but we must return false if x == -0. Unfortunately we do not currently 3389 // have a way of expressing this constraint. See details in 3390 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3391 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3392 Depth + 1); 3393 3394 case Intrinsic::fma: 3395 case Intrinsic::fmuladd: 3396 // x*x+y is non-negative if y is non-negative. 3397 return I->getOperand(0) == I->getOperand(1) && 3398 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3399 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3400 Depth + 1); 3401 } 3402 break; 3403 } 3404 return false; 3405 } 3406 3407 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3408 const TargetLibraryInfo *TLI) { 3409 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3410 } 3411 3412 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3413 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3414 } 3415 3416 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3417 unsigned Depth) { 3418 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3419 3420 // If we're told that infinities won't happen, assume they won't. 3421 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3422 if (FPMathOp->hasNoInfs()) 3423 return true; 3424 3425 // Handle scalar constants. 3426 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3427 return !CFP->isInfinity(); 3428 3429 if (Depth == MaxAnalysisRecursionDepth) 3430 return false; 3431 3432 if (auto *Inst = dyn_cast<Instruction>(V)) { 3433 switch (Inst->getOpcode()) { 3434 case Instruction::Select: { 3435 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3436 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3437 } 3438 case Instruction::SIToFP: 3439 case Instruction::UIToFP: { 3440 // Get width of largest magnitude integer (remove a bit if signed). 3441 // This still works for a signed minimum value because the largest FP 3442 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3443 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3444 if (Inst->getOpcode() == Instruction::SIToFP) 3445 --IntSize; 3446 3447 // If the exponent of the largest finite FP value can hold the largest 3448 // integer, the result of the cast must be finite. 3449 Type *FPTy = Inst->getType()->getScalarType(); 3450 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3451 } 3452 default: 3453 break; 3454 } 3455 } 3456 3457 // try to handle fixed width vector constants 3458 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3459 if (VFVTy && isa<Constant>(V)) { 3460 // For vectors, verify that each element is not infinity. 3461 unsigned NumElts = VFVTy->getNumElements(); 3462 for (unsigned i = 0; i != NumElts; ++i) { 3463 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3464 if (!Elt) 3465 return false; 3466 if (isa<UndefValue>(Elt)) 3467 continue; 3468 auto *CElt = dyn_cast<ConstantFP>(Elt); 3469 if (!CElt || CElt->isInfinity()) 3470 return false; 3471 } 3472 // All elements were confirmed non-infinity or undefined. 3473 return true; 3474 } 3475 3476 // was not able to prove that V never contains infinity 3477 return false; 3478 } 3479 3480 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3481 unsigned Depth) { 3482 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3483 3484 // If we're told that NaNs won't happen, assume they won't. 3485 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3486 if (FPMathOp->hasNoNaNs()) 3487 return true; 3488 3489 // Handle scalar constants. 3490 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3491 return !CFP->isNaN(); 3492 3493 if (Depth == MaxAnalysisRecursionDepth) 3494 return false; 3495 3496 if (auto *Inst = dyn_cast<Instruction>(V)) { 3497 switch (Inst->getOpcode()) { 3498 case Instruction::FAdd: 3499 case Instruction::FSub: 3500 // Adding positive and negative infinity produces NaN. 3501 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3502 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3503 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3504 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3505 3506 case Instruction::FMul: 3507 // Zero multiplied with infinity produces NaN. 3508 // FIXME: If neither side can be zero fmul never produces NaN. 3509 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3510 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3511 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3512 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3513 3514 case Instruction::FDiv: 3515 case Instruction::FRem: 3516 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3517 return false; 3518 3519 case Instruction::Select: { 3520 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3521 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3522 } 3523 case Instruction::SIToFP: 3524 case Instruction::UIToFP: 3525 return true; 3526 case Instruction::FPTrunc: 3527 case Instruction::FPExt: 3528 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3529 default: 3530 break; 3531 } 3532 } 3533 3534 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3535 switch (II->getIntrinsicID()) { 3536 case Intrinsic::canonicalize: 3537 case Intrinsic::fabs: 3538 case Intrinsic::copysign: 3539 case Intrinsic::exp: 3540 case Intrinsic::exp2: 3541 case Intrinsic::floor: 3542 case Intrinsic::ceil: 3543 case Intrinsic::trunc: 3544 case Intrinsic::rint: 3545 case Intrinsic::nearbyint: 3546 case Intrinsic::round: 3547 case Intrinsic::roundeven: 3548 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3549 case Intrinsic::sqrt: 3550 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3551 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3552 case Intrinsic::minnum: 3553 case Intrinsic::maxnum: 3554 // If either operand is not NaN, the result is not NaN. 3555 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3556 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3557 default: 3558 return false; 3559 } 3560 } 3561 3562 // Try to handle fixed width vector constants 3563 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3564 if (VFVTy && isa<Constant>(V)) { 3565 // For vectors, verify that each element is not NaN. 3566 unsigned NumElts = VFVTy->getNumElements(); 3567 for (unsigned i = 0; i != NumElts; ++i) { 3568 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3569 if (!Elt) 3570 return false; 3571 if (isa<UndefValue>(Elt)) 3572 continue; 3573 auto *CElt = dyn_cast<ConstantFP>(Elt); 3574 if (!CElt || CElt->isNaN()) 3575 return false; 3576 } 3577 // All elements were confirmed not-NaN or undefined. 3578 return true; 3579 } 3580 3581 // Was not able to prove that V never contains NaN 3582 return false; 3583 } 3584 3585 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3586 3587 // All byte-wide stores are splatable, even of arbitrary variables. 3588 if (V->getType()->isIntegerTy(8)) 3589 return V; 3590 3591 LLVMContext &Ctx = V->getContext(); 3592 3593 // Undef don't care. 3594 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3595 if (isa<UndefValue>(V)) 3596 return UndefInt8; 3597 3598 // Return Undef for zero-sized type. 3599 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3600 return UndefInt8; 3601 3602 Constant *C = dyn_cast<Constant>(V); 3603 if (!C) { 3604 // Conceptually, we could handle things like: 3605 // %a = zext i8 %X to i16 3606 // %b = shl i16 %a, 8 3607 // %c = or i16 %a, %b 3608 // but until there is an example that actually needs this, it doesn't seem 3609 // worth worrying about. 3610 return nullptr; 3611 } 3612 3613 // Handle 'null' ConstantArrayZero etc. 3614 if (C->isNullValue()) 3615 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3616 3617 // Constant floating-point values can be handled as integer values if the 3618 // corresponding integer value is "byteable". An important case is 0.0. 3619 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3620 Type *Ty = nullptr; 3621 if (CFP->getType()->isHalfTy()) 3622 Ty = Type::getInt16Ty(Ctx); 3623 else if (CFP->getType()->isFloatTy()) 3624 Ty = Type::getInt32Ty(Ctx); 3625 else if (CFP->getType()->isDoubleTy()) 3626 Ty = Type::getInt64Ty(Ctx); 3627 // Don't handle long double formats, which have strange constraints. 3628 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3629 : nullptr; 3630 } 3631 3632 // We can handle constant integers that are multiple of 8 bits. 3633 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3634 if (CI->getBitWidth() % 8 == 0) { 3635 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3636 if (!CI->getValue().isSplat(8)) 3637 return nullptr; 3638 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3639 } 3640 } 3641 3642 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3643 if (CE->getOpcode() == Instruction::IntToPtr) { 3644 auto PS = DL.getPointerSizeInBits( 3645 cast<PointerType>(CE->getType())->getAddressSpace()); 3646 return isBytewiseValue( 3647 ConstantExpr::getIntegerCast(CE->getOperand(0), 3648 Type::getIntNTy(Ctx, PS), false), 3649 DL); 3650 } 3651 } 3652 3653 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3654 if (LHS == RHS) 3655 return LHS; 3656 if (!LHS || !RHS) 3657 return nullptr; 3658 if (LHS == UndefInt8) 3659 return RHS; 3660 if (RHS == UndefInt8) 3661 return LHS; 3662 return nullptr; 3663 }; 3664 3665 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3666 Value *Val = UndefInt8; 3667 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3668 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3669 return nullptr; 3670 return Val; 3671 } 3672 3673 if (isa<ConstantAggregate>(C)) { 3674 Value *Val = UndefInt8; 3675 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3676 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3677 return nullptr; 3678 return Val; 3679 } 3680 3681 // Don't try to handle the handful of other constants. 3682 return nullptr; 3683 } 3684 3685 // This is the recursive version of BuildSubAggregate. It takes a few different 3686 // arguments. Idxs is the index within the nested struct From that we are 3687 // looking at now (which is of type IndexedType). IdxSkip is the number of 3688 // indices from Idxs that should be left out when inserting into the resulting 3689 // struct. To is the result struct built so far, new insertvalue instructions 3690 // build on that. 3691 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3692 SmallVectorImpl<unsigned> &Idxs, 3693 unsigned IdxSkip, 3694 Instruction *InsertBefore) { 3695 StructType *STy = dyn_cast<StructType>(IndexedType); 3696 if (STy) { 3697 // Save the original To argument so we can modify it 3698 Value *OrigTo = To; 3699 // General case, the type indexed by Idxs is a struct 3700 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3701 // Process each struct element recursively 3702 Idxs.push_back(i); 3703 Value *PrevTo = To; 3704 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3705 InsertBefore); 3706 Idxs.pop_back(); 3707 if (!To) { 3708 // Couldn't find any inserted value for this index? Cleanup 3709 while (PrevTo != OrigTo) { 3710 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3711 PrevTo = Del->getAggregateOperand(); 3712 Del->eraseFromParent(); 3713 } 3714 // Stop processing elements 3715 break; 3716 } 3717 } 3718 // If we successfully found a value for each of our subaggregates 3719 if (To) 3720 return To; 3721 } 3722 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3723 // the struct's elements had a value that was inserted directly. In the latter 3724 // case, perhaps we can't determine each of the subelements individually, but 3725 // we might be able to find the complete struct somewhere. 3726 3727 // Find the value that is at that particular spot 3728 Value *V = FindInsertedValue(From, Idxs); 3729 3730 if (!V) 3731 return nullptr; 3732 3733 // Insert the value in the new (sub) aggregate 3734 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3735 "tmp", InsertBefore); 3736 } 3737 3738 // This helper takes a nested struct and extracts a part of it (which is again a 3739 // struct) into a new value. For example, given the struct: 3740 // { a, { b, { c, d }, e } } 3741 // and the indices "1, 1" this returns 3742 // { c, d }. 3743 // 3744 // It does this by inserting an insertvalue for each element in the resulting 3745 // struct, as opposed to just inserting a single struct. This will only work if 3746 // each of the elements of the substruct are known (ie, inserted into From by an 3747 // insertvalue instruction somewhere). 3748 // 3749 // All inserted insertvalue instructions are inserted before InsertBefore 3750 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3751 Instruction *InsertBefore) { 3752 assert(InsertBefore && "Must have someplace to insert!"); 3753 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3754 idx_range); 3755 Value *To = UndefValue::get(IndexedType); 3756 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3757 unsigned IdxSkip = Idxs.size(); 3758 3759 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3760 } 3761 3762 /// Given an aggregate and a sequence of indices, see if the scalar value 3763 /// indexed is already around as a register, for example if it was inserted 3764 /// directly into the aggregate. 3765 /// 3766 /// If InsertBefore is not null, this function will duplicate (modified) 3767 /// insertvalues when a part of a nested struct is extracted. 3768 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3769 Instruction *InsertBefore) { 3770 // Nothing to index? Just return V then (this is useful at the end of our 3771 // recursion). 3772 if (idx_range.empty()) 3773 return V; 3774 // We have indices, so V should have an indexable type. 3775 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3776 "Not looking at a struct or array?"); 3777 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3778 "Invalid indices for type?"); 3779 3780 if (Constant *C = dyn_cast<Constant>(V)) { 3781 C = C->getAggregateElement(idx_range[0]); 3782 if (!C) return nullptr; 3783 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3784 } 3785 3786 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3787 // Loop the indices for the insertvalue instruction in parallel with the 3788 // requested indices 3789 const unsigned *req_idx = idx_range.begin(); 3790 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3791 i != e; ++i, ++req_idx) { 3792 if (req_idx == idx_range.end()) { 3793 // We can't handle this without inserting insertvalues 3794 if (!InsertBefore) 3795 return nullptr; 3796 3797 // The requested index identifies a part of a nested aggregate. Handle 3798 // this specially. For example, 3799 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3800 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3801 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3802 // This can be changed into 3803 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3804 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3805 // which allows the unused 0,0 element from the nested struct to be 3806 // removed. 3807 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3808 InsertBefore); 3809 } 3810 3811 // This insert value inserts something else than what we are looking for. 3812 // See if the (aggregate) value inserted into has the value we are 3813 // looking for, then. 3814 if (*req_idx != *i) 3815 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3816 InsertBefore); 3817 } 3818 // If we end up here, the indices of the insertvalue match with those 3819 // requested (though possibly only partially). Now we recursively look at 3820 // the inserted value, passing any remaining indices. 3821 return FindInsertedValue(I->getInsertedValueOperand(), 3822 makeArrayRef(req_idx, idx_range.end()), 3823 InsertBefore); 3824 } 3825 3826 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3827 // If we're extracting a value from an aggregate that was extracted from 3828 // something else, we can extract from that something else directly instead. 3829 // However, we will need to chain I's indices with the requested indices. 3830 3831 // Calculate the number of indices required 3832 unsigned size = I->getNumIndices() + idx_range.size(); 3833 // Allocate some space to put the new indices in 3834 SmallVector<unsigned, 5> Idxs; 3835 Idxs.reserve(size); 3836 // Add indices from the extract value instruction 3837 Idxs.append(I->idx_begin(), I->idx_end()); 3838 3839 // Add requested indices 3840 Idxs.append(idx_range.begin(), idx_range.end()); 3841 3842 assert(Idxs.size() == size 3843 && "Number of indices added not correct?"); 3844 3845 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3846 } 3847 // Otherwise, we don't know (such as, extracting from a function return value 3848 // or load instruction) 3849 return nullptr; 3850 } 3851 3852 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3853 unsigned CharSize) { 3854 // Make sure the GEP has exactly three arguments. 3855 if (GEP->getNumOperands() != 3) 3856 return false; 3857 3858 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3859 // CharSize. 3860 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3861 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3862 return false; 3863 3864 // Check to make sure that the first operand of the GEP is an integer and 3865 // has value 0 so that we are sure we're indexing into the initializer. 3866 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3867 if (!FirstIdx || !FirstIdx->isZero()) 3868 return false; 3869 3870 return true; 3871 } 3872 3873 bool llvm::getConstantDataArrayInfo(const Value *V, 3874 ConstantDataArraySlice &Slice, 3875 unsigned ElementSize, uint64_t Offset) { 3876 assert(V); 3877 3878 // Look through bitcast instructions and geps. 3879 V = V->stripPointerCasts(); 3880 3881 // If the value is a GEP instruction or constant expression, treat it as an 3882 // offset. 3883 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3884 // The GEP operator should be based on a pointer to string constant, and is 3885 // indexing into the string constant. 3886 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3887 return false; 3888 3889 // If the second index isn't a ConstantInt, then this is a variable index 3890 // into the array. If this occurs, we can't say anything meaningful about 3891 // the string. 3892 uint64_t StartIdx = 0; 3893 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3894 StartIdx = CI->getZExtValue(); 3895 else 3896 return false; 3897 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3898 StartIdx + Offset); 3899 } 3900 3901 // The GEP instruction, constant or instruction, must reference a global 3902 // variable that is a constant and is initialized. The referenced constant 3903 // initializer is the array that we'll use for optimization. 3904 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3905 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3906 return false; 3907 3908 const ConstantDataArray *Array; 3909 ArrayType *ArrayTy; 3910 if (GV->getInitializer()->isNullValue()) { 3911 Type *GVTy = GV->getValueType(); 3912 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3913 // A zeroinitializer for the array; there is no ConstantDataArray. 3914 Array = nullptr; 3915 } else { 3916 const DataLayout &DL = GV->getParent()->getDataLayout(); 3917 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3918 uint64_t Length = SizeInBytes / (ElementSize / 8); 3919 if (Length <= Offset) 3920 return false; 3921 3922 Slice.Array = nullptr; 3923 Slice.Offset = 0; 3924 Slice.Length = Length - Offset; 3925 return true; 3926 } 3927 } else { 3928 // This must be a ConstantDataArray. 3929 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3930 if (!Array) 3931 return false; 3932 ArrayTy = Array->getType(); 3933 } 3934 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3935 return false; 3936 3937 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3938 if (Offset > NumElts) 3939 return false; 3940 3941 Slice.Array = Array; 3942 Slice.Offset = Offset; 3943 Slice.Length = NumElts - Offset; 3944 return true; 3945 } 3946 3947 /// This function computes the length of a null-terminated C string pointed to 3948 /// by V. If successful, it returns true and returns the string in Str. 3949 /// If unsuccessful, it returns false. 3950 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3951 uint64_t Offset, bool TrimAtNul) { 3952 ConstantDataArraySlice Slice; 3953 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3954 return false; 3955 3956 if (Slice.Array == nullptr) { 3957 if (TrimAtNul) { 3958 Str = StringRef(); 3959 return true; 3960 } 3961 if (Slice.Length == 1) { 3962 Str = StringRef("", 1); 3963 return true; 3964 } 3965 // We cannot instantiate a StringRef as we do not have an appropriate string 3966 // of 0s at hand. 3967 return false; 3968 } 3969 3970 // Start out with the entire array in the StringRef. 3971 Str = Slice.Array->getAsString(); 3972 // Skip over 'offset' bytes. 3973 Str = Str.substr(Slice.Offset); 3974 3975 if (TrimAtNul) { 3976 // Trim off the \0 and anything after it. If the array is not nul 3977 // terminated, we just return the whole end of string. The client may know 3978 // some other way that the string is length-bound. 3979 Str = Str.substr(0, Str.find('\0')); 3980 } 3981 return true; 3982 } 3983 3984 // These next two are very similar to the above, but also look through PHI 3985 // nodes. 3986 // TODO: See if we can integrate these two together. 3987 3988 /// If we can compute the length of the string pointed to by 3989 /// the specified pointer, return 'len+1'. If we can't, return 0. 3990 static uint64_t GetStringLengthH(const Value *V, 3991 SmallPtrSetImpl<const PHINode*> &PHIs, 3992 unsigned CharSize) { 3993 // Look through noop bitcast instructions. 3994 V = V->stripPointerCasts(); 3995 3996 // If this is a PHI node, there are two cases: either we have already seen it 3997 // or we haven't. 3998 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3999 if (!PHIs.insert(PN).second) 4000 return ~0ULL; // already in the set. 4001 4002 // If it was new, see if all the input strings are the same length. 4003 uint64_t LenSoFar = ~0ULL; 4004 for (Value *IncValue : PN->incoming_values()) { 4005 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4006 if (Len == 0) return 0; // Unknown length -> unknown. 4007 4008 if (Len == ~0ULL) continue; 4009 4010 if (Len != LenSoFar && LenSoFar != ~0ULL) 4011 return 0; // Disagree -> unknown. 4012 LenSoFar = Len; 4013 } 4014 4015 // Success, all agree. 4016 return LenSoFar; 4017 } 4018 4019 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4020 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4021 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4022 if (Len1 == 0) return 0; 4023 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4024 if (Len2 == 0) return 0; 4025 if (Len1 == ~0ULL) return Len2; 4026 if (Len2 == ~0ULL) return Len1; 4027 if (Len1 != Len2) return 0; 4028 return Len1; 4029 } 4030 4031 // Otherwise, see if we can read the string. 4032 ConstantDataArraySlice Slice; 4033 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4034 return 0; 4035 4036 if (Slice.Array == nullptr) 4037 return 1; 4038 4039 // Search for nul characters 4040 unsigned NullIndex = 0; 4041 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4042 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4043 break; 4044 } 4045 4046 return NullIndex + 1; 4047 } 4048 4049 /// If we can compute the length of the string pointed to by 4050 /// the specified pointer, return 'len+1'. If we can't, return 0. 4051 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4052 if (!V->getType()->isPointerTy()) 4053 return 0; 4054 4055 SmallPtrSet<const PHINode*, 32> PHIs; 4056 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4057 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4058 // an empty string as a length. 4059 return Len == ~0ULL ? 1 : Len; 4060 } 4061 4062 const Value * 4063 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4064 bool MustPreserveNullness) { 4065 assert(Call && 4066 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4067 if (const Value *RV = Call->getReturnedArgOperand()) 4068 return RV; 4069 // This can be used only as a aliasing property. 4070 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4071 Call, MustPreserveNullness)) 4072 return Call->getArgOperand(0); 4073 return nullptr; 4074 } 4075 4076 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4077 const CallBase *Call, bool MustPreserveNullness) { 4078 switch (Call->getIntrinsicID()) { 4079 case Intrinsic::launder_invariant_group: 4080 case Intrinsic::strip_invariant_group: 4081 case Intrinsic::aarch64_irg: 4082 case Intrinsic::aarch64_tagp: 4083 return true; 4084 case Intrinsic::ptrmask: 4085 return !MustPreserveNullness; 4086 default: 4087 return false; 4088 } 4089 } 4090 4091 /// \p PN defines a loop-variant pointer to an object. Check if the 4092 /// previous iteration of the loop was referring to the same object as \p PN. 4093 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4094 const LoopInfo *LI) { 4095 // Find the loop-defined value. 4096 Loop *L = LI->getLoopFor(PN->getParent()); 4097 if (PN->getNumIncomingValues() != 2) 4098 return true; 4099 4100 // Find the value from previous iteration. 4101 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4102 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4103 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4104 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4105 return true; 4106 4107 // If a new pointer is loaded in the loop, the pointer references a different 4108 // object in every iteration. E.g.: 4109 // for (i) 4110 // int *p = a[i]; 4111 // ... 4112 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4113 if (!L->isLoopInvariant(Load->getPointerOperand())) 4114 return false; 4115 return true; 4116 } 4117 4118 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4119 if (!V->getType()->isPointerTy()) 4120 return V; 4121 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4122 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4123 V = GEP->getPointerOperand(); 4124 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4125 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4126 V = cast<Operator>(V)->getOperand(0); 4127 if (!V->getType()->isPointerTy()) 4128 return V; 4129 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4130 if (GA->isInterposable()) 4131 return V; 4132 V = GA->getAliasee(); 4133 } else { 4134 if (auto *PHI = dyn_cast<PHINode>(V)) { 4135 // Look through single-arg phi nodes created by LCSSA. 4136 if (PHI->getNumIncomingValues() == 1) { 4137 V = PHI->getIncomingValue(0); 4138 continue; 4139 } 4140 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4141 // CaptureTracking can know about special capturing properties of some 4142 // intrinsics like launder.invariant.group, that can't be expressed with 4143 // the attributes, but have properties like returning aliasing pointer. 4144 // Because some analysis may assume that nocaptured pointer is not 4145 // returned from some special intrinsic (because function would have to 4146 // be marked with returns attribute), it is crucial to use this function 4147 // because it should be in sync with CaptureTracking. Not using it may 4148 // cause weird miscompilations where 2 aliasing pointers are assumed to 4149 // noalias. 4150 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4151 V = RP; 4152 continue; 4153 } 4154 } 4155 4156 return V; 4157 } 4158 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4159 } 4160 return V; 4161 } 4162 4163 void llvm::getUnderlyingObjects(const Value *V, 4164 SmallVectorImpl<const Value *> &Objects, 4165 LoopInfo *LI, unsigned MaxLookup) { 4166 SmallPtrSet<const Value *, 4> Visited; 4167 SmallVector<const Value *, 4> Worklist; 4168 Worklist.push_back(V); 4169 do { 4170 const Value *P = Worklist.pop_back_val(); 4171 P = getUnderlyingObject(P, MaxLookup); 4172 4173 if (!Visited.insert(P).second) 4174 continue; 4175 4176 if (auto *SI = dyn_cast<SelectInst>(P)) { 4177 Worklist.push_back(SI->getTrueValue()); 4178 Worklist.push_back(SI->getFalseValue()); 4179 continue; 4180 } 4181 4182 if (auto *PN = dyn_cast<PHINode>(P)) { 4183 // If this PHI changes the underlying object in every iteration of the 4184 // loop, don't look through it. Consider: 4185 // int **A; 4186 // for (i) { 4187 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4188 // Curr = A[i]; 4189 // *Prev, *Curr; 4190 // 4191 // Prev is tracking Curr one iteration behind so they refer to different 4192 // underlying objects. 4193 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4194 isSameUnderlyingObjectInLoop(PN, LI)) 4195 for (Value *IncValue : PN->incoming_values()) 4196 Worklist.push_back(IncValue); 4197 continue; 4198 } 4199 4200 Objects.push_back(P); 4201 } while (!Worklist.empty()); 4202 } 4203 4204 /// This is the function that does the work of looking through basic 4205 /// ptrtoint+arithmetic+inttoptr sequences. 4206 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4207 do { 4208 if (const Operator *U = dyn_cast<Operator>(V)) { 4209 // If we find a ptrtoint, we can transfer control back to the 4210 // regular getUnderlyingObjectFromInt. 4211 if (U->getOpcode() == Instruction::PtrToInt) 4212 return U->getOperand(0); 4213 // If we find an add of a constant, a multiplied value, or a phi, it's 4214 // likely that the other operand will lead us to the base 4215 // object. We don't have to worry about the case where the 4216 // object address is somehow being computed by the multiply, 4217 // because our callers only care when the result is an 4218 // identifiable object. 4219 if (U->getOpcode() != Instruction::Add || 4220 (!isa<ConstantInt>(U->getOperand(1)) && 4221 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4222 !isa<PHINode>(U->getOperand(1)))) 4223 return V; 4224 V = U->getOperand(0); 4225 } else { 4226 return V; 4227 } 4228 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4229 } while (true); 4230 } 4231 4232 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4233 /// ptrtoint+arithmetic+inttoptr sequences. 4234 /// It returns false if unidentified object is found in getUnderlyingObjects. 4235 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4236 SmallVectorImpl<Value *> &Objects) { 4237 SmallPtrSet<const Value *, 16> Visited; 4238 SmallVector<const Value *, 4> Working(1, V); 4239 do { 4240 V = Working.pop_back_val(); 4241 4242 SmallVector<const Value *, 4> Objs; 4243 getUnderlyingObjects(V, Objs); 4244 4245 for (const Value *V : Objs) { 4246 if (!Visited.insert(V).second) 4247 continue; 4248 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4249 const Value *O = 4250 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4251 if (O->getType()->isPointerTy()) { 4252 Working.push_back(O); 4253 continue; 4254 } 4255 } 4256 // If getUnderlyingObjects fails to find an identifiable object, 4257 // getUnderlyingObjectsForCodeGen also fails for safety. 4258 if (!isIdentifiedObject(V)) { 4259 Objects.clear(); 4260 return false; 4261 } 4262 Objects.push_back(const_cast<Value *>(V)); 4263 } 4264 } while (!Working.empty()); 4265 return true; 4266 } 4267 4268 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4269 AllocaInst *Result = nullptr; 4270 SmallPtrSet<Value *, 4> Visited; 4271 SmallVector<Value *, 4> Worklist; 4272 4273 auto AddWork = [&](Value *V) { 4274 if (Visited.insert(V).second) 4275 Worklist.push_back(V); 4276 }; 4277 4278 AddWork(V); 4279 do { 4280 V = Worklist.pop_back_val(); 4281 assert(Visited.count(V)); 4282 4283 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4284 if (Result && Result != AI) 4285 return nullptr; 4286 Result = AI; 4287 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4288 AddWork(CI->getOperand(0)); 4289 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4290 for (Value *IncValue : PN->incoming_values()) 4291 AddWork(IncValue); 4292 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4293 AddWork(SI->getTrueValue()); 4294 AddWork(SI->getFalseValue()); 4295 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4296 if (OffsetZero && !GEP->hasAllZeroIndices()) 4297 return nullptr; 4298 AddWork(GEP->getPointerOperand()); 4299 } else { 4300 return nullptr; 4301 } 4302 } while (!Worklist.empty()); 4303 4304 return Result; 4305 } 4306 4307 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4308 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4309 for (const User *U : V->users()) { 4310 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4311 if (!II) 4312 return false; 4313 4314 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4315 continue; 4316 4317 if (AllowDroppable && II->isDroppable()) 4318 continue; 4319 4320 return false; 4321 } 4322 return true; 4323 } 4324 4325 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4326 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4327 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4328 } 4329 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4330 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4331 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4332 } 4333 4334 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4335 if (!LI.isUnordered()) 4336 return true; 4337 const Function &F = *LI.getFunction(); 4338 // Speculative load may create a race that did not exist in the source. 4339 return F.hasFnAttribute(Attribute::SanitizeThread) || 4340 // Speculative load may load data from dirty regions. 4341 F.hasFnAttribute(Attribute::SanitizeAddress) || 4342 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4343 } 4344 4345 4346 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4347 const Instruction *CtxI, 4348 const DominatorTree *DT) { 4349 const Operator *Inst = dyn_cast<Operator>(V); 4350 if (!Inst) 4351 return false; 4352 4353 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4354 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4355 if (C->canTrap()) 4356 return false; 4357 4358 switch (Inst->getOpcode()) { 4359 default: 4360 return true; 4361 case Instruction::UDiv: 4362 case Instruction::URem: { 4363 // x / y is undefined if y == 0. 4364 const APInt *V; 4365 if (match(Inst->getOperand(1), m_APInt(V))) 4366 return *V != 0; 4367 return false; 4368 } 4369 case Instruction::SDiv: 4370 case Instruction::SRem: { 4371 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4372 const APInt *Numerator, *Denominator; 4373 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4374 return false; 4375 // We cannot hoist this division if the denominator is 0. 4376 if (*Denominator == 0) 4377 return false; 4378 // It's safe to hoist if the denominator is not 0 or -1. 4379 if (*Denominator != -1) 4380 return true; 4381 // At this point we know that the denominator is -1. It is safe to hoist as 4382 // long we know that the numerator is not INT_MIN. 4383 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4384 return !Numerator->isMinSignedValue(); 4385 // The numerator *might* be MinSignedValue. 4386 return false; 4387 } 4388 case Instruction::Load: { 4389 const LoadInst *LI = cast<LoadInst>(Inst); 4390 if (mustSuppressSpeculation(*LI)) 4391 return false; 4392 const DataLayout &DL = LI->getModule()->getDataLayout(); 4393 return isDereferenceableAndAlignedPointer( 4394 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4395 DL, CtxI, DT); 4396 } 4397 case Instruction::Call: { 4398 auto *CI = cast<const CallInst>(Inst); 4399 const Function *Callee = CI->getCalledFunction(); 4400 4401 // The called function could have undefined behavior or side-effects, even 4402 // if marked readnone nounwind. 4403 return Callee && Callee->isSpeculatable(); 4404 } 4405 case Instruction::VAArg: 4406 case Instruction::Alloca: 4407 case Instruction::Invoke: 4408 case Instruction::CallBr: 4409 case Instruction::PHI: 4410 case Instruction::Store: 4411 case Instruction::Ret: 4412 case Instruction::Br: 4413 case Instruction::IndirectBr: 4414 case Instruction::Switch: 4415 case Instruction::Unreachable: 4416 case Instruction::Fence: 4417 case Instruction::AtomicRMW: 4418 case Instruction::AtomicCmpXchg: 4419 case Instruction::LandingPad: 4420 case Instruction::Resume: 4421 case Instruction::CatchSwitch: 4422 case Instruction::CatchPad: 4423 case Instruction::CatchRet: 4424 case Instruction::CleanupPad: 4425 case Instruction::CleanupRet: 4426 return false; // Misc instructions which have effects 4427 } 4428 } 4429 4430 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4431 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4432 } 4433 4434 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4435 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4436 switch (OR) { 4437 case ConstantRange::OverflowResult::MayOverflow: 4438 return OverflowResult::MayOverflow; 4439 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4440 return OverflowResult::AlwaysOverflowsLow; 4441 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4442 return OverflowResult::AlwaysOverflowsHigh; 4443 case ConstantRange::OverflowResult::NeverOverflows: 4444 return OverflowResult::NeverOverflows; 4445 } 4446 llvm_unreachable("Unknown OverflowResult"); 4447 } 4448 4449 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4450 static ConstantRange computeConstantRangeIncludingKnownBits( 4451 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4452 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4453 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4454 KnownBits Known = computeKnownBits( 4455 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4456 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4457 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4458 ConstantRange::PreferredRangeType RangeType = 4459 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4460 return CR1.intersectWith(CR2, RangeType); 4461 } 4462 4463 OverflowResult llvm::computeOverflowForUnsignedMul( 4464 const Value *LHS, const Value *RHS, const DataLayout &DL, 4465 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4466 bool UseInstrInfo) { 4467 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4468 nullptr, UseInstrInfo); 4469 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4470 nullptr, UseInstrInfo); 4471 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4472 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4473 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4474 } 4475 4476 OverflowResult 4477 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4478 const DataLayout &DL, AssumptionCache *AC, 4479 const Instruction *CxtI, 4480 const DominatorTree *DT, bool UseInstrInfo) { 4481 // Multiplying n * m significant bits yields a result of n + m significant 4482 // bits. If the total number of significant bits does not exceed the 4483 // result bit width (minus 1), there is no overflow. 4484 // This means if we have enough leading sign bits in the operands 4485 // we can guarantee that the result does not overflow. 4486 // Ref: "Hacker's Delight" by Henry Warren 4487 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4488 4489 // Note that underestimating the number of sign bits gives a more 4490 // conservative answer. 4491 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4492 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4493 4494 // First handle the easy case: if we have enough sign bits there's 4495 // definitely no overflow. 4496 if (SignBits > BitWidth + 1) 4497 return OverflowResult::NeverOverflows; 4498 4499 // There are two ambiguous cases where there can be no overflow: 4500 // SignBits == BitWidth + 1 and 4501 // SignBits == BitWidth 4502 // The second case is difficult to check, therefore we only handle the 4503 // first case. 4504 if (SignBits == BitWidth + 1) { 4505 // It overflows only when both arguments are negative and the true 4506 // product is exactly the minimum negative number. 4507 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4508 // For simplicity we just check if at least one side is not negative. 4509 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4510 nullptr, UseInstrInfo); 4511 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4512 nullptr, UseInstrInfo); 4513 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4514 return OverflowResult::NeverOverflows; 4515 } 4516 return OverflowResult::MayOverflow; 4517 } 4518 4519 OverflowResult llvm::computeOverflowForUnsignedAdd( 4520 const Value *LHS, const Value *RHS, const DataLayout &DL, 4521 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4522 bool UseInstrInfo) { 4523 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4524 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4525 nullptr, UseInstrInfo); 4526 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4527 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4528 nullptr, UseInstrInfo); 4529 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4530 } 4531 4532 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4533 const Value *RHS, 4534 const AddOperator *Add, 4535 const DataLayout &DL, 4536 AssumptionCache *AC, 4537 const Instruction *CxtI, 4538 const DominatorTree *DT) { 4539 if (Add && Add->hasNoSignedWrap()) { 4540 return OverflowResult::NeverOverflows; 4541 } 4542 4543 // If LHS and RHS each have at least two sign bits, the addition will look 4544 // like 4545 // 4546 // XX..... + 4547 // YY..... 4548 // 4549 // If the carry into the most significant position is 0, X and Y can't both 4550 // be 1 and therefore the carry out of the addition is also 0. 4551 // 4552 // If the carry into the most significant position is 1, X and Y can't both 4553 // be 0 and therefore the carry out of the addition is also 1. 4554 // 4555 // Since the carry into the most significant position is always equal to 4556 // the carry out of the addition, there is no signed overflow. 4557 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4558 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4559 return OverflowResult::NeverOverflows; 4560 4561 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4562 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4563 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4564 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4565 OverflowResult OR = 4566 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4567 if (OR != OverflowResult::MayOverflow) 4568 return OR; 4569 4570 // The remaining code needs Add to be available. Early returns if not so. 4571 if (!Add) 4572 return OverflowResult::MayOverflow; 4573 4574 // If the sign of Add is the same as at least one of the operands, this add 4575 // CANNOT overflow. If this can be determined from the known bits of the 4576 // operands the above signedAddMayOverflow() check will have already done so. 4577 // The only other way to improve on the known bits is from an assumption, so 4578 // call computeKnownBitsFromAssume() directly. 4579 bool LHSOrRHSKnownNonNegative = 4580 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4581 bool LHSOrRHSKnownNegative = 4582 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4583 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4584 KnownBits AddKnown(LHSRange.getBitWidth()); 4585 computeKnownBitsFromAssume( 4586 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4587 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4588 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4589 return OverflowResult::NeverOverflows; 4590 } 4591 4592 return OverflowResult::MayOverflow; 4593 } 4594 4595 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4596 const Value *RHS, 4597 const DataLayout &DL, 4598 AssumptionCache *AC, 4599 const Instruction *CxtI, 4600 const DominatorTree *DT) { 4601 // Checking for conditions implied by dominating conditions may be expensive. 4602 // Limit it to usub_with_overflow calls for now. 4603 if (match(CxtI, 4604 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4605 if (auto C = 4606 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4607 if (*C) 4608 return OverflowResult::NeverOverflows; 4609 return OverflowResult::AlwaysOverflowsLow; 4610 } 4611 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4612 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4613 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4614 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4615 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4616 } 4617 4618 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4619 const Value *RHS, 4620 const DataLayout &DL, 4621 AssumptionCache *AC, 4622 const Instruction *CxtI, 4623 const DominatorTree *DT) { 4624 // If LHS and RHS each have at least two sign bits, the subtraction 4625 // cannot overflow. 4626 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4627 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4628 return OverflowResult::NeverOverflows; 4629 4630 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4631 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4632 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4633 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4634 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4635 } 4636 4637 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4638 const DominatorTree &DT) { 4639 SmallVector<const BranchInst *, 2> GuardingBranches; 4640 SmallVector<const ExtractValueInst *, 2> Results; 4641 4642 for (const User *U : WO->users()) { 4643 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4644 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4645 4646 if (EVI->getIndices()[0] == 0) 4647 Results.push_back(EVI); 4648 else { 4649 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4650 4651 for (const auto *U : EVI->users()) 4652 if (const auto *B = dyn_cast<BranchInst>(U)) { 4653 assert(B->isConditional() && "How else is it using an i1?"); 4654 GuardingBranches.push_back(B); 4655 } 4656 } 4657 } else { 4658 // We are using the aggregate directly in a way we don't want to analyze 4659 // here (storing it to a global, say). 4660 return false; 4661 } 4662 } 4663 4664 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4665 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4666 if (!NoWrapEdge.isSingleEdge()) 4667 return false; 4668 4669 // Check if all users of the add are provably no-wrap. 4670 for (const auto *Result : Results) { 4671 // If the extractvalue itself is not executed on overflow, the we don't 4672 // need to check each use separately, since domination is transitive. 4673 if (DT.dominates(NoWrapEdge, Result->getParent())) 4674 continue; 4675 4676 for (auto &RU : Result->uses()) 4677 if (!DT.dominates(NoWrapEdge, RU)) 4678 return false; 4679 } 4680 4681 return true; 4682 }; 4683 4684 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4685 } 4686 4687 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4688 // See whether I has flags that may create poison 4689 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4690 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4691 return true; 4692 } 4693 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4694 if (ExactOp->isExact()) 4695 return true; 4696 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4697 auto FMF = FP->getFastMathFlags(); 4698 if (FMF.noNaNs() || FMF.noInfs()) 4699 return true; 4700 } 4701 4702 unsigned Opcode = Op->getOpcode(); 4703 4704 // Check whether opcode is a poison/undef-generating operation 4705 switch (Opcode) { 4706 case Instruction::Shl: 4707 case Instruction::AShr: 4708 case Instruction::LShr: { 4709 // Shifts return poison if shiftwidth is larger than the bitwidth. 4710 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4711 SmallVector<Constant *, 4> ShiftAmounts; 4712 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4713 unsigned NumElts = FVTy->getNumElements(); 4714 for (unsigned i = 0; i < NumElts; ++i) 4715 ShiftAmounts.push_back(C->getAggregateElement(i)); 4716 } else if (isa<ScalableVectorType>(C->getType())) 4717 return true; // Can't tell, just return true to be safe 4718 else 4719 ShiftAmounts.push_back(C); 4720 4721 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4722 auto *CI = dyn_cast<ConstantInt>(C); 4723 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4724 }); 4725 return !Safe; 4726 } 4727 return true; 4728 } 4729 case Instruction::FPToSI: 4730 case Instruction::FPToUI: 4731 // fptosi/ui yields poison if the resulting value does not fit in the 4732 // destination type. 4733 return true; 4734 case Instruction::Call: 4735 case Instruction::CallBr: 4736 case Instruction::Invoke: { 4737 const auto *CB = cast<CallBase>(Op); 4738 return !CB->hasRetAttr(Attribute::NoUndef); 4739 } 4740 case Instruction::InsertElement: 4741 case Instruction::ExtractElement: { 4742 // If index exceeds the length of the vector, it returns poison 4743 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4744 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4745 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4746 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4747 return true; 4748 return false; 4749 } 4750 case Instruction::ShuffleVector: { 4751 // shufflevector may return undef. 4752 if (PoisonOnly) 4753 return false; 4754 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4755 ? cast<ConstantExpr>(Op)->getShuffleMask() 4756 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4757 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4758 } 4759 case Instruction::FNeg: 4760 case Instruction::PHI: 4761 case Instruction::Select: 4762 case Instruction::URem: 4763 case Instruction::SRem: 4764 case Instruction::ExtractValue: 4765 case Instruction::InsertValue: 4766 case Instruction::Freeze: 4767 case Instruction::ICmp: 4768 case Instruction::FCmp: 4769 return false; 4770 case Instruction::GetElementPtr: { 4771 const auto *GEP = cast<GEPOperator>(Op); 4772 return GEP->isInBounds(); 4773 } 4774 default: { 4775 const auto *CE = dyn_cast<ConstantExpr>(Op); 4776 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4777 return false; 4778 else if (Instruction::isBinaryOp(Opcode)) 4779 return false; 4780 // Be conservative and return true. 4781 return true; 4782 } 4783 } 4784 } 4785 4786 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4787 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4788 } 4789 4790 bool llvm::canCreatePoison(const Operator *Op) { 4791 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4792 } 4793 4794 static bool programUndefinedIfUndefOrPoison(const Value *V, 4795 bool PoisonOnly); 4796 4797 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4798 AssumptionCache *AC, 4799 const Instruction *CtxI, 4800 const DominatorTree *DT, 4801 unsigned Depth, bool PoisonOnly) { 4802 if (Depth >= MaxAnalysisRecursionDepth) 4803 return false; 4804 4805 if (isa<MetadataAsValue>(V)) 4806 return false; 4807 4808 if (const auto *A = dyn_cast<Argument>(V)) { 4809 if (A->hasAttribute(Attribute::NoUndef)) 4810 return true; 4811 } 4812 4813 if (auto *C = dyn_cast<Constant>(V)) { 4814 if (isa<UndefValue>(C)) 4815 return PoisonOnly; 4816 4817 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4818 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4819 return true; 4820 4821 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4822 return (PoisonOnly || !C->containsUndefElement()) && 4823 !C->containsConstantExpression(); 4824 } 4825 4826 // Strip cast operations from a pointer value. 4827 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4828 // inbounds with zero offset. To guarantee that the result isn't poison, the 4829 // stripped pointer is checked as it has to be pointing into an allocated 4830 // object or be null `null` to ensure `inbounds` getelement pointers with a 4831 // zero offset could not produce poison. 4832 // It can strip off addrspacecast that do not change bit representation as 4833 // well. We believe that such addrspacecast is equivalent to no-op. 4834 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4835 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4836 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4837 return true; 4838 4839 auto OpCheck = [&](const Value *V) { 4840 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4841 PoisonOnly); 4842 }; 4843 4844 if (auto *Opr = dyn_cast<Operator>(V)) { 4845 // If the value is a freeze instruction, then it can never 4846 // be undef or poison. 4847 if (isa<FreezeInst>(V)) 4848 return true; 4849 4850 if (const auto *CB = dyn_cast<CallBase>(V)) { 4851 if (CB->hasRetAttr(Attribute::NoUndef)) 4852 return true; 4853 } 4854 4855 if (const auto *PN = dyn_cast<PHINode>(V)) { 4856 unsigned Num = PN->getNumIncomingValues(); 4857 bool IsWellDefined = true; 4858 for (unsigned i = 0; i < Num; ++i) { 4859 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4860 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4861 DT, Depth + 1, PoisonOnly)) { 4862 IsWellDefined = false; 4863 break; 4864 } 4865 } 4866 if (IsWellDefined) 4867 return true; 4868 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4869 return true; 4870 } 4871 4872 if (auto *I = dyn_cast<LoadInst>(V)) 4873 if (I->getMetadata(LLVMContext::MD_noundef)) 4874 return true; 4875 4876 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4877 return true; 4878 4879 // CxtI may be null or a cloned instruction. 4880 if (!CtxI || !CtxI->getParent() || !DT) 4881 return false; 4882 4883 auto *DNode = DT->getNode(CtxI->getParent()); 4884 if (!DNode) 4885 // Unreachable block 4886 return false; 4887 4888 // If V is used as a branch condition before reaching CtxI, V cannot be 4889 // undef or poison. 4890 // br V, BB1, BB2 4891 // BB1: 4892 // CtxI ; V cannot be undef or poison here 4893 auto *Dominator = DNode->getIDom(); 4894 while (Dominator) { 4895 auto *TI = Dominator->getBlock()->getTerminator(); 4896 4897 Value *Cond = nullptr; 4898 if (auto BI = dyn_cast<BranchInst>(TI)) { 4899 if (BI->isConditional()) 4900 Cond = BI->getCondition(); 4901 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4902 Cond = SI->getCondition(); 4903 } 4904 4905 if (Cond) { 4906 if (Cond == V) 4907 return true; 4908 else if (PoisonOnly && isa<Operator>(Cond)) { 4909 // For poison, we can analyze further 4910 auto *Opr = cast<Operator>(Cond); 4911 if (propagatesPoison(Opr) && 4912 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4913 return true; 4914 } 4915 } 4916 4917 Dominator = Dominator->getIDom(); 4918 } 4919 4920 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4921 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4922 return true; 4923 4924 return false; 4925 } 4926 4927 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4928 const Instruction *CtxI, 4929 const DominatorTree *DT, 4930 unsigned Depth) { 4931 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4932 } 4933 4934 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4935 const Instruction *CtxI, 4936 const DominatorTree *DT, unsigned Depth) { 4937 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4938 } 4939 4940 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4941 const DataLayout &DL, 4942 AssumptionCache *AC, 4943 const Instruction *CxtI, 4944 const DominatorTree *DT) { 4945 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4946 Add, DL, AC, CxtI, DT); 4947 } 4948 4949 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4950 const Value *RHS, 4951 const DataLayout &DL, 4952 AssumptionCache *AC, 4953 const Instruction *CxtI, 4954 const DominatorTree *DT) { 4955 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4956 } 4957 4958 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4959 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4960 // of time because it's possible for another thread to interfere with it for an 4961 // arbitrary length of time, but programs aren't allowed to rely on that. 4962 4963 // If there is no successor, then execution can't transfer to it. 4964 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4965 return !CRI->unwindsToCaller(); 4966 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4967 return !CatchSwitch->unwindsToCaller(); 4968 if (isa<ResumeInst>(I)) 4969 return false; 4970 if (isa<ReturnInst>(I)) 4971 return false; 4972 if (isa<UnreachableInst>(I)) 4973 return false; 4974 4975 // Calls can throw, or contain an infinite loop, or kill the process. 4976 if (const auto *CB = dyn_cast<CallBase>(I)) { 4977 // Call sites that throw have implicit non-local control flow. 4978 if (!CB->doesNotThrow()) 4979 return false; 4980 4981 // A function which doens't throw and has "willreturn" attribute will 4982 // always return. 4983 if (CB->hasFnAttr(Attribute::WillReturn)) 4984 return true; 4985 4986 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4987 // etc. and thus not return. However, LLVM already assumes that 4988 // 4989 // - Thread exiting actions are modeled as writes to memory invisible to 4990 // the program. 4991 // 4992 // - Loops that don't have side effects (side effects are volatile/atomic 4993 // stores and IO) always terminate (see http://llvm.org/PR965). 4994 // Furthermore IO itself is also modeled as writes to memory invisible to 4995 // the program. 4996 // 4997 // We rely on those assumptions here, and use the memory effects of the call 4998 // target as a proxy for checking that it always returns. 4999 5000 // FIXME: This isn't aggressive enough; a call which only writes to a global 5001 // is guaranteed to return. 5002 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5003 } 5004 5005 // Other instructions return normally. 5006 return true; 5007 } 5008 5009 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5010 // TODO: This is slightly conservative for invoke instruction since exiting 5011 // via an exception *is* normal control for them. 5012 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5013 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5014 return false; 5015 return true; 5016 } 5017 5018 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5019 const Loop *L) { 5020 // The loop header is guaranteed to be executed for every iteration. 5021 // 5022 // FIXME: Relax this constraint to cover all basic blocks that are 5023 // guaranteed to be executed at every iteration. 5024 if (I->getParent() != L->getHeader()) return false; 5025 5026 for (const Instruction &LI : *L->getHeader()) { 5027 if (&LI == I) return true; 5028 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5029 } 5030 llvm_unreachable("Instruction not contained in its own parent basic block."); 5031 } 5032 5033 bool llvm::propagatesPoison(const Operator *I) { 5034 switch (I->getOpcode()) { 5035 case Instruction::Freeze: 5036 case Instruction::Select: 5037 case Instruction::PHI: 5038 case Instruction::Call: 5039 case Instruction::Invoke: 5040 return false; 5041 case Instruction::ICmp: 5042 case Instruction::FCmp: 5043 case Instruction::GetElementPtr: 5044 return true; 5045 default: 5046 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5047 return true; 5048 5049 // Be conservative and return false. 5050 return false; 5051 } 5052 } 5053 5054 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5055 SmallPtrSetImpl<const Value *> &Operands) { 5056 switch (I->getOpcode()) { 5057 case Instruction::Store: 5058 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5059 break; 5060 5061 case Instruction::Load: 5062 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5063 break; 5064 5065 case Instruction::AtomicCmpXchg: 5066 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5067 break; 5068 5069 case Instruction::AtomicRMW: 5070 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5071 break; 5072 5073 case Instruction::UDiv: 5074 case Instruction::SDiv: 5075 case Instruction::URem: 5076 case Instruction::SRem: 5077 Operands.insert(I->getOperand(1)); 5078 break; 5079 5080 case Instruction::Call: 5081 case Instruction::Invoke: { 5082 const CallBase *CB = cast<CallBase>(I); 5083 if (CB->isIndirectCall()) 5084 Operands.insert(CB->getCalledOperand()); 5085 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5086 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5087 Operands.insert(CB->getArgOperand(i)); 5088 } 5089 break; 5090 } 5091 5092 default: 5093 break; 5094 } 5095 } 5096 5097 bool llvm::mustTriggerUB(const Instruction *I, 5098 const SmallSet<const Value *, 16>& KnownPoison) { 5099 SmallPtrSet<const Value *, 4> NonPoisonOps; 5100 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5101 5102 for (const auto *V : NonPoisonOps) 5103 if (KnownPoison.count(V)) 5104 return true; 5105 5106 return false; 5107 } 5108 5109 static bool programUndefinedIfUndefOrPoison(const Value *V, 5110 bool PoisonOnly) { 5111 // We currently only look for uses of values within the same basic 5112 // block, as that makes it easier to guarantee that the uses will be 5113 // executed given that Inst is executed. 5114 // 5115 // FIXME: Expand this to consider uses beyond the same basic block. To do 5116 // this, look out for the distinction between post-dominance and strong 5117 // post-dominance. 5118 const BasicBlock *BB = nullptr; 5119 BasicBlock::const_iterator Begin; 5120 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5121 BB = Inst->getParent(); 5122 Begin = Inst->getIterator(); 5123 Begin++; 5124 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5125 BB = &Arg->getParent()->getEntryBlock(); 5126 Begin = BB->begin(); 5127 } else { 5128 return false; 5129 } 5130 5131 BasicBlock::const_iterator End = BB->end(); 5132 5133 if (!PoisonOnly) { 5134 // Be conservative & just check whether a value is passed to a noundef 5135 // argument. 5136 // Instructions that raise UB with a poison operand are well-defined 5137 // or have unclear semantics when the input is partially undef. 5138 // For example, 'udiv x, (undef | 1)' isn't UB. 5139 5140 for (auto &I : make_range(Begin, End)) { 5141 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5142 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5143 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5144 CB->getArgOperand(i) == V) 5145 return true; 5146 } 5147 } 5148 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5149 break; 5150 } 5151 return false; 5152 } 5153 5154 // Set of instructions that we have proved will yield poison if Inst 5155 // does. 5156 SmallSet<const Value *, 16> YieldsPoison; 5157 SmallSet<const BasicBlock *, 4> Visited; 5158 5159 YieldsPoison.insert(V); 5160 auto Propagate = [&](const User *User) { 5161 if (propagatesPoison(cast<Operator>(User))) 5162 YieldsPoison.insert(User); 5163 }; 5164 for_each(V->users(), Propagate); 5165 Visited.insert(BB); 5166 5167 unsigned Iter = 0; 5168 while (Iter++ < MaxAnalysisRecursionDepth) { 5169 for (auto &I : make_range(Begin, End)) { 5170 if (mustTriggerUB(&I, YieldsPoison)) 5171 return true; 5172 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5173 return false; 5174 5175 // Mark poison that propagates from I through uses of I. 5176 if (YieldsPoison.count(&I)) 5177 for_each(I.users(), Propagate); 5178 } 5179 5180 if (auto *NextBB = BB->getSingleSuccessor()) { 5181 if (Visited.insert(NextBB).second) { 5182 BB = NextBB; 5183 Begin = BB->getFirstNonPHI()->getIterator(); 5184 End = BB->end(); 5185 continue; 5186 } 5187 } 5188 5189 break; 5190 } 5191 return false; 5192 } 5193 5194 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5195 return ::programUndefinedIfUndefOrPoison(Inst, false); 5196 } 5197 5198 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5199 return ::programUndefinedIfUndefOrPoison(Inst, true); 5200 } 5201 5202 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5203 if (FMF.noNaNs()) 5204 return true; 5205 5206 if (auto *C = dyn_cast<ConstantFP>(V)) 5207 return !C->isNaN(); 5208 5209 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5210 if (!C->getElementType()->isFloatingPointTy()) 5211 return false; 5212 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5213 if (C->getElementAsAPFloat(I).isNaN()) 5214 return false; 5215 } 5216 return true; 5217 } 5218 5219 if (isa<ConstantAggregateZero>(V)) 5220 return true; 5221 5222 return false; 5223 } 5224 5225 static bool isKnownNonZero(const Value *V) { 5226 if (auto *C = dyn_cast<ConstantFP>(V)) 5227 return !C->isZero(); 5228 5229 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5230 if (!C->getElementType()->isFloatingPointTy()) 5231 return false; 5232 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5233 if (C->getElementAsAPFloat(I).isZero()) 5234 return false; 5235 } 5236 return true; 5237 } 5238 5239 return false; 5240 } 5241 5242 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5243 /// Given non-min/max outer cmp/select from the clamp pattern this 5244 /// function recognizes if it can be substitued by a "canonical" min/max 5245 /// pattern. 5246 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5247 Value *CmpLHS, Value *CmpRHS, 5248 Value *TrueVal, Value *FalseVal, 5249 Value *&LHS, Value *&RHS) { 5250 // Try to match 5251 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5252 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5253 // and return description of the outer Max/Min. 5254 5255 // First, check if select has inverse order: 5256 if (CmpRHS == FalseVal) { 5257 std::swap(TrueVal, FalseVal); 5258 Pred = CmpInst::getInversePredicate(Pred); 5259 } 5260 5261 // Assume success now. If there's no match, callers should not use these anyway. 5262 LHS = TrueVal; 5263 RHS = FalseVal; 5264 5265 const APFloat *FC1; 5266 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5267 return {SPF_UNKNOWN, SPNB_NA, false}; 5268 5269 const APFloat *FC2; 5270 switch (Pred) { 5271 case CmpInst::FCMP_OLT: 5272 case CmpInst::FCMP_OLE: 5273 case CmpInst::FCMP_ULT: 5274 case CmpInst::FCMP_ULE: 5275 if (match(FalseVal, 5276 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5277 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5278 *FC1 < *FC2) 5279 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5280 break; 5281 case CmpInst::FCMP_OGT: 5282 case CmpInst::FCMP_OGE: 5283 case CmpInst::FCMP_UGT: 5284 case CmpInst::FCMP_UGE: 5285 if (match(FalseVal, 5286 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5287 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5288 *FC1 > *FC2) 5289 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5290 break; 5291 default: 5292 break; 5293 } 5294 5295 return {SPF_UNKNOWN, SPNB_NA, false}; 5296 } 5297 5298 /// Recognize variations of: 5299 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5300 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5301 Value *CmpLHS, Value *CmpRHS, 5302 Value *TrueVal, Value *FalseVal) { 5303 // Swap the select operands and predicate to match the patterns below. 5304 if (CmpRHS != TrueVal) { 5305 Pred = ICmpInst::getSwappedPredicate(Pred); 5306 std::swap(TrueVal, FalseVal); 5307 } 5308 const APInt *C1; 5309 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5310 const APInt *C2; 5311 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5312 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5313 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5314 return {SPF_SMAX, SPNB_NA, false}; 5315 5316 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5317 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5318 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5319 return {SPF_SMIN, SPNB_NA, false}; 5320 5321 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5322 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5323 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5324 return {SPF_UMAX, SPNB_NA, false}; 5325 5326 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5327 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5328 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5329 return {SPF_UMIN, SPNB_NA, false}; 5330 } 5331 return {SPF_UNKNOWN, SPNB_NA, false}; 5332 } 5333 5334 /// Recognize variations of: 5335 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5336 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5337 Value *CmpLHS, Value *CmpRHS, 5338 Value *TVal, Value *FVal, 5339 unsigned Depth) { 5340 // TODO: Allow FP min/max with nnan/nsz. 5341 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5342 5343 Value *A = nullptr, *B = nullptr; 5344 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5345 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5346 return {SPF_UNKNOWN, SPNB_NA, false}; 5347 5348 Value *C = nullptr, *D = nullptr; 5349 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5350 if (L.Flavor != R.Flavor) 5351 return {SPF_UNKNOWN, SPNB_NA, false}; 5352 5353 // We have something like: x Pred y ? min(a, b) : min(c, d). 5354 // Try to match the compare to the min/max operations of the select operands. 5355 // First, make sure we have the right compare predicate. 5356 switch (L.Flavor) { 5357 case SPF_SMIN: 5358 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5359 Pred = ICmpInst::getSwappedPredicate(Pred); 5360 std::swap(CmpLHS, CmpRHS); 5361 } 5362 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5363 break; 5364 return {SPF_UNKNOWN, SPNB_NA, false}; 5365 case SPF_SMAX: 5366 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5367 Pred = ICmpInst::getSwappedPredicate(Pred); 5368 std::swap(CmpLHS, CmpRHS); 5369 } 5370 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5371 break; 5372 return {SPF_UNKNOWN, SPNB_NA, false}; 5373 case SPF_UMIN: 5374 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5375 Pred = ICmpInst::getSwappedPredicate(Pred); 5376 std::swap(CmpLHS, CmpRHS); 5377 } 5378 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5379 break; 5380 return {SPF_UNKNOWN, SPNB_NA, false}; 5381 case SPF_UMAX: 5382 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5383 Pred = ICmpInst::getSwappedPredicate(Pred); 5384 std::swap(CmpLHS, CmpRHS); 5385 } 5386 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5387 break; 5388 return {SPF_UNKNOWN, SPNB_NA, false}; 5389 default: 5390 return {SPF_UNKNOWN, SPNB_NA, false}; 5391 } 5392 5393 // If there is a common operand in the already matched min/max and the other 5394 // min/max operands match the compare operands (either directly or inverted), 5395 // then this is min/max of the same flavor. 5396 5397 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5398 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5399 if (D == B) { 5400 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5401 match(A, m_Not(m_Specific(CmpRHS))))) 5402 return {L.Flavor, SPNB_NA, false}; 5403 } 5404 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5405 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5406 if (C == B) { 5407 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5408 match(A, m_Not(m_Specific(CmpRHS))))) 5409 return {L.Flavor, SPNB_NA, false}; 5410 } 5411 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5412 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5413 if (D == A) { 5414 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5415 match(B, m_Not(m_Specific(CmpRHS))))) 5416 return {L.Flavor, SPNB_NA, false}; 5417 } 5418 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5419 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5420 if (C == A) { 5421 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5422 match(B, m_Not(m_Specific(CmpRHS))))) 5423 return {L.Flavor, SPNB_NA, false}; 5424 } 5425 5426 return {SPF_UNKNOWN, SPNB_NA, false}; 5427 } 5428 5429 /// If the input value is the result of a 'not' op, constant integer, or vector 5430 /// splat of a constant integer, return the bitwise-not source value. 5431 /// TODO: This could be extended to handle non-splat vector integer constants. 5432 static Value *getNotValue(Value *V) { 5433 Value *NotV; 5434 if (match(V, m_Not(m_Value(NotV)))) 5435 return NotV; 5436 5437 const APInt *C; 5438 if (match(V, m_APInt(C))) 5439 return ConstantInt::get(V->getType(), ~(*C)); 5440 5441 return nullptr; 5442 } 5443 5444 /// Match non-obvious integer minimum and maximum sequences. 5445 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5446 Value *CmpLHS, Value *CmpRHS, 5447 Value *TrueVal, Value *FalseVal, 5448 Value *&LHS, Value *&RHS, 5449 unsigned Depth) { 5450 // Assume success. If there's no match, callers should not use these anyway. 5451 LHS = TrueVal; 5452 RHS = FalseVal; 5453 5454 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5455 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5456 return SPR; 5457 5458 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5459 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5460 return SPR; 5461 5462 // Look through 'not' ops to find disguised min/max. 5463 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5464 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5465 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5466 switch (Pred) { 5467 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5468 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5469 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5470 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5471 default: break; 5472 } 5473 } 5474 5475 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5476 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5477 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5478 switch (Pred) { 5479 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5480 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5481 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5482 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5483 default: break; 5484 } 5485 } 5486 5487 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5488 return {SPF_UNKNOWN, SPNB_NA, false}; 5489 5490 // Z = X -nsw Y 5491 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5492 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5493 if (match(TrueVal, m_Zero()) && 5494 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5495 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5496 5497 // Z = X -nsw Y 5498 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5499 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5500 if (match(FalseVal, m_Zero()) && 5501 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5502 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5503 5504 const APInt *C1; 5505 if (!match(CmpRHS, m_APInt(C1))) 5506 return {SPF_UNKNOWN, SPNB_NA, false}; 5507 5508 // An unsigned min/max can be written with a signed compare. 5509 const APInt *C2; 5510 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5511 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5512 // Is the sign bit set? 5513 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5514 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5515 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5516 C2->isMaxSignedValue()) 5517 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5518 5519 // Is the sign bit clear? 5520 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5521 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5522 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5523 C2->isMinSignedValue()) 5524 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5525 } 5526 5527 return {SPF_UNKNOWN, SPNB_NA, false}; 5528 } 5529 5530 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5531 assert(X && Y && "Invalid operand"); 5532 5533 // X = sub (0, Y) || X = sub nsw (0, Y) 5534 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5535 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5536 return true; 5537 5538 // Y = sub (0, X) || Y = sub nsw (0, X) 5539 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5540 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5541 return true; 5542 5543 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5544 Value *A, *B; 5545 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5546 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5547 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5548 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5549 } 5550 5551 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5552 FastMathFlags FMF, 5553 Value *CmpLHS, Value *CmpRHS, 5554 Value *TrueVal, Value *FalseVal, 5555 Value *&LHS, Value *&RHS, 5556 unsigned Depth) { 5557 if (CmpInst::isFPPredicate(Pred)) { 5558 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5559 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5560 // purpose of identifying min/max. Disregard vector constants with undefined 5561 // elements because those can not be back-propagated for analysis. 5562 Value *OutputZeroVal = nullptr; 5563 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5564 !cast<Constant>(TrueVal)->containsUndefElement()) 5565 OutputZeroVal = TrueVal; 5566 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5567 !cast<Constant>(FalseVal)->containsUndefElement()) 5568 OutputZeroVal = FalseVal; 5569 5570 if (OutputZeroVal) { 5571 if (match(CmpLHS, m_AnyZeroFP())) 5572 CmpLHS = OutputZeroVal; 5573 if (match(CmpRHS, m_AnyZeroFP())) 5574 CmpRHS = OutputZeroVal; 5575 } 5576 } 5577 5578 LHS = CmpLHS; 5579 RHS = CmpRHS; 5580 5581 // Signed zero may return inconsistent results between implementations. 5582 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5583 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5584 // Therefore, we behave conservatively and only proceed if at least one of the 5585 // operands is known to not be zero or if we don't care about signed zero. 5586 switch (Pred) { 5587 default: break; 5588 // FIXME: Include OGT/OLT/UGT/ULT. 5589 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5590 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5591 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5592 !isKnownNonZero(CmpRHS)) 5593 return {SPF_UNKNOWN, SPNB_NA, false}; 5594 } 5595 5596 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5597 bool Ordered = false; 5598 5599 // When given one NaN and one non-NaN input: 5600 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5601 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5602 // ordered comparison fails), which could be NaN or non-NaN. 5603 // so here we discover exactly what NaN behavior is required/accepted. 5604 if (CmpInst::isFPPredicate(Pred)) { 5605 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5606 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5607 5608 if (LHSSafe && RHSSafe) { 5609 // Both operands are known non-NaN. 5610 NaNBehavior = SPNB_RETURNS_ANY; 5611 } else if (CmpInst::isOrdered(Pred)) { 5612 // An ordered comparison will return false when given a NaN, so it 5613 // returns the RHS. 5614 Ordered = true; 5615 if (LHSSafe) 5616 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5617 NaNBehavior = SPNB_RETURNS_NAN; 5618 else if (RHSSafe) 5619 NaNBehavior = SPNB_RETURNS_OTHER; 5620 else 5621 // Completely unsafe. 5622 return {SPF_UNKNOWN, SPNB_NA, false}; 5623 } else { 5624 Ordered = false; 5625 // An unordered comparison will return true when given a NaN, so it 5626 // returns the LHS. 5627 if (LHSSafe) 5628 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5629 NaNBehavior = SPNB_RETURNS_OTHER; 5630 else if (RHSSafe) 5631 NaNBehavior = SPNB_RETURNS_NAN; 5632 else 5633 // Completely unsafe. 5634 return {SPF_UNKNOWN, SPNB_NA, false}; 5635 } 5636 } 5637 5638 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5639 std::swap(CmpLHS, CmpRHS); 5640 Pred = CmpInst::getSwappedPredicate(Pred); 5641 if (NaNBehavior == SPNB_RETURNS_NAN) 5642 NaNBehavior = SPNB_RETURNS_OTHER; 5643 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5644 NaNBehavior = SPNB_RETURNS_NAN; 5645 Ordered = !Ordered; 5646 } 5647 5648 // ([if]cmp X, Y) ? X : Y 5649 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5650 switch (Pred) { 5651 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5652 case ICmpInst::ICMP_UGT: 5653 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5654 case ICmpInst::ICMP_SGT: 5655 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5656 case ICmpInst::ICMP_ULT: 5657 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5658 case ICmpInst::ICMP_SLT: 5659 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5660 case FCmpInst::FCMP_UGT: 5661 case FCmpInst::FCMP_UGE: 5662 case FCmpInst::FCMP_OGT: 5663 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5664 case FCmpInst::FCMP_ULT: 5665 case FCmpInst::FCMP_ULE: 5666 case FCmpInst::FCMP_OLT: 5667 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5668 } 5669 } 5670 5671 if (isKnownNegation(TrueVal, FalseVal)) { 5672 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5673 // match against either LHS or sext(LHS). 5674 auto MaybeSExtCmpLHS = 5675 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5676 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5677 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5678 if (match(TrueVal, MaybeSExtCmpLHS)) { 5679 // Set the return values. If the compare uses the negated value (-X >s 0), 5680 // swap the return values because the negated value is always 'RHS'. 5681 LHS = TrueVal; 5682 RHS = FalseVal; 5683 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5684 std::swap(LHS, RHS); 5685 5686 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5687 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5688 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5689 return {SPF_ABS, SPNB_NA, false}; 5690 5691 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5692 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5693 return {SPF_ABS, SPNB_NA, false}; 5694 5695 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5696 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5697 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5698 return {SPF_NABS, SPNB_NA, false}; 5699 } 5700 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5701 // Set the return values. If the compare uses the negated value (-X >s 0), 5702 // swap the return values because the negated value is always 'RHS'. 5703 LHS = FalseVal; 5704 RHS = TrueVal; 5705 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5706 std::swap(LHS, RHS); 5707 5708 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5709 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5710 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5711 return {SPF_NABS, SPNB_NA, false}; 5712 5713 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5714 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5715 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5716 return {SPF_ABS, SPNB_NA, false}; 5717 } 5718 } 5719 5720 if (CmpInst::isIntPredicate(Pred)) 5721 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5722 5723 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5724 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5725 // semantics than minNum. Be conservative in such case. 5726 if (NaNBehavior != SPNB_RETURNS_ANY || 5727 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5728 !isKnownNonZero(CmpRHS))) 5729 return {SPF_UNKNOWN, SPNB_NA, false}; 5730 5731 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5732 } 5733 5734 /// Helps to match a select pattern in case of a type mismatch. 5735 /// 5736 /// The function processes the case when type of true and false values of a 5737 /// select instruction differs from type of the cmp instruction operands because 5738 /// of a cast instruction. The function checks if it is legal to move the cast 5739 /// operation after "select". If yes, it returns the new second value of 5740 /// "select" (with the assumption that cast is moved): 5741 /// 1. As operand of cast instruction when both values of "select" are same cast 5742 /// instructions. 5743 /// 2. As restored constant (by applying reverse cast operation) when the first 5744 /// value of the "select" is a cast operation and the second value is a 5745 /// constant. 5746 /// NOTE: We return only the new second value because the first value could be 5747 /// accessed as operand of cast instruction. 5748 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5749 Instruction::CastOps *CastOp) { 5750 auto *Cast1 = dyn_cast<CastInst>(V1); 5751 if (!Cast1) 5752 return nullptr; 5753 5754 *CastOp = Cast1->getOpcode(); 5755 Type *SrcTy = Cast1->getSrcTy(); 5756 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5757 // If V1 and V2 are both the same cast from the same type, look through V1. 5758 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5759 return Cast2->getOperand(0); 5760 return nullptr; 5761 } 5762 5763 auto *C = dyn_cast<Constant>(V2); 5764 if (!C) 5765 return nullptr; 5766 5767 Constant *CastedTo = nullptr; 5768 switch (*CastOp) { 5769 case Instruction::ZExt: 5770 if (CmpI->isUnsigned()) 5771 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5772 break; 5773 case Instruction::SExt: 5774 if (CmpI->isSigned()) 5775 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5776 break; 5777 case Instruction::Trunc: 5778 Constant *CmpConst; 5779 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5780 CmpConst->getType() == SrcTy) { 5781 // Here we have the following case: 5782 // 5783 // %cond = cmp iN %x, CmpConst 5784 // %tr = trunc iN %x to iK 5785 // %narrowsel = select i1 %cond, iK %t, iK C 5786 // 5787 // We can always move trunc after select operation: 5788 // 5789 // %cond = cmp iN %x, CmpConst 5790 // %widesel = select i1 %cond, iN %x, iN CmpConst 5791 // %tr = trunc iN %widesel to iK 5792 // 5793 // Note that C could be extended in any way because we don't care about 5794 // upper bits after truncation. It can't be abs pattern, because it would 5795 // look like: 5796 // 5797 // select i1 %cond, x, -x. 5798 // 5799 // So only min/max pattern could be matched. Such match requires widened C 5800 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5801 // CmpConst == C is checked below. 5802 CastedTo = CmpConst; 5803 } else { 5804 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5805 } 5806 break; 5807 case Instruction::FPTrunc: 5808 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5809 break; 5810 case Instruction::FPExt: 5811 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5812 break; 5813 case Instruction::FPToUI: 5814 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5815 break; 5816 case Instruction::FPToSI: 5817 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5818 break; 5819 case Instruction::UIToFP: 5820 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5821 break; 5822 case Instruction::SIToFP: 5823 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5824 break; 5825 default: 5826 break; 5827 } 5828 5829 if (!CastedTo) 5830 return nullptr; 5831 5832 // Make sure the cast doesn't lose any information. 5833 Constant *CastedBack = 5834 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5835 if (CastedBack != C) 5836 return nullptr; 5837 5838 return CastedTo; 5839 } 5840 5841 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5842 Instruction::CastOps *CastOp, 5843 unsigned Depth) { 5844 if (Depth >= MaxAnalysisRecursionDepth) 5845 return {SPF_UNKNOWN, SPNB_NA, false}; 5846 5847 SelectInst *SI = dyn_cast<SelectInst>(V); 5848 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5849 5850 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5851 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5852 5853 Value *TrueVal = SI->getTrueValue(); 5854 Value *FalseVal = SI->getFalseValue(); 5855 5856 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5857 CastOp, Depth); 5858 } 5859 5860 SelectPatternResult llvm::matchDecomposedSelectPattern( 5861 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5862 Instruction::CastOps *CastOp, unsigned Depth) { 5863 CmpInst::Predicate Pred = CmpI->getPredicate(); 5864 Value *CmpLHS = CmpI->getOperand(0); 5865 Value *CmpRHS = CmpI->getOperand(1); 5866 FastMathFlags FMF; 5867 if (isa<FPMathOperator>(CmpI)) 5868 FMF = CmpI->getFastMathFlags(); 5869 5870 // Bail out early. 5871 if (CmpI->isEquality()) 5872 return {SPF_UNKNOWN, SPNB_NA, false}; 5873 5874 // Deal with type mismatches. 5875 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5876 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5877 // If this is a potential fmin/fmax with a cast to integer, then ignore 5878 // -0.0 because there is no corresponding integer value. 5879 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5880 FMF.setNoSignedZeros(); 5881 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5882 cast<CastInst>(TrueVal)->getOperand(0), C, 5883 LHS, RHS, Depth); 5884 } 5885 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5886 // If this is a potential fmin/fmax with a cast to integer, then ignore 5887 // -0.0 because there is no corresponding integer value. 5888 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5889 FMF.setNoSignedZeros(); 5890 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5891 C, cast<CastInst>(FalseVal)->getOperand(0), 5892 LHS, RHS, Depth); 5893 } 5894 } 5895 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5896 LHS, RHS, Depth); 5897 } 5898 5899 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5900 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5901 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5902 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5903 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5904 if (SPF == SPF_FMINNUM) 5905 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5906 if (SPF == SPF_FMAXNUM) 5907 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5908 llvm_unreachable("unhandled!"); 5909 } 5910 5911 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5912 if (SPF == SPF_SMIN) return SPF_SMAX; 5913 if (SPF == SPF_UMIN) return SPF_UMAX; 5914 if (SPF == SPF_SMAX) return SPF_SMIN; 5915 if (SPF == SPF_UMAX) return SPF_UMIN; 5916 llvm_unreachable("unhandled!"); 5917 } 5918 5919 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5920 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5921 } 5922 5923 std::pair<Intrinsic::ID, bool> 5924 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5925 // Check if VL contains select instructions that can be folded into a min/max 5926 // vector intrinsic and return the intrinsic if it is possible. 5927 // TODO: Support floating point min/max. 5928 bool AllCmpSingleUse = true; 5929 SelectPatternResult SelectPattern; 5930 SelectPattern.Flavor = SPF_UNKNOWN; 5931 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5932 Value *LHS, *RHS; 5933 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5934 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5935 CurrentPattern.Flavor == SPF_FMINNUM || 5936 CurrentPattern.Flavor == SPF_FMAXNUM || 5937 !I->getType()->isIntOrIntVectorTy()) 5938 return false; 5939 if (SelectPattern.Flavor != SPF_UNKNOWN && 5940 SelectPattern.Flavor != CurrentPattern.Flavor) 5941 return false; 5942 SelectPattern = CurrentPattern; 5943 AllCmpSingleUse &= 5944 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5945 return true; 5946 })) { 5947 switch (SelectPattern.Flavor) { 5948 case SPF_SMIN: 5949 return {Intrinsic::smin, AllCmpSingleUse}; 5950 case SPF_UMIN: 5951 return {Intrinsic::umin, AllCmpSingleUse}; 5952 case SPF_SMAX: 5953 return {Intrinsic::smax, AllCmpSingleUse}; 5954 case SPF_UMAX: 5955 return {Intrinsic::umax, AllCmpSingleUse}; 5956 default: 5957 llvm_unreachable("unexpected select pattern flavor"); 5958 } 5959 } 5960 return {Intrinsic::not_intrinsic, false}; 5961 } 5962 5963 /// Return true if "icmp Pred LHS RHS" is always true. 5964 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5965 const Value *RHS, const DataLayout &DL, 5966 unsigned Depth) { 5967 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5968 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5969 return true; 5970 5971 switch (Pred) { 5972 default: 5973 return false; 5974 5975 case CmpInst::ICMP_SLE: { 5976 const APInt *C; 5977 5978 // LHS s<= LHS +_{nsw} C if C >= 0 5979 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5980 return !C->isNegative(); 5981 return false; 5982 } 5983 5984 case CmpInst::ICMP_ULE: { 5985 const APInt *C; 5986 5987 // LHS u<= LHS +_{nuw} C for any C 5988 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5989 return true; 5990 5991 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5992 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5993 const Value *&X, 5994 const APInt *&CA, const APInt *&CB) { 5995 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5996 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5997 return true; 5998 5999 // If X & C == 0 then (X | C) == X +_{nuw} C 6000 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6001 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6002 KnownBits Known(CA->getBitWidth()); 6003 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6004 /*CxtI*/ nullptr, /*DT*/ nullptr); 6005 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6006 return true; 6007 } 6008 6009 return false; 6010 }; 6011 6012 const Value *X; 6013 const APInt *CLHS, *CRHS; 6014 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6015 return CLHS->ule(*CRHS); 6016 6017 return false; 6018 } 6019 } 6020 } 6021 6022 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6023 /// ALHS ARHS" is true. Otherwise, return None. 6024 static Optional<bool> 6025 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6026 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6027 const DataLayout &DL, unsigned Depth) { 6028 switch (Pred) { 6029 default: 6030 return None; 6031 6032 case CmpInst::ICMP_SLT: 6033 case CmpInst::ICMP_SLE: 6034 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6035 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6036 return true; 6037 return None; 6038 6039 case CmpInst::ICMP_ULT: 6040 case CmpInst::ICMP_ULE: 6041 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6042 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6043 return true; 6044 return None; 6045 } 6046 } 6047 6048 /// Return true if the operands of the two compares match. IsSwappedOps is true 6049 /// when the operands match, but are swapped. 6050 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6051 const Value *BLHS, const Value *BRHS, 6052 bool &IsSwappedOps) { 6053 6054 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6055 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6056 return IsMatchingOps || IsSwappedOps; 6057 } 6058 6059 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6060 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6061 /// Otherwise, return None if we can't infer anything. 6062 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6063 CmpInst::Predicate BPred, 6064 bool AreSwappedOps) { 6065 // Canonicalize the predicate as if the operands were not commuted. 6066 if (AreSwappedOps) 6067 BPred = ICmpInst::getSwappedPredicate(BPred); 6068 6069 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6070 return true; 6071 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6072 return false; 6073 6074 return None; 6075 } 6076 6077 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6078 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6079 /// Otherwise, return None if we can't infer anything. 6080 static Optional<bool> 6081 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6082 const ConstantInt *C1, 6083 CmpInst::Predicate BPred, 6084 const ConstantInt *C2) { 6085 ConstantRange DomCR = 6086 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6087 ConstantRange CR = 6088 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6089 ConstantRange Intersection = DomCR.intersectWith(CR); 6090 ConstantRange Difference = DomCR.difference(CR); 6091 if (Intersection.isEmptySet()) 6092 return false; 6093 if (Difference.isEmptySet()) 6094 return true; 6095 return None; 6096 } 6097 6098 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6099 /// false. Otherwise, return None if we can't infer anything. 6100 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6101 CmpInst::Predicate BPred, 6102 const Value *BLHS, const Value *BRHS, 6103 const DataLayout &DL, bool LHSIsTrue, 6104 unsigned Depth) { 6105 Value *ALHS = LHS->getOperand(0); 6106 Value *ARHS = LHS->getOperand(1); 6107 6108 // The rest of the logic assumes the LHS condition is true. If that's not the 6109 // case, invert the predicate to make it so. 6110 CmpInst::Predicate APred = 6111 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6112 6113 // Can we infer anything when the two compares have matching operands? 6114 bool AreSwappedOps; 6115 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6116 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6117 APred, BPred, AreSwappedOps)) 6118 return Implication; 6119 // No amount of additional analysis will infer the second condition, so 6120 // early exit. 6121 return None; 6122 } 6123 6124 // Can we infer anything when the LHS operands match and the RHS operands are 6125 // constants (not necessarily matching)? 6126 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6127 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6128 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6129 return Implication; 6130 // No amount of additional analysis will infer the second condition, so 6131 // early exit. 6132 return None; 6133 } 6134 6135 if (APred == BPred) 6136 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6137 return None; 6138 } 6139 6140 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6141 /// false. Otherwise, return None if we can't infer anything. We expect the 6142 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6143 static Optional<bool> 6144 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6145 const Value *RHSOp0, const Value *RHSOp1, 6146 6147 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6148 // The LHS must be an 'or' or an 'and' instruction. 6149 assert((LHS->getOpcode() == Instruction::And || 6150 LHS->getOpcode() == Instruction::Or) && 6151 "Expected LHS to be 'and' or 'or'."); 6152 6153 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6154 6155 // If the result of an 'or' is false, then we know both legs of the 'or' are 6156 // false. Similarly, if the result of an 'and' is true, then we know both 6157 // legs of the 'and' are true. 6158 Value *ALHS, *ARHS; 6159 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6160 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6161 // FIXME: Make this non-recursion. 6162 if (Optional<bool> Implication = isImpliedCondition( 6163 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6164 return Implication; 6165 if (Optional<bool> Implication = isImpliedCondition( 6166 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6167 return Implication; 6168 return None; 6169 } 6170 return None; 6171 } 6172 6173 Optional<bool> 6174 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6175 const Value *RHSOp0, const Value *RHSOp1, 6176 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6177 // Bail out when we hit the limit. 6178 if (Depth == MaxAnalysisRecursionDepth) 6179 return None; 6180 6181 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6182 // example. 6183 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6184 return None; 6185 6186 Type *OpTy = LHS->getType(); 6187 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6188 6189 // FIXME: Extending the code below to handle vectors. 6190 if (OpTy->isVectorTy()) 6191 return None; 6192 6193 assert(OpTy->isIntegerTy(1) && "implied by above"); 6194 6195 // Both LHS and RHS are icmps. 6196 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6197 if (LHSCmp) 6198 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6199 Depth); 6200 6201 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6202 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6203 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6204 if (LHSBO) { 6205 if ((LHSBO->getOpcode() == Instruction::And || 6206 LHSBO->getOpcode() == Instruction::Or)) 6207 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6208 Depth); 6209 } 6210 return None; 6211 } 6212 6213 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6214 const DataLayout &DL, bool LHSIsTrue, 6215 unsigned Depth) { 6216 // LHS ==> RHS by definition 6217 if (LHS == RHS) 6218 return LHSIsTrue; 6219 6220 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6221 if (RHSCmp) 6222 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6223 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6224 LHSIsTrue, Depth); 6225 return None; 6226 } 6227 6228 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6229 // condition dominating ContextI or nullptr, if no condition is found. 6230 static std::pair<Value *, bool> 6231 getDomPredecessorCondition(const Instruction *ContextI) { 6232 if (!ContextI || !ContextI->getParent()) 6233 return {nullptr, false}; 6234 6235 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6236 // dominator tree (eg, from a SimplifyQuery) instead? 6237 const BasicBlock *ContextBB = ContextI->getParent(); 6238 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6239 if (!PredBB) 6240 return {nullptr, false}; 6241 6242 // We need a conditional branch in the predecessor. 6243 Value *PredCond; 6244 BasicBlock *TrueBB, *FalseBB; 6245 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6246 return {nullptr, false}; 6247 6248 // The branch should get simplified. Don't bother simplifying this condition. 6249 if (TrueBB == FalseBB) 6250 return {nullptr, false}; 6251 6252 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6253 "Predecessor block does not point to successor?"); 6254 6255 // Is this condition implied by the predecessor condition? 6256 return {PredCond, TrueBB == ContextBB}; 6257 } 6258 6259 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6260 const Instruction *ContextI, 6261 const DataLayout &DL) { 6262 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6263 auto PredCond = getDomPredecessorCondition(ContextI); 6264 if (PredCond.first) 6265 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6266 return None; 6267 } 6268 6269 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6270 const Value *LHS, const Value *RHS, 6271 const Instruction *ContextI, 6272 const DataLayout &DL) { 6273 auto PredCond = getDomPredecessorCondition(ContextI); 6274 if (PredCond.first) 6275 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6276 PredCond.second); 6277 return None; 6278 } 6279 6280 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6281 APInt &Upper, const InstrInfoQuery &IIQ) { 6282 unsigned Width = Lower.getBitWidth(); 6283 const APInt *C; 6284 switch (BO.getOpcode()) { 6285 case Instruction::Add: 6286 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6287 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6288 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6289 // 'add nuw x, C' produces [C, UINT_MAX]. 6290 Lower = *C; 6291 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6292 if (C->isNegative()) { 6293 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6294 Lower = APInt::getSignedMinValue(Width); 6295 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6296 } else { 6297 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6298 Lower = APInt::getSignedMinValue(Width) + *C; 6299 Upper = APInt::getSignedMaxValue(Width) + 1; 6300 } 6301 } 6302 } 6303 break; 6304 6305 case Instruction::And: 6306 if (match(BO.getOperand(1), m_APInt(C))) 6307 // 'and x, C' produces [0, C]. 6308 Upper = *C + 1; 6309 break; 6310 6311 case Instruction::Or: 6312 if (match(BO.getOperand(1), m_APInt(C))) 6313 // 'or x, C' produces [C, UINT_MAX]. 6314 Lower = *C; 6315 break; 6316 6317 case Instruction::AShr: 6318 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6319 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6320 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6321 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6322 } else if (match(BO.getOperand(0), m_APInt(C))) { 6323 unsigned ShiftAmount = Width - 1; 6324 if (!C->isNullValue() && IIQ.isExact(&BO)) 6325 ShiftAmount = C->countTrailingZeros(); 6326 if (C->isNegative()) { 6327 // 'ashr C, x' produces [C, C >> (Width-1)] 6328 Lower = *C; 6329 Upper = C->ashr(ShiftAmount) + 1; 6330 } else { 6331 // 'ashr C, x' produces [C >> (Width-1), C] 6332 Lower = C->ashr(ShiftAmount); 6333 Upper = *C + 1; 6334 } 6335 } 6336 break; 6337 6338 case Instruction::LShr: 6339 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6340 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6341 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6342 } else if (match(BO.getOperand(0), m_APInt(C))) { 6343 // 'lshr C, x' produces [C >> (Width-1), C]. 6344 unsigned ShiftAmount = Width - 1; 6345 if (!C->isNullValue() && IIQ.isExact(&BO)) 6346 ShiftAmount = C->countTrailingZeros(); 6347 Lower = C->lshr(ShiftAmount); 6348 Upper = *C + 1; 6349 } 6350 break; 6351 6352 case Instruction::Shl: 6353 if (match(BO.getOperand(0), m_APInt(C))) { 6354 if (IIQ.hasNoUnsignedWrap(&BO)) { 6355 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6356 Lower = *C; 6357 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6358 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6359 if (C->isNegative()) { 6360 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6361 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6362 Lower = C->shl(ShiftAmount); 6363 Upper = *C + 1; 6364 } else { 6365 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6366 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6367 Lower = *C; 6368 Upper = C->shl(ShiftAmount) + 1; 6369 } 6370 } 6371 } 6372 break; 6373 6374 case Instruction::SDiv: 6375 if (match(BO.getOperand(1), m_APInt(C))) { 6376 APInt IntMin = APInt::getSignedMinValue(Width); 6377 APInt IntMax = APInt::getSignedMaxValue(Width); 6378 if (C->isAllOnesValue()) { 6379 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6380 // where C != -1 and C != 0 and C != 1 6381 Lower = IntMin + 1; 6382 Upper = IntMax + 1; 6383 } else if (C->countLeadingZeros() < Width - 1) { 6384 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6385 // where C != -1 and C != 0 and C != 1 6386 Lower = IntMin.sdiv(*C); 6387 Upper = IntMax.sdiv(*C); 6388 if (Lower.sgt(Upper)) 6389 std::swap(Lower, Upper); 6390 Upper = Upper + 1; 6391 assert(Upper != Lower && "Upper part of range has wrapped!"); 6392 } 6393 } else if (match(BO.getOperand(0), m_APInt(C))) { 6394 if (C->isMinSignedValue()) { 6395 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6396 Lower = *C; 6397 Upper = Lower.lshr(1) + 1; 6398 } else { 6399 // 'sdiv C, x' produces [-|C|, |C|]. 6400 Upper = C->abs() + 1; 6401 Lower = (-Upper) + 1; 6402 } 6403 } 6404 break; 6405 6406 case Instruction::UDiv: 6407 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6408 // 'udiv x, C' produces [0, UINT_MAX / C]. 6409 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6410 } else if (match(BO.getOperand(0), m_APInt(C))) { 6411 // 'udiv C, x' produces [0, C]. 6412 Upper = *C + 1; 6413 } 6414 break; 6415 6416 case Instruction::SRem: 6417 if (match(BO.getOperand(1), m_APInt(C))) { 6418 // 'srem x, C' produces (-|C|, |C|). 6419 Upper = C->abs(); 6420 Lower = (-Upper) + 1; 6421 } 6422 break; 6423 6424 case Instruction::URem: 6425 if (match(BO.getOperand(1), m_APInt(C))) 6426 // 'urem x, C' produces [0, C). 6427 Upper = *C; 6428 break; 6429 6430 default: 6431 break; 6432 } 6433 } 6434 6435 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6436 APInt &Upper) { 6437 unsigned Width = Lower.getBitWidth(); 6438 const APInt *C; 6439 switch (II.getIntrinsicID()) { 6440 case Intrinsic::ctpop: 6441 case Intrinsic::ctlz: 6442 case Intrinsic::cttz: 6443 // Maximum of set/clear bits is the bit width. 6444 assert(Lower == 0 && "Expected lower bound to be zero"); 6445 Upper = Width + 1; 6446 break; 6447 case Intrinsic::uadd_sat: 6448 // uadd.sat(x, C) produces [C, UINT_MAX]. 6449 if (match(II.getOperand(0), m_APInt(C)) || 6450 match(II.getOperand(1), m_APInt(C))) 6451 Lower = *C; 6452 break; 6453 case Intrinsic::sadd_sat: 6454 if (match(II.getOperand(0), m_APInt(C)) || 6455 match(II.getOperand(1), m_APInt(C))) { 6456 if (C->isNegative()) { 6457 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6458 Lower = APInt::getSignedMinValue(Width); 6459 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6460 } else { 6461 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6462 Lower = APInt::getSignedMinValue(Width) + *C; 6463 Upper = APInt::getSignedMaxValue(Width) + 1; 6464 } 6465 } 6466 break; 6467 case Intrinsic::usub_sat: 6468 // usub.sat(C, x) produces [0, C]. 6469 if (match(II.getOperand(0), m_APInt(C))) 6470 Upper = *C + 1; 6471 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6472 else if (match(II.getOperand(1), m_APInt(C))) 6473 Upper = APInt::getMaxValue(Width) - *C + 1; 6474 break; 6475 case Intrinsic::ssub_sat: 6476 if (match(II.getOperand(0), m_APInt(C))) { 6477 if (C->isNegative()) { 6478 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6479 Lower = APInt::getSignedMinValue(Width); 6480 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6481 } else { 6482 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6483 Lower = *C - APInt::getSignedMaxValue(Width); 6484 Upper = APInt::getSignedMaxValue(Width) + 1; 6485 } 6486 } else if (match(II.getOperand(1), m_APInt(C))) { 6487 if (C->isNegative()) { 6488 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6489 Lower = APInt::getSignedMinValue(Width) - *C; 6490 Upper = APInt::getSignedMaxValue(Width) + 1; 6491 } else { 6492 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6493 Lower = APInt::getSignedMinValue(Width); 6494 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6495 } 6496 } 6497 break; 6498 case Intrinsic::umin: 6499 case Intrinsic::umax: 6500 case Intrinsic::smin: 6501 case Intrinsic::smax: 6502 if (!match(II.getOperand(0), m_APInt(C)) && 6503 !match(II.getOperand(1), m_APInt(C))) 6504 break; 6505 6506 switch (II.getIntrinsicID()) { 6507 case Intrinsic::umin: 6508 Upper = *C + 1; 6509 break; 6510 case Intrinsic::umax: 6511 Lower = *C; 6512 break; 6513 case Intrinsic::smin: 6514 Lower = APInt::getSignedMinValue(Width); 6515 Upper = *C + 1; 6516 break; 6517 case Intrinsic::smax: 6518 Lower = *C; 6519 Upper = APInt::getSignedMaxValue(Width) + 1; 6520 break; 6521 default: 6522 llvm_unreachable("Must be min/max intrinsic"); 6523 } 6524 break; 6525 case Intrinsic::abs: 6526 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6527 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6528 if (match(II.getOperand(1), m_One())) 6529 Upper = APInt::getSignedMaxValue(Width) + 1; 6530 else 6531 Upper = APInt::getSignedMinValue(Width) + 1; 6532 break; 6533 default: 6534 break; 6535 } 6536 } 6537 6538 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6539 APInt &Upper, const InstrInfoQuery &IIQ) { 6540 const Value *LHS = nullptr, *RHS = nullptr; 6541 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6542 if (R.Flavor == SPF_UNKNOWN) 6543 return; 6544 6545 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6546 6547 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6548 // If the negation part of the abs (in RHS) has the NSW flag, 6549 // then the result of abs(X) is [0..SIGNED_MAX], 6550 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6551 Lower = APInt::getNullValue(BitWidth); 6552 if (match(RHS, m_Neg(m_Specific(LHS))) && 6553 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6554 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6555 else 6556 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6557 return; 6558 } 6559 6560 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6561 // The result of -abs(X) is <= 0. 6562 Lower = APInt::getSignedMinValue(BitWidth); 6563 Upper = APInt(BitWidth, 1); 6564 return; 6565 } 6566 6567 const APInt *C; 6568 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6569 return; 6570 6571 switch (R.Flavor) { 6572 case SPF_UMIN: 6573 Upper = *C + 1; 6574 break; 6575 case SPF_UMAX: 6576 Lower = *C; 6577 break; 6578 case SPF_SMIN: 6579 Lower = APInt::getSignedMinValue(BitWidth); 6580 Upper = *C + 1; 6581 break; 6582 case SPF_SMAX: 6583 Lower = *C; 6584 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6585 break; 6586 default: 6587 break; 6588 } 6589 } 6590 6591 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6592 AssumptionCache *AC, 6593 const Instruction *CtxI, 6594 unsigned Depth) { 6595 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6596 6597 if (Depth == MaxAnalysisRecursionDepth) 6598 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6599 6600 const APInt *C; 6601 if (match(V, m_APInt(C))) 6602 return ConstantRange(*C); 6603 6604 InstrInfoQuery IIQ(UseInstrInfo); 6605 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6606 APInt Lower = APInt(BitWidth, 0); 6607 APInt Upper = APInt(BitWidth, 0); 6608 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6609 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6610 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6611 setLimitsForIntrinsic(*II, Lower, Upper); 6612 else if (auto *SI = dyn_cast<SelectInst>(V)) 6613 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6614 6615 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6616 6617 if (auto *I = dyn_cast<Instruction>(V)) 6618 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6619 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6620 6621 if (CtxI && AC) { 6622 // Try to restrict the range based on information from assumptions. 6623 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6624 if (!AssumeVH) 6625 continue; 6626 CallInst *I = cast<CallInst>(AssumeVH); 6627 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6628 "Got assumption for the wrong function!"); 6629 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6630 "must be an assume intrinsic"); 6631 6632 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6633 continue; 6634 Value *Arg = I->getArgOperand(0); 6635 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6636 // Currently we just use information from comparisons. 6637 if (!Cmp || Cmp->getOperand(0) != V) 6638 continue; 6639 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6640 AC, I, Depth + 1); 6641 CR = CR.intersectWith( 6642 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6643 } 6644 } 6645 6646 return CR; 6647 } 6648 6649 static Optional<int64_t> 6650 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6651 // Skip over the first indices. 6652 gep_type_iterator GTI = gep_type_begin(GEP); 6653 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6654 /*skip along*/; 6655 6656 // Compute the offset implied by the rest of the indices. 6657 int64_t Offset = 0; 6658 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6659 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6660 if (!OpC) 6661 return None; 6662 if (OpC->isZero()) 6663 continue; // No offset. 6664 6665 // Handle struct indices, which add their field offset to the pointer. 6666 if (StructType *STy = GTI.getStructTypeOrNull()) { 6667 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6668 continue; 6669 } 6670 6671 // Otherwise, we have a sequential type like an array or fixed-length 6672 // vector. Multiply the index by the ElementSize. 6673 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6674 if (Size.isScalable()) 6675 return None; 6676 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6677 } 6678 6679 return Offset; 6680 } 6681 6682 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6683 const DataLayout &DL) { 6684 Ptr1 = Ptr1->stripPointerCasts(); 6685 Ptr2 = Ptr2->stripPointerCasts(); 6686 6687 // Handle the trivial case first. 6688 if (Ptr1 == Ptr2) { 6689 return 0; 6690 } 6691 6692 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6693 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6694 6695 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6696 // as in "P" and "gep P, 1". 6697 // Also do this iteratively to handle the the following case: 6698 // Ptr_t1 = GEP Ptr1, c1 6699 // Ptr_t2 = GEP Ptr_t1, c2 6700 // Ptr2 = GEP Ptr_t2, c3 6701 // where we will return c1+c2+c3. 6702 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6703 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6704 // are the same, and return the difference between offsets. 6705 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6706 const Value *Ptr) -> Optional<int64_t> { 6707 const GEPOperator *GEP_T = GEP; 6708 int64_t OffsetVal = 0; 6709 bool HasSameBase = false; 6710 while (GEP_T) { 6711 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6712 if (!Offset) 6713 return None; 6714 OffsetVal += *Offset; 6715 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6716 if (Op0 == Ptr) { 6717 HasSameBase = true; 6718 break; 6719 } 6720 GEP_T = dyn_cast<GEPOperator>(Op0); 6721 } 6722 if (!HasSameBase) 6723 return None; 6724 return OffsetVal; 6725 }; 6726 6727 if (GEP1) { 6728 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6729 if (Offset) 6730 return -*Offset; 6731 } 6732 if (GEP2) { 6733 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6734 if (Offset) 6735 return Offset; 6736 } 6737 6738 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6739 // base. After that base, they may have some number of common (and 6740 // potentially variable) indices. After that they handle some constant 6741 // offset, which determines their offset from each other. At this point, we 6742 // handle no other case. 6743 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6744 return None; 6745 6746 // Skip any common indices and track the GEP types. 6747 unsigned Idx = 1; 6748 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6749 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6750 break; 6751 6752 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6753 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6754 if (!Offset1 || !Offset2) 6755 return None; 6756 return *Offset2 - *Offset1; 6757 } 6758