1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Support/MathExtras.h" 43 #include <algorithm> 44 #include <array> 45 #include <cstring> 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 const unsigned MaxDepth = 6; 50 51 // Controls the number of uses of the value searched for possible 52 // dominating comparisons. 53 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 54 cl::Hidden, cl::init(20)); 55 56 // This optimization is known to cause performance regressions is some cases, 57 // keep it under a temporary flag for now. 58 static cl::opt<bool> 59 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 60 cl::Hidden, cl::init(true)); 61 62 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 63 /// returns the element type's bitwidth. 64 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 65 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 66 return BitWidth; 67 68 return DL.getPointerTypeSizeInBits(Ty); 69 } 70 71 namespace { 72 // Simplifying using an assume can only be done in a particular control-flow 73 // context (the context instruction provides that context). If an assume and 74 // the context instruction are not in the same block then the DT helps in 75 // figuring out if we can use it. 76 struct Query { 77 const DataLayout &DL; 78 AssumptionCache *AC; 79 const Instruction *CxtI; 80 const DominatorTree *DT; 81 // Unlike the other analyses, this may be a nullptr because not all clients 82 // provide it currently. 83 OptimizationRemarkEmitter *ORE; 84 85 /// Set of assumptions that should be excluded from further queries. 86 /// This is because of the potential for mutual recursion to cause 87 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 88 /// classic case of this is assume(x = y), which will attempt to determine 89 /// bits in x from bits in y, which will attempt to determine bits in y from 90 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 91 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 92 /// (all of which can call computeKnownBits), and so on. 93 std::array<const Value *, MaxDepth> Excluded; 94 unsigned NumExcluded; 95 96 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 97 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 99 100 Query(const Query &Q, const Value *NewExcl) 101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 102 NumExcluded(Q.NumExcluded) { 103 Excluded = Q.Excluded; 104 Excluded[NumExcluded++] = NewExcl; 105 assert(NumExcluded <= Excluded.size()); 106 } 107 108 bool isExcluded(const Value *Value) const { 109 if (NumExcluded == 0) 110 return false; 111 auto End = Excluded.begin() + NumExcluded; 112 return std::find(Excluded.begin(), End, Value) != End; 113 } 114 }; 115 } // end anonymous namespace 116 117 // Given the provided Value and, potentially, a context instruction, return 118 // the preferred context instruction (if any). 119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 120 // If we've been provided with a context instruction, then use that (provided 121 // it has been inserted). 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 // If the value is really an already-inserted instruction, then use that. 126 CxtI = dyn_cast<Instruction>(V); 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 return nullptr; 131 } 132 133 static void computeKnownBits(const Value *V, KnownBits &Known, 134 unsigned Depth, const Query &Q); 135 136 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 137 const DataLayout &DL, unsigned Depth, 138 AssumptionCache *AC, const Instruction *CxtI, 139 const DominatorTree *DT, 140 OptimizationRemarkEmitter *ORE) { 141 ::computeKnownBits(V, Known, Depth, 142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 143 } 144 145 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 146 const Query &Q); 147 148 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 149 unsigned Depth, AssumptionCache *AC, 150 const Instruction *CxtI, 151 const DominatorTree *DT) { 152 return ::computeKnownBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 153 } 154 155 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 156 const DataLayout &DL, 157 AssumptionCache *AC, const Instruction *CxtI, 158 const DominatorTree *DT) { 159 assert(LHS->getType() == RHS->getType() && 160 "LHS and RHS should have the same type"); 161 assert(LHS->getType()->isIntOrIntVectorTy() && 162 "LHS and RHS should be integers"); 163 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 164 KnownBits LHSKnown(IT->getBitWidth()); 165 KnownBits RHSKnown(IT->getBitWidth()); 166 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 167 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 168 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 169 } 170 171 172 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 173 const DataLayout &DL, unsigned Depth, 174 AssumptionCache *AC, const Instruction *CxtI, 175 const DominatorTree *DT) { 176 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 177 KnownZero = Known.isNonNegative(); 178 KnownOne = Known.isNegative(); 179 } 180 181 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 182 const Query &Q); 183 184 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 185 bool OrZero, 186 unsigned Depth, AssumptionCache *AC, 187 const Instruction *CxtI, 188 const DominatorTree *DT) { 189 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 190 Query(DL, AC, safeCxtI(V, CxtI), DT)); 191 } 192 193 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 194 195 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 196 AssumptionCache *AC, const Instruction *CxtI, 197 const DominatorTree *DT) { 198 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 199 } 200 201 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 202 unsigned Depth, 203 AssumptionCache *AC, const Instruction *CxtI, 204 const DominatorTree *DT) { 205 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 206 return Known.isNonNegative(); 207 } 208 209 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 210 AssumptionCache *AC, const Instruction *CxtI, 211 const DominatorTree *DT) { 212 if (auto *CI = dyn_cast<ConstantInt>(V)) 213 return CI->getValue().isStrictlyPositive(); 214 215 // TODO: We'd doing two recursive queries here. We should factor this such 216 // that only a single query is needed. 217 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 218 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 219 } 220 221 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT) { 224 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 225 return Known.isNegative(); 226 } 227 228 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 229 230 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 231 const DataLayout &DL, 232 AssumptionCache *AC, const Instruction *CxtI, 233 const DominatorTree *DT) { 234 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 235 safeCxtI(V1, safeCxtI(V2, CxtI)), 236 DT)); 237 } 238 239 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 240 const Query &Q); 241 242 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 243 const DataLayout &DL, 244 unsigned Depth, AssumptionCache *AC, 245 const Instruction *CxtI, const DominatorTree *DT) { 246 return ::MaskedValueIsZero(V, Mask, Depth, 247 Query(DL, AC, safeCxtI(V, CxtI), DT)); 248 } 249 250 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 251 const Query &Q); 252 253 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 254 unsigned Depth, AssumptionCache *AC, 255 const Instruction *CxtI, 256 const DominatorTree *DT) { 257 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 258 } 259 260 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 261 bool NSW, 262 KnownBits &KnownOut, KnownBits &Known2, 263 unsigned Depth, const Query &Q) { 264 unsigned BitWidth = KnownOut.getBitWidth(); 265 266 // If an initial sequence of bits in the result is not needed, the 267 // corresponding bits in the operands are not needed. 268 KnownBits LHSKnown(BitWidth); 269 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 270 computeKnownBits(Op1, Known2, Depth + 1, Q); 271 272 // Carry in a 1 for a subtract, rather than a 0. 273 uint64_t CarryIn = 0; 274 if (!Add) { 275 // Sum = LHS + ~RHS + 1 276 std::swap(Known2.Zero, Known2.One); 277 CarryIn = 1; 278 } 279 280 APInt PossibleSumZero = ~LHSKnown.Zero + ~Known2.Zero + CarryIn; 281 APInt PossibleSumOne = LHSKnown.One + Known2.One + CarryIn; 282 283 // Compute known bits of the carry. 284 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnown.Zero ^ Known2.Zero); 285 APInt CarryKnownOne = PossibleSumOne ^ LHSKnown.One ^ Known2.One; 286 287 // Compute set of known bits (where all three relevant bits are known). 288 APInt LHSKnownUnion = LHSKnown.Zero | LHSKnown.One; 289 APInt RHSKnownUnion = Known2.Zero | Known2.One; 290 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne; 291 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion; 292 293 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 294 "known bits of sum differ"); 295 296 // Compute known bits of the result. 297 KnownOut.Zero = ~PossibleSumOne & Known; 298 KnownOut.One = PossibleSumOne & Known; 299 300 // Are we still trying to solve for the sign bit? 301 if (!Known.isSignBitSet()) { 302 if (NSW) { 303 // Adding two non-negative numbers, or subtracting a negative number from 304 // a non-negative one, can't wrap into negative. 305 if (LHSKnown.isNonNegative() && Known2.isNonNegative()) 306 KnownOut.makeNonNegative(); 307 // Adding two negative numbers, or subtracting a non-negative number from 308 // a negative one, can't wrap into non-negative. 309 else if (LHSKnown.isNegative() && Known2.isNegative()) 310 KnownOut.makeNegative(); 311 } 312 } 313 } 314 315 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 316 KnownBits &Known, KnownBits &Known2, 317 unsigned Depth, const Query &Q) { 318 unsigned BitWidth = Known.getBitWidth(); 319 computeKnownBits(Op1, Known, Depth + 1, Q); 320 computeKnownBits(Op0, Known2, Depth + 1, Q); 321 322 bool isKnownNegative = false; 323 bool isKnownNonNegative = false; 324 // If the multiplication is known not to overflow, compute the sign bit. 325 if (NSW) { 326 if (Op0 == Op1) { 327 // The product of a number with itself is non-negative. 328 isKnownNonNegative = true; 329 } else { 330 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 331 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 332 bool isKnownNegativeOp1 = Known.isNegative(); 333 bool isKnownNegativeOp0 = Known2.isNegative(); 334 // The product of two numbers with the same sign is non-negative. 335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 337 // The product of a negative number and a non-negative number is either 338 // negative or zero. 339 if (!isKnownNonNegative) 340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 341 isKnownNonZero(Op0, Depth, Q)) || 342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 343 isKnownNonZero(Op1, Depth, Q)); 344 } 345 } 346 347 // If low bits are zero in either operand, output low known-0 bits. 348 // Also compute a conservative estimate for high known-0 bits. 349 // More trickiness is possible, but this is sufficient for the 350 // interesting case of alignment computation. 351 unsigned TrailZ = Known.Zero.countTrailingOnes() + 352 Known2.Zero.countTrailingOnes(); 353 unsigned LeadZ = std::max(Known.Zero.countLeadingOnes() + 354 Known2.Zero.countLeadingOnes(), 355 BitWidth) - BitWidth; 356 357 TrailZ = std::min(TrailZ, BitWidth); 358 LeadZ = std::min(LeadZ, BitWidth); 359 Known.resetAll(); 360 Known.Zero.setLowBits(TrailZ); 361 Known.Zero.setHighBits(LeadZ); 362 363 // Only make use of no-wrap flags if we failed to compute the sign bit 364 // directly. This matters if the multiplication always overflows, in 365 // which case we prefer to follow the result of the direct computation, 366 // though as the program is invoking undefined behaviour we can choose 367 // whatever we like here. 368 if (isKnownNonNegative && !Known.isNegative()) 369 Known.makeNonNegative(); 370 else if (isKnownNegative && !Known.isNonNegative()) 371 Known.makeNegative(); 372 } 373 374 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 375 KnownBits &Known) { 376 unsigned BitWidth = Known.getBitWidth(); 377 unsigned NumRanges = Ranges.getNumOperands() / 2; 378 assert(NumRanges >= 1); 379 380 Known.Zero.setAllBits(); 381 Known.One.setAllBits(); 382 383 for (unsigned i = 0; i < NumRanges; ++i) { 384 ConstantInt *Lower = 385 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 386 ConstantInt *Upper = 387 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 388 ConstantRange Range(Lower->getValue(), Upper->getValue()); 389 390 // The first CommonPrefixBits of all values in Range are equal. 391 unsigned CommonPrefixBits = 392 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 393 394 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 395 Known.One &= Range.getUnsignedMax() & Mask; 396 Known.Zero &= ~Range.getUnsignedMax() & Mask; 397 } 398 } 399 400 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 401 SmallVector<const Value *, 16> WorkSet(1, I); 402 SmallPtrSet<const Value *, 32> Visited; 403 SmallPtrSet<const Value *, 16> EphValues; 404 405 // The instruction defining an assumption's condition itself is always 406 // considered ephemeral to that assumption (even if it has other 407 // non-ephemeral users). See r246696's test case for an example. 408 if (is_contained(I->operands(), E)) 409 return true; 410 411 while (!WorkSet.empty()) { 412 const Value *V = WorkSet.pop_back_val(); 413 if (!Visited.insert(V).second) 414 continue; 415 416 // If all uses of this value are ephemeral, then so is this value. 417 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 418 if (V == E) 419 return true; 420 421 EphValues.insert(V); 422 if (const User *U = dyn_cast<User>(V)) 423 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 424 J != JE; ++J) { 425 if (isSafeToSpeculativelyExecute(*J)) 426 WorkSet.push_back(*J); 427 } 428 } 429 } 430 431 return false; 432 } 433 434 // Is this an intrinsic that cannot be speculated but also cannot trap? 435 static bool isAssumeLikeIntrinsic(const Instruction *I) { 436 if (const CallInst *CI = dyn_cast<CallInst>(I)) 437 if (Function *F = CI->getCalledFunction()) 438 switch (F->getIntrinsicID()) { 439 default: break; 440 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 441 case Intrinsic::assume: 442 case Intrinsic::dbg_declare: 443 case Intrinsic::dbg_value: 444 case Intrinsic::invariant_start: 445 case Intrinsic::invariant_end: 446 case Intrinsic::lifetime_start: 447 case Intrinsic::lifetime_end: 448 case Intrinsic::objectsize: 449 case Intrinsic::ptr_annotation: 450 case Intrinsic::var_annotation: 451 return true; 452 } 453 454 return false; 455 } 456 457 bool llvm::isValidAssumeForContext(const Instruction *Inv, 458 const Instruction *CxtI, 459 const DominatorTree *DT) { 460 461 // There are two restrictions on the use of an assume: 462 // 1. The assume must dominate the context (or the control flow must 463 // reach the assume whenever it reaches the context). 464 // 2. The context must not be in the assume's set of ephemeral values 465 // (otherwise we will use the assume to prove that the condition 466 // feeding the assume is trivially true, thus causing the removal of 467 // the assume). 468 469 if (DT) { 470 if (DT->dominates(Inv, CxtI)) 471 return true; 472 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 473 // We don't have a DT, but this trivially dominates. 474 return true; 475 } 476 477 // With or without a DT, the only remaining case we will check is if the 478 // instructions are in the same BB. Give up if that is not the case. 479 if (Inv->getParent() != CxtI->getParent()) 480 return false; 481 482 // If we have a dom tree, then we now know that the assume doens't dominate 483 // the other instruction. If we don't have a dom tree then we can check if 484 // the assume is first in the BB. 485 if (!DT) { 486 // Search forward from the assume until we reach the context (or the end 487 // of the block); the common case is that the assume will come first. 488 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 489 IE = Inv->getParent()->end(); I != IE; ++I) 490 if (&*I == CxtI) 491 return true; 492 } 493 494 // The context comes first, but they're both in the same block. Make sure 495 // there is nothing in between that might interrupt the control flow. 496 for (BasicBlock::const_iterator I = 497 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 498 I != IE; ++I) 499 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 500 return false; 501 502 return !isEphemeralValueOf(Inv, CxtI); 503 } 504 505 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 506 unsigned Depth, const Query &Q) { 507 // Use of assumptions is context-sensitive. If we don't have a context, we 508 // cannot use them! 509 if (!Q.AC || !Q.CxtI) 510 return; 511 512 unsigned BitWidth = Known.getBitWidth(); 513 514 // Note that the patterns below need to be kept in sync with the code 515 // in AssumptionCache::updateAffectedValues. 516 517 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 518 if (!AssumeVH) 519 continue; 520 CallInst *I = cast<CallInst>(AssumeVH); 521 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 522 "Got assumption for the wrong function!"); 523 if (Q.isExcluded(I)) 524 continue; 525 526 // Warning: This loop can end up being somewhat performance sensetive. 527 // We're running this loop for once for each value queried resulting in a 528 // runtime of ~O(#assumes * #values). 529 530 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 531 "must be an assume intrinsic"); 532 533 Value *Arg = I->getArgOperand(0); 534 535 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 536 assert(BitWidth == 1 && "assume operand is not i1?"); 537 Known.setAllOnes(); 538 return; 539 } 540 if (match(Arg, m_Not(m_Specific(V))) && 541 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 542 assert(BitWidth == 1 && "assume operand is not i1?"); 543 Known.setAllZero(); 544 return; 545 } 546 547 // The remaining tests are all recursive, so bail out if we hit the limit. 548 if (Depth == MaxDepth) 549 continue; 550 551 Value *A, *B; 552 auto m_V = m_CombineOr(m_Specific(V), 553 m_CombineOr(m_PtrToInt(m_Specific(V)), 554 m_BitCast(m_Specific(V)))); 555 556 CmpInst::Predicate Pred; 557 ConstantInt *C; 558 // assume(v = a) 559 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 560 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 561 KnownBits RHSKnown(BitWidth); 562 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 563 Known.Zero |= RHSKnown.Zero; 564 Known.One |= RHSKnown.One; 565 // assume(v & b = a) 566 } else if (match(Arg, 567 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 568 Pred == ICmpInst::ICMP_EQ && 569 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 570 KnownBits RHSKnown(BitWidth); 571 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 572 KnownBits MaskKnown(BitWidth); 573 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 574 575 // For those bits in the mask that are known to be one, we can propagate 576 // known bits from the RHS to V. 577 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 578 Known.One |= RHSKnown.One & MaskKnown.One; 579 // assume(~(v & b) = a) 580 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 581 m_Value(A))) && 582 Pred == ICmpInst::ICMP_EQ && 583 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 584 KnownBits RHSKnown(BitWidth); 585 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 586 KnownBits MaskKnown(BitWidth); 587 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 588 589 // For those bits in the mask that are known to be one, we can propagate 590 // inverted known bits from the RHS to V. 591 Known.Zero |= RHSKnown.One & MaskKnown.One; 592 Known.One |= RHSKnown.Zero & MaskKnown.One; 593 // assume(v | b = a) 594 } else if (match(Arg, 595 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 596 Pred == ICmpInst::ICMP_EQ && 597 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 598 KnownBits RHSKnown(BitWidth); 599 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 600 KnownBits BKnown(BitWidth); 601 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 602 603 // For those bits in B that are known to be zero, we can propagate known 604 // bits from the RHS to V. 605 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 606 Known.One |= RHSKnown.One & BKnown.Zero; 607 // assume(~(v | b) = a) 608 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 609 m_Value(A))) && 610 Pred == ICmpInst::ICMP_EQ && 611 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 612 KnownBits RHSKnown(BitWidth); 613 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 614 KnownBits BKnown(BitWidth); 615 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 616 617 // For those bits in B that are known to be zero, we can propagate 618 // inverted known bits from the RHS to V. 619 Known.Zero |= RHSKnown.One & BKnown.Zero; 620 Known.One |= RHSKnown.Zero & BKnown.Zero; 621 // assume(v ^ b = a) 622 } else if (match(Arg, 623 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 624 Pred == ICmpInst::ICMP_EQ && 625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 626 KnownBits RHSKnown(BitWidth); 627 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 628 KnownBits BKnown(BitWidth); 629 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 630 631 // For those bits in B that are known to be zero, we can propagate known 632 // bits from the RHS to V. For those bits in B that are known to be one, 633 // we can propagate inverted known bits from the RHS to V. 634 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 635 Known.One |= RHSKnown.One & BKnown.Zero; 636 Known.Zero |= RHSKnown.One & BKnown.One; 637 Known.One |= RHSKnown.Zero & BKnown.One; 638 // assume(~(v ^ b) = a) 639 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 640 m_Value(A))) && 641 Pred == ICmpInst::ICMP_EQ && 642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 643 KnownBits RHSKnown(BitWidth); 644 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 645 KnownBits BKnown(BitWidth); 646 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 647 648 // For those bits in B that are known to be zero, we can propagate 649 // inverted known bits from the RHS to V. For those bits in B that are 650 // known to be one, we can propagate known bits from the RHS to V. 651 Known.Zero |= RHSKnown.One & BKnown.Zero; 652 Known.One |= RHSKnown.Zero & BKnown.Zero; 653 Known.Zero |= RHSKnown.Zero & BKnown.One; 654 Known.One |= RHSKnown.One & BKnown.One; 655 // assume(v << c = a) 656 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 657 m_Value(A))) && 658 Pred == ICmpInst::ICMP_EQ && 659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 660 KnownBits RHSKnown(BitWidth); 661 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 662 // For those bits in RHS that are known, we can propagate them to known 663 // bits in V shifted to the right by C. 664 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 665 Known.Zero |= RHSKnown.Zero; 666 RHSKnown.One.lshrInPlace(C->getZExtValue()); 667 Known.One |= RHSKnown.One; 668 // assume(~(v << c) = a) 669 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 670 m_Value(A))) && 671 Pred == ICmpInst::ICMP_EQ && 672 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 673 KnownBits RHSKnown(BitWidth); 674 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 675 // For those bits in RHS that are known, we can propagate them inverted 676 // to known bits in V shifted to the right by C. 677 RHSKnown.One.lshrInPlace(C->getZExtValue()); 678 Known.Zero |= RHSKnown.One; 679 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 680 Known.One |= RHSKnown.Zero; 681 // assume(v >> c = a) 682 } else if (match(Arg, 683 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 684 m_AShr(m_V, m_ConstantInt(C))), 685 m_Value(A))) && 686 Pred == ICmpInst::ICMP_EQ && 687 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 688 KnownBits RHSKnown(BitWidth); 689 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 690 // For those bits in RHS that are known, we can propagate them to known 691 // bits in V shifted to the right by C. 692 Known.Zero |= RHSKnown.Zero << C->getZExtValue(); 693 Known.One |= RHSKnown.One << C->getZExtValue(); 694 // assume(~(v >> c) = a) 695 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 696 m_LShr(m_V, m_ConstantInt(C)), 697 m_AShr(m_V, m_ConstantInt(C)))), 698 m_Value(A))) && 699 Pred == ICmpInst::ICMP_EQ && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 KnownBits RHSKnown(BitWidth); 702 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 703 // For those bits in RHS that are known, we can propagate them inverted 704 // to known bits in V shifted to the right by C. 705 Known.Zero |= RHSKnown.One << C->getZExtValue(); 706 Known.One |= RHSKnown.Zero << C->getZExtValue(); 707 // assume(v >=_s c) where c is non-negative 708 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 709 Pred == ICmpInst::ICMP_SGE && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 KnownBits RHSKnown(BitWidth); 712 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 713 714 if (RHSKnown.isNonNegative()) { 715 // We know that the sign bit is zero. 716 Known.makeNonNegative(); 717 } 718 // assume(v >_s c) where c is at least -1. 719 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 720 Pred == ICmpInst::ICMP_SGT && 721 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 722 KnownBits RHSKnown(BitWidth); 723 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 724 725 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 726 // We know that the sign bit is zero. 727 Known.makeNonNegative(); 728 } 729 // assume(v <=_s c) where c is negative 730 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 731 Pred == ICmpInst::ICMP_SLE && 732 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 733 KnownBits RHSKnown(BitWidth); 734 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 735 736 if (RHSKnown.isNegative()) { 737 // We know that the sign bit is one. 738 Known.makeNegative(); 739 } 740 // assume(v <_s c) where c is non-positive 741 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 742 Pred == ICmpInst::ICMP_SLT && 743 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 744 KnownBits RHSKnown(BitWidth); 745 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 746 747 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 748 // We know that the sign bit is one. 749 Known.makeNegative(); 750 } 751 // assume(v <=_u c) 752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 753 Pred == ICmpInst::ICMP_ULE && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 KnownBits RHSKnown(BitWidth); 756 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 757 758 // Whatever high bits in c are zero are known to be zero. 759 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()); 760 // assume(v <_u c) 761 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 762 Pred == ICmpInst::ICMP_ULT && 763 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 764 KnownBits RHSKnown(BitWidth); 765 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 766 767 // Whatever high bits in c are zero are known to be zero (if c is a power 768 // of 2, then one more). 769 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 770 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()+1); 771 else 772 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()); 773 } 774 } 775 776 // If assumptions conflict with each other or previous known bits, then we 777 // have a logical fallacy. It's possible that the assumption is not reachable, 778 // so this isn't a real bug. On the other hand, the program may have undefined 779 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 780 // clear out the known bits, try to warn the user, and hope for the best. 781 if (Known.Zero.intersects(Known.One)) { 782 Known.resetAll(); 783 784 if (Q.ORE) { 785 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 786 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 787 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 788 "have undefined behavior, or compiler may have " 789 "internal error."); 790 } 791 } 792 } 793 794 // Compute known bits from a shift operator, including those with a 795 // non-constant shift amount. Known is the outputs of this function. Known2 is a 796 // pre-allocated temporary with the/ same bit width as Known. KZF and KOF are 797 // operator-specific functors that, given the known-zero or known-one bits 798 // respectively, and a shift amount, compute the implied known-zero or known-one 799 // bits of the shift operator's result respectively for that shift amount. The 800 // results from calling KZF and KOF are conservatively combined for all 801 // permitted shift amounts. 802 static void computeKnownBitsFromShiftOperator( 803 const Operator *I, KnownBits &Known, KnownBits &Known2, 804 unsigned Depth, const Query &Q, 805 function_ref<APInt(const APInt &, unsigned)> KZF, 806 function_ref<APInt(const APInt &, unsigned)> KOF) { 807 unsigned BitWidth = Known.getBitWidth(); 808 809 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 810 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 811 812 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 813 Known.Zero = KZF(Known.Zero, ShiftAmt); 814 Known.One = KOF(Known.One, ShiftAmt); 815 // If there is conflict between Known.Zero and Known.One, this must be an 816 // overflowing left shift, so the shift result is undefined. Clear Known 817 // bits so that other code could propagate this undef. 818 if ((Known.Zero & Known.One) != 0) 819 Known.resetAll(); 820 821 return; 822 } 823 824 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 825 826 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 827 // value could be undef, so we don't know anything about it. 828 if ((~Known.Zero).uge(BitWidth)) { 829 Known.resetAll(); 830 return; 831 } 832 833 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 834 // BitWidth > 64 and any upper bits are known, we'll end up returning the 835 // limit value (which implies all bits are known). 836 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 837 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 838 839 // It would be more-clearly correct to use the two temporaries for this 840 // calculation. Reusing the APInts here to prevent unnecessary allocations. 841 Known.resetAll(); 842 843 // If we know the shifter operand is nonzero, we can sometimes infer more 844 // known bits. However this is expensive to compute, so be lazy about it and 845 // only compute it when absolutely necessary. 846 Optional<bool> ShifterOperandIsNonZero; 847 848 // Early exit if we can't constrain any well-defined shift amount. 849 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 850 ShifterOperandIsNonZero = 851 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 852 if (!*ShifterOperandIsNonZero) 853 return; 854 } 855 856 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 857 858 Known.Zero.setAllBits(); 859 Known.One.setAllBits(); 860 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 861 // Combine the shifted known input bits only for those shift amounts 862 // compatible with its known constraints. 863 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 864 continue; 865 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 866 continue; 867 // If we know the shifter is nonzero, we may be able to infer more known 868 // bits. This check is sunk down as far as possible to avoid the expensive 869 // call to isKnownNonZero if the cheaper checks above fail. 870 if (ShiftAmt == 0) { 871 if (!ShifterOperandIsNonZero.hasValue()) 872 ShifterOperandIsNonZero = 873 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 874 if (*ShifterOperandIsNonZero) 875 continue; 876 } 877 878 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 879 Known.One &= KOF(Known2.One, ShiftAmt); 880 } 881 882 // If there are no compatible shift amounts, then we've proven that the shift 883 // amount must be >= the BitWidth, and the result is undefined. We could 884 // return anything we'd like, but we need to make sure the sets of known bits 885 // stay disjoint (it should be better for some other code to actually 886 // propagate the undef than to pick a value here using known bits). 887 if (Known.Zero.intersects(Known.One)) 888 Known.resetAll(); 889 } 890 891 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 892 unsigned Depth, const Query &Q) { 893 unsigned BitWidth = Known.getBitWidth(); 894 895 KnownBits Known2(Known); 896 switch (I->getOpcode()) { 897 default: break; 898 case Instruction::Load: 899 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 900 computeKnownBitsFromRangeMetadata(*MD, Known); 901 break; 902 case Instruction::And: { 903 // If either the LHS or the RHS are Zero, the result is zero. 904 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 905 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 906 907 // Output known-1 bits are only known if set in both the LHS & RHS. 908 Known.One &= Known2.One; 909 // Output known-0 are known to be clear if zero in either the LHS | RHS. 910 Known.Zero |= Known2.Zero; 911 912 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 913 // here we handle the more general case of adding any odd number by 914 // matching the form add(x, add(x, y)) where y is odd. 915 // TODO: This could be generalized to clearing any bit set in y where the 916 // following bit is known to be unset in y. 917 Value *Y = nullptr; 918 if (!Known.Zero[0] && !Known.One[0] && 919 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 920 m_Value(Y))) || 921 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 922 m_Value(Y))))) { 923 Known2.resetAll(); 924 computeKnownBits(Y, Known2, Depth + 1, Q); 925 if (Known2.One.countTrailingOnes() > 0) 926 Known.Zero.setBit(0); 927 } 928 break; 929 } 930 case Instruction::Or: { 931 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 932 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 933 934 // Output known-0 bits are only known if clear in both the LHS & RHS. 935 Known.Zero &= Known2.Zero; 936 // Output known-1 are known to be set if set in either the LHS | RHS. 937 Known.One |= Known2.One; 938 break; 939 } 940 case Instruction::Xor: { 941 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 942 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 943 944 // Output known-0 bits are known if clear or set in both the LHS & RHS. 945 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 946 // Output known-1 are known to be set if set in only one of the LHS, RHS. 947 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 948 Known.Zero = std::move(KnownZeroOut); 949 break; 950 } 951 case Instruction::Mul: { 952 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 953 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 954 Known2, Depth, Q); 955 break; 956 } 957 case Instruction::UDiv: { 958 // For the purposes of computing leading zeros we can conservatively 959 // treat a udiv as a logical right shift by the power of 2 known to 960 // be less than the denominator. 961 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 962 unsigned LeadZ = Known2.Zero.countLeadingOnes(); 963 964 Known2.resetAll(); 965 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 966 unsigned RHSUnknownLeadingOnes = Known2.One.countLeadingZeros(); 967 if (RHSUnknownLeadingOnes != BitWidth) 968 LeadZ = std::min(BitWidth, 969 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 970 971 Known.Zero.setHighBits(LeadZ); 972 break; 973 } 974 case Instruction::Select: { 975 const Value *LHS, *RHS; 976 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 977 if (SelectPatternResult::isMinOrMax(SPF)) { 978 computeKnownBits(RHS, Known, Depth + 1, Q); 979 computeKnownBits(LHS, Known2, Depth + 1, Q); 980 } else { 981 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 982 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 983 } 984 985 unsigned MaxHighOnes = 0; 986 unsigned MaxHighZeros = 0; 987 if (SPF == SPF_SMAX) { 988 // If both sides are negative, the result is negative. 989 if (Known.isNegative() && Known2.isNegative()) 990 // We can derive a lower bound on the result by taking the max of the 991 // leading one bits. 992 MaxHighOnes = std::max(Known.One.countLeadingOnes(), 993 Known2.One.countLeadingOnes()); 994 // If either side is non-negative, the result is non-negative. 995 else if (Known.isNonNegative() || Known2.isNonNegative()) 996 MaxHighZeros = 1; 997 } else if (SPF == SPF_SMIN) { 998 // If both sides are non-negative, the result is non-negative. 999 if (Known.isNonNegative() && Known2.isNonNegative()) 1000 // We can derive an upper bound on the result by taking the max of the 1001 // leading zero bits. 1002 MaxHighZeros = std::max(Known.Zero.countLeadingOnes(), 1003 Known2.Zero.countLeadingOnes()); 1004 // If either side is negative, the result is negative. 1005 else if (Known.isNegative() || Known2.isNegative()) 1006 MaxHighOnes = 1; 1007 } else if (SPF == SPF_UMAX) { 1008 // We can derive a lower bound on the result by taking the max of the 1009 // leading one bits. 1010 MaxHighOnes = 1011 std::max(Known.One.countLeadingOnes(), Known2.One.countLeadingOnes()); 1012 } else if (SPF == SPF_UMIN) { 1013 // We can derive an upper bound on the result by taking the max of the 1014 // leading zero bits. 1015 MaxHighZeros = 1016 std::max(Known.Zero.countLeadingOnes(), Known2.Zero.countLeadingOnes()); 1017 } 1018 1019 // Only known if known in both the LHS and RHS. 1020 Known.One &= Known2.One; 1021 Known.Zero &= Known2.Zero; 1022 if (MaxHighOnes > 0) 1023 Known.One.setHighBits(MaxHighOnes); 1024 if (MaxHighZeros > 0) 1025 Known.Zero.setHighBits(MaxHighZeros); 1026 break; 1027 } 1028 case Instruction::FPTrunc: 1029 case Instruction::FPExt: 1030 case Instruction::FPToUI: 1031 case Instruction::FPToSI: 1032 case Instruction::SIToFP: 1033 case Instruction::UIToFP: 1034 break; // Can't work with floating point. 1035 case Instruction::PtrToInt: 1036 case Instruction::IntToPtr: 1037 // Fall through and handle them the same as zext/trunc. 1038 LLVM_FALLTHROUGH; 1039 case Instruction::ZExt: 1040 case Instruction::Trunc: { 1041 Type *SrcTy = I->getOperand(0)->getType(); 1042 1043 unsigned SrcBitWidth; 1044 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1045 // which fall through here. 1046 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1047 1048 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1049 Known = Known.zextOrTrunc(SrcBitWidth); 1050 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1051 Known = Known.zextOrTrunc(BitWidth); 1052 // Any top bits are known to be zero. 1053 if (BitWidth > SrcBitWidth) 1054 Known.Zero.setBitsFrom(SrcBitWidth); 1055 break; 1056 } 1057 case Instruction::BitCast: { 1058 Type *SrcTy = I->getOperand(0)->getType(); 1059 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1060 // TODO: For now, not handling conversions like: 1061 // (bitcast i64 %x to <2 x i32>) 1062 !I->getType()->isVectorTy()) { 1063 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1064 break; 1065 } 1066 break; 1067 } 1068 case Instruction::SExt: { 1069 // Compute the bits in the result that are not present in the input. 1070 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1071 1072 Known = Known.trunc(SrcBitWidth); 1073 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1074 // If the sign bit of the input is known set or clear, then we know the 1075 // top bits of the result. 1076 Known = Known.sext(BitWidth); 1077 break; 1078 } 1079 case Instruction::Shl: { 1080 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1081 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1082 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1083 APInt KZResult = KnownZero << ShiftAmt; 1084 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1085 // If this shift has "nsw" keyword, then the result is either a poison 1086 // value or has the same sign bit as the first operand. 1087 if (NSW && KnownZero.isSignBitSet()) 1088 KZResult.setSignBit(); 1089 return KZResult; 1090 }; 1091 1092 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1093 APInt KOResult = KnownOne << ShiftAmt; 1094 if (NSW && KnownOne.isSignBitSet()) 1095 KOResult.setSignBit(); 1096 return KOResult; 1097 }; 1098 1099 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1100 break; 1101 } 1102 case Instruction::LShr: { 1103 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1104 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1105 APInt KZResult = KnownZero.lshr(ShiftAmt); 1106 // High bits known zero. 1107 KZResult.setHighBits(ShiftAmt); 1108 return KZResult; 1109 }; 1110 1111 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1112 return KnownOne.lshr(ShiftAmt); 1113 }; 1114 1115 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1116 break; 1117 } 1118 case Instruction::AShr: { 1119 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1120 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1121 return KnownZero.ashr(ShiftAmt); 1122 }; 1123 1124 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1125 return KnownOne.ashr(ShiftAmt); 1126 }; 1127 1128 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1129 break; 1130 } 1131 case Instruction::Sub: { 1132 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1133 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1134 Known, Known2, Depth, Q); 1135 break; 1136 } 1137 case Instruction::Add: { 1138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1139 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1140 Known, Known2, Depth, Q); 1141 break; 1142 } 1143 case Instruction::SRem: 1144 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1145 APInt RA = Rem->getValue().abs(); 1146 if (RA.isPowerOf2()) { 1147 APInt LowBits = RA - 1; 1148 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1149 1150 // The low bits of the first operand are unchanged by the srem. 1151 Known.Zero = Known2.Zero & LowBits; 1152 Known.One = Known2.One & LowBits; 1153 1154 // If the first operand is non-negative or has all low bits zero, then 1155 // the upper bits are all zero. 1156 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1157 Known.Zero |= ~LowBits; 1158 1159 // If the first operand is negative and not all low bits are zero, then 1160 // the upper bits are all one. 1161 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1162 Known.One |= ~LowBits; 1163 1164 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1165 break; 1166 } 1167 } 1168 1169 // The sign bit is the LHS's sign bit, except when the result of the 1170 // remainder is zero. 1171 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1172 // If it's known zero, our sign bit is also zero. 1173 if (Known2.isNonNegative()) 1174 Known.makeNonNegative(); 1175 1176 break; 1177 case Instruction::URem: { 1178 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1179 const APInt &RA = Rem->getValue(); 1180 if (RA.isPowerOf2()) { 1181 APInt LowBits = (RA - 1); 1182 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1183 Known.Zero |= ~LowBits; 1184 Known.One &= LowBits; 1185 break; 1186 } 1187 } 1188 1189 // Since the result is less than or equal to either operand, any leading 1190 // zero bits in either operand must also exist in the result. 1191 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1192 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1193 1194 unsigned Leaders = std::max(Known.Zero.countLeadingOnes(), 1195 Known2.Zero.countLeadingOnes()); 1196 Known.resetAll(); 1197 Known.Zero.setHighBits(Leaders); 1198 break; 1199 } 1200 1201 case Instruction::Alloca: { 1202 const AllocaInst *AI = cast<AllocaInst>(I); 1203 unsigned Align = AI->getAlignment(); 1204 if (Align == 0) 1205 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1206 1207 if (Align > 0) 1208 Known.Zero.setLowBits(countTrailingZeros(Align)); 1209 break; 1210 } 1211 case Instruction::GetElementPtr: { 1212 // Analyze all of the subscripts of this getelementptr instruction 1213 // to determine if we can prove known low zero bits. 1214 KnownBits LocalKnown(BitWidth); 1215 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1216 unsigned TrailZ = LocalKnown.Zero.countTrailingOnes(); 1217 1218 gep_type_iterator GTI = gep_type_begin(I); 1219 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1220 Value *Index = I->getOperand(i); 1221 if (StructType *STy = GTI.getStructTypeOrNull()) { 1222 // Handle struct member offset arithmetic. 1223 1224 // Handle case when index is vector zeroinitializer 1225 Constant *CIndex = cast<Constant>(Index); 1226 if (CIndex->isZeroValue()) 1227 continue; 1228 1229 if (CIndex->getType()->isVectorTy()) 1230 Index = CIndex->getSplatValue(); 1231 1232 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1233 const StructLayout *SL = Q.DL.getStructLayout(STy); 1234 uint64_t Offset = SL->getElementOffset(Idx); 1235 TrailZ = std::min<unsigned>(TrailZ, 1236 countTrailingZeros(Offset)); 1237 } else { 1238 // Handle array index arithmetic. 1239 Type *IndexedTy = GTI.getIndexedType(); 1240 if (!IndexedTy->isSized()) { 1241 TrailZ = 0; 1242 break; 1243 } 1244 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1245 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1246 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1247 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1248 TrailZ = std::min(TrailZ, 1249 unsigned(countTrailingZeros(TypeSize) + 1250 LocalKnown.Zero.countTrailingOnes())); 1251 } 1252 } 1253 1254 Known.Zero.setLowBits(TrailZ); 1255 break; 1256 } 1257 case Instruction::PHI: { 1258 const PHINode *P = cast<PHINode>(I); 1259 // Handle the case of a simple two-predecessor recurrence PHI. 1260 // There's a lot more that could theoretically be done here, but 1261 // this is sufficient to catch some interesting cases. 1262 if (P->getNumIncomingValues() == 2) { 1263 for (unsigned i = 0; i != 2; ++i) { 1264 Value *L = P->getIncomingValue(i); 1265 Value *R = P->getIncomingValue(!i); 1266 Operator *LU = dyn_cast<Operator>(L); 1267 if (!LU) 1268 continue; 1269 unsigned Opcode = LU->getOpcode(); 1270 // Check for operations that have the property that if 1271 // both their operands have low zero bits, the result 1272 // will have low zero bits. 1273 if (Opcode == Instruction::Add || 1274 Opcode == Instruction::Sub || 1275 Opcode == Instruction::And || 1276 Opcode == Instruction::Or || 1277 Opcode == Instruction::Mul) { 1278 Value *LL = LU->getOperand(0); 1279 Value *LR = LU->getOperand(1); 1280 // Find a recurrence. 1281 if (LL == I) 1282 L = LR; 1283 else if (LR == I) 1284 L = LL; 1285 else 1286 break; 1287 // Ok, we have a PHI of the form L op= R. Check for low 1288 // zero bits. 1289 computeKnownBits(R, Known2, Depth + 1, Q); 1290 1291 // We need to take the minimum number of known bits 1292 KnownBits Known3(Known); 1293 computeKnownBits(L, Known3, Depth + 1, Q); 1294 1295 Known.Zero.setLowBits(std::min(Known2.Zero.countTrailingOnes(), 1296 Known3.Zero.countTrailingOnes())); 1297 1298 if (DontImproveNonNegativePhiBits) 1299 break; 1300 1301 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1302 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1303 // If initial value of recurrence is nonnegative, and we are adding 1304 // a nonnegative number with nsw, the result can only be nonnegative 1305 // or poison value regardless of the number of times we execute the 1306 // add in phi recurrence. If initial value is negative and we are 1307 // adding a negative number with nsw, the result can only be 1308 // negative or poison value. Similar arguments apply to sub and mul. 1309 // 1310 // (add non-negative, non-negative) --> non-negative 1311 // (add negative, negative) --> negative 1312 if (Opcode == Instruction::Add) { 1313 if (Known2.isNonNegative() && Known3.isNonNegative()) 1314 Known.makeNonNegative(); 1315 else if (Known2.isNegative() && Known3.isNegative()) 1316 Known.makeNegative(); 1317 } 1318 1319 // (sub nsw non-negative, negative) --> non-negative 1320 // (sub nsw negative, non-negative) --> negative 1321 else if (Opcode == Instruction::Sub && LL == I) { 1322 if (Known2.isNonNegative() && Known3.isNegative()) 1323 Known.makeNonNegative(); 1324 else if (Known2.isNegative() && Known3.isNonNegative()) 1325 Known.makeNegative(); 1326 } 1327 1328 // (mul nsw non-negative, non-negative) --> non-negative 1329 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1330 Known3.isNonNegative()) 1331 Known.makeNonNegative(); 1332 } 1333 1334 break; 1335 } 1336 } 1337 } 1338 1339 // Unreachable blocks may have zero-operand PHI nodes. 1340 if (P->getNumIncomingValues() == 0) 1341 break; 1342 1343 // Otherwise take the unions of the known bit sets of the operands, 1344 // taking conservative care to avoid excessive recursion. 1345 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1346 // Skip if every incoming value references to ourself. 1347 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1348 break; 1349 1350 Known.Zero.setAllBits(); 1351 Known.One.setAllBits(); 1352 for (Value *IncValue : P->incoming_values()) { 1353 // Skip direct self references. 1354 if (IncValue == P) continue; 1355 1356 Known2 = KnownBits(BitWidth); 1357 // Recurse, but cap the recursion to one level, because we don't 1358 // want to waste time spinning around in loops. 1359 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1360 Known.Zero &= Known2.Zero; 1361 Known.One &= Known2.One; 1362 // If all bits have been ruled out, there's no need to check 1363 // more operands. 1364 if (!Known.Zero && !Known.One) 1365 break; 1366 } 1367 } 1368 break; 1369 } 1370 case Instruction::Call: 1371 case Instruction::Invoke: 1372 // If range metadata is attached to this call, set known bits from that, 1373 // and then intersect with known bits based on other properties of the 1374 // function. 1375 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1376 computeKnownBitsFromRangeMetadata(*MD, Known); 1377 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1378 computeKnownBits(RV, Known2, Depth + 1, Q); 1379 Known.Zero |= Known2.Zero; 1380 Known.One |= Known2.One; 1381 } 1382 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1383 switch (II->getIntrinsicID()) { 1384 default: break; 1385 case Intrinsic::bitreverse: 1386 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1387 Known.Zero |= Known2.Zero.reverseBits(); 1388 Known.One |= Known2.One.reverseBits(); 1389 break; 1390 case Intrinsic::bswap: 1391 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1392 Known.Zero |= Known2.Zero.byteSwap(); 1393 Known.One |= Known2.One.byteSwap(); 1394 break; 1395 case Intrinsic::ctlz: { 1396 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1397 // If we have a known 1, its position is our upper bound. 1398 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1399 // If this call is undefined for 0, the result will be less than 2^n. 1400 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1401 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1402 unsigned LowBits = Log2_32(PossibleLZ)+1; 1403 Known.Zero.setBitsFrom(LowBits); 1404 break; 1405 } 1406 case Intrinsic::cttz: { 1407 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1408 // If we have a known 1, its position is our upper bound. 1409 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1410 // If this call is undefined for 0, the result will be less than 2^n. 1411 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1412 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1413 unsigned LowBits = Log2_32(PossibleTZ)+1; 1414 Known.Zero.setBitsFrom(LowBits); 1415 break; 1416 } 1417 case Intrinsic::ctpop: { 1418 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1419 // We can bound the space the count needs. Also, bits known to be zero 1420 // can't contribute to the population. 1421 unsigned BitsPossiblySet = BitWidth - Known2.Zero.countPopulation(); 1422 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1423 Known.Zero.setBitsFrom(LowBits); 1424 // TODO: we could bound KnownOne using the lower bound on the number 1425 // of bits which might be set provided by popcnt KnownOne2. 1426 break; 1427 } 1428 case Intrinsic::x86_sse42_crc32_64_64: 1429 Known.Zero.setBitsFrom(32); 1430 break; 1431 } 1432 } 1433 break; 1434 case Instruction::ExtractElement: 1435 // Look through extract element. At the moment we keep this simple and skip 1436 // tracking the specific element. But at least we might find information 1437 // valid for all elements of the vector (for example if vector is sign 1438 // extended, shifted, etc). 1439 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1440 break; 1441 case Instruction::ExtractValue: 1442 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1443 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1444 if (EVI->getNumIndices() != 1) break; 1445 if (EVI->getIndices()[0] == 0) { 1446 switch (II->getIntrinsicID()) { 1447 default: break; 1448 case Intrinsic::uadd_with_overflow: 1449 case Intrinsic::sadd_with_overflow: 1450 computeKnownBitsAddSub(true, II->getArgOperand(0), 1451 II->getArgOperand(1), false, Known, Known2, 1452 Depth, Q); 1453 break; 1454 case Intrinsic::usub_with_overflow: 1455 case Intrinsic::ssub_with_overflow: 1456 computeKnownBitsAddSub(false, II->getArgOperand(0), 1457 II->getArgOperand(1), false, Known, Known2, 1458 Depth, Q); 1459 break; 1460 case Intrinsic::umul_with_overflow: 1461 case Intrinsic::smul_with_overflow: 1462 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1463 Known, Known2, Depth, Q); 1464 break; 1465 } 1466 } 1467 } 1468 } 1469 } 1470 1471 /// Determine which bits of V are known to be either zero or one and return 1472 /// them. 1473 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1474 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1475 computeKnownBits(V, Known, Depth, Q); 1476 return Known; 1477 } 1478 1479 /// Determine which bits of V are known to be either zero or one and return 1480 /// them in the Known bit set. 1481 /// 1482 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1483 /// we cannot optimize based on the assumption that it is zero without changing 1484 /// it to be an explicit zero. If we don't change it to zero, other code could 1485 /// optimized based on the contradictory assumption that it is non-zero. 1486 /// Because instcombine aggressively folds operations with undef args anyway, 1487 /// this won't lose us code quality. 1488 /// 1489 /// This function is defined on values with integer type, values with pointer 1490 /// type, and vectors of integers. In the case 1491 /// where V is a vector, known zero, and known one values are the 1492 /// same width as the vector element, and the bit is set only if it is true 1493 /// for all of the elements in the vector. 1494 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1495 const Query &Q) { 1496 assert(V && "No Value?"); 1497 assert(Depth <= MaxDepth && "Limit Search Depth"); 1498 unsigned BitWidth = Known.getBitWidth(); 1499 1500 assert((V->getType()->isIntOrIntVectorTy() || 1501 V->getType()->getScalarType()->isPointerTy()) && 1502 "Not integer or pointer type!"); 1503 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1504 (!V->getType()->isIntOrIntVectorTy() || 1505 V->getType()->getScalarSizeInBits() == BitWidth) && 1506 "V and Known should have same BitWidth"); 1507 (void)BitWidth; 1508 1509 const APInt *C; 1510 if (match(V, m_APInt(C))) { 1511 // We know all of the bits for a scalar constant or a splat vector constant! 1512 Known.One = *C; 1513 Known.Zero = ~Known.One; 1514 return; 1515 } 1516 // Null and aggregate-zero are all-zeros. 1517 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1518 Known.setAllZero(); 1519 return; 1520 } 1521 // Handle a constant vector by taking the intersection of the known bits of 1522 // each element. 1523 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1524 // We know that CDS must be a vector of integers. Take the intersection of 1525 // each element. 1526 Known.Zero.setAllBits(); Known.One.setAllBits(); 1527 APInt Elt(BitWidth, 0); 1528 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1529 Elt = CDS->getElementAsInteger(i); 1530 Known.Zero &= ~Elt; 1531 Known.One &= Elt; 1532 } 1533 return; 1534 } 1535 1536 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1537 // We know that CV must be a vector of integers. Take the intersection of 1538 // each element. 1539 Known.Zero.setAllBits(); Known.One.setAllBits(); 1540 APInt Elt(BitWidth, 0); 1541 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1542 Constant *Element = CV->getAggregateElement(i); 1543 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1544 if (!ElementCI) { 1545 Known.resetAll(); 1546 return; 1547 } 1548 Elt = ElementCI->getValue(); 1549 Known.Zero &= ~Elt; 1550 Known.One &= Elt; 1551 } 1552 return; 1553 } 1554 1555 // Start out not knowing anything. 1556 Known.resetAll(); 1557 1558 // We can't imply anything about undefs. 1559 if (isa<UndefValue>(V)) 1560 return; 1561 1562 // There's no point in looking through other users of ConstantData for 1563 // assumptions. Confirm that we've handled them all. 1564 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1565 1566 // Limit search depth. 1567 // All recursive calls that increase depth must come after this. 1568 if (Depth == MaxDepth) 1569 return; 1570 1571 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1572 // the bits of its aliasee. 1573 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1574 if (!GA->isInterposable()) 1575 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1576 return; 1577 } 1578 1579 if (const Operator *I = dyn_cast<Operator>(V)) 1580 computeKnownBitsFromOperator(I, Known, Depth, Q); 1581 1582 // Aligned pointers have trailing zeros - refine Known.Zero set 1583 if (V->getType()->isPointerTy()) { 1584 unsigned Align = V->getPointerAlignment(Q.DL); 1585 if (Align) 1586 Known.Zero.setLowBits(countTrailingZeros(Align)); 1587 } 1588 1589 // computeKnownBitsFromAssume strictly refines Known. 1590 // Therefore, we run them after computeKnownBitsFromOperator. 1591 1592 // Check whether a nearby assume intrinsic can determine some known bits. 1593 computeKnownBitsFromAssume(V, Known, Depth, Q); 1594 1595 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1596 } 1597 1598 /// Return true if the given value is known to have exactly one 1599 /// bit set when defined. For vectors return true if every element is known to 1600 /// be a power of two when defined. Supports values with integer or pointer 1601 /// types and vectors of integers. 1602 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1603 const Query &Q) { 1604 if (const Constant *C = dyn_cast<Constant>(V)) { 1605 if (C->isNullValue()) 1606 return OrZero; 1607 1608 const APInt *ConstIntOrConstSplatInt; 1609 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1610 return ConstIntOrConstSplatInt->isPowerOf2(); 1611 } 1612 1613 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1614 // it is shifted off the end then the result is undefined. 1615 if (match(V, m_Shl(m_One(), m_Value()))) 1616 return true; 1617 1618 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1619 // the bottom. If it is shifted off the bottom then the result is undefined. 1620 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1621 return true; 1622 1623 // The remaining tests are all recursive, so bail out if we hit the limit. 1624 if (Depth++ == MaxDepth) 1625 return false; 1626 1627 Value *X = nullptr, *Y = nullptr; 1628 // A shift left or a logical shift right of a power of two is a power of two 1629 // or zero. 1630 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1631 match(V, m_LShr(m_Value(X), m_Value())))) 1632 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1633 1634 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1635 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1636 1637 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1638 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1639 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1640 1641 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1642 // A power of two and'd with anything is a power of two or zero. 1643 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1644 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1645 return true; 1646 // X & (-X) is always a power of two or zero. 1647 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1648 return true; 1649 return false; 1650 } 1651 1652 // Adding a power-of-two or zero to the same power-of-two or zero yields 1653 // either the original power-of-two, a larger power-of-two or zero. 1654 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1655 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1656 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1657 if (match(X, m_And(m_Specific(Y), m_Value())) || 1658 match(X, m_And(m_Value(), m_Specific(Y)))) 1659 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1660 return true; 1661 if (match(Y, m_And(m_Specific(X), m_Value())) || 1662 match(Y, m_And(m_Value(), m_Specific(X)))) 1663 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1664 return true; 1665 1666 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1667 KnownBits LHSBits(BitWidth); 1668 computeKnownBits(X, LHSBits, Depth, Q); 1669 1670 KnownBits RHSBits(BitWidth); 1671 computeKnownBits(Y, RHSBits, Depth, Q); 1672 // If i8 V is a power of two or zero: 1673 // ZeroBits: 1 1 1 0 1 1 1 1 1674 // ~ZeroBits: 0 0 0 1 0 0 0 0 1675 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1676 // If OrZero isn't set, we cannot give back a zero result. 1677 // Make sure either the LHS or RHS has a bit set. 1678 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1679 return true; 1680 } 1681 } 1682 1683 // An exact divide or right shift can only shift off zero bits, so the result 1684 // is a power of two only if the first operand is a power of two and not 1685 // copying a sign bit (sdiv int_min, 2). 1686 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1687 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1688 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1689 Depth, Q); 1690 } 1691 1692 return false; 1693 } 1694 1695 /// \brief Test whether a GEP's result is known to be non-null. 1696 /// 1697 /// Uses properties inherent in a GEP to try to determine whether it is known 1698 /// to be non-null. 1699 /// 1700 /// Currently this routine does not support vector GEPs. 1701 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1702 const Query &Q) { 1703 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1704 return false; 1705 1706 // FIXME: Support vector-GEPs. 1707 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1708 1709 // If the base pointer is non-null, we cannot walk to a null address with an 1710 // inbounds GEP in address space zero. 1711 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1712 return true; 1713 1714 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1715 // If so, then the GEP cannot produce a null pointer, as doing so would 1716 // inherently violate the inbounds contract within address space zero. 1717 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1718 GTI != GTE; ++GTI) { 1719 // Struct types are easy -- they must always be indexed by a constant. 1720 if (StructType *STy = GTI.getStructTypeOrNull()) { 1721 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1722 unsigned ElementIdx = OpC->getZExtValue(); 1723 const StructLayout *SL = Q.DL.getStructLayout(STy); 1724 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1725 if (ElementOffset > 0) 1726 return true; 1727 continue; 1728 } 1729 1730 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1731 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1732 continue; 1733 1734 // Fast path the constant operand case both for efficiency and so we don't 1735 // increment Depth when just zipping down an all-constant GEP. 1736 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1737 if (!OpC->isZero()) 1738 return true; 1739 continue; 1740 } 1741 1742 // We post-increment Depth here because while isKnownNonZero increments it 1743 // as well, when we pop back up that increment won't persist. We don't want 1744 // to recurse 10k times just because we have 10k GEP operands. We don't 1745 // bail completely out because we want to handle constant GEPs regardless 1746 // of depth. 1747 if (Depth++ >= MaxDepth) 1748 continue; 1749 1750 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1751 return true; 1752 } 1753 1754 return false; 1755 } 1756 1757 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1758 /// ensure that the value it's attached to is never Value? 'RangeType' is 1759 /// is the type of the value described by the range. 1760 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1761 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1762 assert(NumRanges >= 1); 1763 for (unsigned i = 0; i < NumRanges; ++i) { 1764 ConstantInt *Lower = 1765 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1766 ConstantInt *Upper = 1767 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1768 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1769 if (Range.contains(Value)) 1770 return false; 1771 } 1772 return true; 1773 } 1774 1775 /// Return true if the given value is known to be non-zero when defined. For 1776 /// vectors, return true if every element is known to be non-zero when 1777 /// defined. For pointers, if the context instruction and dominator tree are 1778 /// specified, perform context-sensitive analysis and return true if the 1779 /// pointer couldn't possibly be null at the specified instruction. 1780 /// Supports values with integer or pointer type and vectors of integers. 1781 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1782 if (auto *C = dyn_cast<Constant>(V)) { 1783 if (C->isNullValue()) 1784 return false; 1785 if (isa<ConstantInt>(C)) 1786 // Must be non-zero due to null test above. 1787 return true; 1788 1789 // For constant vectors, check that all elements are undefined or known 1790 // non-zero to determine that the whole vector is known non-zero. 1791 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1792 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1793 Constant *Elt = C->getAggregateElement(i); 1794 if (!Elt || Elt->isNullValue()) 1795 return false; 1796 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1797 return false; 1798 } 1799 return true; 1800 } 1801 1802 return false; 1803 } 1804 1805 if (auto *I = dyn_cast<Instruction>(V)) { 1806 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1807 // If the possible ranges don't contain zero, then the value is 1808 // definitely non-zero. 1809 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1810 const APInt ZeroValue(Ty->getBitWidth(), 0); 1811 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1812 return true; 1813 } 1814 } 1815 } 1816 1817 // The remaining tests are all recursive, so bail out if we hit the limit. 1818 if (Depth++ >= MaxDepth) 1819 return false; 1820 1821 // Check for pointer simplifications. 1822 if (V->getType()->isPointerTy()) { 1823 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1824 return true; 1825 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1826 if (isGEPKnownNonNull(GEP, Depth, Q)) 1827 return true; 1828 } 1829 1830 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1831 1832 // X | Y != 0 if X != 0 or Y != 0. 1833 Value *X = nullptr, *Y = nullptr; 1834 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1835 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1836 1837 // ext X != 0 if X != 0. 1838 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1839 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1840 1841 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1842 // if the lowest bit is shifted off the end. 1843 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1844 // shl nuw can't remove any non-zero bits. 1845 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1846 if (BO->hasNoUnsignedWrap()) 1847 return isKnownNonZero(X, Depth, Q); 1848 1849 KnownBits Known(BitWidth); 1850 computeKnownBits(X, Known, Depth, Q); 1851 if (Known.One[0]) 1852 return true; 1853 } 1854 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1855 // defined if the sign bit is shifted off the end. 1856 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1857 // shr exact can only shift out zero bits. 1858 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1859 if (BO->isExact()) 1860 return isKnownNonZero(X, Depth, Q); 1861 1862 KnownBits Known = computeKnownBits(X, Depth, Q); 1863 if (Known.isNegative()) 1864 return true; 1865 1866 // If the shifter operand is a constant, and all of the bits shifted 1867 // out are known to be zero, and X is known non-zero then at least one 1868 // non-zero bit must remain. 1869 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1870 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1871 // Is there a known one in the portion not shifted out? 1872 if (Known.One.countLeadingZeros() < BitWidth - ShiftVal) 1873 return true; 1874 // Are all the bits to be shifted out known zero? 1875 if (Known.Zero.countTrailingOnes() >= ShiftVal) 1876 return isKnownNonZero(X, Depth, Q); 1877 } 1878 } 1879 // div exact can only produce a zero if the dividend is zero. 1880 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1881 return isKnownNonZero(X, Depth, Q); 1882 } 1883 // X + Y. 1884 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1885 KnownBits XKnown = computeKnownBits(X, Depth, Q); 1886 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 1887 1888 // If X and Y are both non-negative (as signed values) then their sum is not 1889 // zero unless both X and Y are zero. 1890 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 1891 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1892 return true; 1893 1894 // If X and Y are both negative (as signed values) then their sum is not 1895 // zero unless both X and Y equal INT_MIN. 1896 if (XKnown.isNegative() && YKnown.isNegative()) { 1897 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1898 // The sign bit of X is set. If some other bit is set then X is not equal 1899 // to INT_MIN. 1900 if (XKnown.One.intersects(Mask)) 1901 return true; 1902 // The sign bit of Y is set. If some other bit is set then Y is not equal 1903 // to INT_MIN. 1904 if (YKnown.One.intersects(Mask)) 1905 return true; 1906 } 1907 1908 // The sum of a non-negative number and a power of two is not zero. 1909 if (XKnown.isNonNegative() && 1910 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1911 return true; 1912 if (YKnown.isNonNegative() && 1913 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1914 return true; 1915 } 1916 // X * Y. 1917 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1918 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1919 // If X and Y are non-zero then so is X * Y as long as the multiplication 1920 // does not overflow. 1921 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1922 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1923 return true; 1924 } 1925 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1926 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1927 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1928 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1929 return true; 1930 } 1931 // PHI 1932 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1933 // Try and detect a recurrence that monotonically increases from a 1934 // starting value, as these are common as induction variables. 1935 if (PN->getNumIncomingValues() == 2) { 1936 Value *Start = PN->getIncomingValue(0); 1937 Value *Induction = PN->getIncomingValue(1); 1938 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1939 std::swap(Start, Induction); 1940 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1941 if (!C->isZero() && !C->isNegative()) { 1942 ConstantInt *X; 1943 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1944 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1945 !X->isNegative()) 1946 return true; 1947 } 1948 } 1949 } 1950 // Check if all incoming values are non-zero constant. 1951 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1952 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1953 }); 1954 if (AllNonZeroConstants) 1955 return true; 1956 } 1957 1958 KnownBits Known(BitWidth); 1959 computeKnownBits(V, Known, Depth, Q); 1960 return Known.One != 0; 1961 } 1962 1963 /// Return true if V2 == V1 + X, where X is known non-zero. 1964 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1965 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1966 if (!BO || BO->getOpcode() != Instruction::Add) 1967 return false; 1968 Value *Op = nullptr; 1969 if (V2 == BO->getOperand(0)) 1970 Op = BO->getOperand(1); 1971 else if (V2 == BO->getOperand(1)) 1972 Op = BO->getOperand(0); 1973 else 1974 return false; 1975 return isKnownNonZero(Op, 0, Q); 1976 } 1977 1978 /// Return true if it is known that V1 != V2. 1979 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1980 if (V1->getType()->isVectorTy() || V1 == V2) 1981 return false; 1982 if (V1->getType() != V2->getType()) 1983 // We can't look through casts yet. 1984 return false; 1985 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1986 return true; 1987 1988 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1989 // Are any known bits in V1 contradictory to known bits in V2? If V1 1990 // has a known zero where V2 has a known one, they must not be equal. 1991 auto BitWidth = Ty->getBitWidth(); 1992 KnownBits Known1(BitWidth); 1993 computeKnownBits(V1, Known1, 0, Q); 1994 KnownBits Known2(BitWidth); 1995 computeKnownBits(V2, Known2, 0, Q); 1996 1997 APInt OppositeBits = (Known1.Zero & Known2.One) | 1998 (Known2.Zero & Known1.One); 1999 if (OppositeBits.getBoolValue()) 2000 return true; 2001 } 2002 return false; 2003 } 2004 2005 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2006 /// simplify operations downstream. Mask is known to be zero for bits that V 2007 /// cannot have. 2008 /// 2009 /// This function is defined on values with integer type, values with pointer 2010 /// type, and vectors of integers. In the case 2011 /// where V is a vector, the mask, known zero, and known one values are the 2012 /// same width as the vector element, and the bit is set only if it is true 2013 /// for all of the elements in the vector. 2014 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2015 const Query &Q) { 2016 KnownBits Known(Mask.getBitWidth()); 2017 computeKnownBits(V, Known, Depth, Q); 2018 return Mask.isSubsetOf(Known.Zero); 2019 } 2020 2021 /// For vector constants, loop over the elements and find the constant with the 2022 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2023 /// or if any element was not analyzed; otherwise, return the count for the 2024 /// element with the minimum number of sign bits. 2025 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2026 unsigned TyBits) { 2027 const auto *CV = dyn_cast<Constant>(V); 2028 if (!CV || !CV->getType()->isVectorTy()) 2029 return 0; 2030 2031 unsigned MinSignBits = TyBits; 2032 unsigned NumElts = CV->getType()->getVectorNumElements(); 2033 for (unsigned i = 0; i != NumElts; ++i) { 2034 // If we find a non-ConstantInt, bail out. 2035 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2036 if (!Elt) 2037 return 0; 2038 2039 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2040 APInt EltVal = Elt->getValue(); 2041 if (EltVal.isNegative()) 2042 EltVal = ~EltVal; 2043 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2044 } 2045 2046 return MinSignBits; 2047 } 2048 2049 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2050 const Query &Q); 2051 2052 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2053 const Query &Q) { 2054 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2055 assert(Result > 0 && "At least one sign bit needs to be present!"); 2056 return Result; 2057 } 2058 2059 /// Return the number of times the sign bit of the register is replicated into 2060 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2061 /// (itself), but other cases can give us information. For example, immediately 2062 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2063 /// other, so we return 3. For vectors, return the number of sign bits for the 2064 /// vector element with the mininum number of known sign bits. 2065 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2066 const Query &Q) { 2067 2068 // We return the minimum number of sign bits that are guaranteed to be present 2069 // in V, so for undef we have to conservatively return 1. We don't have the 2070 // same behavior for poison though -- that's a FIXME today. 2071 2072 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2073 unsigned Tmp, Tmp2; 2074 unsigned FirstAnswer = 1; 2075 2076 // Note that ConstantInt is handled by the general computeKnownBits case 2077 // below. 2078 2079 if (Depth == MaxDepth) 2080 return 1; // Limit search depth. 2081 2082 const Operator *U = dyn_cast<Operator>(V); 2083 switch (Operator::getOpcode(V)) { 2084 default: break; 2085 case Instruction::SExt: 2086 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2087 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2088 2089 case Instruction::SDiv: { 2090 const APInt *Denominator; 2091 // sdiv X, C -> adds log(C) sign bits. 2092 if (match(U->getOperand(1), m_APInt(Denominator))) { 2093 2094 // Ignore non-positive denominator. 2095 if (!Denominator->isStrictlyPositive()) 2096 break; 2097 2098 // Calculate the incoming numerator bits. 2099 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2100 2101 // Add floor(log(C)) bits to the numerator bits. 2102 return std::min(TyBits, NumBits + Denominator->logBase2()); 2103 } 2104 break; 2105 } 2106 2107 case Instruction::SRem: { 2108 const APInt *Denominator; 2109 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2110 // positive constant. This let us put a lower bound on the number of sign 2111 // bits. 2112 if (match(U->getOperand(1), m_APInt(Denominator))) { 2113 2114 // Ignore non-positive denominator. 2115 if (!Denominator->isStrictlyPositive()) 2116 break; 2117 2118 // Calculate the incoming numerator bits. SRem by a positive constant 2119 // can't lower the number of sign bits. 2120 unsigned NumrBits = 2121 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2122 2123 // Calculate the leading sign bit constraints by examining the 2124 // denominator. Given that the denominator is positive, there are two 2125 // cases: 2126 // 2127 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2128 // (1 << ceilLogBase2(C)). 2129 // 2130 // 2. the numerator is negative. Then the result range is (-C,0] and 2131 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2132 // 2133 // Thus a lower bound on the number of sign bits is `TyBits - 2134 // ceilLogBase2(C)`. 2135 2136 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2137 return std::max(NumrBits, ResBits); 2138 } 2139 break; 2140 } 2141 2142 case Instruction::AShr: { 2143 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2144 // ashr X, C -> adds C sign bits. Vectors too. 2145 const APInt *ShAmt; 2146 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2147 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2148 if (ShAmtLimited >= TyBits) 2149 break; // Bad shift. 2150 Tmp += ShAmtLimited; 2151 if (Tmp > TyBits) Tmp = TyBits; 2152 } 2153 return Tmp; 2154 } 2155 case Instruction::Shl: { 2156 const APInt *ShAmt; 2157 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2158 // shl destroys sign bits. 2159 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2160 Tmp2 = ShAmt->getZExtValue(); 2161 if (Tmp2 >= TyBits || // Bad shift. 2162 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2163 return Tmp - Tmp2; 2164 } 2165 break; 2166 } 2167 case Instruction::And: 2168 case Instruction::Or: 2169 case Instruction::Xor: // NOT is handled here. 2170 // Logical binary ops preserve the number of sign bits at the worst. 2171 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2172 if (Tmp != 1) { 2173 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2174 FirstAnswer = std::min(Tmp, Tmp2); 2175 // We computed what we know about the sign bits as our first 2176 // answer. Now proceed to the generic code that uses 2177 // computeKnownBits, and pick whichever answer is better. 2178 } 2179 break; 2180 2181 case Instruction::Select: 2182 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2183 if (Tmp == 1) return 1; // Early out. 2184 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2185 return std::min(Tmp, Tmp2); 2186 2187 case Instruction::Add: 2188 // Add can have at most one carry bit. Thus we know that the output 2189 // is, at worst, one more bit than the inputs. 2190 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2191 if (Tmp == 1) return 1; // Early out. 2192 2193 // Special case decrementing a value (ADD X, -1): 2194 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2195 if (CRHS->isAllOnesValue()) { 2196 KnownBits Known(TyBits); 2197 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2198 2199 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2200 // sign bits set. 2201 if ((Known.Zero | 1).isAllOnesValue()) 2202 return TyBits; 2203 2204 // If we are subtracting one from a positive number, there is no carry 2205 // out of the result. 2206 if (Known.isNonNegative()) 2207 return Tmp; 2208 } 2209 2210 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2211 if (Tmp2 == 1) return 1; 2212 return std::min(Tmp, Tmp2)-1; 2213 2214 case Instruction::Sub: 2215 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2216 if (Tmp2 == 1) return 1; 2217 2218 // Handle NEG. 2219 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2220 if (CLHS->isNullValue()) { 2221 KnownBits Known(TyBits); 2222 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2223 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2224 // sign bits set. 2225 if ((Known.Zero | 1).isAllOnesValue()) 2226 return TyBits; 2227 2228 // If the input is known to be positive (the sign bit is known clear), 2229 // the output of the NEG has the same number of sign bits as the input. 2230 if (Known.isNonNegative()) 2231 return Tmp2; 2232 2233 // Otherwise, we treat this like a SUB. 2234 } 2235 2236 // Sub can have at most one carry bit. Thus we know that the output 2237 // is, at worst, one more bit than the inputs. 2238 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2239 if (Tmp == 1) return 1; // Early out. 2240 return std::min(Tmp, Tmp2)-1; 2241 2242 case Instruction::PHI: { 2243 const PHINode *PN = cast<PHINode>(U); 2244 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2245 // Don't analyze large in-degree PHIs. 2246 if (NumIncomingValues > 4) break; 2247 // Unreachable blocks may have zero-operand PHI nodes. 2248 if (NumIncomingValues == 0) break; 2249 2250 // Take the minimum of all incoming values. This can't infinitely loop 2251 // because of our depth threshold. 2252 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2253 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2254 if (Tmp == 1) return Tmp; 2255 Tmp = std::min( 2256 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2257 } 2258 return Tmp; 2259 } 2260 2261 case Instruction::Trunc: 2262 // FIXME: it's tricky to do anything useful for this, but it is an important 2263 // case for targets like X86. 2264 break; 2265 2266 case Instruction::ExtractElement: 2267 // Look through extract element. At the moment we keep this simple and skip 2268 // tracking the specific element. But at least we might find information 2269 // valid for all elements of the vector (for example if vector is sign 2270 // extended, shifted, etc). 2271 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2272 } 2273 2274 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2275 // use this information. 2276 2277 // If we can examine all elements of a vector constant successfully, we're 2278 // done (we can't do any better than that). If not, keep trying. 2279 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2280 return VecSignBits; 2281 2282 KnownBits Known(TyBits); 2283 computeKnownBits(V, Known, Depth, Q); 2284 2285 // If we know that the sign bit is either zero or one, determine the number of 2286 // identical bits in the top of the input value. 2287 if (Known.isNonNegative()) 2288 return std::max(FirstAnswer, Known.Zero.countLeadingOnes()); 2289 2290 if (Known.isNegative()) 2291 return std::max(FirstAnswer, Known.One.countLeadingOnes()); 2292 2293 // computeKnownBits gave us no extra information about the top bits. 2294 return FirstAnswer; 2295 } 2296 2297 /// This function computes the integer multiple of Base that equals V. 2298 /// If successful, it returns true and returns the multiple in 2299 /// Multiple. If unsuccessful, it returns false. It looks 2300 /// through SExt instructions only if LookThroughSExt is true. 2301 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2302 bool LookThroughSExt, unsigned Depth) { 2303 const unsigned MaxDepth = 6; 2304 2305 assert(V && "No Value?"); 2306 assert(Depth <= MaxDepth && "Limit Search Depth"); 2307 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2308 2309 Type *T = V->getType(); 2310 2311 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2312 2313 if (Base == 0) 2314 return false; 2315 2316 if (Base == 1) { 2317 Multiple = V; 2318 return true; 2319 } 2320 2321 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2322 Constant *BaseVal = ConstantInt::get(T, Base); 2323 if (CO && CO == BaseVal) { 2324 // Multiple is 1. 2325 Multiple = ConstantInt::get(T, 1); 2326 return true; 2327 } 2328 2329 if (CI && CI->getZExtValue() % Base == 0) { 2330 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2331 return true; 2332 } 2333 2334 if (Depth == MaxDepth) return false; // Limit search depth. 2335 2336 Operator *I = dyn_cast<Operator>(V); 2337 if (!I) return false; 2338 2339 switch (I->getOpcode()) { 2340 default: break; 2341 case Instruction::SExt: 2342 if (!LookThroughSExt) return false; 2343 // otherwise fall through to ZExt 2344 case Instruction::ZExt: 2345 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2346 LookThroughSExt, Depth+1); 2347 case Instruction::Shl: 2348 case Instruction::Mul: { 2349 Value *Op0 = I->getOperand(0); 2350 Value *Op1 = I->getOperand(1); 2351 2352 if (I->getOpcode() == Instruction::Shl) { 2353 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2354 if (!Op1CI) return false; 2355 // Turn Op0 << Op1 into Op0 * 2^Op1 2356 APInt Op1Int = Op1CI->getValue(); 2357 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2358 APInt API(Op1Int.getBitWidth(), 0); 2359 API.setBit(BitToSet); 2360 Op1 = ConstantInt::get(V->getContext(), API); 2361 } 2362 2363 Value *Mul0 = nullptr; 2364 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2365 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2366 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2367 if (Op1C->getType()->getPrimitiveSizeInBits() < 2368 MulC->getType()->getPrimitiveSizeInBits()) 2369 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2370 if (Op1C->getType()->getPrimitiveSizeInBits() > 2371 MulC->getType()->getPrimitiveSizeInBits()) 2372 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2373 2374 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2375 Multiple = ConstantExpr::getMul(MulC, Op1C); 2376 return true; 2377 } 2378 2379 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2380 if (Mul0CI->getValue() == 1) { 2381 // V == Base * Op1, so return Op1 2382 Multiple = Op1; 2383 return true; 2384 } 2385 } 2386 2387 Value *Mul1 = nullptr; 2388 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2389 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2390 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2391 if (Op0C->getType()->getPrimitiveSizeInBits() < 2392 MulC->getType()->getPrimitiveSizeInBits()) 2393 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2394 if (Op0C->getType()->getPrimitiveSizeInBits() > 2395 MulC->getType()->getPrimitiveSizeInBits()) 2396 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2397 2398 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2399 Multiple = ConstantExpr::getMul(MulC, Op0C); 2400 return true; 2401 } 2402 2403 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2404 if (Mul1CI->getValue() == 1) { 2405 // V == Base * Op0, so return Op0 2406 Multiple = Op0; 2407 return true; 2408 } 2409 } 2410 } 2411 } 2412 2413 // We could not determine if V is a multiple of Base. 2414 return false; 2415 } 2416 2417 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2418 const TargetLibraryInfo *TLI) { 2419 const Function *F = ICS.getCalledFunction(); 2420 if (!F) 2421 return Intrinsic::not_intrinsic; 2422 2423 if (F->isIntrinsic()) 2424 return F->getIntrinsicID(); 2425 2426 if (!TLI) 2427 return Intrinsic::not_intrinsic; 2428 2429 LibFunc Func; 2430 // We're going to make assumptions on the semantics of the functions, check 2431 // that the target knows that it's available in this environment and it does 2432 // not have local linkage. 2433 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2434 return Intrinsic::not_intrinsic; 2435 2436 if (!ICS.onlyReadsMemory()) 2437 return Intrinsic::not_intrinsic; 2438 2439 // Otherwise check if we have a call to a function that can be turned into a 2440 // vector intrinsic. 2441 switch (Func) { 2442 default: 2443 break; 2444 case LibFunc_sin: 2445 case LibFunc_sinf: 2446 case LibFunc_sinl: 2447 return Intrinsic::sin; 2448 case LibFunc_cos: 2449 case LibFunc_cosf: 2450 case LibFunc_cosl: 2451 return Intrinsic::cos; 2452 case LibFunc_exp: 2453 case LibFunc_expf: 2454 case LibFunc_expl: 2455 return Intrinsic::exp; 2456 case LibFunc_exp2: 2457 case LibFunc_exp2f: 2458 case LibFunc_exp2l: 2459 return Intrinsic::exp2; 2460 case LibFunc_log: 2461 case LibFunc_logf: 2462 case LibFunc_logl: 2463 return Intrinsic::log; 2464 case LibFunc_log10: 2465 case LibFunc_log10f: 2466 case LibFunc_log10l: 2467 return Intrinsic::log10; 2468 case LibFunc_log2: 2469 case LibFunc_log2f: 2470 case LibFunc_log2l: 2471 return Intrinsic::log2; 2472 case LibFunc_fabs: 2473 case LibFunc_fabsf: 2474 case LibFunc_fabsl: 2475 return Intrinsic::fabs; 2476 case LibFunc_fmin: 2477 case LibFunc_fminf: 2478 case LibFunc_fminl: 2479 return Intrinsic::minnum; 2480 case LibFunc_fmax: 2481 case LibFunc_fmaxf: 2482 case LibFunc_fmaxl: 2483 return Intrinsic::maxnum; 2484 case LibFunc_copysign: 2485 case LibFunc_copysignf: 2486 case LibFunc_copysignl: 2487 return Intrinsic::copysign; 2488 case LibFunc_floor: 2489 case LibFunc_floorf: 2490 case LibFunc_floorl: 2491 return Intrinsic::floor; 2492 case LibFunc_ceil: 2493 case LibFunc_ceilf: 2494 case LibFunc_ceill: 2495 return Intrinsic::ceil; 2496 case LibFunc_trunc: 2497 case LibFunc_truncf: 2498 case LibFunc_truncl: 2499 return Intrinsic::trunc; 2500 case LibFunc_rint: 2501 case LibFunc_rintf: 2502 case LibFunc_rintl: 2503 return Intrinsic::rint; 2504 case LibFunc_nearbyint: 2505 case LibFunc_nearbyintf: 2506 case LibFunc_nearbyintl: 2507 return Intrinsic::nearbyint; 2508 case LibFunc_round: 2509 case LibFunc_roundf: 2510 case LibFunc_roundl: 2511 return Intrinsic::round; 2512 case LibFunc_pow: 2513 case LibFunc_powf: 2514 case LibFunc_powl: 2515 return Intrinsic::pow; 2516 case LibFunc_sqrt: 2517 case LibFunc_sqrtf: 2518 case LibFunc_sqrtl: 2519 if (ICS->hasNoNaNs()) 2520 return Intrinsic::sqrt; 2521 return Intrinsic::not_intrinsic; 2522 } 2523 2524 return Intrinsic::not_intrinsic; 2525 } 2526 2527 /// Return true if we can prove that the specified FP value is never equal to 2528 /// -0.0. 2529 /// 2530 /// NOTE: this function will need to be revisited when we support non-default 2531 /// rounding modes! 2532 /// 2533 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2534 unsigned Depth) { 2535 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2536 return !CFP->getValueAPF().isNegZero(); 2537 2538 if (Depth == MaxDepth) 2539 return false; // Limit search depth. 2540 2541 const Operator *I = dyn_cast<Operator>(V); 2542 if (!I) return false; 2543 2544 // Check if the nsz fast-math flag is set 2545 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2546 if (FPO->hasNoSignedZeros()) 2547 return true; 2548 2549 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2550 if (I->getOpcode() == Instruction::FAdd) 2551 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2552 if (CFP->isNullValue()) 2553 return true; 2554 2555 // sitofp and uitofp turn into +0.0 for zero. 2556 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2557 return true; 2558 2559 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2560 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2561 switch (IID) { 2562 default: 2563 break; 2564 // sqrt(-0.0) = -0.0, no other negative results are possible. 2565 case Intrinsic::sqrt: 2566 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2567 // fabs(x) != -0.0 2568 case Intrinsic::fabs: 2569 return true; 2570 } 2571 } 2572 2573 return false; 2574 } 2575 2576 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2577 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2578 /// bit despite comparing equal. 2579 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2580 const TargetLibraryInfo *TLI, 2581 bool SignBitOnly, 2582 unsigned Depth) { 2583 // TODO: This function does not do the right thing when SignBitOnly is true 2584 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2585 // which flips the sign bits of NaNs. See 2586 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2587 2588 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2589 return !CFP->getValueAPF().isNegative() || 2590 (!SignBitOnly && CFP->getValueAPF().isZero()); 2591 } 2592 2593 if (Depth == MaxDepth) 2594 return false; // Limit search depth. 2595 2596 const Operator *I = dyn_cast<Operator>(V); 2597 if (!I) 2598 return false; 2599 2600 switch (I->getOpcode()) { 2601 default: 2602 break; 2603 // Unsigned integers are always nonnegative. 2604 case Instruction::UIToFP: 2605 return true; 2606 case Instruction::FMul: 2607 // x*x is always non-negative or a NaN. 2608 if (I->getOperand(0) == I->getOperand(1) && 2609 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2610 return true; 2611 2612 LLVM_FALLTHROUGH; 2613 case Instruction::FAdd: 2614 case Instruction::FDiv: 2615 case Instruction::FRem: 2616 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2617 Depth + 1) && 2618 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2619 Depth + 1); 2620 case Instruction::Select: 2621 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2622 Depth + 1) && 2623 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2624 Depth + 1); 2625 case Instruction::FPExt: 2626 case Instruction::FPTrunc: 2627 // Widening/narrowing never change sign. 2628 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2629 Depth + 1); 2630 case Instruction::Call: 2631 const auto *CI = cast<CallInst>(I); 2632 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2633 switch (IID) { 2634 default: 2635 break; 2636 case Intrinsic::maxnum: 2637 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2638 Depth + 1) || 2639 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2640 Depth + 1); 2641 case Intrinsic::minnum: 2642 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2643 Depth + 1) && 2644 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2645 Depth + 1); 2646 case Intrinsic::exp: 2647 case Intrinsic::exp2: 2648 case Intrinsic::fabs: 2649 return true; 2650 2651 case Intrinsic::sqrt: 2652 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2653 if (!SignBitOnly) 2654 return true; 2655 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2656 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2657 2658 case Intrinsic::powi: 2659 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2660 // powi(x,n) is non-negative if n is even. 2661 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2662 return true; 2663 } 2664 // TODO: This is not correct. Given that exp is an integer, here are the 2665 // ways that pow can return a negative value: 2666 // 2667 // pow(x, exp) --> negative if exp is odd and x is negative. 2668 // pow(-0, exp) --> -inf if exp is negative odd. 2669 // pow(-0, exp) --> -0 if exp is positive odd. 2670 // pow(-inf, exp) --> -0 if exp is negative odd. 2671 // pow(-inf, exp) --> -inf if exp is positive odd. 2672 // 2673 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2674 // but we must return false if x == -0. Unfortunately we do not currently 2675 // have a way of expressing this constraint. See details in 2676 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2677 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2678 Depth + 1); 2679 2680 case Intrinsic::fma: 2681 case Intrinsic::fmuladd: 2682 // x*x+y is non-negative if y is non-negative. 2683 return I->getOperand(0) == I->getOperand(1) && 2684 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2685 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2686 Depth + 1); 2687 } 2688 break; 2689 } 2690 return false; 2691 } 2692 2693 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2694 const TargetLibraryInfo *TLI) { 2695 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2696 } 2697 2698 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2699 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2700 } 2701 2702 /// If the specified value can be set by repeating the same byte in memory, 2703 /// return the i8 value that it is represented with. This is 2704 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2705 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2706 /// byte store (e.g. i16 0x1234), return null. 2707 Value *llvm::isBytewiseValue(Value *V) { 2708 // All byte-wide stores are splatable, even of arbitrary variables. 2709 if (V->getType()->isIntegerTy(8)) return V; 2710 2711 // Handle 'null' ConstantArrayZero etc. 2712 if (Constant *C = dyn_cast<Constant>(V)) 2713 if (C->isNullValue()) 2714 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2715 2716 // Constant float and double values can be handled as integer values if the 2717 // corresponding integer value is "byteable". An important case is 0.0. 2718 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2719 if (CFP->getType()->isFloatTy()) 2720 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2721 if (CFP->getType()->isDoubleTy()) 2722 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2723 // Don't handle long double formats, which have strange constraints. 2724 } 2725 2726 // We can handle constant integers that are multiple of 8 bits. 2727 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2728 if (CI->getBitWidth() % 8 == 0) { 2729 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2730 2731 if (!CI->getValue().isSplat(8)) 2732 return nullptr; 2733 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2734 } 2735 } 2736 2737 // A ConstantDataArray/Vector is splatable if all its members are equal and 2738 // also splatable. 2739 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2740 Value *Elt = CA->getElementAsConstant(0); 2741 Value *Val = isBytewiseValue(Elt); 2742 if (!Val) 2743 return nullptr; 2744 2745 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2746 if (CA->getElementAsConstant(I) != Elt) 2747 return nullptr; 2748 2749 return Val; 2750 } 2751 2752 // Conceptually, we could handle things like: 2753 // %a = zext i8 %X to i16 2754 // %b = shl i16 %a, 8 2755 // %c = or i16 %a, %b 2756 // but until there is an example that actually needs this, it doesn't seem 2757 // worth worrying about. 2758 return nullptr; 2759 } 2760 2761 2762 // This is the recursive version of BuildSubAggregate. It takes a few different 2763 // arguments. Idxs is the index within the nested struct From that we are 2764 // looking at now (which is of type IndexedType). IdxSkip is the number of 2765 // indices from Idxs that should be left out when inserting into the resulting 2766 // struct. To is the result struct built so far, new insertvalue instructions 2767 // build on that. 2768 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2769 SmallVectorImpl<unsigned> &Idxs, 2770 unsigned IdxSkip, 2771 Instruction *InsertBefore) { 2772 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2773 if (STy) { 2774 // Save the original To argument so we can modify it 2775 Value *OrigTo = To; 2776 // General case, the type indexed by Idxs is a struct 2777 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2778 // Process each struct element recursively 2779 Idxs.push_back(i); 2780 Value *PrevTo = To; 2781 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2782 InsertBefore); 2783 Idxs.pop_back(); 2784 if (!To) { 2785 // Couldn't find any inserted value for this index? Cleanup 2786 while (PrevTo != OrigTo) { 2787 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2788 PrevTo = Del->getAggregateOperand(); 2789 Del->eraseFromParent(); 2790 } 2791 // Stop processing elements 2792 break; 2793 } 2794 } 2795 // If we successfully found a value for each of our subaggregates 2796 if (To) 2797 return To; 2798 } 2799 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2800 // the struct's elements had a value that was inserted directly. In the latter 2801 // case, perhaps we can't determine each of the subelements individually, but 2802 // we might be able to find the complete struct somewhere. 2803 2804 // Find the value that is at that particular spot 2805 Value *V = FindInsertedValue(From, Idxs); 2806 2807 if (!V) 2808 return nullptr; 2809 2810 // Insert the value in the new (sub) aggregrate 2811 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2812 "tmp", InsertBefore); 2813 } 2814 2815 // This helper takes a nested struct and extracts a part of it (which is again a 2816 // struct) into a new value. For example, given the struct: 2817 // { a, { b, { c, d }, e } } 2818 // and the indices "1, 1" this returns 2819 // { c, d }. 2820 // 2821 // It does this by inserting an insertvalue for each element in the resulting 2822 // struct, as opposed to just inserting a single struct. This will only work if 2823 // each of the elements of the substruct are known (ie, inserted into From by an 2824 // insertvalue instruction somewhere). 2825 // 2826 // All inserted insertvalue instructions are inserted before InsertBefore 2827 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2828 Instruction *InsertBefore) { 2829 assert(InsertBefore && "Must have someplace to insert!"); 2830 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2831 idx_range); 2832 Value *To = UndefValue::get(IndexedType); 2833 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2834 unsigned IdxSkip = Idxs.size(); 2835 2836 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2837 } 2838 2839 /// Given an aggregrate and an sequence of indices, see if 2840 /// the scalar value indexed is already around as a register, for example if it 2841 /// were inserted directly into the aggregrate. 2842 /// 2843 /// If InsertBefore is not null, this function will duplicate (modified) 2844 /// insertvalues when a part of a nested struct is extracted. 2845 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2846 Instruction *InsertBefore) { 2847 // Nothing to index? Just return V then (this is useful at the end of our 2848 // recursion). 2849 if (idx_range.empty()) 2850 return V; 2851 // We have indices, so V should have an indexable type. 2852 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2853 "Not looking at a struct or array?"); 2854 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2855 "Invalid indices for type?"); 2856 2857 if (Constant *C = dyn_cast<Constant>(V)) { 2858 C = C->getAggregateElement(idx_range[0]); 2859 if (!C) return nullptr; 2860 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2861 } 2862 2863 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2864 // Loop the indices for the insertvalue instruction in parallel with the 2865 // requested indices 2866 const unsigned *req_idx = idx_range.begin(); 2867 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2868 i != e; ++i, ++req_idx) { 2869 if (req_idx == idx_range.end()) { 2870 // We can't handle this without inserting insertvalues 2871 if (!InsertBefore) 2872 return nullptr; 2873 2874 // The requested index identifies a part of a nested aggregate. Handle 2875 // this specially. For example, 2876 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2877 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2878 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2879 // This can be changed into 2880 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2881 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2882 // which allows the unused 0,0 element from the nested struct to be 2883 // removed. 2884 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2885 InsertBefore); 2886 } 2887 2888 // This insert value inserts something else than what we are looking for. 2889 // See if the (aggregate) value inserted into has the value we are 2890 // looking for, then. 2891 if (*req_idx != *i) 2892 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2893 InsertBefore); 2894 } 2895 // If we end up here, the indices of the insertvalue match with those 2896 // requested (though possibly only partially). Now we recursively look at 2897 // the inserted value, passing any remaining indices. 2898 return FindInsertedValue(I->getInsertedValueOperand(), 2899 makeArrayRef(req_idx, idx_range.end()), 2900 InsertBefore); 2901 } 2902 2903 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2904 // If we're extracting a value from an aggregate that was extracted from 2905 // something else, we can extract from that something else directly instead. 2906 // However, we will need to chain I's indices with the requested indices. 2907 2908 // Calculate the number of indices required 2909 unsigned size = I->getNumIndices() + idx_range.size(); 2910 // Allocate some space to put the new indices in 2911 SmallVector<unsigned, 5> Idxs; 2912 Idxs.reserve(size); 2913 // Add indices from the extract value instruction 2914 Idxs.append(I->idx_begin(), I->idx_end()); 2915 2916 // Add requested indices 2917 Idxs.append(idx_range.begin(), idx_range.end()); 2918 2919 assert(Idxs.size() == size 2920 && "Number of indices added not correct?"); 2921 2922 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2923 } 2924 // Otherwise, we don't know (such as, extracting from a function return value 2925 // or load instruction) 2926 return nullptr; 2927 } 2928 2929 /// Analyze the specified pointer to see if it can be expressed as a base 2930 /// pointer plus a constant offset. Return the base and offset to the caller. 2931 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2932 const DataLayout &DL) { 2933 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2934 APInt ByteOffset(BitWidth, 0); 2935 2936 // We walk up the defs but use a visited set to handle unreachable code. In 2937 // that case, we stop after accumulating the cycle once (not that it 2938 // matters). 2939 SmallPtrSet<Value *, 16> Visited; 2940 while (Visited.insert(Ptr).second) { 2941 if (Ptr->getType()->isVectorTy()) 2942 break; 2943 2944 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2945 // If one of the values we have visited is an addrspacecast, then 2946 // the pointer type of this GEP may be different from the type 2947 // of the Ptr parameter which was passed to this function. This 2948 // means when we construct GEPOffset, we need to use the size 2949 // of GEP's pointer type rather than the size of the original 2950 // pointer type. 2951 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2952 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2953 break; 2954 2955 ByteOffset += GEPOffset.getSExtValue(); 2956 2957 Ptr = GEP->getPointerOperand(); 2958 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2959 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2960 Ptr = cast<Operator>(Ptr)->getOperand(0); 2961 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2962 if (GA->isInterposable()) 2963 break; 2964 Ptr = GA->getAliasee(); 2965 } else { 2966 break; 2967 } 2968 } 2969 Offset = ByteOffset.getSExtValue(); 2970 return Ptr; 2971 } 2972 2973 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2974 // Make sure the GEP has exactly three arguments. 2975 if (GEP->getNumOperands() != 3) 2976 return false; 2977 2978 // Make sure the index-ee is a pointer to array of i8. 2979 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2980 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2981 return false; 2982 2983 // Check to make sure that the first operand of the GEP is an integer and 2984 // has value 0 so that we are sure we're indexing into the initializer. 2985 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2986 if (!FirstIdx || !FirstIdx->isZero()) 2987 return false; 2988 2989 return true; 2990 } 2991 2992 /// This function computes the length of a null-terminated C string pointed to 2993 /// by V. If successful, it returns true and returns the string in Str. 2994 /// If unsuccessful, it returns false. 2995 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2996 uint64_t Offset, bool TrimAtNul) { 2997 assert(V); 2998 2999 // Look through bitcast instructions and geps. 3000 V = V->stripPointerCasts(); 3001 3002 // If the value is a GEP instruction or constant expression, treat it as an 3003 // offset. 3004 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3005 // The GEP operator should be based on a pointer to string constant, and is 3006 // indexing into the string constant. 3007 if (!isGEPBasedOnPointerToString(GEP)) 3008 return false; 3009 3010 // If the second index isn't a ConstantInt, then this is a variable index 3011 // into the array. If this occurs, we can't say anything meaningful about 3012 // the string. 3013 uint64_t StartIdx = 0; 3014 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3015 StartIdx = CI->getZExtValue(); 3016 else 3017 return false; 3018 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3019 TrimAtNul); 3020 } 3021 3022 // The GEP instruction, constant or instruction, must reference a global 3023 // variable that is a constant and is initialized. The referenced constant 3024 // initializer is the array that we'll use for optimization. 3025 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3026 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3027 return false; 3028 3029 // Handle the all-zeros case. 3030 if (GV->getInitializer()->isNullValue()) { 3031 // This is a degenerate case. The initializer is constant zero so the 3032 // length of the string must be zero. 3033 Str = ""; 3034 return true; 3035 } 3036 3037 // This must be a ConstantDataArray. 3038 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3039 if (!Array || !Array->isString()) 3040 return false; 3041 3042 // Get the number of elements in the array. 3043 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3044 3045 // Start out with the entire array in the StringRef. 3046 Str = Array->getAsString(); 3047 3048 if (Offset > NumElts) 3049 return false; 3050 3051 // Skip over 'offset' bytes. 3052 Str = Str.substr(Offset); 3053 3054 if (TrimAtNul) { 3055 // Trim off the \0 and anything after it. If the array is not nul 3056 // terminated, we just return the whole end of string. The client may know 3057 // some other way that the string is length-bound. 3058 Str = Str.substr(0, Str.find('\0')); 3059 } 3060 return true; 3061 } 3062 3063 // These next two are very similar to the above, but also look through PHI 3064 // nodes. 3065 // TODO: See if we can integrate these two together. 3066 3067 /// If we can compute the length of the string pointed to by 3068 /// the specified pointer, return 'len+1'. If we can't, return 0. 3069 static uint64_t GetStringLengthH(const Value *V, 3070 SmallPtrSetImpl<const PHINode*> &PHIs) { 3071 // Look through noop bitcast instructions. 3072 V = V->stripPointerCasts(); 3073 3074 // If this is a PHI node, there are two cases: either we have already seen it 3075 // or we haven't. 3076 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3077 if (!PHIs.insert(PN).second) 3078 return ~0ULL; // already in the set. 3079 3080 // If it was new, see if all the input strings are the same length. 3081 uint64_t LenSoFar = ~0ULL; 3082 for (Value *IncValue : PN->incoming_values()) { 3083 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3084 if (Len == 0) return 0; // Unknown length -> unknown. 3085 3086 if (Len == ~0ULL) continue; 3087 3088 if (Len != LenSoFar && LenSoFar != ~0ULL) 3089 return 0; // Disagree -> unknown. 3090 LenSoFar = Len; 3091 } 3092 3093 // Success, all agree. 3094 return LenSoFar; 3095 } 3096 3097 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3098 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3099 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3100 if (Len1 == 0) return 0; 3101 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3102 if (Len2 == 0) return 0; 3103 if (Len1 == ~0ULL) return Len2; 3104 if (Len2 == ~0ULL) return Len1; 3105 if (Len1 != Len2) return 0; 3106 return Len1; 3107 } 3108 3109 // Otherwise, see if we can read the string. 3110 StringRef StrData; 3111 if (!getConstantStringInfo(V, StrData)) 3112 return 0; 3113 3114 return StrData.size()+1; 3115 } 3116 3117 /// If we can compute the length of the string pointed to by 3118 /// the specified pointer, return 'len+1'. If we can't, return 0. 3119 uint64_t llvm::GetStringLength(const Value *V) { 3120 if (!V->getType()->isPointerTy()) return 0; 3121 3122 SmallPtrSet<const PHINode*, 32> PHIs; 3123 uint64_t Len = GetStringLengthH(V, PHIs); 3124 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3125 // an empty string as a length. 3126 return Len == ~0ULL ? 1 : Len; 3127 } 3128 3129 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3130 /// previous iteration of the loop was referring to the same object as \p PN. 3131 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3132 const LoopInfo *LI) { 3133 // Find the loop-defined value. 3134 Loop *L = LI->getLoopFor(PN->getParent()); 3135 if (PN->getNumIncomingValues() != 2) 3136 return true; 3137 3138 // Find the value from previous iteration. 3139 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3140 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3141 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3142 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3143 return true; 3144 3145 // If a new pointer is loaded in the loop, the pointer references a different 3146 // object in every iteration. E.g.: 3147 // for (i) 3148 // int *p = a[i]; 3149 // ... 3150 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3151 if (!L->isLoopInvariant(Load->getPointerOperand())) 3152 return false; 3153 return true; 3154 } 3155 3156 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3157 unsigned MaxLookup) { 3158 if (!V->getType()->isPointerTy()) 3159 return V; 3160 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3161 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3162 V = GEP->getPointerOperand(); 3163 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3164 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3165 V = cast<Operator>(V)->getOperand(0); 3166 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3167 if (GA->isInterposable()) 3168 return V; 3169 V = GA->getAliasee(); 3170 } else if (isa<AllocaInst>(V)) { 3171 // An alloca can't be further simplified. 3172 return V; 3173 } else { 3174 if (auto CS = CallSite(V)) 3175 if (Value *RV = CS.getReturnedArgOperand()) { 3176 V = RV; 3177 continue; 3178 } 3179 3180 // See if InstructionSimplify knows any relevant tricks. 3181 if (Instruction *I = dyn_cast<Instruction>(V)) 3182 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3183 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3184 V = Simplified; 3185 continue; 3186 } 3187 3188 return V; 3189 } 3190 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3191 } 3192 return V; 3193 } 3194 3195 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3196 const DataLayout &DL, LoopInfo *LI, 3197 unsigned MaxLookup) { 3198 SmallPtrSet<Value *, 4> Visited; 3199 SmallVector<Value *, 4> Worklist; 3200 Worklist.push_back(V); 3201 do { 3202 Value *P = Worklist.pop_back_val(); 3203 P = GetUnderlyingObject(P, DL, MaxLookup); 3204 3205 if (!Visited.insert(P).second) 3206 continue; 3207 3208 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3209 Worklist.push_back(SI->getTrueValue()); 3210 Worklist.push_back(SI->getFalseValue()); 3211 continue; 3212 } 3213 3214 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3215 // If this PHI changes the underlying object in every iteration of the 3216 // loop, don't look through it. Consider: 3217 // int **A; 3218 // for (i) { 3219 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3220 // Curr = A[i]; 3221 // *Prev, *Curr; 3222 // 3223 // Prev is tracking Curr one iteration behind so they refer to different 3224 // underlying objects. 3225 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3226 isSameUnderlyingObjectInLoop(PN, LI)) 3227 for (Value *IncValue : PN->incoming_values()) 3228 Worklist.push_back(IncValue); 3229 continue; 3230 } 3231 3232 Objects.push_back(P); 3233 } while (!Worklist.empty()); 3234 } 3235 3236 /// Return true if the only users of this pointer are lifetime markers. 3237 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3238 for (const User *U : V->users()) { 3239 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3240 if (!II) return false; 3241 3242 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3243 II->getIntrinsicID() != Intrinsic::lifetime_end) 3244 return false; 3245 } 3246 return true; 3247 } 3248 3249 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3250 const Instruction *CtxI, 3251 const DominatorTree *DT) { 3252 const Operator *Inst = dyn_cast<Operator>(V); 3253 if (!Inst) 3254 return false; 3255 3256 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3257 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3258 if (C->canTrap()) 3259 return false; 3260 3261 switch (Inst->getOpcode()) { 3262 default: 3263 return true; 3264 case Instruction::UDiv: 3265 case Instruction::URem: { 3266 // x / y is undefined if y == 0. 3267 const APInt *V; 3268 if (match(Inst->getOperand(1), m_APInt(V))) 3269 return *V != 0; 3270 return false; 3271 } 3272 case Instruction::SDiv: 3273 case Instruction::SRem: { 3274 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3275 const APInt *Numerator, *Denominator; 3276 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3277 return false; 3278 // We cannot hoist this division if the denominator is 0. 3279 if (*Denominator == 0) 3280 return false; 3281 // It's safe to hoist if the denominator is not 0 or -1. 3282 if (*Denominator != -1) 3283 return true; 3284 // At this point we know that the denominator is -1. It is safe to hoist as 3285 // long we know that the numerator is not INT_MIN. 3286 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3287 return !Numerator->isMinSignedValue(); 3288 // The numerator *might* be MinSignedValue. 3289 return false; 3290 } 3291 case Instruction::Load: { 3292 const LoadInst *LI = cast<LoadInst>(Inst); 3293 if (!LI->isUnordered() || 3294 // Speculative load may create a race that did not exist in the source. 3295 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3296 // Speculative load may load data from dirty regions. 3297 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3298 return false; 3299 const DataLayout &DL = LI->getModule()->getDataLayout(); 3300 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3301 LI->getAlignment(), DL, CtxI, DT); 3302 } 3303 case Instruction::Call: { 3304 auto *CI = cast<const CallInst>(Inst); 3305 const Function *Callee = CI->getCalledFunction(); 3306 3307 // The called function could have undefined behavior or side-effects, even 3308 // if marked readnone nounwind. 3309 return Callee && Callee->isSpeculatable(); 3310 } 3311 case Instruction::VAArg: 3312 case Instruction::Alloca: 3313 case Instruction::Invoke: 3314 case Instruction::PHI: 3315 case Instruction::Store: 3316 case Instruction::Ret: 3317 case Instruction::Br: 3318 case Instruction::IndirectBr: 3319 case Instruction::Switch: 3320 case Instruction::Unreachable: 3321 case Instruction::Fence: 3322 case Instruction::AtomicRMW: 3323 case Instruction::AtomicCmpXchg: 3324 case Instruction::LandingPad: 3325 case Instruction::Resume: 3326 case Instruction::CatchSwitch: 3327 case Instruction::CatchPad: 3328 case Instruction::CatchRet: 3329 case Instruction::CleanupPad: 3330 case Instruction::CleanupRet: 3331 return false; // Misc instructions which have effects 3332 } 3333 } 3334 3335 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3336 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3337 } 3338 3339 /// Return true if we know that the specified value is never null. 3340 bool llvm::isKnownNonNull(const Value *V) { 3341 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3342 3343 // Alloca never returns null, malloc might. 3344 if (isa<AllocaInst>(V)) return true; 3345 3346 // A byval, inalloca, or nonnull argument is never null. 3347 if (const Argument *A = dyn_cast<Argument>(V)) 3348 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3349 3350 // A global variable in address space 0 is non null unless extern weak 3351 // or an absolute symbol reference. Other address spaces may have null as a 3352 // valid address for a global, so we can't assume anything. 3353 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3354 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3355 GV->getType()->getAddressSpace() == 0; 3356 3357 // A Load tagged with nonnull metadata is never null. 3358 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3359 return LI->getMetadata(LLVMContext::MD_nonnull); 3360 3361 if (auto CS = ImmutableCallSite(V)) 3362 if (CS.isReturnNonNull()) 3363 return true; 3364 3365 return false; 3366 } 3367 3368 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3369 const Instruction *CtxI, 3370 const DominatorTree *DT) { 3371 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3372 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3373 assert(CtxI && "Context instruction required for analysis"); 3374 assert(DT && "Dominator tree required for analysis"); 3375 3376 unsigned NumUsesExplored = 0; 3377 for (auto *U : V->users()) { 3378 // Avoid massive lists 3379 if (NumUsesExplored >= DomConditionsMaxUses) 3380 break; 3381 NumUsesExplored++; 3382 3383 // If the value is used as an argument to a call or invoke, then argument 3384 // attributes may provide an answer about null-ness. 3385 if (auto CS = ImmutableCallSite(U)) 3386 if (auto *CalledFunc = CS.getCalledFunction()) 3387 for (const Argument &Arg : CalledFunc->args()) 3388 if (CS.getArgOperand(Arg.getArgNo()) == V && 3389 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3390 return true; 3391 3392 // Consider only compare instructions uniquely controlling a branch 3393 CmpInst::Predicate Pred; 3394 if (!match(const_cast<User *>(U), 3395 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3396 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3397 continue; 3398 3399 for (auto *CmpU : U->users()) { 3400 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3401 assert(BI->isConditional() && "uses a comparison!"); 3402 3403 BasicBlock *NonNullSuccessor = 3404 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3405 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3406 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3407 return true; 3408 } else if (Pred == ICmpInst::ICMP_NE && 3409 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3410 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3411 return true; 3412 } 3413 } 3414 } 3415 3416 return false; 3417 } 3418 3419 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3420 const DominatorTree *DT) { 3421 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3422 return false; 3423 3424 if (isKnownNonNull(V)) 3425 return true; 3426 3427 if (!CtxI || !DT) 3428 return false; 3429 3430 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3431 } 3432 3433 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3434 const Value *RHS, 3435 const DataLayout &DL, 3436 AssumptionCache *AC, 3437 const Instruction *CxtI, 3438 const DominatorTree *DT) { 3439 // Multiplying n * m significant bits yields a result of n + m significant 3440 // bits. If the total number of significant bits does not exceed the 3441 // result bit width (minus 1), there is no overflow. 3442 // This means if we have enough leading zero bits in the operands 3443 // we can guarantee that the result does not overflow. 3444 // Ref: "Hacker's Delight" by Henry Warren 3445 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3446 KnownBits LHSKnown(BitWidth); 3447 KnownBits RHSKnown(BitWidth); 3448 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3449 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3450 // Note that underestimating the number of zero bits gives a more 3451 // conservative answer. 3452 unsigned ZeroBits = LHSKnown.Zero.countLeadingOnes() + 3453 RHSKnown.Zero.countLeadingOnes(); 3454 // First handle the easy case: if we have enough zero bits there's 3455 // definitely no overflow. 3456 if (ZeroBits >= BitWidth) 3457 return OverflowResult::NeverOverflows; 3458 3459 // Get the largest possible values for each operand. 3460 APInt LHSMax = ~LHSKnown.Zero; 3461 APInt RHSMax = ~RHSKnown.Zero; 3462 3463 // We know the multiply operation doesn't overflow if the maximum values for 3464 // each operand will not overflow after we multiply them together. 3465 bool MaxOverflow; 3466 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3467 if (!MaxOverflow) 3468 return OverflowResult::NeverOverflows; 3469 3470 // We know it always overflows if multiplying the smallest possible values for 3471 // the operands also results in overflow. 3472 bool MinOverflow; 3473 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3474 if (MinOverflow) 3475 return OverflowResult::AlwaysOverflows; 3476 3477 return OverflowResult::MayOverflow; 3478 } 3479 3480 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3481 const Value *RHS, 3482 const DataLayout &DL, 3483 AssumptionCache *AC, 3484 const Instruction *CxtI, 3485 const DominatorTree *DT) { 3486 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3487 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3488 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3489 3490 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3491 // The sign bit is set in both cases: this MUST overflow. 3492 // Create a simple add instruction, and insert it into the struct. 3493 return OverflowResult::AlwaysOverflows; 3494 } 3495 3496 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3497 // The sign bit is clear in both cases: this CANNOT overflow. 3498 // Create a simple add instruction, and insert it into the struct. 3499 return OverflowResult::NeverOverflows; 3500 } 3501 } 3502 3503 return OverflowResult::MayOverflow; 3504 } 3505 3506 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3507 const Value *RHS, 3508 const AddOperator *Add, 3509 const DataLayout &DL, 3510 AssumptionCache *AC, 3511 const Instruction *CxtI, 3512 const DominatorTree *DT) { 3513 if (Add && Add->hasNoSignedWrap()) { 3514 return OverflowResult::NeverOverflows; 3515 } 3516 3517 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3518 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3519 3520 if ((LHSKnown.isNonNegative() && RHSKnown.isNegative()) || 3521 (LHSKnown.isNegative() && RHSKnown.isNonNegative())) { 3522 // The sign bits are opposite: this CANNOT overflow. 3523 return OverflowResult::NeverOverflows; 3524 } 3525 3526 // The remaining code needs Add to be available. Early returns if not so. 3527 if (!Add) 3528 return OverflowResult::MayOverflow; 3529 3530 // If the sign of Add is the same as at least one of the operands, this add 3531 // CANNOT overflow. This is particularly useful when the sum is 3532 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3533 // operands. 3534 bool LHSOrRHSKnownNonNegative = 3535 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3536 bool LHSOrRHSKnownNegative = (LHSKnown.isNegative() || RHSKnown.isNegative()); 3537 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3538 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3539 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3540 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3541 return OverflowResult::NeverOverflows; 3542 } 3543 } 3544 3545 return OverflowResult::MayOverflow; 3546 } 3547 3548 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3549 const DominatorTree &DT) { 3550 #ifndef NDEBUG 3551 auto IID = II->getIntrinsicID(); 3552 assert((IID == Intrinsic::sadd_with_overflow || 3553 IID == Intrinsic::uadd_with_overflow || 3554 IID == Intrinsic::ssub_with_overflow || 3555 IID == Intrinsic::usub_with_overflow || 3556 IID == Intrinsic::smul_with_overflow || 3557 IID == Intrinsic::umul_with_overflow) && 3558 "Not an overflow intrinsic!"); 3559 #endif 3560 3561 SmallVector<const BranchInst *, 2> GuardingBranches; 3562 SmallVector<const ExtractValueInst *, 2> Results; 3563 3564 for (const User *U : II->users()) { 3565 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3566 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3567 3568 if (EVI->getIndices()[0] == 0) 3569 Results.push_back(EVI); 3570 else { 3571 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3572 3573 for (const auto *U : EVI->users()) 3574 if (const auto *B = dyn_cast<BranchInst>(U)) { 3575 assert(B->isConditional() && "How else is it using an i1?"); 3576 GuardingBranches.push_back(B); 3577 } 3578 } 3579 } else { 3580 // We are using the aggregate directly in a way we don't want to analyze 3581 // here (storing it to a global, say). 3582 return false; 3583 } 3584 } 3585 3586 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3587 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3588 if (!NoWrapEdge.isSingleEdge()) 3589 return false; 3590 3591 // Check if all users of the add are provably no-wrap. 3592 for (const auto *Result : Results) { 3593 // If the extractvalue itself is not executed on overflow, the we don't 3594 // need to check each use separately, since domination is transitive. 3595 if (DT.dominates(NoWrapEdge, Result->getParent())) 3596 continue; 3597 3598 for (auto &RU : Result->uses()) 3599 if (!DT.dominates(NoWrapEdge, RU)) 3600 return false; 3601 } 3602 3603 return true; 3604 }; 3605 3606 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3607 } 3608 3609 3610 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3611 const DataLayout &DL, 3612 AssumptionCache *AC, 3613 const Instruction *CxtI, 3614 const DominatorTree *DT) { 3615 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3616 Add, DL, AC, CxtI, DT); 3617 } 3618 3619 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3620 const Value *RHS, 3621 const DataLayout &DL, 3622 AssumptionCache *AC, 3623 const Instruction *CxtI, 3624 const DominatorTree *DT) { 3625 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3626 } 3627 3628 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3629 // A memory operation returns normally if it isn't volatile. A volatile 3630 // operation is allowed to trap. 3631 // 3632 // An atomic operation isn't guaranteed to return in a reasonable amount of 3633 // time because it's possible for another thread to interfere with it for an 3634 // arbitrary length of time, but programs aren't allowed to rely on that. 3635 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3636 return !LI->isVolatile(); 3637 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3638 return !SI->isVolatile(); 3639 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3640 return !CXI->isVolatile(); 3641 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3642 return !RMWI->isVolatile(); 3643 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3644 return !MII->isVolatile(); 3645 3646 // If there is no successor, then execution can't transfer to it. 3647 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3648 return !CRI->unwindsToCaller(); 3649 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3650 return !CatchSwitch->unwindsToCaller(); 3651 if (isa<ResumeInst>(I)) 3652 return false; 3653 if (isa<ReturnInst>(I)) 3654 return false; 3655 if (isa<UnreachableInst>(I)) 3656 return false; 3657 3658 // Calls can throw, or contain an infinite loop, or kill the process. 3659 if (auto CS = ImmutableCallSite(I)) { 3660 // Call sites that throw have implicit non-local control flow. 3661 if (!CS.doesNotThrow()) 3662 return false; 3663 3664 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3665 // etc. and thus not return. However, LLVM already assumes that 3666 // 3667 // - Thread exiting actions are modeled as writes to memory invisible to 3668 // the program. 3669 // 3670 // - Loops that don't have side effects (side effects are volatile/atomic 3671 // stores and IO) always terminate (see http://llvm.org/PR965). 3672 // Furthermore IO itself is also modeled as writes to memory invisible to 3673 // the program. 3674 // 3675 // We rely on those assumptions here, and use the memory effects of the call 3676 // target as a proxy for checking that it always returns. 3677 3678 // FIXME: This isn't aggressive enough; a call which only writes to a global 3679 // is guaranteed to return. 3680 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3681 match(I, m_Intrinsic<Intrinsic::assume>()); 3682 } 3683 3684 // Other instructions return normally. 3685 return true; 3686 } 3687 3688 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3689 const Loop *L) { 3690 // The loop header is guaranteed to be executed for every iteration. 3691 // 3692 // FIXME: Relax this constraint to cover all basic blocks that are 3693 // guaranteed to be executed at every iteration. 3694 if (I->getParent() != L->getHeader()) return false; 3695 3696 for (const Instruction &LI : *L->getHeader()) { 3697 if (&LI == I) return true; 3698 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3699 } 3700 llvm_unreachable("Instruction not contained in its own parent basic block."); 3701 } 3702 3703 bool llvm::propagatesFullPoison(const Instruction *I) { 3704 switch (I->getOpcode()) { 3705 case Instruction::Add: 3706 case Instruction::Sub: 3707 case Instruction::Xor: 3708 case Instruction::Trunc: 3709 case Instruction::BitCast: 3710 case Instruction::AddrSpaceCast: 3711 case Instruction::Mul: 3712 case Instruction::Shl: 3713 case Instruction::GetElementPtr: 3714 // These operations all propagate poison unconditionally. Note that poison 3715 // is not any particular value, so xor or subtraction of poison with 3716 // itself still yields poison, not zero. 3717 return true; 3718 3719 case Instruction::AShr: 3720 case Instruction::SExt: 3721 // For these operations, one bit of the input is replicated across 3722 // multiple output bits. A replicated poison bit is still poison. 3723 return true; 3724 3725 case Instruction::ICmp: 3726 // Comparing poison with any value yields poison. This is why, for 3727 // instance, x s< (x +nsw 1) can be folded to true. 3728 return true; 3729 3730 default: 3731 return false; 3732 } 3733 } 3734 3735 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3736 switch (I->getOpcode()) { 3737 case Instruction::Store: 3738 return cast<StoreInst>(I)->getPointerOperand(); 3739 3740 case Instruction::Load: 3741 return cast<LoadInst>(I)->getPointerOperand(); 3742 3743 case Instruction::AtomicCmpXchg: 3744 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3745 3746 case Instruction::AtomicRMW: 3747 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3748 3749 case Instruction::UDiv: 3750 case Instruction::SDiv: 3751 case Instruction::URem: 3752 case Instruction::SRem: 3753 return I->getOperand(1); 3754 3755 default: 3756 return nullptr; 3757 } 3758 } 3759 3760 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 3761 // We currently only look for uses of poison values within the same basic 3762 // block, as that makes it easier to guarantee that the uses will be 3763 // executed given that PoisonI is executed. 3764 // 3765 // FIXME: Expand this to consider uses beyond the same basic block. To do 3766 // this, look out for the distinction between post-dominance and strong 3767 // post-dominance. 3768 const BasicBlock *BB = PoisonI->getParent(); 3769 3770 // Set of instructions that we have proved will yield poison if PoisonI 3771 // does. 3772 SmallSet<const Value *, 16> YieldsPoison; 3773 SmallSet<const BasicBlock *, 4> Visited; 3774 YieldsPoison.insert(PoisonI); 3775 Visited.insert(PoisonI->getParent()); 3776 3777 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3778 3779 unsigned Iter = 0; 3780 while (Iter++ < MaxDepth) { 3781 for (auto &I : make_range(Begin, End)) { 3782 if (&I != PoisonI) { 3783 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3784 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3785 return true; 3786 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3787 return false; 3788 } 3789 3790 // Mark poison that propagates from I through uses of I. 3791 if (YieldsPoison.count(&I)) { 3792 for (const User *User : I.users()) { 3793 const Instruction *UserI = cast<Instruction>(User); 3794 if (propagatesFullPoison(UserI)) 3795 YieldsPoison.insert(User); 3796 } 3797 } 3798 } 3799 3800 if (auto *NextBB = BB->getSingleSuccessor()) { 3801 if (Visited.insert(NextBB).second) { 3802 BB = NextBB; 3803 Begin = BB->getFirstNonPHI()->getIterator(); 3804 End = BB->end(); 3805 continue; 3806 } 3807 } 3808 3809 break; 3810 }; 3811 return false; 3812 } 3813 3814 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3815 if (FMF.noNaNs()) 3816 return true; 3817 3818 if (auto *C = dyn_cast<ConstantFP>(V)) 3819 return !C->isNaN(); 3820 return false; 3821 } 3822 3823 static bool isKnownNonZero(const Value *V) { 3824 if (auto *C = dyn_cast<ConstantFP>(V)) 3825 return !C->isZero(); 3826 return false; 3827 } 3828 3829 /// Match non-obvious integer minimum and maximum sequences. 3830 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3831 Value *CmpLHS, Value *CmpRHS, 3832 Value *TrueVal, Value *FalseVal, 3833 Value *&LHS, Value *&RHS) { 3834 // Assume success. If there's no match, callers should not use these anyway. 3835 LHS = TrueVal; 3836 RHS = FalseVal; 3837 3838 // Recognize variations of: 3839 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3840 const APInt *C1; 3841 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3842 const APInt *C2; 3843 3844 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3845 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3846 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3847 return {SPF_SMAX, SPNB_NA, false}; 3848 3849 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3850 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3851 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3852 return {SPF_SMIN, SPNB_NA, false}; 3853 3854 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3855 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3856 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3857 return {SPF_UMAX, SPNB_NA, false}; 3858 3859 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3860 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3861 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3862 return {SPF_UMIN, SPNB_NA, false}; 3863 } 3864 3865 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3866 return {SPF_UNKNOWN, SPNB_NA, false}; 3867 3868 // Z = X -nsw Y 3869 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3870 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3871 if (match(TrueVal, m_Zero()) && 3872 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3873 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3874 3875 // Z = X -nsw Y 3876 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3877 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3878 if (match(FalseVal, m_Zero()) && 3879 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3880 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3881 3882 if (!match(CmpRHS, m_APInt(C1))) 3883 return {SPF_UNKNOWN, SPNB_NA, false}; 3884 3885 // An unsigned min/max can be written with a signed compare. 3886 const APInt *C2; 3887 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 3888 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 3889 // Is the sign bit set? 3890 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 3891 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 3892 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 3893 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3894 3895 // Is the sign bit clear? 3896 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 3897 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 3898 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 3899 C2->isMinSignedValue()) 3900 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3901 } 3902 3903 // Look through 'not' ops to find disguised signed min/max. 3904 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 3905 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 3906 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 3907 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 3908 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3909 3910 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 3911 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 3912 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 3913 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 3914 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3915 3916 return {SPF_UNKNOWN, SPNB_NA, false}; 3917 } 3918 3919 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3920 FastMathFlags FMF, 3921 Value *CmpLHS, Value *CmpRHS, 3922 Value *TrueVal, Value *FalseVal, 3923 Value *&LHS, Value *&RHS) { 3924 LHS = CmpLHS; 3925 RHS = CmpRHS; 3926 3927 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3928 // return inconsistent results between implementations. 3929 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3930 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3931 // Therefore we behave conservatively and only proceed if at least one of the 3932 // operands is known to not be zero, or if we don't care about signed zeroes. 3933 switch (Pred) { 3934 default: break; 3935 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3936 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3937 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3938 !isKnownNonZero(CmpRHS)) 3939 return {SPF_UNKNOWN, SPNB_NA, false}; 3940 } 3941 3942 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3943 bool Ordered = false; 3944 3945 // When given one NaN and one non-NaN input: 3946 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3947 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3948 // ordered comparison fails), which could be NaN or non-NaN. 3949 // so here we discover exactly what NaN behavior is required/accepted. 3950 if (CmpInst::isFPPredicate(Pred)) { 3951 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3952 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3953 3954 if (LHSSafe && RHSSafe) { 3955 // Both operands are known non-NaN. 3956 NaNBehavior = SPNB_RETURNS_ANY; 3957 } else if (CmpInst::isOrdered(Pred)) { 3958 // An ordered comparison will return false when given a NaN, so it 3959 // returns the RHS. 3960 Ordered = true; 3961 if (LHSSafe) 3962 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3963 NaNBehavior = SPNB_RETURNS_NAN; 3964 else if (RHSSafe) 3965 NaNBehavior = SPNB_RETURNS_OTHER; 3966 else 3967 // Completely unsafe. 3968 return {SPF_UNKNOWN, SPNB_NA, false}; 3969 } else { 3970 Ordered = false; 3971 // An unordered comparison will return true when given a NaN, so it 3972 // returns the LHS. 3973 if (LHSSafe) 3974 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3975 NaNBehavior = SPNB_RETURNS_OTHER; 3976 else if (RHSSafe) 3977 NaNBehavior = SPNB_RETURNS_NAN; 3978 else 3979 // Completely unsafe. 3980 return {SPF_UNKNOWN, SPNB_NA, false}; 3981 } 3982 } 3983 3984 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3985 std::swap(CmpLHS, CmpRHS); 3986 Pred = CmpInst::getSwappedPredicate(Pred); 3987 if (NaNBehavior == SPNB_RETURNS_NAN) 3988 NaNBehavior = SPNB_RETURNS_OTHER; 3989 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3990 NaNBehavior = SPNB_RETURNS_NAN; 3991 Ordered = !Ordered; 3992 } 3993 3994 // ([if]cmp X, Y) ? X : Y 3995 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3996 switch (Pred) { 3997 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3998 case ICmpInst::ICMP_UGT: 3999 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4000 case ICmpInst::ICMP_SGT: 4001 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4002 case ICmpInst::ICMP_ULT: 4003 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4004 case ICmpInst::ICMP_SLT: 4005 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4006 case FCmpInst::FCMP_UGT: 4007 case FCmpInst::FCMP_UGE: 4008 case FCmpInst::FCMP_OGT: 4009 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4010 case FCmpInst::FCMP_ULT: 4011 case FCmpInst::FCMP_ULE: 4012 case FCmpInst::FCMP_OLT: 4013 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4014 } 4015 } 4016 4017 const APInt *C1; 4018 if (match(CmpRHS, m_APInt(C1))) { 4019 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4020 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4021 4022 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4023 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4024 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4025 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4026 } 4027 4028 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4029 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4030 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4031 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4032 } 4033 } 4034 } 4035 4036 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4037 } 4038 4039 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4040 Instruction::CastOps *CastOp) { 4041 auto *Cast1 = dyn_cast<CastInst>(V1); 4042 if (!Cast1) 4043 return nullptr; 4044 4045 *CastOp = Cast1->getOpcode(); 4046 Type *SrcTy = Cast1->getSrcTy(); 4047 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4048 // If V1 and V2 are both the same cast from the same type, look through V1. 4049 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4050 return Cast2->getOperand(0); 4051 return nullptr; 4052 } 4053 4054 auto *C = dyn_cast<Constant>(V2); 4055 if (!C) 4056 return nullptr; 4057 4058 Constant *CastedTo = nullptr; 4059 switch (*CastOp) { 4060 case Instruction::ZExt: 4061 if (CmpI->isUnsigned()) 4062 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4063 break; 4064 case Instruction::SExt: 4065 if (CmpI->isSigned()) 4066 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4067 break; 4068 case Instruction::Trunc: 4069 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4070 break; 4071 case Instruction::FPTrunc: 4072 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4073 break; 4074 case Instruction::FPExt: 4075 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4076 break; 4077 case Instruction::FPToUI: 4078 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4079 break; 4080 case Instruction::FPToSI: 4081 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4082 break; 4083 case Instruction::UIToFP: 4084 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4085 break; 4086 case Instruction::SIToFP: 4087 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4088 break; 4089 default: 4090 break; 4091 } 4092 4093 if (!CastedTo) 4094 return nullptr; 4095 4096 // Make sure the cast doesn't lose any information. 4097 Constant *CastedBack = 4098 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4099 if (CastedBack != C) 4100 return nullptr; 4101 4102 return CastedTo; 4103 } 4104 4105 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4106 Instruction::CastOps *CastOp) { 4107 SelectInst *SI = dyn_cast<SelectInst>(V); 4108 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4109 4110 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4111 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4112 4113 CmpInst::Predicate Pred = CmpI->getPredicate(); 4114 Value *CmpLHS = CmpI->getOperand(0); 4115 Value *CmpRHS = CmpI->getOperand(1); 4116 Value *TrueVal = SI->getTrueValue(); 4117 Value *FalseVal = SI->getFalseValue(); 4118 FastMathFlags FMF; 4119 if (isa<FPMathOperator>(CmpI)) 4120 FMF = CmpI->getFastMathFlags(); 4121 4122 // Bail out early. 4123 if (CmpI->isEquality()) 4124 return {SPF_UNKNOWN, SPNB_NA, false}; 4125 4126 // Deal with type mismatches. 4127 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4128 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4129 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4130 cast<CastInst>(TrueVal)->getOperand(0), C, 4131 LHS, RHS); 4132 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4133 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4134 C, cast<CastInst>(FalseVal)->getOperand(0), 4135 LHS, RHS); 4136 } 4137 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4138 LHS, RHS); 4139 } 4140 4141 /// Return true if "icmp Pred LHS RHS" is always true. 4142 static bool isTruePredicate(CmpInst::Predicate Pred, 4143 const Value *LHS, const Value *RHS, 4144 const DataLayout &DL, unsigned Depth, 4145 AssumptionCache *AC, const Instruction *CxtI, 4146 const DominatorTree *DT) { 4147 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4148 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4149 return true; 4150 4151 switch (Pred) { 4152 default: 4153 return false; 4154 4155 case CmpInst::ICMP_SLE: { 4156 const APInt *C; 4157 4158 // LHS s<= LHS +_{nsw} C if C >= 0 4159 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4160 return !C->isNegative(); 4161 return false; 4162 } 4163 4164 case CmpInst::ICMP_ULE: { 4165 const APInt *C; 4166 4167 // LHS u<= LHS +_{nuw} C for any C 4168 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4169 return true; 4170 4171 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4172 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4173 const Value *&X, 4174 const APInt *&CA, const APInt *&CB) { 4175 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4176 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4177 return true; 4178 4179 // If X & C == 0 then (X | C) == X +_{nuw} C 4180 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4181 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4182 KnownBits Known(CA->getBitWidth()); 4183 computeKnownBits(X, Known, DL, Depth + 1, AC, CxtI, DT); 4184 4185 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4186 return true; 4187 } 4188 4189 return false; 4190 }; 4191 4192 const Value *X; 4193 const APInt *CLHS, *CRHS; 4194 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4195 return CLHS->ule(*CRHS); 4196 4197 return false; 4198 } 4199 } 4200 } 4201 4202 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4203 /// ALHS ARHS" is true. Otherwise, return None. 4204 static Optional<bool> 4205 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4206 const Value *ARHS, const Value *BLHS, 4207 const Value *BRHS, const DataLayout &DL, 4208 unsigned Depth, AssumptionCache *AC, 4209 const Instruction *CxtI, const DominatorTree *DT) { 4210 switch (Pred) { 4211 default: 4212 return None; 4213 4214 case CmpInst::ICMP_SLT: 4215 case CmpInst::ICMP_SLE: 4216 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4217 DT) && 4218 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4219 return true; 4220 return None; 4221 4222 case CmpInst::ICMP_ULT: 4223 case CmpInst::ICMP_ULE: 4224 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4225 DT) && 4226 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4227 return true; 4228 return None; 4229 } 4230 } 4231 4232 /// Return true if the operands of the two compares match. IsSwappedOps is true 4233 /// when the operands match, but are swapped. 4234 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4235 const Value *BLHS, const Value *BRHS, 4236 bool &IsSwappedOps) { 4237 4238 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4239 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4240 return IsMatchingOps || IsSwappedOps; 4241 } 4242 4243 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4244 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4245 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4246 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4247 const Value *ALHS, 4248 const Value *ARHS, 4249 CmpInst::Predicate BPred, 4250 const Value *BLHS, 4251 const Value *BRHS, 4252 bool IsSwappedOps) { 4253 // Canonicalize the operands so they're matching. 4254 if (IsSwappedOps) { 4255 std::swap(BLHS, BRHS); 4256 BPred = ICmpInst::getSwappedPredicate(BPred); 4257 } 4258 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4259 return true; 4260 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4261 return false; 4262 4263 return None; 4264 } 4265 4266 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4267 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4268 /// C2" is false. Otherwise, return None if we can't infer anything. 4269 static Optional<bool> 4270 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4271 const ConstantInt *C1, 4272 CmpInst::Predicate BPred, 4273 const Value *BLHS, const ConstantInt *C2) { 4274 assert(ALHS == BLHS && "LHS operands must match."); 4275 ConstantRange DomCR = 4276 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4277 ConstantRange CR = 4278 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4279 ConstantRange Intersection = DomCR.intersectWith(CR); 4280 ConstantRange Difference = DomCR.difference(CR); 4281 if (Intersection.isEmptySet()) 4282 return false; 4283 if (Difference.isEmptySet()) 4284 return true; 4285 return None; 4286 } 4287 4288 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4289 const DataLayout &DL, bool InvertAPred, 4290 unsigned Depth, AssumptionCache *AC, 4291 const Instruction *CxtI, 4292 const DominatorTree *DT) { 4293 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4294 if (LHS->getType() != RHS->getType()) 4295 return None; 4296 4297 Type *OpTy = LHS->getType(); 4298 assert(OpTy->getScalarType()->isIntegerTy(1)); 4299 4300 // LHS ==> RHS by definition 4301 if (!InvertAPred && LHS == RHS) 4302 return true; 4303 4304 if (OpTy->isVectorTy()) 4305 // TODO: extending the code below to handle vectors 4306 return None; 4307 assert(OpTy->isIntegerTy(1) && "implied by above"); 4308 4309 ICmpInst::Predicate APred, BPred; 4310 Value *ALHS, *ARHS; 4311 Value *BLHS, *BRHS; 4312 4313 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4314 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4315 return None; 4316 4317 if (InvertAPred) 4318 APred = CmpInst::getInversePredicate(APred); 4319 4320 // Can we infer anything when the two compares have matching operands? 4321 bool IsSwappedOps; 4322 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4323 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4324 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4325 return Implication; 4326 // No amount of additional analysis will infer the second condition, so 4327 // early exit. 4328 return None; 4329 } 4330 4331 // Can we infer anything when the LHS operands match and the RHS operands are 4332 // constants (not necessarily matching)? 4333 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4334 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4335 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4336 cast<ConstantInt>(BRHS))) 4337 return Implication; 4338 // No amount of additional analysis will infer the second condition, so 4339 // early exit. 4340 return None; 4341 } 4342 4343 if (APred == BPred) 4344 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4345 CxtI, DT); 4346 4347 return None; 4348 } 4349