1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GetElementPtrTypeIterator.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/MathExtras.h"
39 #include <algorithm>
40 #include <array>
41 #include <cstring>
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44 
45 const unsigned MaxDepth = 6;
46 
47 /// Enable an experimental feature to leverage information about dominating
48 /// conditions to compute known bits.  The individual options below control how
49 /// hard we search.  The defaults are chosen to be fairly aggressive.  If you
50 /// run into compile time problems when testing, scale them back and report
51 /// your findings.
52 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
53                                          cl::Hidden, cl::init(false));
54 
55 // This is expensive, so we only do it for the top level query value.
56 // (TODO: evaluate cost vs profit, consider higher thresholds)
57 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
58                                                cl::Hidden, cl::init(1));
59 
60 /// How many dominating blocks should be scanned looking for dominating
61 /// conditions?
62 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
63                                                    cl::Hidden,
64                                                    cl::init(20));
65 
66 // Controls the number of uses of the value searched for possible
67 // dominating comparisons.
68 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
69                                               cl::Hidden, cl::init(20));
70 
71 // If true, don't consider only compares whose only use is a branch.
72 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
73                                                cl::Hidden, cl::init(false));
74 
75 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
76 /// 0). For vector types, returns the element type's bitwidth.
77 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
78   if (unsigned BitWidth = Ty->getScalarSizeInBits())
79     return BitWidth;
80 
81   return DL.getPointerTypeSizeInBits(Ty);
82 }
83 
84 namespace {
85 // Simplifying using an assume can only be done in a particular control-flow
86 // context (the context instruction provides that context). If an assume and
87 // the context instruction are not in the same block then the DT helps in
88 // figuring out if we can use it.
89 struct Query {
90   const DataLayout &DL;
91   AssumptionCache *AC;
92   const Instruction *CxtI;
93   const DominatorTree *DT;
94 
95   /// Set of assumptions that should be excluded from further queries.
96   /// This is because of the potential for mutual recursion to cause
97   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
98   /// classic case of this is assume(x = y), which will attempt to determine
99   /// bits in x from bits in y, which will attempt to determine bits in y from
100   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
101   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
102   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
103   /// on.
104   std::array<const Value*, MaxDepth> Excluded;
105   unsigned NumExcluded;
106 
107   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
108         const DominatorTree *DT)
109       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
110 
111   Query(const Query &Q, const Value *NewExcl)
112       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
113     Excluded = Q.Excluded;
114     Excluded[NumExcluded++] = NewExcl;
115     assert(NumExcluded <= Excluded.size());
116   }
117 
118   bool isExcluded(const Value *Value) const {
119     if (NumExcluded == 0)
120       return false;
121     auto End = Excluded.begin() + NumExcluded;
122     return std::find(Excluded.begin(), End, Value) != End;
123   }
124 };
125 } // end anonymous namespace
126 
127 // Given the provided Value and, potentially, a context instruction, return
128 // the preferred context instruction (if any).
129 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
130   // If we've been provided with a context instruction, then use that (provided
131   // it has been inserted).
132   if (CxtI && CxtI->getParent())
133     return CxtI;
134 
135   // If the value is really an already-inserted instruction, then use that.
136   CxtI = dyn_cast<Instruction>(V);
137   if (CxtI && CxtI->getParent())
138     return CxtI;
139 
140   return nullptr;
141 }
142 
143 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
144                              unsigned Depth, const Query &Q);
145 
146 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
147                             const DataLayout &DL, unsigned Depth,
148                             AssumptionCache *AC, const Instruction *CxtI,
149                             const DominatorTree *DT) {
150   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
151                      Query(DL, AC, safeCxtI(V, CxtI), DT));
152 }
153 
154 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
155                                AssumptionCache *AC, const Instruction *CxtI,
156                                const DominatorTree *DT) {
157   assert(LHS->getType() == RHS->getType() &&
158          "LHS and RHS should have the same type");
159   assert(LHS->getType()->isIntOrIntVectorTy() &&
160          "LHS and RHS should be integers");
161   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
162   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
163   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
164   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
165   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
166   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
167 }
168 
169 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
170                            unsigned Depth, const Query &Q);
171 
172 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
173                           const DataLayout &DL, unsigned Depth,
174                           AssumptionCache *AC, const Instruction *CxtI,
175                           const DominatorTree *DT) {
176   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
177                    Query(DL, AC, safeCxtI(V, CxtI), DT));
178 }
179 
180 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
181                                    const Query &Q);
182 
183 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
184                                   unsigned Depth, AssumptionCache *AC,
185                                   const Instruction *CxtI,
186                                   const DominatorTree *DT) {
187   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
188                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
189 }
190 
191 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
192 
193 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
194                           AssumptionCache *AC, const Instruction *CxtI,
195                           const DominatorTree *DT) {
196   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
197 }
198 
199 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
200                               AssumptionCache *AC, const Instruction *CxtI,
201                               const DominatorTree *DT) {
202   bool NonNegative, Negative;
203   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
204   return NonNegative;
205 }
206 
207 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
208 
209 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
210                           AssumptionCache *AC, const Instruction *CxtI,
211                           const DominatorTree *DT) {
212   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
213                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
214                                          DT));
215 }
216 
217 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
218                               const Query &Q);
219 
220 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
221                              unsigned Depth, AssumptionCache *AC,
222                              const Instruction *CxtI, const DominatorTree *DT) {
223   return ::MaskedValueIsZero(V, Mask, Depth,
224                              Query(DL, AC, safeCxtI(V, CxtI), DT));
225 }
226 
227 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
228 
229 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
230                                   unsigned Depth, AssumptionCache *AC,
231                                   const Instruction *CxtI,
232                                   const DominatorTree *DT) {
233   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
234 }
235 
236 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
237                                    APInt &KnownZero, APInt &KnownOne,
238                                    APInt &KnownZero2, APInt &KnownOne2,
239                                    unsigned Depth, const Query &Q) {
240   if (!Add) {
241     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
242       // We know that the top bits of C-X are clear if X contains less bits
243       // than C (i.e. no wrap-around can happen).  For example, 20-X is
244       // positive if we can prove that X is >= 0 and < 16.
245       if (!CLHS->getValue().isNegative()) {
246         unsigned BitWidth = KnownZero.getBitWidth();
247         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
248         // NLZ can't be BitWidth with no sign bit
249         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
250         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
251 
252         // If all of the MaskV bits are known to be zero, then we know the
253         // output top bits are zero, because we now know that the output is
254         // from [0-C].
255         if ((KnownZero2 & MaskV) == MaskV) {
256           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
257           // Top bits known zero.
258           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
259         }
260       }
261     }
262   }
263 
264   unsigned BitWidth = KnownZero.getBitWidth();
265 
266   // If an initial sequence of bits in the result is not needed, the
267   // corresponding bits in the operands are not needed.
268   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
269   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
270   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
271 
272   // Carry in a 1 for a subtract, rather than a 0.
273   APInt CarryIn(BitWidth, 0);
274   if (!Add) {
275     // Sum = LHS + ~RHS + 1
276     std::swap(KnownZero2, KnownOne2);
277     CarryIn.setBit(0);
278   }
279 
280   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
281   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
282 
283   // Compute known bits of the carry.
284   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
285   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
286 
287   // Compute set of known bits (where all three relevant bits are known).
288   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
289   APInt RHSKnown = KnownZero2 | KnownOne2;
290   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
291   APInt Known = LHSKnown & RHSKnown & CarryKnown;
292 
293   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
294          "known bits of sum differ");
295 
296   // Compute known bits of the result.
297   KnownZero = ~PossibleSumOne & Known;
298   KnownOne = PossibleSumOne & Known;
299 
300   // Are we still trying to solve for the sign bit?
301   if (!Known.isNegative()) {
302     if (NSW) {
303       // Adding two non-negative numbers, or subtracting a negative number from
304       // a non-negative one, can't wrap into negative.
305       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
306         KnownZero |= APInt::getSignBit(BitWidth);
307       // Adding two negative numbers, or subtracting a non-negative number from
308       // a negative one, can't wrap into non-negative.
309       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
310         KnownOne |= APInt::getSignBit(BitWidth);
311     }
312   }
313 }
314 
315 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
316                                 APInt &KnownZero, APInt &KnownOne,
317                                 APInt &KnownZero2, APInt &KnownOne2,
318                                 unsigned Depth, const Query &Q) {
319   unsigned BitWidth = KnownZero.getBitWidth();
320   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
321   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
322 
323   bool isKnownNegative = false;
324   bool isKnownNonNegative = false;
325   // If the multiplication is known not to overflow, compute the sign bit.
326   if (NSW) {
327     if (Op0 == Op1) {
328       // The product of a number with itself is non-negative.
329       isKnownNonNegative = true;
330     } else {
331       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
332       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
333       bool isKnownNegativeOp1 = KnownOne.isNegative();
334       bool isKnownNegativeOp0 = KnownOne2.isNegative();
335       // The product of two numbers with the same sign is non-negative.
336       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
337         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
338       // The product of a negative number and a non-negative number is either
339       // negative or zero.
340       if (!isKnownNonNegative)
341         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
342                            isKnownNonZero(Op0, Depth, Q)) ||
343                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
344                            isKnownNonZero(Op1, Depth, Q));
345     }
346   }
347 
348   // If low bits are zero in either operand, output low known-0 bits.
349   // Also compute a conservative estimate for high known-0 bits.
350   // More trickiness is possible, but this is sufficient for the
351   // interesting case of alignment computation.
352   KnownOne.clearAllBits();
353   unsigned TrailZ = KnownZero.countTrailingOnes() +
354                     KnownZero2.countTrailingOnes();
355   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
356                              KnownZero2.countLeadingOnes(),
357                              BitWidth) - BitWidth;
358 
359   TrailZ = std::min(TrailZ, BitWidth);
360   LeadZ = std::min(LeadZ, BitWidth);
361   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
362               APInt::getHighBitsSet(BitWidth, LeadZ);
363 
364   // Only make use of no-wrap flags if we failed to compute the sign bit
365   // directly.  This matters if the multiplication always overflows, in
366   // which case we prefer to follow the result of the direct computation,
367   // though as the program is invoking undefined behaviour we can choose
368   // whatever we like here.
369   if (isKnownNonNegative && !KnownOne.isNegative())
370     KnownZero.setBit(BitWidth - 1);
371   else if (isKnownNegative && !KnownZero.isNegative())
372     KnownOne.setBit(BitWidth - 1);
373 }
374 
375 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
376                                              APInt &KnownZero,
377                                              APInt &KnownOne) {
378   unsigned BitWidth = KnownZero.getBitWidth();
379   unsigned NumRanges = Ranges.getNumOperands() / 2;
380   assert(NumRanges >= 1);
381 
382   KnownZero.setAllBits();
383   KnownOne.setAllBits();
384 
385   for (unsigned i = 0; i < NumRanges; ++i) {
386     ConstantInt *Lower =
387         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
388     ConstantInt *Upper =
389         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
390     ConstantRange Range(Lower->getValue(), Upper->getValue());
391 
392     // The first CommonPrefixBits of all values in Range are equal.
393     unsigned CommonPrefixBits =
394         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
395 
396     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
397     KnownOne &= Range.getUnsignedMax() & Mask;
398     KnownZero &= ~Range.getUnsignedMax() & Mask;
399   }
400 }
401 
402 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
403   SmallVector<const Value *, 16> WorkSet(1, I);
404   SmallPtrSet<const Value *, 32> Visited;
405   SmallPtrSet<const Value *, 16> EphValues;
406 
407   // The instruction defining an assumption's condition itself is always
408   // considered ephemeral to that assumption (even if it has other
409   // non-ephemeral users). See r246696's test case for an example.
410   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
411     return true;
412 
413   while (!WorkSet.empty()) {
414     const Value *V = WorkSet.pop_back_val();
415     if (!Visited.insert(V).second)
416       continue;
417 
418     // If all uses of this value are ephemeral, then so is this value.
419     if (std::all_of(V->user_begin(), V->user_end(),
420                     [&](const User *U) { return EphValues.count(U); })) {
421       if (V == E)
422         return true;
423 
424       EphValues.insert(V);
425       if (const User *U = dyn_cast<User>(V))
426         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
427              J != JE; ++J) {
428           if (isSafeToSpeculativelyExecute(*J))
429             WorkSet.push_back(*J);
430         }
431     }
432   }
433 
434   return false;
435 }
436 
437 // Is this an intrinsic that cannot be speculated but also cannot trap?
438 static bool isAssumeLikeIntrinsic(const Instruction *I) {
439   if (const CallInst *CI = dyn_cast<CallInst>(I))
440     if (Function *F = CI->getCalledFunction())
441       switch (F->getIntrinsicID()) {
442       default: break;
443       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
444       case Intrinsic::assume:
445       case Intrinsic::dbg_declare:
446       case Intrinsic::dbg_value:
447       case Intrinsic::invariant_start:
448       case Intrinsic::invariant_end:
449       case Intrinsic::lifetime_start:
450       case Intrinsic::lifetime_end:
451       case Intrinsic::objectsize:
452       case Intrinsic::ptr_annotation:
453       case Intrinsic::var_annotation:
454         return true;
455       }
456 
457   return false;
458 }
459 
460 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
461                                     const DominatorTree *DT) {
462   Instruction *Inv = cast<Instruction>(V);
463 
464   // There are two restrictions on the use of an assume:
465   //  1. The assume must dominate the context (or the control flow must
466   //     reach the assume whenever it reaches the context).
467   //  2. The context must not be in the assume's set of ephemeral values
468   //     (otherwise we will use the assume to prove that the condition
469   //     feeding the assume is trivially true, thus causing the removal of
470   //     the assume).
471 
472   if (DT) {
473     if (DT->dominates(Inv, CxtI)) {
474       return true;
475     } else if (Inv->getParent() == CxtI->getParent()) {
476       // The context comes first, but they're both in the same block. Make sure
477       // there is nothing in between that might interrupt the control flow.
478       for (BasicBlock::const_iterator I =
479              std::next(BasicBlock::const_iterator(CxtI)),
480                                       IE(Inv); I != IE; ++I)
481         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
482           return false;
483 
484       return !isEphemeralValueOf(Inv, CxtI);
485     }
486 
487     return false;
488   }
489 
490   // When we don't have a DT, we do a limited search...
491   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
492     return true;
493   } else if (Inv->getParent() == CxtI->getParent()) {
494     // Search forward from the assume until we reach the context (or the end
495     // of the block); the common case is that the assume will come first.
496     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
497          IE = Inv->getParent()->end(); I != IE; ++I)
498       if (&*I == CxtI)
499         return true;
500 
501     // The context must come first...
502     for (BasicBlock::const_iterator I =
503            std::next(BasicBlock::const_iterator(CxtI)),
504                                     IE(Inv); I != IE; ++I)
505       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
506         return false;
507 
508     return !isEphemeralValueOf(Inv, CxtI);
509   }
510 
511   return false;
512 }
513 
514 bool llvm::isValidAssumeForContext(const Instruction *I,
515                                    const Instruction *CxtI,
516                                    const DominatorTree *DT) {
517   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
518 }
519 
520 template<typename LHS, typename RHS>
521 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
522                         CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
523 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
524   return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
525 }
526 
527 template<typename LHS, typename RHS>
528 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
529                         BinaryOp_match<RHS, LHS, Instruction::And>>
530 m_c_And(const LHS &L, const RHS &R) {
531   return m_CombineOr(m_And(L, R), m_And(R, L));
532 }
533 
534 template<typename LHS, typename RHS>
535 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
536                         BinaryOp_match<RHS, LHS, Instruction::Or>>
537 m_c_Or(const LHS &L, const RHS &R) {
538   return m_CombineOr(m_Or(L, R), m_Or(R, L));
539 }
540 
541 template<typename LHS, typename RHS>
542 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
543                         BinaryOp_match<RHS, LHS, Instruction::Xor>>
544 m_c_Xor(const LHS &L, const RHS &R) {
545   return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
546 }
547 
548 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
549 /// true (at the context instruction.)  This is mostly a utility function for
550 /// the prototype dominating conditions reasoning below.
551 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
552                                               APInt &KnownZero,
553                                               APInt &KnownOne,
554                                               unsigned Depth, const Query &Q) {
555   Value *LHS = Cmp->getOperand(0);
556   Value *RHS = Cmp->getOperand(1);
557   // TODO: We could potentially be more aggressive here.  This would be worth
558   // evaluating.  If we can, explore commoning this code with the assume
559   // handling logic.
560   if (LHS != V && RHS != V)
561     return;
562 
563   const unsigned BitWidth = KnownZero.getBitWidth();
564 
565   switch (Cmp->getPredicate()) {
566   default:
567     // We know nothing from this condition
568     break;
569   // TODO: implement unsigned bound from below (known one bits)
570   // TODO: common condition check implementations with assumes
571   // TODO: implement other patterns from assume (e.g. V & B == A)
572   case ICmpInst::ICMP_SGT:
573     if (LHS == V) {
574       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
575       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
576       if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
577         // We know that the sign bit is zero.
578         KnownZero |= APInt::getSignBit(BitWidth);
579       }
580     }
581     break;
582   case ICmpInst::ICMP_EQ:
583     {
584       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
585       if (LHS == V)
586         computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
587       else if (RHS == V)
588         computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
589       else
590         llvm_unreachable("missing use?");
591       KnownZero |= KnownZeroTemp;
592       KnownOne |= KnownOneTemp;
593     }
594     break;
595   case ICmpInst::ICMP_ULE:
596     if (LHS == V) {
597       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
598       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
599       // The known zero bits carry over
600       unsigned SignBits = KnownZeroTemp.countLeadingOnes();
601       KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
602     }
603     break;
604   case ICmpInst::ICMP_ULT:
605     if (LHS == V) {
606       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
607       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
608       // Whatever high bits in rhs are zero are known to be zero (if rhs is a
609       // power of 2, then one more).
610       unsigned SignBits = KnownZeroTemp.countLeadingOnes();
611       if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp)))
612         SignBits++;
613       KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
614     }
615     break;
616   };
617 }
618 
619 /// Compute known bits in 'V' from conditions which are known to be true along
620 /// all paths leading to the context instruction.  In particular, look for
621 /// cases where one branch of an interesting condition dominates the context
622 /// instruction.  This does not do general dataflow.
623 /// NOTE: This code is EXPERIMENTAL and currently off by default.
624 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
625                                                     APInt &KnownOne,
626                                                     unsigned Depth,
627                                                     const Query &Q) {
628   // Need both the dominator tree and the query location to do anything useful
629   if (!Q.DT || !Q.CxtI)
630     return;
631   Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
632   // The context instruction might be in a statically unreachable block.  If
633   // so, asking dominator queries may yield suprising results.  (e.g. the block
634   // may not have a dom tree node)
635   if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
636     return;
637 
638   // Avoid useless work
639   if (auto VI = dyn_cast<Instruction>(V))
640     if (VI->getParent() == Cxt->getParent())
641       return;
642 
643   // Note: We currently implement two options.  It's not clear which of these
644   // will survive long term, we need data for that.
645   // Option 1 - Try walking the dominator tree looking for conditions which
646   // might apply.  This works well for local conditions (loop guards, etc..),
647   // but not as well for things far from the context instruction (presuming a
648   // low max blocks explored).  If we can set an high enough limit, this would
649   // be all we need.
650   // Option 2 - We restrict out search to those conditions which are uses of
651   // the value we're interested in.  This is independent of dom structure,
652   // but is slightly less powerful without looking through lots of use chains.
653   // It does handle conditions far from the context instruction (e.g. early
654   // function exits on entry) really well though.
655 
656   // Option 1 - Search the dom tree
657   unsigned NumBlocksExplored = 0;
658   BasicBlock *Current = Cxt->getParent();
659   while (true) {
660     // Stop searching if we've gone too far up the chain
661     if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
662       break;
663     NumBlocksExplored++;
664 
665     if (!Q.DT->getNode(Current)->getIDom())
666       break;
667     Current = Q.DT->getNode(Current)->getIDom()->getBlock();
668     if (!Current)
669       // found function entry
670       break;
671 
672     BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
673     if (!BI || BI->isUnconditional())
674       continue;
675     ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
676     if (!Cmp)
677       continue;
678 
679     // We're looking for conditions that are guaranteed to hold at the context
680     // instruction.  Finding a condition where one path dominates the context
681     // isn't enough because both the true and false cases could merge before
682     // the context instruction we're actually interested in.  Instead, we need
683     // to ensure that the taken *edge* dominates the context instruction.  We
684     // know that the edge must be reachable since we started from a reachable
685     // block.
686     BasicBlock *BB0 = BI->getSuccessor(0);
687     BasicBlockEdge Edge(BI->getParent(), BB0);
688     if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
689       continue;
690 
691     computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
692   }
693 
694   // Option 2 - Search the other uses of V
695   unsigned NumUsesExplored = 0;
696   for (auto U : V->users()) {
697     // Avoid massive lists
698     if (NumUsesExplored >= DomConditionsMaxUses)
699       break;
700     NumUsesExplored++;
701     // Consider only compare instructions uniquely controlling a branch
702     ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
703     if (!Cmp)
704       continue;
705 
706     if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
707       continue;
708 
709     for (auto *CmpU : Cmp->users()) {
710       BranchInst *BI = dyn_cast<BranchInst>(CmpU);
711       if (!BI || BI->isUnconditional())
712         continue;
713       // We're looking for conditions that are guaranteed to hold at the
714       // context instruction.  Finding a condition where one path dominates
715       // the context isn't enough because both the true and false cases could
716       // merge before the context instruction we're actually interested in.
717       // Instead, we need to ensure that the taken *edge* dominates the context
718       // instruction.
719       BasicBlock *BB0 = BI->getSuccessor(0);
720       BasicBlockEdge Edge(BI->getParent(), BB0);
721       if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
722         continue;
723 
724       computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
725     }
726   }
727 }
728 
729 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
730                                        APInt &KnownOne, unsigned Depth,
731                                        const Query &Q) {
732   // Use of assumptions is context-sensitive. If we don't have a context, we
733   // cannot use them!
734   if (!Q.AC || !Q.CxtI)
735     return;
736 
737   unsigned BitWidth = KnownZero.getBitWidth();
738 
739   for (auto &AssumeVH : Q.AC->assumptions()) {
740     if (!AssumeVH)
741       continue;
742     CallInst *I = cast<CallInst>(AssumeVH);
743     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
744            "Got assumption for the wrong function!");
745     if (Q.isExcluded(I))
746       continue;
747 
748     // Warning: This loop can end up being somewhat performance sensetive.
749     // We're running this loop for once for each value queried resulting in a
750     // runtime of ~O(#assumes * #values).
751 
752     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
753            "must be an assume intrinsic");
754 
755     Value *Arg = I->getArgOperand(0);
756 
757     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758       assert(BitWidth == 1 && "assume operand is not i1?");
759       KnownZero.clearAllBits();
760       KnownOne.setAllBits();
761       return;
762     }
763 
764     // The remaining tests are all recursive, so bail out if we hit the limit.
765     if (Depth == MaxDepth)
766       continue;
767 
768     Value *A, *B;
769     auto m_V = m_CombineOr(m_Specific(V),
770                            m_CombineOr(m_PtrToInt(m_Specific(V)),
771                            m_BitCast(m_Specific(V))));
772 
773     CmpInst::Predicate Pred;
774     ConstantInt *C;
775     // assume(v = a)
776     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
777         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
778       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
779       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
780       KnownZero |= RHSKnownZero;
781       KnownOne  |= RHSKnownOne;
782     // assume(v & b = a)
783     } else if (match(Arg,
784                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
785                Pred == ICmpInst::ICMP_EQ &&
786                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
787       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
788       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
789       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
790       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
791 
792       // For those bits in the mask that are known to be one, we can propagate
793       // known bits from the RHS to V.
794       KnownZero |= RHSKnownZero & MaskKnownOne;
795       KnownOne  |= RHSKnownOne  & MaskKnownOne;
796     // assume(~(v & b) = a)
797     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
798                                    m_Value(A))) &&
799                Pred == ICmpInst::ICMP_EQ &&
800                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
801       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
802       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
803       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
804       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
805 
806       // For those bits in the mask that are known to be one, we can propagate
807       // inverted known bits from the RHS to V.
808       KnownZero |= RHSKnownOne  & MaskKnownOne;
809       KnownOne  |= RHSKnownZero & MaskKnownOne;
810     // assume(v | b = a)
811     } else if (match(Arg,
812                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
813                Pred == ICmpInst::ICMP_EQ &&
814                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
815       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
816       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
817       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
818       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
819 
820       // For those bits in B that are known to be zero, we can propagate known
821       // bits from the RHS to V.
822       KnownZero |= RHSKnownZero & BKnownZero;
823       KnownOne  |= RHSKnownOne  & BKnownZero;
824     // assume(~(v | b) = a)
825     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
826                                    m_Value(A))) &&
827                Pred == ICmpInst::ICMP_EQ &&
828                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
829       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
830       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
831       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
832       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
833 
834       // For those bits in B that are known to be zero, we can propagate
835       // inverted known bits from the RHS to V.
836       KnownZero |= RHSKnownOne  & BKnownZero;
837       KnownOne  |= RHSKnownZero & BKnownZero;
838     // assume(v ^ b = a)
839     } else if (match(Arg,
840                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
841                Pred == ICmpInst::ICMP_EQ &&
842                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
843       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
844       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
845       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
846       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
847 
848       // For those bits in B that are known to be zero, we can propagate known
849       // bits from the RHS to V. For those bits in B that are known to be one,
850       // we can propagate inverted known bits from the RHS to V.
851       KnownZero |= RHSKnownZero & BKnownZero;
852       KnownOne  |= RHSKnownOne  & BKnownZero;
853       KnownZero |= RHSKnownOne  & BKnownOne;
854       KnownOne  |= RHSKnownZero & BKnownOne;
855     // assume(~(v ^ b) = a)
856     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
857                                    m_Value(A))) &&
858                Pred == ICmpInst::ICMP_EQ &&
859                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
860       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
861       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
862       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
863       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
864 
865       // For those bits in B that are known to be zero, we can propagate
866       // inverted known bits from the RHS to V. For those bits in B that are
867       // known to be one, we can propagate known bits from the RHS to V.
868       KnownZero |= RHSKnownOne  & BKnownZero;
869       KnownOne  |= RHSKnownZero & BKnownZero;
870       KnownZero |= RHSKnownZero & BKnownOne;
871       KnownOne  |= RHSKnownOne  & BKnownOne;
872     // assume(v << c = a)
873     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
874                                    m_Value(A))) &&
875                Pred == ICmpInst::ICMP_EQ &&
876                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
877       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
878       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
879       // For those bits in RHS that are known, we can propagate them to known
880       // bits in V shifted to the right by C.
881       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
882       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
883     // assume(~(v << c) = a)
884     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
885                                    m_Value(A))) &&
886                Pred == ICmpInst::ICMP_EQ &&
887                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
888       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
889       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
890       // For those bits in RHS that are known, we can propagate them inverted
891       // to known bits in V shifted to the right by C.
892       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
893       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
894     // assume(v >> c = a)
895     } else if (match(Arg,
896                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
897                                                 m_AShr(m_V, m_ConstantInt(C))),
898                               m_Value(A))) &&
899                Pred == ICmpInst::ICMP_EQ &&
900                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
901       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
902       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
903       // For those bits in RHS that are known, we can propagate them to known
904       // bits in V shifted to the right by C.
905       KnownZero |= RHSKnownZero << C->getZExtValue();
906       KnownOne  |= RHSKnownOne  << C->getZExtValue();
907     // assume(~(v >> c) = a)
908     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
909                                              m_LShr(m_V, m_ConstantInt(C)),
910                                              m_AShr(m_V, m_ConstantInt(C)))),
911                                    m_Value(A))) &&
912                Pred == ICmpInst::ICMP_EQ &&
913                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
914       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
915       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
916       // For those bits in RHS that are known, we can propagate them inverted
917       // to known bits in V shifted to the right by C.
918       KnownZero |= RHSKnownOne  << C->getZExtValue();
919       KnownOne  |= RHSKnownZero << C->getZExtValue();
920     // assume(v >=_s c) where c is non-negative
921     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
922                Pred == ICmpInst::ICMP_SGE &&
923                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
924       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
925       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
926 
927       if (RHSKnownZero.isNegative()) {
928         // We know that the sign bit is zero.
929         KnownZero |= APInt::getSignBit(BitWidth);
930       }
931     // assume(v >_s c) where c is at least -1.
932     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
933                Pred == ICmpInst::ICMP_SGT &&
934                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
935       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
936       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
937 
938       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
939         // We know that the sign bit is zero.
940         KnownZero |= APInt::getSignBit(BitWidth);
941       }
942     // assume(v <=_s c) where c is negative
943     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
944                Pred == ICmpInst::ICMP_SLE &&
945                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
946       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
947       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
948 
949       if (RHSKnownOne.isNegative()) {
950         // We know that the sign bit is one.
951         KnownOne |= APInt::getSignBit(BitWidth);
952       }
953     // assume(v <_s c) where c is non-positive
954     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
955                Pred == ICmpInst::ICMP_SLT &&
956                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
957       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
958       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
959 
960       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
961         // We know that the sign bit is one.
962         KnownOne |= APInt::getSignBit(BitWidth);
963       }
964     // assume(v <=_u c)
965     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
966                Pred == ICmpInst::ICMP_ULE &&
967                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
968       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
969       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
970 
971       // Whatever high bits in c are zero are known to be zero.
972       KnownZero |=
973         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
974     // assume(v <_u c)
975     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
976                Pred == ICmpInst::ICMP_ULT &&
977                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
978       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
979       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
980 
981       // Whatever high bits in c are zero are known to be zero (if c is a power
982       // of 2, then one more).
983       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
984         KnownZero |=
985           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
986       else
987         KnownZero |=
988           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
989     }
990   }
991 }
992 
993 // Compute known bits from a shift operator, including those with a
994 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
995 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
996 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
997 // functors that, given the known-zero or known-one bits respectively, and a
998 // shift amount, compute the implied known-zero or known-one bits of the shift
999 // operator's result respectively for that shift amount. The results from calling
1000 // KZF and KOF are conservatively combined for all permitted shift amounts.
1001 template <typename KZFunctor, typename KOFunctor>
1002 static void computeKnownBitsFromShiftOperator(Operator *I,
1003               APInt &KnownZero, APInt &KnownOne,
1004               APInt &KnownZero2, APInt &KnownOne2,
1005               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
1006   unsigned BitWidth = KnownZero.getBitWidth();
1007 
1008   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1009     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
1010 
1011     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1012     KnownZero = KZF(KnownZero, ShiftAmt);
1013     KnownOne  = KOF(KnownOne, ShiftAmt);
1014     return;
1015   }
1016 
1017   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1018 
1019   // Note: We cannot use KnownZero.getLimitedValue() here, because if
1020   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1021   // limit value (which implies all bits are known).
1022   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1023   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1024 
1025   // It would be more-clearly correct to use the two temporaries for this
1026   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1027   KnownZero.clearAllBits();
1028   KnownOne.clearAllBits();
1029 
1030   // If we know the shifter operand is nonzero, we can sometimes infer more
1031   // known bits. However this is expensive to compute, so be lazy about it and
1032   // only compute it when absolutely necessary.
1033   Optional<bool> ShifterOperandIsNonZero;
1034 
1035   // Early exit if we can't constrain any well-defined shift amount.
1036   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1037     ShifterOperandIsNonZero =
1038         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
1039     if (!*ShifterOperandIsNonZero)
1040       return;
1041   }
1042 
1043   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1044 
1045   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1046   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1047     // Combine the shifted known input bits only for those shift amounts
1048     // compatible with its known constraints.
1049     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1050       continue;
1051     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1052       continue;
1053     // If we know the shifter is nonzero, we may be able to infer more known
1054     // bits. This check is sunk down as far as possible to avoid the expensive
1055     // call to isKnownNonZero if the cheaper checks above fail.
1056     if (ShiftAmt == 0) {
1057       if (!ShifterOperandIsNonZero.hasValue())
1058         ShifterOperandIsNonZero =
1059             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
1060       if (*ShifterOperandIsNonZero)
1061         continue;
1062     }
1063 
1064     KnownZero &= KZF(KnownZero2, ShiftAmt);
1065     KnownOne  &= KOF(KnownOne2, ShiftAmt);
1066   }
1067 
1068   // If there are no compatible shift amounts, then we've proven that the shift
1069   // amount must be >= the BitWidth, and the result is undefined. We could
1070   // return anything we'd like, but we need to make sure the sets of known bits
1071   // stay disjoint (it should be better for some other code to actually
1072   // propagate the undef than to pick a value here using known bits).
1073   if ((KnownZero & KnownOne) != 0) {
1074     KnownZero.clearAllBits();
1075     KnownOne.clearAllBits();
1076   }
1077 }
1078 
1079 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
1080                                          APInt &KnownOne, unsigned Depth,
1081                                          const Query &Q) {
1082   unsigned BitWidth = KnownZero.getBitWidth();
1083 
1084   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
1085   switch (I->getOpcode()) {
1086   default: break;
1087   case Instruction::Load:
1088     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
1089       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1090     break;
1091   case Instruction::And: {
1092     // If either the LHS or the RHS are Zero, the result is zero.
1093     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1094     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1095 
1096     // Output known-1 bits are only known if set in both the LHS & RHS.
1097     KnownOne &= KnownOne2;
1098     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1099     KnownZero |= KnownZero2;
1100 
1101     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1102     // here we handle the more general case of adding any odd number by
1103     // matching the form add(x, add(x, y)) where y is odd.
1104     // TODO: This could be generalized to clearing any bit set in y where the
1105     // following bit is known to be unset in y.
1106     Value *Y = nullptr;
1107     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
1108                                       m_Value(Y))) ||
1109         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
1110                                       m_Value(Y)))) {
1111       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
1112       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
1113       if (KnownOne3.countTrailingOnes() > 0)
1114         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
1115     }
1116     break;
1117   }
1118   case Instruction::Or: {
1119     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1120     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1121 
1122     // Output known-0 bits are only known if clear in both the LHS & RHS.
1123     KnownZero &= KnownZero2;
1124     // Output known-1 are known to be set if set in either the LHS | RHS.
1125     KnownOne |= KnownOne2;
1126     break;
1127   }
1128   case Instruction::Xor: {
1129     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1130     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1131 
1132     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1133     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1134     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1135     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1136     KnownZero = KnownZeroOut;
1137     break;
1138   }
1139   case Instruction::Mul: {
1140     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1141     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1142                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
1143     break;
1144   }
1145   case Instruction::UDiv: {
1146     // For the purposes of computing leading zeros we can conservatively
1147     // treat a udiv as a logical right shift by the power of 2 known to
1148     // be less than the denominator.
1149     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1150     unsigned LeadZ = KnownZero2.countLeadingOnes();
1151 
1152     KnownOne2.clearAllBits();
1153     KnownZero2.clearAllBits();
1154     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1155     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1156     if (RHSUnknownLeadingOnes != BitWidth)
1157       LeadZ = std::min(BitWidth,
1158                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1159 
1160     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1161     break;
1162   }
1163   case Instruction::Select:
1164     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1165     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1166 
1167     // Only known if known in both the LHS and RHS.
1168     KnownOne &= KnownOne2;
1169     KnownZero &= KnownZero2;
1170     break;
1171   case Instruction::FPTrunc:
1172   case Instruction::FPExt:
1173   case Instruction::FPToUI:
1174   case Instruction::FPToSI:
1175   case Instruction::SIToFP:
1176   case Instruction::UIToFP:
1177     break; // Can't work with floating point.
1178   case Instruction::PtrToInt:
1179   case Instruction::IntToPtr:
1180   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
1181     // FALL THROUGH and handle them the same as zext/trunc.
1182   case Instruction::ZExt:
1183   case Instruction::Trunc: {
1184     Type *SrcTy = I->getOperand(0)->getType();
1185 
1186     unsigned SrcBitWidth;
1187     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1188     // which fall through here.
1189     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1190 
1191     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1192     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1193     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1194     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1195     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1196     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1197     // Any top bits are known to be zero.
1198     if (BitWidth > SrcBitWidth)
1199       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1200     break;
1201   }
1202   case Instruction::BitCast: {
1203     Type *SrcTy = I->getOperand(0)->getType();
1204     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1205          SrcTy->isFloatingPointTy()) &&
1206         // TODO: For now, not handling conversions like:
1207         // (bitcast i64 %x to <2 x i32>)
1208         !I->getType()->isVectorTy()) {
1209       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1210       break;
1211     }
1212     break;
1213   }
1214   case Instruction::SExt: {
1215     // Compute the bits in the result that are not present in the input.
1216     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1217 
1218     KnownZero = KnownZero.trunc(SrcBitWidth);
1219     KnownOne = KnownOne.trunc(SrcBitWidth);
1220     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1221     KnownZero = KnownZero.zext(BitWidth);
1222     KnownOne = KnownOne.zext(BitWidth);
1223 
1224     // If the sign bit of the input is known set or clear, then we know the
1225     // top bits of the result.
1226     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1227       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1228     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1229       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1230     break;
1231   }
1232   case Instruction::Shl: {
1233     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1234     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1235       return (KnownZero << ShiftAmt) |
1236              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1237     };
1238 
1239     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1240       return KnownOne << ShiftAmt;
1241     };
1242 
1243     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1244                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1245                                       KOF);
1246     break;
1247   }
1248   case Instruction::LShr: {
1249     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1250     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1251       return APIntOps::lshr(KnownZero, ShiftAmt) |
1252              // High bits known zero.
1253              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1254     };
1255 
1256     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1257       return APIntOps::lshr(KnownOne, ShiftAmt);
1258     };
1259 
1260     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1261                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1262                                       KOF);
1263     break;
1264   }
1265   case Instruction::AShr: {
1266     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1267     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1268       return APIntOps::ashr(KnownZero, ShiftAmt);
1269     };
1270 
1271     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1272       return APIntOps::ashr(KnownOne, ShiftAmt);
1273     };
1274 
1275     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1276                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1277                                       KOF);
1278     break;
1279   }
1280   case Instruction::Sub: {
1281     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1282     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1283                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1284                            Q);
1285     break;
1286   }
1287   case Instruction::Add: {
1288     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1289     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1290                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1291                            Q);
1292     break;
1293   }
1294   case Instruction::SRem:
1295     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1296       APInt RA = Rem->getValue().abs();
1297       if (RA.isPowerOf2()) {
1298         APInt LowBits = RA - 1;
1299         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1300                          Q);
1301 
1302         // The low bits of the first operand are unchanged by the srem.
1303         KnownZero = KnownZero2 & LowBits;
1304         KnownOne = KnownOne2 & LowBits;
1305 
1306         // If the first operand is non-negative or has all low bits zero, then
1307         // the upper bits are all zero.
1308         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1309           KnownZero |= ~LowBits;
1310 
1311         // If the first operand is negative and not all low bits are zero, then
1312         // the upper bits are all one.
1313         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1314           KnownOne |= ~LowBits;
1315 
1316         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1317       }
1318     }
1319 
1320     // The sign bit is the LHS's sign bit, except when the result of the
1321     // remainder is zero.
1322     if (KnownZero.isNonNegative()) {
1323       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1324       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1325                        Q);
1326       // If it's known zero, our sign bit is also zero.
1327       if (LHSKnownZero.isNegative())
1328         KnownZero.setBit(BitWidth - 1);
1329     }
1330 
1331     break;
1332   case Instruction::URem: {
1333     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1334       APInt RA = Rem->getValue();
1335       if (RA.isPowerOf2()) {
1336         APInt LowBits = (RA - 1);
1337         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1338         KnownZero |= ~LowBits;
1339         KnownOne &= LowBits;
1340         break;
1341       }
1342     }
1343 
1344     // Since the result is less than or equal to either operand, any leading
1345     // zero bits in either operand must also exist in the result.
1346     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1347     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1348 
1349     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1350                                 KnownZero2.countLeadingOnes());
1351     KnownOne.clearAllBits();
1352     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1353     break;
1354   }
1355 
1356   case Instruction::Alloca: {
1357     AllocaInst *AI = cast<AllocaInst>(I);
1358     unsigned Align = AI->getAlignment();
1359     if (Align == 0)
1360       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1361 
1362     if (Align > 0)
1363       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1364     break;
1365   }
1366   case Instruction::GetElementPtr: {
1367     // Analyze all of the subscripts of this getelementptr instruction
1368     // to determine if we can prove known low zero bits.
1369     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1370     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1371                      Q);
1372     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1373 
1374     gep_type_iterator GTI = gep_type_begin(I);
1375     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1376       Value *Index = I->getOperand(i);
1377       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1378         // Handle struct member offset arithmetic.
1379 
1380         // Handle case when index is vector zeroinitializer
1381         Constant *CIndex = cast<Constant>(Index);
1382         if (CIndex->isZeroValue())
1383           continue;
1384 
1385         if (CIndex->getType()->isVectorTy())
1386           Index = CIndex->getSplatValue();
1387 
1388         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1389         const StructLayout *SL = Q.DL.getStructLayout(STy);
1390         uint64_t Offset = SL->getElementOffset(Idx);
1391         TrailZ = std::min<unsigned>(TrailZ,
1392                                     countTrailingZeros(Offset));
1393       } else {
1394         // Handle array index arithmetic.
1395         Type *IndexedTy = GTI.getIndexedType();
1396         if (!IndexedTy->isSized()) {
1397           TrailZ = 0;
1398           break;
1399         }
1400         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1401         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1402         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1403         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1404         TrailZ = std::min(TrailZ,
1405                           unsigned(countTrailingZeros(TypeSize) +
1406                                    LocalKnownZero.countTrailingOnes()));
1407       }
1408     }
1409 
1410     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1411     break;
1412   }
1413   case Instruction::PHI: {
1414     PHINode *P = cast<PHINode>(I);
1415     // Handle the case of a simple two-predecessor recurrence PHI.
1416     // There's a lot more that could theoretically be done here, but
1417     // this is sufficient to catch some interesting cases.
1418     if (P->getNumIncomingValues() == 2) {
1419       for (unsigned i = 0; i != 2; ++i) {
1420         Value *L = P->getIncomingValue(i);
1421         Value *R = P->getIncomingValue(!i);
1422         Operator *LU = dyn_cast<Operator>(L);
1423         if (!LU)
1424           continue;
1425         unsigned Opcode = LU->getOpcode();
1426         // Check for operations that have the property that if
1427         // both their operands have low zero bits, the result
1428         // will have low zero bits.
1429         if (Opcode == Instruction::Add ||
1430             Opcode == Instruction::Sub ||
1431             Opcode == Instruction::And ||
1432             Opcode == Instruction::Or ||
1433             Opcode == Instruction::Mul) {
1434           Value *LL = LU->getOperand(0);
1435           Value *LR = LU->getOperand(1);
1436           // Find a recurrence.
1437           if (LL == I)
1438             L = LR;
1439           else if (LR == I)
1440             L = LL;
1441           else
1442             break;
1443           // Ok, we have a PHI of the form L op= R. Check for low
1444           // zero bits.
1445           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1446 
1447           // We need to take the minimum number of known bits
1448           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1449           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1450 
1451           KnownZero = APInt::getLowBitsSet(BitWidth,
1452                                            std::min(KnownZero2.countTrailingOnes(),
1453                                                     KnownZero3.countTrailingOnes()));
1454           break;
1455         }
1456       }
1457     }
1458 
1459     // Unreachable blocks may have zero-operand PHI nodes.
1460     if (P->getNumIncomingValues() == 0)
1461       break;
1462 
1463     // Otherwise take the unions of the known bit sets of the operands,
1464     // taking conservative care to avoid excessive recursion.
1465     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1466       // Skip if every incoming value references to ourself.
1467       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1468         break;
1469 
1470       KnownZero = APInt::getAllOnesValue(BitWidth);
1471       KnownOne = APInt::getAllOnesValue(BitWidth);
1472       for (Value *IncValue : P->incoming_values()) {
1473         // Skip direct self references.
1474         if (IncValue == P) continue;
1475 
1476         KnownZero2 = APInt(BitWidth, 0);
1477         KnownOne2 = APInt(BitWidth, 0);
1478         // Recurse, but cap the recursion to one level, because we don't
1479         // want to waste time spinning around in loops.
1480         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1481         KnownZero &= KnownZero2;
1482         KnownOne &= KnownOne2;
1483         // If all bits have been ruled out, there's no need to check
1484         // more operands.
1485         if (!KnownZero && !KnownOne)
1486           break;
1487       }
1488     }
1489     break;
1490   }
1491   case Instruction::Call:
1492   case Instruction::Invoke:
1493     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1494       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1495     // If a range metadata is attached to this IntrinsicInst, intersect the
1496     // explicit range specified by the metadata and the implicit range of
1497     // the intrinsic.
1498     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1499       switch (II->getIntrinsicID()) {
1500       default: break;
1501       case Intrinsic::bswap:
1502         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1503         KnownZero |= KnownZero2.byteSwap();
1504         KnownOne |= KnownOne2.byteSwap();
1505         break;
1506       case Intrinsic::ctlz:
1507       case Intrinsic::cttz: {
1508         unsigned LowBits = Log2_32(BitWidth)+1;
1509         // If this call is undefined for 0, the result will be less than 2^n.
1510         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1511           LowBits -= 1;
1512         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1513         break;
1514       }
1515       case Intrinsic::ctpop: {
1516         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1517         // We can bound the space the count needs.  Also, bits known to be zero
1518         // can't contribute to the population.
1519         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1520         unsigned LeadingZeros =
1521           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1522         assert(LeadingZeros <= BitWidth);
1523         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1524         KnownOne &= ~KnownZero;
1525         // TODO: we could bound KnownOne using the lower bound on the number
1526         // of bits which might be set provided by popcnt KnownOne2.
1527         break;
1528       }
1529       case Intrinsic::fabs: {
1530         Type *Ty = II->getType();
1531         APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1532         KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1533         break;
1534       }
1535       case Intrinsic::x86_sse42_crc32_64_64:
1536         KnownZero |= APInt::getHighBitsSet(64, 32);
1537         break;
1538       }
1539     }
1540     break;
1541   case Instruction::ExtractValue:
1542     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1543       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1544       if (EVI->getNumIndices() != 1) break;
1545       if (EVI->getIndices()[0] == 0) {
1546         switch (II->getIntrinsicID()) {
1547         default: break;
1548         case Intrinsic::uadd_with_overflow:
1549         case Intrinsic::sadd_with_overflow:
1550           computeKnownBitsAddSub(true, II->getArgOperand(0),
1551                                  II->getArgOperand(1), false, KnownZero,
1552                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1553           break;
1554         case Intrinsic::usub_with_overflow:
1555         case Intrinsic::ssub_with_overflow:
1556           computeKnownBitsAddSub(false, II->getArgOperand(0),
1557                                  II->getArgOperand(1), false, KnownZero,
1558                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1559           break;
1560         case Intrinsic::umul_with_overflow:
1561         case Intrinsic::smul_with_overflow:
1562           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1563                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1564                               Q);
1565           break;
1566         }
1567       }
1568     }
1569   }
1570 }
1571 
1572 static unsigned getAlignment(const Value *V, const DataLayout &DL) {
1573   unsigned Align = 0;
1574   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1575     Align = GO->getAlignment();
1576     if (Align == 0) {
1577       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1578         Type *ObjectType = GVar->getValueType();
1579         if (ObjectType->isSized()) {
1580           // If the object is defined in the current Module, we'll be giving
1581           // it the preferred alignment. Otherwise, we have to assume that it
1582           // may only have the minimum ABI alignment.
1583           if (GVar->isStrongDefinitionForLinker())
1584             Align = DL.getPreferredAlignment(GVar);
1585           else
1586             Align = DL.getABITypeAlignment(ObjectType);
1587         }
1588       }
1589     }
1590   } else if (const Argument *A = dyn_cast<Argument>(V)) {
1591     Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1592 
1593     if (!Align && A->hasStructRetAttr()) {
1594       // An sret parameter has at least the ABI alignment of the return type.
1595       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1596       if (EltTy->isSized())
1597         Align = DL.getABITypeAlignment(EltTy);
1598     }
1599   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1600     Align = AI->getAlignment();
1601   else if (auto CS = ImmutableCallSite(V))
1602     Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1603   else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1604     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1605       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1606       Align = CI->getLimitedValue();
1607     }
1608 
1609   return Align;
1610 }
1611 
1612 /// Determine which bits of V are known to be either zero or one and return
1613 /// them in the KnownZero/KnownOne bit sets.
1614 ///
1615 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1616 /// we cannot optimize based on the assumption that it is zero without changing
1617 /// it to be an explicit zero.  If we don't change it to zero, other code could
1618 /// optimized based on the contradictory assumption that it is non-zero.
1619 /// Because instcombine aggressively folds operations with undef args anyway,
1620 /// this won't lose us code quality.
1621 ///
1622 /// This function is defined on values with integer type, values with pointer
1623 /// type, and vectors of integers.  In the case
1624 /// where V is a vector, known zero, and known one values are the
1625 /// same width as the vector element, and the bit is set only if it is true
1626 /// for all of the elements in the vector.
1627 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1628                       unsigned Depth, const Query &Q) {
1629   assert(V && "No Value?");
1630   assert(Depth <= MaxDepth && "Limit Search Depth");
1631   unsigned BitWidth = KnownZero.getBitWidth();
1632 
1633   assert((V->getType()->isIntOrIntVectorTy() ||
1634           V->getType()->isFPOrFPVectorTy() ||
1635           V->getType()->getScalarType()->isPointerTy()) &&
1636          "Not integer, floating point, or pointer type!");
1637   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1638          (!V->getType()->isIntOrIntVectorTy() ||
1639           V->getType()->getScalarSizeInBits() == BitWidth) &&
1640          KnownZero.getBitWidth() == BitWidth &&
1641          KnownOne.getBitWidth() == BitWidth &&
1642          "V, KnownOne and KnownZero should have same BitWidth");
1643 
1644   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1645     // We know all of the bits for a constant!
1646     KnownOne = CI->getValue();
1647     KnownZero = ~KnownOne;
1648     return;
1649   }
1650   // Null and aggregate-zero are all-zeros.
1651   if (isa<ConstantPointerNull>(V) ||
1652       isa<ConstantAggregateZero>(V)) {
1653     KnownOne.clearAllBits();
1654     KnownZero = APInt::getAllOnesValue(BitWidth);
1655     return;
1656   }
1657   // Handle a constant vector by taking the intersection of the known bits of
1658   // each element.  There is no real need to handle ConstantVector here, because
1659   // we don't handle undef in any particularly useful way.
1660   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1661     // We know that CDS must be a vector of integers. Take the intersection of
1662     // each element.
1663     KnownZero.setAllBits(); KnownOne.setAllBits();
1664     APInt Elt(KnownZero.getBitWidth(), 0);
1665     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1666       Elt = CDS->getElementAsInteger(i);
1667       KnownZero &= ~Elt;
1668       KnownOne &= Elt;
1669     }
1670     return;
1671   }
1672 
1673   // Start out not knowing anything.
1674   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1675 
1676   // Limit search depth.
1677   // All recursive calls that increase depth must come after this.
1678   if (Depth == MaxDepth)
1679     return;
1680 
1681   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1682   // the bits of its aliasee.
1683   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1684     if (!GA->mayBeOverridden())
1685       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1686     return;
1687   }
1688 
1689   if (Operator *I = dyn_cast<Operator>(V))
1690     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1691 
1692   // Aligned pointers have trailing zeros - refine KnownZero set
1693   if (V->getType()->isPointerTy()) {
1694     unsigned Align = getAlignment(V, Q.DL);
1695     if (Align)
1696       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1697   }
1698 
1699   // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1700   // strictly refines KnownZero and KnownOne. Therefore, we run them after
1701   // computeKnownBitsFromOperator.
1702 
1703   // Check whether a nearby assume intrinsic can determine some known bits.
1704   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1705 
1706   // Check whether there's a dominating condition which implies something about
1707   // this value at the given context.
1708   if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1709     computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q);
1710 
1711   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1712 }
1713 
1714 /// Determine whether the sign bit is known to be zero or one.
1715 /// Convenience wrapper around computeKnownBits.
1716 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1717                     unsigned Depth, const Query &Q) {
1718   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1719   if (!BitWidth) {
1720     KnownZero = false;
1721     KnownOne = false;
1722     return;
1723   }
1724   APInt ZeroBits(BitWidth, 0);
1725   APInt OneBits(BitWidth, 0);
1726   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1727   KnownOne = OneBits[BitWidth - 1];
1728   KnownZero = ZeroBits[BitWidth - 1];
1729 }
1730 
1731 /// Return true if the given value is known to have exactly one
1732 /// bit set when defined. For vectors return true if every element is known to
1733 /// be a power of two when defined. Supports values with integer or pointer
1734 /// types and vectors of integers.
1735 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1736                             const Query &Q) {
1737   if (Constant *C = dyn_cast<Constant>(V)) {
1738     if (C->isNullValue())
1739       return OrZero;
1740     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1741       return CI->getValue().isPowerOf2();
1742     // TODO: Handle vector constants.
1743   }
1744 
1745   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1746   // it is shifted off the end then the result is undefined.
1747   if (match(V, m_Shl(m_One(), m_Value())))
1748     return true;
1749 
1750   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1751   // bottom.  If it is shifted off the bottom then the result is undefined.
1752   if (match(V, m_LShr(m_SignBit(), m_Value())))
1753     return true;
1754 
1755   // The remaining tests are all recursive, so bail out if we hit the limit.
1756   if (Depth++ == MaxDepth)
1757     return false;
1758 
1759   Value *X = nullptr, *Y = nullptr;
1760   // A shift left or a logical shift right of a power of two is a power of two
1761   // or zero.
1762   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1763                  match(V, m_LShr(m_Value(X), m_Value()))))
1764     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1765 
1766   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1767     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1768 
1769   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1770     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1771            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1772 
1773   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1774     // A power of two and'd with anything is a power of two or zero.
1775     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1776         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1777       return true;
1778     // X & (-X) is always a power of two or zero.
1779     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1780       return true;
1781     return false;
1782   }
1783 
1784   // Adding a power-of-two or zero to the same power-of-two or zero yields
1785   // either the original power-of-two, a larger power-of-two or zero.
1786   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1787     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1788     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1789       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1790           match(X, m_And(m_Value(), m_Specific(Y))))
1791         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1792           return true;
1793       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1794           match(Y, m_And(m_Value(), m_Specific(X))))
1795         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1796           return true;
1797 
1798       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1799       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1800       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1801 
1802       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1803       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1804       // If i8 V is a power of two or zero:
1805       //  ZeroBits: 1 1 1 0 1 1 1 1
1806       // ~ZeroBits: 0 0 0 1 0 0 0 0
1807       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1808         // If OrZero isn't set, we cannot give back a zero result.
1809         // Make sure either the LHS or RHS has a bit set.
1810         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1811           return true;
1812     }
1813   }
1814 
1815   // An exact divide or right shift can only shift off zero bits, so the result
1816   // is a power of two only if the first operand is a power of two and not
1817   // copying a sign bit (sdiv int_min, 2).
1818   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1819       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1820     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1821                                   Depth, Q);
1822   }
1823 
1824   return false;
1825 }
1826 
1827 /// \brief Test whether a GEP's result is known to be non-null.
1828 ///
1829 /// Uses properties inherent in a GEP to try to determine whether it is known
1830 /// to be non-null.
1831 ///
1832 /// Currently this routine does not support vector GEPs.
1833 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1834                               const Query &Q) {
1835   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1836     return false;
1837 
1838   // FIXME: Support vector-GEPs.
1839   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1840 
1841   // If the base pointer is non-null, we cannot walk to a null address with an
1842   // inbounds GEP in address space zero.
1843   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1844     return true;
1845 
1846   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1847   // If so, then the GEP cannot produce a null pointer, as doing so would
1848   // inherently violate the inbounds contract within address space zero.
1849   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1850        GTI != GTE; ++GTI) {
1851     // Struct types are easy -- they must always be indexed by a constant.
1852     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1853       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1854       unsigned ElementIdx = OpC->getZExtValue();
1855       const StructLayout *SL = Q.DL.getStructLayout(STy);
1856       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1857       if (ElementOffset > 0)
1858         return true;
1859       continue;
1860     }
1861 
1862     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1863     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1864       continue;
1865 
1866     // Fast path the constant operand case both for efficiency and so we don't
1867     // increment Depth when just zipping down an all-constant GEP.
1868     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1869       if (!OpC->isZero())
1870         return true;
1871       continue;
1872     }
1873 
1874     // We post-increment Depth here because while isKnownNonZero increments it
1875     // as well, when we pop back up that increment won't persist. We don't want
1876     // to recurse 10k times just because we have 10k GEP operands. We don't
1877     // bail completely out because we want to handle constant GEPs regardless
1878     // of depth.
1879     if (Depth++ >= MaxDepth)
1880       continue;
1881 
1882     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1883       return true;
1884   }
1885 
1886   return false;
1887 }
1888 
1889 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1890 /// ensure that the value it's attached to is never Value?  'RangeType' is
1891 /// is the type of the value described by the range.
1892 static bool rangeMetadataExcludesValue(MDNode* Ranges,
1893                                        const APInt& Value) {
1894   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1895   assert(NumRanges >= 1);
1896   for (unsigned i = 0; i < NumRanges; ++i) {
1897     ConstantInt *Lower =
1898         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1899     ConstantInt *Upper =
1900         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1901     ConstantRange Range(Lower->getValue(), Upper->getValue());
1902     if (Range.contains(Value))
1903       return false;
1904   }
1905   return true;
1906 }
1907 
1908 /// Return true if the given value is known to be non-zero when defined.
1909 /// For vectors return true if every element is known to be non-zero when
1910 /// defined. Supports values with integer or pointer type and vectors of
1911 /// integers.
1912 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1913   if (Constant *C = dyn_cast<Constant>(V)) {
1914     if (C->isNullValue())
1915       return false;
1916     if (isa<ConstantInt>(C))
1917       // Must be non-zero due to null test above.
1918       return true;
1919     // TODO: Handle vectors
1920     return false;
1921   }
1922 
1923   if (Instruction* I = dyn_cast<Instruction>(V)) {
1924     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1925       // If the possible ranges don't contain zero, then the value is
1926       // definitely non-zero.
1927       if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1928         const APInt ZeroValue(Ty->getBitWidth(), 0);
1929         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1930           return true;
1931       }
1932     }
1933   }
1934 
1935   // The remaining tests are all recursive, so bail out if we hit the limit.
1936   if (Depth++ >= MaxDepth)
1937     return false;
1938 
1939   // Check for pointer simplifications.
1940   if (V->getType()->isPointerTy()) {
1941     if (isKnownNonNull(V))
1942       return true;
1943     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1944       if (isGEPKnownNonNull(GEP, Depth, Q))
1945         return true;
1946   }
1947 
1948   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1949 
1950   // X | Y != 0 if X != 0 or Y != 0.
1951   Value *X = nullptr, *Y = nullptr;
1952   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1953     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1954 
1955   // ext X != 0 if X != 0.
1956   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1957     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1958 
1959   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1960   // if the lowest bit is shifted off the end.
1961   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1962     // shl nuw can't remove any non-zero bits.
1963     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1964     if (BO->hasNoUnsignedWrap())
1965       return isKnownNonZero(X, Depth, Q);
1966 
1967     APInt KnownZero(BitWidth, 0);
1968     APInt KnownOne(BitWidth, 0);
1969     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1970     if (KnownOne[0])
1971       return true;
1972   }
1973   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1974   // defined if the sign bit is shifted off the end.
1975   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1976     // shr exact can only shift out zero bits.
1977     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1978     if (BO->isExact())
1979       return isKnownNonZero(X, Depth, Q);
1980 
1981     bool XKnownNonNegative, XKnownNegative;
1982     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1983     if (XKnownNegative)
1984       return true;
1985 
1986     // If the shifter operand is a constant, and all of the bits shifted
1987     // out are known to be zero, and X is known non-zero then at least one
1988     // non-zero bit must remain.
1989     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1990       APInt KnownZero(BitWidth, 0);
1991       APInt KnownOne(BitWidth, 0);
1992       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1993 
1994       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1995       // Is there a known one in the portion not shifted out?
1996       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1997         return true;
1998       // Are all the bits to be shifted out known zero?
1999       if (KnownZero.countTrailingOnes() >= ShiftVal)
2000         return isKnownNonZero(X, Depth, Q);
2001     }
2002   }
2003   // div exact can only produce a zero if the dividend is zero.
2004   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2005     return isKnownNonZero(X, Depth, Q);
2006   }
2007   // X + Y.
2008   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2009     bool XKnownNonNegative, XKnownNegative;
2010     bool YKnownNonNegative, YKnownNegative;
2011     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
2012     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
2013 
2014     // If X and Y are both non-negative (as signed values) then their sum is not
2015     // zero unless both X and Y are zero.
2016     if (XKnownNonNegative && YKnownNonNegative)
2017       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2018         return true;
2019 
2020     // If X and Y are both negative (as signed values) then their sum is not
2021     // zero unless both X and Y equal INT_MIN.
2022     if (BitWidth && XKnownNegative && YKnownNegative) {
2023       APInt KnownZero(BitWidth, 0);
2024       APInt KnownOne(BitWidth, 0);
2025       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2026       // The sign bit of X is set.  If some other bit is set then X is not equal
2027       // to INT_MIN.
2028       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
2029       if ((KnownOne & Mask) != 0)
2030         return true;
2031       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2032       // to INT_MIN.
2033       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
2034       if ((KnownOne & Mask) != 0)
2035         return true;
2036     }
2037 
2038     // The sum of a non-negative number and a power of two is not zero.
2039     if (XKnownNonNegative &&
2040         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2041       return true;
2042     if (YKnownNonNegative &&
2043         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2044       return true;
2045   }
2046   // X * Y.
2047   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2048     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2049     // If X and Y are non-zero then so is X * Y as long as the multiplication
2050     // does not overflow.
2051     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
2052         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2053       return true;
2054   }
2055   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2056   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2057     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2058         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2059       return true;
2060   }
2061   // PHI
2062   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2063     // Try and detect a recurrence that monotonically increases from a
2064     // starting value, as these are common as induction variables.
2065     if (PN->getNumIncomingValues() == 2) {
2066       Value *Start = PN->getIncomingValue(0);
2067       Value *Induction = PN->getIncomingValue(1);
2068       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2069         std::swap(Start, Induction);
2070       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2071         if (!C->isZero() && !C->isNegative()) {
2072           ConstantInt *X;
2073           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2074                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2075               !X->isNegative())
2076             return true;
2077         }
2078       }
2079     }
2080     // Check if all incoming values are non-zero constant.
2081     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
2082       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
2083     });
2084     if (AllNonZeroConstants)
2085       return true;
2086   }
2087 
2088   if (!BitWidth) return false;
2089   APInt KnownZero(BitWidth, 0);
2090   APInt KnownOne(BitWidth, 0);
2091   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2092   return KnownOne != 0;
2093 }
2094 
2095 /// Return true if V2 == V1 + X, where X is known non-zero.
2096 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
2097   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2098   if (!BO || BO->getOpcode() != Instruction::Add)
2099     return false;
2100   Value *Op = nullptr;
2101   if (V2 == BO->getOperand(0))
2102     Op = BO->getOperand(1);
2103   else if (V2 == BO->getOperand(1))
2104     Op = BO->getOperand(0);
2105   else
2106     return false;
2107   return isKnownNonZero(Op, 0, Q);
2108 }
2109 
2110 /// Return true if it is known that V1 != V2.
2111 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
2112   if (V1->getType()->isVectorTy() || V1 == V2)
2113     return false;
2114   if (V1->getType() != V2->getType())
2115     // We can't look through casts yet.
2116     return false;
2117   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2118     return true;
2119 
2120   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2121     // Are any known bits in V1 contradictory to known bits in V2? If V1
2122     // has a known zero where V2 has a known one, they must not be equal.
2123     auto BitWidth = Ty->getBitWidth();
2124     APInt KnownZero1(BitWidth, 0);
2125     APInt KnownOne1(BitWidth, 0);
2126     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
2127     APInt KnownZero2(BitWidth, 0);
2128     APInt KnownOne2(BitWidth, 0);
2129     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
2130 
2131     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2132     if (OppositeBits.getBoolValue())
2133       return true;
2134   }
2135   return false;
2136 }
2137 
2138 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2139 /// simplify operations downstream. Mask is known to be zero for bits that V
2140 /// cannot have.
2141 ///
2142 /// This function is defined on values with integer type, values with pointer
2143 /// type, and vectors of integers.  In the case
2144 /// where V is a vector, the mask, known zero, and known one values are the
2145 /// same width as the vector element, and the bit is set only if it is true
2146 /// for all of the elements in the vector.
2147 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
2148                        const Query &Q) {
2149   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2150   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2151   return (KnownZero & Mask) == Mask;
2152 }
2153 
2154 
2155 
2156 /// Return the number of times the sign bit of the register is replicated into
2157 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2158 /// (itself), but other cases can give us information. For example, immediately
2159 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2160 /// other, so we return 3.
2161 ///
2162 /// 'Op' must have a scalar integer type.
2163 ///
2164 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2165   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2166   unsigned Tmp, Tmp2;
2167   unsigned FirstAnswer = 1;
2168 
2169   // Note that ConstantInt is handled by the general computeKnownBits case
2170   // below.
2171 
2172   if (Depth == 6)
2173     return 1;  // Limit search depth.
2174 
2175   Operator *U = dyn_cast<Operator>(V);
2176   switch (Operator::getOpcode(V)) {
2177   default: break;
2178   case Instruction::SExt:
2179     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2180     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2181 
2182   case Instruction::SDiv: {
2183     const APInt *Denominator;
2184     // sdiv X, C -> adds log(C) sign bits.
2185     if (match(U->getOperand(1), m_APInt(Denominator))) {
2186 
2187       // Ignore non-positive denominator.
2188       if (!Denominator->isStrictlyPositive())
2189         break;
2190 
2191       // Calculate the incoming numerator bits.
2192       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2193 
2194       // Add floor(log(C)) bits to the numerator bits.
2195       return std::min(TyBits, NumBits + Denominator->logBase2());
2196     }
2197     break;
2198   }
2199 
2200   case Instruction::SRem: {
2201     const APInt *Denominator;
2202     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2203     // positive constant.  This let us put a lower bound on the number of sign
2204     // bits.
2205     if (match(U->getOperand(1), m_APInt(Denominator))) {
2206 
2207       // Ignore non-positive denominator.
2208       if (!Denominator->isStrictlyPositive())
2209         break;
2210 
2211       // Calculate the incoming numerator bits. SRem by a positive constant
2212       // can't lower the number of sign bits.
2213       unsigned NumrBits =
2214           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2215 
2216       // Calculate the leading sign bit constraints by examining the
2217       // denominator.  Given that the denominator is positive, there are two
2218       // cases:
2219       //
2220       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2221       //     (1 << ceilLogBase2(C)).
2222       //
2223       //  2. the numerator is negative.  Then the result range is (-C,0] and
2224       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2225       //
2226       // Thus a lower bound on the number of sign bits is `TyBits -
2227       // ceilLogBase2(C)`.
2228 
2229       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2230       return std::max(NumrBits, ResBits);
2231     }
2232     break;
2233   }
2234 
2235   case Instruction::AShr: {
2236     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2237     // ashr X, C   -> adds C sign bits.  Vectors too.
2238     const APInt *ShAmt;
2239     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2240       Tmp += ShAmt->getZExtValue();
2241       if (Tmp > TyBits) Tmp = TyBits;
2242     }
2243     return Tmp;
2244   }
2245   case Instruction::Shl: {
2246     const APInt *ShAmt;
2247     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2248       // shl destroys sign bits.
2249       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2250       Tmp2 = ShAmt->getZExtValue();
2251       if (Tmp2 >= TyBits ||      // Bad shift.
2252           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2253       return Tmp - Tmp2;
2254     }
2255     break;
2256   }
2257   case Instruction::And:
2258   case Instruction::Or:
2259   case Instruction::Xor:    // NOT is handled here.
2260     // Logical binary ops preserve the number of sign bits at the worst.
2261     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2262     if (Tmp != 1) {
2263       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2264       FirstAnswer = std::min(Tmp, Tmp2);
2265       // We computed what we know about the sign bits as our first
2266       // answer. Now proceed to the generic code that uses
2267       // computeKnownBits, and pick whichever answer is better.
2268     }
2269     break;
2270 
2271   case Instruction::Select:
2272     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2273     if (Tmp == 1) return 1;  // Early out.
2274     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2275     return std::min(Tmp, Tmp2);
2276 
2277   case Instruction::Add:
2278     // Add can have at most one carry bit.  Thus we know that the output
2279     // is, at worst, one more bit than the inputs.
2280     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2281     if (Tmp == 1) return 1;  // Early out.
2282 
2283     // Special case decrementing a value (ADD X, -1):
2284     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2285       if (CRHS->isAllOnesValue()) {
2286         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2287         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2288 
2289         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2290         // sign bits set.
2291         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2292           return TyBits;
2293 
2294         // If we are subtracting one from a positive number, there is no carry
2295         // out of the result.
2296         if (KnownZero.isNegative())
2297           return Tmp;
2298       }
2299 
2300     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2301     if (Tmp2 == 1) return 1;
2302     return std::min(Tmp, Tmp2)-1;
2303 
2304   case Instruction::Sub:
2305     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2306     if (Tmp2 == 1) return 1;
2307 
2308     // Handle NEG.
2309     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2310       if (CLHS->isNullValue()) {
2311         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2312         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2313         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2314         // sign bits set.
2315         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2316           return TyBits;
2317 
2318         // If the input is known to be positive (the sign bit is known clear),
2319         // the output of the NEG has the same number of sign bits as the input.
2320         if (KnownZero.isNegative())
2321           return Tmp2;
2322 
2323         // Otherwise, we treat this like a SUB.
2324       }
2325 
2326     // Sub can have at most one carry bit.  Thus we know that the output
2327     // is, at worst, one more bit than the inputs.
2328     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2329     if (Tmp == 1) return 1;  // Early out.
2330     return std::min(Tmp, Tmp2)-1;
2331 
2332   case Instruction::PHI: {
2333     PHINode *PN = cast<PHINode>(U);
2334     unsigned NumIncomingValues = PN->getNumIncomingValues();
2335     // Don't analyze large in-degree PHIs.
2336     if (NumIncomingValues > 4) break;
2337     // Unreachable blocks may have zero-operand PHI nodes.
2338     if (NumIncomingValues == 0) break;
2339 
2340     // Take the minimum of all incoming values.  This can't infinitely loop
2341     // because of our depth threshold.
2342     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2343     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2344       if (Tmp == 1) return Tmp;
2345       Tmp = std::min(
2346           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2347     }
2348     return Tmp;
2349   }
2350 
2351   case Instruction::Trunc:
2352     // FIXME: it's tricky to do anything useful for this, but it is an important
2353     // case for targets like X86.
2354     break;
2355   }
2356 
2357   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2358   // use this information.
2359   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2360   APInt Mask;
2361   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2362 
2363   if (KnownZero.isNegative()) {        // sign bit is 0
2364     Mask = KnownZero;
2365   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2366     Mask = KnownOne;
2367   } else {
2368     // Nothing known.
2369     return FirstAnswer;
2370   }
2371 
2372   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2373   // the number of identical bits in the top of the input value.
2374   Mask = ~Mask;
2375   Mask <<= Mask.getBitWidth()-TyBits;
2376   // Return # leading zeros.  We use 'min' here in case Val was zero before
2377   // shifting.  We don't want to return '64' as for an i32 "0".
2378   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2379 }
2380 
2381 /// This function computes the integer multiple of Base that equals V.
2382 /// If successful, it returns true and returns the multiple in
2383 /// Multiple. If unsuccessful, it returns false. It looks
2384 /// through SExt instructions only if LookThroughSExt is true.
2385 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2386                            bool LookThroughSExt, unsigned Depth) {
2387   const unsigned MaxDepth = 6;
2388 
2389   assert(V && "No Value?");
2390   assert(Depth <= MaxDepth && "Limit Search Depth");
2391   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2392 
2393   Type *T = V->getType();
2394 
2395   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2396 
2397   if (Base == 0)
2398     return false;
2399 
2400   if (Base == 1) {
2401     Multiple = V;
2402     return true;
2403   }
2404 
2405   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2406   Constant *BaseVal = ConstantInt::get(T, Base);
2407   if (CO && CO == BaseVal) {
2408     // Multiple is 1.
2409     Multiple = ConstantInt::get(T, 1);
2410     return true;
2411   }
2412 
2413   if (CI && CI->getZExtValue() % Base == 0) {
2414     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2415     return true;
2416   }
2417 
2418   if (Depth == MaxDepth) return false;  // Limit search depth.
2419 
2420   Operator *I = dyn_cast<Operator>(V);
2421   if (!I) return false;
2422 
2423   switch (I->getOpcode()) {
2424   default: break;
2425   case Instruction::SExt:
2426     if (!LookThroughSExt) return false;
2427     // otherwise fall through to ZExt
2428   case Instruction::ZExt:
2429     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2430                            LookThroughSExt, Depth+1);
2431   case Instruction::Shl:
2432   case Instruction::Mul: {
2433     Value *Op0 = I->getOperand(0);
2434     Value *Op1 = I->getOperand(1);
2435 
2436     if (I->getOpcode() == Instruction::Shl) {
2437       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2438       if (!Op1CI) return false;
2439       // Turn Op0 << Op1 into Op0 * 2^Op1
2440       APInt Op1Int = Op1CI->getValue();
2441       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2442       APInt API(Op1Int.getBitWidth(), 0);
2443       API.setBit(BitToSet);
2444       Op1 = ConstantInt::get(V->getContext(), API);
2445     }
2446 
2447     Value *Mul0 = nullptr;
2448     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2449       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2450         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2451           if (Op1C->getType()->getPrimitiveSizeInBits() <
2452               MulC->getType()->getPrimitiveSizeInBits())
2453             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2454           if (Op1C->getType()->getPrimitiveSizeInBits() >
2455               MulC->getType()->getPrimitiveSizeInBits())
2456             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2457 
2458           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2459           Multiple = ConstantExpr::getMul(MulC, Op1C);
2460           return true;
2461         }
2462 
2463       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2464         if (Mul0CI->getValue() == 1) {
2465           // V == Base * Op1, so return Op1
2466           Multiple = Op1;
2467           return true;
2468         }
2469     }
2470 
2471     Value *Mul1 = nullptr;
2472     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2473       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2474         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2475           if (Op0C->getType()->getPrimitiveSizeInBits() <
2476               MulC->getType()->getPrimitiveSizeInBits())
2477             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2478           if (Op0C->getType()->getPrimitiveSizeInBits() >
2479               MulC->getType()->getPrimitiveSizeInBits())
2480             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2481 
2482           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2483           Multiple = ConstantExpr::getMul(MulC, Op0C);
2484           return true;
2485         }
2486 
2487       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2488         if (Mul1CI->getValue() == 1) {
2489           // V == Base * Op0, so return Op0
2490           Multiple = Op0;
2491           return true;
2492         }
2493     }
2494   }
2495   }
2496 
2497   // We could not determine if V is a multiple of Base.
2498   return false;
2499 }
2500 
2501 /// Return true if we can prove that the specified FP value is never equal to
2502 /// -0.0.
2503 ///
2504 /// NOTE: this function will need to be revisited when we support non-default
2505 /// rounding modes!
2506 ///
2507 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2508   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2509     return !CFP->getValueAPF().isNegZero();
2510 
2511   // FIXME: Magic number! At the least, this should be given a name because it's
2512   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2513   // expose it as a parameter, so it can be used for testing / experimenting.
2514   if (Depth == 6)
2515     return false;  // Limit search depth.
2516 
2517   const Operator *I = dyn_cast<Operator>(V);
2518   if (!I) return false;
2519 
2520   // Check if the nsz fast-math flag is set
2521   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2522     if (FPO->hasNoSignedZeros())
2523       return true;
2524 
2525   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2526   if (I->getOpcode() == Instruction::FAdd)
2527     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2528       if (CFP->isNullValue())
2529         return true;
2530 
2531   // sitofp and uitofp turn into +0.0 for zero.
2532   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2533     return true;
2534 
2535   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2536     // sqrt(-0.0) = -0.0, no other negative results are possible.
2537     if (II->getIntrinsicID() == Intrinsic::sqrt)
2538       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
2539 
2540   if (const CallInst *CI = dyn_cast<CallInst>(I))
2541     if (const Function *F = CI->getCalledFunction()) {
2542       if (F->isDeclaration()) {
2543         // abs(x) != -0.0
2544         if (F->getName() == "abs") return true;
2545         // fabs[lf](x) != -0.0
2546         if (F->getName() == "fabs") return true;
2547         if (F->getName() == "fabsf") return true;
2548         if (F->getName() == "fabsl") return true;
2549         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2550             F->getName() == "sqrtl")
2551           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
2552       }
2553     }
2554 
2555   return false;
2556 }
2557 
2558 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2559   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2560     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2561 
2562   // FIXME: Magic number! At the least, this should be given a name because it's
2563   // used similarly in CannotBeNegativeZero(). A better fix may be to
2564   // expose it as a parameter, so it can be used for testing / experimenting.
2565   if (Depth == 6)
2566     return false;  // Limit search depth.
2567 
2568   const Operator *I = dyn_cast<Operator>(V);
2569   if (!I) return false;
2570 
2571   switch (I->getOpcode()) {
2572   default: break;
2573   // Unsigned integers are always nonnegative.
2574   case Instruction::UIToFP:
2575     return true;
2576   case Instruction::FMul:
2577     // x*x is always non-negative or a NaN.
2578     if (I->getOperand(0) == I->getOperand(1))
2579       return true;
2580     // Fall through
2581   case Instruction::FAdd:
2582   case Instruction::FDiv:
2583   case Instruction::FRem:
2584     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2585            CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2586   case Instruction::Select:
2587     return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
2588            CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2589   case Instruction::FPExt:
2590   case Instruction::FPTrunc:
2591     // Widening/narrowing never change sign.
2592     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2593   case Instruction::Call:
2594     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2595       switch (II->getIntrinsicID()) {
2596       default: break;
2597       case Intrinsic::maxnum:
2598         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
2599                CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2600       case Intrinsic::minnum:
2601         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2602                CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2603       case Intrinsic::exp:
2604       case Intrinsic::exp2:
2605       case Intrinsic::fabs:
2606       case Intrinsic::sqrt:
2607         return true;
2608       case Intrinsic::powi:
2609         if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2610           // powi(x,n) is non-negative if n is even.
2611           if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2612             return true;
2613         }
2614         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2615       case Intrinsic::fma:
2616       case Intrinsic::fmuladd:
2617         // x*x+y is non-negative if y is non-negative.
2618         return I->getOperand(0) == I->getOperand(1) &&
2619                CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2620       }
2621     break;
2622   }
2623   return false;
2624 }
2625 
2626 /// If the specified value can be set by repeating the same byte in memory,
2627 /// return the i8 value that it is represented with.  This is
2628 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2629 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2630 /// byte store (e.g. i16 0x1234), return null.
2631 Value *llvm::isBytewiseValue(Value *V) {
2632   // All byte-wide stores are splatable, even of arbitrary variables.
2633   if (V->getType()->isIntegerTy(8)) return V;
2634 
2635   // Handle 'null' ConstantArrayZero etc.
2636   if (Constant *C = dyn_cast<Constant>(V))
2637     if (C->isNullValue())
2638       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2639 
2640   // Constant float and double values can be handled as integer values if the
2641   // corresponding integer value is "byteable".  An important case is 0.0.
2642   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2643     if (CFP->getType()->isFloatTy())
2644       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2645     if (CFP->getType()->isDoubleTy())
2646       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2647     // Don't handle long double formats, which have strange constraints.
2648   }
2649 
2650   // We can handle constant integers that are multiple of 8 bits.
2651   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2652     if (CI->getBitWidth() % 8 == 0) {
2653       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2654 
2655       if (!CI->getValue().isSplat(8))
2656         return nullptr;
2657       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2658     }
2659   }
2660 
2661   // A ConstantDataArray/Vector is splatable if all its members are equal and
2662   // also splatable.
2663   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2664     Value *Elt = CA->getElementAsConstant(0);
2665     Value *Val = isBytewiseValue(Elt);
2666     if (!Val)
2667       return nullptr;
2668 
2669     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2670       if (CA->getElementAsConstant(I) != Elt)
2671         return nullptr;
2672 
2673     return Val;
2674   }
2675 
2676   // Conceptually, we could handle things like:
2677   //   %a = zext i8 %X to i16
2678   //   %b = shl i16 %a, 8
2679   //   %c = or i16 %a, %b
2680   // but until there is an example that actually needs this, it doesn't seem
2681   // worth worrying about.
2682   return nullptr;
2683 }
2684 
2685 
2686 // This is the recursive version of BuildSubAggregate. It takes a few different
2687 // arguments. Idxs is the index within the nested struct From that we are
2688 // looking at now (which is of type IndexedType). IdxSkip is the number of
2689 // indices from Idxs that should be left out when inserting into the resulting
2690 // struct. To is the result struct built so far, new insertvalue instructions
2691 // build on that.
2692 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2693                                 SmallVectorImpl<unsigned> &Idxs,
2694                                 unsigned IdxSkip,
2695                                 Instruction *InsertBefore) {
2696   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2697   if (STy) {
2698     // Save the original To argument so we can modify it
2699     Value *OrigTo = To;
2700     // General case, the type indexed by Idxs is a struct
2701     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2702       // Process each struct element recursively
2703       Idxs.push_back(i);
2704       Value *PrevTo = To;
2705       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2706                              InsertBefore);
2707       Idxs.pop_back();
2708       if (!To) {
2709         // Couldn't find any inserted value for this index? Cleanup
2710         while (PrevTo != OrigTo) {
2711           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2712           PrevTo = Del->getAggregateOperand();
2713           Del->eraseFromParent();
2714         }
2715         // Stop processing elements
2716         break;
2717       }
2718     }
2719     // If we successfully found a value for each of our subaggregates
2720     if (To)
2721       return To;
2722   }
2723   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2724   // the struct's elements had a value that was inserted directly. In the latter
2725   // case, perhaps we can't determine each of the subelements individually, but
2726   // we might be able to find the complete struct somewhere.
2727 
2728   // Find the value that is at that particular spot
2729   Value *V = FindInsertedValue(From, Idxs);
2730 
2731   if (!V)
2732     return nullptr;
2733 
2734   // Insert the value in the new (sub) aggregrate
2735   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2736                                        "tmp", InsertBefore);
2737 }
2738 
2739 // This helper takes a nested struct and extracts a part of it (which is again a
2740 // struct) into a new value. For example, given the struct:
2741 // { a, { b, { c, d }, e } }
2742 // and the indices "1, 1" this returns
2743 // { c, d }.
2744 //
2745 // It does this by inserting an insertvalue for each element in the resulting
2746 // struct, as opposed to just inserting a single struct. This will only work if
2747 // each of the elements of the substruct are known (ie, inserted into From by an
2748 // insertvalue instruction somewhere).
2749 //
2750 // All inserted insertvalue instructions are inserted before InsertBefore
2751 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2752                                 Instruction *InsertBefore) {
2753   assert(InsertBefore && "Must have someplace to insert!");
2754   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2755                                                              idx_range);
2756   Value *To = UndefValue::get(IndexedType);
2757   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2758   unsigned IdxSkip = Idxs.size();
2759 
2760   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2761 }
2762 
2763 /// Given an aggregrate and an sequence of indices, see if
2764 /// the scalar value indexed is already around as a register, for example if it
2765 /// were inserted directly into the aggregrate.
2766 ///
2767 /// If InsertBefore is not null, this function will duplicate (modified)
2768 /// insertvalues when a part of a nested struct is extracted.
2769 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2770                                Instruction *InsertBefore) {
2771   // Nothing to index? Just return V then (this is useful at the end of our
2772   // recursion).
2773   if (idx_range.empty())
2774     return V;
2775   // We have indices, so V should have an indexable type.
2776   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2777          "Not looking at a struct or array?");
2778   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2779          "Invalid indices for type?");
2780 
2781   if (Constant *C = dyn_cast<Constant>(V)) {
2782     C = C->getAggregateElement(idx_range[0]);
2783     if (!C) return nullptr;
2784     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2785   }
2786 
2787   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2788     // Loop the indices for the insertvalue instruction in parallel with the
2789     // requested indices
2790     const unsigned *req_idx = idx_range.begin();
2791     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2792          i != e; ++i, ++req_idx) {
2793       if (req_idx == idx_range.end()) {
2794         // We can't handle this without inserting insertvalues
2795         if (!InsertBefore)
2796           return nullptr;
2797 
2798         // The requested index identifies a part of a nested aggregate. Handle
2799         // this specially. For example,
2800         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2801         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2802         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2803         // This can be changed into
2804         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2805         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2806         // which allows the unused 0,0 element from the nested struct to be
2807         // removed.
2808         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2809                                  InsertBefore);
2810       }
2811 
2812       // This insert value inserts something else than what we are looking for.
2813       // See if the (aggregate) value inserted into has the value we are
2814       // looking for, then.
2815       if (*req_idx != *i)
2816         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2817                                  InsertBefore);
2818     }
2819     // If we end up here, the indices of the insertvalue match with those
2820     // requested (though possibly only partially). Now we recursively look at
2821     // the inserted value, passing any remaining indices.
2822     return FindInsertedValue(I->getInsertedValueOperand(),
2823                              makeArrayRef(req_idx, idx_range.end()),
2824                              InsertBefore);
2825   }
2826 
2827   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2828     // If we're extracting a value from an aggregate that was extracted from
2829     // something else, we can extract from that something else directly instead.
2830     // However, we will need to chain I's indices with the requested indices.
2831 
2832     // Calculate the number of indices required
2833     unsigned size = I->getNumIndices() + idx_range.size();
2834     // Allocate some space to put the new indices in
2835     SmallVector<unsigned, 5> Idxs;
2836     Idxs.reserve(size);
2837     // Add indices from the extract value instruction
2838     Idxs.append(I->idx_begin(), I->idx_end());
2839 
2840     // Add requested indices
2841     Idxs.append(idx_range.begin(), idx_range.end());
2842 
2843     assert(Idxs.size() == size
2844            && "Number of indices added not correct?");
2845 
2846     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2847   }
2848   // Otherwise, we don't know (such as, extracting from a function return value
2849   // or load instruction)
2850   return nullptr;
2851 }
2852 
2853 /// Analyze the specified pointer to see if it can be expressed as a base
2854 /// pointer plus a constant offset. Return the base and offset to the caller.
2855 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2856                                               const DataLayout &DL) {
2857   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2858   APInt ByteOffset(BitWidth, 0);
2859 
2860   // We walk up the defs but use a visited set to handle unreachable code. In
2861   // that case, we stop after accumulating the cycle once (not that it
2862   // matters).
2863   SmallPtrSet<Value *, 16> Visited;
2864   while (Visited.insert(Ptr).second) {
2865     if (Ptr->getType()->isVectorTy())
2866       break;
2867 
2868     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2869       APInt GEPOffset(BitWidth, 0);
2870       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2871         break;
2872 
2873       ByteOffset += GEPOffset;
2874 
2875       Ptr = GEP->getPointerOperand();
2876     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2877                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2878       Ptr = cast<Operator>(Ptr)->getOperand(0);
2879     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2880       if (GA->mayBeOverridden())
2881         break;
2882       Ptr = GA->getAliasee();
2883     } else {
2884       break;
2885     }
2886   }
2887   Offset = ByteOffset.getSExtValue();
2888   return Ptr;
2889 }
2890 
2891 
2892 /// This function computes the length of a null-terminated C string pointed to
2893 /// by V. If successful, it returns true and returns the string in Str.
2894 /// If unsuccessful, it returns false.
2895 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2896                                  uint64_t Offset, bool TrimAtNul) {
2897   assert(V);
2898 
2899   // Look through bitcast instructions and geps.
2900   V = V->stripPointerCasts();
2901 
2902   // If the value is a GEP instruction or constant expression, treat it as an
2903   // offset.
2904   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2905     // Make sure the GEP has exactly three arguments.
2906     if (GEP->getNumOperands() != 3)
2907       return false;
2908 
2909     // Make sure the index-ee is a pointer to array of i8.
2910     ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2911     if (!AT || !AT->getElementType()->isIntegerTy(8))
2912       return false;
2913 
2914     // Check to make sure that the first operand of the GEP is an integer and
2915     // has value 0 so that we are sure we're indexing into the initializer.
2916     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2917     if (!FirstIdx || !FirstIdx->isZero())
2918       return false;
2919 
2920     // If the second index isn't a ConstantInt, then this is a variable index
2921     // into the array.  If this occurs, we can't say anything meaningful about
2922     // the string.
2923     uint64_t StartIdx = 0;
2924     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2925       StartIdx = CI->getZExtValue();
2926     else
2927       return false;
2928     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2929                                  TrimAtNul);
2930   }
2931 
2932   // The GEP instruction, constant or instruction, must reference a global
2933   // variable that is a constant and is initialized. The referenced constant
2934   // initializer is the array that we'll use for optimization.
2935   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2936   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2937     return false;
2938 
2939   // Handle the all-zeros case
2940   if (GV->getInitializer()->isNullValue()) {
2941     // This is a degenerate case. The initializer is constant zero so the
2942     // length of the string must be zero.
2943     Str = "";
2944     return true;
2945   }
2946 
2947   // Must be a Constant Array
2948   const ConstantDataArray *Array =
2949     dyn_cast<ConstantDataArray>(GV->getInitializer());
2950   if (!Array || !Array->isString())
2951     return false;
2952 
2953   // Get the number of elements in the array
2954   uint64_t NumElts = Array->getType()->getArrayNumElements();
2955 
2956   // Start out with the entire array in the StringRef.
2957   Str = Array->getAsString();
2958 
2959   if (Offset > NumElts)
2960     return false;
2961 
2962   // Skip over 'offset' bytes.
2963   Str = Str.substr(Offset);
2964 
2965   if (TrimAtNul) {
2966     // Trim off the \0 and anything after it.  If the array is not nul
2967     // terminated, we just return the whole end of string.  The client may know
2968     // some other way that the string is length-bound.
2969     Str = Str.substr(0, Str.find('\0'));
2970   }
2971   return true;
2972 }
2973 
2974 // These next two are very similar to the above, but also look through PHI
2975 // nodes.
2976 // TODO: See if we can integrate these two together.
2977 
2978 /// If we can compute the length of the string pointed to by
2979 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2980 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2981   // Look through noop bitcast instructions.
2982   V = V->stripPointerCasts();
2983 
2984   // If this is a PHI node, there are two cases: either we have already seen it
2985   // or we haven't.
2986   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2987     if (!PHIs.insert(PN).second)
2988       return ~0ULL;  // already in the set.
2989 
2990     // If it was new, see if all the input strings are the same length.
2991     uint64_t LenSoFar = ~0ULL;
2992     for (Value *IncValue : PN->incoming_values()) {
2993       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2994       if (Len == 0) return 0; // Unknown length -> unknown.
2995 
2996       if (Len == ~0ULL) continue;
2997 
2998       if (Len != LenSoFar && LenSoFar != ~0ULL)
2999         return 0;    // Disagree -> unknown.
3000       LenSoFar = Len;
3001     }
3002 
3003     // Success, all agree.
3004     return LenSoFar;
3005   }
3006 
3007   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3008   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
3009     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3010     if (Len1 == 0) return 0;
3011     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3012     if (Len2 == 0) return 0;
3013     if (Len1 == ~0ULL) return Len2;
3014     if (Len2 == ~0ULL) return Len1;
3015     if (Len1 != Len2) return 0;
3016     return Len1;
3017   }
3018 
3019   // Otherwise, see if we can read the string.
3020   StringRef StrData;
3021   if (!getConstantStringInfo(V, StrData))
3022     return 0;
3023 
3024   return StrData.size()+1;
3025 }
3026 
3027 /// If we can compute the length of the string pointed to by
3028 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3029 uint64_t llvm::GetStringLength(Value *V) {
3030   if (!V->getType()->isPointerTy()) return 0;
3031 
3032   SmallPtrSet<PHINode*, 32> PHIs;
3033   uint64_t Len = GetStringLengthH(V, PHIs);
3034   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3035   // an empty string as a length.
3036   return Len == ~0ULL ? 1 : Len;
3037 }
3038 
3039 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3040 /// previous iteration of the loop was referring to the same object as \p PN.
3041 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3042   // Find the loop-defined value.
3043   Loop *L = LI->getLoopFor(PN->getParent());
3044   if (PN->getNumIncomingValues() != 2)
3045     return true;
3046 
3047   // Find the value from previous iteration.
3048   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3049   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3050     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3051   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3052     return true;
3053 
3054   // If a new pointer is loaded in the loop, the pointer references a different
3055   // object in every iteration.  E.g.:
3056   //    for (i)
3057   //       int *p = a[i];
3058   //       ...
3059   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3060     if (!L->isLoopInvariant(Load->getPointerOperand()))
3061       return false;
3062   return true;
3063 }
3064 
3065 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3066                                  unsigned MaxLookup) {
3067   if (!V->getType()->isPointerTy())
3068     return V;
3069   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3070     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3071       V = GEP->getPointerOperand();
3072     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3073                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3074       V = cast<Operator>(V)->getOperand(0);
3075     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3076       if (GA->mayBeOverridden())
3077         return V;
3078       V = GA->getAliasee();
3079     } else {
3080       // See if InstructionSimplify knows any relevant tricks.
3081       if (Instruction *I = dyn_cast<Instruction>(V))
3082         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3083         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3084           V = Simplified;
3085           continue;
3086         }
3087 
3088       return V;
3089     }
3090     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3091   }
3092   return V;
3093 }
3094 
3095 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3096                                 const DataLayout &DL, LoopInfo *LI,
3097                                 unsigned MaxLookup) {
3098   SmallPtrSet<Value *, 4> Visited;
3099   SmallVector<Value *, 4> Worklist;
3100   Worklist.push_back(V);
3101   do {
3102     Value *P = Worklist.pop_back_val();
3103     P = GetUnderlyingObject(P, DL, MaxLookup);
3104 
3105     if (!Visited.insert(P).second)
3106       continue;
3107 
3108     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3109       Worklist.push_back(SI->getTrueValue());
3110       Worklist.push_back(SI->getFalseValue());
3111       continue;
3112     }
3113 
3114     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3115       // If this PHI changes the underlying object in every iteration of the
3116       // loop, don't look through it.  Consider:
3117       //   int **A;
3118       //   for (i) {
3119       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3120       //     Curr = A[i];
3121       //     *Prev, *Curr;
3122       //
3123       // Prev is tracking Curr one iteration behind so they refer to different
3124       // underlying objects.
3125       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3126           isSameUnderlyingObjectInLoop(PN, LI))
3127         for (Value *IncValue : PN->incoming_values())
3128           Worklist.push_back(IncValue);
3129       continue;
3130     }
3131 
3132     Objects.push_back(P);
3133   } while (!Worklist.empty());
3134 }
3135 
3136 /// Return true if the only users of this pointer are lifetime markers.
3137 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3138   for (const User *U : V->users()) {
3139     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3140     if (!II) return false;
3141 
3142     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3143         II->getIntrinsicID() != Intrinsic::lifetime_end)
3144       return false;
3145   }
3146   return true;
3147 }
3148 
3149 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
3150                                            Type *Ty, const DataLayout &DL,
3151                                            const Instruction *CtxI,
3152                                            const DominatorTree *DT,
3153                                            const TargetLibraryInfo *TLI) {
3154   assert(Offset.isNonNegative() && "offset can't be negative");
3155   assert(Ty->isSized() && "must be sized");
3156 
3157   APInt DerefBytes(Offset.getBitWidth(), 0);
3158   bool CheckForNonNull = false;
3159   if (const Argument *A = dyn_cast<Argument>(BV)) {
3160     DerefBytes = A->getDereferenceableBytes();
3161     if (!DerefBytes.getBoolValue()) {
3162       DerefBytes = A->getDereferenceableOrNullBytes();
3163       CheckForNonNull = true;
3164     }
3165   } else if (auto CS = ImmutableCallSite(BV)) {
3166     DerefBytes = CS.getDereferenceableBytes(0);
3167     if (!DerefBytes.getBoolValue()) {
3168       DerefBytes = CS.getDereferenceableOrNullBytes(0);
3169       CheckForNonNull = true;
3170     }
3171   } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3172     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3173       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3174       DerefBytes = CI->getLimitedValue();
3175     }
3176     if (!DerefBytes.getBoolValue()) {
3177       if (MDNode *MD =
3178               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3179         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3180         DerefBytes = CI->getLimitedValue();
3181       }
3182       CheckForNonNull = true;
3183     }
3184   }
3185 
3186   if (DerefBytes.getBoolValue())
3187     if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
3188       if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3189         return true;
3190 
3191   return false;
3192 }
3193 
3194 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3195                                            const Instruction *CtxI,
3196                                            const DominatorTree *DT,
3197                                            const TargetLibraryInfo *TLI) {
3198   Type *VTy = V->getType();
3199   Type *Ty = VTy->getPointerElementType();
3200   if (!Ty->isSized())
3201     return false;
3202 
3203   APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3204   return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
3205 }
3206 
3207 static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3208                       const DataLayout &DL) {
3209   APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
3210 
3211   if (!BaseAlign) {
3212     Type *Ty = Base->getType()->getPointerElementType();
3213     if (!Ty->isSized())
3214       return false;
3215     BaseAlign = DL.getABITypeAlignment(Ty);
3216   }
3217 
3218   APInt Alignment(Offset.getBitWidth(), Align);
3219 
3220   assert(Alignment.isPowerOf2() && "must be a power of 2!");
3221   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3222 }
3223 
3224 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3225   Type *Ty = Base->getType();
3226   assert(Ty->isSized() && "must be sized");
3227   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
3228   return isAligned(Base, Offset, Align, DL);
3229 }
3230 
3231 /// Test if V is always a pointer to allocated and suitably aligned memory for
3232 /// a simple load or store.
3233 static bool isDereferenceableAndAlignedPointer(
3234     const Value *V, unsigned Align, const DataLayout &DL,
3235     const Instruction *CtxI, const DominatorTree *DT,
3236     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
3237   // Note that it is not safe to speculate into a malloc'd region because
3238   // malloc may return null.
3239 
3240   // These are obviously ok if aligned.
3241   if (isa<AllocaInst>(V))
3242     return isAligned(V, Align, DL);
3243 
3244   // It's not always safe to follow a bitcast, for example:
3245   //   bitcast i8* (alloca i8) to i32*
3246   // would result in a 4-byte load from a 1-byte alloca. However,
3247   // if we're casting from a pointer from a type of larger size
3248   // to a type of smaller size (or the same size), and the alignment
3249   // is at least as large as for the resulting pointer type, then
3250   // we can look through the bitcast.
3251   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3252     Type *STy = BC->getSrcTy()->getPointerElementType(),
3253          *DTy = BC->getDestTy()->getPointerElementType();
3254     if (STy->isSized() && DTy->isSized() &&
3255         (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3256         (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
3257       return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3258                                                 CtxI, DT, TLI, Visited);
3259   }
3260 
3261   // Global variables which can't collapse to null are ok.
3262   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
3263     if (!GV->hasExternalWeakLinkage())
3264       return isAligned(V, Align, DL);
3265 
3266   // byval arguments are okay.
3267   if (const Argument *A = dyn_cast<Argument>(V))
3268     if (A->hasByValAttr())
3269       return isAligned(V, Align, DL);
3270 
3271   if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
3272     return isAligned(V, Align, DL);
3273 
3274   // For GEPs, determine if the indexing lands within the allocated object.
3275   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3276     Type *Ty = GEP->getResultElementType();
3277     const Value *Base = GEP->getPointerOperand();
3278 
3279     // Conservatively require that the base pointer be fully dereferenceable
3280     // and aligned.
3281     if (!Visited.insert(Base).second)
3282       return false;
3283     if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3284                                             Visited))
3285       return false;
3286 
3287     APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
3288     if (!GEP->accumulateConstantOffset(DL, Offset))
3289       return false;
3290 
3291     // Check if the load is within the bounds of the underlying object
3292     // and offset is aligned.
3293     uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3294     Type *BaseType = GEP->getSourceElementType();
3295     assert(isPowerOf2_32(Align) && "must be a power of 2!");
3296     return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3297            !(Offset & APInt(Offset.getBitWidth(), Align-1));
3298   }
3299 
3300   // For gc.relocate, look through relocations
3301   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
3302     return isDereferenceableAndAlignedPointer(
3303         RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
3304 
3305   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
3306     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3307                                               CtxI, DT, TLI, Visited);
3308 
3309   // If we don't know, assume the worst.
3310   return false;
3311 }
3312 
3313 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3314                                               const DataLayout &DL,
3315                                               const Instruction *CtxI,
3316                                               const DominatorTree *DT,
3317                                               const TargetLibraryInfo *TLI) {
3318   // When dereferenceability information is provided by a dereferenceable
3319   // attribute, we know exactly how many bytes are dereferenceable. If we can
3320   // determine the exact offset to the attributed variable, we can use that
3321   // information here.
3322   Type *VTy = V->getType();
3323   Type *Ty = VTy->getPointerElementType();
3324 
3325   // Require ABI alignment for loads without alignment specification
3326   if (Align == 0)
3327     Align = DL.getABITypeAlignment(Ty);
3328 
3329   if (Ty->isSized()) {
3330     APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3331     const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
3332 
3333     if (Offset.isNonNegative())
3334       if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3335           isAligned(BV, Offset, Align, DL))
3336         return true;
3337   }
3338 
3339   SmallPtrSet<const Value *, 32> Visited;
3340   return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3341                                               Visited);
3342 }
3343 
3344 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3345                                     const Instruction *CtxI,
3346                                     const DominatorTree *DT,
3347                                     const TargetLibraryInfo *TLI) {
3348   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
3349 }
3350 
3351 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3352                                         const Instruction *CtxI,
3353                                         const DominatorTree *DT,
3354                                         const TargetLibraryInfo *TLI) {
3355   const Operator *Inst = dyn_cast<Operator>(V);
3356   if (!Inst)
3357     return false;
3358 
3359   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3360     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3361       if (C->canTrap())
3362         return false;
3363 
3364   switch (Inst->getOpcode()) {
3365   default:
3366     return true;
3367   case Instruction::UDiv:
3368   case Instruction::URem: {
3369     // x / y is undefined if y == 0.
3370     const APInt *V;
3371     if (match(Inst->getOperand(1), m_APInt(V)))
3372       return *V != 0;
3373     return false;
3374   }
3375   case Instruction::SDiv:
3376   case Instruction::SRem: {
3377     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3378     const APInt *Numerator, *Denominator;
3379     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3380       return false;
3381     // We cannot hoist this division if the denominator is 0.
3382     if (*Denominator == 0)
3383       return false;
3384     // It's safe to hoist if the denominator is not 0 or -1.
3385     if (*Denominator != -1)
3386       return true;
3387     // At this point we know that the denominator is -1.  It is safe to hoist as
3388     // long we know that the numerator is not INT_MIN.
3389     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3390       return !Numerator->isMinSignedValue();
3391     // The numerator *might* be MinSignedValue.
3392     return false;
3393   }
3394   case Instruction::Load: {
3395     const LoadInst *LI = cast<LoadInst>(Inst);
3396     if (!LI->isUnordered() ||
3397         // Speculative load may create a race that did not exist in the source.
3398         LI->getParent()->getParent()->hasFnAttribute(
3399             Attribute::SanitizeThread) ||
3400         // Speculative load may load data from dirty regions.
3401         LI->getParent()->getParent()->hasFnAttribute(
3402             Attribute::SanitizeAddress))
3403       return false;
3404     const DataLayout &DL = LI->getModule()->getDataLayout();
3405     return isDereferenceableAndAlignedPointer(
3406         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3407   }
3408   case Instruction::Call: {
3409     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3410       switch (II->getIntrinsicID()) {
3411       // These synthetic intrinsics have no side-effects and just mark
3412       // information about their operands.
3413       // FIXME: There are other no-op synthetic instructions that potentially
3414       // should be considered at least *safe* to speculate...
3415       case Intrinsic::dbg_declare:
3416       case Intrinsic::dbg_value:
3417         return true;
3418 
3419       case Intrinsic::bswap:
3420       case Intrinsic::ctlz:
3421       case Intrinsic::ctpop:
3422       case Intrinsic::cttz:
3423       case Intrinsic::objectsize:
3424       case Intrinsic::sadd_with_overflow:
3425       case Intrinsic::smul_with_overflow:
3426       case Intrinsic::ssub_with_overflow:
3427       case Intrinsic::uadd_with_overflow:
3428       case Intrinsic::umul_with_overflow:
3429       case Intrinsic::usub_with_overflow:
3430         return true;
3431       // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3432       // errno like libm sqrt would.
3433       case Intrinsic::sqrt:
3434       case Intrinsic::fma:
3435       case Intrinsic::fmuladd:
3436       case Intrinsic::fabs:
3437       case Intrinsic::minnum:
3438       case Intrinsic::maxnum:
3439         return true;
3440       // TODO: some fp intrinsics are marked as having the same error handling
3441       // as libm. They're safe to speculate when they won't error.
3442       // TODO: are convert_{from,to}_fp16 safe?
3443       // TODO: can we list target-specific intrinsics here?
3444       default: break;
3445       }
3446     }
3447     return false; // The called function could have undefined behavior or
3448                   // side-effects, even if marked readnone nounwind.
3449   }
3450   case Instruction::VAArg:
3451   case Instruction::Alloca:
3452   case Instruction::Invoke:
3453   case Instruction::PHI:
3454   case Instruction::Store:
3455   case Instruction::Ret:
3456   case Instruction::Br:
3457   case Instruction::IndirectBr:
3458   case Instruction::Switch:
3459   case Instruction::Unreachable:
3460   case Instruction::Fence:
3461   case Instruction::AtomicRMW:
3462   case Instruction::AtomicCmpXchg:
3463   case Instruction::LandingPad:
3464   case Instruction::Resume:
3465   case Instruction::CatchSwitch:
3466   case Instruction::CatchPad:
3467   case Instruction::CatchRet:
3468   case Instruction::CleanupPad:
3469   case Instruction::CleanupRet:
3470     return false; // Misc instructions which have effects
3471   }
3472 }
3473 
3474 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3475   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3476 }
3477 
3478 /// Return true if we know that the specified value is never null.
3479 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3480   assert(V->getType()->isPointerTy() && "V must be pointer type");
3481 
3482   // Alloca never returns null, malloc might.
3483   if (isa<AllocaInst>(V)) return true;
3484 
3485   // A byval, inalloca, or nonnull argument is never null.
3486   if (const Argument *A = dyn_cast<Argument>(V))
3487     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3488 
3489   // A global variable in address space 0 is non null unless extern weak.
3490   // Other address spaces may have null as a valid address for a global,
3491   // so we can't assume anything.
3492   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3493     return !GV->hasExternalWeakLinkage() &&
3494            GV->getType()->getAddressSpace() == 0;
3495 
3496   // A Load tagged w/nonnull metadata is never null.
3497   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3498     return LI->getMetadata(LLVMContext::MD_nonnull);
3499 
3500   if (auto CS = ImmutableCallSite(V))
3501     if (CS.isReturnNonNull())
3502       return true;
3503 
3504   return false;
3505 }
3506 
3507 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3508                                                   const Instruction *CtxI,
3509                                                   const DominatorTree *DT) {
3510   assert(V->getType()->isPointerTy() && "V must be pointer type");
3511 
3512   unsigned NumUsesExplored = 0;
3513   for (auto U : V->users()) {
3514     // Avoid massive lists
3515     if (NumUsesExplored >= DomConditionsMaxUses)
3516       break;
3517     NumUsesExplored++;
3518     // Consider only compare instructions uniquely controlling a branch
3519     const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3520     if (!Cmp)
3521       continue;
3522 
3523     if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3524       continue;
3525 
3526     for (auto *CmpU : Cmp->users()) {
3527       const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3528       if (!BI)
3529         continue;
3530 
3531       assert(BI->isConditional() && "uses a comparison!");
3532 
3533       BasicBlock *NonNullSuccessor = nullptr;
3534       CmpInst::Predicate Pred;
3535 
3536       if (match(const_cast<ICmpInst*>(Cmp),
3537                 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3538         if (Pred == ICmpInst::ICMP_EQ)
3539           NonNullSuccessor = BI->getSuccessor(1);
3540         else if (Pred == ICmpInst::ICMP_NE)
3541           NonNullSuccessor = BI->getSuccessor(0);
3542       }
3543 
3544       if (NonNullSuccessor) {
3545         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3546         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3547           return true;
3548       }
3549     }
3550   }
3551 
3552   return false;
3553 }
3554 
3555 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3556                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3557   if (isKnownNonNull(V, TLI))
3558     return true;
3559 
3560   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3561 }
3562 
3563 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3564                                                    const DataLayout &DL,
3565                                                    AssumptionCache *AC,
3566                                                    const Instruction *CxtI,
3567                                                    const DominatorTree *DT) {
3568   // Multiplying n * m significant bits yields a result of n + m significant
3569   // bits. If the total number of significant bits does not exceed the
3570   // result bit width (minus 1), there is no overflow.
3571   // This means if we have enough leading zero bits in the operands
3572   // we can guarantee that the result does not overflow.
3573   // Ref: "Hacker's Delight" by Henry Warren
3574   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3575   APInt LHSKnownZero(BitWidth, 0);
3576   APInt LHSKnownOne(BitWidth, 0);
3577   APInt RHSKnownZero(BitWidth, 0);
3578   APInt RHSKnownOne(BitWidth, 0);
3579   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3580                    DT);
3581   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3582                    DT);
3583   // Note that underestimating the number of zero bits gives a more
3584   // conservative answer.
3585   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3586                       RHSKnownZero.countLeadingOnes();
3587   // First handle the easy case: if we have enough zero bits there's
3588   // definitely no overflow.
3589   if (ZeroBits >= BitWidth)
3590     return OverflowResult::NeverOverflows;
3591 
3592   // Get the largest possible values for each operand.
3593   APInt LHSMax = ~LHSKnownZero;
3594   APInt RHSMax = ~RHSKnownZero;
3595 
3596   // We know the multiply operation doesn't overflow if the maximum values for
3597   // each operand will not overflow after we multiply them together.
3598   bool MaxOverflow;
3599   LHSMax.umul_ov(RHSMax, MaxOverflow);
3600   if (!MaxOverflow)
3601     return OverflowResult::NeverOverflows;
3602 
3603   // We know it always overflows if multiplying the smallest possible values for
3604   // the operands also results in overflow.
3605   bool MinOverflow;
3606   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3607   if (MinOverflow)
3608     return OverflowResult::AlwaysOverflows;
3609 
3610   return OverflowResult::MayOverflow;
3611 }
3612 
3613 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3614                                                    const DataLayout &DL,
3615                                                    AssumptionCache *AC,
3616                                                    const Instruction *CxtI,
3617                                                    const DominatorTree *DT) {
3618   bool LHSKnownNonNegative, LHSKnownNegative;
3619   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3620                  AC, CxtI, DT);
3621   if (LHSKnownNonNegative || LHSKnownNegative) {
3622     bool RHSKnownNonNegative, RHSKnownNegative;
3623     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3624                    AC, CxtI, DT);
3625 
3626     if (LHSKnownNegative && RHSKnownNegative) {
3627       // The sign bit is set in both cases: this MUST overflow.
3628       // Create a simple add instruction, and insert it into the struct.
3629       return OverflowResult::AlwaysOverflows;
3630     }
3631 
3632     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3633       // The sign bit is clear in both cases: this CANNOT overflow.
3634       // Create a simple add instruction, and insert it into the struct.
3635       return OverflowResult::NeverOverflows;
3636     }
3637   }
3638 
3639   return OverflowResult::MayOverflow;
3640 }
3641 
3642 static OverflowResult computeOverflowForSignedAdd(
3643     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3644     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3645   if (Add && Add->hasNoSignedWrap()) {
3646     return OverflowResult::NeverOverflows;
3647   }
3648 
3649   bool LHSKnownNonNegative, LHSKnownNegative;
3650   bool RHSKnownNonNegative, RHSKnownNegative;
3651   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3652                  AC, CxtI, DT);
3653   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3654                  AC, CxtI, DT);
3655 
3656   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3657       (LHSKnownNegative && RHSKnownNonNegative)) {
3658     // The sign bits are opposite: this CANNOT overflow.
3659     return OverflowResult::NeverOverflows;
3660   }
3661 
3662   // The remaining code needs Add to be available. Early returns if not so.
3663   if (!Add)
3664     return OverflowResult::MayOverflow;
3665 
3666   // If the sign of Add is the same as at least one of the operands, this add
3667   // CANNOT overflow. This is particularly useful when the sum is
3668   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3669   // operands.
3670   bool LHSOrRHSKnownNonNegative =
3671       (LHSKnownNonNegative || RHSKnownNonNegative);
3672   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3673   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3674     bool AddKnownNonNegative, AddKnownNegative;
3675     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3676                    /*Depth=*/0, AC, CxtI, DT);
3677     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3678         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3679       return OverflowResult::NeverOverflows;
3680     }
3681   }
3682 
3683   return OverflowResult::MayOverflow;
3684 }
3685 
3686 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3687                                                  const DataLayout &DL,
3688                                                  AssumptionCache *AC,
3689                                                  const Instruction *CxtI,
3690                                                  const DominatorTree *DT) {
3691   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3692                                        Add, DL, AC, CxtI, DT);
3693 }
3694 
3695 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3696                                                  const DataLayout &DL,
3697                                                  AssumptionCache *AC,
3698                                                  const Instruction *CxtI,
3699                                                  const DominatorTree *DT) {
3700   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3701 }
3702 
3703 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3704   // FIXME: This conservative implementation can be relaxed. E.g. most
3705   // atomic operations are guaranteed to terminate on most platforms
3706   // and most functions terminate.
3707 
3708   return !I->isAtomic() &&       // atomics may never succeed on some platforms
3709          !isa<CallInst>(I) &&    // could throw and might not terminate
3710          !isa<InvokeInst>(I) &&  // might not terminate and could throw to
3711                                  //   non-successor (see bug 24185 for details).
3712          !isa<ResumeInst>(I) &&  // has no successors
3713          !isa<ReturnInst>(I);    // has no successors
3714 }
3715 
3716 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3717                                                   const Loop *L) {
3718   // The loop header is guaranteed to be executed for every iteration.
3719   //
3720   // FIXME: Relax this constraint to cover all basic blocks that are
3721   // guaranteed to be executed at every iteration.
3722   if (I->getParent() != L->getHeader()) return false;
3723 
3724   for (const Instruction &LI : *L->getHeader()) {
3725     if (&LI == I) return true;
3726     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3727   }
3728   llvm_unreachable("Instruction not contained in its own parent basic block.");
3729 }
3730 
3731 bool llvm::propagatesFullPoison(const Instruction *I) {
3732   switch (I->getOpcode()) {
3733     case Instruction::Add:
3734     case Instruction::Sub:
3735     case Instruction::Xor:
3736     case Instruction::Trunc:
3737     case Instruction::BitCast:
3738     case Instruction::AddrSpaceCast:
3739       // These operations all propagate poison unconditionally. Note that poison
3740       // is not any particular value, so xor or subtraction of poison with
3741       // itself still yields poison, not zero.
3742       return true;
3743 
3744     case Instruction::AShr:
3745     case Instruction::SExt:
3746       // For these operations, one bit of the input is replicated across
3747       // multiple output bits. A replicated poison bit is still poison.
3748       return true;
3749 
3750     case Instruction::Shl: {
3751       // Left shift *by* a poison value is poison. The number of
3752       // positions to shift is unsigned, so no negative values are
3753       // possible there. Left shift by zero places preserves poison. So
3754       // it only remains to consider left shift of poison by a positive
3755       // number of places.
3756       //
3757       // A left shift by a positive number of places leaves the lowest order bit
3758       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3759       // make the poison operand violate that flag, yielding a fresh full-poison
3760       // value.
3761       auto *OBO = cast<OverflowingBinaryOperator>(I);
3762       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3763     }
3764 
3765     case Instruction::Mul: {
3766       // A multiplication by zero yields a non-poison zero result, so we need to
3767       // rule out zero as an operand. Conservatively, multiplication by a
3768       // non-zero constant is not multiplication by zero.
3769       //
3770       // Multiplication by a non-zero constant can leave some bits
3771       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3772       // order bit unpoisoned. So we need to consider that.
3773       //
3774       // Multiplication by 1 preserves poison. If the multiplication has a
3775       // no-wrap flag, then we can make the poison operand violate that flag
3776       // when multiplied by any integer other than 0 and 1.
3777       auto *OBO = cast<OverflowingBinaryOperator>(I);
3778       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3779         for (Value *V : OBO->operands()) {
3780           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3781             // A ConstantInt cannot yield poison, so we can assume that it is
3782             // the other operand that is poison.
3783             return !CI->isZero();
3784           }
3785         }
3786       }
3787       return false;
3788     }
3789 
3790     case Instruction::GetElementPtr:
3791       // A GEP implicitly represents a sequence of additions, subtractions,
3792       // truncations, sign extensions and multiplications. The multiplications
3793       // are by the non-zero sizes of some set of types, so we do not have to be
3794       // concerned with multiplication by zero. If the GEP is in-bounds, then
3795       // these operations are implicitly no-signed-wrap so poison is propagated
3796       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3797       return cast<GEPOperator>(I)->isInBounds();
3798 
3799     default:
3800       return false;
3801   }
3802 }
3803 
3804 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3805   switch (I->getOpcode()) {
3806     case Instruction::Store:
3807       return cast<StoreInst>(I)->getPointerOperand();
3808 
3809     case Instruction::Load:
3810       return cast<LoadInst>(I)->getPointerOperand();
3811 
3812     case Instruction::AtomicCmpXchg:
3813       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3814 
3815     case Instruction::AtomicRMW:
3816       return cast<AtomicRMWInst>(I)->getPointerOperand();
3817 
3818     case Instruction::UDiv:
3819     case Instruction::SDiv:
3820     case Instruction::URem:
3821     case Instruction::SRem:
3822       return I->getOperand(1);
3823 
3824     default:
3825       return nullptr;
3826   }
3827 }
3828 
3829 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3830   // We currently only look for uses of poison values within the same basic
3831   // block, as that makes it easier to guarantee that the uses will be
3832   // executed given that PoisonI is executed.
3833   //
3834   // FIXME: Expand this to consider uses beyond the same basic block. To do
3835   // this, look out for the distinction between post-dominance and strong
3836   // post-dominance.
3837   const BasicBlock *BB = PoisonI->getParent();
3838 
3839   // Set of instructions that we have proved will yield poison if PoisonI
3840   // does.
3841   SmallSet<const Value *, 16> YieldsPoison;
3842   YieldsPoison.insert(PoisonI);
3843 
3844   for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3845        I != E; ++I) {
3846     if (&*I != PoisonI) {
3847       const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
3848       if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3849       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3850         return false;
3851     }
3852 
3853     // Mark poison that propagates from I through uses of I.
3854     if (YieldsPoison.count(&*I)) {
3855       for (const User *User : I->users()) {
3856         const Instruction *UserI = cast<Instruction>(User);
3857         if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3858           YieldsPoison.insert(User);
3859       }
3860     }
3861   }
3862   return false;
3863 }
3864 
3865 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3866   if (FMF.noNaNs())
3867     return true;
3868 
3869   if (auto *C = dyn_cast<ConstantFP>(V))
3870     return !C->isNaN();
3871   return false;
3872 }
3873 
3874 static bool isKnownNonZero(Value *V) {
3875   if (auto *C = dyn_cast<ConstantFP>(V))
3876     return !C->isZero();
3877   return false;
3878 }
3879 
3880 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3881                                               FastMathFlags FMF,
3882                                               Value *CmpLHS, Value *CmpRHS,
3883                                               Value *TrueVal, Value *FalseVal,
3884                                               Value *&LHS, Value *&RHS) {
3885   LHS = CmpLHS;
3886   RHS = CmpRHS;
3887 
3888   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3889   // return inconsistent results between implementations.
3890   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3891   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3892   // Therefore we behave conservatively and only proceed if at least one of the
3893   // operands is known to not be zero, or if we don't care about signed zeroes.
3894   switch (Pred) {
3895   default: break;
3896   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3897   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3898     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3899         !isKnownNonZero(CmpRHS))
3900       return {SPF_UNKNOWN, SPNB_NA, false};
3901   }
3902 
3903   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3904   bool Ordered = false;
3905 
3906   // When given one NaN and one non-NaN input:
3907   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3908   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3909   //     ordered comparison fails), which could be NaN or non-NaN.
3910   // so here we discover exactly what NaN behavior is required/accepted.
3911   if (CmpInst::isFPPredicate(Pred)) {
3912     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3913     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3914 
3915     if (LHSSafe && RHSSafe) {
3916       // Both operands are known non-NaN.
3917       NaNBehavior = SPNB_RETURNS_ANY;
3918     } else if (CmpInst::isOrdered(Pred)) {
3919       // An ordered comparison will return false when given a NaN, so it
3920       // returns the RHS.
3921       Ordered = true;
3922       if (LHSSafe)
3923         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3924         NaNBehavior = SPNB_RETURNS_NAN;
3925       else if (RHSSafe)
3926         NaNBehavior = SPNB_RETURNS_OTHER;
3927       else
3928         // Completely unsafe.
3929         return {SPF_UNKNOWN, SPNB_NA, false};
3930     } else {
3931       Ordered = false;
3932       // An unordered comparison will return true when given a NaN, so it
3933       // returns the LHS.
3934       if (LHSSafe)
3935         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3936         NaNBehavior = SPNB_RETURNS_OTHER;
3937       else if (RHSSafe)
3938         NaNBehavior = SPNB_RETURNS_NAN;
3939       else
3940         // Completely unsafe.
3941         return {SPF_UNKNOWN, SPNB_NA, false};
3942     }
3943   }
3944 
3945   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3946     std::swap(CmpLHS, CmpRHS);
3947     Pred = CmpInst::getSwappedPredicate(Pred);
3948     if (NaNBehavior == SPNB_RETURNS_NAN)
3949       NaNBehavior = SPNB_RETURNS_OTHER;
3950     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3951       NaNBehavior = SPNB_RETURNS_NAN;
3952     Ordered = !Ordered;
3953   }
3954 
3955   // ([if]cmp X, Y) ? X : Y
3956   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3957     switch (Pred) {
3958     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3959     case ICmpInst::ICMP_UGT:
3960     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3961     case ICmpInst::ICMP_SGT:
3962     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3963     case ICmpInst::ICMP_ULT:
3964     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3965     case ICmpInst::ICMP_SLT:
3966     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3967     case FCmpInst::FCMP_UGT:
3968     case FCmpInst::FCMP_UGE:
3969     case FCmpInst::FCMP_OGT:
3970     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3971     case FCmpInst::FCMP_ULT:
3972     case FCmpInst::FCMP_ULE:
3973     case FCmpInst::FCMP_OLT:
3974     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3975     }
3976   }
3977 
3978   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3979     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3980         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3981 
3982       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3983       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3984       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3985         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3986       }
3987 
3988       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3989       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3990       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3991         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3992       }
3993     }
3994 
3995     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3996     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3997       if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3998           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3999            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
4000         LHS = TrueVal;
4001         RHS = FalseVal;
4002         return {SPF_SMIN, SPNB_NA, false};
4003       }
4004     }
4005   }
4006 
4007   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
4008 
4009   return {SPF_UNKNOWN, SPNB_NA, false};
4010 }
4011 
4012 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4013                               Instruction::CastOps *CastOp) {
4014   CastInst *CI = dyn_cast<CastInst>(V1);
4015   Constant *C = dyn_cast<Constant>(V2);
4016   CastInst *CI2 = dyn_cast<CastInst>(V2);
4017   if (!CI)
4018     return nullptr;
4019   *CastOp = CI->getOpcode();
4020 
4021   if (CI2) {
4022     // If V1 and V2 are both the same cast from the same type, we can look
4023     // through V1.
4024     if (CI2->getOpcode() == CI->getOpcode() &&
4025         CI2->getSrcTy() == CI->getSrcTy())
4026       return CI2->getOperand(0);
4027     return nullptr;
4028   } else if (!C) {
4029     return nullptr;
4030   }
4031 
4032   if (isa<SExtInst>(CI) && CmpI->isSigned()) {
4033     Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
4034     // This is only valid if the truncated value can be sign-extended
4035     // back to the original value.
4036     if (ConstantExpr::getSExt(T, C->getType()) == C)
4037       return T;
4038     return nullptr;
4039   }
4040   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4041     return ConstantExpr::getTrunc(C, CI->getSrcTy());
4042 
4043   if (isa<TruncInst>(CI))
4044     return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4045 
4046   if (isa<FPToUIInst>(CI))
4047     return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4048 
4049   if (isa<FPToSIInst>(CI))
4050     return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4051 
4052   if (isa<UIToFPInst>(CI))
4053     return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4054 
4055   if (isa<SIToFPInst>(CI))
4056     return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4057 
4058   if (isa<FPTruncInst>(CI))
4059     return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4060 
4061   if (isa<FPExtInst>(CI))
4062     return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4063 
4064   return nullptr;
4065 }
4066 
4067 SelectPatternResult llvm::matchSelectPattern(Value *V,
4068                                              Value *&LHS, Value *&RHS,
4069                                              Instruction::CastOps *CastOp) {
4070   SelectInst *SI = dyn_cast<SelectInst>(V);
4071   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4072 
4073   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4074   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4075 
4076   CmpInst::Predicate Pred = CmpI->getPredicate();
4077   Value *CmpLHS = CmpI->getOperand(0);
4078   Value *CmpRHS = CmpI->getOperand(1);
4079   Value *TrueVal = SI->getTrueValue();
4080   Value *FalseVal = SI->getFalseValue();
4081   FastMathFlags FMF;
4082   if (isa<FPMathOperator>(CmpI))
4083     FMF = CmpI->getFastMathFlags();
4084 
4085   // Bail out early.
4086   if (CmpI->isEquality())
4087     return {SPF_UNKNOWN, SPNB_NA, false};
4088 
4089   // Deal with type mismatches.
4090   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4091     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4092       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4093                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4094                                   LHS, RHS);
4095     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4096       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4097                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4098                                   LHS, RHS);
4099   }
4100   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4101                               LHS, RHS);
4102 }
4103 
4104 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4105   const unsigned NumRanges = Ranges.getNumOperands() / 2;
4106   assert(NumRanges >= 1 && "Must have at least one range!");
4107   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4108 
4109   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4110   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4111 
4112   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4113 
4114   for (unsigned i = 1; i < NumRanges; ++i) {
4115     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4116     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4117 
4118     // Note: unionWith will potentially create a range that contains values not
4119     // contained in any of the original N ranges.
4120     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4121   }
4122 
4123   return CR;
4124 }
4125 
4126 /// Return true if "icmp Pred LHS RHS" is always true.
4127 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4128                             const DataLayout &DL, unsigned Depth,
4129                             AssumptionCache *AC, const Instruction *CxtI,
4130                             const DominatorTree *DT) {
4131   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4132   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4133     return true;
4134 
4135   switch (Pred) {
4136   default:
4137     return false;
4138 
4139   case CmpInst::ICMP_SLE: {
4140     const APInt *C;
4141 
4142     // LHS s<= LHS +_{nsw} C   if C >= 0
4143     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4144       return !C->isNegative();
4145     return false;
4146   }
4147 
4148   case CmpInst::ICMP_ULE: {
4149     const APInt *C;
4150 
4151     // LHS u<= LHS +_{nuw} C   for any C
4152     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4153       return true;
4154 
4155     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4156     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4157                                        const APInt *&CA, const APInt *&CB) {
4158       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4159           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4160         return true;
4161 
4162       // If X & C == 0 then (X | C) == X +_{nuw} C
4163       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4164           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4165         unsigned BitWidth = CA->getBitWidth();
4166         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4167         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4168 
4169         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4170           return true;
4171       }
4172 
4173       return false;
4174     };
4175 
4176     Value *X;
4177     const APInt *CLHS, *CRHS;
4178     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4179       return CLHS->ule(*CRHS);
4180 
4181     return false;
4182   }
4183   }
4184 }
4185 
4186 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4187 /// ALHS ARHS" is true.
4188 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
4189                                   Value *ARHS, Value *BLHS, Value *BRHS,
4190                                   const DataLayout &DL, unsigned Depth,
4191                                   AssumptionCache *AC, const Instruction *CxtI,
4192                                   const DominatorTree *DT) {
4193   switch (Pred) {
4194   default:
4195     return false;
4196 
4197   case CmpInst::ICMP_SLT:
4198   case CmpInst::ICMP_SLE:
4199     return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4200                            DT) &&
4201            isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
4202                            DT);
4203 
4204   case CmpInst::ICMP_ULT:
4205   case CmpInst::ICMP_ULE:
4206     return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4207                            DT) &&
4208            isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
4209                            DT);
4210   }
4211 }
4212 
4213 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
4214                               unsigned Depth, AssumptionCache *AC,
4215                               const Instruction *CxtI,
4216                               const DominatorTree *DT) {
4217   assert(LHS->getType() == RHS->getType() && "mismatched type");
4218   Type *OpTy = LHS->getType();
4219   assert(OpTy->getScalarType()->isIntegerTy(1));
4220 
4221   // LHS ==> RHS by definition
4222   if (LHS == RHS) return true;
4223 
4224   if (OpTy->isVectorTy())
4225     // TODO: extending the code below to handle vectors
4226     return false;
4227   assert(OpTy->isIntegerTy(1) && "implied by above");
4228 
4229   ICmpInst::Predicate APred, BPred;
4230   Value *ALHS, *ARHS;
4231   Value *BLHS, *BRHS;
4232 
4233   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4234       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4235     return false;
4236 
4237   if (APred == BPred)
4238     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4239                                  CxtI, DT);
4240 
4241   return false;
4242 }
4243