1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/MathExtras.h" 39 #include <algorithm> 40 #include <array> 41 #include <cstring> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 const unsigned MaxDepth = 6; 46 47 /// Enable an experimental feature to leverage information about dominating 48 /// conditions to compute known bits. The individual options below control how 49 /// hard we search. The defaults are chosen to be fairly aggressive. If you 50 /// run into compile time problems when testing, scale them back and report 51 /// your findings. 52 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 53 cl::Hidden, cl::init(false)); 54 55 // This is expensive, so we only do it for the top level query value. 56 // (TODO: evaluate cost vs profit, consider higher thresholds) 57 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 58 cl::Hidden, cl::init(1)); 59 60 /// How many dominating blocks should be scanned looking for dominating 61 /// conditions? 62 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 63 cl::Hidden, 64 cl::init(20)); 65 66 // Controls the number of uses of the value searched for possible 67 // dominating comparisons. 68 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 69 cl::Hidden, cl::init(20)); 70 71 // If true, don't consider only compares whose only use is a branch. 72 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 73 cl::Hidden, cl::init(false)); 74 75 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 76 /// 0). For vector types, returns the element type's bitwidth. 77 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 78 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 79 return BitWidth; 80 81 return DL.getPointerTypeSizeInBits(Ty); 82 } 83 84 namespace { 85 // Simplifying using an assume can only be done in a particular control-flow 86 // context (the context instruction provides that context). If an assume and 87 // the context instruction are not in the same block then the DT helps in 88 // figuring out if we can use it. 89 struct Query { 90 const DataLayout &DL; 91 AssumptionCache *AC; 92 const Instruction *CxtI; 93 const DominatorTree *DT; 94 95 /// Set of assumptions that should be excluded from further queries. 96 /// This is because of the potential for mutual recursion to cause 97 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 98 /// classic case of this is assume(x = y), which will attempt to determine 99 /// bits in x from bits in y, which will attempt to determine bits in y from 100 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 101 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 102 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 103 /// on. 104 std::array<const Value*, MaxDepth> Excluded; 105 unsigned NumExcluded; 106 107 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 108 const DominatorTree *DT) 109 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 110 111 Query(const Query &Q, const Value *NewExcl) 112 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 113 Excluded = Q.Excluded; 114 Excluded[NumExcluded++] = NewExcl; 115 assert(NumExcluded <= Excluded.size()); 116 } 117 118 bool isExcluded(const Value *Value) const { 119 if (NumExcluded == 0) 120 return false; 121 auto End = Excluded.begin() + NumExcluded; 122 return std::find(Excluded.begin(), End, Value) != End; 123 } 124 }; 125 } // end anonymous namespace 126 127 // Given the provided Value and, potentially, a context instruction, return 128 // the preferred context instruction (if any). 129 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 130 // If we've been provided with a context instruction, then use that (provided 131 // it has been inserted). 132 if (CxtI && CxtI->getParent()) 133 return CxtI; 134 135 // If the value is really an already-inserted instruction, then use that. 136 CxtI = dyn_cast<Instruction>(V); 137 if (CxtI && CxtI->getParent()) 138 return CxtI; 139 140 return nullptr; 141 } 142 143 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 144 unsigned Depth, const Query &Q); 145 146 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 147 const DataLayout &DL, unsigned Depth, 148 AssumptionCache *AC, const Instruction *CxtI, 149 const DominatorTree *DT) { 150 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 151 Query(DL, AC, safeCxtI(V, CxtI), DT)); 152 } 153 154 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 155 AssumptionCache *AC, const Instruction *CxtI, 156 const DominatorTree *DT) { 157 assert(LHS->getType() == RHS->getType() && 158 "LHS and RHS should have the same type"); 159 assert(LHS->getType()->isIntOrIntVectorTy() && 160 "LHS and RHS should be integers"); 161 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 162 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 163 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 164 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 165 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 166 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 167 } 168 169 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 170 unsigned Depth, const Query &Q); 171 172 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 173 const DataLayout &DL, unsigned Depth, 174 AssumptionCache *AC, const Instruction *CxtI, 175 const DominatorTree *DT) { 176 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 177 Query(DL, AC, safeCxtI(V, CxtI), DT)); 178 } 179 180 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 181 const Query &Q); 182 183 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 184 unsigned Depth, AssumptionCache *AC, 185 const Instruction *CxtI, 186 const DominatorTree *DT) { 187 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 188 Query(DL, AC, safeCxtI(V, CxtI), DT)); 189 } 190 191 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q); 192 193 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 194 AssumptionCache *AC, const Instruction *CxtI, 195 const DominatorTree *DT) { 196 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 197 } 198 199 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 200 AssumptionCache *AC, const Instruction *CxtI, 201 const DominatorTree *DT) { 202 bool NonNegative, Negative; 203 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 204 return NonNegative; 205 } 206 207 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q); 208 209 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 210 AssumptionCache *AC, const Instruction *CxtI, 211 const DominatorTree *DT) { 212 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 213 safeCxtI(V1, safeCxtI(V2, CxtI)), 214 DT)); 215 } 216 217 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 218 const Query &Q); 219 220 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 221 unsigned Depth, AssumptionCache *AC, 222 const Instruction *CxtI, const DominatorTree *DT) { 223 return ::MaskedValueIsZero(V, Mask, Depth, 224 Query(DL, AC, safeCxtI(V, CxtI), DT)); 225 } 226 227 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q); 228 229 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 230 unsigned Depth, AssumptionCache *AC, 231 const Instruction *CxtI, 232 const DominatorTree *DT) { 233 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 234 } 235 236 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 237 APInt &KnownZero, APInt &KnownOne, 238 APInt &KnownZero2, APInt &KnownOne2, 239 unsigned Depth, const Query &Q) { 240 if (!Add) { 241 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 242 // We know that the top bits of C-X are clear if X contains less bits 243 // than C (i.e. no wrap-around can happen). For example, 20-X is 244 // positive if we can prove that X is >= 0 and < 16. 245 if (!CLHS->getValue().isNegative()) { 246 unsigned BitWidth = KnownZero.getBitWidth(); 247 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 248 // NLZ can't be BitWidth with no sign bit 249 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 250 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 251 252 // If all of the MaskV bits are known to be zero, then we know the 253 // output top bits are zero, because we now know that the output is 254 // from [0-C]. 255 if ((KnownZero2 & MaskV) == MaskV) { 256 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 257 // Top bits known zero. 258 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 259 } 260 } 261 } 262 } 263 264 unsigned BitWidth = KnownZero.getBitWidth(); 265 266 // If an initial sequence of bits in the result is not needed, the 267 // corresponding bits in the operands are not needed. 268 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 269 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 270 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 271 272 // Carry in a 1 for a subtract, rather than a 0. 273 APInt CarryIn(BitWidth, 0); 274 if (!Add) { 275 // Sum = LHS + ~RHS + 1 276 std::swap(KnownZero2, KnownOne2); 277 CarryIn.setBit(0); 278 } 279 280 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 281 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 282 283 // Compute known bits of the carry. 284 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 285 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 286 287 // Compute set of known bits (where all three relevant bits are known). 288 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 289 APInt RHSKnown = KnownZero2 | KnownOne2; 290 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 291 APInt Known = LHSKnown & RHSKnown & CarryKnown; 292 293 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 294 "known bits of sum differ"); 295 296 // Compute known bits of the result. 297 KnownZero = ~PossibleSumOne & Known; 298 KnownOne = PossibleSumOne & Known; 299 300 // Are we still trying to solve for the sign bit? 301 if (!Known.isNegative()) { 302 if (NSW) { 303 // Adding two non-negative numbers, or subtracting a negative number from 304 // a non-negative one, can't wrap into negative. 305 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 306 KnownZero |= APInt::getSignBit(BitWidth); 307 // Adding two negative numbers, or subtracting a non-negative number from 308 // a negative one, can't wrap into non-negative. 309 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 310 KnownOne |= APInt::getSignBit(BitWidth); 311 } 312 } 313 } 314 315 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 316 APInt &KnownZero, APInt &KnownOne, 317 APInt &KnownZero2, APInt &KnownOne2, 318 unsigned Depth, const Query &Q) { 319 unsigned BitWidth = KnownZero.getBitWidth(); 320 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 321 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 322 323 bool isKnownNegative = false; 324 bool isKnownNonNegative = false; 325 // If the multiplication is known not to overflow, compute the sign bit. 326 if (NSW) { 327 if (Op0 == Op1) { 328 // The product of a number with itself is non-negative. 329 isKnownNonNegative = true; 330 } else { 331 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 332 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 333 bool isKnownNegativeOp1 = KnownOne.isNegative(); 334 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 335 // The product of two numbers with the same sign is non-negative. 336 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 337 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 338 // The product of a negative number and a non-negative number is either 339 // negative or zero. 340 if (!isKnownNonNegative) 341 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 342 isKnownNonZero(Op0, Depth, Q)) || 343 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 344 isKnownNonZero(Op1, Depth, Q)); 345 } 346 } 347 348 // If low bits are zero in either operand, output low known-0 bits. 349 // Also compute a conservative estimate for high known-0 bits. 350 // More trickiness is possible, but this is sufficient for the 351 // interesting case of alignment computation. 352 KnownOne.clearAllBits(); 353 unsigned TrailZ = KnownZero.countTrailingOnes() + 354 KnownZero2.countTrailingOnes(); 355 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 356 KnownZero2.countLeadingOnes(), 357 BitWidth) - BitWidth; 358 359 TrailZ = std::min(TrailZ, BitWidth); 360 LeadZ = std::min(LeadZ, BitWidth); 361 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 362 APInt::getHighBitsSet(BitWidth, LeadZ); 363 364 // Only make use of no-wrap flags if we failed to compute the sign bit 365 // directly. This matters if the multiplication always overflows, in 366 // which case we prefer to follow the result of the direct computation, 367 // though as the program is invoking undefined behaviour we can choose 368 // whatever we like here. 369 if (isKnownNonNegative && !KnownOne.isNegative()) 370 KnownZero.setBit(BitWidth - 1); 371 else if (isKnownNegative && !KnownZero.isNegative()) 372 KnownOne.setBit(BitWidth - 1); 373 } 374 375 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 376 APInt &KnownZero, 377 APInt &KnownOne) { 378 unsigned BitWidth = KnownZero.getBitWidth(); 379 unsigned NumRanges = Ranges.getNumOperands() / 2; 380 assert(NumRanges >= 1); 381 382 KnownZero.setAllBits(); 383 KnownOne.setAllBits(); 384 385 for (unsigned i = 0; i < NumRanges; ++i) { 386 ConstantInt *Lower = 387 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 388 ConstantInt *Upper = 389 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 390 ConstantRange Range(Lower->getValue(), Upper->getValue()); 391 392 // The first CommonPrefixBits of all values in Range are equal. 393 unsigned CommonPrefixBits = 394 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 395 396 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 397 KnownOne &= Range.getUnsignedMax() & Mask; 398 KnownZero &= ~Range.getUnsignedMax() & Mask; 399 } 400 } 401 402 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 403 SmallVector<const Value *, 16> WorkSet(1, I); 404 SmallPtrSet<const Value *, 32> Visited; 405 SmallPtrSet<const Value *, 16> EphValues; 406 407 // The instruction defining an assumption's condition itself is always 408 // considered ephemeral to that assumption (even if it has other 409 // non-ephemeral users). See r246696's test case for an example. 410 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 411 return true; 412 413 while (!WorkSet.empty()) { 414 const Value *V = WorkSet.pop_back_val(); 415 if (!Visited.insert(V).second) 416 continue; 417 418 // If all uses of this value are ephemeral, then so is this value. 419 if (std::all_of(V->user_begin(), V->user_end(), 420 [&](const User *U) { return EphValues.count(U); })) { 421 if (V == E) 422 return true; 423 424 EphValues.insert(V); 425 if (const User *U = dyn_cast<User>(V)) 426 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 427 J != JE; ++J) { 428 if (isSafeToSpeculativelyExecute(*J)) 429 WorkSet.push_back(*J); 430 } 431 } 432 } 433 434 return false; 435 } 436 437 // Is this an intrinsic that cannot be speculated but also cannot trap? 438 static bool isAssumeLikeIntrinsic(const Instruction *I) { 439 if (const CallInst *CI = dyn_cast<CallInst>(I)) 440 if (Function *F = CI->getCalledFunction()) 441 switch (F->getIntrinsicID()) { 442 default: break; 443 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 444 case Intrinsic::assume: 445 case Intrinsic::dbg_declare: 446 case Intrinsic::dbg_value: 447 case Intrinsic::invariant_start: 448 case Intrinsic::invariant_end: 449 case Intrinsic::lifetime_start: 450 case Intrinsic::lifetime_end: 451 case Intrinsic::objectsize: 452 case Intrinsic::ptr_annotation: 453 case Intrinsic::var_annotation: 454 return true; 455 } 456 457 return false; 458 } 459 460 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI, 461 const DominatorTree *DT) { 462 Instruction *Inv = cast<Instruction>(V); 463 464 // There are two restrictions on the use of an assume: 465 // 1. The assume must dominate the context (or the control flow must 466 // reach the assume whenever it reaches the context). 467 // 2. The context must not be in the assume's set of ephemeral values 468 // (otherwise we will use the assume to prove that the condition 469 // feeding the assume is trivially true, thus causing the removal of 470 // the assume). 471 472 if (DT) { 473 if (DT->dominates(Inv, CxtI)) { 474 return true; 475 } else if (Inv->getParent() == CxtI->getParent()) { 476 // The context comes first, but they're both in the same block. Make sure 477 // there is nothing in between that might interrupt the control flow. 478 for (BasicBlock::const_iterator I = 479 std::next(BasicBlock::const_iterator(CxtI)), 480 IE(Inv); I != IE; ++I) 481 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 482 return false; 483 484 return !isEphemeralValueOf(Inv, CxtI); 485 } 486 487 return false; 488 } 489 490 // When we don't have a DT, we do a limited search... 491 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 492 return true; 493 } else if (Inv->getParent() == CxtI->getParent()) { 494 // Search forward from the assume until we reach the context (or the end 495 // of the block); the common case is that the assume will come first. 496 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 497 IE = Inv->getParent()->end(); I != IE; ++I) 498 if (&*I == CxtI) 499 return true; 500 501 // The context must come first... 502 for (BasicBlock::const_iterator I = 503 std::next(BasicBlock::const_iterator(CxtI)), 504 IE(Inv); I != IE; ++I) 505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 506 return false; 507 508 return !isEphemeralValueOf(Inv, CxtI); 509 } 510 511 return false; 512 } 513 514 bool llvm::isValidAssumeForContext(const Instruction *I, 515 const Instruction *CxtI, 516 const DominatorTree *DT) { 517 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT); 518 } 519 520 template<typename LHS, typename RHS> 521 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 522 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 523 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 524 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 525 } 526 527 template<typename LHS, typename RHS> 528 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 529 BinaryOp_match<RHS, LHS, Instruction::And>> 530 m_c_And(const LHS &L, const RHS &R) { 531 return m_CombineOr(m_And(L, R), m_And(R, L)); 532 } 533 534 template<typename LHS, typename RHS> 535 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 536 BinaryOp_match<RHS, LHS, Instruction::Or>> 537 m_c_Or(const LHS &L, const RHS &R) { 538 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 539 } 540 541 template<typename LHS, typename RHS> 542 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 543 BinaryOp_match<RHS, LHS, Instruction::Xor>> 544 m_c_Xor(const LHS &L, const RHS &R) { 545 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 546 } 547 548 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 549 /// true (at the context instruction.) This is mostly a utility function for 550 /// the prototype dominating conditions reasoning below. 551 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 552 APInt &KnownZero, 553 APInt &KnownOne, 554 unsigned Depth, const Query &Q) { 555 Value *LHS = Cmp->getOperand(0); 556 Value *RHS = Cmp->getOperand(1); 557 // TODO: We could potentially be more aggressive here. This would be worth 558 // evaluating. If we can, explore commoning this code with the assume 559 // handling logic. 560 if (LHS != V && RHS != V) 561 return; 562 563 const unsigned BitWidth = KnownZero.getBitWidth(); 564 565 switch (Cmp->getPredicate()) { 566 default: 567 // We know nothing from this condition 568 break; 569 // TODO: implement unsigned bound from below (known one bits) 570 // TODO: common condition check implementations with assumes 571 // TODO: implement other patterns from assume (e.g. V & B == A) 572 case ICmpInst::ICMP_SGT: 573 if (LHS == V) { 574 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 575 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 576 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 577 // We know that the sign bit is zero. 578 KnownZero |= APInt::getSignBit(BitWidth); 579 } 580 } 581 break; 582 case ICmpInst::ICMP_EQ: 583 { 584 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 585 if (LHS == V) 586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 587 else if (RHS == V) 588 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 589 else 590 llvm_unreachable("missing use?"); 591 KnownZero |= KnownZeroTemp; 592 KnownOne |= KnownOneTemp; 593 } 594 break; 595 case ICmpInst::ICMP_ULE: 596 if (LHS == V) { 597 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 598 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 599 // The known zero bits carry over 600 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 601 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 602 } 603 break; 604 case ICmpInst::ICMP_ULT: 605 if (LHS == V) { 606 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 607 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 608 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 609 // power of 2, then one more). 610 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 611 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp))) 612 SignBits++; 613 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 614 } 615 break; 616 }; 617 } 618 619 /// Compute known bits in 'V' from conditions which are known to be true along 620 /// all paths leading to the context instruction. In particular, look for 621 /// cases where one branch of an interesting condition dominates the context 622 /// instruction. This does not do general dataflow. 623 /// NOTE: This code is EXPERIMENTAL and currently off by default. 624 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 625 APInt &KnownOne, 626 unsigned Depth, 627 const Query &Q) { 628 // Need both the dominator tree and the query location to do anything useful 629 if (!Q.DT || !Q.CxtI) 630 return; 631 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 632 // The context instruction might be in a statically unreachable block. If 633 // so, asking dominator queries may yield suprising results. (e.g. the block 634 // may not have a dom tree node) 635 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 636 return; 637 638 // Avoid useless work 639 if (auto VI = dyn_cast<Instruction>(V)) 640 if (VI->getParent() == Cxt->getParent()) 641 return; 642 643 // Note: We currently implement two options. It's not clear which of these 644 // will survive long term, we need data for that. 645 // Option 1 - Try walking the dominator tree looking for conditions which 646 // might apply. This works well for local conditions (loop guards, etc..), 647 // but not as well for things far from the context instruction (presuming a 648 // low max blocks explored). If we can set an high enough limit, this would 649 // be all we need. 650 // Option 2 - We restrict out search to those conditions which are uses of 651 // the value we're interested in. This is independent of dom structure, 652 // but is slightly less powerful without looking through lots of use chains. 653 // It does handle conditions far from the context instruction (e.g. early 654 // function exits on entry) really well though. 655 656 // Option 1 - Search the dom tree 657 unsigned NumBlocksExplored = 0; 658 BasicBlock *Current = Cxt->getParent(); 659 while (true) { 660 // Stop searching if we've gone too far up the chain 661 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 662 break; 663 NumBlocksExplored++; 664 665 if (!Q.DT->getNode(Current)->getIDom()) 666 break; 667 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 668 if (!Current) 669 // found function entry 670 break; 671 672 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 673 if (!BI || BI->isUnconditional()) 674 continue; 675 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 676 if (!Cmp) 677 continue; 678 679 // We're looking for conditions that are guaranteed to hold at the context 680 // instruction. Finding a condition where one path dominates the context 681 // isn't enough because both the true and false cases could merge before 682 // the context instruction we're actually interested in. Instead, we need 683 // to ensure that the taken *edge* dominates the context instruction. We 684 // know that the edge must be reachable since we started from a reachable 685 // block. 686 BasicBlock *BB0 = BI->getSuccessor(0); 687 BasicBlockEdge Edge(BI->getParent(), BB0); 688 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 689 continue; 690 691 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q); 692 } 693 694 // Option 2 - Search the other uses of V 695 unsigned NumUsesExplored = 0; 696 for (auto U : V->users()) { 697 // Avoid massive lists 698 if (NumUsesExplored >= DomConditionsMaxUses) 699 break; 700 NumUsesExplored++; 701 // Consider only compare instructions uniquely controlling a branch 702 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 703 if (!Cmp) 704 continue; 705 706 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 707 continue; 708 709 for (auto *CmpU : Cmp->users()) { 710 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 711 if (!BI || BI->isUnconditional()) 712 continue; 713 // We're looking for conditions that are guaranteed to hold at the 714 // context instruction. Finding a condition where one path dominates 715 // the context isn't enough because both the true and false cases could 716 // merge before the context instruction we're actually interested in. 717 // Instead, we need to ensure that the taken *edge* dominates the context 718 // instruction. 719 BasicBlock *BB0 = BI->getSuccessor(0); 720 BasicBlockEdge Edge(BI->getParent(), BB0); 721 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 722 continue; 723 724 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q); 725 } 726 } 727 } 728 729 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 730 APInt &KnownOne, unsigned Depth, 731 const Query &Q) { 732 // Use of assumptions is context-sensitive. If we don't have a context, we 733 // cannot use them! 734 if (!Q.AC || !Q.CxtI) 735 return; 736 737 unsigned BitWidth = KnownZero.getBitWidth(); 738 739 for (auto &AssumeVH : Q.AC->assumptions()) { 740 if (!AssumeVH) 741 continue; 742 CallInst *I = cast<CallInst>(AssumeVH); 743 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 744 "Got assumption for the wrong function!"); 745 if (Q.isExcluded(I)) 746 continue; 747 748 // Warning: This loop can end up being somewhat performance sensetive. 749 // We're running this loop for once for each value queried resulting in a 750 // runtime of ~O(#assumes * #values). 751 752 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 753 "must be an assume intrinsic"); 754 755 Value *Arg = I->getArgOperand(0); 756 757 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 758 assert(BitWidth == 1 && "assume operand is not i1?"); 759 KnownZero.clearAllBits(); 760 KnownOne.setAllBits(); 761 return; 762 } 763 764 // The remaining tests are all recursive, so bail out if we hit the limit. 765 if (Depth == MaxDepth) 766 continue; 767 768 Value *A, *B; 769 auto m_V = m_CombineOr(m_Specific(V), 770 m_CombineOr(m_PtrToInt(m_Specific(V)), 771 m_BitCast(m_Specific(V)))); 772 773 CmpInst::Predicate Pred; 774 ConstantInt *C; 775 // assume(v = a) 776 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 777 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 780 KnownZero |= RHSKnownZero; 781 KnownOne |= RHSKnownOne; 782 // assume(v & b = a) 783 } else if (match(Arg, 784 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 785 Pred == ICmpInst::ICMP_EQ && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 788 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 789 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 790 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 791 792 // For those bits in the mask that are known to be one, we can propagate 793 // known bits from the RHS to V. 794 KnownZero |= RHSKnownZero & MaskKnownOne; 795 KnownOne |= RHSKnownOne & MaskKnownOne; 796 // assume(~(v & b) = a) 797 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 798 m_Value(A))) && 799 Pred == ICmpInst::ICMP_EQ && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 802 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 803 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 804 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 805 806 // For those bits in the mask that are known to be one, we can propagate 807 // inverted known bits from the RHS to V. 808 KnownZero |= RHSKnownOne & MaskKnownOne; 809 KnownOne |= RHSKnownZero & MaskKnownOne; 810 // assume(v | b = a) 811 } else if (match(Arg, 812 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 813 Pred == ICmpInst::ICMP_EQ && 814 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 815 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 816 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 817 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 818 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 819 820 // For those bits in B that are known to be zero, we can propagate known 821 // bits from the RHS to V. 822 KnownZero |= RHSKnownZero & BKnownZero; 823 KnownOne |= RHSKnownOne & BKnownZero; 824 // assume(~(v | b) = a) 825 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 826 m_Value(A))) && 827 Pred == ICmpInst::ICMP_EQ && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 829 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 830 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 831 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 832 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. 836 KnownZero |= RHSKnownOne & BKnownZero; 837 KnownOne |= RHSKnownZero & BKnownZero; 838 // assume(v ^ b = a) 839 } else if (match(Arg, 840 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 841 Pred == ICmpInst::ICMP_EQ && 842 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 843 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 844 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 845 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 846 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 847 848 // For those bits in B that are known to be zero, we can propagate known 849 // bits from the RHS to V. For those bits in B that are known to be one, 850 // we can propagate inverted known bits from the RHS to V. 851 KnownZero |= RHSKnownZero & BKnownZero; 852 KnownOne |= RHSKnownOne & BKnownZero; 853 KnownZero |= RHSKnownOne & BKnownOne; 854 KnownOne |= RHSKnownZero & BKnownOne; 855 // assume(~(v ^ b) = a) 856 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 857 m_Value(A))) && 858 Pred == ICmpInst::ICMP_EQ && 859 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 860 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 861 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 862 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 863 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 864 865 // For those bits in B that are known to be zero, we can propagate 866 // inverted known bits from the RHS to V. For those bits in B that are 867 // known to be one, we can propagate known bits from the RHS to V. 868 KnownZero |= RHSKnownOne & BKnownZero; 869 KnownOne |= RHSKnownZero & BKnownZero; 870 KnownZero |= RHSKnownZero & BKnownOne; 871 KnownOne |= RHSKnownOne & BKnownOne; 872 // assume(v << c = a) 873 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 874 m_Value(A))) && 875 Pred == ICmpInst::ICMP_EQ && 876 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 877 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 878 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 879 // For those bits in RHS that are known, we can propagate them to known 880 // bits in V shifted to the right by C. 881 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 882 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 883 // assume(~(v << c) = a) 884 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 885 m_Value(A))) && 886 Pred == ICmpInst::ICMP_EQ && 887 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 888 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 889 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 890 // For those bits in RHS that are known, we can propagate them inverted 891 // to known bits in V shifted to the right by C. 892 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 893 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 894 // assume(v >> c = a) 895 } else if (match(Arg, 896 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 897 m_AShr(m_V, m_ConstantInt(C))), 898 m_Value(A))) && 899 Pred == ICmpInst::ICMP_EQ && 900 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 901 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 902 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 903 // For those bits in RHS that are known, we can propagate them to known 904 // bits in V shifted to the right by C. 905 KnownZero |= RHSKnownZero << C->getZExtValue(); 906 KnownOne |= RHSKnownOne << C->getZExtValue(); 907 // assume(~(v >> c) = a) 908 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 909 m_LShr(m_V, m_ConstantInt(C)), 910 m_AShr(m_V, m_ConstantInt(C)))), 911 m_Value(A))) && 912 Pred == ICmpInst::ICMP_EQ && 913 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 914 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 915 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 916 // For those bits in RHS that are known, we can propagate them inverted 917 // to known bits in V shifted to the right by C. 918 KnownZero |= RHSKnownOne << C->getZExtValue(); 919 KnownOne |= RHSKnownZero << C->getZExtValue(); 920 // assume(v >=_s c) where c is non-negative 921 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 922 Pred == ICmpInst::ICMP_SGE && 923 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 924 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 925 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 926 927 if (RHSKnownZero.isNegative()) { 928 // We know that the sign bit is zero. 929 KnownZero |= APInt::getSignBit(BitWidth); 930 } 931 // assume(v >_s c) where c is at least -1. 932 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 933 Pred == ICmpInst::ICMP_SGT && 934 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 937 938 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 939 // We know that the sign bit is zero. 940 KnownZero |= APInt::getSignBit(BitWidth); 941 } 942 // assume(v <=_s c) where c is negative 943 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 944 Pred == ICmpInst::ICMP_SLE && 945 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 946 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 947 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 948 949 if (RHSKnownOne.isNegative()) { 950 // We know that the sign bit is one. 951 KnownOne |= APInt::getSignBit(BitWidth); 952 } 953 // assume(v <_s c) where c is non-positive 954 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 955 Pred == ICmpInst::ICMP_SLT && 956 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 957 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 958 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 959 960 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 961 // We know that the sign bit is one. 962 KnownOne |= APInt::getSignBit(BitWidth); 963 } 964 // assume(v <=_u c) 965 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 966 Pred == ICmpInst::ICMP_ULE && 967 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 968 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 969 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 970 971 // Whatever high bits in c are zero are known to be zero. 972 KnownZero |= 973 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 974 // assume(v <_u c) 975 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 976 Pred == ICmpInst::ICMP_ULT && 977 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 978 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 979 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 980 981 // Whatever high bits in c are zero are known to be zero (if c is a power 982 // of 2, then one more). 983 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 984 KnownZero |= 985 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 986 else 987 KnownZero |= 988 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 989 } 990 } 991 } 992 993 // Compute known bits from a shift operator, including those with a 994 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 995 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 996 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 997 // functors that, given the known-zero or known-one bits respectively, and a 998 // shift amount, compute the implied known-zero or known-one bits of the shift 999 // operator's result respectively for that shift amount. The results from calling 1000 // KZF and KOF are conservatively combined for all permitted shift amounts. 1001 template <typename KZFunctor, typename KOFunctor> 1002 static void computeKnownBitsFromShiftOperator(Operator *I, 1003 APInt &KnownZero, APInt &KnownOne, 1004 APInt &KnownZero2, APInt &KnownOne2, 1005 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) { 1006 unsigned BitWidth = KnownZero.getBitWidth(); 1007 1008 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1009 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 1010 1011 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1012 KnownZero = KZF(KnownZero, ShiftAmt); 1013 KnownOne = KOF(KnownOne, ShiftAmt); 1014 return; 1015 } 1016 1017 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1018 1019 // Note: We cannot use KnownZero.getLimitedValue() here, because if 1020 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1021 // limit value (which implies all bits are known). 1022 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 1023 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 1024 1025 // It would be more-clearly correct to use the two temporaries for this 1026 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1027 KnownZero.clearAllBits(); 1028 KnownOne.clearAllBits(); 1029 1030 // If we know the shifter operand is nonzero, we can sometimes infer more 1031 // known bits. However this is expensive to compute, so be lazy about it and 1032 // only compute it when absolutely necessary. 1033 Optional<bool> ShifterOperandIsNonZero; 1034 1035 // Early exit if we can't constrain any well-defined shift amount. 1036 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 1037 ShifterOperandIsNonZero = 1038 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1039 if (!*ShifterOperandIsNonZero) 1040 return; 1041 } 1042 1043 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1044 1045 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 1046 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1047 // Combine the shifted known input bits only for those shift amounts 1048 // compatible with its known constraints. 1049 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1050 continue; 1051 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1052 continue; 1053 // If we know the shifter is nonzero, we may be able to infer more known 1054 // bits. This check is sunk down as far as possible to avoid the expensive 1055 // call to isKnownNonZero if the cheaper checks above fail. 1056 if (ShiftAmt == 0) { 1057 if (!ShifterOperandIsNonZero.hasValue()) 1058 ShifterOperandIsNonZero = 1059 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1060 if (*ShifterOperandIsNonZero) 1061 continue; 1062 } 1063 1064 KnownZero &= KZF(KnownZero2, ShiftAmt); 1065 KnownOne &= KOF(KnownOne2, ShiftAmt); 1066 } 1067 1068 // If there are no compatible shift amounts, then we've proven that the shift 1069 // amount must be >= the BitWidth, and the result is undefined. We could 1070 // return anything we'd like, but we need to make sure the sets of known bits 1071 // stay disjoint (it should be better for some other code to actually 1072 // propagate the undef than to pick a value here using known bits). 1073 if ((KnownZero & KnownOne) != 0) { 1074 KnownZero.clearAllBits(); 1075 KnownOne.clearAllBits(); 1076 } 1077 } 1078 1079 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 1080 APInt &KnownOne, unsigned Depth, 1081 const Query &Q) { 1082 unsigned BitWidth = KnownZero.getBitWidth(); 1083 1084 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 1085 switch (I->getOpcode()) { 1086 default: break; 1087 case Instruction::Load: 1088 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 1089 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1090 break; 1091 case Instruction::And: { 1092 // If either the LHS or the RHS are Zero, the result is zero. 1093 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1094 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1095 1096 // Output known-1 bits are only known if set in both the LHS & RHS. 1097 KnownOne &= KnownOne2; 1098 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1099 KnownZero |= KnownZero2; 1100 1101 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1102 // here we handle the more general case of adding any odd number by 1103 // matching the form add(x, add(x, y)) where y is odd. 1104 // TODO: This could be generalized to clearing any bit set in y where the 1105 // following bit is known to be unset in y. 1106 Value *Y = nullptr; 1107 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 1108 m_Value(Y))) || 1109 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 1110 m_Value(Y)))) { 1111 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 1112 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 1113 if (KnownOne3.countTrailingOnes() > 0) 1114 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 1115 } 1116 break; 1117 } 1118 case Instruction::Or: { 1119 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1120 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1121 1122 // Output known-0 bits are only known if clear in both the LHS & RHS. 1123 KnownZero &= KnownZero2; 1124 // Output known-1 are known to be set if set in either the LHS | RHS. 1125 KnownOne |= KnownOne2; 1126 break; 1127 } 1128 case Instruction::Xor: { 1129 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1130 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1131 1132 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1133 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1134 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1135 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1136 KnownZero = KnownZeroOut; 1137 break; 1138 } 1139 case Instruction::Mul: { 1140 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1141 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1142 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1143 break; 1144 } 1145 case Instruction::UDiv: { 1146 // For the purposes of computing leading zeros we can conservatively 1147 // treat a udiv as a logical right shift by the power of 2 known to 1148 // be less than the denominator. 1149 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1150 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1151 1152 KnownOne2.clearAllBits(); 1153 KnownZero2.clearAllBits(); 1154 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1155 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1156 if (RHSUnknownLeadingOnes != BitWidth) 1157 LeadZ = std::min(BitWidth, 1158 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1159 1160 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1161 break; 1162 } 1163 case Instruction::Select: 1164 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 1165 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1166 1167 // Only known if known in both the LHS and RHS. 1168 KnownOne &= KnownOne2; 1169 KnownZero &= KnownZero2; 1170 break; 1171 case Instruction::FPTrunc: 1172 case Instruction::FPExt: 1173 case Instruction::FPToUI: 1174 case Instruction::FPToSI: 1175 case Instruction::SIToFP: 1176 case Instruction::UIToFP: 1177 break; // Can't work with floating point. 1178 case Instruction::PtrToInt: 1179 case Instruction::IntToPtr: 1180 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1181 // FALL THROUGH and handle them the same as zext/trunc. 1182 case Instruction::ZExt: 1183 case Instruction::Trunc: { 1184 Type *SrcTy = I->getOperand(0)->getType(); 1185 1186 unsigned SrcBitWidth; 1187 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1188 // which fall through here. 1189 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1190 1191 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1192 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1193 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1194 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1195 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1196 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1197 // Any top bits are known to be zero. 1198 if (BitWidth > SrcBitWidth) 1199 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1200 break; 1201 } 1202 case Instruction::BitCast: { 1203 Type *SrcTy = I->getOperand(0)->getType(); 1204 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1205 SrcTy->isFloatingPointTy()) && 1206 // TODO: For now, not handling conversions like: 1207 // (bitcast i64 %x to <2 x i32>) 1208 !I->getType()->isVectorTy()) { 1209 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1210 break; 1211 } 1212 break; 1213 } 1214 case Instruction::SExt: { 1215 // Compute the bits in the result that are not present in the input. 1216 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1217 1218 KnownZero = KnownZero.trunc(SrcBitWidth); 1219 KnownOne = KnownOne.trunc(SrcBitWidth); 1220 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1221 KnownZero = KnownZero.zext(BitWidth); 1222 KnownOne = KnownOne.zext(BitWidth); 1223 1224 // If the sign bit of the input is known set or clear, then we know the 1225 // top bits of the result. 1226 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1227 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1228 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1229 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1230 break; 1231 } 1232 case Instruction::Shl: { 1233 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1234 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1235 return (KnownZero << ShiftAmt) | 1236 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1237 }; 1238 1239 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1240 return KnownOne << ShiftAmt; 1241 }; 1242 1243 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1244 KnownZero2, KnownOne2, Depth, Q, KZF, 1245 KOF); 1246 break; 1247 } 1248 case Instruction::LShr: { 1249 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1250 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1251 return APIntOps::lshr(KnownZero, ShiftAmt) | 1252 // High bits known zero. 1253 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1254 }; 1255 1256 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1257 return APIntOps::lshr(KnownOne, ShiftAmt); 1258 }; 1259 1260 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1261 KnownZero2, KnownOne2, Depth, Q, KZF, 1262 KOF); 1263 break; 1264 } 1265 case Instruction::AShr: { 1266 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1267 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1268 return APIntOps::ashr(KnownZero, ShiftAmt); 1269 }; 1270 1271 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1272 return APIntOps::ashr(KnownOne, ShiftAmt); 1273 }; 1274 1275 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1276 KnownZero2, KnownOne2, Depth, Q, KZF, 1277 KOF); 1278 break; 1279 } 1280 case Instruction::Sub: { 1281 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1282 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1283 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1284 Q); 1285 break; 1286 } 1287 case Instruction::Add: { 1288 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1289 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1290 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1291 Q); 1292 break; 1293 } 1294 case Instruction::SRem: 1295 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1296 APInt RA = Rem->getValue().abs(); 1297 if (RA.isPowerOf2()) { 1298 APInt LowBits = RA - 1; 1299 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1300 Q); 1301 1302 // The low bits of the first operand are unchanged by the srem. 1303 KnownZero = KnownZero2 & LowBits; 1304 KnownOne = KnownOne2 & LowBits; 1305 1306 // If the first operand is non-negative or has all low bits zero, then 1307 // the upper bits are all zero. 1308 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1309 KnownZero |= ~LowBits; 1310 1311 // If the first operand is negative and not all low bits are zero, then 1312 // the upper bits are all one. 1313 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1314 KnownOne |= ~LowBits; 1315 1316 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1317 } 1318 } 1319 1320 // The sign bit is the LHS's sign bit, except when the result of the 1321 // remainder is zero. 1322 if (KnownZero.isNonNegative()) { 1323 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1324 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1325 Q); 1326 // If it's known zero, our sign bit is also zero. 1327 if (LHSKnownZero.isNegative()) 1328 KnownZero.setBit(BitWidth - 1); 1329 } 1330 1331 break; 1332 case Instruction::URem: { 1333 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1334 APInt RA = Rem->getValue(); 1335 if (RA.isPowerOf2()) { 1336 APInt LowBits = (RA - 1); 1337 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1338 KnownZero |= ~LowBits; 1339 KnownOne &= LowBits; 1340 break; 1341 } 1342 } 1343 1344 // Since the result is less than or equal to either operand, any leading 1345 // zero bits in either operand must also exist in the result. 1346 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1347 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1348 1349 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1350 KnownZero2.countLeadingOnes()); 1351 KnownOne.clearAllBits(); 1352 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1353 break; 1354 } 1355 1356 case Instruction::Alloca: { 1357 AllocaInst *AI = cast<AllocaInst>(I); 1358 unsigned Align = AI->getAlignment(); 1359 if (Align == 0) 1360 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1361 1362 if (Align > 0) 1363 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1364 break; 1365 } 1366 case Instruction::GetElementPtr: { 1367 // Analyze all of the subscripts of this getelementptr instruction 1368 // to determine if we can prove known low zero bits. 1369 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1370 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1371 Q); 1372 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1373 1374 gep_type_iterator GTI = gep_type_begin(I); 1375 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1376 Value *Index = I->getOperand(i); 1377 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1378 // Handle struct member offset arithmetic. 1379 1380 // Handle case when index is vector zeroinitializer 1381 Constant *CIndex = cast<Constant>(Index); 1382 if (CIndex->isZeroValue()) 1383 continue; 1384 1385 if (CIndex->getType()->isVectorTy()) 1386 Index = CIndex->getSplatValue(); 1387 1388 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1389 const StructLayout *SL = Q.DL.getStructLayout(STy); 1390 uint64_t Offset = SL->getElementOffset(Idx); 1391 TrailZ = std::min<unsigned>(TrailZ, 1392 countTrailingZeros(Offset)); 1393 } else { 1394 // Handle array index arithmetic. 1395 Type *IndexedTy = GTI.getIndexedType(); 1396 if (!IndexedTy->isSized()) { 1397 TrailZ = 0; 1398 break; 1399 } 1400 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1401 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1402 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1403 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1404 TrailZ = std::min(TrailZ, 1405 unsigned(countTrailingZeros(TypeSize) + 1406 LocalKnownZero.countTrailingOnes())); 1407 } 1408 } 1409 1410 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1411 break; 1412 } 1413 case Instruction::PHI: { 1414 PHINode *P = cast<PHINode>(I); 1415 // Handle the case of a simple two-predecessor recurrence PHI. 1416 // There's a lot more that could theoretically be done here, but 1417 // this is sufficient to catch some interesting cases. 1418 if (P->getNumIncomingValues() == 2) { 1419 for (unsigned i = 0; i != 2; ++i) { 1420 Value *L = P->getIncomingValue(i); 1421 Value *R = P->getIncomingValue(!i); 1422 Operator *LU = dyn_cast<Operator>(L); 1423 if (!LU) 1424 continue; 1425 unsigned Opcode = LU->getOpcode(); 1426 // Check for operations that have the property that if 1427 // both their operands have low zero bits, the result 1428 // will have low zero bits. 1429 if (Opcode == Instruction::Add || 1430 Opcode == Instruction::Sub || 1431 Opcode == Instruction::And || 1432 Opcode == Instruction::Or || 1433 Opcode == Instruction::Mul) { 1434 Value *LL = LU->getOperand(0); 1435 Value *LR = LU->getOperand(1); 1436 // Find a recurrence. 1437 if (LL == I) 1438 L = LR; 1439 else if (LR == I) 1440 L = LL; 1441 else 1442 break; 1443 // Ok, we have a PHI of the form L op= R. Check for low 1444 // zero bits. 1445 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1446 1447 // We need to take the minimum number of known bits 1448 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1449 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1450 1451 KnownZero = APInt::getLowBitsSet(BitWidth, 1452 std::min(KnownZero2.countTrailingOnes(), 1453 KnownZero3.countTrailingOnes())); 1454 break; 1455 } 1456 } 1457 } 1458 1459 // Unreachable blocks may have zero-operand PHI nodes. 1460 if (P->getNumIncomingValues() == 0) 1461 break; 1462 1463 // Otherwise take the unions of the known bit sets of the operands, 1464 // taking conservative care to avoid excessive recursion. 1465 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1466 // Skip if every incoming value references to ourself. 1467 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1468 break; 1469 1470 KnownZero = APInt::getAllOnesValue(BitWidth); 1471 KnownOne = APInt::getAllOnesValue(BitWidth); 1472 for (Value *IncValue : P->incoming_values()) { 1473 // Skip direct self references. 1474 if (IncValue == P) continue; 1475 1476 KnownZero2 = APInt(BitWidth, 0); 1477 KnownOne2 = APInt(BitWidth, 0); 1478 // Recurse, but cap the recursion to one level, because we don't 1479 // want to waste time spinning around in loops. 1480 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1481 KnownZero &= KnownZero2; 1482 KnownOne &= KnownOne2; 1483 // If all bits have been ruled out, there's no need to check 1484 // more operands. 1485 if (!KnownZero && !KnownOne) 1486 break; 1487 } 1488 } 1489 break; 1490 } 1491 case Instruction::Call: 1492 case Instruction::Invoke: 1493 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1494 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1495 // If a range metadata is attached to this IntrinsicInst, intersect the 1496 // explicit range specified by the metadata and the implicit range of 1497 // the intrinsic. 1498 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1499 switch (II->getIntrinsicID()) { 1500 default: break; 1501 case Intrinsic::bswap: 1502 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1503 KnownZero |= KnownZero2.byteSwap(); 1504 KnownOne |= KnownOne2.byteSwap(); 1505 break; 1506 case Intrinsic::ctlz: 1507 case Intrinsic::cttz: { 1508 unsigned LowBits = Log2_32(BitWidth)+1; 1509 // If this call is undefined for 0, the result will be less than 2^n. 1510 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1511 LowBits -= 1; 1512 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1513 break; 1514 } 1515 case Intrinsic::ctpop: { 1516 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1517 // We can bound the space the count needs. Also, bits known to be zero 1518 // can't contribute to the population. 1519 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1520 unsigned LeadingZeros = 1521 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1522 assert(LeadingZeros <= BitWidth); 1523 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1524 KnownOne &= ~KnownZero; 1525 // TODO: we could bound KnownOne using the lower bound on the number 1526 // of bits which might be set provided by popcnt KnownOne2. 1527 break; 1528 } 1529 case Intrinsic::fabs: { 1530 Type *Ty = II->getType(); 1531 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1532 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1533 break; 1534 } 1535 case Intrinsic::x86_sse42_crc32_64_64: 1536 KnownZero |= APInt::getHighBitsSet(64, 32); 1537 break; 1538 } 1539 } 1540 break; 1541 case Instruction::ExtractValue: 1542 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1543 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1544 if (EVI->getNumIndices() != 1) break; 1545 if (EVI->getIndices()[0] == 0) { 1546 switch (II->getIntrinsicID()) { 1547 default: break; 1548 case Intrinsic::uadd_with_overflow: 1549 case Intrinsic::sadd_with_overflow: 1550 computeKnownBitsAddSub(true, II->getArgOperand(0), 1551 II->getArgOperand(1), false, KnownZero, 1552 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1553 break; 1554 case Intrinsic::usub_with_overflow: 1555 case Intrinsic::ssub_with_overflow: 1556 computeKnownBitsAddSub(false, II->getArgOperand(0), 1557 II->getArgOperand(1), false, KnownZero, 1558 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1559 break; 1560 case Intrinsic::umul_with_overflow: 1561 case Intrinsic::smul_with_overflow: 1562 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1563 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1564 Q); 1565 break; 1566 } 1567 } 1568 } 1569 } 1570 } 1571 1572 static unsigned getAlignment(const Value *V, const DataLayout &DL) { 1573 unsigned Align = 0; 1574 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1575 Align = GO->getAlignment(); 1576 if (Align == 0) { 1577 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1578 Type *ObjectType = GVar->getValueType(); 1579 if (ObjectType->isSized()) { 1580 // If the object is defined in the current Module, we'll be giving 1581 // it the preferred alignment. Otherwise, we have to assume that it 1582 // may only have the minimum ABI alignment. 1583 if (GVar->isStrongDefinitionForLinker()) 1584 Align = DL.getPreferredAlignment(GVar); 1585 else 1586 Align = DL.getABITypeAlignment(ObjectType); 1587 } 1588 } 1589 } 1590 } else if (const Argument *A = dyn_cast<Argument>(V)) { 1591 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1592 1593 if (!Align && A->hasStructRetAttr()) { 1594 // An sret parameter has at least the ABI alignment of the return type. 1595 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1596 if (EltTy->isSized()) 1597 Align = DL.getABITypeAlignment(EltTy); 1598 } 1599 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1600 Align = AI->getAlignment(); 1601 else if (auto CS = ImmutableCallSite(V)) 1602 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 1603 else if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1604 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 1605 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 1606 Align = CI->getLimitedValue(); 1607 } 1608 1609 return Align; 1610 } 1611 1612 /// Determine which bits of V are known to be either zero or one and return 1613 /// them in the KnownZero/KnownOne bit sets. 1614 /// 1615 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1616 /// we cannot optimize based on the assumption that it is zero without changing 1617 /// it to be an explicit zero. If we don't change it to zero, other code could 1618 /// optimized based on the contradictory assumption that it is non-zero. 1619 /// Because instcombine aggressively folds operations with undef args anyway, 1620 /// this won't lose us code quality. 1621 /// 1622 /// This function is defined on values with integer type, values with pointer 1623 /// type, and vectors of integers. In the case 1624 /// where V is a vector, known zero, and known one values are the 1625 /// same width as the vector element, and the bit is set only if it is true 1626 /// for all of the elements in the vector. 1627 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1628 unsigned Depth, const Query &Q) { 1629 assert(V && "No Value?"); 1630 assert(Depth <= MaxDepth && "Limit Search Depth"); 1631 unsigned BitWidth = KnownZero.getBitWidth(); 1632 1633 assert((V->getType()->isIntOrIntVectorTy() || 1634 V->getType()->isFPOrFPVectorTy() || 1635 V->getType()->getScalarType()->isPointerTy()) && 1636 "Not integer, floating point, or pointer type!"); 1637 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1638 (!V->getType()->isIntOrIntVectorTy() || 1639 V->getType()->getScalarSizeInBits() == BitWidth) && 1640 KnownZero.getBitWidth() == BitWidth && 1641 KnownOne.getBitWidth() == BitWidth && 1642 "V, KnownOne and KnownZero should have same BitWidth"); 1643 1644 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1645 // We know all of the bits for a constant! 1646 KnownOne = CI->getValue(); 1647 KnownZero = ~KnownOne; 1648 return; 1649 } 1650 // Null and aggregate-zero are all-zeros. 1651 if (isa<ConstantPointerNull>(V) || 1652 isa<ConstantAggregateZero>(V)) { 1653 KnownOne.clearAllBits(); 1654 KnownZero = APInt::getAllOnesValue(BitWidth); 1655 return; 1656 } 1657 // Handle a constant vector by taking the intersection of the known bits of 1658 // each element. There is no real need to handle ConstantVector here, because 1659 // we don't handle undef in any particularly useful way. 1660 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1661 // We know that CDS must be a vector of integers. Take the intersection of 1662 // each element. 1663 KnownZero.setAllBits(); KnownOne.setAllBits(); 1664 APInt Elt(KnownZero.getBitWidth(), 0); 1665 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1666 Elt = CDS->getElementAsInteger(i); 1667 KnownZero &= ~Elt; 1668 KnownOne &= Elt; 1669 } 1670 return; 1671 } 1672 1673 // Start out not knowing anything. 1674 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1675 1676 // Limit search depth. 1677 // All recursive calls that increase depth must come after this. 1678 if (Depth == MaxDepth) 1679 return; 1680 1681 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1682 // the bits of its aliasee. 1683 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1684 if (!GA->mayBeOverridden()) 1685 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1686 return; 1687 } 1688 1689 if (Operator *I = dyn_cast<Operator>(V)) 1690 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1691 1692 // Aligned pointers have trailing zeros - refine KnownZero set 1693 if (V->getType()->isPointerTy()) { 1694 unsigned Align = getAlignment(V, Q.DL); 1695 if (Align) 1696 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1697 } 1698 1699 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1700 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1701 // computeKnownBitsFromOperator. 1702 1703 // Check whether a nearby assume intrinsic can determine some known bits. 1704 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1705 1706 // Check whether there's a dominating condition which implies something about 1707 // this value at the given context. 1708 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1709 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q); 1710 1711 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1712 } 1713 1714 /// Determine whether the sign bit is known to be zero or one. 1715 /// Convenience wrapper around computeKnownBits. 1716 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1717 unsigned Depth, const Query &Q) { 1718 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1719 if (!BitWidth) { 1720 KnownZero = false; 1721 KnownOne = false; 1722 return; 1723 } 1724 APInt ZeroBits(BitWidth, 0); 1725 APInt OneBits(BitWidth, 0); 1726 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1727 KnownOne = OneBits[BitWidth - 1]; 1728 KnownZero = ZeroBits[BitWidth - 1]; 1729 } 1730 1731 /// Return true if the given value is known to have exactly one 1732 /// bit set when defined. For vectors return true if every element is known to 1733 /// be a power of two when defined. Supports values with integer or pointer 1734 /// types and vectors of integers. 1735 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1736 const Query &Q) { 1737 if (Constant *C = dyn_cast<Constant>(V)) { 1738 if (C->isNullValue()) 1739 return OrZero; 1740 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1741 return CI->getValue().isPowerOf2(); 1742 // TODO: Handle vector constants. 1743 } 1744 1745 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1746 // it is shifted off the end then the result is undefined. 1747 if (match(V, m_Shl(m_One(), m_Value()))) 1748 return true; 1749 1750 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1751 // bottom. If it is shifted off the bottom then the result is undefined. 1752 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1753 return true; 1754 1755 // The remaining tests are all recursive, so bail out if we hit the limit. 1756 if (Depth++ == MaxDepth) 1757 return false; 1758 1759 Value *X = nullptr, *Y = nullptr; 1760 // A shift left or a logical shift right of a power of two is a power of two 1761 // or zero. 1762 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1763 match(V, m_LShr(m_Value(X), m_Value())))) 1764 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1765 1766 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1767 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1768 1769 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1770 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1771 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1772 1773 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1774 // A power of two and'd with anything is a power of two or zero. 1775 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1776 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1777 return true; 1778 // X & (-X) is always a power of two or zero. 1779 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1780 return true; 1781 return false; 1782 } 1783 1784 // Adding a power-of-two or zero to the same power-of-two or zero yields 1785 // either the original power-of-two, a larger power-of-two or zero. 1786 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1787 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1788 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1789 if (match(X, m_And(m_Specific(Y), m_Value())) || 1790 match(X, m_And(m_Value(), m_Specific(Y)))) 1791 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1792 return true; 1793 if (match(Y, m_And(m_Specific(X), m_Value())) || 1794 match(Y, m_And(m_Value(), m_Specific(X)))) 1795 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1796 return true; 1797 1798 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1799 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1800 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1801 1802 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1803 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1804 // If i8 V is a power of two or zero: 1805 // ZeroBits: 1 1 1 0 1 1 1 1 1806 // ~ZeroBits: 0 0 0 1 0 0 0 0 1807 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1808 // If OrZero isn't set, we cannot give back a zero result. 1809 // Make sure either the LHS or RHS has a bit set. 1810 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1811 return true; 1812 } 1813 } 1814 1815 // An exact divide or right shift can only shift off zero bits, so the result 1816 // is a power of two only if the first operand is a power of two and not 1817 // copying a sign bit (sdiv int_min, 2). 1818 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1819 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1820 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1821 Depth, Q); 1822 } 1823 1824 return false; 1825 } 1826 1827 /// \brief Test whether a GEP's result is known to be non-null. 1828 /// 1829 /// Uses properties inherent in a GEP to try to determine whether it is known 1830 /// to be non-null. 1831 /// 1832 /// Currently this routine does not support vector GEPs. 1833 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth, 1834 const Query &Q) { 1835 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1836 return false; 1837 1838 // FIXME: Support vector-GEPs. 1839 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1840 1841 // If the base pointer is non-null, we cannot walk to a null address with an 1842 // inbounds GEP in address space zero. 1843 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1844 return true; 1845 1846 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1847 // If so, then the GEP cannot produce a null pointer, as doing so would 1848 // inherently violate the inbounds contract within address space zero. 1849 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1850 GTI != GTE; ++GTI) { 1851 // Struct types are easy -- they must always be indexed by a constant. 1852 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1853 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1854 unsigned ElementIdx = OpC->getZExtValue(); 1855 const StructLayout *SL = Q.DL.getStructLayout(STy); 1856 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1857 if (ElementOffset > 0) 1858 return true; 1859 continue; 1860 } 1861 1862 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1863 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1864 continue; 1865 1866 // Fast path the constant operand case both for efficiency and so we don't 1867 // increment Depth when just zipping down an all-constant GEP. 1868 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1869 if (!OpC->isZero()) 1870 return true; 1871 continue; 1872 } 1873 1874 // We post-increment Depth here because while isKnownNonZero increments it 1875 // as well, when we pop back up that increment won't persist. We don't want 1876 // to recurse 10k times just because we have 10k GEP operands. We don't 1877 // bail completely out because we want to handle constant GEPs regardless 1878 // of depth. 1879 if (Depth++ >= MaxDepth) 1880 continue; 1881 1882 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1883 return true; 1884 } 1885 1886 return false; 1887 } 1888 1889 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1890 /// ensure that the value it's attached to is never Value? 'RangeType' is 1891 /// is the type of the value described by the range. 1892 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1893 const APInt& Value) { 1894 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1895 assert(NumRanges >= 1); 1896 for (unsigned i = 0; i < NumRanges; ++i) { 1897 ConstantInt *Lower = 1898 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1899 ConstantInt *Upper = 1900 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1901 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1902 if (Range.contains(Value)) 1903 return false; 1904 } 1905 return true; 1906 } 1907 1908 /// Return true if the given value is known to be non-zero when defined. 1909 /// For vectors return true if every element is known to be non-zero when 1910 /// defined. Supports values with integer or pointer type and vectors of 1911 /// integers. 1912 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) { 1913 if (Constant *C = dyn_cast<Constant>(V)) { 1914 if (C->isNullValue()) 1915 return false; 1916 if (isa<ConstantInt>(C)) 1917 // Must be non-zero due to null test above. 1918 return true; 1919 // TODO: Handle vectors 1920 return false; 1921 } 1922 1923 if (Instruction* I = dyn_cast<Instruction>(V)) { 1924 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1925 // If the possible ranges don't contain zero, then the value is 1926 // definitely non-zero. 1927 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1928 const APInt ZeroValue(Ty->getBitWidth(), 0); 1929 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1930 return true; 1931 } 1932 } 1933 } 1934 1935 // The remaining tests are all recursive, so bail out if we hit the limit. 1936 if (Depth++ >= MaxDepth) 1937 return false; 1938 1939 // Check for pointer simplifications. 1940 if (V->getType()->isPointerTy()) { 1941 if (isKnownNonNull(V)) 1942 return true; 1943 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1944 if (isGEPKnownNonNull(GEP, Depth, Q)) 1945 return true; 1946 } 1947 1948 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1949 1950 // X | Y != 0 if X != 0 or Y != 0. 1951 Value *X = nullptr, *Y = nullptr; 1952 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1953 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1954 1955 // ext X != 0 if X != 0. 1956 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1957 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1958 1959 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1960 // if the lowest bit is shifted off the end. 1961 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1962 // shl nuw can't remove any non-zero bits. 1963 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1964 if (BO->hasNoUnsignedWrap()) 1965 return isKnownNonZero(X, Depth, Q); 1966 1967 APInt KnownZero(BitWidth, 0); 1968 APInt KnownOne(BitWidth, 0); 1969 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1970 if (KnownOne[0]) 1971 return true; 1972 } 1973 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1974 // defined if the sign bit is shifted off the end. 1975 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1976 // shr exact can only shift out zero bits. 1977 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1978 if (BO->isExact()) 1979 return isKnownNonZero(X, Depth, Q); 1980 1981 bool XKnownNonNegative, XKnownNegative; 1982 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1983 if (XKnownNegative) 1984 return true; 1985 1986 // If the shifter operand is a constant, and all of the bits shifted 1987 // out are known to be zero, and X is known non-zero then at least one 1988 // non-zero bit must remain. 1989 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1990 APInt KnownZero(BitWidth, 0); 1991 APInt KnownOne(BitWidth, 0); 1992 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1993 1994 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1995 // Is there a known one in the portion not shifted out? 1996 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1997 return true; 1998 // Are all the bits to be shifted out known zero? 1999 if (KnownZero.countTrailingOnes() >= ShiftVal) 2000 return isKnownNonZero(X, Depth, Q); 2001 } 2002 } 2003 // div exact can only produce a zero if the dividend is zero. 2004 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2005 return isKnownNonZero(X, Depth, Q); 2006 } 2007 // X + Y. 2008 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2009 bool XKnownNonNegative, XKnownNegative; 2010 bool YKnownNonNegative, YKnownNegative; 2011 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 2012 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 2013 2014 // If X and Y are both non-negative (as signed values) then their sum is not 2015 // zero unless both X and Y are zero. 2016 if (XKnownNonNegative && YKnownNonNegative) 2017 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2018 return true; 2019 2020 // If X and Y are both negative (as signed values) then their sum is not 2021 // zero unless both X and Y equal INT_MIN. 2022 if (BitWidth && XKnownNegative && YKnownNegative) { 2023 APInt KnownZero(BitWidth, 0); 2024 APInt KnownOne(BitWidth, 0); 2025 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2026 // The sign bit of X is set. If some other bit is set then X is not equal 2027 // to INT_MIN. 2028 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 2029 if ((KnownOne & Mask) != 0) 2030 return true; 2031 // The sign bit of Y is set. If some other bit is set then Y is not equal 2032 // to INT_MIN. 2033 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 2034 if ((KnownOne & Mask) != 0) 2035 return true; 2036 } 2037 2038 // The sum of a non-negative number and a power of two is not zero. 2039 if (XKnownNonNegative && 2040 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2041 return true; 2042 if (YKnownNonNegative && 2043 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2044 return true; 2045 } 2046 // X * Y. 2047 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2048 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2049 // If X and Y are non-zero then so is X * Y as long as the multiplication 2050 // does not overflow. 2051 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2052 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2053 return true; 2054 } 2055 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2056 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2057 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2058 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2059 return true; 2060 } 2061 // PHI 2062 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2063 // Try and detect a recurrence that monotonically increases from a 2064 // starting value, as these are common as induction variables. 2065 if (PN->getNumIncomingValues() == 2) { 2066 Value *Start = PN->getIncomingValue(0); 2067 Value *Induction = PN->getIncomingValue(1); 2068 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2069 std::swap(Start, Induction); 2070 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2071 if (!C->isZero() && !C->isNegative()) { 2072 ConstantInt *X; 2073 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2074 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2075 !X->isNegative()) 2076 return true; 2077 } 2078 } 2079 } 2080 // Check if all incoming values are non-zero constant. 2081 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 2082 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 2083 }); 2084 if (AllNonZeroConstants) 2085 return true; 2086 } 2087 2088 if (!BitWidth) return false; 2089 APInt KnownZero(BitWidth, 0); 2090 APInt KnownOne(BitWidth, 0); 2091 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2092 return KnownOne != 0; 2093 } 2094 2095 /// Return true if V2 == V1 + X, where X is known non-zero. 2096 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) { 2097 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2098 if (!BO || BO->getOpcode() != Instruction::Add) 2099 return false; 2100 Value *Op = nullptr; 2101 if (V2 == BO->getOperand(0)) 2102 Op = BO->getOperand(1); 2103 else if (V2 == BO->getOperand(1)) 2104 Op = BO->getOperand(0); 2105 else 2106 return false; 2107 return isKnownNonZero(Op, 0, Q); 2108 } 2109 2110 /// Return true if it is known that V1 != V2. 2111 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) { 2112 if (V1->getType()->isVectorTy() || V1 == V2) 2113 return false; 2114 if (V1->getType() != V2->getType()) 2115 // We can't look through casts yet. 2116 return false; 2117 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2118 return true; 2119 2120 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2121 // Are any known bits in V1 contradictory to known bits in V2? If V1 2122 // has a known zero where V2 has a known one, they must not be equal. 2123 auto BitWidth = Ty->getBitWidth(); 2124 APInt KnownZero1(BitWidth, 0); 2125 APInt KnownOne1(BitWidth, 0); 2126 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2127 APInt KnownZero2(BitWidth, 0); 2128 APInt KnownOne2(BitWidth, 0); 2129 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2130 2131 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2132 if (OppositeBits.getBoolValue()) 2133 return true; 2134 } 2135 return false; 2136 } 2137 2138 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2139 /// simplify operations downstream. Mask is known to be zero for bits that V 2140 /// cannot have. 2141 /// 2142 /// This function is defined on values with integer type, values with pointer 2143 /// type, and vectors of integers. In the case 2144 /// where V is a vector, the mask, known zero, and known one values are the 2145 /// same width as the vector element, and the bit is set only if it is true 2146 /// for all of the elements in the vector. 2147 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 2148 const Query &Q) { 2149 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2150 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2151 return (KnownZero & Mask) == Mask; 2152 } 2153 2154 2155 2156 /// Return the number of times the sign bit of the register is replicated into 2157 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2158 /// (itself), but other cases can give us information. For example, immediately 2159 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2160 /// other, so we return 3. 2161 /// 2162 /// 'Op' must have a scalar integer type. 2163 /// 2164 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) { 2165 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2166 unsigned Tmp, Tmp2; 2167 unsigned FirstAnswer = 1; 2168 2169 // Note that ConstantInt is handled by the general computeKnownBits case 2170 // below. 2171 2172 if (Depth == 6) 2173 return 1; // Limit search depth. 2174 2175 Operator *U = dyn_cast<Operator>(V); 2176 switch (Operator::getOpcode(V)) { 2177 default: break; 2178 case Instruction::SExt: 2179 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2180 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2181 2182 case Instruction::SDiv: { 2183 const APInt *Denominator; 2184 // sdiv X, C -> adds log(C) sign bits. 2185 if (match(U->getOperand(1), m_APInt(Denominator))) { 2186 2187 // Ignore non-positive denominator. 2188 if (!Denominator->isStrictlyPositive()) 2189 break; 2190 2191 // Calculate the incoming numerator bits. 2192 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2193 2194 // Add floor(log(C)) bits to the numerator bits. 2195 return std::min(TyBits, NumBits + Denominator->logBase2()); 2196 } 2197 break; 2198 } 2199 2200 case Instruction::SRem: { 2201 const APInt *Denominator; 2202 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2203 // positive constant. This let us put a lower bound on the number of sign 2204 // bits. 2205 if (match(U->getOperand(1), m_APInt(Denominator))) { 2206 2207 // Ignore non-positive denominator. 2208 if (!Denominator->isStrictlyPositive()) 2209 break; 2210 2211 // Calculate the incoming numerator bits. SRem by a positive constant 2212 // can't lower the number of sign bits. 2213 unsigned NumrBits = 2214 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2215 2216 // Calculate the leading sign bit constraints by examining the 2217 // denominator. Given that the denominator is positive, there are two 2218 // cases: 2219 // 2220 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2221 // (1 << ceilLogBase2(C)). 2222 // 2223 // 2. the numerator is negative. Then the result range is (-C,0] and 2224 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2225 // 2226 // Thus a lower bound on the number of sign bits is `TyBits - 2227 // ceilLogBase2(C)`. 2228 2229 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2230 return std::max(NumrBits, ResBits); 2231 } 2232 break; 2233 } 2234 2235 case Instruction::AShr: { 2236 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2237 // ashr X, C -> adds C sign bits. Vectors too. 2238 const APInt *ShAmt; 2239 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2240 Tmp += ShAmt->getZExtValue(); 2241 if (Tmp > TyBits) Tmp = TyBits; 2242 } 2243 return Tmp; 2244 } 2245 case Instruction::Shl: { 2246 const APInt *ShAmt; 2247 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2248 // shl destroys sign bits. 2249 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2250 Tmp2 = ShAmt->getZExtValue(); 2251 if (Tmp2 >= TyBits || // Bad shift. 2252 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2253 return Tmp - Tmp2; 2254 } 2255 break; 2256 } 2257 case Instruction::And: 2258 case Instruction::Or: 2259 case Instruction::Xor: // NOT is handled here. 2260 // Logical binary ops preserve the number of sign bits at the worst. 2261 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2262 if (Tmp != 1) { 2263 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2264 FirstAnswer = std::min(Tmp, Tmp2); 2265 // We computed what we know about the sign bits as our first 2266 // answer. Now proceed to the generic code that uses 2267 // computeKnownBits, and pick whichever answer is better. 2268 } 2269 break; 2270 2271 case Instruction::Select: 2272 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2273 if (Tmp == 1) return 1; // Early out. 2274 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2275 return std::min(Tmp, Tmp2); 2276 2277 case Instruction::Add: 2278 // Add can have at most one carry bit. Thus we know that the output 2279 // is, at worst, one more bit than the inputs. 2280 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2281 if (Tmp == 1) return 1; // Early out. 2282 2283 // Special case decrementing a value (ADD X, -1): 2284 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2285 if (CRHS->isAllOnesValue()) { 2286 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2287 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2288 2289 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2290 // sign bits set. 2291 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2292 return TyBits; 2293 2294 // If we are subtracting one from a positive number, there is no carry 2295 // out of the result. 2296 if (KnownZero.isNegative()) 2297 return Tmp; 2298 } 2299 2300 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2301 if (Tmp2 == 1) return 1; 2302 return std::min(Tmp, Tmp2)-1; 2303 2304 case Instruction::Sub: 2305 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2306 if (Tmp2 == 1) return 1; 2307 2308 // Handle NEG. 2309 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2310 if (CLHS->isNullValue()) { 2311 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2312 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2313 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2314 // sign bits set. 2315 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2316 return TyBits; 2317 2318 // If the input is known to be positive (the sign bit is known clear), 2319 // the output of the NEG has the same number of sign bits as the input. 2320 if (KnownZero.isNegative()) 2321 return Tmp2; 2322 2323 // Otherwise, we treat this like a SUB. 2324 } 2325 2326 // Sub can have at most one carry bit. Thus we know that the output 2327 // is, at worst, one more bit than the inputs. 2328 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2329 if (Tmp == 1) return 1; // Early out. 2330 return std::min(Tmp, Tmp2)-1; 2331 2332 case Instruction::PHI: { 2333 PHINode *PN = cast<PHINode>(U); 2334 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2335 // Don't analyze large in-degree PHIs. 2336 if (NumIncomingValues > 4) break; 2337 // Unreachable blocks may have zero-operand PHI nodes. 2338 if (NumIncomingValues == 0) break; 2339 2340 // Take the minimum of all incoming values. This can't infinitely loop 2341 // because of our depth threshold. 2342 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2343 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2344 if (Tmp == 1) return Tmp; 2345 Tmp = std::min( 2346 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2347 } 2348 return Tmp; 2349 } 2350 2351 case Instruction::Trunc: 2352 // FIXME: it's tricky to do anything useful for this, but it is an important 2353 // case for targets like X86. 2354 break; 2355 } 2356 2357 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2358 // use this information. 2359 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2360 APInt Mask; 2361 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2362 2363 if (KnownZero.isNegative()) { // sign bit is 0 2364 Mask = KnownZero; 2365 } else if (KnownOne.isNegative()) { // sign bit is 1; 2366 Mask = KnownOne; 2367 } else { 2368 // Nothing known. 2369 return FirstAnswer; 2370 } 2371 2372 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2373 // the number of identical bits in the top of the input value. 2374 Mask = ~Mask; 2375 Mask <<= Mask.getBitWidth()-TyBits; 2376 // Return # leading zeros. We use 'min' here in case Val was zero before 2377 // shifting. We don't want to return '64' as for an i32 "0". 2378 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2379 } 2380 2381 /// This function computes the integer multiple of Base that equals V. 2382 /// If successful, it returns true and returns the multiple in 2383 /// Multiple. If unsuccessful, it returns false. It looks 2384 /// through SExt instructions only if LookThroughSExt is true. 2385 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2386 bool LookThroughSExt, unsigned Depth) { 2387 const unsigned MaxDepth = 6; 2388 2389 assert(V && "No Value?"); 2390 assert(Depth <= MaxDepth && "Limit Search Depth"); 2391 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2392 2393 Type *T = V->getType(); 2394 2395 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2396 2397 if (Base == 0) 2398 return false; 2399 2400 if (Base == 1) { 2401 Multiple = V; 2402 return true; 2403 } 2404 2405 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2406 Constant *BaseVal = ConstantInt::get(T, Base); 2407 if (CO && CO == BaseVal) { 2408 // Multiple is 1. 2409 Multiple = ConstantInt::get(T, 1); 2410 return true; 2411 } 2412 2413 if (CI && CI->getZExtValue() % Base == 0) { 2414 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2415 return true; 2416 } 2417 2418 if (Depth == MaxDepth) return false; // Limit search depth. 2419 2420 Operator *I = dyn_cast<Operator>(V); 2421 if (!I) return false; 2422 2423 switch (I->getOpcode()) { 2424 default: break; 2425 case Instruction::SExt: 2426 if (!LookThroughSExt) return false; 2427 // otherwise fall through to ZExt 2428 case Instruction::ZExt: 2429 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2430 LookThroughSExt, Depth+1); 2431 case Instruction::Shl: 2432 case Instruction::Mul: { 2433 Value *Op0 = I->getOperand(0); 2434 Value *Op1 = I->getOperand(1); 2435 2436 if (I->getOpcode() == Instruction::Shl) { 2437 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2438 if (!Op1CI) return false; 2439 // Turn Op0 << Op1 into Op0 * 2^Op1 2440 APInt Op1Int = Op1CI->getValue(); 2441 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2442 APInt API(Op1Int.getBitWidth(), 0); 2443 API.setBit(BitToSet); 2444 Op1 = ConstantInt::get(V->getContext(), API); 2445 } 2446 2447 Value *Mul0 = nullptr; 2448 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2449 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2450 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2451 if (Op1C->getType()->getPrimitiveSizeInBits() < 2452 MulC->getType()->getPrimitiveSizeInBits()) 2453 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2454 if (Op1C->getType()->getPrimitiveSizeInBits() > 2455 MulC->getType()->getPrimitiveSizeInBits()) 2456 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2457 2458 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2459 Multiple = ConstantExpr::getMul(MulC, Op1C); 2460 return true; 2461 } 2462 2463 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2464 if (Mul0CI->getValue() == 1) { 2465 // V == Base * Op1, so return Op1 2466 Multiple = Op1; 2467 return true; 2468 } 2469 } 2470 2471 Value *Mul1 = nullptr; 2472 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2473 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2474 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2475 if (Op0C->getType()->getPrimitiveSizeInBits() < 2476 MulC->getType()->getPrimitiveSizeInBits()) 2477 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2478 if (Op0C->getType()->getPrimitiveSizeInBits() > 2479 MulC->getType()->getPrimitiveSizeInBits()) 2480 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2481 2482 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2483 Multiple = ConstantExpr::getMul(MulC, Op0C); 2484 return true; 2485 } 2486 2487 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2488 if (Mul1CI->getValue() == 1) { 2489 // V == Base * Op0, so return Op0 2490 Multiple = Op0; 2491 return true; 2492 } 2493 } 2494 } 2495 } 2496 2497 // We could not determine if V is a multiple of Base. 2498 return false; 2499 } 2500 2501 /// Return true if we can prove that the specified FP value is never equal to 2502 /// -0.0. 2503 /// 2504 /// NOTE: this function will need to be revisited when we support non-default 2505 /// rounding modes! 2506 /// 2507 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2508 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2509 return !CFP->getValueAPF().isNegZero(); 2510 2511 // FIXME: Magic number! At the least, this should be given a name because it's 2512 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2513 // expose it as a parameter, so it can be used for testing / experimenting. 2514 if (Depth == 6) 2515 return false; // Limit search depth. 2516 2517 const Operator *I = dyn_cast<Operator>(V); 2518 if (!I) return false; 2519 2520 // Check if the nsz fast-math flag is set 2521 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2522 if (FPO->hasNoSignedZeros()) 2523 return true; 2524 2525 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2526 if (I->getOpcode() == Instruction::FAdd) 2527 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2528 if (CFP->isNullValue()) 2529 return true; 2530 2531 // sitofp and uitofp turn into +0.0 for zero. 2532 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2533 return true; 2534 2535 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2536 // sqrt(-0.0) = -0.0, no other negative results are possible. 2537 if (II->getIntrinsicID() == Intrinsic::sqrt) 2538 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2539 2540 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2541 if (const Function *F = CI->getCalledFunction()) { 2542 if (F->isDeclaration()) { 2543 // abs(x) != -0.0 2544 if (F->getName() == "abs") return true; 2545 // fabs[lf](x) != -0.0 2546 if (F->getName() == "fabs") return true; 2547 if (F->getName() == "fabsf") return true; 2548 if (F->getName() == "fabsl") return true; 2549 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2550 F->getName() == "sqrtl") 2551 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2552 } 2553 } 2554 2555 return false; 2556 } 2557 2558 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2559 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2560 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2561 2562 // FIXME: Magic number! At the least, this should be given a name because it's 2563 // used similarly in CannotBeNegativeZero(). A better fix may be to 2564 // expose it as a parameter, so it can be used for testing / experimenting. 2565 if (Depth == 6) 2566 return false; // Limit search depth. 2567 2568 const Operator *I = dyn_cast<Operator>(V); 2569 if (!I) return false; 2570 2571 switch (I->getOpcode()) { 2572 default: break; 2573 // Unsigned integers are always nonnegative. 2574 case Instruction::UIToFP: 2575 return true; 2576 case Instruction::FMul: 2577 // x*x is always non-negative or a NaN. 2578 if (I->getOperand(0) == I->getOperand(1)) 2579 return true; 2580 // Fall through 2581 case Instruction::FAdd: 2582 case Instruction::FDiv: 2583 case Instruction::FRem: 2584 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2585 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2586 case Instruction::Select: 2587 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) && 2588 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2589 case Instruction::FPExt: 2590 case Instruction::FPTrunc: 2591 // Widening/narrowing never change sign. 2592 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2593 case Instruction::Call: 2594 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2595 switch (II->getIntrinsicID()) { 2596 default: break; 2597 case Intrinsic::maxnum: 2598 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) || 2599 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2600 case Intrinsic::minnum: 2601 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2602 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2603 case Intrinsic::exp: 2604 case Intrinsic::exp2: 2605 case Intrinsic::fabs: 2606 case Intrinsic::sqrt: 2607 return true; 2608 case Intrinsic::powi: 2609 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2610 // powi(x,n) is non-negative if n is even. 2611 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2612 return true; 2613 } 2614 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2615 case Intrinsic::fma: 2616 case Intrinsic::fmuladd: 2617 // x*x+y is non-negative if y is non-negative. 2618 return I->getOperand(0) == I->getOperand(1) && 2619 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2620 } 2621 break; 2622 } 2623 return false; 2624 } 2625 2626 /// If the specified value can be set by repeating the same byte in memory, 2627 /// return the i8 value that it is represented with. This is 2628 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2629 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2630 /// byte store (e.g. i16 0x1234), return null. 2631 Value *llvm::isBytewiseValue(Value *V) { 2632 // All byte-wide stores are splatable, even of arbitrary variables. 2633 if (V->getType()->isIntegerTy(8)) return V; 2634 2635 // Handle 'null' ConstantArrayZero etc. 2636 if (Constant *C = dyn_cast<Constant>(V)) 2637 if (C->isNullValue()) 2638 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2639 2640 // Constant float and double values can be handled as integer values if the 2641 // corresponding integer value is "byteable". An important case is 0.0. 2642 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2643 if (CFP->getType()->isFloatTy()) 2644 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2645 if (CFP->getType()->isDoubleTy()) 2646 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2647 // Don't handle long double formats, which have strange constraints. 2648 } 2649 2650 // We can handle constant integers that are multiple of 8 bits. 2651 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2652 if (CI->getBitWidth() % 8 == 0) { 2653 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2654 2655 if (!CI->getValue().isSplat(8)) 2656 return nullptr; 2657 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2658 } 2659 } 2660 2661 // A ConstantDataArray/Vector is splatable if all its members are equal and 2662 // also splatable. 2663 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2664 Value *Elt = CA->getElementAsConstant(0); 2665 Value *Val = isBytewiseValue(Elt); 2666 if (!Val) 2667 return nullptr; 2668 2669 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2670 if (CA->getElementAsConstant(I) != Elt) 2671 return nullptr; 2672 2673 return Val; 2674 } 2675 2676 // Conceptually, we could handle things like: 2677 // %a = zext i8 %X to i16 2678 // %b = shl i16 %a, 8 2679 // %c = or i16 %a, %b 2680 // but until there is an example that actually needs this, it doesn't seem 2681 // worth worrying about. 2682 return nullptr; 2683 } 2684 2685 2686 // This is the recursive version of BuildSubAggregate. It takes a few different 2687 // arguments. Idxs is the index within the nested struct From that we are 2688 // looking at now (which is of type IndexedType). IdxSkip is the number of 2689 // indices from Idxs that should be left out when inserting into the resulting 2690 // struct. To is the result struct built so far, new insertvalue instructions 2691 // build on that. 2692 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2693 SmallVectorImpl<unsigned> &Idxs, 2694 unsigned IdxSkip, 2695 Instruction *InsertBefore) { 2696 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2697 if (STy) { 2698 // Save the original To argument so we can modify it 2699 Value *OrigTo = To; 2700 // General case, the type indexed by Idxs is a struct 2701 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2702 // Process each struct element recursively 2703 Idxs.push_back(i); 2704 Value *PrevTo = To; 2705 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2706 InsertBefore); 2707 Idxs.pop_back(); 2708 if (!To) { 2709 // Couldn't find any inserted value for this index? Cleanup 2710 while (PrevTo != OrigTo) { 2711 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2712 PrevTo = Del->getAggregateOperand(); 2713 Del->eraseFromParent(); 2714 } 2715 // Stop processing elements 2716 break; 2717 } 2718 } 2719 // If we successfully found a value for each of our subaggregates 2720 if (To) 2721 return To; 2722 } 2723 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2724 // the struct's elements had a value that was inserted directly. In the latter 2725 // case, perhaps we can't determine each of the subelements individually, but 2726 // we might be able to find the complete struct somewhere. 2727 2728 // Find the value that is at that particular spot 2729 Value *V = FindInsertedValue(From, Idxs); 2730 2731 if (!V) 2732 return nullptr; 2733 2734 // Insert the value in the new (sub) aggregrate 2735 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2736 "tmp", InsertBefore); 2737 } 2738 2739 // This helper takes a nested struct and extracts a part of it (which is again a 2740 // struct) into a new value. For example, given the struct: 2741 // { a, { b, { c, d }, e } } 2742 // and the indices "1, 1" this returns 2743 // { c, d }. 2744 // 2745 // It does this by inserting an insertvalue for each element in the resulting 2746 // struct, as opposed to just inserting a single struct. This will only work if 2747 // each of the elements of the substruct are known (ie, inserted into From by an 2748 // insertvalue instruction somewhere). 2749 // 2750 // All inserted insertvalue instructions are inserted before InsertBefore 2751 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2752 Instruction *InsertBefore) { 2753 assert(InsertBefore && "Must have someplace to insert!"); 2754 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2755 idx_range); 2756 Value *To = UndefValue::get(IndexedType); 2757 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2758 unsigned IdxSkip = Idxs.size(); 2759 2760 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2761 } 2762 2763 /// Given an aggregrate and an sequence of indices, see if 2764 /// the scalar value indexed is already around as a register, for example if it 2765 /// were inserted directly into the aggregrate. 2766 /// 2767 /// If InsertBefore is not null, this function will duplicate (modified) 2768 /// insertvalues when a part of a nested struct is extracted. 2769 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2770 Instruction *InsertBefore) { 2771 // Nothing to index? Just return V then (this is useful at the end of our 2772 // recursion). 2773 if (idx_range.empty()) 2774 return V; 2775 // We have indices, so V should have an indexable type. 2776 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2777 "Not looking at a struct or array?"); 2778 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2779 "Invalid indices for type?"); 2780 2781 if (Constant *C = dyn_cast<Constant>(V)) { 2782 C = C->getAggregateElement(idx_range[0]); 2783 if (!C) return nullptr; 2784 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2785 } 2786 2787 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2788 // Loop the indices for the insertvalue instruction in parallel with the 2789 // requested indices 2790 const unsigned *req_idx = idx_range.begin(); 2791 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2792 i != e; ++i, ++req_idx) { 2793 if (req_idx == idx_range.end()) { 2794 // We can't handle this without inserting insertvalues 2795 if (!InsertBefore) 2796 return nullptr; 2797 2798 // The requested index identifies a part of a nested aggregate. Handle 2799 // this specially. For example, 2800 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2801 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2802 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2803 // This can be changed into 2804 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2805 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2806 // which allows the unused 0,0 element from the nested struct to be 2807 // removed. 2808 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2809 InsertBefore); 2810 } 2811 2812 // This insert value inserts something else than what we are looking for. 2813 // See if the (aggregate) value inserted into has the value we are 2814 // looking for, then. 2815 if (*req_idx != *i) 2816 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2817 InsertBefore); 2818 } 2819 // If we end up here, the indices of the insertvalue match with those 2820 // requested (though possibly only partially). Now we recursively look at 2821 // the inserted value, passing any remaining indices. 2822 return FindInsertedValue(I->getInsertedValueOperand(), 2823 makeArrayRef(req_idx, idx_range.end()), 2824 InsertBefore); 2825 } 2826 2827 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2828 // If we're extracting a value from an aggregate that was extracted from 2829 // something else, we can extract from that something else directly instead. 2830 // However, we will need to chain I's indices with the requested indices. 2831 2832 // Calculate the number of indices required 2833 unsigned size = I->getNumIndices() + idx_range.size(); 2834 // Allocate some space to put the new indices in 2835 SmallVector<unsigned, 5> Idxs; 2836 Idxs.reserve(size); 2837 // Add indices from the extract value instruction 2838 Idxs.append(I->idx_begin(), I->idx_end()); 2839 2840 // Add requested indices 2841 Idxs.append(idx_range.begin(), idx_range.end()); 2842 2843 assert(Idxs.size() == size 2844 && "Number of indices added not correct?"); 2845 2846 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2847 } 2848 // Otherwise, we don't know (such as, extracting from a function return value 2849 // or load instruction) 2850 return nullptr; 2851 } 2852 2853 /// Analyze the specified pointer to see if it can be expressed as a base 2854 /// pointer plus a constant offset. Return the base and offset to the caller. 2855 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2856 const DataLayout &DL) { 2857 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2858 APInt ByteOffset(BitWidth, 0); 2859 2860 // We walk up the defs but use a visited set to handle unreachable code. In 2861 // that case, we stop after accumulating the cycle once (not that it 2862 // matters). 2863 SmallPtrSet<Value *, 16> Visited; 2864 while (Visited.insert(Ptr).second) { 2865 if (Ptr->getType()->isVectorTy()) 2866 break; 2867 2868 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2869 APInt GEPOffset(BitWidth, 0); 2870 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2871 break; 2872 2873 ByteOffset += GEPOffset; 2874 2875 Ptr = GEP->getPointerOperand(); 2876 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2877 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2878 Ptr = cast<Operator>(Ptr)->getOperand(0); 2879 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2880 if (GA->mayBeOverridden()) 2881 break; 2882 Ptr = GA->getAliasee(); 2883 } else { 2884 break; 2885 } 2886 } 2887 Offset = ByteOffset.getSExtValue(); 2888 return Ptr; 2889 } 2890 2891 2892 /// This function computes the length of a null-terminated C string pointed to 2893 /// by V. If successful, it returns true and returns the string in Str. 2894 /// If unsuccessful, it returns false. 2895 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2896 uint64_t Offset, bool TrimAtNul) { 2897 assert(V); 2898 2899 // Look through bitcast instructions and geps. 2900 V = V->stripPointerCasts(); 2901 2902 // If the value is a GEP instruction or constant expression, treat it as an 2903 // offset. 2904 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2905 // Make sure the GEP has exactly three arguments. 2906 if (GEP->getNumOperands() != 3) 2907 return false; 2908 2909 // Make sure the index-ee is a pointer to array of i8. 2910 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2911 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2912 return false; 2913 2914 // Check to make sure that the first operand of the GEP is an integer and 2915 // has value 0 so that we are sure we're indexing into the initializer. 2916 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2917 if (!FirstIdx || !FirstIdx->isZero()) 2918 return false; 2919 2920 // If the second index isn't a ConstantInt, then this is a variable index 2921 // into the array. If this occurs, we can't say anything meaningful about 2922 // the string. 2923 uint64_t StartIdx = 0; 2924 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2925 StartIdx = CI->getZExtValue(); 2926 else 2927 return false; 2928 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2929 TrimAtNul); 2930 } 2931 2932 // The GEP instruction, constant or instruction, must reference a global 2933 // variable that is a constant and is initialized. The referenced constant 2934 // initializer is the array that we'll use for optimization. 2935 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2936 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2937 return false; 2938 2939 // Handle the all-zeros case 2940 if (GV->getInitializer()->isNullValue()) { 2941 // This is a degenerate case. The initializer is constant zero so the 2942 // length of the string must be zero. 2943 Str = ""; 2944 return true; 2945 } 2946 2947 // Must be a Constant Array 2948 const ConstantDataArray *Array = 2949 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2950 if (!Array || !Array->isString()) 2951 return false; 2952 2953 // Get the number of elements in the array 2954 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2955 2956 // Start out with the entire array in the StringRef. 2957 Str = Array->getAsString(); 2958 2959 if (Offset > NumElts) 2960 return false; 2961 2962 // Skip over 'offset' bytes. 2963 Str = Str.substr(Offset); 2964 2965 if (TrimAtNul) { 2966 // Trim off the \0 and anything after it. If the array is not nul 2967 // terminated, we just return the whole end of string. The client may know 2968 // some other way that the string is length-bound. 2969 Str = Str.substr(0, Str.find('\0')); 2970 } 2971 return true; 2972 } 2973 2974 // These next two are very similar to the above, but also look through PHI 2975 // nodes. 2976 // TODO: See if we can integrate these two together. 2977 2978 /// If we can compute the length of the string pointed to by 2979 /// the specified pointer, return 'len+1'. If we can't, return 0. 2980 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2981 // Look through noop bitcast instructions. 2982 V = V->stripPointerCasts(); 2983 2984 // If this is a PHI node, there are two cases: either we have already seen it 2985 // or we haven't. 2986 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2987 if (!PHIs.insert(PN).second) 2988 return ~0ULL; // already in the set. 2989 2990 // If it was new, see if all the input strings are the same length. 2991 uint64_t LenSoFar = ~0ULL; 2992 for (Value *IncValue : PN->incoming_values()) { 2993 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2994 if (Len == 0) return 0; // Unknown length -> unknown. 2995 2996 if (Len == ~0ULL) continue; 2997 2998 if (Len != LenSoFar && LenSoFar != ~0ULL) 2999 return 0; // Disagree -> unknown. 3000 LenSoFar = Len; 3001 } 3002 3003 // Success, all agree. 3004 return LenSoFar; 3005 } 3006 3007 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3008 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 3009 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3010 if (Len1 == 0) return 0; 3011 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3012 if (Len2 == 0) return 0; 3013 if (Len1 == ~0ULL) return Len2; 3014 if (Len2 == ~0ULL) return Len1; 3015 if (Len1 != Len2) return 0; 3016 return Len1; 3017 } 3018 3019 // Otherwise, see if we can read the string. 3020 StringRef StrData; 3021 if (!getConstantStringInfo(V, StrData)) 3022 return 0; 3023 3024 return StrData.size()+1; 3025 } 3026 3027 /// If we can compute the length of the string pointed to by 3028 /// the specified pointer, return 'len+1'. If we can't, return 0. 3029 uint64_t llvm::GetStringLength(Value *V) { 3030 if (!V->getType()->isPointerTy()) return 0; 3031 3032 SmallPtrSet<PHINode*, 32> PHIs; 3033 uint64_t Len = GetStringLengthH(V, PHIs); 3034 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3035 // an empty string as a length. 3036 return Len == ~0ULL ? 1 : Len; 3037 } 3038 3039 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3040 /// previous iteration of the loop was referring to the same object as \p PN. 3041 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 3042 // Find the loop-defined value. 3043 Loop *L = LI->getLoopFor(PN->getParent()); 3044 if (PN->getNumIncomingValues() != 2) 3045 return true; 3046 3047 // Find the value from previous iteration. 3048 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3049 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3050 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3051 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3052 return true; 3053 3054 // If a new pointer is loaded in the loop, the pointer references a different 3055 // object in every iteration. E.g.: 3056 // for (i) 3057 // int *p = a[i]; 3058 // ... 3059 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3060 if (!L->isLoopInvariant(Load->getPointerOperand())) 3061 return false; 3062 return true; 3063 } 3064 3065 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3066 unsigned MaxLookup) { 3067 if (!V->getType()->isPointerTy()) 3068 return V; 3069 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3070 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3071 V = GEP->getPointerOperand(); 3072 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3073 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3074 V = cast<Operator>(V)->getOperand(0); 3075 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3076 if (GA->mayBeOverridden()) 3077 return V; 3078 V = GA->getAliasee(); 3079 } else { 3080 // See if InstructionSimplify knows any relevant tricks. 3081 if (Instruction *I = dyn_cast<Instruction>(V)) 3082 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3083 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3084 V = Simplified; 3085 continue; 3086 } 3087 3088 return V; 3089 } 3090 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3091 } 3092 return V; 3093 } 3094 3095 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3096 const DataLayout &DL, LoopInfo *LI, 3097 unsigned MaxLookup) { 3098 SmallPtrSet<Value *, 4> Visited; 3099 SmallVector<Value *, 4> Worklist; 3100 Worklist.push_back(V); 3101 do { 3102 Value *P = Worklist.pop_back_val(); 3103 P = GetUnderlyingObject(P, DL, MaxLookup); 3104 3105 if (!Visited.insert(P).second) 3106 continue; 3107 3108 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3109 Worklist.push_back(SI->getTrueValue()); 3110 Worklist.push_back(SI->getFalseValue()); 3111 continue; 3112 } 3113 3114 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3115 // If this PHI changes the underlying object in every iteration of the 3116 // loop, don't look through it. Consider: 3117 // int **A; 3118 // for (i) { 3119 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3120 // Curr = A[i]; 3121 // *Prev, *Curr; 3122 // 3123 // Prev is tracking Curr one iteration behind so they refer to different 3124 // underlying objects. 3125 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3126 isSameUnderlyingObjectInLoop(PN, LI)) 3127 for (Value *IncValue : PN->incoming_values()) 3128 Worklist.push_back(IncValue); 3129 continue; 3130 } 3131 3132 Objects.push_back(P); 3133 } while (!Worklist.empty()); 3134 } 3135 3136 /// Return true if the only users of this pointer are lifetime markers. 3137 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3138 for (const User *U : V->users()) { 3139 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3140 if (!II) return false; 3141 3142 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3143 II->getIntrinsicID() != Intrinsic::lifetime_end) 3144 return false; 3145 } 3146 return true; 3147 } 3148 3149 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 3150 Type *Ty, const DataLayout &DL, 3151 const Instruction *CtxI, 3152 const DominatorTree *DT, 3153 const TargetLibraryInfo *TLI) { 3154 assert(Offset.isNonNegative() && "offset can't be negative"); 3155 assert(Ty->isSized() && "must be sized"); 3156 3157 APInt DerefBytes(Offset.getBitWidth(), 0); 3158 bool CheckForNonNull = false; 3159 if (const Argument *A = dyn_cast<Argument>(BV)) { 3160 DerefBytes = A->getDereferenceableBytes(); 3161 if (!DerefBytes.getBoolValue()) { 3162 DerefBytes = A->getDereferenceableOrNullBytes(); 3163 CheckForNonNull = true; 3164 } 3165 } else if (auto CS = ImmutableCallSite(BV)) { 3166 DerefBytes = CS.getDereferenceableBytes(0); 3167 if (!DerefBytes.getBoolValue()) { 3168 DerefBytes = CS.getDereferenceableOrNullBytes(0); 3169 CheckForNonNull = true; 3170 } 3171 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 3172 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 3173 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3174 DerefBytes = CI->getLimitedValue(); 3175 } 3176 if (!DerefBytes.getBoolValue()) { 3177 if (MDNode *MD = 3178 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 3179 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3180 DerefBytes = CI->getLimitedValue(); 3181 } 3182 CheckForNonNull = true; 3183 } 3184 } 3185 3186 if (DerefBytes.getBoolValue()) 3187 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 3188 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 3189 return true; 3190 3191 return false; 3192 } 3193 3194 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 3195 const Instruction *CtxI, 3196 const DominatorTree *DT, 3197 const TargetLibraryInfo *TLI) { 3198 Type *VTy = V->getType(); 3199 Type *Ty = VTy->getPointerElementType(); 3200 if (!Ty->isSized()) 3201 return false; 3202 3203 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3204 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 3205 } 3206 3207 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 3208 const DataLayout &DL) { 3209 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); 3210 3211 if (!BaseAlign) { 3212 Type *Ty = Base->getType()->getPointerElementType(); 3213 if (!Ty->isSized()) 3214 return false; 3215 BaseAlign = DL.getABITypeAlignment(Ty); 3216 } 3217 3218 APInt Alignment(Offset.getBitWidth(), Align); 3219 3220 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3221 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3222 } 3223 3224 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3225 Type *Ty = Base->getType(); 3226 assert(Ty->isSized() && "must be sized"); 3227 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 3228 return isAligned(Base, Offset, Align, DL); 3229 } 3230 3231 /// Test if V is always a pointer to allocated and suitably aligned memory for 3232 /// a simple load or store. 3233 static bool isDereferenceableAndAlignedPointer( 3234 const Value *V, unsigned Align, const DataLayout &DL, 3235 const Instruction *CtxI, const DominatorTree *DT, 3236 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3237 // Note that it is not safe to speculate into a malloc'd region because 3238 // malloc may return null. 3239 3240 // These are obviously ok if aligned. 3241 if (isa<AllocaInst>(V)) 3242 return isAligned(V, Align, DL); 3243 3244 // It's not always safe to follow a bitcast, for example: 3245 // bitcast i8* (alloca i8) to i32* 3246 // would result in a 4-byte load from a 1-byte alloca. However, 3247 // if we're casting from a pointer from a type of larger size 3248 // to a type of smaller size (or the same size), and the alignment 3249 // is at least as large as for the resulting pointer type, then 3250 // we can look through the bitcast. 3251 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3252 Type *STy = BC->getSrcTy()->getPointerElementType(), 3253 *DTy = BC->getDestTy()->getPointerElementType(); 3254 if (STy->isSized() && DTy->isSized() && 3255 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3256 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3257 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3258 CtxI, DT, TLI, Visited); 3259 } 3260 3261 // Global variables which can't collapse to null are ok. 3262 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3263 if (!GV->hasExternalWeakLinkage()) 3264 return isAligned(V, Align, DL); 3265 3266 // byval arguments are okay. 3267 if (const Argument *A = dyn_cast<Argument>(V)) 3268 if (A->hasByValAttr()) 3269 return isAligned(V, Align, DL); 3270 3271 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3272 return isAligned(V, Align, DL); 3273 3274 // For GEPs, determine if the indexing lands within the allocated object. 3275 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3276 Type *Ty = GEP->getResultElementType(); 3277 const Value *Base = GEP->getPointerOperand(); 3278 3279 // Conservatively require that the base pointer be fully dereferenceable 3280 // and aligned. 3281 if (!Visited.insert(Base).second) 3282 return false; 3283 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3284 Visited)) 3285 return false; 3286 3287 APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 3288 if (!GEP->accumulateConstantOffset(DL, Offset)) 3289 return false; 3290 3291 // Check if the load is within the bounds of the underlying object 3292 // and offset is aligned. 3293 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3294 Type *BaseType = GEP->getSourceElementType(); 3295 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3296 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3297 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3298 } 3299 3300 // For gc.relocate, look through relocations 3301 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 3302 return isDereferenceableAndAlignedPointer( 3303 RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3304 3305 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3306 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3307 CtxI, DT, TLI, Visited); 3308 3309 // If we don't know, assume the worst. 3310 return false; 3311 } 3312 3313 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3314 const DataLayout &DL, 3315 const Instruction *CtxI, 3316 const DominatorTree *DT, 3317 const TargetLibraryInfo *TLI) { 3318 // When dereferenceability information is provided by a dereferenceable 3319 // attribute, we know exactly how many bytes are dereferenceable. If we can 3320 // determine the exact offset to the attributed variable, we can use that 3321 // information here. 3322 Type *VTy = V->getType(); 3323 Type *Ty = VTy->getPointerElementType(); 3324 3325 // Require ABI alignment for loads without alignment specification 3326 if (Align == 0) 3327 Align = DL.getABITypeAlignment(Ty); 3328 3329 if (Ty->isSized()) { 3330 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3331 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3332 3333 if (Offset.isNonNegative()) 3334 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3335 isAligned(BV, Offset, Align, DL)) 3336 return true; 3337 } 3338 3339 SmallPtrSet<const Value *, 32> Visited; 3340 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3341 Visited); 3342 } 3343 3344 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3345 const Instruction *CtxI, 3346 const DominatorTree *DT, 3347 const TargetLibraryInfo *TLI) { 3348 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3349 } 3350 3351 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3352 const Instruction *CtxI, 3353 const DominatorTree *DT, 3354 const TargetLibraryInfo *TLI) { 3355 const Operator *Inst = dyn_cast<Operator>(V); 3356 if (!Inst) 3357 return false; 3358 3359 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3360 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3361 if (C->canTrap()) 3362 return false; 3363 3364 switch (Inst->getOpcode()) { 3365 default: 3366 return true; 3367 case Instruction::UDiv: 3368 case Instruction::URem: { 3369 // x / y is undefined if y == 0. 3370 const APInt *V; 3371 if (match(Inst->getOperand(1), m_APInt(V))) 3372 return *V != 0; 3373 return false; 3374 } 3375 case Instruction::SDiv: 3376 case Instruction::SRem: { 3377 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3378 const APInt *Numerator, *Denominator; 3379 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3380 return false; 3381 // We cannot hoist this division if the denominator is 0. 3382 if (*Denominator == 0) 3383 return false; 3384 // It's safe to hoist if the denominator is not 0 or -1. 3385 if (*Denominator != -1) 3386 return true; 3387 // At this point we know that the denominator is -1. It is safe to hoist as 3388 // long we know that the numerator is not INT_MIN. 3389 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3390 return !Numerator->isMinSignedValue(); 3391 // The numerator *might* be MinSignedValue. 3392 return false; 3393 } 3394 case Instruction::Load: { 3395 const LoadInst *LI = cast<LoadInst>(Inst); 3396 if (!LI->isUnordered() || 3397 // Speculative load may create a race that did not exist in the source. 3398 LI->getParent()->getParent()->hasFnAttribute( 3399 Attribute::SanitizeThread) || 3400 // Speculative load may load data from dirty regions. 3401 LI->getParent()->getParent()->hasFnAttribute( 3402 Attribute::SanitizeAddress)) 3403 return false; 3404 const DataLayout &DL = LI->getModule()->getDataLayout(); 3405 return isDereferenceableAndAlignedPointer( 3406 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3407 } 3408 case Instruction::Call: { 3409 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3410 switch (II->getIntrinsicID()) { 3411 // These synthetic intrinsics have no side-effects and just mark 3412 // information about their operands. 3413 // FIXME: There are other no-op synthetic instructions that potentially 3414 // should be considered at least *safe* to speculate... 3415 case Intrinsic::dbg_declare: 3416 case Intrinsic::dbg_value: 3417 return true; 3418 3419 case Intrinsic::bswap: 3420 case Intrinsic::ctlz: 3421 case Intrinsic::ctpop: 3422 case Intrinsic::cttz: 3423 case Intrinsic::objectsize: 3424 case Intrinsic::sadd_with_overflow: 3425 case Intrinsic::smul_with_overflow: 3426 case Intrinsic::ssub_with_overflow: 3427 case Intrinsic::uadd_with_overflow: 3428 case Intrinsic::umul_with_overflow: 3429 case Intrinsic::usub_with_overflow: 3430 return true; 3431 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3432 // errno like libm sqrt would. 3433 case Intrinsic::sqrt: 3434 case Intrinsic::fma: 3435 case Intrinsic::fmuladd: 3436 case Intrinsic::fabs: 3437 case Intrinsic::minnum: 3438 case Intrinsic::maxnum: 3439 return true; 3440 // TODO: some fp intrinsics are marked as having the same error handling 3441 // as libm. They're safe to speculate when they won't error. 3442 // TODO: are convert_{from,to}_fp16 safe? 3443 // TODO: can we list target-specific intrinsics here? 3444 default: break; 3445 } 3446 } 3447 return false; // The called function could have undefined behavior or 3448 // side-effects, even if marked readnone nounwind. 3449 } 3450 case Instruction::VAArg: 3451 case Instruction::Alloca: 3452 case Instruction::Invoke: 3453 case Instruction::PHI: 3454 case Instruction::Store: 3455 case Instruction::Ret: 3456 case Instruction::Br: 3457 case Instruction::IndirectBr: 3458 case Instruction::Switch: 3459 case Instruction::Unreachable: 3460 case Instruction::Fence: 3461 case Instruction::AtomicRMW: 3462 case Instruction::AtomicCmpXchg: 3463 case Instruction::LandingPad: 3464 case Instruction::Resume: 3465 case Instruction::CatchSwitch: 3466 case Instruction::CatchPad: 3467 case Instruction::CatchRet: 3468 case Instruction::CleanupPad: 3469 case Instruction::CleanupRet: 3470 return false; // Misc instructions which have effects 3471 } 3472 } 3473 3474 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3475 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3476 } 3477 3478 /// Return true if we know that the specified value is never null. 3479 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3480 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3481 3482 // Alloca never returns null, malloc might. 3483 if (isa<AllocaInst>(V)) return true; 3484 3485 // A byval, inalloca, or nonnull argument is never null. 3486 if (const Argument *A = dyn_cast<Argument>(V)) 3487 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3488 3489 // A global variable in address space 0 is non null unless extern weak. 3490 // Other address spaces may have null as a valid address for a global, 3491 // so we can't assume anything. 3492 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3493 return !GV->hasExternalWeakLinkage() && 3494 GV->getType()->getAddressSpace() == 0; 3495 3496 // A Load tagged w/nonnull metadata is never null. 3497 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3498 return LI->getMetadata(LLVMContext::MD_nonnull); 3499 3500 if (auto CS = ImmutableCallSite(V)) 3501 if (CS.isReturnNonNull()) 3502 return true; 3503 3504 return false; 3505 } 3506 3507 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3508 const Instruction *CtxI, 3509 const DominatorTree *DT) { 3510 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3511 3512 unsigned NumUsesExplored = 0; 3513 for (auto U : V->users()) { 3514 // Avoid massive lists 3515 if (NumUsesExplored >= DomConditionsMaxUses) 3516 break; 3517 NumUsesExplored++; 3518 // Consider only compare instructions uniquely controlling a branch 3519 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3520 if (!Cmp) 3521 continue; 3522 3523 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3524 continue; 3525 3526 for (auto *CmpU : Cmp->users()) { 3527 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3528 if (!BI) 3529 continue; 3530 3531 assert(BI->isConditional() && "uses a comparison!"); 3532 3533 BasicBlock *NonNullSuccessor = nullptr; 3534 CmpInst::Predicate Pred; 3535 3536 if (match(const_cast<ICmpInst*>(Cmp), 3537 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3538 if (Pred == ICmpInst::ICMP_EQ) 3539 NonNullSuccessor = BI->getSuccessor(1); 3540 else if (Pred == ICmpInst::ICMP_NE) 3541 NonNullSuccessor = BI->getSuccessor(0); 3542 } 3543 3544 if (NonNullSuccessor) { 3545 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3546 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3547 return true; 3548 } 3549 } 3550 } 3551 3552 return false; 3553 } 3554 3555 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3556 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3557 if (isKnownNonNull(V, TLI)) 3558 return true; 3559 3560 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3561 } 3562 3563 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3564 const DataLayout &DL, 3565 AssumptionCache *AC, 3566 const Instruction *CxtI, 3567 const DominatorTree *DT) { 3568 // Multiplying n * m significant bits yields a result of n + m significant 3569 // bits. If the total number of significant bits does not exceed the 3570 // result bit width (minus 1), there is no overflow. 3571 // This means if we have enough leading zero bits in the operands 3572 // we can guarantee that the result does not overflow. 3573 // Ref: "Hacker's Delight" by Henry Warren 3574 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3575 APInt LHSKnownZero(BitWidth, 0); 3576 APInt LHSKnownOne(BitWidth, 0); 3577 APInt RHSKnownZero(BitWidth, 0); 3578 APInt RHSKnownOne(BitWidth, 0); 3579 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3580 DT); 3581 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3582 DT); 3583 // Note that underestimating the number of zero bits gives a more 3584 // conservative answer. 3585 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3586 RHSKnownZero.countLeadingOnes(); 3587 // First handle the easy case: if we have enough zero bits there's 3588 // definitely no overflow. 3589 if (ZeroBits >= BitWidth) 3590 return OverflowResult::NeverOverflows; 3591 3592 // Get the largest possible values for each operand. 3593 APInt LHSMax = ~LHSKnownZero; 3594 APInt RHSMax = ~RHSKnownZero; 3595 3596 // We know the multiply operation doesn't overflow if the maximum values for 3597 // each operand will not overflow after we multiply them together. 3598 bool MaxOverflow; 3599 LHSMax.umul_ov(RHSMax, MaxOverflow); 3600 if (!MaxOverflow) 3601 return OverflowResult::NeverOverflows; 3602 3603 // We know it always overflows if multiplying the smallest possible values for 3604 // the operands also results in overflow. 3605 bool MinOverflow; 3606 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3607 if (MinOverflow) 3608 return OverflowResult::AlwaysOverflows; 3609 3610 return OverflowResult::MayOverflow; 3611 } 3612 3613 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3614 const DataLayout &DL, 3615 AssumptionCache *AC, 3616 const Instruction *CxtI, 3617 const DominatorTree *DT) { 3618 bool LHSKnownNonNegative, LHSKnownNegative; 3619 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3620 AC, CxtI, DT); 3621 if (LHSKnownNonNegative || LHSKnownNegative) { 3622 bool RHSKnownNonNegative, RHSKnownNegative; 3623 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3624 AC, CxtI, DT); 3625 3626 if (LHSKnownNegative && RHSKnownNegative) { 3627 // The sign bit is set in both cases: this MUST overflow. 3628 // Create a simple add instruction, and insert it into the struct. 3629 return OverflowResult::AlwaysOverflows; 3630 } 3631 3632 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3633 // The sign bit is clear in both cases: this CANNOT overflow. 3634 // Create a simple add instruction, and insert it into the struct. 3635 return OverflowResult::NeverOverflows; 3636 } 3637 } 3638 3639 return OverflowResult::MayOverflow; 3640 } 3641 3642 static OverflowResult computeOverflowForSignedAdd( 3643 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3644 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3645 if (Add && Add->hasNoSignedWrap()) { 3646 return OverflowResult::NeverOverflows; 3647 } 3648 3649 bool LHSKnownNonNegative, LHSKnownNegative; 3650 bool RHSKnownNonNegative, RHSKnownNegative; 3651 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3652 AC, CxtI, DT); 3653 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3654 AC, CxtI, DT); 3655 3656 if ((LHSKnownNonNegative && RHSKnownNegative) || 3657 (LHSKnownNegative && RHSKnownNonNegative)) { 3658 // The sign bits are opposite: this CANNOT overflow. 3659 return OverflowResult::NeverOverflows; 3660 } 3661 3662 // The remaining code needs Add to be available. Early returns if not so. 3663 if (!Add) 3664 return OverflowResult::MayOverflow; 3665 3666 // If the sign of Add is the same as at least one of the operands, this add 3667 // CANNOT overflow. This is particularly useful when the sum is 3668 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3669 // operands. 3670 bool LHSOrRHSKnownNonNegative = 3671 (LHSKnownNonNegative || RHSKnownNonNegative); 3672 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3673 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3674 bool AddKnownNonNegative, AddKnownNegative; 3675 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3676 /*Depth=*/0, AC, CxtI, DT); 3677 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3678 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3679 return OverflowResult::NeverOverflows; 3680 } 3681 } 3682 3683 return OverflowResult::MayOverflow; 3684 } 3685 3686 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3687 const DataLayout &DL, 3688 AssumptionCache *AC, 3689 const Instruction *CxtI, 3690 const DominatorTree *DT) { 3691 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3692 Add, DL, AC, CxtI, DT); 3693 } 3694 3695 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3696 const DataLayout &DL, 3697 AssumptionCache *AC, 3698 const Instruction *CxtI, 3699 const DominatorTree *DT) { 3700 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3701 } 3702 3703 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3704 // FIXME: This conservative implementation can be relaxed. E.g. most 3705 // atomic operations are guaranteed to terminate on most platforms 3706 // and most functions terminate. 3707 3708 return !I->isAtomic() && // atomics may never succeed on some platforms 3709 !isa<CallInst>(I) && // could throw and might not terminate 3710 !isa<InvokeInst>(I) && // might not terminate and could throw to 3711 // non-successor (see bug 24185 for details). 3712 !isa<ResumeInst>(I) && // has no successors 3713 !isa<ReturnInst>(I); // has no successors 3714 } 3715 3716 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3717 const Loop *L) { 3718 // The loop header is guaranteed to be executed for every iteration. 3719 // 3720 // FIXME: Relax this constraint to cover all basic blocks that are 3721 // guaranteed to be executed at every iteration. 3722 if (I->getParent() != L->getHeader()) return false; 3723 3724 for (const Instruction &LI : *L->getHeader()) { 3725 if (&LI == I) return true; 3726 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3727 } 3728 llvm_unreachable("Instruction not contained in its own parent basic block."); 3729 } 3730 3731 bool llvm::propagatesFullPoison(const Instruction *I) { 3732 switch (I->getOpcode()) { 3733 case Instruction::Add: 3734 case Instruction::Sub: 3735 case Instruction::Xor: 3736 case Instruction::Trunc: 3737 case Instruction::BitCast: 3738 case Instruction::AddrSpaceCast: 3739 // These operations all propagate poison unconditionally. Note that poison 3740 // is not any particular value, so xor or subtraction of poison with 3741 // itself still yields poison, not zero. 3742 return true; 3743 3744 case Instruction::AShr: 3745 case Instruction::SExt: 3746 // For these operations, one bit of the input is replicated across 3747 // multiple output bits. A replicated poison bit is still poison. 3748 return true; 3749 3750 case Instruction::Shl: { 3751 // Left shift *by* a poison value is poison. The number of 3752 // positions to shift is unsigned, so no negative values are 3753 // possible there. Left shift by zero places preserves poison. So 3754 // it only remains to consider left shift of poison by a positive 3755 // number of places. 3756 // 3757 // A left shift by a positive number of places leaves the lowest order bit 3758 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3759 // make the poison operand violate that flag, yielding a fresh full-poison 3760 // value. 3761 auto *OBO = cast<OverflowingBinaryOperator>(I); 3762 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3763 } 3764 3765 case Instruction::Mul: { 3766 // A multiplication by zero yields a non-poison zero result, so we need to 3767 // rule out zero as an operand. Conservatively, multiplication by a 3768 // non-zero constant is not multiplication by zero. 3769 // 3770 // Multiplication by a non-zero constant can leave some bits 3771 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3772 // order bit unpoisoned. So we need to consider that. 3773 // 3774 // Multiplication by 1 preserves poison. If the multiplication has a 3775 // no-wrap flag, then we can make the poison operand violate that flag 3776 // when multiplied by any integer other than 0 and 1. 3777 auto *OBO = cast<OverflowingBinaryOperator>(I); 3778 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3779 for (Value *V : OBO->operands()) { 3780 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3781 // A ConstantInt cannot yield poison, so we can assume that it is 3782 // the other operand that is poison. 3783 return !CI->isZero(); 3784 } 3785 } 3786 } 3787 return false; 3788 } 3789 3790 case Instruction::GetElementPtr: 3791 // A GEP implicitly represents a sequence of additions, subtractions, 3792 // truncations, sign extensions and multiplications. The multiplications 3793 // are by the non-zero sizes of some set of types, so we do not have to be 3794 // concerned with multiplication by zero. If the GEP is in-bounds, then 3795 // these operations are implicitly no-signed-wrap so poison is propagated 3796 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3797 return cast<GEPOperator>(I)->isInBounds(); 3798 3799 default: 3800 return false; 3801 } 3802 } 3803 3804 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3805 switch (I->getOpcode()) { 3806 case Instruction::Store: 3807 return cast<StoreInst>(I)->getPointerOperand(); 3808 3809 case Instruction::Load: 3810 return cast<LoadInst>(I)->getPointerOperand(); 3811 3812 case Instruction::AtomicCmpXchg: 3813 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3814 3815 case Instruction::AtomicRMW: 3816 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3817 3818 case Instruction::UDiv: 3819 case Instruction::SDiv: 3820 case Instruction::URem: 3821 case Instruction::SRem: 3822 return I->getOperand(1); 3823 3824 default: 3825 return nullptr; 3826 } 3827 } 3828 3829 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3830 // We currently only look for uses of poison values within the same basic 3831 // block, as that makes it easier to guarantee that the uses will be 3832 // executed given that PoisonI is executed. 3833 // 3834 // FIXME: Expand this to consider uses beyond the same basic block. To do 3835 // this, look out for the distinction between post-dominance and strong 3836 // post-dominance. 3837 const BasicBlock *BB = PoisonI->getParent(); 3838 3839 // Set of instructions that we have proved will yield poison if PoisonI 3840 // does. 3841 SmallSet<const Value *, 16> YieldsPoison; 3842 YieldsPoison.insert(PoisonI); 3843 3844 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3845 I != E; ++I) { 3846 if (&*I != PoisonI) { 3847 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3848 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3849 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3850 return false; 3851 } 3852 3853 // Mark poison that propagates from I through uses of I. 3854 if (YieldsPoison.count(&*I)) { 3855 for (const User *User : I->users()) { 3856 const Instruction *UserI = cast<Instruction>(User); 3857 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3858 YieldsPoison.insert(User); 3859 } 3860 } 3861 } 3862 return false; 3863 } 3864 3865 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3866 if (FMF.noNaNs()) 3867 return true; 3868 3869 if (auto *C = dyn_cast<ConstantFP>(V)) 3870 return !C->isNaN(); 3871 return false; 3872 } 3873 3874 static bool isKnownNonZero(Value *V) { 3875 if (auto *C = dyn_cast<ConstantFP>(V)) 3876 return !C->isZero(); 3877 return false; 3878 } 3879 3880 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3881 FastMathFlags FMF, 3882 Value *CmpLHS, Value *CmpRHS, 3883 Value *TrueVal, Value *FalseVal, 3884 Value *&LHS, Value *&RHS) { 3885 LHS = CmpLHS; 3886 RHS = CmpRHS; 3887 3888 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3889 // return inconsistent results between implementations. 3890 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3891 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3892 // Therefore we behave conservatively and only proceed if at least one of the 3893 // operands is known to not be zero, or if we don't care about signed zeroes. 3894 switch (Pred) { 3895 default: break; 3896 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3897 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3898 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3899 !isKnownNonZero(CmpRHS)) 3900 return {SPF_UNKNOWN, SPNB_NA, false}; 3901 } 3902 3903 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3904 bool Ordered = false; 3905 3906 // When given one NaN and one non-NaN input: 3907 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3908 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3909 // ordered comparison fails), which could be NaN or non-NaN. 3910 // so here we discover exactly what NaN behavior is required/accepted. 3911 if (CmpInst::isFPPredicate(Pred)) { 3912 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3913 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3914 3915 if (LHSSafe && RHSSafe) { 3916 // Both operands are known non-NaN. 3917 NaNBehavior = SPNB_RETURNS_ANY; 3918 } else if (CmpInst::isOrdered(Pred)) { 3919 // An ordered comparison will return false when given a NaN, so it 3920 // returns the RHS. 3921 Ordered = true; 3922 if (LHSSafe) 3923 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3924 NaNBehavior = SPNB_RETURNS_NAN; 3925 else if (RHSSafe) 3926 NaNBehavior = SPNB_RETURNS_OTHER; 3927 else 3928 // Completely unsafe. 3929 return {SPF_UNKNOWN, SPNB_NA, false}; 3930 } else { 3931 Ordered = false; 3932 // An unordered comparison will return true when given a NaN, so it 3933 // returns the LHS. 3934 if (LHSSafe) 3935 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3936 NaNBehavior = SPNB_RETURNS_OTHER; 3937 else if (RHSSafe) 3938 NaNBehavior = SPNB_RETURNS_NAN; 3939 else 3940 // Completely unsafe. 3941 return {SPF_UNKNOWN, SPNB_NA, false}; 3942 } 3943 } 3944 3945 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3946 std::swap(CmpLHS, CmpRHS); 3947 Pred = CmpInst::getSwappedPredicate(Pred); 3948 if (NaNBehavior == SPNB_RETURNS_NAN) 3949 NaNBehavior = SPNB_RETURNS_OTHER; 3950 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3951 NaNBehavior = SPNB_RETURNS_NAN; 3952 Ordered = !Ordered; 3953 } 3954 3955 // ([if]cmp X, Y) ? X : Y 3956 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3957 switch (Pred) { 3958 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3959 case ICmpInst::ICMP_UGT: 3960 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3961 case ICmpInst::ICMP_SGT: 3962 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3963 case ICmpInst::ICMP_ULT: 3964 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3965 case ICmpInst::ICMP_SLT: 3966 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3967 case FCmpInst::FCMP_UGT: 3968 case FCmpInst::FCMP_UGE: 3969 case FCmpInst::FCMP_OGT: 3970 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3971 case FCmpInst::FCMP_ULT: 3972 case FCmpInst::FCMP_ULE: 3973 case FCmpInst::FCMP_OLT: 3974 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3975 } 3976 } 3977 3978 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3979 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3980 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3981 3982 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3983 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3984 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3985 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3986 } 3987 3988 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3989 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3990 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3991 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3992 } 3993 } 3994 3995 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3996 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3997 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3998 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3999 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 4000 LHS = TrueVal; 4001 RHS = FalseVal; 4002 return {SPF_SMIN, SPNB_NA, false}; 4003 } 4004 } 4005 } 4006 4007 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 4008 4009 return {SPF_UNKNOWN, SPNB_NA, false}; 4010 } 4011 4012 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4013 Instruction::CastOps *CastOp) { 4014 CastInst *CI = dyn_cast<CastInst>(V1); 4015 Constant *C = dyn_cast<Constant>(V2); 4016 CastInst *CI2 = dyn_cast<CastInst>(V2); 4017 if (!CI) 4018 return nullptr; 4019 *CastOp = CI->getOpcode(); 4020 4021 if (CI2) { 4022 // If V1 and V2 are both the same cast from the same type, we can look 4023 // through V1. 4024 if (CI2->getOpcode() == CI->getOpcode() && 4025 CI2->getSrcTy() == CI->getSrcTy()) 4026 return CI2->getOperand(0); 4027 return nullptr; 4028 } else if (!C) { 4029 return nullptr; 4030 } 4031 4032 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 4033 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 4034 // This is only valid if the truncated value can be sign-extended 4035 // back to the original value. 4036 if (ConstantExpr::getSExt(T, C->getType()) == C) 4037 return T; 4038 return nullptr; 4039 } 4040 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 4041 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 4042 4043 if (isa<TruncInst>(CI)) 4044 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 4045 4046 if (isa<FPToUIInst>(CI)) 4047 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4048 4049 if (isa<FPToSIInst>(CI)) 4050 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4051 4052 if (isa<UIToFPInst>(CI)) 4053 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4054 4055 if (isa<SIToFPInst>(CI)) 4056 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4057 4058 if (isa<FPTruncInst>(CI)) 4059 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4060 4061 if (isa<FPExtInst>(CI)) 4062 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4063 4064 return nullptr; 4065 } 4066 4067 SelectPatternResult llvm::matchSelectPattern(Value *V, 4068 Value *&LHS, Value *&RHS, 4069 Instruction::CastOps *CastOp) { 4070 SelectInst *SI = dyn_cast<SelectInst>(V); 4071 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4072 4073 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4074 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4075 4076 CmpInst::Predicate Pred = CmpI->getPredicate(); 4077 Value *CmpLHS = CmpI->getOperand(0); 4078 Value *CmpRHS = CmpI->getOperand(1); 4079 Value *TrueVal = SI->getTrueValue(); 4080 Value *FalseVal = SI->getFalseValue(); 4081 FastMathFlags FMF; 4082 if (isa<FPMathOperator>(CmpI)) 4083 FMF = CmpI->getFastMathFlags(); 4084 4085 // Bail out early. 4086 if (CmpI->isEquality()) 4087 return {SPF_UNKNOWN, SPNB_NA, false}; 4088 4089 // Deal with type mismatches. 4090 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4091 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4092 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4093 cast<CastInst>(TrueVal)->getOperand(0), C, 4094 LHS, RHS); 4095 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4096 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4097 C, cast<CastInst>(FalseVal)->getOperand(0), 4098 LHS, RHS); 4099 } 4100 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4101 LHS, RHS); 4102 } 4103 4104 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 4105 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4106 assert(NumRanges >= 1 && "Must have at least one range!"); 4107 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4108 4109 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4110 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4111 4112 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4113 4114 for (unsigned i = 1; i < NumRanges; ++i) { 4115 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4116 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4117 4118 // Note: unionWith will potentially create a range that contains values not 4119 // contained in any of the original N ranges. 4120 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4121 } 4122 4123 return CR; 4124 } 4125 4126 /// Return true if "icmp Pred LHS RHS" is always true. 4127 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 4128 const DataLayout &DL, unsigned Depth, 4129 AssumptionCache *AC, const Instruction *CxtI, 4130 const DominatorTree *DT) { 4131 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4132 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4133 return true; 4134 4135 switch (Pred) { 4136 default: 4137 return false; 4138 4139 case CmpInst::ICMP_SLE: { 4140 const APInt *C; 4141 4142 // LHS s<= LHS +_{nsw} C if C >= 0 4143 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4144 return !C->isNegative(); 4145 return false; 4146 } 4147 4148 case CmpInst::ICMP_ULE: { 4149 const APInt *C; 4150 4151 // LHS u<= LHS +_{nuw} C for any C 4152 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4153 return true; 4154 4155 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4156 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X, 4157 const APInt *&CA, const APInt *&CB) { 4158 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4159 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4160 return true; 4161 4162 // If X & C == 0 then (X | C) == X +_{nuw} C 4163 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4164 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4165 unsigned BitWidth = CA->getBitWidth(); 4166 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4167 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4168 4169 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4170 return true; 4171 } 4172 4173 return false; 4174 }; 4175 4176 Value *X; 4177 const APInt *CLHS, *CRHS; 4178 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4179 return CLHS->ule(*CRHS); 4180 4181 return false; 4182 } 4183 } 4184 } 4185 4186 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4187 /// ALHS ARHS" is true. 4188 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, 4189 Value *ARHS, Value *BLHS, Value *BRHS, 4190 const DataLayout &DL, unsigned Depth, 4191 AssumptionCache *AC, const Instruction *CxtI, 4192 const DominatorTree *DT) { 4193 switch (Pred) { 4194 default: 4195 return false; 4196 4197 case CmpInst::ICMP_SLT: 4198 case CmpInst::ICMP_SLE: 4199 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4200 DT) && 4201 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, 4202 DT); 4203 4204 case CmpInst::ICMP_ULT: 4205 case CmpInst::ICMP_ULE: 4206 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4207 DT) && 4208 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, 4209 DT); 4210 } 4211 } 4212 4213 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, 4214 unsigned Depth, AssumptionCache *AC, 4215 const Instruction *CxtI, 4216 const DominatorTree *DT) { 4217 assert(LHS->getType() == RHS->getType() && "mismatched type"); 4218 Type *OpTy = LHS->getType(); 4219 assert(OpTy->getScalarType()->isIntegerTy(1)); 4220 4221 // LHS ==> RHS by definition 4222 if (LHS == RHS) return true; 4223 4224 if (OpTy->isVectorTy()) 4225 // TODO: extending the code below to handle vectors 4226 return false; 4227 assert(OpTy->isIntegerTy(1) && "implied by above"); 4228 4229 ICmpInst::Predicate APred, BPred; 4230 Value *ALHS, *ARHS; 4231 Value *BLHS, *BRHS; 4232 4233 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4234 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4235 return false; 4236 4237 if (APred == BPred) 4238 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4239 CxtI, DT); 4240 4241 return false; 4242 } 4243