1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known and on return 982 /// contains the known bit of the shift value source. KF is an 983 /// operator-specific function that, given the known-bits and a shift amount, 984 /// compute the implied known-bits of the shift operator's result respectively 985 /// for that shift amount. The results from calling KF are conservatively 986 /// combined for all permitted shift amounts. 987 static void computeKnownBitsFromShiftOperator( 988 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 989 KnownBits &Known2, unsigned Depth, const Query &Q, 990 function_ref<KnownBits(const KnownBits &, unsigned)> KF) { 991 unsigned BitWidth = Known.getBitWidth(); 992 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 993 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 994 995 if (Known.isConstant()) { 996 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 997 Known = KF(Known2, ShiftAmt); 998 999 // If the known bits conflict, this must be an overflowing left shift, so 1000 // the shift result is poison. We can return anything we want. Choose 0 for 1001 // the best folding opportunity. 1002 if (Known.hasConflict()) 1003 Known.setAllZero(); 1004 1005 return; 1006 } 1007 1008 // If the shift amount could be greater than or equal to the bit-width of the 1009 // LHS, the value could be poison, but bail out because the check below is 1010 // expensive. 1011 // TODO: Should we just carry on? 1012 if (Known.getMaxValue().uge(BitWidth)) { 1013 Known.resetAll(); 1014 return; 1015 } 1016 1017 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1018 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1019 // limit value (which implies all bits are known). 1020 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1021 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1022 1023 // It would be more-clearly correct to use the two temporaries for this 1024 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1025 Known.resetAll(); 1026 1027 // If we know the shifter operand is nonzero, we can sometimes infer more 1028 // known bits. However this is expensive to compute, so be lazy about it and 1029 // only compute it when absolutely necessary. 1030 Optional<bool> ShifterOperandIsNonZero; 1031 1032 // Early exit if we can't constrain any well-defined shift amount. 1033 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1034 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1035 ShifterOperandIsNonZero = 1036 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1037 if (!*ShifterOperandIsNonZero) 1038 return; 1039 } 1040 1041 Known.Zero.setAllBits(); 1042 Known.One.setAllBits(); 1043 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1044 // Combine the shifted known input bits only for those shift amounts 1045 // compatible with its known constraints. 1046 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1047 continue; 1048 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1049 continue; 1050 // If we know the shifter is nonzero, we may be able to infer more known 1051 // bits. This check is sunk down as far as possible to avoid the expensive 1052 // call to isKnownNonZero if the cheaper checks above fail. 1053 if (ShiftAmt == 0) { 1054 if (!ShifterOperandIsNonZero.hasValue()) 1055 ShifterOperandIsNonZero = 1056 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1057 if (*ShifterOperandIsNonZero) 1058 continue; 1059 } 1060 1061 Known = KnownBits::commonBits(Known, KF(Known2, ShiftAmt)); 1062 } 1063 1064 // If the known bits conflict, the result is poison. Return a 0 and hope the 1065 // caller can further optimize that. 1066 if (Known.hasConflict()) 1067 Known.setAllZero(); 1068 } 1069 1070 static void computeKnownBitsFromOperator(const Operator *I, 1071 const APInt &DemandedElts, 1072 KnownBits &Known, unsigned Depth, 1073 const Query &Q) { 1074 unsigned BitWidth = Known.getBitWidth(); 1075 1076 KnownBits Known2(BitWidth); 1077 switch (I->getOpcode()) { 1078 default: break; 1079 case Instruction::Load: 1080 if (MDNode *MD = 1081 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1082 computeKnownBitsFromRangeMetadata(*MD, Known); 1083 break; 1084 case Instruction::And: { 1085 // If either the LHS or the RHS are Zero, the result is zero. 1086 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1087 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1088 1089 Known &= Known2; 1090 1091 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1092 // here we handle the more general case of adding any odd number by 1093 // matching the form add(x, add(x, y)) where y is odd. 1094 // TODO: This could be generalized to clearing any bit set in y where the 1095 // following bit is known to be unset in y. 1096 Value *X = nullptr, *Y = nullptr; 1097 if (!Known.Zero[0] && !Known.One[0] && 1098 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1099 Known2.resetAll(); 1100 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1101 if (Known2.countMinTrailingOnes() > 0) 1102 Known.Zero.setBit(0); 1103 } 1104 break; 1105 } 1106 case Instruction::Or: 1107 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1108 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1109 1110 Known |= Known2; 1111 break; 1112 case Instruction::Xor: 1113 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1114 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1115 1116 Known ^= Known2; 1117 break; 1118 case Instruction::Mul: { 1119 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1120 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1121 Known, Known2, Depth, Q); 1122 break; 1123 } 1124 case Instruction::UDiv: { 1125 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1126 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1127 Known = KnownBits::udiv(Known, Known2); 1128 break; 1129 } 1130 case Instruction::Select: { 1131 const Value *LHS = nullptr, *RHS = nullptr; 1132 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1133 if (SelectPatternResult::isMinOrMax(SPF)) { 1134 computeKnownBits(RHS, Known, Depth + 1, Q); 1135 computeKnownBits(LHS, Known2, Depth + 1, Q); 1136 switch (SPF) { 1137 default: 1138 llvm_unreachable("Unhandled select pattern flavor!"); 1139 case SPF_SMAX: 1140 Known = KnownBits::smax(Known, Known2); 1141 break; 1142 case SPF_SMIN: 1143 Known = KnownBits::smin(Known, Known2); 1144 break; 1145 case SPF_UMAX: 1146 Known = KnownBits::umax(Known, Known2); 1147 break; 1148 case SPF_UMIN: 1149 Known = KnownBits::umin(Known, Known2); 1150 break; 1151 } 1152 break; 1153 } 1154 1155 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1157 1158 // Only known if known in both the LHS and RHS. 1159 Known = KnownBits::commonBits(Known, Known2); 1160 1161 if (SPF == SPF_ABS) { 1162 // RHS from matchSelectPattern returns the negation part of abs pattern. 1163 // If the negate has an NSW flag we can assume the sign bit of the result 1164 // will be 0 because that makes abs(INT_MIN) undefined. 1165 if (match(RHS, m_Neg(m_Specific(LHS))) && 1166 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1167 Known.Zero.setSignBit(); 1168 } 1169 1170 break; 1171 } 1172 case Instruction::FPTrunc: 1173 case Instruction::FPExt: 1174 case Instruction::FPToUI: 1175 case Instruction::FPToSI: 1176 case Instruction::SIToFP: 1177 case Instruction::UIToFP: 1178 break; // Can't work with floating point. 1179 case Instruction::PtrToInt: 1180 case Instruction::IntToPtr: 1181 // Fall through and handle them the same as zext/trunc. 1182 LLVM_FALLTHROUGH; 1183 case Instruction::ZExt: 1184 case Instruction::Trunc: { 1185 Type *SrcTy = I->getOperand(0)->getType(); 1186 1187 unsigned SrcBitWidth; 1188 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1189 // which fall through here. 1190 Type *ScalarTy = SrcTy->getScalarType(); 1191 SrcBitWidth = ScalarTy->isPointerTy() ? 1192 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1193 Q.DL.getTypeSizeInBits(ScalarTy); 1194 1195 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1196 Known = Known.anyextOrTrunc(SrcBitWidth); 1197 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1198 Known = Known.zextOrTrunc(BitWidth); 1199 break; 1200 } 1201 case Instruction::BitCast: { 1202 Type *SrcTy = I->getOperand(0)->getType(); 1203 if (SrcTy->isIntOrPtrTy() && 1204 // TODO: For now, not handling conversions like: 1205 // (bitcast i64 %x to <2 x i32>) 1206 !I->getType()->isVectorTy()) { 1207 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1208 break; 1209 } 1210 break; 1211 } 1212 case Instruction::SExt: { 1213 // Compute the bits in the result that are not present in the input. 1214 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1215 1216 Known = Known.trunc(SrcBitWidth); 1217 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1218 // If the sign bit of the input is known set or clear, then we know the 1219 // top bits of the result. 1220 Known = Known.sext(BitWidth); 1221 break; 1222 } 1223 case Instruction::Shl: { 1224 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1225 auto KF = [NSW](const KnownBits &KnownShiftVal, unsigned ShiftAmt) { 1226 KnownBits KnownShiftAmt = KnownBits::makeConstant(APInt(32, ShiftAmt)); 1227 KnownBits Result = KnownBits::shl(KnownShiftVal, KnownShiftAmt); 1228 // If this shift has "nsw" keyword, then the result is either a poison 1229 // value or has the same sign bit as the first operand. 1230 if (NSW) { 1231 if (KnownShiftVal.Zero.isSignBitSet()) 1232 Result.Zero.setSignBit(); 1233 if (KnownShiftVal.One.isSignBitSet()) 1234 Result.One.setSignBit(); 1235 } 1236 return Result; 1237 }; 1238 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1239 KF); 1240 break; 1241 } 1242 case Instruction::LShr: { 1243 auto KF = [](const KnownBits &KnownShiftVal, unsigned ShiftAmt) { 1244 KnownBits KnownShiftAmt = KnownBits::makeConstant(APInt(32, ShiftAmt)); 1245 return KnownBits::lshr(KnownShiftVal, KnownShiftAmt); 1246 }; 1247 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1248 KF); 1249 break; 1250 } 1251 case Instruction::AShr: { 1252 auto KF = [](const KnownBits &KnownShiftVal, unsigned ShiftAmt) { 1253 KnownBits KnownShiftAmt = KnownBits::makeConstant(APInt(32, ShiftAmt)); 1254 return KnownBits::ashr(KnownShiftVal, KnownShiftAmt); 1255 }; 1256 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1257 KF); 1258 break; 1259 } 1260 case Instruction::Sub: { 1261 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1262 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1263 DemandedElts, Known, Known2, Depth, Q); 1264 break; 1265 } 1266 case Instruction::Add: { 1267 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1268 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1269 DemandedElts, Known, Known2, Depth, Q); 1270 break; 1271 } 1272 case Instruction::SRem: 1273 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1274 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1275 Known = KnownBits::srem(Known, Known2); 1276 break; 1277 1278 case Instruction::URem: 1279 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1280 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1281 Known = KnownBits::urem(Known, Known2); 1282 break; 1283 case Instruction::Alloca: 1284 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1285 break; 1286 case Instruction::GetElementPtr: { 1287 // Analyze all of the subscripts of this getelementptr instruction 1288 // to determine if we can prove known low zero bits. 1289 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1290 // Accumulate the constant indices in a separate variable 1291 // to minimize the number of calls to computeForAddSub. 1292 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1293 1294 gep_type_iterator GTI = gep_type_begin(I); 1295 // If the inbounds keyword is not present, the offsets are added to the 1296 // base address with silently-wrapping two’s complement arithmetic. 1297 bool IsInBounds = cast<GEPOperator>(I)->isInBounds(); 1298 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1299 // TrailZ can only become smaller, short-circuit if we hit zero. 1300 if (Known.isUnknown()) 1301 break; 1302 1303 Value *Index = I->getOperand(i); 1304 1305 // Handle case when index is zero. 1306 Constant *CIndex = dyn_cast<Constant>(Index); 1307 if (CIndex && CIndex->isZeroValue()) 1308 continue; 1309 1310 if (StructType *STy = GTI.getStructTypeOrNull()) { 1311 // Handle struct member offset arithmetic. 1312 1313 assert(CIndex && 1314 "Access to structure field must be known at compile time"); 1315 1316 if (CIndex->getType()->isVectorTy()) 1317 Index = CIndex->getSplatValue(); 1318 1319 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1320 const StructLayout *SL = Q.DL.getStructLayout(STy); 1321 uint64_t Offset = SL->getElementOffset(Idx); 1322 AccConstIndices += Offset; 1323 continue; 1324 } 1325 1326 // Handle array index arithmetic. 1327 Type *IndexedTy = GTI.getIndexedType(); 1328 if (!IndexedTy->isSized()) { 1329 Known.resetAll(); 1330 break; 1331 } 1332 1333 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1334 KnownBits IndexBits(IndexBitWidth); 1335 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1336 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1337 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1338 KnownBits ScalingFactor(IndexBitWidth); 1339 // Multiply by current sizeof type. 1340 // &A[i] == A + i * sizeof(*A[i]). 1341 if (IndexTypeSize.isScalable()) { 1342 // For scalable types the only thing we know about sizeof is 1343 // that this is a multiple of the minimum size. 1344 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1345 } else if (IndexBits.isConstant()) { 1346 APInt IndexConst = IndexBits.getConstant(); 1347 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1348 IndexConst *= ScalingFactor; 1349 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1350 continue; 1351 } else { 1352 ScalingFactor.Zero = ~TypeSizeInBytes; 1353 ScalingFactor.One = TypeSizeInBytes; 1354 } 1355 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1356 1357 // If the offsets have a different width from the pointer, according 1358 // to the language reference we need to sign-extend or truncate them 1359 // to the width of the pointer. 1360 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1361 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, 1364 /*NSW=*/IsInBounds, Known, IndexBits); 1365 } 1366 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1367 KnownBits Index(BitWidth); 1368 Index.Zero = ~AccConstIndices; 1369 Index.One = AccConstIndices; 1370 Known = KnownBits::computeForAddSub( 1371 /*Add=*/true, 1372 /*NSW=*/IsInBounds, Known, Index); 1373 } 1374 break; 1375 } 1376 case Instruction::PHI: { 1377 const PHINode *P = cast<PHINode>(I); 1378 // Handle the case of a simple two-predecessor recurrence PHI. 1379 // There's a lot more that could theoretically be done here, but 1380 // this is sufficient to catch some interesting cases. 1381 if (P->getNumIncomingValues() == 2) { 1382 for (unsigned i = 0; i != 2; ++i) { 1383 Value *L = P->getIncomingValue(i); 1384 Value *R = P->getIncomingValue(!i); 1385 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1386 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1387 Operator *LU = dyn_cast<Operator>(L); 1388 if (!LU) 1389 continue; 1390 unsigned Opcode = LU->getOpcode(); 1391 // Check for operations that have the property that if 1392 // both their operands have low zero bits, the result 1393 // will have low zero bits. 1394 if (Opcode == Instruction::Add || 1395 Opcode == Instruction::Sub || 1396 Opcode == Instruction::And || 1397 Opcode == Instruction::Or || 1398 Opcode == Instruction::Mul) { 1399 Value *LL = LU->getOperand(0); 1400 Value *LR = LU->getOperand(1); 1401 // Find a recurrence. 1402 if (LL == I) 1403 L = LR; 1404 else if (LR == I) 1405 L = LL; 1406 else 1407 continue; // Check for recurrence with L and R flipped. 1408 1409 // Change the context instruction to the "edge" that flows into the 1410 // phi. This is important because that is where the value is actually 1411 // "evaluated" even though it is used later somewhere else. (see also 1412 // D69571). 1413 Query RecQ = Q; 1414 1415 // Ok, we have a PHI of the form L op= R. Check for low 1416 // zero bits. 1417 RecQ.CxtI = RInst; 1418 computeKnownBits(R, Known2, Depth + 1, RecQ); 1419 1420 // We need to take the minimum number of known bits 1421 KnownBits Known3(BitWidth); 1422 RecQ.CxtI = LInst; 1423 computeKnownBits(L, Known3, Depth + 1, RecQ); 1424 1425 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1426 Known3.countMinTrailingZeros())); 1427 1428 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1429 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1430 // If initial value of recurrence is nonnegative, and we are adding 1431 // a nonnegative number with nsw, the result can only be nonnegative 1432 // or poison value regardless of the number of times we execute the 1433 // add in phi recurrence. If initial value is negative and we are 1434 // adding a negative number with nsw, the result can only be 1435 // negative or poison value. Similar arguments apply to sub and mul. 1436 // 1437 // (add non-negative, non-negative) --> non-negative 1438 // (add negative, negative) --> negative 1439 if (Opcode == Instruction::Add) { 1440 if (Known2.isNonNegative() && Known3.isNonNegative()) 1441 Known.makeNonNegative(); 1442 else if (Known2.isNegative() && Known3.isNegative()) 1443 Known.makeNegative(); 1444 } 1445 1446 // (sub nsw non-negative, negative) --> non-negative 1447 // (sub nsw negative, non-negative) --> negative 1448 else if (Opcode == Instruction::Sub && LL == I) { 1449 if (Known2.isNonNegative() && Known3.isNegative()) 1450 Known.makeNonNegative(); 1451 else if (Known2.isNegative() && Known3.isNonNegative()) 1452 Known.makeNegative(); 1453 } 1454 1455 // (mul nsw non-negative, non-negative) --> non-negative 1456 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1457 Known3.isNonNegative()) 1458 Known.makeNonNegative(); 1459 } 1460 1461 break; 1462 } 1463 } 1464 } 1465 1466 // Unreachable blocks may have zero-operand PHI nodes. 1467 if (P->getNumIncomingValues() == 0) 1468 break; 1469 1470 // Otherwise take the unions of the known bit sets of the operands, 1471 // taking conservative care to avoid excessive recursion. 1472 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1473 // Skip if every incoming value references to ourself. 1474 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1475 break; 1476 1477 Known.Zero.setAllBits(); 1478 Known.One.setAllBits(); 1479 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1480 Value *IncValue = P->getIncomingValue(u); 1481 // Skip direct self references. 1482 if (IncValue == P) continue; 1483 1484 // Change the context instruction to the "edge" that flows into the 1485 // phi. This is important because that is where the value is actually 1486 // "evaluated" even though it is used later somewhere else. (see also 1487 // D69571). 1488 Query RecQ = Q; 1489 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1490 1491 Known2 = KnownBits(BitWidth); 1492 // Recurse, but cap the recursion to one level, because we don't 1493 // want to waste time spinning around in loops. 1494 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1495 Known = KnownBits::commonBits(Known, Known2); 1496 // If all bits have been ruled out, there's no need to check 1497 // more operands. 1498 if (Known.isUnknown()) 1499 break; 1500 } 1501 } 1502 break; 1503 } 1504 case Instruction::Call: 1505 case Instruction::Invoke: 1506 // If range metadata is attached to this call, set known bits from that, 1507 // and then intersect with known bits based on other properties of the 1508 // function. 1509 if (MDNode *MD = 1510 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1511 computeKnownBitsFromRangeMetadata(*MD, Known); 1512 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1513 computeKnownBits(RV, Known2, Depth + 1, Q); 1514 Known.Zero |= Known2.Zero; 1515 Known.One |= Known2.One; 1516 } 1517 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1518 switch (II->getIntrinsicID()) { 1519 default: break; 1520 case Intrinsic::abs: 1521 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1522 1523 // If the source's MSB is zero then we know the rest of the bits. 1524 if (Known2.isNonNegative()) { 1525 Known.Zero |= Known2.Zero; 1526 Known.One |= Known2.One; 1527 break; 1528 } 1529 1530 // Absolute value preserves trailing zero count. 1531 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1532 1533 // If this call is undefined for INT_MIN, the result is positive. We 1534 // also know it can't be INT_MIN if there is a set bit that isn't the 1535 // sign bit. 1536 Known2.One.clearSignBit(); 1537 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1538 Known.Zero.setSignBit(); 1539 // FIXME: Handle known negative input? 1540 // FIXME: Calculate the negated Known bits and combine them? 1541 break; 1542 case Intrinsic::bitreverse: 1543 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1544 Known.Zero |= Known2.Zero.reverseBits(); 1545 Known.One |= Known2.One.reverseBits(); 1546 break; 1547 case Intrinsic::bswap: 1548 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1549 Known.Zero |= Known2.Zero.byteSwap(); 1550 Known.One |= Known2.One.byteSwap(); 1551 break; 1552 case Intrinsic::ctlz: { 1553 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1554 // If we have a known 1, its position is our upper bound. 1555 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1556 // If this call is undefined for 0, the result will be less than 2^n. 1557 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1558 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1559 unsigned LowBits = Log2_32(PossibleLZ)+1; 1560 Known.Zero.setBitsFrom(LowBits); 1561 break; 1562 } 1563 case Intrinsic::cttz: { 1564 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1565 // If we have a known 1, its position is our upper bound. 1566 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1567 // If this call is undefined for 0, the result will be less than 2^n. 1568 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1569 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1570 unsigned LowBits = Log2_32(PossibleTZ)+1; 1571 Known.Zero.setBitsFrom(LowBits); 1572 break; 1573 } 1574 case Intrinsic::ctpop: { 1575 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1576 // We can bound the space the count needs. Also, bits known to be zero 1577 // can't contribute to the population. 1578 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1579 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1580 Known.Zero.setBitsFrom(LowBits); 1581 // TODO: we could bound KnownOne using the lower bound on the number 1582 // of bits which might be set provided by popcnt KnownOne2. 1583 break; 1584 } 1585 case Intrinsic::fshr: 1586 case Intrinsic::fshl: { 1587 const APInt *SA; 1588 if (!match(I->getOperand(2), m_APInt(SA))) 1589 break; 1590 1591 // Normalize to funnel shift left. 1592 uint64_t ShiftAmt = SA->urem(BitWidth); 1593 if (II->getIntrinsicID() == Intrinsic::fshr) 1594 ShiftAmt = BitWidth - ShiftAmt; 1595 1596 KnownBits Known3(BitWidth); 1597 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1598 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1599 1600 Known.Zero = 1601 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1602 Known.One = 1603 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1604 break; 1605 } 1606 case Intrinsic::uadd_sat: 1607 case Intrinsic::usub_sat: { 1608 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1609 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1610 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1611 1612 // Add: Leading ones of either operand are preserved. 1613 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1614 // as leading zeros in the result. 1615 unsigned LeadingKnown; 1616 if (IsAdd) 1617 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1618 Known2.countMinLeadingOnes()); 1619 else 1620 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1621 Known2.countMinLeadingOnes()); 1622 1623 Known = KnownBits::computeForAddSub( 1624 IsAdd, /* NSW */ false, Known, Known2); 1625 1626 // We select between the operation result and all-ones/zero 1627 // respectively, so we can preserve known ones/zeros. 1628 if (IsAdd) { 1629 Known.One.setHighBits(LeadingKnown); 1630 Known.Zero.clearAllBits(); 1631 } else { 1632 Known.Zero.setHighBits(LeadingKnown); 1633 Known.One.clearAllBits(); 1634 } 1635 break; 1636 } 1637 case Intrinsic::umin: 1638 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1639 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1640 Known = KnownBits::umin(Known, Known2); 1641 break; 1642 case Intrinsic::umax: 1643 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1644 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1645 Known = KnownBits::umax(Known, Known2); 1646 break; 1647 case Intrinsic::smin: 1648 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1649 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1650 Known = KnownBits::smin(Known, Known2); 1651 break; 1652 case Intrinsic::smax: 1653 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1654 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1655 Known = KnownBits::smax(Known, Known2); 1656 break; 1657 case Intrinsic::x86_sse42_crc32_64_64: 1658 Known.Zero.setBitsFrom(32); 1659 break; 1660 } 1661 } 1662 break; 1663 case Instruction::ShuffleVector: { 1664 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1665 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1666 if (!Shuf) { 1667 Known.resetAll(); 1668 return; 1669 } 1670 // For undef elements, we don't know anything about the common state of 1671 // the shuffle result. 1672 APInt DemandedLHS, DemandedRHS; 1673 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1674 Known.resetAll(); 1675 return; 1676 } 1677 Known.One.setAllBits(); 1678 Known.Zero.setAllBits(); 1679 if (!!DemandedLHS) { 1680 const Value *LHS = Shuf->getOperand(0); 1681 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1682 // If we don't know any bits, early out. 1683 if (Known.isUnknown()) 1684 break; 1685 } 1686 if (!!DemandedRHS) { 1687 const Value *RHS = Shuf->getOperand(1); 1688 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1689 Known = KnownBits::commonBits(Known, Known2); 1690 } 1691 break; 1692 } 1693 case Instruction::InsertElement: { 1694 const Value *Vec = I->getOperand(0); 1695 const Value *Elt = I->getOperand(1); 1696 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1697 // Early out if the index is non-constant or out-of-range. 1698 unsigned NumElts = DemandedElts.getBitWidth(); 1699 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1700 Known.resetAll(); 1701 return; 1702 } 1703 Known.One.setAllBits(); 1704 Known.Zero.setAllBits(); 1705 unsigned EltIdx = CIdx->getZExtValue(); 1706 // Do we demand the inserted element? 1707 if (DemandedElts[EltIdx]) { 1708 computeKnownBits(Elt, Known, Depth + 1, Q); 1709 // If we don't know any bits, early out. 1710 if (Known.isUnknown()) 1711 break; 1712 } 1713 // We don't need the base vector element that has been inserted. 1714 APInt DemandedVecElts = DemandedElts; 1715 DemandedVecElts.clearBit(EltIdx); 1716 if (!!DemandedVecElts) { 1717 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1718 Known = KnownBits::commonBits(Known, Known2); 1719 } 1720 break; 1721 } 1722 case Instruction::ExtractElement: { 1723 // Look through extract element. If the index is non-constant or 1724 // out-of-range demand all elements, otherwise just the extracted element. 1725 const Value *Vec = I->getOperand(0); 1726 const Value *Idx = I->getOperand(1); 1727 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1728 if (isa<ScalableVectorType>(Vec->getType())) { 1729 // FIXME: there's probably *something* we can do with scalable vectors 1730 Known.resetAll(); 1731 break; 1732 } 1733 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1734 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1735 if (CIdx && CIdx->getValue().ult(NumElts)) 1736 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1737 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1738 break; 1739 } 1740 case Instruction::ExtractValue: 1741 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1742 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1743 if (EVI->getNumIndices() != 1) break; 1744 if (EVI->getIndices()[0] == 0) { 1745 switch (II->getIntrinsicID()) { 1746 default: break; 1747 case Intrinsic::uadd_with_overflow: 1748 case Intrinsic::sadd_with_overflow: 1749 computeKnownBitsAddSub(true, II->getArgOperand(0), 1750 II->getArgOperand(1), false, DemandedElts, 1751 Known, Known2, Depth, Q); 1752 break; 1753 case Intrinsic::usub_with_overflow: 1754 case Intrinsic::ssub_with_overflow: 1755 computeKnownBitsAddSub(false, II->getArgOperand(0), 1756 II->getArgOperand(1), false, DemandedElts, 1757 Known, Known2, Depth, Q); 1758 break; 1759 case Intrinsic::umul_with_overflow: 1760 case Intrinsic::smul_with_overflow: 1761 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1762 DemandedElts, Known, Known2, Depth, Q); 1763 break; 1764 } 1765 } 1766 } 1767 break; 1768 case Instruction::Freeze: 1769 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1770 Depth + 1)) 1771 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1772 break; 1773 } 1774 } 1775 1776 /// Determine which bits of V are known to be either zero or one and return 1777 /// them. 1778 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1779 unsigned Depth, const Query &Q) { 1780 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1781 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1782 return Known; 1783 } 1784 1785 /// Determine which bits of V are known to be either zero or one and return 1786 /// them. 1787 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1788 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1789 computeKnownBits(V, Known, Depth, Q); 1790 return Known; 1791 } 1792 1793 /// Determine which bits of V are known to be either zero or one and return 1794 /// them in the Known bit set. 1795 /// 1796 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1797 /// we cannot optimize based on the assumption that it is zero without changing 1798 /// it to be an explicit zero. If we don't change it to zero, other code could 1799 /// optimized based on the contradictory assumption that it is non-zero. 1800 /// Because instcombine aggressively folds operations with undef args anyway, 1801 /// this won't lose us code quality. 1802 /// 1803 /// This function is defined on values with integer type, values with pointer 1804 /// type, and vectors of integers. In the case 1805 /// where V is a vector, known zero, and known one values are the 1806 /// same width as the vector element, and the bit is set only if it is true 1807 /// for all of the demanded elements in the vector specified by DemandedElts. 1808 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1809 KnownBits &Known, unsigned Depth, const Query &Q) { 1810 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1811 // No demanded elts or V is a scalable vector, better to assume we don't 1812 // know anything. 1813 Known.resetAll(); 1814 return; 1815 } 1816 1817 assert(V && "No Value?"); 1818 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1819 1820 #ifndef NDEBUG 1821 Type *Ty = V->getType(); 1822 unsigned BitWidth = Known.getBitWidth(); 1823 1824 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1825 "Not integer or pointer type!"); 1826 1827 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1828 assert( 1829 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1830 "DemandedElt width should equal the fixed vector number of elements"); 1831 } else { 1832 assert(DemandedElts == APInt(1, 1) && 1833 "DemandedElt width should be 1 for scalars"); 1834 } 1835 1836 Type *ScalarTy = Ty->getScalarType(); 1837 if (ScalarTy->isPointerTy()) { 1838 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1839 "V and Known should have same BitWidth"); 1840 } else { 1841 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1842 "V and Known should have same BitWidth"); 1843 } 1844 #endif 1845 1846 const APInt *C; 1847 if (match(V, m_APInt(C))) { 1848 // We know all of the bits for a scalar constant or a splat vector constant! 1849 Known.One = *C; 1850 Known.Zero = ~Known.One; 1851 return; 1852 } 1853 // Null and aggregate-zero are all-zeros. 1854 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1855 Known.setAllZero(); 1856 return; 1857 } 1858 // Handle a constant vector by taking the intersection of the known bits of 1859 // each element. 1860 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1861 // We know that CDV must be a vector of integers. Take the intersection of 1862 // each element. 1863 Known.Zero.setAllBits(); Known.One.setAllBits(); 1864 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1865 if (!DemandedElts[i]) 1866 continue; 1867 APInt Elt = CDV->getElementAsAPInt(i); 1868 Known.Zero &= ~Elt; 1869 Known.One &= Elt; 1870 } 1871 return; 1872 } 1873 1874 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1875 // We know that CV must be a vector of integers. Take the intersection of 1876 // each element. 1877 Known.Zero.setAllBits(); Known.One.setAllBits(); 1878 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1879 if (!DemandedElts[i]) 1880 continue; 1881 Constant *Element = CV->getAggregateElement(i); 1882 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1883 if (!ElementCI) { 1884 Known.resetAll(); 1885 return; 1886 } 1887 const APInt &Elt = ElementCI->getValue(); 1888 Known.Zero &= ~Elt; 1889 Known.One &= Elt; 1890 } 1891 return; 1892 } 1893 1894 // Start out not knowing anything. 1895 Known.resetAll(); 1896 1897 // We can't imply anything about undefs. 1898 if (isa<UndefValue>(V)) 1899 return; 1900 1901 // There's no point in looking through other users of ConstantData for 1902 // assumptions. Confirm that we've handled them all. 1903 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1904 1905 // All recursive calls that increase depth must come after this. 1906 if (Depth == MaxAnalysisRecursionDepth) 1907 return; 1908 1909 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1910 // the bits of its aliasee. 1911 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1912 if (!GA->isInterposable()) 1913 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1914 return; 1915 } 1916 1917 if (const Operator *I = dyn_cast<Operator>(V)) 1918 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1919 1920 // Aligned pointers have trailing zeros - refine Known.Zero set 1921 if (isa<PointerType>(V->getType())) { 1922 Align Alignment = V->getPointerAlignment(Q.DL); 1923 Known.Zero.setLowBits(Log2(Alignment)); 1924 } 1925 1926 // computeKnownBitsFromAssume strictly refines Known. 1927 // Therefore, we run them after computeKnownBitsFromOperator. 1928 1929 // Check whether a nearby assume intrinsic can determine some known bits. 1930 computeKnownBitsFromAssume(V, Known, Depth, Q); 1931 1932 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1933 } 1934 1935 /// Return true if the given value is known to have exactly one 1936 /// bit set when defined. For vectors return true if every element is known to 1937 /// be a power of two when defined. Supports values with integer or pointer 1938 /// types and vectors of integers. 1939 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1940 const Query &Q) { 1941 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1942 1943 // Attempt to match against constants. 1944 if (OrZero && match(V, m_Power2OrZero())) 1945 return true; 1946 if (match(V, m_Power2())) 1947 return true; 1948 1949 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1950 // it is shifted off the end then the result is undefined. 1951 if (match(V, m_Shl(m_One(), m_Value()))) 1952 return true; 1953 1954 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1955 // the bottom. If it is shifted off the bottom then the result is undefined. 1956 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1957 return true; 1958 1959 // The remaining tests are all recursive, so bail out if we hit the limit. 1960 if (Depth++ == MaxAnalysisRecursionDepth) 1961 return false; 1962 1963 Value *X = nullptr, *Y = nullptr; 1964 // A shift left or a logical shift right of a power of two is a power of two 1965 // or zero. 1966 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1967 match(V, m_LShr(m_Value(X), m_Value())))) 1968 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1969 1970 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1971 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1972 1973 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1974 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1975 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1976 1977 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1978 // A power of two and'd with anything is a power of two or zero. 1979 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1980 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1981 return true; 1982 // X & (-X) is always a power of two or zero. 1983 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1984 return true; 1985 return false; 1986 } 1987 1988 // Adding a power-of-two or zero to the same power-of-two or zero yields 1989 // either the original power-of-two, a larger power-of-two or zero. 1990 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1991 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1992 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1993 Q.IIQ.hasNoSignedWrap(VOBO)) { 1994 if (match(X, m_And(m_Specific(Y), m_Value())) || 1995 match(X, m_And(m_Value(), m_Specific(Y)))) 1996 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1997 return true; 1998 if (match(Y, m_And(m_Specific(X), m_Value())) || 1999 match(Y, m_And(m_Value(), m_Specific(X)))) 2000 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2001 return true; 2002 2003 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2004 KnownBits LHSBits(BitWidth); 2005 computeKnownBits(X, LHSBits, Depth, Q); 2006 2007 KnownBits RHSBits(BitWidth); 2008 computeKnownBits(Y, RHSBits, Depth, Q); 2009 // If i8 V is a power of two or zero: 2010 // ZeroBits: 1 1 1 0 1 1 1 1 2011 // ~ZeroBits: 0 0 0 1 0 0 0 0 2012 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2013 // If OrZero isn't set, we cannot give back a zero result. 2014 // Make sure either the LHS or RHS has a bit set. 2015 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2016 return true; 2017 } 2018 } 2019 2020 // An exact divide or right shift can only shift off zero bits, so the result 2021 // is a power of two only if the first operand is a power of two and not 2022 // copying a sign bit (sdiv int_min, 2). 2023 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2024 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2025 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2026 Depth, Q); 2027 } 2028 2029 return false; 2030 } 2031 2032 /// Test whether a GEP's result is known to be non-null. 2033 /// 2034 /// Uses properties inherent in a GEP to try to determine whether it is known 2035 /// to be non-null. 2036 /// 2037 /// Currently this routine does not support vector GEPs. 2038 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2039 const Query &Q) { 2040 const Function *F = nullptr; 2041 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2042 F = I->getFunction(); 2043 2044 if (!GEP->isInBounds() || 2045 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2046 return false; 2047 2048 // FIXME: Support vector-GEPs. 2049 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2050 2051 // If the base pointer is non-null, we cannot walk to a null address with an 2052 // inbounds GEP in address space zero. 2053 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2054 return true; 2055 2056 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2057 // If so, then the GEP cannot produce a null pointer, as doing so would 2058 // inherently violate the inbounds contract within address space zero. 2059 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2060 GTI != GTE; ++GTI) { 2061 // Struct types are easy -- they must always be indexed by a constant. 2062 if (StructType *STy = GTI.getStructTypeOrNull()) { 2063 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2064 unsigned ElementIdx = OpC->getZExtValue(); 2065 const StructLayout *SL = Q.DL.getStructLayout(STy); 2066 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2067 if (ElementOffset > 0) 2068 return true; 2069 continue; 2070 } 2071 2072 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2073 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2074 continue; 2075 2076 // Fast path the constant operand case both for efficiency and so we don't 2077 // increment Depth when just zipping down an all-constant GEP. 2078 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2079 if (!OpC->isZero()) 2080 return true; 2081 continue; 2082 } 2083 2084 // We post-increment Depth here because while isKnownNonZero increments it 2085 // as well, when we pop back up that increment won't persist. We don't want 2086 // to recurse 10k times just because we have 10k GEP operands. We don't 2087 // bail completely out because we want to handle constant GEPs regardless 2088 // of depth. 2089 if (Depth++ >= MaxAnalysisRecursionDepth) 2090 continue; 2091 2092 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2093 return true; 2094 } 2095 2096 return false; 2097 } 2098 2099 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2100 const Instruction *CtxI, 2101 const DominatorTree *DT) { 2102 if (isa<Constant>(V)) 2103 return false; 2104 2105 if (!CtxI || !DT) 2106 return false; 2107 2108 unsigned NumUsesExplored = 0; 2109 for (auto *U : V->users()) { 2110 // Avoid massive lists 2111 if (NumUsesExplored >= DomConditionsMaxUses) 2112 break; 2113 NumUsesExplored++; 2114 2115 // If the value is used as an argument to a call or invoke, then argument 2116 // attributes may provide an answer about null-ness. 2117 if (const auto *CB = dyn_cast<CallBase>(U)) 2118 if (auto *CalledFunc = CB->getCalledFunction()) 2119 for (const Argument &Arg : CalledFunc->args()) 2120 if (CB->getArgOperand(Arg.getArgNo()) == V && 2121 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2122 return true; 2123 2124 // If the value is used as a load/store, then the pointer must be non null. 2125 if (V == getLoadStorePointerOperand(U)) { 2126 const Instruction *I = cast<Instruction>(U); 2127 if (!NullPointerIsDefined(I->getFunction(), 2128 V->getType()->getPointerAddressSpace()) && 2129 DT->dominates(I, CtxI)) 2130 return true; 2131 } 2132 2133 // Consider only compare instructions uniquely controlling a branch 2134 CmpInst::Predicate Pred; 2135 if (!match(const_cast<User *>(U), 2136 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2137 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2138 continue; 2139 2140 SmallVector<const User *, 4> WorkList; 2141 SmallPtrSet<const User *, 4> Visited; 2142 for (auto *CmpU : U->users()) { 2143 assert(WorkList.empty() && "Should be!"); 2144 if (Visited.insert(CmpU).second) 2145 WorkList.push_back(CmpU); 2146 2147 while (!WorkList.empty()) { 2148 auto *Curr = WorkList.pop_back_val(); 2149 2150 // If a user is an AND, add all its users to the work list. We only 2151 // propagate "pred != null" condition through AND because it is only 2152 // correct to assume that all conditions of AND are met in true branch. 2153 // TODO: Support similar logic of OR and EQ predicate? 2154 if (Pred == ICmpInst::ICMP_NE) 2155 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2156 if (BO->getOpcode() == Instruction::And) { 2157 for (auto *BOU : BO->users()) 2158 if (Visited.insert(BOU).second) 2159 WorkList.push_back(BOU); 2160 continue; 2161 } 2162 2163 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2164 assert(BI->isConditional() && "uses a comparison!"); 2165 2166 BasicBlock *NonNullSuccessor = 2167 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2168 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2169 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2170 return true; 2171 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2172 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2173 return true; 2174 } 2175 } 2176 } 2177 } 2178 2179 return false; 2180 } 2181 2182 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2183 /// ensure that the value it's attached to is never Value? 'RangeType' is 2184 /// is the type of the value described by the range. 2185 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2186 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2187 assert(NumRanges >= 1); 2188 for (unsigned i = 0; i < NumRanges; ++i) { 2189 ConstantInt *Lower = 2190 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2191 ConstantInt *Upper = 2192 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2193 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2194 if (Range.contains(Value)) 2195 return false; 2196 } 2197 return true; 2198 } 2199 2200 /// Return true if the given value is known to be non-zero when defined. For 2201 /// vectors, return true if every demanded element is known to be non-zero when 2202 /// defined. For pointers, if the context instruction and dominator tree are 2203 /// specified, perform context-sensitive analysis and return true if the 2204 /// pointer couldn't possibly be null at the specified instruction. 2205 /// Supports values with integer or pointer type and vectors of integers. 2206 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2207 const Query &Q) { 2208 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2209 // vector 2210 if (isa<ScalableVectorType>(V->getType())) 2211 return false; 2212 2213 if (auto *C = dyn_cast<Constant>(V)) { 2214 if (C->isNullValue()) 2215 return false; 2216 if (isa<ConstantInt>(C)) 2217 // Must be non-zero due to null test above. 2218 return true; 2219 2220 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2221 // See the comment for IntToPtr/PtrToInt instructions below. 2222 if (CE->getOpcode() == Instruction::IntToPtr || 2223 CE->getOpcode() == Instruction::PtrToInt) 2224 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2225 .getFixedSize() <= 2226 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2227 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2228 } 2229 2230 // For constant vectors, check that all elements are undefined or known 2231 // non-zero to determine that the whole vector is known non-zero. 2232 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2233 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2234 if (!DemandedElts[i]) 2235 continue; 2236 Constant *Elt = C->getAggregateElement(i); 2237 if (!Elt || Elt->isNullValue()) 2238 return false; 2239 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2240 return false; 2241 } 2242 return true; 2243 } 2244 2245 // A global variable in address space 0 is non null unless extern weak 2246 // or an absolute symbol reference. Other address spaces may have null as a 2247 // valid address for a global, so we can't assume anything. 2248 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2249 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2250 GV->getType()->getAddressSpace() == 0) 2251 return true; 2252 } else 2253 return false; 2254 } 2255 2256 if (auto *I = dyn_cast<Instruction>(V)) { 2257 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2258 // If the possible ranges don't contain zero, then the value is 2259 // definitely non-zero. 2260 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2261 const APInt ZeroValue(Ty->getBitWidth(), 0); 2262 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2263 return true; 2264 } 2265 } 2266 } 2267 2268 if (isKnownNonZeroFromAssume(V, Q)) 2269 return true; 2270 2271 // Some of the tests below are recursive, so bail out if we hit the limit. 2272 if (Depth++ >= MaxAnalysisRecursionDepth) 2273 return false; 2274 2275 // Check for pointer simplifications. 2276 2277 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2278 // Alloca never returns null, malloc might. 2279 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2280 return true; 2281 2282 // A byval, inalloca may not be null in a non-default addres space. A 2283 // nonnull argument is assumed never 0. 2284 if (const Argument *A = dyn_cast<Argument>(V)) { 2285 if (((A->hasPassPointeeByValueCopyAttr() && 2286 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2287 A->hasNonNullAttr())) 2288 return true; 2289 } 2290 2291 // A Load tagged with nonnull metadata is never null. 2292 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2293 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2294 return true; 2295 2296 if (const auto *Call = dyn_cast<CallBase>(V)) { 2297 if (Call->isReturnNonNull()) 2298 return true; 2299 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2300 return isKnownNonZero(RP, Depth, Q); 2301 } 2302 } 2303 2304 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2305 return true; 2306 2307 // Check for recursive pointer simplifications. 2308 if (V->getType()->isPointerTy()) { 2309 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2310 // do not alter the value, or at least not the nullness property of the 2311 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2312 // 2313 // Note that we have to take special care to avoid looking through 2314 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2315 // as casts that can alter the value, e.g., AddrSpaceCasts. 2316 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2317 return isGEPKnownNonNull(GEP, Depth, Q); 2318 2319 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2320 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2321 2322 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2323 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2324 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2325 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2326 } 2327 2328 // Similar to int2ptr above, we can look through ptr2int here if the cast 2329 // is a no-op or an extend and not a truncate. 2330 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2331 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2332 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2333 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2334 2335 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2336 2337 // X | Y != 0 if X != 0 or Y != 0. 2338 Value *X = nullptr, *Y = nullptr; 2339 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2340 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2341 isKnownNonZero(Y, DemandedElts, Depth, Q); 2342 2343 // ext X != 0 if X != 0. 2344 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2345 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2346 2347 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2348 // if the lowest bit is shifted off the end. 2349 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2350 // shl nuw can't remove any non-zero bits. 2351 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2352 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2353 return isKnownNonZero(X, Depth, Q); 2354 2355 KnownBits Known(BitWidth); 2356 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2357 if (Known.One[0]) 2358 return true; 2359 } 2360 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2361 // defined if the sign bit is shifted off the end. 2362 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2363 // shr exact can only shift out zero bits. 2364 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2365 if (BO->isExact()) 2366 return isKnownNonZero(X, Depth, Q); 2367 2368 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2369 if (Known.isNegative()) 2370 return true; 2371 2372 // If the shifter operand is a constant, and all of the bits shifted 2373 // out are known to be zero, and X is known non-zero then at least one 2374 // non-zero bit must remain. 2375 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2376 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2377 // Is there a known one in the portion not shifted out? 2378 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2379 return true; 2380 // Are all the bits to be shifted out known zero? 2381 if (Known.countMinTrailingZeros() >= ShiftVal) 2382 return isKnownNonZero(X, DemandedElts, Depth, Q); 2383 } 2384 } 2385 // div exact can only produce a zero if the dividend is zero. 2386 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2387 return isKnownNonZero(X, DemandedElts, Depth, Q); 2388 } 2389 // X + Y. 2390 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2391 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2392 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2393 2394 // If X and Y are both non-negative (as signed values) then their sum is not 2395 // zero unless both X and Y are zero. 2396 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2397 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2398 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2399 return true; 2400 2401 // If X and Y are both negative (as signed values) then their sum is not 2402 // zero unless both X and Y equal INT_MIN. 2403 if (XKnown.isNegative() && YKnown.isNegative()) { 2404 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2405 // The sign bit of X is set. If some other bit is set then X is not equal 2406 // to INT_MIN. 2407 if (XKnown.One.intersects(Mask)) 2408 return true; 2409 // The sign bit of Y is set. If some other bit is set then Y is not equal 2410 // to INT_MIN. 2411 if (YKnown.One.intersects(Mask)) 2412 return true; 2413 } 2414 2415 // The sum of a non-negative number and a power of two is not zero. 2416 if (XKnown.isNonNegative() && 2417 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2418 return true; 2419 if (YKnown.isNonNegative() && 2420 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2421 return true; 2422 } 2423 // X * Y. 2424 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2425 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2426 // If X and Y are non-zero then so is X * Y as long as the multiplication 2427 // does not overflow. 2428 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2429 isKnownNonZero(X, DemandedElts, Depth, Q) && 2430 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2431 return true; 2432 } 2433 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2434 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2435 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2436 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2437 return true; 2438 } 2439 // PHI 2440 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2441 // Try and detect a recurrence that monotonically increases from a 2442 // starting value, as these are common as induction variables. 2443 if (PN->getNumIncomingValues() == 2) { 2444 Value *Start = PN->getIncomingValue(0); 2445 Value *Induction = PN->getIncomingValue(1); 2446 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2447 std::swap(Start, Induction); 2448 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2449 if (!C->isZero() && !C->isNegative()) { 2450 ConstantInt *X; 2451 if (Q.IIQ.UseInstrInfo && 2452 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2453 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2454 !X->isNegative()) 2455 return true; 2456 } 2457 } 2458 } 2459 // Check if all incoming values are non-zero using recursion. 2460 Query RecQ = Q; 2461 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2462 return llvm::all_of(PN->operands(), [&](const Use &U) { 2463 if (U.get() == PN) 2464 return true; 2465 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2466 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2467 }); 2468 } 2469 // ExtractElement 2470 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2471 const Value *Vec = EEI->getVectorOperand(); 2472 const Value *Idx = EEI->getIndexOperand(); 2473 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2474 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2475 unsigned NumElts = VecTy->getNumElements(); 2476 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2477 if (CIdx && CIdx->getValue().ult(NumElts)) 2478 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2479 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2480 } 2481 } 2482 // Freeze 2483 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2484 auto *Op = FI->getOperand(0); 2485 if (isKnownNonZero(Op, Depth, Q) && 2486 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2487 return true; 2488 } 2489 2490 KnownBits Known(BitWidth); 2491 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2492 return Known.One != 0; 2493 } 2494 2495 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2496 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2497 // vector 2498 if (isa<ScalableVectorType>(V->getType())) 2499 return false; 2500 2501 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2502 APInt DemandedElts = 2503 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2504 return isKnownNonZero(V, DemandedElts, Depth, Q); 2505 } 2506 2507 /// Return true if V2 == V1 + X, where X is known non-zero. 2508 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2509 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2510 if (!BO || BO->getOpcode() != Instruction::Add) 2511 return false; 2512 Value *Op = nullptr; 2513 if (V2 == BO->getOperand(0)) 2514 Op = BO->getOperand(1); 2515 else if (V2 == BO->getOperand(1)) 2516 Op = BO->getOperand(0); 2517 else 2518 return false; 2519 return isKnownNonZero(Op, 0, Q); 2520 } 2521 2522 /// Return true if it is known that V1 != V2. 2523 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2524 if (V1 == V2) 2525 return false; 2526 if (V1->getType() != V2->getType()) 2527 // We can't look through casts yet. 2528 return false; 2529 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2530 return true; 2531 2532 if (V1->getType()->isIntOrIntVectorTy()) { 2533 // Are any known bits in V1 contradictory to known bits in V2? If V1 2534 // has a known zero where V2 has a known one, they must not be equal. 2535 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2536 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2537 2538 if (Known1.Zero.intersects(Known2.One) || 2539 Known2.Zero.intersects(Known1.One)) 2540 return true; 2541 } 2542 return false; 2543 } 2544 2545 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2546 /// simplify operations downstream. Mask is known to be zero for bits that V 2547 /// cannot have. 2548 /// 2549 /// This function is defined on values with integer type, values with pointer 2550 /// type, and vectors of integers. In the case 2551 /// where V is a vector, the mask, known zero, and known one values are the 2552 /// same width as the vector element, and the bit is set only if it is true 2553 /// for all of the elements in the vector. 2554 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2555 const Query &Q) { 2556 KnownBits Known(Mask.getBitWidth()); 2557 computeKnownBits(V, Known, Depth, Q); 2558 return Mask.isSubsetOf(Known.Zero); 2559 } 2560 2561 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2562 // Returns the input and lower/upper bounds. 2563 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2564 const APInt *&CLow, const APInt *&CHigh) { 2565 assert(isa<Operator>(Select) && 2566 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2567 "Input should be a Select!"); 2568 2569 const Value *LHS = nullptr, *RHS = nullptr; 2570 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2571 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2572 return false; 2573 2574 if (!match(RHS, m_APInt(CLow))) 2575 return false; 2576 2577 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2578 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2579 if (getInverseMinMaxFlavor(SPF) != SPF2) 2580 return false; 2581 2582 if (!match(RHS2, m_APInt(CHigh))) 2583 return false; 2584 2585 if (SPF == SPF_SMIN) 2586 std::swap(CLow, CHigh); 2587 2588 In = LHS2; 2589 return CLow->sle(*CHigh); 2590 } 2591 2592 /// For vector constants, loop over the elements and find the constant with the 2593 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2594 /// or if any element was not analyzed; otherwise, return the count for the 2595 /// element with the minimum number of sign bits. 2596 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2597 const APInt &DemandedElts, 2598 unsigned TyBits) { 2599 const auto *CV = dyn_cast<Constant>(V); 2600 if (!CV || !isa<FixedVectorType>(CV->getType())) 2601 return 0; 2602 2603 unsigned MinSignBits = TyBits; 2604 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2605 for (unsigned i = 0; i != NumElts; ++i) { 2606 if (!DemandedElts[i]) 2607 continue; 2608 // If we find a non-ConstantInt, bail out. 2609 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2610 if (!Elt) 2611 return 0; 2612 2613 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2614 } 2615 2616 return MinSignBits; 2617 } 2618 2619 static unsigned ComputeNumSignBitsImpl(const Value *V, 2620 const APInt &DemandedElts, 2621 unsigned Depth, const Query &Q); 2622 2623 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2624 unsigned Depth, const Query &Q) { 2625 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2626 assert(Result > 0 && "At least one sign bit needs to be present!"); 2627 return Result; 2628 } 2629 2630 /// Return the number of times the sign bit of the register is replicated into 2631 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2632 /// (itself), but other cases can give us information. For example, immediately 2633 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2634 /// other, so we return 3. For vectors, return the number of sign bits for the 2635 /// vector element with the minimum number of known sign bits of the demanded 2636 /// elements in the vector specified by DemandedElts. 2637 static unsigned ComputeNumSignBitsImpl(const Value *V, 2638 const APInt &DemandedElts, 2639 unsigned Depth, const Query &Q) { 2640 Type *Ty = V->getType(); 2641 2642 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2643 // vector 2644 if (isa<ScalableVectorType>(Ty)) 2645 return 1; 2646 2647 #ifndef NDEBUG 2648 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2649 2650 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2651 assert( 2652 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2653 "DemandedElt width should equal the fixed vector number of elements"); 2654 } else { 2655 assert(DemandedElts == APInt(1, 1) && 2656 "DemandedElt width should be 1 for scalars"); 2657 } 2658 #endif 2659 2660 // We return the minimum number of sign bits that are guaranteed to be present 2661 // in V, so for undef we have to conservatively return 1. We don't have the 2662 // same behavior for poison though -- that's a FIXME today. 2663 2664 Type *ScalarTy = Ty->getScalarType(); 2665 unsigned TyBits = ScalarTy->isPointerTy() ? 2666 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2667 Q.DL.getTypeSizeInBits(ScalarTy); 2668 2669 unsigned Tmp, Tmp2; 2670 unsigned FirstAnswer = 1; 2671 2672 // Note that ConstantInt is handled by the general computeKnownBits case 2673 // below. 2674 2675 if (Depth == MaxAnalysisRecursionDepth) 2676 return 1; 2677 2678 if (auto *U = dyn_cast<Operator>(V)) { 2679 switch (Operator::getOpcode(V)) { 2680 default: break; 2681 case Instruction::SExt: 2682 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2683 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2684 2685 case Instruction::SDiv: { 2686 const APInt *Denominator; 2687 // sdiv X, C -> adds log(C) sign bits. 2688 if (match(U->getOperand(1), m_APInt(Denominator))) { 2689 2690 // Ignore non-positive denominator. 2691 if (!Denominator->isStrictlyPositive()) 2692 break; 2693 2694 // Calculate the incoming numerator bits. 2695 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2696 2697 // Add floor(log(C)) bits to the numerator bits. 2698 return std::min(TyBits, NumBits + Denominator->logBase2()); 2699 } 2700 break; 2701 } 2702 2703 case Instruction::SRem: { 2704 const APInt *Denominator; 2705 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2706 // positive constant. This let us put a lower bound on the number of sign 2707 // bits. 2708 if (match(U->getOperand(1), m_APInt(Denominator))) { 2709 2710 // Ignore non-positive denominator. 2711 if (!Denominator->isStrictlyPositive()) 2712 break; 2713 2714 // Calculate the incoming numerator bits. SRem by a positive constant 2715 // can't lower the number of sign bits. 2716 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2717 2718 // Calculate the leading sign bit constraints by examining the 2719 // denominator. Given that the denominator is positive, there are two 2720 // cases: 2721 // 2722 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2723 // (1 << ceilLogBase2(C)). 2724 // 2725 // 2. the numerator is negative. Then the result range is (-C,0] and 2726 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2727 // 2728 // Thus a lower bound on the number of sign bits is `TyBits - 2729 // ceilLogBase2(C)`. 2730 2731 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2732 return std::max(NumrBits, ResBits); 2733 } 2734 break; 2735 } 2736 2737 case Instruction::AShr: { 2738 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2739 // ashr X, C -> adds C sign bits. Vectors too. 2740 const APInt *ShAmt; 2741 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2742 if (ShAmt->uge(TyBits)) 2743 break; // Bad shift. 2744 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2745 Tmp += ShAmtLimited; 2746 if (Tmp > TyBits) Tmp = TyBits; 2747 } 2748 return Tmp; 2749 } 2750 case Instruction::Shl: { 2751 const APInt *ShAmt; 2752 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2753 // shl destroys sign bits. 2754 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2755 if (ShAmt->uge(TyBits) || // Bad shift. 2756 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2757 Tmp2 = ShAmt->getZExtValue(); 2758 return Tmp - Tmp2; 2759 } 2760 break; 2761 } 2762 case Instruction::And: 2763 case Instruction::Or: 2764 case Instruction::Xor: // NOT is handled here. 2765 // Logical binary ops preserve the number of sign bits at the worst. 2766 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2767 if (Tmp != 1) { 2768 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2769 FirstAnswer = std::min(Tmp, Tmp2); 2770 // We computed what we know about the sign bits as our first 2771 // answer. Now proceed to the generic code that uses 2772 // computeKnownBits, and pick whichever answer is better. 2773 } 2774 break; 2775 2776 case Instruction::Select: { 2777 // If we have a clamp pattern, we know that the number of sign bits will 2778 // be the minimum of the clamp min/max range. 2779 const Value *X; 2780 const APInt *CLow, *CHigh; 2781 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2782 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2783 2784 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2785 if (Tmp == 1) break; 2786 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2787 return std::min(Tmp, Tmp2); 2788 } 2789 2790 case Instruction::Add: 2791 // Add can have at most one carry bit. Thus we know that the output 2792 // is, at worst, one more bit than the inputs. 2793 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2794 if (Tmp == 1) break; 2795 2796 // Special case decrementing a value (ADD X, -1): 2797 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2798 if (CRHS->isAllOnesValue()) { 2799 KnownBits Known(TyBits); 2800 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2801 2802 // If the input is known to be 0 or 1, the output is 0/-1, which is 2803 // all sign bits set. 2804 if ((Known.Zero | 1).isAllOnesValue()) 2805 return TyBits; 2806 2807 // If we are subtracting one from a positive number, there is no carry 2808 // out of the result. 2809 if (Known.isNonNegative()) 2810 return Tmp; 2811 } 2812 2813 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2814 if (Tmp2 == 1) break; 2815 return std::min(Tmp, Tmp2) - 1; 2816 2817 case Instruction::Sub: 2818 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2819 if (Tmp2 == 1) break; 2820 2821 // Handle NEG. 2822 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2823 if (CLHS->isNullValue()) { 2824 KnownBits Known(TyBits); 2825 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2826 // If the input is known to be 0 or 1, the output is 0/-1, which is 2827 // all sign bits set. 2828 if ((Known.Zero | 1).isAllOnesValue()) 2829 return TyBits; 2830 2831 // If the input is known to be positive (the sign bit is known clear), 2832 // the output of the NEG has the same number of sign bits as the 2833 // input. 2834 if (Known.isNonNegative()) 2835 return Tmp2; 2836 2837 // Otherwise, we treat this like a SUB. 2838 } 2839 2840 // Sub can have at most one carry bit. Thus we know that the output 2841 // is, at worst, one more bit than the inputs. 2842 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2843 if (Tmp == 1) break; 2844 return std::min(Tmp, Tmp2) - 1; 2845 2846 case Instruction::Mul: { 2847 // The output of the Mul can be at most twice the valid bits in the 2848 // inputs. 2849 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2850 if (SignBitsOp0 == 1) break; 2851 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2852 if (SignBitsOp1 == 1) break; 2853 unsigned OutValidBits = 2854 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2855 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2856 } 2857 2858 case Instruction::PHI: { 2859 const PHINode *PN = cast<PHINode>(U); 2860 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2861 // Don't analyze large in-degree PHIs. 2862 if (NumIncomingValues > 4) break; 2863 // Unreachable blocks may have zero-operand PHI nodes. 2864 if (NumIncomingValues == 0) break; 2865 2866 // Take the minimum of all incoming values. This can't infinitely loop 2867 // because of our depth threshold. 2868 Query RecQ = Q; 2869 Tmp = TyBits; 2870 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2871 if (Tmp == 1) return Tmp; 2872 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2873 Tmp = std::min( 2874 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2875 } 2876 return Tmp; 2877 } 2878 2879 case Instruction::Trunc: 2880 // FIXME: it's tricky to do anything useful for this, but it is an 2881 // important case for targets like X86. 2882 break; 2883 2884 case Instruction::ExtractElement: 2885 // Look through extract element. At the moment we keep this simple and 2886 // skip tracking the specific element. But at least we might find 2887 // information valid for all elements of the vector (for example if vector 2888 // is sign extended, shifted, etc). 2889 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2890 2891 case Instruction::ShuffleVector: { 2892 // Collect the minimum number of sign bits that are shared by every vector 2893 // element referenced by the shuffle. 2894 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2895 if (!Shuf) { 2896 // FIXME: Add support for shufflevector constant expressions. 2897 return 1; 2898 } 2899 APInt DemandedLHS, DemandedRHS; 2900 // For undef elements, we don't know anything about the common state of 2901 // the shuffle result. 2902 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2903 return 1; 2904 Tmp = std::numeric_limits<unsigned>::max(); 2905 if (!!DemandedLHS) { 2906 const Value *LHS = Shuf->getOperand(0); 2907 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2908 } 2909 // If we don't know anything, early out and try computeKnownBits 2910 // fall-back. 2911 if (Tmp == 1) 2912 break; 2913 if (!!DemandedRHS) { 2914 const Value *RHS = Shuf->getOperand(1); 2915 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2916 Tmp = std::min(Tmp, Tmp2); 2917 } 2918 // If we don't know anything, early out and try computeKnownBits 2919 // fall-back. 2920 if (Tmp == 1) 2921 break; 2922 assert(Tmp <= Ty->getScalarSizeInBits() && 2923 "Failed to determine minimum sign bits"); 2924 return Tmp; 2925 } 2926 case Instruction::Call: { 2927 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2928 switch (II->getIntrinsicID()) { 2929 default: break; 2930 case Intrinsic::abs: 2931 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2932 if (Tmp == 1) break; 2933 2934 // Absolute value reduces number of sign bits by at most 1. 2935 return Tmp - 1; 2936 } 2937 } 2938 } 2939 } 2940 } 2941 2942 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2943 // use this information. 2944 2945 // If we can examine all elements of a vector constant successfully, we're 2946 // done (we can't do any better than that). If not, keep trying. 2947 if (unsigned VecSignBits = 2948 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2949 return VecSignBits; 2950 2951 KnownBits Known(TyBits); 2952 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2953 2954 // If we know that the sign bit is either zero or one, determine the number of 2955 // identical bits in the top of the input value. 2956 return std::max(FirstAnswer, Known.countMinSignBits()); 2957 } 2958 2959 /// This function computes the integer multiple of Base that equals V. 2960 /// If successful, it returns true and returns the multiple in 2961 /// Multiple. If unsuccessful, it returns false. It looks 2962 /// through SExt instructions only if LookThroughSExt is true. 2963 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2964 bool LookThroughSExt, unsigned Depth) { 2965 assert(V && "No Value?"); 2966 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2967 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2968 2969 Type *T = V->getType(); 2970 2971 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2972 2973 if (Base == 0) 2974 return false; 2975 2976 if (Base == 1) { 2977 Multiple = V; 2978 return true; 2979 } 2980 2981 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2982 Constant *BaseVal = ConstantInt::get(T, Base); 2983 if (CO && CO == BaseVal) { 2984 // Multiple is 1. 2985 Multiple = ConstantInt::get(T, 1); 2986 return true; 2987 } 2988 2989 if (CI && CI->getZExtValue() % Base == 0) { 2990 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2991 return true; 2992 } 2993 2994 if (Depth == MaxAnalysisRecursionDepth) return false; 2995 2996 Operator *I = dyn_cast<Operator>(V); 2997 if (!I) return false; 2998 2999 switch (I->getOpcode()) { 3000 default: break; 3001 case Instruction::SExt: 3002 if (!LookThroughSExt) return false; 3003 // otherwise fall through to ZExt 3004 LLVM_FALLTHROUGH; 3005 case Instruction::ZExt: 3006 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3007 LookThroughSExt, Depth+1); 3008 case Instruction::Shl: 3009 case Instruction::Mul: { 3010 Value *Op0 = I->getOperand(0); 3011 Value *Op1 = I->getOperand(1); 3012 3013 if (I->getOpcode() == Instruction::Shl) { 3014 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3015 if (!Op1CI) return false; 3016 // Turn Op0 << Op1 into Op0 * 2^Op1 3017 APInt Op1Int = Op1CI->getValue(); 3018 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3019 APInt API(Op1Int.getBitWidth(), 0); 3020 API.setBit(BitToSet); 3021 Op1 = ConstantInt::get(V->getContext(), API); 3022 } 3023 3024 Value *Mul0 = nullptr; 3025 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3026 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3027 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3028 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3029 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3030 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3031 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3032 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3033 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3034 3035 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3036 Multiple = ConstantExpr::getMul(MulC, Op1C); 3037 return true; 3038 } 3039 3040 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3041 if (Mul0CI->getValue() == 1) { 3042 // V == Base * Op1, so return Op1 3043 Multiple = Op1; 3044 return true; 3045 } 3046 } 3047 3048 Value *Mul1 = nullptr; 3049 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3050 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3051 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3052 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3053 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3054 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3055 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3056 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3057 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3058 3059 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3060 Multiple = ConstantExpr::getMul(MulC, Op0C); 3061 return true; 3062 } 3063 3064 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3065 if (Mul1CI->getValue() == 1) { 3066 // V == Base * Op0, so return Op0 3067 Multiple = Op0; 3068 return true; 3069 } 3070 } 3071 } 3072 } 3073 3074 // We could not determine if V is a multiple of Base. 3075 return false; 3076 } 3077 3078 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3079 const TargetLibraryInfo *TLI) { 3080 const Function *F = CB.getCalledFunction(); 3081 if (!F) 3082 return Intrinsic::not_intrinsic; 3083 3084 if (F->isIntrinsic()) 3085 return F->getIntrinsicID(); 3086 3087 // We are going to infer semantics of a library function based on mapping it 3088 // to an LLVM intrinsic. Check that the library function is available from 3089 // this callbase and in this environment. 3090 LibFunc Func; 3091 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3092 !CB.onlyReadsMemory()) 3093 return Intrinsic::not_intrinsic; 3094 3095 switch (Func) { 3096 default: 3097 break; 3098 case LibFunc_sin: 3099 case LibFunc_sinf: 3100 case LibFunc_sinl: 3101 return Intrinsic::sin; 3102 case LibFunc_cos: 3103 case LibFunc_cosf: 3104 case LibFunc_cosl: 3105 return Intrinsic::cos; 3106 case LibFunc_exp: 3107 case LibFunc_expf: 3108 case LibFunc_expl: 3109 return Intrinsic::exp; 3110 case LibFunc_exp2: 3111 case LibFunc_exp2f: 3112 case LibFunc_exp2l: 3113 return Intrinsic::exp2; 3114 case LibFunc_log: 3115 case LibFunc_logf: 3116 case LibFunc_logl: 3117 return Intrinsic::log; 3118 case LibFunc_log10: 3119 case LibFunc_log10f: 3120 case LibFunc_log10l: 3121 return Intrinsic::log10; 3122 case LibFunc_log2: 3123 case LibFunc_log2f: 3124 case LibFunc_log2l: 3125 return Intrinsic::log2; 3126 case LibFunc_fabs: 3127 case LibFunc_fabsf: 3128 case LibFunc_fabsl: 3129 return Intrinsic::fabs; 3130 case LibFunc_fmin: 3131 case LibFunc_fminf: 3132 case LibFunc_fminl: 3133 return Intrinsic::minnum; 3134 case LibFunc_fmax: 3135 case LibFunc_fmaxf: 3136 case LibFunc_fmaxl: 3137 return Intrinsic::maxnum; 3138 case LibFunc_copysign: 3139 case LibFunc_copysignf: 3140 case LibFunc_copysignl: 3141 return Intrinsic::copysign; 3142 case LibFunc_floor: 3143 case LibFunc_floorf: 3144 case LibFunc_floorl: 3145 return Intrinsic::floor; 3146 case LibFunc_ceil: 3147 case LibFunc_ceilf: 3148 case LibFunc_ceill: 3149 return Intrinsic::ceil; 3150 case LibFunc_trunc: 3151 case LibFunc_truncf: 3152 case LibFunc_truncl: 3153 return Intrinsic::trunc; 3154 case LibFunc_rint: 3155 case LibFunc_rintf: 3156 case LibFunc_rintl: 3157 return Intrinsic::rint; 3158 case LibFunc_nearbyint: 3159 case LibFunc_nearbyintf: 3160 case LibFunc_nearbyintl: 3161 return Intrinsic::nearbyint; 3162 case LibFunc_round: 3163 case LibFunc_roundf: 3164 case LibFunc_roundl: 3165 return Intrinsic::round; 3166 case LibFunc_roundeven: 3167 case LibFunc_roundevenf: 3168 case LibFunc_roundevenl: 3169 return Intrinsic::roundeven; 3170 case LibFunc_pow: 3171 case LibFunc_powf: 3172 case LibFunc_powl: 3173 return Intrinsic::pow; 3174 case LibFunc_sqrt: 3175 case LibFunc_sqrtf: 3176 case LibFunc_sqrtl: 3177 return Intrinsic::sqrt; 3178 } 3179 3180 return Intrinsic::not_intrinsic; 3181 } 3182 3183 /// Return true if we can prove that the specified FP value is never equal to 3184 /// -0.0. 3185 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3186 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3187 /// the same as +0.0 in floating-point ops. 3188 /// 3189 /// NOTE: this function will need to be revisited when we support non-default 3190 /// rounding modes! 3191 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3192 unsigned Depth) { 3193 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3194 return !CFP->getValueAPF().isNegZero(); 3195 3196 if (Depth == MaxAnalysisRecursionDepth) 3197 return false; 3198 3199 auto *Op = dyn_cast<Operator>(V); 3200 if (!Op) 3201 return false; 3202 3203 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3204 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3205 return true; 3206 3207 // sitofp and uitofp turn into +0.0 for zero. 3208 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3209 return true; 3210 3211 if (auto *Call = dyn_cast<CallInst>(Op)) { 3212 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3213 switch (IID) { 3214 default: 3215 break; 3216 // sqrt(-0.0) = -0.0, no other negative results are possible. 3217 case Intrinsic::sqrt: 3218 case Intrinsic::canonicalize: 3219 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3220 // fabs(x) != -0.0 3221 case Intrinsic::fabs: 3222 return true; 3223 } 3224 } 3225 3226 return false; 3227 } 3228 3229 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3230 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3231 /// bit despite comparing equal. 3232 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3233 const TargetLibraryInfo *TLI, 3234 bool SignBitOnly, 3235 unsigned Depth) { 3236 // TODO: This function does not do the right thing when SignBitOnly is true 3237 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3238 // which flips the sign bits of NaNs. See 3239 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3240 3241 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3242 return !CFP->getValueAPF().isNegative() || 3243 (!SignBitOnly && CFP->getValueAPF().isZero()); 3244 } 3245 3246 // Handle vector of constants. 3247 if (auto *CV = dyn_cast<Constant>(V)) { 3248 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3249 unsigned NumElts = CVFVTy->getNumElements(); 3250 for (unsigned i = 0; i != NumElts; ++i) { 3251 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3252 if (!CFP) 3253 return false; 3254 if (CFP->getValueAPF().isNegative() && 3255 (SignBitOnly || !CFP->getValueAPF().isZero())) 3256 return false; 3257 } 3258 3259 // All non-negative ConstantFPs. 3260 return true; 3261 } 3262 } 3263 3264 if (Depth == MaxAnalysisRecursionDepth) 3265 return false; 3266 3267 const Operator *I = dyn_cast<Operator>(V); 3268 if (!I) 3269 return false; 3270 3271 switch (I->getOpcode()) { 3272 default: 3273 break; 3274 // Unsigned integers are always nonnegative. 3275 case Instruction::UIToFP: 3276 return true; 3277 case Instruction::FMul: 3278 case Instruction::FDiv: 3279 // X * X is always non-negative or a NaN. 3280 // X / X is always exactly 1.0 or a NaN. 3281 if (I->getOperand(0) == I->getOperand(1) && 3282 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3283 return true; 3284 3285 LLVM_FALLTHROUGH; 3286 case Instruction::FAdd: 3287 case Instruction::FRem: 3288 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3289 Depth + 1) && 3290 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3291 Depth + 1); 3292 case Instruction::Select: 3293 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3294 Depth + 1) && 3295 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3296 Depth + 1); 3297 case Instruction::FPExt: 3298 case Instruction::FPTrunc: 3299 // Widening/narrowing never change sign. 3300 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3301 Depth + 1); 3302 case Instruction::ExtractElement: 3303 // Look through extract element. At the moment we keep this simple and skip 3304 // tracking the specific element. But at least we might find information 3305 // valid for all elements of the vector. 3306 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3307 Depth + 1); 3308 case Instruction::Call: 3309 const auto *CI = cast<CallInst>(I); 3310 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3311 switch (IID) { 3312 default: 3313 break; 3314 case Intrinsic::maxnum: { 3315 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3316 auto isPositiveNum = [&](Value *V) { 3317 if (SignBitOnly) { 3318 // With SignBitOnly, this is tricky because the result of 3319 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3320 // a constant strictly greater than 0.0. 3321 const APFloat *C; 3322 return match(V, m_APFloat(C)) && 3323 *C > APFloat::getZero(C->getSemantics()); 3324 } 3325 3326 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3327 // maxnum can't be ordered-less-than-zero. 3328 return isKnownNeverNaN(V, TLI) && 3329 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3330 }; 3331 3332 // TODO: This could be improved. We could also check that neither operand 3333 // has its sign bit set (and at least 1 is not-NAN?). 3334 return isPositiveNum(V0) || isPositiveNum(V1); 3335 } 3336 3337 case Intrinsic::maximum: 3338 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3339 Depth + 1) || 3340 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3341 Depth + 1); 3342 case Intrinsic::minnum: 3343 case Intrinsic::minimum: 3344 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3345 Depth + 1) && 3346 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3347 Depth + 1); 3348 case Intrinsic::exp: 3349 case Intrinsic::exp2: 3350 case Intrinsic::fabs: 3351 return true; 3352 3353 case Intrinsic::sqrt: 3354 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3355 if (!SignBitOnly) 3356 return true; 3357 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3358 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3359 3360 case Intrinsic::powi: 3361 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3362 // powi(x,n) is non-negative if n is even. 3363 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3364 return true; 3365 } 3366 // TODO: This is not correct. Given that exp is an integer, here are the 3367 // ways that pow can return a negative value: 3368 // 3369 // pow(x, exp) --> negative if exp is odd and x is negative. 3370 // pow(-0, exp) --> -inf if exp is negative odd. 3371 // pow(-0, exp) --> -0 if exp is positive odd. 3372 // pow(-inf, exp) --> -0 if exp is negative odd. 3373 // pow(-inf, exp) --> -inf if exp is positive odd. 3374 // 3375 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3376 // but we must return false if x == -0. Unfortunately we do not currently 3377 // have a way of expressing this constraint. See details in 3378 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3379 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3380 Depth + 1); 3381 3382 case Intrinsic::fma: 3383 case Intrinsic::fmuladd: 3384 // x*x+y is non-negative if y is non-negative. 3385 return I->getOperand(0) == I->getOperand(1) && 3386 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3387 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3388 Depth + 1); 3389 } 3390 break; 3391 } 3392 return false; 3393 } 3394 3395 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3396 const TargetLibraryInfo *TLI) { 3397 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3398 } 3399 3400 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3401 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3402 } 3403 3404 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3405 unsigned Depth) { 3406 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3407 3408 // If we're told that infinities won't happen, assume they won't. 3409 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3410 if (FPMathOp->hasNoInfs()) 3411 return true; 3412 3413 // Handle scalar constants. 3414 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3415 return !CFP->isInfinity(); 3416 3417 if (Depth == MaxAnalysisRecursionDepth) 3418 return false; 3419 3420 if (auto *Inst = dyn_cast<Instruction>(V)) { 3421 switch (Inst->getOpcode()) { 3422 case Instruction::Select: { 3423 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3424 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3425 } 3426 case Instruction::SIToFP: 3427 case Instruction::UIToFP: { 3428 // Get width of largest magnitude integer (remove a bit if signed). 3429 // This still works for a signed minimum value because the largest FP 3430 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3431 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3432 if (Inst->getOpcode() == Instruction::SIToFP) 3433 --IntSize; 3434 3435 // If the exponent of the largest finite FP value can hold the largest 3436 // integer, the result of the cast must be finite. 3437 Type *FPTy = Inst->getType()->getScalarType(); 3438 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3439 } 3440 default: 3441 break; 3442 } 3443 } 3444 3445 // try to handle fixed width vector constants 3446 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3447 if (VFVTy && isa<Constant>(V)) { 3448 // For vectors, verify that each element is not infinity. 3449 unsigned NumElts = VFVTy->getNumElements(); 3450 for (unsigned i = 0; i != NumElts; ++i) { 3451 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3452 if (!Elt) 3453 return false; 3454 if (isa<UndefValue>(Elt)) 3455 continue; 3456 auto *CElt = dyn_cast<ConstantFP>(Elt); 3457 if (!CElt || CElt->isInfinity()) 3458 return false; 3459 } 3460 // All elements were confirmed non-infinity or undefined. 3461 return true; 3462 } 3463 3464 // was not able to prove that V never contains infinity 3465 return false; 3466 } 3467 3468 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3469 unsigned Depth) { 3470 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3471 3472 // If we're told that NaNs won't happen, assume they won't. 3473 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3474 if (FPMathOp->hasNoNaNs()) 3475 return true; 3476 3477 // Handle scalar constants. 3478 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3479 return !CFP->isNaN(); 3480 3481 if (Depth == MaxAnalysisRecursionDepth) 3482 return false; 3483 3484 if (auto *Inst = dyn_cast<Instruction>(V)) { 3485 switch (Inst->getOpcode()) { 3486 case Instruction::FAdd: 3487 case Instruction::FSub: 3488 // Adding positive and negative infinity produces NaN. 3489 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3490 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3491 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3492 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3493 3494 case Instruction::FMul: 3495 // Zero multiplied with infinity produces NaN. 3496 // FIXME: If neither side can be zero fmul never produces NaN. 3497 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3498 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3499 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3500 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3501 3502 case Instruction::FDiv: 3503 case Instruction::FRem: 3504 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3505 return false; 3506 3507 case Instruction::Select: { 3508 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3509 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3510 } 3511 case Instruction::SIToFP: 3512 case Instruction::UIToFP: 3513 return true; 3514 case Instruction::FPTrunc: 3515 case Instruction::FPExt: 3516 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3517 default: 3518 break; 3519 } 3520 } 3521 3522 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3523 switch (II->getIntrinsicID()) { 3524 case Intrinsic::canonicalize: 3525 case Intrinsic::fabs: 3526 case Intrinsic::copysign: 3527 case Intrinsic::exp: 3528 case Intrinsic::exp2: 3529 case Intrinsic::floor: 3530 case Intrinsic::ceil: 3531 case Intrinsic::trunc: 3532 case Intrinsic::rint: 3533 case Intrinsic::nearbyint: 3534 case Intrinsic::round: 3535 case Intrinsic::roundeven: 3536 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3537 case Intrinsic::sqrt: 3538 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3539 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3540 case Intrinsic::minnum: 3541 case Intrinsic::maxnum: 3542 // If either operand is not NaN, the result is not NaN. 3543 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3544 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3545 default: 3546 return false; 3547 } 3548 } 3549 3550 // Try to handle fixed width vector constants 3551 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3552 if (VFVTy && isa<Constant>(V)) { 3553 // For vectors, verify that each element is not NaN. 3554 unsigned NumElts = VFVTy->getNumElements(); 3555 for (unsigned i = 0; i != NumElts; ++i) { 3556 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3557 if (!Elt) 3558 return false; 3559 if (isa<UndefValue>(Elt)) 3560 continue; 3561 auto *CElt = dyn_cast<ConstantFP>(Elt); 3562 if (!CElt || CElt->isNaN()) 3563 return false; 3564 } 3565 // All elements were confirmed not-NaN or undefined. 3566 return true; 3567 } 3568 3569 // Was not able to prove that V never contains NaN 3570 return false; 3571 } 3572 3573 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3574 3575 // All byte-wide stores are splatable, even of arbitrary variables. 3576 if (V->getType()->isIntegerTy(8)) 3577 return V; 3578 3579 LLVMContext &Ctx = V->getContext(); 3580 3581 // Undef don't care. 3582 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3583 if (isa<UndefValue>(V)) 3584 return UndefInt8; 3585 3586 // Return Undef for zero-sized type. 3587 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3588 return UndefInt8; 3589 3590 Constant *C = dyn_cast<Constant>(V); 3591 if (!C) { 3592 // Conceptually, we could handle things like: 3593 // %a = zext i8 %X to i16 3594 // %b = shl i16 %a, 8 3595 // %c = or i16 %a, %b 3596 // but until there is an example that actually needs this, it doesn't seem 3597 // worth worrying about. 3598 return nullptr; 3599 } 3600 3601 // Handle 'null' ConstantArrayZero etc. 3602 if (C->isNullValue()) 3603 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3604 3605 // Constant floating-point values can be handled as integer values if the 3606 // corresponding integer value is "byteable". An important case is 0.0. 3607 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3608 Type *Ty = nullptr; 3609 if (CFP->getType()->isHalfTy()) 3610 Ty = Type::getInt16Ty(Ctx); 3611 else if (CFP->getType()->isFloatTy()) 3612 Ty = Type::getInt32Ty(Ctx); 3613 else if (CFP->getType()->isDoubleTy()) 3614 Ty = Type::getInt64Ty(Ctx); 3615 // Don't handle long double formats, which have strange constraints. 3616 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3617 : nullptr; 3618 } 3619 3620 // We can handle constant integers that are multiple of 8 bits. 3621 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3622 if (CI->getBitWidth() % 8 == 0) { 3623 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3624 if (!CI->getValue().isSplat(8)) 3625 return nullptr; 3626 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3627 } 3628 } 3629 3630 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3631 if (CE->getOpcode() == Instruction::IntToPtr) { 3632 auto PS = DL.getPointerSizeInBits( 3633 cast<PointerType>(CE->getType())->getAddressSpace()); 3634 return isBytewiseValue( 3635 ConstantExpr::getIntegerCast(CE->getOperand(0), 3636 Type::getIntNTy(Ctx, PS), false), 3637 DL); 3638 } 3639 } 3640 3641 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3642 if (LHS == RHS) 3643 return LHS; 3644 if (!LHS || !RHS) 3645 return nullptr; 3646 if (LHS == UndefInt8) 3647 return RHS; 3648 if (RHS == UndefInt8) 3649 return LHS; 3650 return nullptr; 3651 }; 3652 3653 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3654 Value *Val = UndefInt8; 3655 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3656 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3657 return nullptr; 3658 return Val; 3659 } 3660 3661 if (isa<ConstantAggregate>(C)) { 3662 Value *Val = UndefInt8; 3663 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3664 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3665 return nullptr; 3666 return Val; 3667 } 3668 3669 // Don't try to handle the handful of other constants. 3670 return nullptr; 3671 } 3672 3673 // This is the recursive version of BuildSubAggregate. It takes a few different 3674 // arguments. Idxs is the index within the nested struct From that we are 3675 // looking at now (which is of type IndexedType). IdxSkip is the number of 3676 // indices from Idxs that should be left out when inserting into the resulting 3677 // struct. To is the result struct built so far, new insertvalue instructions 3678 // build on that. 3679 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3680 SmallVectorImpl<unsigned> &Idxs, 3681 unsigned IdxSkip, 3682 Instruction *InsertBefore) { 3683 StructType *STy = dyn_cast<StructType>(IndexedType); 3684 if (STy) { 3685 // Save the original To argument so we can modify it 3686 Value *OrigTo = To; 3687 // General case, the type indexed by Idxs is a struct 3688 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3689 // Process each struct element recursively 3690 Idxs.push_back(i); 3691 Value *PrevTo = To; 3692 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3693 InsertBefore); 3694 Idxs.pop_back(); 3695 if (!To) { 3696 // Couldn't find any inserted value for this index? Cleanup 3697 while (PrevTo != OrigTo) { 3698 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3699 PrevTo = Del->getAggregateOperand(); 3700 Del->eraseFromParent(); 3701 } 3702 // Stop processing elements 3703 break; 3704 } 3705 } 3706 // If we successfully found a value for each of our subaggregates 3707 if (To) 3708 return To; 3709 } 3710 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3711 // the struct's elements had a value that was inserted directly. In the latter 3712 // case, perhaps we can't determine each of the subelements individually, but 3713 // we might be able to find the complete struct somewhere. 3714 3715 // Find the value that is at that particular spot 3716 Value *V = FindInsertedValue(From, Idxs); 3717 3718 if (!V) 3719 return nullptr; 3720 3721 // Insert the value in the new (sub) aggregate 3722 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3723 "tmp", InsertBefore); 3724 } 3725 3726 // This helper takes a nested struct and extracts a part of it (which is again a 3727 // struct) into a new value. For example, given the struct: 3728 // { a, { b, { c, d }, e } } 3729 // and the indices "1, 1" this returns 3730 // { c, d }. 3731 // 3732 // It does this by inserting an insertvalue for each element in the resulting 3733 // struct, as opposed to just inserting a single struct. This will only work if 3734 // each of the elements of the substruct are known (ie, inserted into From by an 3735 // insertvalue instruction somewhere). 3736 // 3737 // All inserted insertvalue instructions are inserted before InsertBefore 3738 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3739 Instruction *InsertBefore) { 3740 assert(InsertBefore && "Must have someplace to insert!"); 3741 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3742 idx_range); 3743 Value *To = UndefValue::get(IndexedType); 3744 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3745 unsigned IdxSkip = Idxs.size(); 3746 3747 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3748 } 3749 3750 /// Given an aggregate and a sequence of indices, see if the scalar value 3751 /// indexed is already around as a register, for example if it was inserted 3752 /// directly into the aggregate. 3753 /// 3754 /// If InsertBefore is not null, this function will duplicate (modified) 3755 /// insertvalues when a part of a nested struct is extracted. 3756 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3757 Instruction *InsertBefore) { 3758 // Nothing to index? Just return V then (this is useful at the end of our 3759 // recursion). 3760 if (idx_range.empty()) 3761 return V; 3762 // We have indices, so V should have an indexable type. 3763 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3764 "Not looking at a struct or array?"); 3765 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3766 "Invalid indices for type?"); 3767 3768 if (Constant *C = dyn_cast<Constant>(V)) { 3769 C = C->getAggregateElement(idx_range[0]); 3770 if (!C) return nullptr; 3771 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3772 } 3773 3774 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3775 // Loop the indices for the insertvalue instruction in parallel with the 3776 // requested indices 3777 const unsigned *req_idx = idx_range.begin(); 3778 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3779 i != e; ++i, ++req_idx) { 3780 if (req_idx == idx_range.end()) { 3781 // We can't handle this without inserting insertvalues 3782 if (!InsertBefore) 3783 return nullptr; 3784 3785 // The requested index identifies a part of a nested aggregate. Handle 3786 // this specially. For example, 3787 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3788 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3789 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3790 // This can be changed into 3791 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3792 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3793 // which allows the unused 0,0 element from the nested struct to be 3794 // removed. 3795 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3796 InsertBefore); 3797 } 3798 3799 // This insert value inserts something else than what we are looking for. 3800 // See if the (aggregate) value inserted into has the value we are 3801 // looking for, then. 3802 if (*req_idx != *i) 3803 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3804 InsertBefore); 3805 } 3806 // If we end up here, the indices of the insertvalue match with those 3807 // requested (though possibly only partially). Now we recursively look at 3808 // the inserted value, passing any remaining indices. 3809 return FindInsertedValue(I->getInsertedValueOperand(), 3810 makeArrayRef(req_idx, idx_range.end()), 3811 InsertBefore); 3812 } 3813 3814 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3815 // If we're extracting a value from an aggregate that was extracted from 3816 // something else, we can extract from that something else directly instead. 3817 // However, we will need to chain I's indices with the requested indices. 3818 3819 // Calculate the number of indices required 3820 unsigned size = I->getNumIndices() + idx_range.size(); 3821 // Allocate some space to put the new indices in 3822 SmallVector<unsigned, 5> Idxs; 3823 Idxs.reserve(size); 3824 // Add indices from the extract value instruction 3825 Idxs.append(I->idx_begin(), I->idx_end()); 3826 3827 // Add requested indices 3828 Idxs.append(idx_range.begin(), idx_range.end()); 3829 3830 assert(Idxs.size() == size 3831 && "Number of indices added not correct?"); 3832 3833 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3834 } 3835 // Otherwise, we don't know (such as, extracting from a function return value 3836 // or load instruction) 3837 return nullptr; 3838 } 3839 3840 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3841 unsigned CharSize) { 3842 // Make sure the GEP has exactly three arguments. 3843 if (GEP->getNumOperands() != 3) 3844 return false; 3845 3846 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3847 // CharSize. 3848 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3849 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3850 return false; 3851 3852 // Check to make sure that the first operand of the GEP is an integer and 3853 // has value 0 so that we are sure we're indexing into the initializer. 3854 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3855 if (!FirstIdx || !FirstIdx->isZero()) 3856 return false; 3857 3858 return true; 3859 } 3860 3861 bool llvm::getConstantDataArrayInfo(const Value *V, 3862 ConstantDataArraySlice &Slice, 3863 unsigned ElementSize, uint64_t Offset) { 3864 assert(V); 3865 3866 // Look through bitcast instructions and geps. 3867 V = V->stripPointerCasts(); 3868 3869 // If the value is a GEP instruction or constant expression, treat it as an 3870 // offset. 3871 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3872 // The GEP operator should be based on a pointer to string constant, and is 3873 // indexing into the string constant. 3874 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3875 return false; 3876 3877 // If the second index isn't a ConstantInt, then this is a variable index 3878 // into the array. If this occurs, we can't say anything meaningful about 3879 // the string. 3880 uint64_t StartIdx = 0; 3881 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3882 StartIdx = CI->getZExtValue(); 3883 else 3884 return false; 3885 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3886 StartIdx + Offset); 3887 } 3888 3889 // The GEP instruction, constant or instruction, must reference a global 3890 // variable that is a constant and is initialized. The referenced constant 3891 // initializer is the array that we'll use for optimization. 3892 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3893 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3894 return false; 3895 3896 const ConstantDataArray *Array; 3897 ArrayType *ArrayTy; 3898 if (GV->getInitializer()->isNullValue()) { 3899 Type *GVTy = GV->getValueType(); 3900 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3901 // A zeroinitializer for the array; there is no ConstantDataArray. 3902 Array = nullptr; 3903 } else { 3904 const DataLayout &DL = GV->getParent()->getDataLayout(); 3905 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3906 uint64_t Length = SizeInBytes / (ElementSize / 8); 3907 if (Length <= Offset) 3908 return false; 3909 3910 Slice.Array = nullptr; 3911 Slice.Offset = 0; 3912 Slice.Length = Length - Offset; 3913 return true; 3914 } 3915 } else { 3916 // This must be a ConstantDataArray. 3917 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3918 if (!Array) 3919 return false; 3920 ArrayTy = Array->getType(); 3921 } 3922 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3923 return false; 3924 3925 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3926 if (Offset > NumElts) 3927 return false; 3928 3929 Slice.Array = Array; 3930 Slice.Offset = Offset; 3931 Slice.Length = NumElts - Offset; 3932 return true; 3933 } 3934 3935 /// This function computes the length of a null-terminated C string pointed to 3936 /// by V. If successful, it returns true and returns the string in Str. 3937 /// If unsuccessful, it returns false. 3938 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3939 uint64_t Offset, bool TrimAtNul) { 3940 ConstantDataArraySlice Slice; 3941 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3942 return false; 3943 3944 if (Slice.Array == nullptr) { 3945 if (TrimAtNul) { 3946 Str = StringRef(); 3947 return true; 3948 } 3949 if (Slice.Length == 1) { 3950 Str = StringRef("", 1); 3951 return true; 3952 } 3953 // We cannot instantiate a StringRef as we do not have an appropriate string 3954 // of 0s at hand. 3955 return false; 3956 } 3957 3958 // Start out with the entire array in the StringRef. 3959 Str = Slice.Array->getAsString(); 3960 // Skip over 'offset' bytes. 3961 Str = Str.substr(Slice.Offset); 3962 3963 if (TrimAtNul) { 3964 // Trim off the \0 and anything after it. If the array is not nul 3965 // terminated, we just return the whole end of string. The client may know 3966 // some other way that the string is length-bound. 3967 Str = Str.substr(0, Str.find('\0')); 3968 } 3969 return true; 3970 } 3971 3972 // These next two are very similar to the above, but also look through PHI 3973 // nodes. 3974 // TODO: See if we can integrate these two together. 3975 3976 /// If we can compute the length of the string pointed to by 3977 /// the specified pointer, return 'len+1'. If we can't, return 0. 3978 static uint64_t GetStringLengthH(const Value *V, 3979 SmallPtrSetImpl<const PHINode*> &PHIs, 3980 unsigned CharSize) { 3981 // Look through noop bitcast instructions. 3982 V = V->stripPointerCasts(); 3983 3984 // If this is a PHI node, there are two cases: either we have already seen it 3985 // or we haven't. 3986 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3987 if (!PHIs.insert(PN).second) 3988 return ~0ULL; // already in the set. 3989 3990 // If it was new, see if all the input strings are the same length. 3991 uint64_t LenSoFar = ~0ULL; 3992 for (Value *IncValue : PN->incoming_values()) { 3993 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3994 if (Len == 0) return 0; // Unknown length -> unknown. 3995 3996 if (Len == ~0ULL) continue; 3997 3998 if (Len != LenSoFar && LenSoFar != ~0ULL) 3999 return 0; // Disagree -> unknown. 4000 LenSoFar = Len; 4001 } 4002 4003 // Success, all agree. 4004 return LenSoFar; 4005 } 4006 4007 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4008 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4009 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4010 if (Len1 == 0) return 0; 4011 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4012 if (Len2 == 0) return 0; 4013 if (Len1 == ~0ULL) return Len2; 4014 if (Len2 == ~0ULL) return Len1; 4015 if (Len1 != Len2) return 0; 4016 return Len1; 4017 } 4018 4019 // Otherwise, see if we can read the string. 4020 ConstantDataArraySlice Slice; 4021 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4022 return 0; 4023 4024 if (Slice.Array == nullptr) 4025 return 1; 4026 4027 // Search for nul characters 4028 unsigned NullIndex = 0; 4029 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4030 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4031 break; 4032 } 4033 4034 return NullIndex + 1; 4035 } 4036 4037 /// If we can compute the length of the string pointed to by 4038 /// the specified pointer, return 'len+1'. If we can't, return 0. 4039 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4040 if (!V->getType()->isPointerTy()) 4041 return 0; 4042 4043 SmallPtrSet<const PHINode*, 32> PHIs; 4044 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4045 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4046 // an empty string as a length. 4047 return Len == ~0ULL ? 1 : Len; 4048 } 4049 4050 const Value * 4051 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4052 bool MustPreserveNullness) { 4053 assert(Call && 4054 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4055 if (const Value *RV = Call->getReturnedArgOperand()) 4056 return RV; 4057 // This can be used only as a aliasing property. 4058 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4059 Call, MustPreserveNullness)) 4060 return Call->getArgOperand(0); 4061 return nullptr; 4062 } 4063 4064 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4065 const CallBase *Call, bool MustPreserveNullness) { 4066 switch (Call->getIntrinsicID()) { 4067 case Intrinsic::launder_invariant_group: 4068 case Intrinsic::strip_invariant_group: 4069 case Intrinsic::aarch64_irg: 4070 case Intrinsic::aarch64_tagp: 4071 return true; 4072 case Intrinsic::ptrmask: 4073 return !MustPreserveNullness; 4074 default: 4075 return false; 4076 } 4077 } 4078 4079 /// \p PN defines a loop-variant pointer to an object. Check if the 4080 /// previous iteration of the loop was referring to the same object as \p PN. 4081 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4082 const LoopInfo *LI) { 4083 // Find the loop-defined value. 4084 Loop *L = LI->getLoopFor(PN->getParent()); 4085 if (PN->getNumIncomingValues() != 2) 4086 return true; 4087 4088 // Find the value from previous iteration. 4089 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4090 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4091 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4092 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4093 return true; 4094 4095 // If a new pointer is loaded in the loop, the pointer references a different 4096 // object in every iteration. E.g.: 4097 // for (i) 4098 // int *p = a[i]; 4099 // ... 4100 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4101 if (!L->isLoopInvariant(Load->getPointerOperand())) 4102 return false; 4103 return true; 4104 } 4105 4106 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4107 if (!V->getType()->isPointerTy()) 4108 return V; 4109 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4110 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4111 V = GEP->getPointerOperand(); 4112 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4113 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4114 V = cast<Operator>(V)->getOperand(0); 4115 if (!V->getType()->isPointerTy()) 4116 return V; 4117 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4118 if (GA->isInterposable()) 4119 return V; 4120 V = GA->getAliasee(); 4121 } else { 4122 if (auto *PHI = dyn_cast<PHINode>(V)) { 4123 // Look through single-arg phi nodes created by LCSSA. 4124 if (PHI->getNumIncomingValues() == 1) { 4125 V = PHI->getIncomingValue(0); 4126 continue; 4127 } 4128 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4129 // CaptureTracking can know about special capturing properties of some 4130 // intrinsics like launder.invariant.group, that can't be expressed with 4131 // the attributes, but have properties like returning aliasing pointer. 4132 // Because some analysis may assume that nocaptured pointer is not 4133 // returned from some special intrinsic (because function would have to 4134 // be marked with returns attribute), it is crucial to use this function 4135 // because it should be in sync with CaptureTracking. Not using it may 4136 // cause weird miscompilations where 2 aliasing pointers are assumed to 4137 // noalias. 4138 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4139 V = RP; 4140 continue; 4141 } 4142 } 4143 4144 return V; 4145 } 4146 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4147 } 4148 return V; 4149 } 4150 4151 void llvm::getUnderlyingObjects(const Value *V, 4152 SmallVectorImpl<const Value *> &Objects, 4153 LoopInfo *LI, unsigned MaxLookup) { 4154 SmallPtrSet<const Value *, 4> Visited; 4155 SmallVector<const Value *, 4> Worklist; 4156 Worklist.push_back(V); 4157 do { 4158 const Value *P = Worklist.pop_back_val(); 4159 P = getUnderlyingObject(P, MaxLookup); 4160 4161 if (!Visited.insert(P).second) 4162 continue; 4163 4164 if (auto *SI = dyn_cast<SelectInst>(P)) { 4165 Worklist.push_back(SI->getTrueValue()); 4166 Worklist.push_back(SI->getFalseValue()); 4167 continue; 4168 } 4169 4170 if (auto *PN = dyn_cast<PHINode>(P)) { 4171 // If this PHI changes the underlying object in every iteration of the 4172 // loop, don't look through it. Consider: 4173 // int **A; 4174 // for (i) { 4175 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4176 // Curr = A[i]; 4177 // *Prev, *Curr; 4178 // 4179 // Prev is tracking Curr one iteration behind so they refer to different 4180 // underlying objects. 4181 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4182 isSameUnderlyingObjectInLoop(PN, LI)) 4183 for (Value *IncValue : PN->incoming_values()) 4184 Worklist.push_back(IncValue); 4185 continue; 4186 } 4187 4188 Objects.push_back(P); 4189 } while (!Worklist.empty()); 4190 } 4191 4192 /// This is the function that does the work of looking through basic 4193 /// ptrtoint+arithmetic+inttoptr sequences. 4194 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4195 do { 4196 if (const Operator *U = dyn_cast<Operator>(V)) { 4197 // If we find a ptrtoint, we can transfer control back to the 4198 // regular getUnderlyingObjectFromInt. 4199 if (U->getOpcode() == Instruction::PtrToInt) 4200 return U->getOperand(0); 4201 // If we find an add of a constant, a multiplied value, or a phi, it's 4202 // likely that the other operand will lead us to the base 4203 // object. We don't have to worry about the case where the 4204 // object address is somehow being computed by the multiply, 4205 // because our callers only care when the result is an 4206 // identifiable object. 4207 if (U->getOpcode() != Instruction::Add || 4208 (!isa<ConstantInt>(U->getOperand(1)) && 4209 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4210 !isa<PHINode>(U->getOperand(1)))) 4211 return V; 4212 V = U->getOperand(0); 4213 } else { 4214 return V; 4215 } 4216 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4217 } while (true); 4218 } 4219 4220 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4221 /// ptrtoint+arithmetic+inttoptr sequences. 4222 /// It returns false if unidentified object is found in getUnderlyingObjects. 4223 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4224 SmallVectorImpl<Value *> &Objects) { 4225 SmallPtrSet<const Value *, 16> Visited; 4226 SmallVector<const Value *, 4> Working(1, V); 4227 do { 4228 V = Working.pop_back_val(); 4229 4230 SmallVector<const Value *, 4> Objs; 4231 getUnderlyingObjects(V, Objs); 4232 4233 for (const Value *V : Objs) { 4234 if (!Visited.insert(V).second) 4235 continue; 4236 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4237 const Value *O = 4238 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4239 if (O->getType()->isPointerTy()) { 4240 Working.push_back(O); 4241 continue; 4242 } 4243 } 4244 // If getUnderlyingObjects fails to find an identifiable object, 4245 // getUnderlyingObjectsForCodeGen also fails for safety. 4246 if (!isIdentifiedObject(V)) { 4247 Objects.clear(); 4248 return false; 4249 } 4250 Objects.push_back(const_cast<Value *>(V)); 4251 } 4252 } while (!Working.empty()); 4253 return true; 4254 } 4255 4256 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4257 AllocaInst *Result = nullptr; 4258 SmallPtrSet<Value *, 4> Visited; 4259 SmallVector<Value *, 4> Worklist; 4260 4261 auto AddWork = [&](Value *V) { 4262 if (Visited.insert(V).second) 4263 Worklist.push_back(V); 4264 }; 4265 4266 AddWork(V); 4267 do { 4268 V = Worklist.pop_back_val(); 4269 assert(Visited.count(V)); 4270 4271 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4272 if (Result && Result != AI) 4273 return nullptr; 4274 Result = AI; 4275 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4276 AddWork(CI->getOperand(0)); 4277 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4278 for (Value *IncValue : PN->incoming_values()) 4279 AddWork(IncValue); 4280 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4281 AddWork(SI->getTrueValue()); 4282 AddWork(SI->getFalseValue()); 4283 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4284 if (OffsetZero && !GEP->hasAllZeroIndices()) 4285 return nullptr; 4286 AddWork(GEP->getPointerOperand()); 4287 } else { 4288 return nullptr; 4289 } 4290 } while (!Worklist.empty()); 4291 4292 return Result; 4293 } 4294 4295 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4296 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4297 for (const User *U : V->users()) { 4298 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4299 if (!II) 4300 return false; 4301 4302 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4303 continue; 4304 4305 if (AllowDroppable && II->isDroppable()) 4306 continue; 4307 4308 return false; 4309 } 4310 return true; 4311 } 4312 4313 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4314 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4315 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4316 } 4317 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4318 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4319 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4320 } 4321 4322 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4323 if (!LI.isUnordered()) 4324 return true; 4325 const Function &F = *LI.getFunction(); 4326 // Speculative load may create a race that did not exist in the source. 4327 return F.hasFnAttribute(Attribute::SanitizeThread) || 4328 // Speculative load may load data from dirty regions. 4329 F.hasFnAttribute(Attribute::SanitizeAddress) || 4330 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4331 } 4332 4333 4334 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4335 const Instruction *CtxI, 4336 const DominatorTree *DT) { 4337 const Operator *Inst = dyn_cast<Operator>(V); 4338 if (!Inst) 4339 return false; 4340 4341 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4342 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4343 if (C->canTrap()) 4344 return false; 4345 4346 switch (Inst->getOpcode()) { 4347 default: 4348 return true; 4349 case Instruction::UDiv: 4350 case Instruction::URem: { 4351 // x / y is undefined if y == 0. 4352 const APInt *V; 4353 if (match(Inst->getOperand(1), m_APInt(V))) 4354 return *V != 0; 4355 return false; 4356 } 4357 case Instruction::SDiv: 4358 case Instruction::SRem: { 4359 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4360 const APInt *Numerator, *Denominator; 4361 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4362 return false; 4363 // We cannot hoist this division if the denominator is 0. 4364 if (*Denominator == 0) 4365 return false; 4366 // It's safe to hoist if the denominator is not 0 or -1. 4367 if (*Denominator != -1) 4368 return true; 4369 // At this point we know that the denominator is -1. It is safe to hoist as 4370 // long we know that the numerator is not INT_MIN. 4371 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4372 return !Numerator->isMinSignedValue(); 4373 // The numerator *might* be MinSignedValue. 4374 return false; 4375 } 4376 case Instruction::Load: { 4377 const LoadInst *LI = cast<LoadInst>(Inst); 4378 if (mustSuppressSpeculation(*LI)) 4379 return false; 4380 const DataLayout &DL = LI->getModule()->getDataLayout(); 4381 return isDereferenceableAndAlignedPointer( 4382 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4383 DL, CtxI, DT); 4384 } 4385 case Instruction::Call: { 4386 auto *CI = cast<const CallInst>(Inst); 4387 const Function *Callee = CI->getCalledFunction(); 4388 4389 // The called function could have undefined behavior or side-effects, even 4390 // if marked readnone nounwind. 4391 return Callee && Callee->isSpeculatable(); 4392 } 4393 case Instruction::VAArg: 4394 case Instruction::Alloca: 4395 case Instruction::Invoke: 4396 case Instruction::CallBr: 4397 case Instruction::PHI: 4398 case Instruction::Store: 4399 case Instruction::Ret: 4400 case Instruction::Br: 4401 case Instruction::IndirectBr: 4402 case Instruction::Switch: 4403 case Instruction::Unreachable: 4404 case Instruction::Fence: 4405 case Instruction::AtomicRMW: 4406 case Instruction::AtomicCmpXchg: 4407 case Instruction::LandingPad: 4408 case Instruction::Resume: 4409 case Instruction::CatchSwitch: 4410 case Instruction::CatchPad: 4411 case Instruction::CatchRet: 4412 case Instruction::CleanupPad: 4413 case Instruction::CleanupRet: 4414 return false; // Misc instructions which have effects 4415 } 4416 } 4417 4418 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4419 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4420 } 4421 4422 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4423 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4424 switch (OR) { 4425 case ConstantRange::OverflowResult::MayOverflow: 4426 return OverflowResult::MayOverflow; 4427 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4428 return OverflowResult::AlwaysOverflowsLow; 4429 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4430 return OverflowResult::AlwaysOverflowsHigh; 4431 case ConstantRange::OverflowResult::NeverOverflows: 4432 return OverflowResult::NeverOverflows; 4433 } 4434 llvm_unreachable("Unknown OverflowResult"); 4435 } 4436 4437 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4438 static ConstantRange computeConstantRangeIncludingKnownBits( 4439 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4440 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4441 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4442 KnownBits Known = computeKnownBits( 4443 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4444 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4445 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4446 ConstantRange::PreferredRangeType RangeType = 4447 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4448 return CR1.intersectWith(CR2, RangeType); 4449 } 4450 4451 OverflowResult llvm::computeOverflowForUnsignedMul( 4452 const Value *LHS, const Value *RHS, const DataLayout &DL, 4453 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4454 bool UseInstrInfo) { 4455 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4456 nullptr, UseInstrInfo); 4457 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4458 nullptr, UseInstrInfo); 4459 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4460 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4461 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4462 } 4463 4464 OverflowResult 4465 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4466 const DataLayout &DL, AssumptionCache *AC, 4467 const Instruction *CxtI, 4468 const DominatorTree *DT, bool UseInstrInfo) { 4469 // Multiplying n * m significant bits yields a result of n + m significant 4470 // bits. If the total number of significant bits does not exceed the 4471 // result bit width (minus 1), there is no overflow. 4472 // This means if we have enough leading sign bits in the operands 4473 // we can guarantee that the result does not overflow. 4474 // Ref: "Hacker's Delight" by Henry Warren 4475 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4476 4477 // Note that underestimating the number of sign bits gives a more 4478 // conservative answer. 4479 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4480 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4481 4482 // First handle the easy case: if we have enough sign bits there's 4483 // definitely no overflow. 4484 if (SignBits > BitWidth + 1) 4485 return OverflowResult::NeverOverflows; 4486 4487 // There are two ambiguous cases where there can be no overflow: 4488 // SignBits == BitWidth + 1 and 4489 // SignBits == BitWidth 4490 // The second case is difficult to check, therefore we only handle the 4491 // first case. 4492 if (SignBits == BitWidth + 1) { 4493 // It overflows only when both arguments are negative and the true 4494 // product is exactly the minimum negative number. 4495 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4496 // For simplicity we just check if at least one side is not negative. 4497 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4498 nullptr, UseInstrInfo); 4499 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4500 nullptr, UseInstrInfo); 4501 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4502 return OverflowResult::NeverOverflows; 4503 } 4504 return OverflowResult::MayOverflow; 4505 } 4506 4507 OverflowResult llvm::computeOverflowForUnsignedAdd( 4508 const Value *LHS, const Value *RHS, const DataLayout &DL, 4509 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4510 bool UseInstrInfo) { 4511 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4512 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4513 nullptr, UseInstrInfo); 4514 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4515 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4516 nullptr, UseInstrInfo); 4517 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4518 } 4519 4520 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4521 const Value *RHS, 4522 const AddOperator *Add, 4523 const DataLayout &DL, 4524 AssumptionCache *AC, 4525 const Instruction *CxtI, 4526 const DominatorTree *DT) { 4527 if (Add && Add->hasNoSignedWrap()) { 4528 return OverflowResult::NeverOverflows; 4529 } 4530 4531 // If LHS and RHS each have at least two sign bits, the addition will look 4532 // like 4533 // 4534 // XX..... + 4535 // YY..... 4536 // 4537 // If the carry into the most significant position is 0, X and Y can't both 4538 // be 1 and therefore the carry out of the addition is also 0. 4539 // 4540 // If the carry into the most significant position is 1, X and Y can't both 4541 // be 0 and therefore the carry out of the addition is also 1. 4542 // 4543 // Since the carry into the most significant position is always equal to 4544 // the carry out of the addition, there is no signed overflow. 4545 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4546 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4547 return OverflowResult::NeverOverflows; 4548 4549 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4550 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4551 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4552 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4553 OverflowResult OR = 4554 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4555 if (OR != OverflowResult::MayOverflow) 4556 return OR; 4557 4558 // The remaining code needs Add to be available. Early returns if not so. 4559 if (!Add) 4560 return OverflowResult::MayOverflow; 4561 4562 // If the sign of Add is the same as at least one of the operands, this add 4563 // CANNOT overflow. If this can be determined from the known bits of the 4564 // operands the above signedAddMayOverflow() check will have already done so. 4565 // The only other way to improve on the known bits is from an assumption, so 4566 // call computeKnownBitsFromAssume() directly. 4567 bool LHSOrRHSKnownNonNegative = 4568 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4569 bool LHSOrRHSKnownNegative = 4570 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4571 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4572 KnownBits AddKnown(LHSRange.getBitWidth()); 4573 computeKnownBitsFromAssume( 4574 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4575 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4576 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4577 return OverflowResult::NeverOverflows; 4578 } 4579 4580 return OverflowResult::MayOverflow; 4581 } 4582 4583 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4584 const Value *RHS, 4585 const DataLayout &DL, 4586 AssumptionCache *AC, 4587 const Instruction *CxtI, 4588 const DominatorTree *DT) { 4589 // Checking for conditions implied by dominating conditions may be expensive. 4590 // Limit it to usub_with_overflow calls for now. 4591 if (match(CxtI, 4592 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4593 if (auto C = 4594 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4595 if (*C) 4596 return OverflowResult::NeverOverflows; 4597 return OverflowResult::AlwaysOverflowsLow; 4598 } 4599 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4600 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4601 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4602 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4603 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4604 } 4605 4606 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4607 const Value *RHS, 4608 const DataLayout &DL, 4609 AssumptionCache *AC, 4610 const Instruction *CxtI, 4611 const DominatorTree *DT) { 4612 // If LHS and RHS each have at least two sign bits, the subtraction 4613 // cannot overflow. 4614 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4615 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4616 return OverflowResult::NeverOverflows; 4617 4618 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4619 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4620 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4621 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4622 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4623 } 4624 4625 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4626 const DominatorTree &DT) { 4627 SmallVector<const BranchInst *, 2> GuardingBranches; 4628 SmallVector<const ExtractValueInst *, 2> Results; 4629 4630 for (const User *U : WO->users()) { 4631 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4632 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4633 4634 if (EVI->getIndices()[0] == 0) 4635 Results.push_back(EVI); 4636 else { 4637 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4638 4639 for (const auto *U : EVI->users()) 4640 if (const auto *B = dyn_cast<BranchInst>(U)) { 4641 assert(B->isConditional() && "How else is it using an i1?"); 4642 GuardingBranches.push_back(B); 4643 } 4644 } 4645 } else { 4646 // We are using the aggregate directly in a way we don't want to analyze 4647 // here (storing it to a global, say). 4648 return false; 4649 } 4650 } 4651 4652 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4653 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4654 if (!NoWrapEdge.isSingleEdge()) 4655 return false; 4656 4657 // Check if all users of the add are provably no-wrap. 4658 for (const auto *Result : Results) { 4659 // If the extractvalue itself is not executed on overflow, the we don't 4660 // need to check each use separately, since domination is transitive. 4661 if (DT.dominates(NoWrapEdge, Result->getParent())) 4662 continue; 4663 4664 for (auto &RU : Result->uses()) 4665 if (!DT.dominates(NoWrapEdge, RU)) 4666 return false; 4667 } 4668 4669 return true; 4670 }; 4671 4672 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4673 } 4674 4675 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4676 // See whether I has flags that may create poison 4677 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4678 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4679 return true; 4680 } 4681 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4682 if (ExactOp->isExact()) 4683 return true; 4684 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4685 auto FMF = FP->getFastMathFlags(); 4686 if (FMF.noNaNs() || FMF.noInfs()) 4687 return true; 4688 } 4689 4690 unsigned Opcode = Op->getOpcode(); 4691 4692 // Check whether opcode is a poison/undef-generating operation 4693 switch (Opcode) { 4694 case Instruction::Shl: 4695 case Instruction::AShr: 4696 case Instruction::LShr: { 4697 // Shifts return poison if shiftwidth is larger than the bitwidth. 4698 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4699 SmallVector<Constant *, 4> ShiftAmounts; 4700 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4701 unsigned NumElts = FVTy->getNumElements(); 4702 for (unsigned i = 0; i < NumElts; ++i) 4703 ShiftAmounts.push_back(C->getAggregateElement(i)); 4704 } else if (isa<ScalableVectorType>(C->getType())) 4705 return true; // Can't tell, just return true to be safe 4706 else 4707 ShiftAmounts.push_back(C); 4708 4709 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4710 auto *CI = dyn_cast<ConstantInt>(C); 4711 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4712 }); 4713 return !Safe; 4714 } 4715 return true; 4716 } 4717 case Instruction::FPToSI: 4718 case Instruction::FPToUI: 4719 // fptosi/ui yields poison if the resulting value does not fit in the 4720 // destination type. 4721 return true; 4722 case Instruction::Call: 4723 case Instruction::CallBr: 4724 case Instruction::Invoke: { 4725 const auto *CB = cast<CallBase>(Op); 4726 return !CB->hasRetAttr(Attribute::NoUndef); 4727 } 4728 case Instruction::InsertElement: 4729 case Instruction::ExtractElement: { 4730 // If index exceeds the length of the vector, it returns poison 4731 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4732 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4733 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4734 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4735 return true; 4736 return false; 4737 } 4738 case Instruction::ShuffleVector: { 4739 // shufflevector may return undef. 4740 if (PoisonOnly) 4741 return false; 4742 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4743 ? cast<ConstantExpr>(Op)->getShuffleMask() 4744 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4745 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4746 } 4747 case Instruction::FNeg: 4748 case Instruction::PHI: 4749 case Instruction::Select: 4750 case Instruction::URem: 4751 case Instruction::SRem: 4752 case Instruction::ExtractValue: 4753 case Instruction::InsertValue: 4754 case Instruction::Freeze: 4755 case Instruction::ICmp: 4756 case Instruction::FCmp: 4757 return false; 4758 case Instruction::GetElementPtr: { 4759 const auto *GEP = cast<GEPOperator>(Op); 4760 return GEP->isInBounds(); 4761 } 4762 default: { 4763 const auto *CE = dyn_cast<ConstantExpr>(Op); 4764 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4765 return false; 4766 else if (Instruction::isBinaryOp(Opcode)) 4767 return false; 4768 // Be conservative and return true. 4769 return true; 4770 } 4771 } 4772 } 4773 4774 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4775 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4776 } 4777 4778 bool llvm::canCreatePoison(const Operator *Op) { 4779 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4780 } 4781 4782 static bool programUndefinedIfUndefOrPoison(const Value *V, 4783 bool PoisonOnly); 4784 4785 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4786 AssumptionCache *AC, 4787 const Instruction *CtxI, 4788 const DominatorTree *DT, 4789 unsigned Depth, bool PoisonOnly) { 4790 if (Depth >= MaxAnalysisRecursionDepth) 4791 return false; 4792 4793 if (isa<MetadataAsValue>(V)) 4794 return false; 4795 4796 if (const auto *A = dyn_cast<Argument>(V)) { 4797 if (A->hasAttribute(Attribute::NoUndef)) 4798 return true; 4799 } 4800 4801 if (auto *C = dyn_cast<Constant>(V)) { 4802 if (isa<UndefValue>(C)) 4803 return PoisonOnly; 4804 4805 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4806 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4807 return true; 4808 4809 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4810 return (PoisonOnly || !C->containsUndefElement()) && 4811 !C->containsConstantExpression(); 4812 } 4813 4814 // Strip cast operations from a pointer value. 4815 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4816 // inbounds with zero offset. To guarantee that the result isn't poison, the 4817 // stripped pointer is checked as it has to be pointing into an allocated 4818 // object or be null `null` to ensure `inbounds` getelement pointers with a 4819 // zero offset could not produce poison. 4820 // It can strip off addrspacecast that do not change bit representation as 4821 // well. We believe that such addrspacecast is equivalent to no-op. 4822 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4823 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4824 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4825 return true; 4826 4827 auto OpCheck = [&](const Value *V) { 4828 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4829 PoisonOnly); 4830 }; 4831 4832 if (auto *Opr = dyn_cast<Operator>(V)) { 4833 // If the value is a freeze instruction, then it can never 4834 // be undef or poison. 4835 if (isa<FreezeInst>(V)) 4836 return true; 4837 4838 if (const auto *CB = dyn_cast<CallBase>(V)) { 4839 if (CB->hasRetAttr(Attribute::NoUndef)) 4840 return true; 4841 } 4842 4843 if (const auto *PN = dyn_cast<PHINode>(V)) { 4844 unsigned Num = PN->getNumIncomingValues(); 4845 bool IsWellDefined = true; 4846 for (unsigned i = 0; i < Num; ++i) { 4847 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4848 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4849 DT, Depth + 1, PoisonOnly)) { 4850 IsWellDefined = false; 4851 break; 4852 } 4853 } 4854 if (IsWellDefined) 4855 return true; 4856 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4857 return true; 4858 } 4859 4860 if (auto *I = dyn_cast<LoadInst>(V)) 4861 if (I->getMetadata(LLVMContext::MD_noundef)) 4862 return true; 4863 4864 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4865 return true; 4866 4867 // CxtI may be null or a cloned instruction. 4868 if (!CtxI || !CtxI->getParent() || !DT) 4869 return false; 4870 4871 auto *DNode = DT->getNode(CtxI->getParent()); 4872 if (!DNode) 4873 // Unreachable block 4874 return false; 4875 4876 // If V is used as a branch condition before reaching CtxI, V cannot be 4877 // undef or poison. 4878 // br V, BB1, BB2 4879 // BB1: 4880 // CtxI ; V cannot be undef or poison here 4881 auto *Dominator = DNode->getIDom(); 4882 while (Dominator) { 4883 auto *TI = Dominator->getBlock()->getTerminator(); 4884 4885 Value *Cond = nullptr; 4886 if (auto BI = dyn_cast<BranchInst>(TI)) { 4887 if (BI->isConditional()) 4888 Cond = BI->getCondition(); 4889 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4890 Cond = SI->getCondition(); 4891 } 4892 4893 if (Cond) { 4894 if (Cond == V) 4895 return true; 4896 else if (PoisonOnly && isa<Operator>(Cond)) { 4897 // For poison, we can analyze further 4898 auto *Opr = cast<Operator>(Cond); 4899 if (propagatesPoison(Opr) && 4900 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4901 return true; 4902 } 4903 } 4904 4905 Dominator = Dominator->getIDom(); 4906 } 4907 4908 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4909 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4910 return true; 4911 4912 return false; 4913 } 4914 4915 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4916 const Instruction *CtxI, 4917 const DominatorTree *DT, 4918 unsigned Depth) { 4919 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4920 } 4921 4922 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4923 const Instruction *CtxI, 4924 const DominatorTree *DT, unsigned Depth) { 4925 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4926 } 4927 4928 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4929 const DataLayout &DL, 4930 AssumptionCache *AC, 4931 const Instruction *CxtI, 4932 const DominatorTree *DT) { 4933 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4934 Add, DL, AC, CxtI, DT); 4935 } 4936 4937 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4938 const Value *RHS, 4939 const DataLayout &DL, 4940 AssumptionCache *AC, 4941 const Instruction *CxtI, 4942 const DominatorTree *DT) { 4943 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4944 } 4945 4946 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4947 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4948 // of time because it's possible for another thread to interfere with it for an 4949 // arbitrary length of time, but programs aren't allowed to rely on that. 4950 4951 // If there is no successor, then execution can't transfer to it. 4952 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4953 return !CRI->unwindsToCaller(); 4954 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4955 return !CatchSwitch->unwindsToCaller(); 4956 if (isa<ResumeInst>(I)) 4957 return false; 4958 if (isa<ReturnInst>(I)) 4959 return false; 4960 if (isa<UnreachableInst>(I)) 4961 return false; 4962 4963 // Calls can throw, or contain an infinite loop, or kill the process. 4964 if (const auto *CB = dyn_cast<CallBase>(I)) { 4965 // Call sites that throw have implicit non-local control flow. 4966 if (!CB->doesNotThrow()) 4967 return false; 4968 4969 // A function which doens't throw and has "willreturn" attribute will 4970 // always return. 4971 if (CB->hasFnAttr(Attribute::WillReturn)) 4972 return true; 4973 4974 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4975 // etc. and thus not return. However, LLVM already assumes that 4976 // 4977 // - Thread exiting actions are modeled as writes to memory invisible to 4978 // the program. 4979 // 4980 // - Loops that don't have side effects (side effects are volatile/atomic 4981 // stores and IO) always terminate (see http://llvm.org/PR965). 4982 // Furthermore IO itself is also modeled as writes to memory invisible to 4983 // the program. 4984 // 4985 // We rely on those assumptions here, and use the memory effects of the call 4986 // target as a proxy for checking that it always returns. 4987 4988 // FIXME: This isn't aggressive enough; a call which only writes to a global 4989 // is guaranteed to return. 4990 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4991 } 4992 4993 // Other instructions return normally. 4994 return true; 4995 } 4996 4997 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4998 // TODO: This is slightly conservative for invoke instruction since exiting 4999 // via an exception *is* normal control for them. 5000 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5001 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5002 return false; 5003 return true; 5004 } 5005 5006 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5007 const Loop *L) { 5008 // The loop header is guaranteed to be executed for every iteration. 5009 // 5010 // FIXME: Relax this constraint to cover all basic blocks that are 5011 // guaranteed to be executed at every iteration. 5012 if (I->getParent() != L->getHeader()) return false; 5013 5014 for (const Instruction &LI : *L->getHeader()) { 5015 if (&LI == I) return true; 5016 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5017 } 5018 llvm_unreachable("Instruction not contained in its own parent basic block."); 5019 } 5020 5021 bool llvm::propagatesPoison(const Operator *I) { 5022 switch (I->getOpcode()) { 5023 case Instruction::Freeze: 5024 case Instruction::Select: 5025 case Instruction::PHI: 5026 case Instruction::Call: 5027 case Instruction::Invoke: 5028 return false; 5029 case Instruction::ICmp: 5030 case Instruction::FCmp: 5031 case Instruction::GetElementPtr: 5032 return true; 5033 default: 5034 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5035 return true; 5036 5037 // Be conservative and return false. 5038 return false; 5039 } 5040 } 5041 5042 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5043 SmallPtrSetImpl<const Value *> &Operands) { 5044 switch (I->getOpcode()) { 5045 case Instruction::Store: 5046 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5047 break; 5048 5049 case Instruction::Load: 5050 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5051 break; 5052 5053 case Instruction::AtomicCmpXchg: 5054 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5055 break; 5056 5057 case Instruction::AtomicRMW: 5058 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5059 break; 5060 5061 case Instruction::UDiv: 5062 case Instruction::SDiv: 5063 case Instruction::URem: 5064 case Instruction::SRem: 5065 Operands.insert(I->getOperand(1)); 5066 break; 5067 5068 case Instruction::Call: 5069 case Instruction::Invoke: { 5070 const CallBase *CB = cast<CallBase>(I); 5071 if (CB->isIndirectCall()) 5072 Operands.insert(CB->getCalledOperand()); 5073 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5074 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5075 Operands.insert(CB->getArgOperand(i)); 5076 } 5077 break; 5078 } 5079 5080 default: 5081 break; 5082 } 5083 } 5084 5085 bool llvm::mustTriggerUB(const Instruction *I, 5086 const SmallSet<const Value *, 16>& KnownPoison) { 5087 SmallPtrSet<const Value *, 4> NonPoisonOps; 5088 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5089 5090 for (const auto *V : NonPoisonOps) 5091 if (KnownPoison.count(V)) 5092 return true; 5093 5094 return false; 5095 } 5096 5097 static bool programUndefinedIfUndefOrPoison(const Value *V, 5098 bool PoisonOnly) { 5099 // We currently only look for uses of values within the same basic 5100 // block, as that makes it easier to guarantee that the uses will be 5101 // executed given that Inst is executed. 5102 // 5103 // FIXME: Expand this to consider uses beyond the same basic block. To do 5104 // this, look out for the distinction between post-dominance and strong 5105 // post-dominance. 5106 const BasicBlock *BB = nullptr; 5107 BasicBlock::const_iterator Begin; 5108 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5109 BB = Inst->getParent(); 5110 Begin = Inst->getIterator(); 5111 Begin++; 5112 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5113 BB = &Arg->getParent()->getEntryBlock(); 5114 Begin = BB->begin(); 5115 } else { 5116 return false; 5117 } 5118 5119 BasicBlock::const_iterator End = BB->end(); 5120 5121 if (!PoisonOnly) { 5122 // Be conservative & just check whether a value is passed to a noundef 5123 // argument. 5124 // Instructions that raise UB with a poison operand are well-defined 5125 // or have unclear semantics when the input is partially undef. 5126 // For example, 'udiv x, (undef | 1)' isn't UB. 5127 5128 for (auto &I : make_range(Begin, End)) { 5129 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5130 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5131 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5132 CB->getArgOperand(i) == V) 5133 return true; 5134 } 5135 } 5136 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5137 break; 5138 } 5139 return false; 5140 } 5141 5142 // Set of instructions that we have proved will yield poison if Inst 5143 // does. 5144 SmallSet<const Value *, 16> YieldsPoison; 5145 SmallSet<const BasicBlock *, 4> Visited; 5146 5147 YieldsPoison.insert(V); 5148 auto Propagate = [&](const User *User) { 5149 if (propagatesPoison(cast<Operator>(User))) 5150 YieldsPoison.insert(User); 5151 }; 5152 for_each(V->users(), Propagate); 5153 Visited.insert(BB); 5154 5155 unsigned Iter = 0; 5156 while (Iter++ < MaxAnalysisRecursionDepth) { 5157 for (auto &I : make_range(Begin, End)) { 5158 if (mustTriggerUB(&I, YieldsPoison)) 5159 return true; 5160 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5161 return false; 5162 5163 // Mark poison that propagates from I through uses of I. 5164 if (YieldsPoison.count(&I)) 5165 for_each(I.users(), Propagate); 5166 } 5167 5168 if (auto *NextBB = BB->getSingleSuccessor()) { 5169 if (Visited.insert(NextBB).second) { 5170 BB = NextBB; 5171 Begin = BB->getFirstNonPHI()->getIterator(); 5172 End = BB->end(); 5173 continue; 5174 } 5175 } 5176 5177 break; 5178 } 5179 return false; 5180 } 5181 5182 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5183 return ::programUndefinedIfUndefOrPoison(Inst, false); 5184 } 5185 5186 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5187 return ::programUndefinedIfUndefOrPoison(Inst, true); 5188 } 5189 5190 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5191 if (FMF.noNaNs()) 5192 return true; 5193 5194 if (auto *C = dyn_cast<ConstantFP>(V)) 5195 return !C->isNaN(); 5196 5197 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5198 if (!C->getElementType()->isFloatingPointTy()) 5199 return false; 5200 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5201 if (C->getElementAsAPFloat(I).isNaN()) 5202 return false; 5203 } 5204 return true; 5205 } 5206 5207 if (isa<ConstantAggregateZero>(V)) 5208 return true; 5209 5210 return false; 5211 } 5212 5213 static bool isKnownNonZero(const Value *V) { 5214 if (auto *C = dyn_cast<ConstantFP>(V)) 5215 return !C->isZero(); 5216 5217 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5218 if (!C->getElementType()->isFloatingPointTy()) 5219 return false; 5220 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5221 if (C->getElementAsAPFloat(I).isZero()) 5222 return false; 5223 } 5224 return true; 5225 } 5226 5227 return false; 5228 } 5229 5230 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5231 /// Given non-min/max outer cmp/select from the clamp pattern this 5232 /// function recognizes if it can be substitued by a "canonical" min/max 5233 /// pattern. 5234 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5235 Value *CmpLHS, Value *CmpRHS, 5236 Value *TrueVal, Value *FalseVal, 5237 Value *&LHS, Value *&RHS) { 5238 // Try to match 5239 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5240 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5241 // and return description of the outer Max/Min. 5242 5243 // First, check if select has inverse order: 5244 if (CmpRHS == FalseVal) { 5245 std::swap(TrueVal, FalseVal); 5246 Pred = CmpInst::getInversePredicate(Pred); 5247 } 5248 5249 // Assume success now. If there's no match, callers should not use these anyway. 5250 LHS = TrueVal; 5251 RHS = FalseVal; 5252 5253 const APFloat *FC1; 5254 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5255 return {SPF_UNKNOWN, SPNB_NA, false}; 5256 5257 const APFloat *FC2; 5258 switch (Pred) { 5259 case CmpInst::FCMP_OLT: 5260 case CmpInst::FCMP_OLE: 5261 case CmpInst::FCMP_ULT: 5262 case CmpInst::FCMP_ULE: 5263 if (match(FalseVal, 5264 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5265 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5266 *FC1 < *FC2) 5267 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5268 break; 5269 case CmpInst::FCMP_OGT: 5270 case CmpInst::FCMP_OGE: 5271 case CmpInst::FCMP_UGT: 5272 case CmpInst::FCMP_UGE: 5273 if (match(FalseVal, 5274 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5275 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5276 *FC1 > *FC2) 5277 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5278 break; 5279 default: 5280 break; 5281 } 5282 5283 return {SPF_UNKNOWN, SPNB_NA, false}; 5284 } 5285 5286 /// Recognize variations of: 5287 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5288 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5289 Value *CmpLHS, Value *CmpRHS, 5290 Value *TrueVal, Value *FalseVal) { 5291 // Swap the select operands and predicate to match the patterns below. 5292 if (CmpRHS != TrueVal) { 5293 Pred = ICmpInst::getSwappedPredicate(Pred); 5294 std::swap(TrueVal, FalseVal); 5295 } 5296 const APInt *C1; 5297 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5298 const APInt *C2; 5299 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5300 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5301 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5302 return {SPF_SMAX, SPNB_NA, false}; 5303 5304 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5305 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5306 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5307 return {SPF_SMIN, SPNB_NA, false}; 5308 5309 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5310 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5311 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5312 return {SPF_UMAX, SPNB_NA, false}; 5313 5314 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5315 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5316 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5317 return {SPF_UMIN, SPNB_NA, false}; 5318 } 5319 return {SPF_UNKNOWN, SPNB_NA, false}; 5320 } 5321 5322 /// Recognize variations of: 5323 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5324 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5325 Value *CmpLHS, Value *CmpRHS, 5326 Value *TVal, Value *FVal, 5327 unsigned Depth) { 5328 // TODO: Allow FP min/max with nnan/nsz. 5329 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5330 5331 Value *A = nullptr, *B = nullptr; 5332 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5333 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5334 return {SPF_UNKNOWN, SPNB_NA, false}; 5335 5336 Value *C = nullptr, *D = nullptr; 5337 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5338 if (L.Flavor != R.Flavor) 5339 return {SPF_UNKNOWN, SPNB_NA, false}; 5340 5341 // We have something like: x Pred y ? min(a, b) : min(c, d). 5342 // Try to match the compare to the min/max operations of the select operands. 5343 // First, make sure we have the right compare predicate. 5344 switch (L.Flavor) { 5345 case SPF_SMIN: 5346 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5347 Pred = ICmpInst::getSwappedPredicate(Pred); 5348 std::swap(CmpLHS, CmpRHS); 5349 } 5350 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5351 break; 5352 return {SPF_UNKNOWN, SPNB_NA, false}; 5353 case SPF_SMAX: 5354 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5355 Pred = ICmpInst::getSwappedPredicate(Pred); 5356 std::swap(CmpLHS, CmpRHS); 5357 } 5358 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5359 break; 5360 return {SPF_UNKNOWN, SPNB_NA, false}; 5361 case SPF_UMIN: 5362 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5363 Pred = ICmpInst::getSwappedPredicate(Pred); 5364 std::swap(CmpLHS, CmpRHS); 5365 } 5366 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5367 break; 5368 return {SPF_UNKNOWN, SPNB_NA, false}; 5369 case SPF_UMAX: 5370 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5371 Pred = ICmpInst::getSwappedPredicate(Pred); 5372 std::swap(CmpLHS, CmpRHS); 5373 } 5374 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5375 break; 5376 return {SPF_UNKNOWN, SPNB_NA, false}; 5377 default: 5378 return {SPF_UNKNOWN, SPNB_NA, false}; 5379 } 5380 5381 // If there is a common operand in the already matched min/max and the other 5382 // min/max operands match the compare operands (either directly or inverted), 5383 // then this is min/max of the same flavor. 5384 5385 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5386 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5387 if (D == B) { 5388 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5389 match(A, m_Not(m_Specific(CmpRHS))))) 5390 return {L.Flavor, SPNB_NA, false}; 5391 } 5392 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5393 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5394 if (C == B) { 5395 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5396 match(A, m_Not(m_Specific(CmpRHS))))) 5397 return {L.Flavor, SPNB_NA, false}; 5398 } 5399 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5400 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5401 if (D == A) { 5402 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5403 match(B, m_Not(m_Specific(CmpRHS))))) 5404 return {L.Flavor, SPNB_NA, false}; 5405 } 5406 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5407 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5408 if (C == A) { 5409 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5410 match(B, m_Not(m_Specific(CmpRHS))))) 5411 return {L.Flavor, SPNB_NA, false}; 5412 } 5413 5414 return {SPF_UNKNOWN, SPNB_NA, false}; 5415 } 5416 5417 /// If the input value is the result of a 'not' op, constant integer, or vector 5418 /// splat of a constant integer, return the bitwise-not source value. 5419 /// TODO: This could be extended to handle non-splat vector integer constants. 5420 static Value *getNotValue(Value *V) { 5421 Value *NotV; 5422 if (match(V, m_Not(m_Value(NotV)))) 5423 return NotV; 5424 5425 const APInt *C; 5426 if (match(V, m_APInt(C))) 5427 return ConstantInt::get(V->getType(), ~(*C)); 5428 5429 return nullptr; 5430 } 5431 5432 /// Match non-obvious integer minimum and maximum sequences. 5433 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5434 Value *CmpLHS, Value *CmpRHS, 5435 Value *TrueVal, Value *FalseVal, 5436 Value *&LHS, Value *&RHS, 5437 unsigned Depth) { 5438 // Assume success. If there's no match, callers should not use these anyway. 5439 LHS = TrueVal; 5440 RHS = FalseVal; 5441 5442 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5443 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5444 return SPR; 5445 5446 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5447 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5448 return SPR; 5449 5450 // Look through 'not' ops to find disguised min/max. 5451 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5452 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5453 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5454 switch (Pred) { 5455 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5456 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5457 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5458 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5459 default: break; 5460 } 5461 } 5462 5463 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5464 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5465 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5466 switch (Pred) { 5467 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5468 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5469 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5470 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5471 default: break; 5472 } 5473 } 5474 5475 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5476 return {SPF_UNKNOWN, SPNB_NA, false}; 5477 5478 // Z = X -nsw Y 5479 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5480 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5481 if (match(TrueVal, m_Zero()) && 5482 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5483 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5484 5485 // Z = X -nsw Y 5486 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5487 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5488 if (match(FalseVal, m_Zero()) && 5489 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5490 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5491 5492 const APInt *C1; 5493 if (!match(CmpRHS, m_APInt(C1))) 5494 return {SPF_UNKNOWN, SPNB_NA, false}; 5495 5496 // An unsigned min/max can be written with a signed compare. 5497 const APInt *C2; 5498 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5499 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5500 // Is the sign bit set? 5501 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5502 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5503 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5504 C2->isMaxSignedValue()) 5505 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5506 5507 // Is the sign bit clear? 5508 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5509 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5510 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5511 C2->isMinSignedValue()) 5512 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5513 } 5514 5515 return {SPF_UNKNOWN, SPNB_NA, false}; 5516 } 5517 5518 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5519 assert(X && Y && "Invalid operand"); 5520 5521 // X = sub (0, Y) || X = sub nsw (0, Y) 5522 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5523 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5524 return true; 5525 5526 // Y = sub (0, X) || Y = sub nsw (0, X) 5527 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5528 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5529 return true; 5530 5531 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5532 Value *A, *B; 5533 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5534 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5535 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5536 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5537 } 5538 5539 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5540 FastMathFlags FMF, 5541 Value *CmpLHS, Value *CmpRHS, 5542 Value *TrueVal, Value *FalseVal, 5543 Value *&LHS, Value *&RHS, 5544 unsigned Depth) { 5545 if (CmpInst::isFPPredicate(Pred)) { 5546 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5547 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5548 // purpose of identifying min/max. Disregard vector constants with undefined 5549 // elements because those can not be back-propagated for analysis. 5550 Value *OutputZeroVal = nullptr; 5551 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5552 !cast<Constant>(TrueVal)->containsUndefElement()) 5553 OutputZeroVal = TrueVal; 5554 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5555 !cast<Constant>(FalseVal)->containsUndefElement()) 5556 OutputZeroVal = FalseVal; 5557 5558 if (OutputZeroVal) { 5559 if (match(CmpLHS, m_AnyZeroFP())) 5560 CmpLHS = OutputZeroVal; 5561 if (match(CmpRHS, m_AnyZeroFP())) 5562 CmpRHS = OutputZeroVal; 5563 } 5564 } 5565 5566 LHS = CmpLHS; 5567 RHS = CmpRHS; 5568 5569 // Signed zero may return inconsistent results between implementations. 5570 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5571 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5572 // Therefore, we behave conservatively and only proceed if at least one of the 5573 // operands is known to not be zero or if we don't care about signed zero. 5574 switch (Pred) { 5575 default: break; 5576 // FIXME: Include OGT/OLT/UGT/ULT. 5577 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5578 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5579 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5580 !isKnownNonZero(CmpRHS)) 5581 return {SPF_UNKNOWN, SPNB_NA, false}; 5582 } 5583 5584 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5585 bool Ordered = false; 5586 5587 // When given one NaN and one non-NaN input: 5588 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5589 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5590 // ordered comparison fails), which could be NaN or non-NaN. 5591 // so here we discover exactly what NaN behavior is required/accepted. 5592 if (CmpInst::isFPPredicate(Pred)) { 5593 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5594 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5595 5596 if (LHSSafe && RHSSafe) { 5597 // Both operands are known non-NaN. 5598 NaNBehavior = SPNB_RETURNS_ANY; 5599 } else if (CmpInst::isOrdered(Pred)) { 5600 // An ordered comparison will return false when given a NaN, so it 5601 // returns the RHS. 5602 Ordered = true; 5603 if (LHSSafe) 5604 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5605 NaNBehavior = SPNB_RETURNS_NAN; 5606 else if (RHSSafe) 5607 NaNBehavior = SPNB_RETURNS_OTHER; 5608 else 5609 // Completely unsafe. 5610 return {SPF_UNKNOWN, SPNB_NA, false}; 5611 } else { 5612 Ordered = false; 5613 // An unordered comparison will return true when given a NaN, so it 5614 // returns the LHS. 5615 if (LHSSafe) 5616 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5617 NaNBehavior = SPNB_RETURNS_OTHER; 5618 else if (RHSSafe) 5619 NaNBehavior = SPNB_RETURNS_NAN; 5620 else 5621 // Completely unsafe. 5622 return {SPF_UNKNOWN, SPNB_NA, false}; 5623 } 5624 } 5625 5626 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5627 std::swap(CmpLHS, CmpRHS); 5628 Pred = CmpInst::getSwappedPredicate(Pred); 5629 if (NaNBehavior == SPNB_RETURNS_NAN) 5630 NaNBehavior = SPNB_RETURNS_OTHER; 5631 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5632 NaNBehavior = SPNB_RETURNS_NAN; 5633 Ordered = !Ordered; 5634 } 5635 5636 // ([if]cmp X, Y) ? X : Y 5637 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5638 switch (Pred) { 5639 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5640 case ICmpInst::ICMP_UGT: 5641 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5642 case ICmpInst::ICMP_SGT: 5643 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5644 case ICmpInst::ICMP_ULT: 5645 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5646 case ICmpInst::ICMP_SLT: 5647 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5648 case FCmpInst::FCMP_UGT: 5649 case FCmpInst::FCMP_UGE: 5650 case FCmpInst::FCMP_OGT: 5651 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5652 case FCmpInst::FCMP_ULT: 5653 case FCmpInst::FCMP_ULE: 5654 case FCmpInst::FCMP_OLT: 5655 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5656 } 5657 } 5658 5659 if (isKnownNegation(TrueVal, FalseVal)) { 5660 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5661 // match against either LHS or sext(LHS). 5662 auto MaybeSExtCmpLHS = 5663 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5664 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5665 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5666 if (match(TrueVal, MaybeSExtCmpLHS)) { 5667 // Set the return values. If the compare uses the negated value (-X >s 0), 5668 // swap the return values because the negated value is always 'RHS'. 5669 LHS = TrueVal; 5670 RHS = FalseVal; 5671 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5672 std::swap(LHS, RHS); 5673 5674 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5675 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5676 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5677 return {SPF_ABS, SPNB_NA, false}; 5678 5679 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5680 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5681 return {SPF_ABS, SPNB_NA, false}; 5682 5683 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5684 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5685 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5686 return {SPF_NABS, SPNB_NA, false}; 5687 } 5688 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5689 // Set the return values. If the compare uses the negated value (-X >s 0), 5690 // swap the return values because the negated value is always 'RHS'. 5691 LHS = FalseVal; 5692 RHS = TrueVal; 5693 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5694 std::swap(LHS, RHS); 5695 5696 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5697 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5698 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5699 return {SPF_NABS, SPNB_NA, false}; 5700 5701 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5702 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5703 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5704 return {SPF_ABS, SPNB_NA, false}; 5705 } 5706 } 5707 5708 if (CmpInst::isIntPredicate(Pred)) 5709 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5710 5711 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5712 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5713 // semantics than minNum. Be conservative in such case. 5714 if (NaNBehavior != SPNB_RETURNS_ANY || 5715 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5716 !isKnownNonZero(CmpRHS))) 5717 return {SPF_UNKNOWN, SPNB_NA, false}; 5718 5719 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5720 } 5721 5722 /// Helps to match a select pattern in case of a type mismatch. 5723 /// 5724 /// The function processes the case when type of true and false values of a 5725 /// select instruction differs from type of the cmp instruction operands because 5726 /// of a cast instruction. The function checks if it is legal to move the cast 5727 /// operation after "select". If yes, it returns the new second value of 5728 /// "select" (with the assumption that cast is moved): 5729 /// 1. As operand of cast instruction when both values of "select" are same cast 5730 /// instructions. 5731 /// 2. As restored constant (by applying reverse cast operation) when the first 5732 /// value of the "select" is a cast operation and the second value is a 5733 /// constant. 5734 /// NOTE: We return only the new second value because the first value could be 5735 /// accessed as operand of cast instruction. 5736 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5737 Instruction::CastOps *CastOp) { 5738 auto *Cast1 = dyn_cast<CastInst>(V1); 5739 if (!Cast1) 5740 return nullptr; 5741 5742 *CastOp = Cast1->getOpcode(); 5743 Type *SrcTy = Cast1->getSrcTy(); 5744 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5745 // If V1 and V2 are both the same cast from the same type, look through V1. 5746 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5747 return Cast2->getOperand(0); 5748 return nullptr; 5749 } 5750 5751 auto *C = dyn_cast<Constant>(V2); 5752 if (!C) 5753 return nullptr; 5754 5755 Constant *CastedTo = nullptr; 5756 switch (*CastOp) { 5757 case Instruction::ZExt: 5758 if (CmpI->isUnsigned()) 5759 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5760 break; 5761 case Instruction::SExt: 5762 if (CmpI->isSigned()) 5763 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5764 break; 5765 case Instruction::Trunc: 5766 Constant *CmpConst; 5767 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5768 CmpConst->getType() == SrcTy) { 5769 // Here we have the following case: 5770 // 5771 // %cond = cmp iN %x, CmpConst 5772 // %tr = trunc iN %x to iK 5773 // %narrowsel = select i1 %cond, iK %t, iK C 5774 // 5775 // We can always move trunc after select operation: 5776 // 5777 // %cond = cmp iN %x, CmpConst 5778 // %widesel = select i1 %cond, iN %x, iN CmpConst 5779 // %tr = trunc iN %widesel to iK 5780 // 5781 // Note that C could be extended in any way because we don't care about 5782 // upper bits after truncation. It can't be abs pattern, because it would 5783 // look like: 5784 // 5785 // select i1 %cond, x, -x. 5786 // 5787 // So only min/max pattern could be matched. Such match requires widened C 5788 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5789 // CmpConst == C is checked below. 5790 CastedTo = CmpConst; 5791 } else { 5792 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5793 } 5794 break; 5795 case Instruction::FPTrunc: 5796 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5797 break; 5798 case Instruction::FPExt: 5799 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5800 break; 5801 case Instruction::FPToUI: 5802 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5803 break; 5804 case Instruction::FPToSI: 5805 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5806 break; 5807 case Instruction::UIToFP: 5808 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5809 break; 5810 case Instruction::SIToFP: 5811 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5812 break; 5813 default: 5814 break; 5815 } 5816 5817 if (!CastedTo) 5818 return nullptr; 5819 5820 // Make sure the cast doesn't lose any information. 5821 Constant *CastedBack = 5822 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5823 if (CastedBack != C) 5824 return nullptr; 5825 5826 return CastedTo; 5827 } 5828 5829 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5830 Instruction::CastOps *CastOp, 5831 unsigned Depth) { 5832 if (Depth >= MaxAnalysisRecursionDepth) 5833 return {SPF_UNKNOWN, SPNB_NA, false}; 5834 5835 SelectInst *SI = dyn_cast<SelectInst>(V); 5836 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5837 5838 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5839 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5840 5841 Value *TrueVal = SI->getTrueValue(); 5842 Value *FalseVal = SI->getFalseValue(); 5843 5844 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5845 CastOp, Depth); 5846 } 5847 5848 SelectPatternResult llvm::matchDecomposedSelectPattern( 5849 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5850 Instruction::CastOps *CastOp, unsigned Depth) { 5851 CmpInst::Predicate Pred = CmpI->getPredicate(); 5852 Value *CmpLHS = CmpI->getOperand(0); 5853 Value *CmpRHS = CmpI->getOperand(1); 5854 FastMathFlags FMF; 5855 if (isa<FPMathOperator>(CmpI)) 5856 FMF = CmpI->getFastMathFlags(); 5857 5858 // Bail out early. 5859 if (CmpI->isEquality()) 5860 return {SPF_UNKNOWN, SPNB_NA, false}; 5861 5862 // Deal with type mismatches. 5863 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5864 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5865 // If this is a potential fmin/fmax with a cast to integer, then ignore 5866 // -0.0 because there is no corresponding integer value. 5867 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5868 FMF.setNoSignedZeros(); 5869 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5870 cast<CastInst>(TrueVal)->getOperand(0), C, 5871 LHS, RHS, Depth); 5872 } 5873 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5874 // If this is a potential fmin/fmax with a cast to integer, then ignore 5875 // -0.0 because there is no corresponding integer value. 5876 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5877 FMF.setNoSignedZeros(); 5878 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5879 C, cast<CastInst>(FalseVal)->getOperand(0), 5880 LHS, RHS, Depth); 5881 } 5882 } 5883 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5884 LHS, RHS, Depth); 5885 } 5886 5887 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5888 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5889 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5890 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5891 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5892 if (SPF == SPF_FMINNUM) 5893 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5894 if (SPF == SPF_FMAXNUM) 5895 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5896 llvm_unreachable("unhandled!"); 5897 } 5898 5899 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5900 if (SPF == SPF_SMIN) return SPF_SMAX; 5901 if (SPF == SPF_UMIN) return SPF_UMAX; 5902 if (SPF == SPF_SMAX) return SPF_SMIN; 5903 if (SPF == SPF_UMAX) return SPF_UMIN; 5904 llvm_unreachable("unhandled!"); 5905 } 5906 5907 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5908 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5909 } 5910 5911 std::pair<Intrinsic::ID, bool> 5912 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5913 // Check if VL contains select instructions that can be folded into a min/max 5914 // vector intrinsic and return the intrinsic if it is possible. 5915 // TODO: Support floating point min/max. 5916 bool AllCmpSingleUse = true; 5917 SelectPatternResult SelectPattern; 5918 SelectPattern.Flavor = SPF_UNKNOWN; 5919 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5920 Value *LHS, *RHS; 5921 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5922 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5923 CurrentPattern.Flavor == SPF_FMINNUM || 5924 CurrentPattern.Flavor == SPF_FMAXNUM || 5925 !I->getType()->isIntOrIntVectorTy()) 5926 return false; 5927 if (SelectPattern.Flavor != SPF_UNKNOWN && 5928 SelectPattern.Flavor != CurrentPattern.Flavor) 5929 return false; 5930 SelectPattern = CurrentPattern; 5931 AllCmpSingleUse &= 5932 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5933 return true; 5934 })) { 5935 switch (SelectPattern.Flavor) { 5936 case SPF_SMIN: 5937 return {Intrinsic::smin, AllCmpSingleUse}; 5938 case SPF_UMIN: 5939 return {Intrinsic::umin, AllCmpSingleUse}; 5940 case SPF_SMAX: 5941 return {Intrinsic::smax, AllCmpSingleUse}; 5942 case SPF_UMAX: 5943 return {Intrinsic::umax, AllCmpSingleUse}; 5944 default: 5945 llvm_unreachable("unexpected select pattern flavor"); 5946 } 5947 } 5948 return {Intrinsic::not_intrinsic, false}; 5949 } 5950 5951 /// Return true if "icmp Pred LHS RHS" is always true. 5952 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5953 const Value *RHS, const DataLayout &DL, 5954 unsigned Depth) { 5955 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5956 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5957 return true; 5958 5959 switch (Pred) { 5960 default: 5961 return false; 5962 5963 case CmpInst::ICMP_SLE: { 5964 const APInt *C; 5965 5966 // LHS s<= LHS +_{nsw} C if C >= 0 5967 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5968 return !C->isNegative(); 5969 return false; 5970 } 5971 5972 case CmpInst::ICMP_ULE: { 5973 const APInt *C; 5974 5975 // LHS u<= LHS +_{nuw} C for any C 5976 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5977 return true; 5978 5979 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5980 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5981 const Value *&X, 5982 const APInt *&CA, const APInt *&CB) { 5983 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5984 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5985 return true; 5986 5987 // If X & C == 0 then (X | C) == X +_{nuw} C 5988 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5989 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5990 KnownBits Known(CA->getBitWidth()); 5991 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5992 /*CxtI*/ nullptr, /*DT*/ nullptr); 5993 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5994 return true; 5995 } 5996 5997 return false; 5998 }; 5999 6000 const Value *X; 6001 const APInt *CLHS, *CRHS; 6002 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6003 return CLHS->ule(*CRHS); 6004 6005 return false; 6006 } 6007 } 6008 } 6009 6010 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6011 /// ALHS ARHS" is true. Otherwise, return None. 6012 static Optional<bool> 6013 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6014 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6015 const DataLayout &DL, unsigned Depth) { 6016 switch (Pred) { 6017 default: 6018 return None; 6019 6020 case CmpInst::ICMP_SLT: 6021 case CmpInst::ICMP_SLE: 6022 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6023 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6024 return true; 6025 return None; 6026 6027 case CmpInst::ICMP_ULT: 6028 case CmpInst::ICMP_ULE: 6029 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6030 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6031 return true; 6032 return None; 6033 } 6034 } 6035 6036 /// Return true if the operands of the two compares match. IsSwappedOps is true 6037 /// when the operands match, but are swapped. 6038 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6039 const Value *BLHS, const Value *BRHS, 6040 bool &IsSwappedOps) { 6041 6042 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6043 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6044 return IsMatchingOps || IsSwappedOps; 6045 } 6046 6047 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6048 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6049 /// Otherwise, return None if we can't infer anything. 6050 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6051 CmpInst::Predicate BPred, 6052 bool AreSwappedOps) { 6053 // Canonicalize the predicate as if the operands were not commuted. 6054 if (AreSwappedOps) 6055 BPred = ICmpInst::getSwappedPredicate(BPred); 6056 6057 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6058 return true; 6059 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6060 return false; 6061 6062 return None; 6063 } 6064 6065 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6066 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6067 /// Otherwise, return None if we can't infer anything. 6068 static Optional<bool> 6069 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6070 const ConstantInt *C1, 6071 CmpInst::Predicate BPred, 6072 const ConstantInt *C2) { 6073 ConstantRange DomCR = 6074 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6075 ConstantRange CR = 6076 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6077 ConstantRange Intersection = DomCR.intersectWith(CR); 6078 ConstantRange Difference = DomCR.difference(CR); 6079 if (Intersection.isEmptySet()) 6080 return false; 6081 if (Difference.isEmptySet()) 6082 return true; 6083 return None; 6084 } 6085 6086 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6087 /// false. Otherwise, return None if we can't infer anything. 6088 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6089 CmpInst::Predicate BPred, 6090 const Value *BLHS, const Value *BRHS, 6091 const DataLayout &DL, bool LHSIsTrue, 6092 unsigned Depth) { 6093 Value *ALHS = LHS->getOperand(0); 6094 Value *ARHS = LHS->getOperand(1); 6095 6096 // The rest of the logic assumes the LHS condition is true. If that's not the 6097 // case, invert the predicate to make it so. 6098 CmpInst::Predicate APred = 6099 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6100 6101 // Can we infer anything when the two compares have matching operands? 6102 bool AreSwappedOps; 6103 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6104 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6105 APred, BPred, AreSwappedOps)) 6106 return Implication; 6107 // No amount of additional analysis will infer the second condition, so 6108 // early exit. 6109 return None; 6110 } 6111 6112 // Can we infer anything when the LHS operands match and the RHS operands are 6113 // constants (not necessarily matching)? 6114 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6115 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6116 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6117 return Implication; 6118 // No amount of additional analysis will infer the second condition, so 6119 // early exit. 6120 return None; 6121 } 6122 6123 if (APred == BPred) 6124 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6125 return None; 6126 } 6127 6128 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6129 /// false. Otherwise, return None if we can't infer anything. We expect the 6130 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6131 static Optional<bool> 6132 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6133 const Value *RHSOp0, const Value *RHSOp1, 6134 6135 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6136 // The LHS must be an 'or' or an 'and' instruction. 6137 assert((LHS->getOpcode() == Instruction::And || 6138 LHS->getOpcode() == Instruction::Or) && 6139 "Expected LHS to be 'and' or 'or'."); 6140 6141 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6142 6143 // If the result of an 'or' is false, then we know both legs of the 'or' are 6144 // false. Similarly, if the result of an 'and' is true, then we know both 6145 // legs of the 'and' are true. 6146 Value *ALHS, *ARHS; 6147 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6148 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6149 // FIXME: Make this non-recursion. 6150 if (Optional<bool> Implication = isImpliedCondition( 6151 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6152 return Implication; 6153 if (Optional<bool> Implication = isImpliedCondition( 6154 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6155 return Implication; 6156 return None; 6157 } 6158 return None; 6159 } 6160 6161 Optional<bool> 6162 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6163 const Value *RHSOp0, const Value *RHSOp1, 6164 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6165 // Bail out when we hit the limit. 6166 if (Depth == MaxAnalysisRecursionDepth) 6167 return None; 6168 6169 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6170 // example. 6171 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6172 return None; 6173 6174 Type *OpTy = LHS->getType(); 6175 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6176 6177 // FIXME: Extending the code below to handle vectors. 6178 if (OpTy->isVectorTy()) 6179 return None; 6180 6181 assert(OpTy->isIntegerTy(1) && "implied by above"); 6182 6183 // Both LHS and RHS are icmps. 6184 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6185 if (LHSCmp) 6186 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6187 Depth); 6188 6189 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6190 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6191 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6192 if (LHSBO) { 6193 if ((LHSBO->getOpcode() == Instruction::And || 6194 LHSBO->getOpcode() == Instruction::Or)) 6195 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6196 Depth); 6197 } 6198 return None; 6199 } 6200 6201 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6202 const DataLayout &DL, bool LHSIsTrue, 6203 unsigned Depth) { 6204 // LHS ==> RHS by definition 6205 if (LHS == RHS) 6206 return LHSIsTrue; 6207 6208 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6209 if (RHSCmp) 6210 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6211 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6212 LHSIsTrue, Depth); 6213 return None; 6214 } 6215 6216 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6217 // condition dominating ContextI or nullptr, if no condition is found. 6218 static std::pair<Value *, bool> 6219 getDomPredecessorCondition(const Instruction *ContextI) { 6220 if (!ContextI || !ContextI->getParent()) 6221 return {nullptr, false}; 6222 6223 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6224 // dominator tree (eg, from a SimplifyQuery) instead? 6225 const BasicBlock *ContextBB = ContextI->getParent(); 6226 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6227 if (!PredBB) 6228 return {nullptr, false}; 6229 6230 // We need a conditional branch in the predecessor. 6231 Value *PredCond; 6232 BasicBlock *TrueBB, *FalseBB; 6233 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6234 return {nullptr, false}; 6235 6236 // The branch should get simplified. Don't bother simplifying this condition. 6237 if (TrueBB == FalseBB) 6238 return {nullptr, false}; 6239 6240 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6241 "Predecessor block does not point to successor?"); 6242 6243 // Is this condition implied by the predecessor condition? 6244 return {PredCond, TrueBB == ContextBB}; 6245 } 6246 6247 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6248 const Instruction *ContextI, 6249 const DataLayout &DL) { 6250 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6251 auto PredCond = getDomPredecessorCondition(ContextI); 6252 if (PredCond.first) 6253 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6254 return None; 6255 } 6256 6257 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6258 const Value *LHS, const Value *RHS, 6259 const Instruction *ContextI, 6260 const DataLayout &DL) { 6261 auto PredCond = getDomPredecessorCondition(ContextI); 6262 if (PredCond.first) 6263 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6264 PredCond.second); 6265 return None; 6266 } 6267 6268 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6269 APInt &Upper, const InstrInfoQuery &IIQ) { 6270 unsigned Width = Lower.getBitWidth(); 6271 const APInt *C; 6272 switch (BO.getOpcode()) { 6273 case Instruction::Add: 6274 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6275 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6276 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6277 // 'add nuw x, C' produces [C, UINT_MAX]. 6278 Lower = *C; 6279 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6280 if (C->isNegative()) { 6281 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6282 Lower = APInt::getSignedMinValue(Width); 6283 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6284 } else { 6285 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6286 Lower = APInt::getSignedMinValue(Width) + *C; 6287 Upper = APInt::getSignedMaxValue(Width) + 1; 6288 } 6289 } 6290 } 6291 break; 6292 6293 case Instruction::And: 6294 if (match(BO.getOperand(1), m_APInt(C))) 6295 // 'and x, C' produces [0, C]. 6296 Upper = *C + 1; 6297 break; 6298 6299 case Instruction::Or: 6300 if (match(BO.getOperand(1), m_APInt(C))) 6301 // 'or x, C' produces [C, UINT_MAX]. 6302 Lower = *C; 6303 break; 6304 6305 case Instruction::AShr: 6306 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6307 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6308 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6309 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6310 } else if (match(BO.getOperand(0), m_APInt(C))) { 6311 unsigned ShiftAmount = Width - 1; 6312 if (!C->isNullValue() && IIQ.isExact(&BO)) 6313 ShiftAmount = C->countTrailingZeros(); 6314 if (C->isNegative()) { 6315 // 'ashr C, x' produces [C, C >> (Width-1)] 6316 Lower = *C; 6317 Upper = C->ashr(ShiftAmount) + 1; 6318 } else { 6319 // 'ashr C, x' produces [C >> (Width-1), C] 6320 Lower = C->ashr(ShiftAmount); 6321 Upper = *C + 1; 6322 } 6323 } 6324 break; 6325 6326 case Instruction::LShr: 6327 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6328 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6329 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6330 } else if (match(BO.getOperand(0), m_APInt(C))) { 6331 // 'lshr C, x' produces [C >> (Width-1), C]. 6332 unsigned ShiftAmount = Width - 1; 6333 if (!C->isNullValue() && IIQ.isExact(&BO)) 6334 ShiftAmount = C->countTrailingZeros(); 6335 Lower = C->lshr(ShiftAmount); 6336 Upper = *C + 1; 6337 } 6338 break; 6339 6340 case Instruction::Shl: 6341 if (match(BO.getOperand(0), m_APInt(C))) { 6342 if (IIQ.hasNoUnsignedWrap(&BO)) { 6343 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6344 Lower = *C; 6345 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6346 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6347 if (C->isNegative()) { 6348 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6349 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6350 Lower = C->shl(ShiftAmount); 6351 Upper = *C + 1; 6352 } else { 6353 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6354 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6355 Lower = *C; 6356 Upper = C->shl(ShiftAmount) + 1; 6357 } 6358 } 6359 } 6360 break; 6361 6362 case Instruction::SDiv: 6363 if (match(BO.getOperand(1), m_APInt(C))) { 6364 APInt IntMin = APInt::getSignedMinValue(Width); 6365 APInt IntMax = APInt::getSignedMaxValue(Width); 6366 if (C->isAllOnesValue()) { 6367 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6368 // where C != -1 and C != 0 and C != 1 6369 Lower = IntMin + 1; 6370 Upper = IntMax + 1; 6371 } else if (C->countLeadingZeros() < Width - 1) { 6372 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6373 // where C != -1 and C != 0 and C != 1 6374 Lower = IntMin.sdiv(*C); 6375 Upper = IntMax.sdiv(*C); 6376 if (Lower.sgt(Upper)) 6377 std::swap(Lower, Upper); 6378 Upper = Upper + 1; 6379 assert(Upper != Lower && "Upper part of range has wrapped!"); 6380 } 6381 } else if (match(BO.getOperand(0), m_APInt(C))) { 6382 if (C->isMinSignedValue()) { 6383 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6384 Lower = *C; 6385 Upper = Lower.lshr(1) + 1; 6386 } else { 6387 // 'sdiv C, x' produces [-|C|, |C|]. 6388 Upper = C->abs() + 1; 6389 Lower = (-Upper) + 1; 6390 } 6391 } 6392 break; 6393 6394 case Instruction::UDiv: 6395 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6396 // 'udiv x, C' produces [0, UINT_MAX / C]. 6397 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6398 } else if (match(BO.getOperand(0), m_APInt(C))) { 6399 // 'udiv C, x' produces [0, C]. 6400 Upper = *C + 1; 6401 } 6402 break; 6403 6404 case Instruction::SRem: 6405 if (match(BO.getOperand(1), m_APInt(C))) { 6406 // 'srem x, C' produces (-|C|, |C|). 6407 Upper = C->abs(); 6408 Lower = (-Upper) + 1; 6409 } 6410 break; 6411 6412 case Instruction::URem: 6413 if (match(BO.getOperand(1), m_APInt(C))) 6414 // 'urem x, C' produces [0, C). 6415 Upper = *C; 6416 break; 6417 6418 default: 6419 break; 6420 } 6421 } 6422 6423 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6424 APInt &Upper) { 6425 unsigned Width = Lower.getBitWidth(); 6426 const APInt *C; 6427 switch (II.getIntrinsicID()) { 6428 case Intrinsic::ctpop: 6429 case Intrinsic::ctlz: 6430 case Intrinsic::cttz: 6431 // Maximum of set/clear bits is the bit width. 6432 assert(Lower == 0 && "Expected lower bound to be zero"); 6433 Upper = Width + 1; 6434 break; 6435 case Intrinsic::uadd_sat: 6436 // uadd.sat(x, C) produces [C, UINT_MAX]. 6437 if (match(II.getOperand(0), m_APInt(C)) || 6438 match(II.getOperand(1), m_APInt(C))) 6439 Lower = *C; 6440 break; 6441 case Intrinsic::sadd_sat: 6442 if (match(II.getOperand(0), m_APInt(C)) || 6443 match(II.getOperand(1), m_APInt(C))) { 6444 if (C->isNegative()) { 6445 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6446 Lower = APInt::getSignedMinValue(Width); 6447 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6448 } else { 6449 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6450 Lower = APInt::getSignedMinValue(Width) + *C; 6451 Upper = APInt::getSignedMaxValue(Width) + 1; 6452 } 6453 } 6454 break; 6455 case Intrinsic::usub_sat: 6456 // usub.sat(C, x) produces [0, C]. 6457 if (match(II.getOperand(0), m_APInt(C))) 6458 Upper = *C + 1; 6459 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6460 else if (match(II.getOperand(1), m_APInt(C))) 6461 Upper = APInt::getMaxValue(Width) - *C + 1; 6462 break; 6463 case Intrinsic::ssub_sat: 6464 if (match(II.getOperand(0), m_APInt(C))) { 6465 if (C->isNegative()) { 6466 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6467 Lower = APInt::getSignedMinValue(Width); 6468 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6469 } else { 6470 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6471 Lower = *C - APInt::getSignedMaxValue(Width); 6472 Upper = APInt::getSignedMaxValue(Width) + 1; 6473 } 6474 } else if (match(II.getOperand(1), m_APInt(C))) { 6475 if (C->isNegative()) { 6476 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6477 Lower = APInt::getSignedMinValue(Width) - *C; 6478 Upper = APInt::getSignedMaxValue(Width) + 1; 6479 } else { 6480 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6481 Lower = APInt::getSignedMinValue(Width); 6482 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6483 } 6484 } 6485 break; 6486 case Intrinsic::umin: 6487 case Intrinsic::umax: 6488 case Intrinsic::smin: 6489 case Intrinsic::smax: 6490 if (!match(II.getOperand(0), m_APInt(C)) && 6491 !match(II.getOperand(1), m_APInt(C))) 6492 break; 6493 6494 switch (II.getIntrinsicID()) { 6495 case Intrinsic::umin: 6496 Upper = *C + 1; 6497 break; 6498 case Intrinsic::umax: 6499 Lower = *C; 6500 break; 6501 case Intrinsic::smin: 6502 Lower = APInt::getSignedMinValue(Width); 6503 Upper = *C + 1; 6504 break; 6505 case Intrinsic::smax: 6506 Lower = *C; 6507 Upper = APInt::getSignedMaxValue(Width) + 1; 6508 break; 6509 default: 6510 llvm_unreachable("Must be min/max intrinsic"); 6511 } 6512 break; 6513 case Intrinsic::abs: 6514 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6515 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6516 if (match(II.getOperand(1), m_One())) 6517 Upper = APInt::getSignedMaxValue(Width) + 1; 6518 else 6519 Upper = APInt::getSignedMinValue(Width) + 1; 6520 break; 6521 default: 6522 break; 6523 } 6524 } 6525 6526 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6527 APInt &Upper, const InstrInfoQuery &IIQ) { 6528 const Value *LHS = nullptr, *RHS = nullptr; 6529 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6530 if (R.Flavor == SPF_UNKNOWN) 6531 return; 6532 6533 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6534 6535 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6536 // If the negation part of the abs (in RHS) has the NSW flag, 6537 // then the result of abs(X) is [0..SIGNED_MAX], 6538 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6539 Lower = APInt::getNullValue(BitWidth); 6540 if (match(RHS, m_Neg(m_Specific(LHS))) && 6541 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6542 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6543 else 6544 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6545 return; 6546 } 6547 6548 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6549 // The result of -abs(X) is <= 0. 6550 Lower = APInt::getSignedMinValue(BitWidth); 6551 Upper = APInt(BitWidth, 1); 6552 return; 6553 } 6554 6555 const APInt *C; 6556 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6557 return; 6558 6559 switch (R.Flavor) { 6560 case SPF_UMIN: 6561 Upper = *C + 1; 6562 break; 6563 case SPF_UMAX: 6564 Lower = *C; 6565 break; 6566 case SPF_SMIN: 6567 Lower = APInt::getSignedMinValue(BitWidth); 6568 Upper = *C + 1; 6569 break; 6570 case SPF_SMAX: 6571 Lower = *C; 6572 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6573 break; 6574 default: 6575 break; 6576 } 6577 } 6578 6579 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6580 AssumptionCache *AC, 6581 const Instruction *CtxI, 6582 unsigned Depth) { 6583 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6584 6585 if (Depth == MaxAnalysisRecursionDepth) 6586 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6587 6588 const APInt *C; 6589 if (match(V, m_APInt(C))) 6590 return ConstantRange(*C); 6591 6592 InstrInfoQuery IIQ(UseInstrInfo); 6593 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6594 APInt Lower = APInt(BitWidth, 0); 6595 APInt Upper = APInt(BitWidth, 0); 6596 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6597 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6598 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6599 setLimitsForIntrinsic(*II, Lower, Upper); 6600 else if (auto *SI = dyn_cast<SelectInst>(V)) 6601 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6602 6603 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6604 6605 if (auto *I = dyn_cast<Instruction>(V)) 6606 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6607 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6608 6609 if (CtxI && AC) { 6610 // Try to restrict the range based on information from assumptions. 6611 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6612 if (!AssumeVH) 6613 continue; 6614 CallInst *I = cast<CallInst>(AssumeVH); 6615 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6616 "Got assumption for the wrong function!"); 6617 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6618 "must be an assume intrinsic"); 6619 6620 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6621 continue; 6622 Value *Arg = I->getArgOperand(0); 6623 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6624 // Currently we just use information from comparisons. 6625 if (!Cmp || Cmp->getOperand(0) != V) 6626 continue; 6627 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6628 AC, I, Depth + 1); 6629 CR = CR.intersectWith( 6630 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6631 } 6632 } 6633 6634 return CR; 6635 } 6636 6637 static Optional<int64_t> 6638 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6639 // Skip over the first indices. 6640 gep_type_iterator GTI = gep_type_begin(GEP); 6641 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6642 /*skip along*/; 6643 6644 // Compute the offset implied by the rest of the indices. 6645 int64_t Offset = 0; 6646 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6647 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6648 if (!OpC) 6649 return None; 6650 if (OpC->isZero()) 6651 continue; // No offset. 6652 6653 // Handle struct indices, which add their field offset to the pointer. 6654 if (StructType *STy = GTI.getStructTypeOrNull()) { 6655 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6656 continue; 6657 } 6658 6659 // Otherwise, we have a sequential type like an array or fixed-length 6660 // vector. Multiply the index by the ElementSize. 6661 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6662 if (Size.isScalable()) 6663 return None; 6664 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6665 } 6666 6667 return Offset; 6668 } 6669 6670 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6671 const DataLayout &DL) { 6672 Ptr1 = Ptr1->stripPointerCasts(); 6673 Ptr2 = Ptr2->stripPointerCasts(); 6674 6675 // Handle the trivial case first. 6676 if (Ptr1 == Ptr2) { 6677 return 0; 6678 } 6679 6680 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6681 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6682 6683 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6684 // as in "P" and "gep P, 1". 6685 // Also do this iteratively to handle the the following case: 6686 // Ptr_t1 = GEP Ptr1, c1 6687 // Ptr_t2 = GEP Ptr_t1, c2 6688 // Ptr2 = GEP Ptr_t2, c3 6689 // where we will return c1+c2+c3. 6690 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6691 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6692 // are the same, and return the difference between offsets. 6693 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6694 const Value *Ptr) -> Optional<int64_t> { 6695 const GEPOperator *GEP_T = GEP; 6696 int64_t OffsetVal = 0; 6697 bool HasSameBase = false; 6698 while (GEP_T) { 6699 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6700 if (!Offset) 6701 return None; 6702 OffsetVal += *Offset; 6703 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6704 if (Op0 == Ptr) { 6705 HasSameBase = true; 6706 break; 6707 } 6708 GEP_T = dyn_cast<GEPOperator>(Op0); 6709 } 6710 if (!HasSameBase) 6711 return None; 6712 return OffsetVal; 6713 }; 6714 6715 if (GEP1) { 6716 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6717 if (Offset) 6718 return -*Offset; 6719 } 6720 if (GEP2) { 6721 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6722 if (Offset) 6723 return Offset; 6724 } 6725 6726 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6727 // base. After that base, they may have some number of common (and 6728 // potentially variable) indices. After that they handle some constant 6729 // offset, which determines their offset from each other. At this point, we 6730 // handle no other case. 6731 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6732 return None; 6733 6734 // Skip any common indices and track the GEP types. 6735 unsigned Idx = 1; 6736 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6737 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6738 break; 6739 6740 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6741 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6742 if (!Offset1 || !Offset2) 6743 return None; 6744 return *Offset2 - *Offset1; 6745 } 6746