1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = Shuf->getType()->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 178 if (DemandedElts.isNullValue()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 // FIXME: We currently have no way to represent the DemandedElts of a scalable 210 // vector 211 if (isa<ScalableVectorType>(V->getType())) { 212 Known.resetAll(); 213 return; 214 } 215 216 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 217 APInt DemandedElts = 218 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 219 computeKnownBits(V, DemandedElts, Known, Depth, Q); 220 } 221 222 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 223 const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, const Instruction *CxtI, 225 const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 232 KnownBits &Known, const DataLayout &DL, 233 unsigned Depth, AssumptionCache *AC, 234 const Instruction *CxtI, const DominatorTree *DT, 235 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 236 ::computeKnownBits(V, DemandedElts, Known, Depth, 237 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 238 } 239 240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 241 unsigned Depth, const Query &Q); 242 243 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 257 const DataLayout &DL, unsigned Depth, 258 AssumptionCache *AC, const Instruction *CxtI, 259 const DominatorTree *DT, 260 OptimizationRemarkEmitter *ORE, 261 bool UseInstrInfo) { 262 return ::computeKnownBits( 263 V, DemandedElts, Depth, 264 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 265 } 266 267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 268 const DataLayout &DL, AssumptionCache *AC, 269 const Instruction *CxtI, const DominatorTree *DT, 270 bool UseInstrInfo) { 271 assert(LHS->getType() == RHS->getType() && 272 "LHS and RHS should have the same type"); 273 assert(LHS->getType()->isIntOrIntVectorTy() && 274 "LHS and RHS should be integers"); 275 // Look for an inverted mask: (X & ~M) op (Y & M). 276 Value *M; 277 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 278 match(RHS, m_c_And(m_Specific(M), m_Value()))) 279 return true; 280 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(LHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 284 KnownBits LHSKnown(IT->getBitWidth()); 285 KnownBits RHSKnown(IT->getBitWidth()); 286 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 287 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 288 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 289 } 290 291 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 292 for (const User *U : CxtI->users()) { 293 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 294 if (IC->isEquality()) 295 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 296 if (C->isNullValue()) 297 continue; 298 return false; 299 } 300 return true; 301 } 302 303 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 304 const Query &Q); 305 306 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 307 bool OrZero, unsigned Depth, 308 AssumptionCache *AC, const Instruction *CxtI, 309 const DominatorTree *DT, bool UseInstrInfo) { 310 return ::isKnownToBeAPowerOfTwo( 311 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 312 } 313 314 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 315 unsigned Depth, const Query &Q); 316 317 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 318 319 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 320 AssumptionCache *AC, const Instruction *CxtI, 321 const DominatorTree *DT, bool UseInstrInfo) { 322 return ::isKnownNonZero(V, Depth, 323 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 324 } 325 326 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 327 unsigned Depth, AssumptionCache *AC, 328 const Instruction *CxtI, const DominatorTree *DT, 329 bool UseInstrInfo) { 330 KnownBits Known = 331 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 332 return Known.isNonNegative(); 333 } 334 335 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 if (auto *CI = dyn_cast<ConstantInt>(V)) 339 return CI->getValue().isStrictlyPositive(); 340 341 // TODO: We'd doing two recursive queries here. We should factor this such 342 // that only a single query is needed. 343 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 344 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 345 } 346 347 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 348 AssumptionCache *AC, const Instruction *CxtI, 349 const DominatorTree *DT, bool UseInstrInfo) { 350 KnownBits Known = 351 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 352 return Known.isNegative(); 353 } 354 355 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 356 357 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 358 const DataLayout &DL, AssumptionCache *AC, 359 const Instruction *CxtI, const DominatorTree *DT, 360 bool UseInstrInfo) { 361 return ::isKnownNonEqual(V1, V2, 362 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 363 UseInstrInfo, /*ORE=*/nullptr)); 364 } 365 366 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 367 const Query &Q); 368 369 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 370 const DataLayout &DL, unsigned Depth, 371 AssumptionCache *AC, const Instruction *CxtI, 372 const DominatorTree *DT, bool UseInstrInfo) { 373 return ::MaskedValueIsZero( 374 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 375 } 376 377 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 378 unsigned Depth, const Query &Q); 379 380 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 381 const Query &Q) { 382 // FIXME: We currently have no way to represent the DemandedElts of a scalable 383 // vector 384 if (isa<ScalableVectorType>(V->getType())) 385 return 1; 386 387 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 388 APInt DemandedElts = 389 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 390 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 391 } 392 393 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 394 unsigned Depth, AssumptionCache *AC, 395 const Instruction *CxtI, 396 const DominatorTree *DT, bool UseInstrInfo) { 397 return ::ComputeNumSignBits( 398 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 399 } 400 401 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 402 bool NSW, const APInt &DemandedElts, 403 KnownBits &KnownOut, KnownBits &Known2, 404 unsigned Depth, const Query &Q) { 405 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 406 407 // If one operand is unknown and we have no nowrap information, 408 // the result will be unknown independently of the second operand. 409 if (KnownOut.isUnknown() && !NSW) 410 return; 411 412 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 413 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 414 } 415 416 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 417 const APInt &DemandedElts, KnownBits &Known, 418 KnownBits &Known2, unsigned Depth, 419 const Query &Q) { 420 unsigned BitWidth = Known.getBitWidth(); 421 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 422 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 423 424 bool isKnownNegative = false; 425 bool isKnownNonNegative = false; 426 // If the multiplication is known not to overflow, compute the sign bit. 427 if (NSW) { 428 if (Op0 == Op1) { 429 // The product of a number with itself is non-negative. 430 isKnownNonNegative = true; 431 } else { 432 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 433 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 434 bool isKnownNegativeOp1 = Known.isNegative(); 435 bool isKnownNegativeOp0 = Known2.isNegative(); 436 // The product of two numbers with the same sign is non-negative. 437 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 438 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 439 // The product of a negative number and a non-negative number is either 440 // negative or zero. 441 if (!isKnownNonNegative) 442 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 443 isKnownNonZero(Op0, Depth, Q)) || 444 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 445 isKnownNonZero(Op1, Depth, Q)); 446 } 447 } 448 449 assert(!Known.hasConflict() && !Known2.hasConflict()); 450 // Compute a conservative estimate for high known-0 bits. 451 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 452 Known2.countMinLeadingZeros(), 453 BitWidth) - BitWidth; 454 LeadZ = std::min(LeadZ, BitWidth); 455 456 // The result of the bottom bits of an integer multiply can be 457 // inferred by looking at the bottom bits of both operands and 458 // multiplying them together. 459 // We can infer at least the minimum number of known trailing bits 460 // of both operands. Depending on number of trailing zeros, we can 461 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 462 // a and b are divisible by m and n respectively. 463 // We then calculate how many of those bits are inferrable and set 464 // the output. For example, the i8 mul: 465 // a = XXXX1100 (12) 466 // b = XXXX1110 (14) 467 // We know the bottom 3 bits are zero since the first can be divided by 468 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 469 // Applying the multiplication to the trimmed arguments gets: 470 // XX11 (3) 471 // X111 (7) 472 // ------- 473 // XX11 474 // XX11 475 // XX11 476 // XX11 477 // ------- 478 // XXXXX01 479 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 480 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 481 // The proof for this can be described as: 482 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 483 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 484 // umin(countTrailingZeros(C2), C6) + 485 // umin(C5 - umin(countTrailingZeros(C1), C5), 486 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 487 // %aa = shl i8 %a, C5 488 // %bb = shl i8 %b, C6 489 // %aaa = or i8 %aa, C1 490 // %bbb = or i8 %bb, C2 491 // %mul = mul i8 %aaa, %bbb 492 // %mask = and i8 %mul, C7 493 // => 494 // %mask = i8 ((C1*C2)&C7) 495 // Where C5, C6 describe the known bits of %a, %b 496 // C1, C2 describe the known bottom bits of %a, %b. 497 // C7 describes the mask of the known bits of the result. 498 APInt Bottom0 = Known.One; 499 APInt Bottom1 = Known2.One; 500 501 // How many times we'd be able to divide each argument by 2 (shr by 1). 502 // This gives us the number of trailing zeros on the multiplication result. 503 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 504 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 505 unsigned TrailZero0 = Known.countMinTrailingZeros(); 506 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 507 unsigned TrailZ = TrailZero0 + TrailZero1; 508 509 // Figure out the fewest known-bits operand. 510 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 511 TrailBitsKnown1 - TrailZero1); 512 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 513 514 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 515 Bottom1.getLoBits(TrailBitsKnown1); 516 517 Known.resetAll(); 518 Known.Zero.setHighBits(LeadZ); 519 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 520 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 521 522 // Only make use of no-wrap flags if we failed to compute the sign bit 523 // directly. This matters if the multiplication always overflows, in 524 // which case we prefer to follow the result of the direct computation, 525 // though as the program is invoking undefined behaviour we can choose 526 // whatever we like here. 527 if (isKnownNonNegative && !Known.isNegative()) 528 Known.makeNonNegative(); 529 else if (isKnownNegative && !Known.isNonNegative()) 530 Known.makeNegative(); 531 } 532 533 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 534 KnownBits &Known) { 535 unsigned BitWidth = Known.getBitWidth(); 536 unsigned NumRanges = Ranges.getNumOperands() / 2; 537 assert(NumRanges >= 1); 538 539 Known.Zero.setAllBits(); 540 Known.One.setAllBits(); 541 542 for (unsigned i = 0; i < NumRanges; ++i) { 543 ConstantInt *Lower = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 545 ConstantInt *Upper = 546 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 547 ConstantRange Range(Lower->getValue(), Upper->getValue()); 548 549 // The first CommonPrefixBits of all values in Range are equal. 550 unsigned CommonPrefixBits = 551 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 552 553 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 554 Known.One &= Range.getUnsignedMax() & Mask; 555 Known.Zero &= ~Range.getUnsignedMax() & Mask; 556 } 557 } 558 559 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 560 SmallVector<const Value *, 16> WorkSet(1, I); 561 SmallPtrSet<const Value *, 32> Visited; 562 SmallPtrSet<const Value *, 16> EphValues; 563 564 // The instruction defining an assumption's condition itself is always 565 // considered ephemeral to that assumption (even if it has other 566 // non-ephemeral users). See r246696's test case for an example. 567 if (is_contained(I->operands(), E)) 568 return true; 569 570 while (!WorkSet.empty()) { 571 const Value *V = WorkSet.pop_back_val(); 572 if (!Visited.insert(V).second) 573 continue; 574 575 // If all uses of this value are ephemeral, then so is this value. 576 if (llvm::all_of(V->users(), [&](const User *U) { 577 return EphValues.count(U); 578 })) { 579 if (V == E) 580 return true; 581 582 if (V == I || isSafeToSpeculativelyExecute(V)) { 583 EphValues.insert(V); 584 if (const User *U = dyn_cast<User>(V)) 585 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 586 J != JE; ++J) 587 WorkSet.push_back(*J); 588 } 589 } 590 } 591 592 return false; 593 } 594 595 // Is this an intrinsic that cannot be speculated but also cannot trap? 596 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 597 if (const CallInst *CI = dyn_cast<CallInst>(I)) 598 if (Function *F = CI->getCalledFunction()) 599 switch (F->getIntrinsicID()) { 600 default: break; 601 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 602 case Intrinsic::assume: 603 case Intrinsic::sideeffect: 604 case Intrinsic::dbg_declare: 605 case Intrinsic::dbg_value: 606 case Intrinsic::dbg_label: 607 case Intrinsic::invariant_start: 608 case Intrinsic::invariant_end: 609 case Intrinsic::lifetime_start: 610 case Intrinsic::lifetime_end: 611 case Intrinsic::objectsize: 612 case Intrinsic::ptr_annotation: 613 case Intrinsic::var_annotation: 614 return true; 615 } 616 617 return false; 618 } 619 620 bool llvm::isValidAssumeForContext(const Instruction *Inv, 621 const Instruction *CxtI, 622 const DominatorTree *DT) { 623 // There are two restrictions on the use of an assume: 624 // 1. The assume must dominate the context (or the control flow must 625 // reach the assume whenever it reaches the context). 626 // 2. The context must not be in the assume's set of ephemeral values 627 // (otherwise we will use the assume to prove that the condition 628 // feeding the assume is trivially true, thus causing the removal of 629 // the assume). 630 631 if (Inv->getParent() == CxtI->getParent()) { 632 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 633 // in the BB. 634 if (Inv->comesBefore(CxtI)) 635 return true; 636 637 // Don't let an assume affect itself - this would cause the problems 638 // `isEphemeralValueOf` is trying to prevent, and it would also make 639 // the loop below go out of bounds. 640 if (Inv == CxtI) 641 return false; 642 643 // The context comes first, but they're both in the same block. 644 // Make sure there is nothing in between that might interrupt 645 // the control flow, not even CxtI itself. 646 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 647 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 648 return false; 649 650 return !isEphemeralValueOf(Inv, CxtI); 651 } 652 653 // Inv and CxtI are in different blocks. 654 if (DT) { 655 if (DT->dominates(Inv, CxtI)) 656 return true; 657 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 658 // We don't have a DT, but this trivially dominates. 659 return true; 660 } 661 662 return false; 663 } 664 665 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return false; 670 671 // Note that the patterns below need to be kept in sync with the code 672 // in AssumptionCache::updateAffectedValues. 673 674 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 675 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 676 677 Value *RHS; 678 CmpInst::Predicate Pred; 679 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 680 return false; 681 // assume(v u> y) -> assume(v != 0) 682 if (Pred == ICmpInst::ICMP_UGT) 683 return true; 684 685 // assume(v != 0) 686 // We special-case this one to ensure that we handle `assume(v != null)`. 687 if (Pred == ICmpInst::ICMP_NE) 688 return match(RHS, m_Zero()); 689 690 // All other predicates - rely on generic ConstantRange handling. 691 ConstantInt *CI; 692 if (!match(RHS, m_ConstantInt(CI))) 693 return false; 694 ConstantRange RHSRange(CI->getValue()); 695 ConstantRange TrueValues = 696 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 697 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 698 }; 699 700 if (Q.CxtI && V->getType()->isPointerTy()) { 701 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 702 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 703 V->getType()->getPointerAddressSpace())) 704 AttrKinds.push_back(Attribute::Dereferenceable); 705 706 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 707 return true; 708 } 709 710 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 711 if (!AssumeVH) 712 continue; 713 CallInst *I = cast<CallInst>(AssumeVH); 714 assert(I->getFunction() == Q.CxtI->getFunction() && 715 "Got assumption for the wrong function!"); 716 if (Q.isExcluded(I)) 717 continue; 718 719 // Warning: This loop can end up being somewhat performance sensitive. 720 // We're running this loop for once for each value queried resulting in a 721 // runtime of ~O(#assumes * #values). 722 723 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 724 "must be an assume intrinsic"); 725 726 Value *Arg = I->getArgOperand(0); 727 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 728 if (!Cmp) 729 continue; 730 731 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 732 return true; 733 } 734 735 return false; 736 } 737 738 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 739 unsigned Depth, const Query &Q) { 740 // Use of assumptions is context-sensitive. If we don't have a context, we 741 // cannot use them! 742 if (!Q.AC || !Q.CxtI) 743 return; 744 745 unsigned BitWidth = Known.getBitWidth(); 746 747 // Note that the patterns below need to be kept in sync with the code 748 // in AssumptionCache::updateAffectedValues. 749 750 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 751 if (!AssumeVH) 752 continue; 753 CallInst *I = cast<CallInst>(AssumeVH); 754 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 755 "Got assumption for the wrong function!"); 756 if (Q.isExcluded(I)) 757 continue; 758 759 // Warning: This loop can end up being somewhat performance sensitive. 760 // We're running this loop for once for each value queried resulting in a 761 // runtime of ~O(#assumes * #values). 762 763 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 764 "must be an assume intrinsic"); 765 766 Value *Arg = I->getArgOperand(0); 767 768 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 assert(BitWidth == 1 && "assume operand is not i1?"); 770 Known.setAllOnes(); 771 return; 772 } 773 if (match(Arg, m_Not(m_Specific(V))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 assert(BitWidth == 1 && "assume operand is not i1?"); 776 Known.setAllZero(); 777 return; 778 } 779 780 // The remaining tests are all recursive, so bail out if we hit the limit. 781 if (Depth == MaxDepth) 782 continue; 783 784 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 785 if (!Cmp) 786 continue; 787 788 Value *A, *B; 789 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 790 791 CmpInst::Predicate Pred; 792 uint64_t C; 793 switch (Cmp->getPredicate()) { 794 default: 795 break; 796 case ICmpInst::ICMP_EQ: 797 // assume(v = a) 798 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown(BitWidth); 801 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 802 Known.Zero |= RHSKnown.Zero; 803 Known.One |= RHSKnown.One; 804 // assume(v & b = a) 805 } else if (match(Cmp, 806 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 807 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 808 KnownBits RHSKnown(BitWidth); 809 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 810 KnownBits MaskKnown(BitWidth); 811 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 812 813 // For those bits in the mask that are known to be one, we can propagate 814 // known bits from the RHS to V. 815 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 816 Known.One |= RHSKnown.One & MaskKnown.One; 817 // assume(~(v & b) = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 821 KnownBits RHSKnown(BitWidth); 822 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 823 KnownBits MaskKnown(BitWidth); 824 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 825 826 // For those bits in the mask that are known to be one, we can propagate 827 // inverted known bits from the RHS to V. 828 Known.Zero |= RHSKnown.One & MaskKnown.One; 829 Known.One |= RHSKnown.Zero & MaskKnown.One; 830 // assume(v | b = a) 831 } else if (match(Cmp, 832 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 834 KnownBits RHSKnown(BitWidth); 835 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 836 KnownBits BKnown(BitWidth); 837 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 838 839 // For those bits in B that are known to be zero, we can propagate known 840 // bits from the RHS to V. 841 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 842 Known.One |= RHSKnown.One & BKnown.Zero; 843 // assume(~(v | b) = a) 844 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 845 m_Value(A))) && 846 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 847 KnownBits RHSKnown(BitWidth); 848 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 849 KnownBits BKnown(BitWidth); 850 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 851 852 // For those bits in B that are known to be zero, we can propagate 853 // inverted known bits from the RHS to V. 854 Known.Zero |= RHSKnown.One & BKnown.Zero; 855 Known.One |= RHSKnown.Zero & BKnown.Zero; 856 // assume(v ^ b = a) 857 } else if (match(Cmp, 858 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 859 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 860 KnownBits RHSKnown(BitWidth); 861 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 862 KnownBits BKnown(BitWidth); 863 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 864 865 // For those bits in B that are known to be zero, we can propagate known 866 // bits from the RHS to V. For those bits in B that are known to be one, 867 // we can propagate inverted known bits from the RHS to V. 868 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 869 Known.One |= RHSKnown.One & BKnown.Zero; 870 Known.Zero |= RHSKnown.One & BKnown.One; 871 Known.One |= RHSKnown.Zero & BKnown.One; 872 // assume(~(v ^ b) = a) 873 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 874 m_Value(A))) && 875 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 876 KnownBits RHSKnown(BitWidth); 877 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 878 KnownBits BKnown(BitWidth); 879 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 880 881 // For those bits in B that are known to be zero, we can propagate 882 // inverted known bits from the RHS to V. For those bits in B that are 883 // known to be one, we can propagate known bits from the RHS to V. 884 Known.Zero |= RHSKnown.One & BKnown.Zero; 885 Known.One |= RHSKnown.Zero & BKnown.Zero; 886 Known.Zero |= RHSKnown.Zero & BKnown.One; 887 Known.One |= RHSKnown.One & BKnown.One; 888 // assume(v << c = a) 889 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 890 m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 892 KnownBits RHSKnown(BitWidth); 893 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 894 // For those bits in RHS that are known, we can propagate them to known 895 // bits in V shifted to the right by C. 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.Zero |= RHSKnown.Zero; 898 RHSKnown.One.lshrInPlace(C); 899 Known.One |= RHSKnown.One; 900 // assume(~(v << c) = a) 901 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 902 m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 904 KnownBits RHSKnown(BitWidth); 905 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 906 // For those bits in RHS that are known, we can propagate them inverted 907 // to known bits in V shifted to the right by C. 908 RHSKnown.One.lshrInPlace(C); 909 Known.Zero |= RHSKnown.One; 910 RHSKnown.Zero.lshrInPlace(C); 911 Known.One |= RHSKnown.Zero; 912 // assume(v >> c = a) 913 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 914 m_Value(A))) && 915 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 916 KnownBits RHSKnown(BitWidth); 917 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 918 // For those bits in RHS that are known, we can propagate them to known 919 // bits in V shifted to the right by C. 920 Known.Zero |= RHSKnown.Zero << C; 921 Known.One |= RHSKnown.One << C; 922 // assume(~(v >> c) = a) 923 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 924 m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 926 KnownBits RHSKnown(BitWidth); 927 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 928 // For those bits in RHS that are known, we can propagate them inverted 929 // to known bits in V shifted to the right by C. 930 Known.Zero |= RHSKnown.One << C; 931 Known.One |= RHSKnown.Zero << C; 932 } 933 break; 934 case ICmpInst::ICMP_SGE: 935 // assume(v >=_s c) where c is non-negative 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown(BitWidth); 939 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 940 941 if (RHSKnown.isNonNegative()) { 942 // We know that the sign bit is zero. 943 Known.makeNonNegative(); 944 } 945 } 946 break; 947 case ICmpInst::ICMP_SGT: 948 // assume(v >_s c) where c is at least -1. 949 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 950 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 951 KnownBits RHSKnown(BitWidth); 952 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 953 954 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 955 // We know that the sign bit is zero. 956 Known.makeNonNegative(); 957 } 958 } 959 break; 960 case ICmpInst::ICMP_SLE: 961 // assume(v <=_s c) where c is negative 962 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 963 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 964 KnownBits RHSKnown(BitWidth); 965 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 966 967 if (RHSKnown.isNegative()) { 968 // We know that the sign bit is one. 969 Known.makeNegative(); 970 } 971 } 972 break; 973 case ICmpInst::ICMP_SLT: 974 // assume(v <_s c) where c is non-positive 975 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 976 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 977 KnownBits RHSKnown(BitWidth); 978 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 979 980 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 981 // We know that the sign bit is one. 982 Known.makeNegative(); 983 } 984 } 985 break; 986 case ICmpInst::ICMP_ULE: 987 // assume(v <=_u c) 988 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 989 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 990 KnownBits RHSKnown(BitWidth); 991 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 992 993 // Whatever high bits in c are zero are known to be zero. 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 995 } 996 break; 997 case ICmpInst::ICMP_ULT: 998 // assume(v <_u c) 999 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1000 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1001 KnownBits RHSKnown(BitWidth); 1002 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 1003 1004 // If the RHS is known zero, then this assumption must be wrong (nothing 1005 // is unsigned less than zero). Signal a conflict and get out of here. 1006 if (RHSKnown.isZero()) { 1007 Known.Zero.setAllBits(); 1008 Known.One.setAllBits(); 1009 break; 1010 } 1011 1012 // Whatever high bits in c are zero are known to be zero (if c is a power 1013 // of 2, then one more). 1014 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1015 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1016 else 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1018 } 1019 break; 1020 } 1021 } 1022 1023 // If assumptions conflict with each other or previous known bits, then we 1024 // have a logical fallacy. It's possible that the assumption is not reachable, 1025 // so this isn't a real bug. On the other hand, the program may have undefined 1026 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1027 // clear out the known bits, try to warn the user, and hope for the best. 1028 if (Known.Zero.intersects(Known.One)) { 1029 Known.resetAll(); 1030 1031 if (Q.ORE) 1032 Q.ORE->emit([&]() { 1033 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1034 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1035 CxtI) 1036 << "Detected conflicting code assumptions. Program may " 1037 "have undefined behavior, or compiler may have " 1038 "internal error."; 1039 }); 1040 } 1041 } 1042 1043 /// Compute known bits from a shift operator, including those with a 1044 /// non-constant shift amount. Known is the output of this function. Known2 is a 1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1046 /// operator-specific functions that, given the known-zero or known-one bits 1047 /// respectively, and a shift amount, compute the implied known-zero or 1048 /// known-one bits of the shift operator's result respectively for that shift 1049 /// amount. The results from calling KZF and KOF are conservatively combined for 1050 /// all permitted shift amounts. 1051 static void computeKnownBitsFromShiftOperator( 1052 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1053 KnownBits &Known2, unsigned Depth, const Query &Q, 1054 function_ref<APInt(const APInt &, unsigned)> KZF, 1055 function_ref<APInt(const APInt &, unsigned)> KOF) { 1056 unsigned BitWidth = Known.getBitWidth(); 1057 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 if (Known.isConstant()) { 1060 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1061 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1063 Known.Zero = KZF(Known.Zero, ShiftAmt); 1064 Known.One = KOF(Known.One, ShiftAmt); 1065 // If the known bits conflict, this must be an overflowing left shift, so 1066 // the shift result is poison. We can return anything we want. Choose 0 for 1067 // the best folding opportunity. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 1071 return; 1072 } 1073 1074 // If the shift amount could be greater than or equal to the bit-width of the 1075 // LHS, the value could be poison, but bail out because the check below is 1076 // expensive. 1077 // TODO: Should we just carry on? 1078 if (Known.getMaxValue().uge(BitWidth)) { 1079 Known.resetAll(); 1080 return; 1081 } 1082 1083 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1084 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1085 // limit value (which implies all bits are known). 1086 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1087 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1088 1089 // It would be more-clearly correct to use the two temporaries for this 1090 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1091 Known.resetAll(); 1092 1093 // If we know the shifter operand is nonzero, we can sometimes infer more 1094 // known bits. However this is expensive to compute, so be lazy about it and 1095 // only compute it when absolutely necessary. 1096 Optional<bool> ShifterOperandIsNonZero; 1097 1098 // Early exit if we can't constrain any well-defined shift amount. 1099 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1100 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1101 ShifterOperandIsNonZero = 1102 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1103 if (!*ShifterOperandIsNonZero) 1104 return; 1105 } 1106 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1112 // Combine the shifted known input bits only for those shift amounts 1113 // compatible with its known constraints. 1114 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1115 continue; 1116 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1117 continue; 1118 // If we know the shifter is nonzero, we may be able to infer more known 1119 // bits. This check is sunk down as far as possible to avoid the expensive 1120 // call to isKnownNonZero if the cheaper checks above fail. 1121 if (ShiftAmt == 0) { 1122 if (!ShifterOperandIsNonZero.hasValue()) 1123 ShifterOperandIsNonZero = 1124 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1125 if (*ShifterOperandIsNonZero) 1126 continue; 1127 } 1128 1129 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1130 Known.One &= KOF(Known2.One, ShiftAmt); 1131 } 1132 1133 // If the known bits conflict, the result is poison. Return a 0 and hope the 1134 // caller can further optimize that. 1135 if (Known.hasConflict()) 1136 Known.setAllZero(); 1137 } 1138 1139 static void computeKnownBitsFromOperator(const Operator *I, 1140 const APInt &DemandedElts, 1141 KnownBits &Known, unsigned Depth, 1142 const Query &Q) { 1143 unsigned BitWidth = Known.getBitWidth(); 1144 1145 KnownBits Known2(BitWidth); 1146 switch (I->getOpcode()) { 1147 default: break; 1148 case Instruction::Load: 1149 if (MDNode *MD = 1150 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1151 computeKnownBitsFromRangeMetadata(*MD, Known); 1152 break; 1153 case Instruction::And: { 1154 // If either the LHS or the RHS are Zero, the result is zero. 1155 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1157 1158 Known &= Known2; 1159 1160 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1161 // here we handle the more general case of adding any odd number by 1162 // matching the form add(x, add(x, y)) where y is odd. 1163 // TODO: This could be generalized to clearing any bit set in y where the 1164 // following bit is known to be unset in y. 1165 Value *X = nullptr, *Y = nullptr; 1166 if (!Known.Zero[0] && !Known.One[0] && 1167 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1168 Known2.resetAll(); 1169 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1170 if (Known2.countMinTrailingOnes() > 0) 1171 Known.Zero.setBit(0); 1172 } 1173 break; 1174 } 1175 case Instruction::Or: 1176 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1178 1179 Known |= Known2; 1180 break; 1181 case Instruction::Xor: 1182 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1183 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1184 1185 Known ^= Known2; 1186 break; 1187 case Instruction::Mul: { 1188 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1189 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::UDiv: { 1194 // For the purposes of computing leading zeros we can conservatively 1195 // treat a udiv as a logical right shift by the power of 2 known to 1196 // be less than the denominator. 1197 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1198 unsigned LeadZ = Known2.countMinLeadingZeros(); 1199 1200 Known2.resetAll(); 1201 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1202 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1203 if (RHSMaxLeadingZeros != BitWidth) 1204 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1205 1206 Known.Zero.setHighBits(LeadZ); 1207 break; 1208 } 1209 case Instruction::Select: { 1210 const Value *LHS = nullptr, *RHS = nullptr; 1211 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1212 if (SelectPatternResult::isMinOrMax(SPF)) { 1213 computeKnownBits(RHS, Known, Depth + 1, Q); 1214 computeKnownBits(LHS, Known2, Depth + 1, Q); 1215 } else { 1216 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1217 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1218 } 1219 1220 unsigned MaxHighOnes = 0; 1221 unsigned MaxHighZeros = 0; 1222 if (SPF == SPF_SMAX) { 1223 // If both sides are negative, the result is negative. 1224 if (Known.isNegative() && Known2.isNegative()) 1225 // We can derive a lower bound on the result by taking the max of the 1226 // leading one bits. 1227 MaxHighOnes = 1228 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1229 // If either side is non-negative, the result is non-negative. 1230 else if (Known.isNonNegative() || Known2.isNonNegative()) 1231 MaxHighZeros = 1; 1232 } else if (SPF == SPF_SMIN) { 1233 // If both sides are non-negative, the result is non-negative. 1234 if (Known.isNonNegative() && Known2.isNonNegative()) 1235 // We can derive an upper bound on the result by taking the max of the 1236 // leading zero bits. 1237 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1238 Known2.countMinLeadingZeros()); 1239 // If either side is negative, the result is negative. 1240 else if (Known.isNegative() || Known2.isNegative()) 1241 MaxHighOnes = 1; 1242 } else if (SPF == SPF_UMAX) { 1243 // We can derive a lower bound on the result by taking the max of the 1244 // leading one bits. 1245 MaxHighOnes = 1246 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1247 } else if (SPF == SPF_UMIN) { 1248 // We can derive an upper bound on the result by taking the max of the 1249 // leading zero bits. 1250 MaxHighZeros = 1251 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1252 } else if (SPF == SPF_ABS) { 1253 // RHS from matchSelectPattern returns the negation part of abs pattern. 1254 // If the negate has an NSW flag we can assume the sign bit of the result 1255 // will be 0 because that makes abs(INT_MIN) undefined. 1256 if (match(RHS, m_Neg(m_Specific(LHS))) && 1257 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1258 MaxHighZeros = 1; 1259 } 1260 1261 // Only known if known in both the LHS and RHS. 1262 Known.One &= Known2.One; 1263 Known.Zero &= Known2.Zero; 1264 if (MaxHighOnes > 0) 1265 Known.One.setHighBits(MaxHighOnes); 1266 if (MaxHighZeros > 0) 1267 Known.Zero.setHighBits(MaxHighZeros); 1268 break; 1269 } 1270 case Instruction::FPTrunc: 1271 case Instruction::FPExt: 1272 case Instruction::FPToUI: 1273 case Instruction::FPToSI: 1274 case Instruction::SIToFP: 1275 case Instruction::UIToFP: 1276 break; // Can't work with floating point. 1277 case Instruction::PtrToInt: 1278 case Instruction::IntToPtr: 1279 // Fall through and handle them the same as zext/trunc. 1280 LLVM_FALLTHROUGH; 1281 case Instruction::ZExt: 1282 case Instruction::Trunc: { 1283 Type *SrcTy = I->getOperand(0)->getType(); 1284 1285 unsigned SrcBitWidth; 1286 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1287 // which fall through here. 1288 Type *ScalarTy = SrcTy->getScalarType(); 1289 SrcBitWidth = ScalarTy->isPointerTy() ? 1290 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1291 Q.DL.getTypeSizeInBits(ScalarTy); 1292 1293 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1294 Known = Known.anyextOrTrunc(SrcBitWidth); 1295 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1296 Known = Known.zextOrTrunc(BitWidth); 1297 break; 1298 } 1299 case Instruction::BitCast: { 1300 Type *SrcTy = I->getOperand(0)->getType(); 1301 if (SrcTy->isIntOrPtrTy() && 1302 // TODO: For now, not handling conversions like: 1303 // (bitcast i64 %x to <2 x i32>) 1304 !I->getType()->isVectorTy()) { 1305 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1306 break; 1307 } 1308 break; 1309 } 1310 case Instruction::SExt: { 1311 // Compute the bits in the result that are not present in the input. 1312 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1313 1314 Known = Known.trunc(SrcBitWidth); 1315 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1316 // If the sign bit of the input is known set or clear, then we know the 1317 // top bits of the result. 1318 Known = Known.sext(BitWidth); 1319 break; 1320 } 1321 case Instruction::Shl: { 1322 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1323 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1324 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1325 APInt KZResult = KnownZero << ShiftAmt; 1326 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1327 // If this shift has "nsw" keyword, then the result is either a poison 1328 // value or has the same sign bit as the first operand. 1329 if (NSW && KnownZero.isSignBitSet()) 1330 KZResult.setSignBit(); 1331 return KZResult; 1332 }; 1333 1334 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1335 APInt KOResult = KnownOne << ShiftAmt; 1336 if (NSW && KnownOne.isSignBitSet()) 1337 KOResult.setSignBit(); 1338 return KOResult; 1339 }; 1340 1341 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1342 KZF, KOF); 1343 break; 1344 } 1345 case Instruction::LShr: { 1346 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1347 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1348 APInt KZResult = KnownZero.lshr(ShiftAmt); 1349 // High bits known zero. 1350 KZResult.setHighBits(ShiftAmt); 1351 return KZResult; 1352 }; 1353 1354 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1355 return KnownOne.lshr(ShiftAmt); 1356 }; 1357 1358 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1359 KZF, KOF); 1360 break; 1361 } 1362 case Instruction::AShr: { 1363 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1364 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1365 return KnownZero.ashr(ShiftAmt); 1366 }; 1367 1368 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1369 return KnownOne.ashr(ShiftAmt); 1370 }; 1371 1372 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1373 KZF, KOF); 1374 break; 1375 } 1376 case Instruction::Sub: { 1377 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1378 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1379 DemandedElts, Known, Known2, Depth, Q); 1380 break; 1381 } 1382 case Instruction::Add: { 1383 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1384 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1385 DemandedElts, Known, Known2, Depth, Q); 1386 break; 1387 } 1388 case Instruction::SRem: 1389 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1390 APInt RA = Rem->getValue().abs(); 1391 if (RA.isPowerOf2()) { 1392 APInt LowBits = RA - 1; 1393 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1394 1395 // The low bits of the first operand are unchanged by the srem. 1396 Known.Zero = Known2.Zero & LowBits; 1397 Known.One = Known2.One & LowBits; 1398 1399 // If the first operand is non-negative or has all low bits zero, then 1400 // the upper bits are all zero. 1401 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1402 Known.Zero |= ~LowBits; 1403 1404 // If the first operand is negative and not all low bits are zero, then 1405 // the upper bits are all one. 1406 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1407 Known.One |= ~LowBits; 1408 1409 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1410 break; 1411 } 1412 } 1413 1414 // The sign bit is the LHS's sign bit, except when the result of the 1415 // remainder is zero. 1416 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1417 // If it's known zero, our sign bit is also zero. 1418 if (Known2.isNonNegative()) 1419 Known.makeNonNegative(); 1420 1421 break; 1422 case Instruction::URem: { 1423 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1424 const APInt &RA = Rem->getValue(); 1425 if (RA.isPowerOf2()) { 1426 APInt LowBits = (RA - 1); 1427 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1428 Known.Zero |= ~LowBits; 1429 Known.One &= LowBits; 1430 break; 1431 } 1432 } 1433 1434 // Since the result is less than or equal to either operand, any leading 1435 // zero bits in either operand must also exist in the result. 1436 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1437 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1438 1439 unsigned Leaders = 1440 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1441 Known.resetAll(); 1442 Known.Zero.setHighBits(Leaders); 1443 break; 1444 } 1445 1446 case Instruction::Alloca: { 1447 const AllocaInst *AI = cast<AllocaInst>(I); 1448 unsigned Align = AI->getAlignment(); 1449 if (Align == 0) 1450 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1451 1452 if (Align > 0) 1453 Known.Zero.setLowBits(countTrailingZeros(Align)); 1454 break; 1455 } 1456 case Instruction::GetElementPtr: { 1457 // Analyze all of the subscripts of this getelementptr instruction 1458 // to determine if we can prove known low zero bits. 1459 KnownBits LocalKnown(BitWidth); 1460 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1461 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1462 1463 gep_type_iterator GTI = gep_type_begin(I); 1464 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1465 // TrailZ can only become smaller, short-circuit if we hit zero. 1466 if (TrailZ == 0) 1467 break; 1468 1469 Value *Index = I->getOperand(i); 1470 if (StructType *STy = GTI.getStructTypeOrNull()) { 1471 // Handle struct member offset arithmetic. 1472 1473 // Handle case when index is vector zeroinitializer 1474 Constant *CIndex = cast<Constant>(Index); 1475 if (CIndex->isZeroValue()) 1476 continue; 1477 1478 if (CIndex->getType()->isVectorTy()) 1479 Index = CIndex->getSplatValue(); 1480 1481 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1482 const StructLayout *SL = Q.DL.getStructLayout(STy); 1483 uint64_t Offset = SL->getElementOffset(Idx); 1484 TrailZ = std::min<unsigned>(TrailZ, 1485 countTrailingZeros(Offset)); 1486 } else { 1487 // Handle array index arithmetic. 1488 Type *IndexedTy = GTI.getIndexedType(); 1489 if (!IndexedTy->isSized()) { 1490 TrailZ = 0; 1491 break; 1492 } 1493 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1494 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1495 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1496 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1497 TrailZ = std::min(TrailZ, 1498 unsigned(countTrailingZeros(TypeSize) + 1499 LocalKnown.countMinTrailingZeros())); 1500 } 1501 } 1502 1503 Known.Zero.setLowBits(TrailZ); 1504 break; 1505 } 1506 case Instruction::PHI: { 1507 const PHINode *P = cast<PHINode>(I); 1508 // Handle the case of a simple two-predecessor recurrence PHI. 1509 // There's a lot more that could theoretically be done here, but 1510 // this is sufficient to catch some interesting cases. 1511 if (P->getNumIncomingValues() == 2) { 1512 for (unsigned i = 0; i != 2; ++i) { 1513 Value *L = P->getIncomingValue(i); 1514 Value *R = P->getIncomingValue(!i); 1515 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1516 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1517 Operator *LU = dyn_cast<Operator>(L); 1518 if (!LU) 1519 continue; 1520 unsigned Opcode = LU->getOpcode(); 1521 // Check for operations that have the property that if 1522 // both their operands have low zero bits, the result 1523 // will have low zero bits. 1524 if (Opcode == Instruction::Add || 1525 Opcode == Instruction::Sub || 1526 Opcode == Instruction::And || 1527 Opcode == Instruction::Or || 1528 Opcode == Instruction::Mul) { 1529 Value *LL = LU->getOperand(0); 1530 Value *LR = LU->getOperand(1); 1531 // Find a recurrence. 1532 if (LL == I) 1533 L = LR; 1534 else if (LR == I) 1535 L = LL; 1536 else 1537 continue; // Check for recurrence with L and R flipped. 1538 1539 // Change the context instruction to the "edge" that flows into the 1540 // phi. This is important because that is where the value is actually 1541 // "evaluated" even though it is used later somewhere else. (see also 1542 // D69571). 1543 Query RecQ = Q; 1544 1545 // Ok, we have a PHI of the form L op= R. Check for low 1546 // zero bits. 1547 RecQ.CxtI = RInst; 1548 computeKnownBits(R, Known2, Depth + 1, RecQ); 1549 1550 // We need to take the minimum number of known bits 1551 KnownBits Known3(BitWidth); 1552 RecQ.CxtI = LInst; 1553 computeKnownBits(L, Known3, Depth + 1, RecQ); 1554 1555 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1556 Known3.countMinTrailingZeros())); 1557 1558 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1559 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1560 // If initial value of recurrence is nonnegative, and we are adding 1561 // a nonnegative number with nsw, the result can only be nonnegative 1562 // or poison value regardless of the number of times we execute the 1563 // add in phi recurrence. If initial value is negative and we are 1564 // adding a negative number with nsw, the result can only be 1565 // negative or poison value. Similar arguments apply to sub and mul. 1566 // 1567 // (add non-negative, non-negative) --> non-negative 1568 // (add negative, negative) --> negative 1569 if (Opcode == Instruction::Add) { 1570 if (Known2.isNonNegative() && Known3.isNonNegative()) 1571 Known.makeNonNegative(); 1572 else if (Known2.isNegative() && Known3.isNegative()) 1573 Known.makeNegative(); 1574 } 1575 1576 // (sub nsw non-negative, negative) --> non-negative 1577 // (sub nsw negative, non-negative) --> negative 1578 else if (Opcode == Instruction::Sub && LL == I) { 1579 if (Known2.isNonNegative() && Known3.isNegative()) 1580 Known.makeNonNegative(); 1581 else if (Known2.isNegative() && Known3.isNonNegative()) 1582 Known.makeNegative(); 1583 } 1584 1585 // (mul nsw non-negative, non-negative) --> non-negative 1586 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1587 Known3.isNonNegative()) 1588 Known.makeNonNegative(); 1589 } 1590 1591 break; 1592 } 1593 } 1594 } 1595 1596 // Unreachable blocks may have zero-operand PHI nodes. 1597 if (P->getNumIncomingValues() == 0) 1598 break; 1599 1600 // Otherwise take the unions of the known bit sets of the operands, 1601 // taking conservative care to avoid excessive recursion. 1602 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1603 // Skip if every incoming value references to ourself. 1604 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1605 break; 1606 1607 Known.Zero.setAllBits(); 1608 Known.One.setAllBits(); 1609 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1610 Value *IncValue = P->getIncomingValue(u); 1611 // Skip direct self references. 1612 if (IncValue == P) continue; 1613 1614 // Change the context instruction to the "edge" that flows into the 1615 // phi. This is important because that is where the value is actually 1616 // "evaluated" even though it is used later somewhere else. (see also 1617 // D69571). 1618 Query RecQ = Q; 1619 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1620 1621 Known2 = KnownBits(BitWidth); 1622 // Recurse, but cap the recursion to one level, because we don't 1623 // want to waste time spinning around in loops. 1624 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1625 Known.Zero &= Known2.Zero; 1626 Known.One &= Known2.One; 1627 // If all bits have been ruled out, there's no need to check 1628 // more operands. 1629 if (!Known.Zero && !Known.One) 1630 break; 1631 } 1632 } 1633 break; 1634 } 1635 case Instruction::Call: 1636 case Instruction::Invoke: 1637 // If range metadata is attached to this call, set known bits from that, 1638 // and then intersect with known bits based on other properties of the 1639 // function. 1640 if (MDNode *MD = 1641 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1642 computeKnownBitsFromRangeMetadata(*MD, Known); 1643 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1644 computeKnownBits(RV, Known2, Depth + 1, Q); 1645 Known.Zero |= Known2.Zero; 1646 Known.One |= Known2.One; 1647 } 1648 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1649 switch (II->getIntrinsicID()) { 1650 default: break; 1651 case Intrinsic::bitreverse: 1652 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1653 Known.Zero |= Known2.Zero.reverseBits(); 1654 Known.One |= Known2.One.reverseBits(); 1655 break; 1656 case Intrinsic::bswap: 1657 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1658 Known.Zero |= Known2.Zero.byteSwap(); 1659 Known.One |= Known2.One.byteSwap(); 1660 break; 1661 case Intrinsic::ctlz: { 1662 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1663 // If we have a known 1, its position is our upper bound. 1664 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1665 // If this call is undefined for 0, the result will be less than 2^n. 1666 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1667 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1668 unsigned LowBits = Log2_32(PossibleLZ)+1; 1669 Known.Zero.setBitsFrom(LowBits); 1670 break; 1671 } 1672 case Intrinsic::cttz: { 1673 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1674 // If we have a known 1, its position is our upper bound. 1675 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1676 // If this call is undefined for 0, the result will be less than 2^n. 1677 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1678 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1679 unsigned LowBits = Log2_32(PossibleTZ)+1; 1680 Known.Zero.setBitsFrom(LowBits); 1681 break; 1682 } 1683 case Intrinsic::ctpop: { 1684 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1685 // We can bound the space the count needs. Also, bits known to be zero 1686 // can't contribute to the population. 1687 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1688 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1689 Known.Zero.setBitsFrom(LowBits); 1690 // TODO: we could bound KnownOne using the lower bound on the number 1691 // of bits which might be set provided by popcnt KnownOne2. 1692 break; 1693 } 1694 case Intrinsic::fshr: 1695 case Intrinsic::fshl: { 1696 const APInt *SA; 1697 if (!match(I->getOperand(2), m_APInt(SA))) 1698 break; 1699 1700 // Normalize to funnel shift left. 1701 uint64_t ShiftAmt = SA->urem(BitWidth); 1702 if (II->getIntrinsicID() == Intrinsic::fshr) 1703 ShiftAmt = BitWidth - ShiftAmt; 1704 1705 KnownBits Known3(BitWidth); 1706 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1707 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1708 1709 Known.Zero = 1710 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1711 Known.One = 1712 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1713 break; 1714 } 1715 case Intrinsic::uadd_sat: 1716 case Intrinsic::usub_sat: { 1717 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1718 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1719 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1720 1721 // Add: Leading ones of either operand are preserved. 1722 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1723 // as leading zeros in the result. 1724 unsigned LeadingKnown; 1725 if (IsAdd) 1726 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1727 Known2.countMinLeadingOnes()); 1728 else 1729 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1730 Known2.countMinLeadingOnes()); 1731 1732 Known = KnownBits::computeForAddSub( 1733 IsAdd, /* NSW */ false, Known, Known2); 1734 1735 // We select between the operation result and all-ones/zero 1736 // respectively, so we can preserve known ones/zeros. 1737 if (IsAdd) { 1738 Known.One.setHighBits(LeadingKnown); 1739 Known.Zero.clearAllBits(); 1740 } else { 1741 Known.Zero.setHighBits(LeadingKnown); 1742 Known.One.clearAllBits(); 1743 } 1744 break; 1745 } 1746 case Intrinsic::x86_sse42_crc32_64_64: 1747 Known.Zero.setBitsFrom(32); 1748 break; 1749 } 1750 } 1751 break; 1752 case Instruction::ShuffleVector: { 1753 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1754 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1755 if (!Shuf) { 1756 Known.resetAll(); 1757 return; 1758 } 1759 // For undef elements, we don't know anything about the common state of 1760 // the shuffle result. 1761 APInt DemandedLHS, DemandedRHS; 1762 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1763 Known.resetAll(); 1764 return; 1765 } 1766 Known.One.setAllBits(); 1767 Known.Zero.setAllBits(); 1768 if (!!DemandedLHS) { 1769 const Value *LHS = Shuf->getOperand(0); 1770 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1771 // If we don't know any bits, early out. 1772 if (Known.isUnknown()) 1773 break; 1774 } 1775 if (!!DemandedRHS) { 1776 const Value *RHS = Shuf->getOperand(1); 1777 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1778 Known.One &= Known2.One; 1779 Known.Zero &= Known2.Zero; 1780 } 1781 break; 1782 } 1783 case Instruction::InsertElement: { 1784 const Value *Vec = I->getOperand(0); 1785 const Value *Elt = I->getOperand(1); 1786 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1787 // Early out if the index is non-constant or out-of-range. 1788 unsigned NumElts = DemandedElts.getBitWidth(); 1789 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1790 Known.resetAll(); 1791 return; 1792 } 1793 Known.One.setAllBits(); 1794 Known.Zero.setAllBits(); 1795 unsigned EltIdx = CIdx->getZExtValue(); 1796 // Do we demand the inserted element? 1797 if (DemandedElts[EltIdx]) { 1798 computeKnownBits(Elt, Known, Depth + 1, Q); 1799 // If we don't know any bits, early out. 1800 if (Known.isUnknown()) 1801 break; 1802 } 1803 // We don't need the base vector element that has been inserted. 1804 APInt DemandedVecElts = DemandedElts; 1805 DemandedVecElts.clearBit(EltIdx); 1806 if (!!DemandedVecElts) { 1807 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1808 Known.One &= Known2.One; 1809 Known.Zero &= Known2.Zero; 1810 } 1811 break; 1812 } 1813 case Instruction::ExtractElement: { 1814 // Look through extract element. If the index is non-constant or 1815 // out-of-range demand all elements, otherwise just the extracted element. 1816 const Value *Vec = I->getOperand(0); 1817 const Value *Idx = I->getOperand(1); 1818 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1819 if (isa<ScalableVectorType>(Vec->getType())) { 1820 // FIXME: there's probably *something* we can do with scalable vectors 1821 Known.resetAll(); 1822 break; 1823 } 1824 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1825 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1826 if (CIdx && CIdx->getValue().ult(NumElts)) 1827 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1828 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1829 break; 1830 } 1831 case Instruction::ExtractValue: 1832 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1833 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1834 if (EVI->getNumIndices() != 1) break; 1835 if (EVI->getIndices()[0] == 0) { 1836 switch (II->getIntrinsicID()) { 1837 default: break; 1838 case Intrinsic::uadd_with_overflow: 1839 case Intrinsic::sadd_with_overflow: 1840 computeKnownBitsAddSub(true, II->getArgOperand(0), 1841 II->getArgOperand(1), false, DemandedElts, 1842 Known, Known2, Depth, Q); 1843 break; 1844 case Intrinsic::usub_with_overflow: 1845 case Intrinsic::ssub_with_overflow: 1846 computeKnownBitsAddSub(false, II->getArgOperand(0), 1847 II->getArgOperand(1), false, DemandedElts, 1848 Known, Known2, Depth, Q); 1849 break; 1850 case Intrinsic::umul_with_overflow: 1851 case Intrinsic::smul_with_overflow: 1852 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1853 DemandedElts, Known, Known2, Depth, Q); 1854 break; 1855 } 1856 } 1857 } 1858 break; 1859 } 1860 } 1861 1862 /// Determine which bits of V are known to be either zero or one and return 1863 /// them. 1864 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1865 unsigned Depth, const Query &Q) { 1866 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1867 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1868 return Known; 1869 } 1870 1871 /// Determine which bits of V are known to be either zero or one and return 1872 /// them. 1873 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1874 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1875 computeKnownBits(V, Known, Depth, Q); 1876 return Known; 1877 } 1878 1879 /// Determine which bits of V are known to be either zero or one and return 1880 /// them in the Known bit set. 1881 /// 1882 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1883 /// we cannot optimize based on the assumption that it is zero without changing 1884 /// it to be an explicit zero. If we don't change it to zero, other code could 1885 /// optimized based on the contradictory assumption that it is non-zero. 1886 /// Because instcombine aggressively folds operations with undef args anyway, 1887 /// this won't lose us code quality. 1888 /// 1889 /// This function is defined on values with integer type, values with pointer 1890 /// type, and vectors of integers. In the case 1891 /// where V is a vector, known zero, and known one values are the 1892 /// same width as the vector element, and the bit is set only if it is true 1893 /// for all of the demanded elements in the vector specified by DemandedElts. 1894 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1895 KnownBits &Known, unsigned Depth, const Query &Q) { 1896 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1897 // No demanded elts or V is a scalable vector, better to assume we don't 1898 // know anything. 1899 Known.resetAll(); 1900 return; 1901 } 1902 1903 assert(V && "No Value?"); 1904 assert(Depth <= MaxDepth && "Limit Search Depth"); 1905 1906 #ifndef NDEBUG 1907 Type *Ty = V->getType(); 1908 unsigned BitWidth = Known.getBitWidth(); 1909 1910 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1911 "Not integer or pointer type!"); 1912 1913 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1914 assert( 1915 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1916 "DemandedElt width should equal the fixed vector number of elements"); 1917 } else { 1918 assert(DemandedElts == APInt(1, 1) && 1919 "DemandedElt width should be 1 for scalars"); 1920 } 1921 1922 Type *ScalarTy = Ty->getScalarType(); 1923 if (ScalarTy->isPointerTy()) { 1924 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1925 "V and Known should have same BitWidth"); 1926 } else { 1927 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1928 "V and Known should have same BitWidth"); 1929 } 1930 #endif 1931 1932 const APInt *C; 1933 if (match(V, m_APInt(C))) { 1934 // We know all of the bits for a scalar constant or a splat vector constant! 1935 Known.One = *C; 1936 Known.Zero = ~Known.One; 1937 return; 1938 } 1939 // Null and aggregate-zero are all-zeros. 1940 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1941 Known.setAllZero(); 1942 return; 1943 } 1944 // Handle a constant vector by taking the intersection of the known bits of 1945 // each element. 1946 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1947 // We know that CDV must be a vector of integers. Take the intersection of 1948 // each element. 1949 Known.Zero.setAllBits(); Known.One.setAllBits(); 1950 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1951 if (!DemandedElts[i]) 1952 continue; 1953 APInt Elt = CDV->getElementAsAPInt(i); 1954 Known.Zero &= ~Elt; 1955 Known.One &= Elt; 1956 } 1957 return; 1958 } 1959 1960 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1961 // We know that CV must be a vector of integers. Take the intersection of 1962 // each element. 1963 Known.Zero.setAllBits(); Known.One.setAllBits(); 1964 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1965 if (!DemandedElts[i]) 1966 continue; 1967 Constant *Element = CV->getAggregateElement(i); 1968 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1969 if (!ElementCI) { 1970 Known.resetAll(); 1971 return; 1972 } 1973 const APInt &Elt = ElementCI->getValue(); 1974 Known.Zero &= ~Elt; 1975 Known.One &= Elt; 1976 } 1977 return; 1978 } 1979 1980 // Start out not knowing anything. 1981 Known.resetAll(); 1982 1983 // We can't imply anything about undefs. 1984 if (isa<UndefValue>(V)) 1985 return; 1986 1987 // There's no point in looking through other users of ConstantData for 1988 // assumptions. Confirm that we've handled them all. 1989 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1990 1991 // Limit search depth. 1992 // All recursive calls that increase depth must come after this. 1993 if (Depth == MaxDepth) 1994 return; 1995 1996 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1997 // the bits of its aliasee. 1998 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1999 if (!GA->isInterposable()) 2000 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2001 return; 2002 } 2003 2004 if (const Operator *I = dyn_cast<Operator>(V)) 2005 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2006 2007 // Aligned pointers have trailing zeros - refine Known.Zero set 2008 if (isa<PointerType>(V->getType())) { 2009 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 2010 if (Align) 2011 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 2012 } 2013 2014 // computeKnownBitsFromAssume strictly refines Known. 2015 // Therefore, we run them after computeKnownBitsFromOperator. 2016 2017 // Check whether a nearby assume intrinsic can determine some known bits. 2018 computeKnownBitsFromAssume(V, Known, Depth, Q); 2019 2020 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2021 } 2022 2023 /// Return true if the given value is known to have exactly one 2024 /// bit set when defined. For vectors return true if every element is known to 2025 /// be a power of two when defined. Supports values with integer or pointer 2026 /// types and vectors of integers. 2027 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2028 const Query &Q) { 2029 assert(Depth <= MaxDepth && "Limit Search Depth"); 2030 2031 // Attempt to match against constants. 2032 if (OrZero && match(V, m_Power2OrZero())) 2033 return true; 2034 if (match(V, m_Power2())) 2035 return true; 2036 2037 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2038 // it is shifted off the end then the result is undefined. 2039 if (match(V, m_Shl(m_One(), m_Value()))) 2040 return true; 2041 2042 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2043 // the bottom. If it is shifted off the bottom then the result is undefined. 2044 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2045 return true; 2046 2047 // The remaining tests are all recursive, so bail out if we hit the limit. 2048 if (Depth++ == MaxDepth) 2049 return false; 2050 2051 Value *X = nullptr, *Y = nullptr; 2052 // A shift left or a logical shift right of a power of two is a power of two 2053 // or zero. 2054 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2055 match(V, m_LShr(m_Value(X), m_Value())))) 2056 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2057 2058 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2059 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2060 2061 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2062 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2063 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2064 2065 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2066 // A power of two and'd with anything is a power of two or zero. 2067 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2068 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2069 return true; 2070 // X & (-X) is always a power of two or zero. 2071 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2072 return true; 2073 return false; 2074 } 2075 2076 // Adding a power-of-two or zero to the same power-of-two or zero yields 2077 // either the original power-of-two, a larger power-of-two or zero. 2078 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2079 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2080 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2081 Q.IIQ.hasNoSignedWrap(VOBO)) { 2082 if (match(X, m_And(m_Specific(Y), m_Value())) || 2083 match(X, m_And(m_Value(), m_Specific(Y)))) 2084 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2085 return true; 2086 if (match(Y, m_And(m_Specific(X), m_Value())) || 2087 match(Y, m_And(m_Value(), m_Specific(X)))) 2088 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2089 return true; 2090 2091 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2092 KnownBits LHSBits(BitWidth); 2093 computeKnownBits(X, LHSBits, Depth, Q); 2094 2095 KnownBits RHSBits(BitWidth); 2096 computeKnownBits(Y, RHSBits, Depth, Q); 2097 // If i8 V is a power of two or zero: 2098 // ZeroBits: 1 1 1 0 1 1 1 1 2099 // ~ZeroBits: 0 0 0 1 0 0 0 0 2100 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2101 // If OrZero isn't set, we cannot give back a zero result. 2102 // Make sure either the LHS or RHS has a bit set. 2103 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2104 return true; 2105 } 2106 } 2107 2108 // An exact divide or right shift can only shift off zero bits, so the result 2109 // is a power of two only if the first operand is a power of two and not 2110 // copying a sign bit (sdiv int_min, 2). 2111 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2112 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2113 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2114 Depth, Q); 2115 } 2116 2117 return false; 2118 } 2119 2120 /// Test whether a GEP's result is known to be non-null. 2121 /// 2122 /// Uses properties inherent in a GEP to try to determine whether it is known 2123 /// to be non-null. 2124 /// 2125 /// Currently this routine does not support vector GEPs. 2126 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2127 const Query &Q) { 2128 const Function *F = nullptr; 2129 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2130 F = I->getFunction(); 2131 2132 if (!GEP->isInBounds() || 2133 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2134 return false; 2135 2136 // FIXME: Support vector-GEPs. 2137 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2138 2139 // If the base pointer is non-null, we cannot walk to a null address with an 2140 // inbounds GEP in address space zero. 2141 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2142 return true; 2143 2144 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2145 // If so, then the GEP cannot produce a null pointer, as doing so would 2146 // inherently violate the inbounds contract within address space zero. 2147 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2148 GTI != GTE; ++GTI) { 2149 // Struct types are easy -- they must always be indexed by a constant. 2150 if (StructType *STy = GTI.getStructTypeOrNull()) { 2151 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2152 unsigned ElementIdx = OpC->getZExtValue(); 2153 const StructLayout *SL = Q.DL.getStructLayout(STy); 2154 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2155 if (ElementOffset > 0) 2156 return true; 2157 continue; 2158 } 2159 2160 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2161 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2162 continue; 2163 2164 // Fast path the constant operand case both for efficiency and so we don't 2165 // increment Depth when just zipping down an all-constant GEP. 2166 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2167 if (!OpC->isZero()) 2168 return true; 2169 continue; 2170 } 2171 2172 // We post-increment Depth here because while isKnownNonZero increments it 2173 // as well, when we pop back up that increment won't persist. We don't want 2174 // to recurse 10k times just because we have 10k GEP operands. We don't 2175 // bail completely out because we want to handle constant GEPs regardless 2176 // of depth. 2177 if (Depth++ >= MaxDepth) 2178 continue; 2179 2180 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2181 return true; 2182 } 2183 2184 return false; 2185 } 2186 2187 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2188 const Instruction *CtxI, 2189 const DominatorTree *DT) { 2190 if (isa<Constant>(V)) 2191 return false; 2192 2193 if (!CtxI || !DT) 2194 return false; 2195 2196 unsigned NumUsesExplored = 0; 2197 for (auto *U : V->users()) { 2198 // Avoid massive lists 2199 if (NumUsesExplored >= DomConditionsMaxUses) 2200 break; 2201 NumUsesExplored++; 2202 2203 // If the value is used as an argument to a call or invoke, then argument 2204 // attributes may provide an answer about null-ness. 2205 if (const auto *CB = dyn_cast<CallBase>(U)) 2206 if (auto *CalledFunc = CB->getCalledFunction()) 2207 for (const Argument &Arg : CalledFunc->args()) 2208 if (CB->getArgOperand(Arg.getArgNo()) == V && 2209 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2210 return true; 2211 2212 // If the value is used as a load/store, then the pointer must be non null. 2213 if (V == getLoadStorePointerOperand(U)) { 2214 const Instruction *I = cast<Instruction>(U); 2215 if (!NullPointerIsDefined(I->getFunction(), 2216 V->getType()->getPointerAddressSpace()) && 2217 DT->dominates(I, CtxI)) 2218 return true; 2219 } 2220 2221 // Consider only compare instructions uniquely controlling a branch 2222 CmpInst::Predicate Pred; 2223 if (!match(const_cast<User *>(U), 2224 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2225 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2226 continue; 2227 2228 SmallVector<const User *, 4> WorkList; 2229 SmallPtrSet<const User *, 4> Visited; 2230 for (auto *CmpU : U->users()) { 2231 assert(WorkList.empty() && "Should be!"); 2232 if (Visited.insert(CmpU).second) 2233 WorkList.push_back(CmpU); 2234 2235 while (!WorkList.empty()) { 2236 auto *Curr = WorkList.pop_back_val(); 2237 2238 // If a user is an AND, add all its users to the work list. We only 2239 // propagate "pred != null" condition through AND because it is only 2240 // correct to assume that all conditions of AND are met in true branch. 2241 // TODO: Support similar logic of OR and EQ predicate? 2242 if (Pred == ICmpInst::ICMP_NE) 2243 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2244 if (BO->getOpcode() == Instruction::And) { 2245 for (auto *BOU : BO->users()) 2246 if (Visited.insert(BOU).second) 2247 WorkList.push_back(BOU); 2248 continue; 2249 } 2250 2251 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2252 assert(BI->isConditional() && "uses a comparison!"); 2253 2254 BasicBlock *NonNullSuccessor = 2255 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2256 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2257 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2258 return true; 2259 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2260 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2261 return true; 2262 } 2263 } 2264 } 2265 } 2266 2267 return false; 2268 } 2269 2270 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2271 /// ensure that the value it's attached to is never Value? 'RangeType' is 2272 /// is the type of the value described by the range. 2273 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2274 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2275 assert(NumRanges >= 1); 2276 for (unsigned i = 0; i < NumRanges; ++i) { 2277 ConstantInt *Lower = 2278 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2279 ConstantInt *Upper = 2280 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2281 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2282 if (Range.contains(Value)) 2283 return false; 2284 } 2285 return true; 2286 } 2287 2288 /// Return true if the given value is known to be non-zero when defined. For 2289 /// vectors, return true if every demanded element is known to be non-zero when 2290 /// defined. For pointers, if the context instruction and dominator tree are 2291 /// specified, perform context-sensitive analysis and return true if the 2292 /// pointer couldn't possibly be null at the specified instruction. 2293 /// Supports values with integer or pointer type and vectors of integers. 2294 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2295 const Query &Q) { 2296 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2297 // vector 2298 if (isa<ScalableVectorType>(V->getType())) 2299 return false; 2300 2301 if (auto *C = dyn_cast<Constant>(V)) { 2302 if (C->isNullValue()) 2303 return false; 2304 if (isa<ConstantInt>(C)) 2305 // Must be non-zero due to null test above. 2306 return true; 2307 2308 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2309 // See the comment for IntToPtr/PtrToInt instructions below. 2310 if (CE->getOpcode() == Instruction::IntToPtr || 2311 CE->getOpcode() == Instruction::PtrToInt) 2312 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2313 Q.DL.getTypeSizeInBits(CE->getType())) 2314 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2315 } 2316 2317 // For constant vectors, check that all elements are undefined or known 2318 // non-zero to determine that the whole vector is known non-zero. 2319 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2320 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2321 if (!DemandedElts[i]) 2322 continue; 2323 Constant *Elt = C->getAggregateElement(i); 2324 if (!Elt || Elt->isNullValue()) 2325 return false; 2326 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2327 return false; 2328 } 2329 return true; 2330 } 2331 2332 // A global variable in address space 0 is non null unless extern weak 2333 // or an absolute symbol reference. Other address spaces may have null as a 2334 // valid address for a global, so we can't assume anything. 2335 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2336 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2337 GV->getType()->getAddressSpace() == 0) 2338 return true; 2339 } else 2340 return false; 2341 } 2342 2343 if (auto *I = dyn_cast<Instruction>(V)) { 2344 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2345 // If the possible ranges don't contain zero, then the value is 2346 // definitely non-zero. 2347 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2348 const APInt ZeroValue(Ty->getBitWidth(), 0); 2349 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2350 return true; 2351 } 2352 } 2353 } 2354 2355 if (isKnownNonZeroFromAssume(V, Q)) 2356 return true; 2357 2358 // Some of the tests below are recursive, so bail out if we hit the limit. 2359 if (Depth++ >= MaxDepth) 2360 return false; 2361 2362 // Check for pointer simplifications. 2363 if (V->getType()->isPointerTy()) { 2364 // Alloca never returns null, malloc might. 2365 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2366 return true; 2367 2368 // A byval, inalloca, or nonnull argument is never null. 2369 if (const Argument *A = dyn_cast<Argument>(V)) 2370 if (A->hasPassPointeeByValueAttr() || A->hasNonNullAttr()) 2371 return true; 2372 2373 // A Load tagged with nonnull metadata is never null. 2374 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2375 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2376 return true; 2377 2378 if (const auto *Call = dyn_cast<CallBase>(V)) { 2379 if (Call->isReturnNonNull()) 2380 return true; 2381 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2382 return isKnownNonZero(RP, Depth, Q); 2383 } 2384 } 2385 2386 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2387 return true; 2388 2389 // Check for recursive pointer simplifications. 2390 if (V->getType()->isPointerTy()) { 2391 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2392 // do not alter the value, or at least not the nullness property of the 2393 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2394 // 2395 // Note that we have to take special care to avoid looking through 2396 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2397 // as casts that can alter the value, e.g., AddrSpaceCasts. 2398 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2399 if (isGEPKnownNonNull(GEP, Depth, Q)) 2400 return true; 2401 2402 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2403 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2404 2405 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2406 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2407 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2408 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2409 } 2410 2411 // Similar to int2ptr above, we can look through ptr2int here if the cast 2412 // is a no-op or an extend and not a truncate. 2413 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2414 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2415 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2416 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2417 2418 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2419 2420 // X | Y != 0 if X != 0 or Y != 0. 2421 Value *X = nullptr, *Y = nullptr; 2422 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2423 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2424 isKnownNonZero(Y, DemandedElts, Depth, Q); 2425 2426 // ext X != 0 if X != 0. 2427 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2428 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2429 2430 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2431 // if the lowest bit is shifted off the end. 2432 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2433 // shl nuw can't remove any non-zero bits. 2434 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2435 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2436 return isKnownNonZero(X, Depth, Q); 2437 2438 KnownBits Known(BitWidth); 2439 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2440 if (Known.One[0]) 2441 return true; 2442 } 2443 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2444 // defined if the sign bit is shifted off the end. 2445 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2446 // shr exact can only shift out zero bits. 2447 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2448 if (BO->isExact()) 2449 return isKnownNonZero(X, Depth, Q); 2450 2451 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2452 if (Known.isNegative()) 2453 return true; 2454 2455 // If the shifter operand is a constant, and all of the bits shifted 2456 // out are known to be zero, and X is known non-zero then at least one 2457 // non-zero bit must remain. 2458 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2459 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2460 // Is there a known one in the portion not shifted out? 2461 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2462 return true; 2463 // Are all the bits to be shifted out known zero? 2464 if (Known.countMinTrailingZeros() >= ShiftVal) 2465 return isKnownNonZero(X, DemandedElts, Depth, Q); 2466 } 2467 } 2468 // div exact can only produce a zero if the dividend is zero. 2469 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2470 return isKnownNonZero(X, DemandedElts, Depth, Q); 2471 } 2472 // X + Y. 2473 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2474 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2475 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2476 2477 // If X and Y are both non-negative (as signed values) then their sum is not 2478 // zero unless both X and Y are zero. 2479 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2480 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2481 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2482 return true; 2483 2484 // If X and Y are both negative (as signed values) then their sum is not 2485 // zero unless both X and Y equal INT_MIN. 2486 if (XKnown.isNegative() && YKnown.isNegative()) { 2487 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2488 // The sign bit of X is set. If some other bit is set then X is not equal 2489 // to INT_MIN. 2490 if (XKnown.One.intersects(Mask)) 2491 return true; 2492 // The sign bit of Y is set. If some other bit is set then Y is not equal 2493 // to INT_MIN. 2494 if (YKnown.One.intersects(Mask)) 2495 return true; 2496 } 2497 2498 // The sum of a non-negative number and a power of two is not zero. 2499 if (XKnown.isNonNegative() && 2500 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2501 return true; 2502 if (YKnown.isNonNegative() && 2503 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2504 return true; 2505 } 2506 // X * Y. 2507 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2508 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2509 // If X and Y are non-zero then so is X * Y as long as the multiplication 2510 // does not overflow. 2511 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2512 isKnownNonZero(X, DemandedElts, Depth, Q) && 2513 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2514 return true; 2515 } 2516 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2517 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2518 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2519 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2520 return true; 2521 } 2522 // PHI 2523 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2524 // Try and detect a recurrence that monotonically increases from a 2525 // starting value, as these are common as induction variables. 2526 if (PN->getNumIncomingValues() == 2) { 2527 Value *Start = PN->getIncomingValue(0); 2528 Value *Induction = PN->getIncomingValue(1); 2529 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2530 std::swap(Start, Induction); 2531 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2532 if (!C->isZero() && !C->isNegative()) { 2533 ConstantInt *X; 2534 if (Q.IIQ.UseInstrInfo && 2535 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2536 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2537 !X->isNegative()) 2538 return true; 2539 } 2540 } 2541 } 2542 // Check if all incoming values are non-zero constant. 2543 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2544 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2545 }); 2546 if (AllNonZeroConstants) 2547 return true; 2548 } 2549 // ExtractElement 2550 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2551 const Value *Vec = EEI->getVectorOperand(); 2552 const Value *Idx = EEI->getIndexOperand(); 2553 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2554 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 2555 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2556 if (CIdx && CIdx->getValue().ult(NumElts)) 2557 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2558 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2559 } 2560 2561 KnownBits Known(BitWidth); 2562 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2563 return Known.One != 0; 2564 } 2565 2566 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2567 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2568 // vector 2569 if (isa<ScalableVectorType>(V->getType())) 2570 return false; 2571 2572 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2573 APInt DemandedElts = 2574 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2575 return isKnownNonZero(V, DemandedElts, Depth, Q); 2576 } 2577 2578 /// Return true if V2 == V1 + X, where X is known non-zero. 2579 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2580 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2581 if (!BO || BO->getOpcode() != Instruction::Add) 2582 return false; 2583 Value *Op = nullptr; 2584 if (V2 == BO->getOperand(0)) 2585 Op = BO->getOperand(1); 2586 else if (V2 == BO->getOperand(1)) 2587 Op = BO->getOperand(0); 2588 else 2589 return false; 2590 return isKnownNonZero(Op, 0, Q); 2591 } 2592 2593 /// Return true if it is known that V1 != V2. 2594 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2595 if (V1 == V2) 2596 return false; 2597 if (V1->getType() != V2->getType()) 2598 // We can't look through casts yet. 2599 return false; 2600 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2601 return true; 2602 2603 if (V1->getType()->isIntOrIntVectorTy()) { 2604 // Are any known bits in V1 contradictory to known bits in V2? If V1 2605 // has a known zero where V2 has a known one, they must not be equal. 2606 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2607 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2608 2609 if (Known1.Zero.intersects(Known2.One) || 2610 Known2.Zero.intersects(Known1.One)) 2611 return true; 2612 } 2613 return false; 2614 } 2615 2616 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2617 /// simplify operations downstream. Mask is known to be zero for bits that V 2618 /// cannot have. 2619 /// 2620 /// This function is defined on values with integer type, values with pointer 2621 /// type, and vectors of integers. In the case 2622 /// where V is a vector, the mask, known zero, and known one values are the 2623 /// same width as the vector element, and the bit is set only if it is true 2624 /// for all of the elements in the vector. 2625 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2626 const Query &Q) { 2627 KnownBits Known(Mask.getBitWidth()); 2628 computeKnownBits(V, Known, Depth, Q); 2629 return Mask.isSubsetOf(Known.Zero); 2630 } 2631 2632 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2633 // Returns the input and lower/upper bounds. 2634 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2635 const APInt *&CLow, const APInt *&CHigh) { 2636 assert(isa<Operator>(Select) && 2637 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2638 "Input should be a Select!"); 2639 2640 const Value *LHS = nullptr, *RHS = nullptr; 2641 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2642 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2643 return false; 2644 2645 if (!match(RHS, m_APInt(CLow))) 2646 return false; 2647 2648 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2649 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2650 if (getInverseMinMaxFlavor(SPF) != SPF2) 2651 return false; 2652 2653 if (!match(RHS2, m_APInt(CHigh))) 2654 return false; 2655 2656 if (SPF == SPF_SMIN) 2657 std::swap(CLow, CHigh); 2658 2659 In = LHS2; 2660 return CLow->sle(*CHigh); 2661 } 2662 2663 /// For vector constants, loop over the elements and find the constant with the 2664 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2665 /// or if any element was not analyzed; otherwise, return the count for the 2666 /// element with the minimum number of sign bits. 2667 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2668 const APInt &DemandedElts, 2669 unsigned TyBits) { 2670 const auto *CV = dyn_cast<Constant>(V); 2671 if (!CV || !isa<FixedVectorType>(CV->getType())) 2672 return 0; 2673 2674 unsigned MinSignBits = TyBits; 2675 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2676 for (unsigned i = 0; i != NumElts; ++i) { 2677 if (!DemandedElts[i]) 2678 continue; 2679 // If we find a non-ConstantInt, bail out. 2680 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2681 if (!Elt) 2682 return 0; 2683 2684 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2685 } 2686 2687 return MinSignBits; 2688 } 2689 2690 static unsigned ComputeNumSignBitsImpl(const Value *V, 2691 const APInt &DemandedElts, 2692 unsigned Depth, const Query &Q); 2693 2694 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2695 unsigned Depth, const Query &Q) { 2696 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2697 assert(Result > 0 && "At least one sign bit needs to be present!"); 2698 return Result; 2699 } 2700 2701 /// Return the number of times the sign bit of the register is replicated into 2702 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2703 /// (itself), but other cases can give us information. For example, immediately 2704 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2705 /// other, so we return 3. For vectors, return the number of sign bits for the 2706 /// vector element with the minimum number of known sign bits of the demanded 2707 /// elements in the vector specified by DemandedElts. 2708 static unsigned ComputeNumSignBitsImpl(const Value *V, 2709 const APInt &DemandedElts, 2710 unsigned Depth, const Query &Q) { 2711 Type *Ty = V->getType(); 2712 2713 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2714 // vector 2715 if (isa<ScalableVectorType>(Ty)) 2716 return 1; 2717 2718 #ifndef NDEBUG 2719 assert(Depth <= MaxDepth && "Limit Search Depth"); 2720 2721 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2722 assert( 2723 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2724 "DemandedElt width should equal the fixed vector number of elements"); 2725 } else { 2726 assert(DemandedElts == APInt(1, 1) && 2727 "DemandedElt width should be 1 for scalars"); 2728 } 2729 #endif 2730 2731 // We return the minimum number of sign bits that are guaranteed to be present 2732 // in V, so for undef we have to conservatively return 1. We don't have the 2733 // same behavior for poison though -- that's a FIXME today. 2734 2735 Type *ScalarTy = Ty->getScalarType(); 2736 unsigned TyBits = ScalarTy->isPointerTy() ? 2737 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2738 Q.DL.getTypeSizeInBits(ScalarTy); 2739 2740 unsigned Tmp, Tmp2; 2741 unsigned FirstAnswer = 1; 2742 2743 // Note that ConstantInt is handled by the general computeKnownBits case 2744 // below. 2745 2746 if (Depth == MaxDepth) 2747 return 1; // Limit search depth. 2748 2749 if (auto *U = dyn_cast<Operator>(V)) { 2750 switch (Operator::getOpcode(V)) { 2751 default: break; 2752 case Instruction::SExt: 2753 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2754 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2755 2756 case Instruction::SDiv: { 2757 const APInt *Denominator; 2758 // sdiv X, C -> adds log(C) sign bits. 2759 if (match(U->getOperand(1), m_APInt(Denominator))) { 2760 2761 // Ignore non-positive denominator. 2762 if (!Denominator->isStrictlyPositive()) 2763 break; 2764 2765 // Calculate the incoming numerator bits. 2766 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2767 2768 // Add floor(log(C)) bits to the numerator bits. 2769 return std::min(TyBits, NumBits + Denominator->logBase2()); 2770 } 2771 break; 2772 } 2773 2774 case Instruction::SRem: { 2775 const APInt *Denominator; 2776 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2777 // positive constant. This let us put a lower bound on the number of sign 2778 // bits. 2779 if (match(U->getOperand(1), m_APInt(Denominator))) { 2780 2781 // Ignore non-positive denominator. 2782 if (!Denominator->isStrictlyPositive()) 2783 break; 2784 2785 // Calculate the incoming numerator bits. SRem by a positive constant 2786 // can't lower the number of sign bits. 2787 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2788 2789 // Calculate the leading sign bit constraints by examining the 2790 // denominator. Given that the denominator is positive, there are two 2791 // cases: 2792 // 2793 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2794 // (1 << ceilLogBase2(C)). 2795 // 2796 // 2. the numerator is negative. Then the result range is (-C,0] and 2797 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2798 // 2799 // Thus a lower bound on the number of sign bits is `TyBits - 2800 // ceilLogBase2(C)`. 2801 2802 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2803 return std::max(NumrBits, ResBits); 2804 } 2805 break; 2806 } 2807 2808 case Instruction::AShr: { 2809 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2810 // ashr X, C -> adds C sign bits. Vectors too. 2811 const APInt *ShAmt; 2812 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2813 if (ShAmt->uge(TyBits)) 2814 break; // Bad shift. 2815 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2816 Tmp += ShAmtLimited; 2817 if (Tmp > TyBits) Tmp = TyBits; 2818 } 2819 return Tmp; 2820 } 2821 case Instruction::Shl: { 2822 const APInt *ShAmt; 2823 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2824 // shl destroys sign bits. 2825 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2826 if (ShAmt->uge(TyBits) || // Bad shift. 2827 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2828 Tmp2 = ShAmt->getZExtValue(); 2829 return Tmp - Tmp2; 2830 } 2831 break; 2832 } 2833 case Instruction::And: 2834 case Instruction::Or: 2835 case Instruction::Xor: // NOT is handled here. 2836 // Logical binary ops preserve the number of sign bits at the worst. 2837 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2838 if (Tmp != 1) { 2839 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2840 FirstAnswer = std::min(Tmp, Tmp2); 2841 // We computed what we know about the sign bits as our first 2842 // answer. Now proceed to the generic code that uses 2843 // computeKnownBits, and pick whichever answer is better. 2844 } 2845 break; 2846 2847 case Instruction::Select: { 2848 // If we have a clamp pattern, we know that the number of sign bits will 2849 // be the minimum of the clamp min/max range. 2850 const Value *X; 2851 const APInt *CLow, *CHigh; 2852 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2853 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2854 2855 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2856 if (Tmp == 1) break; 2857 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2858 return std::min(Tmp, Tmp2); 2859 } 2860 2861 case Instruction::Add: 2862 // Add can have at most one carry bit. Thus we know that the output 2863 // is, at worst, one more bit than the inputs. 2864 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2865 if (Tmp == 1) break; 2866 2867 // Special case decrementing a value (ADD X, -1): 2868 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2869 if (CRHS->isAllOnesValue()) { 2870 KnownBits Known(TyBits); 2871 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2872 2873 // If the input is known to be 0 or 1, the output is 0/-1, which is 2874 // all sign bits set. 2875 if ((Known.Zero | 1).isAllOnesValue()) 2876 return TyBits; 2877 2878 // If we are subtracting one from a positive number, there is no carry 2879 // out of the result. 2880 if (Known.isNonNegative()) 2881 return Tmp; 2882 } 2883 2884 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2885 if (Tmp2 == 1) break; 2886 return std::min(Tmp, Tmp2) - 1; 2887 2888 case Instruction::Sub: 2889 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2890 if (Tmp2 == 1) break; 2891 2892 // Handle NEG. 2893 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2894 if (CLHS->isNullValue()) { 2895 KnownBits Known(TyBits); 2896 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2897 // If the input is known to be 0 or 1, the output is 0/-1, which is 2898 // all sign bits set. 2899 if ((Known.Zero | 1).isAllOnesValue()) 2900 return TyBits; 2901 2902 // If the input is known to be positive (the sign bit is known clear), 2903 // the output of the NEG has the same number of sign bits as the 2904 // input. 2905 if (Known.isNonNegative()) 2906 return Tmp2; 2907 2908 // Otherwise, we treat this like a SUB. 2909 } 2910 2911 // Sub can have at most one carry bit. Thus we know that the output 2912 // is, at worst, one more bit than the inputs. 2913 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2914 if (Tmp == 1) break; 2915 return std::min(Tmp, Tmp2) - 1; 2916 2917 case Instruction::Mul: { 2918 // The output of the Mul can be at most twice the valid bits in the 2919 // inputs. 2920 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2921 if (SignBitsOp0 == 1) break; 2922 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2923 if (SignBitsOp1 == 1) break; 2924 unsigned OutValidBits = 2925 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2926 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2927 } 2928 2929 case Instruction::PHI: { 2930 const PHINode *PN = cast<PHINode>(U); 2931 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2932 // Don't analyze large in-degree PHIs. 2933 if (NumIncomingValues > 4) break; 2934 // Unreachable blocks may have zero-operand PHI nodes. 2935 if (NumIncomingValues == 0) break; 2936 2937 // Take the minimum of all incoming values. This can't infinitely loop 2938 // because of our depth threshold. 2939 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2940 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2941 if (Tmp == 1) return Tmp; 2942 Tmp = std::min( 2943 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2944 } 2945 return Tmp; 2946 } 2947 2948 case Instruction::Trunc: 2949 // FIXME: it's tricky to do anything useful for this, but it is an 2950 // important case for targets like X86. 2951 break; 2952 2953 case Instruction::ExtractElement: 2954 // Look through extract element. At the moment we keep this simple and 2955 // skip tracking the specific element. But at least we might find 2956 // information valid for all elements of the vector (for example if vector 2957 // is sign extended, shifted, etc). 2958 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2959 2960 case Instruction::ShuffleVector: { 2961 // Collect the minimum number of sign bits that are shared by every vector 2962 // element referenced by the shuffle. 2963 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2964 if (!Shuf) { 2965 // FIXME: Add support for shufflevector constant expressions. 2966 return 1; 2967 } 2968 APInt DemandedLHS, DemandedRHS; 2969 // For undef elements, we don't know anything about the common state of 2970 // the shuffle result. 2971 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2972 return 1; 2973 Tmp = std::numeric_limits<unsigned>::max(); 2974 if (!!DemandedLHS) { 2975 const Value *LHS = Shuf->getOperand(0); 2976 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2977 } 2978 // If we don't know anything, early out and try computeKnownBits 2979 // fall-back. 2980 if (Tmp == 1) 2981 break; 2982 if (!!DemandedRHS) { 2983 const Value *RHS = Shuf->getOperand(1); 2984 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2985 Tmp = std::min(Tmp, Tmp2); 2986 } 2987 // If we don't know anything, early out and try computeKnownBits 2988 // fall-back. 2989 if (Tmp == 1) 2990 break; 2991 assert(Tmp <= Ty->getScalarSizeInBits() && 2992 "Failed to determine minimum sign bits"); 2993 return Tmp; 2994 } 2995 } 2996 } 2997 2998 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2999 // use this information. 3000 3001 // If we can examine all elements of a vector constant successfully, we're 3002 // done (we can't do any better than that). If not, keep trying. 3003 if (unsigned VecSignBits = 3004 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3005 return VecSignBits; 3006 3007 KnownBits Known(TyBits); 3008 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3009 3010 // If we know that the sign bit is either zero or one, determine the number of 3011 // identical bits in the top of the input value. 3012 return std::max(FirstAnswer, Known.countMinSignBits()); 3013 } 3014 3015 /// This function computes the integer multiple of Base that equals V. 3016 /// If successful, it returns true and returns the multiple in 3017 /// Multiple. If unsuccessful, it returns false. It looks 3018 /// through SExt instructions only if LookThroughSExt is true. 3019 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3020 bool LookThroughSExt, unsigned Depth) { 3021 assert(V && "No Value?"); 3022 assert(Depth <= MaxDepth && "Limit Search Depth"); 3023 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3024 3025 Type *T = V->getType(); 3026 3027 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3028 3029 if (Base == 0) 3030 return false; 3031 3032 if (Base == 1) { 3033 Multiple = V; 3034 return true; 3035 } 3036 3037 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3038 Constant *BaseVal = ConstantInt::get(T, Base); 3039 if (CO && CO == BaseVal) { 3040 // Multiple is 1. 3041 Multiple = ConstantInt::get(T, 1); 3042 return true; 3043 } 3044 3045 if (CI && CI->getZExtValue() % Base == 0) { 3046 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3047 return true; 3048 } 3049 3050 if (Depth == MaxDepth) return false; // Limit search depth. 3051 3052 Operator *I = dyn_cast<Operator>(V); 3053 if (!I) return false; 3054 3055 switch (I->getOpcode()) { 3056 default: break; 3057 case Instruction::SExt: 3058 if (!LookThroughSExt) return false; 3059 // otherwise fall through to ZExt 3060 LLVM_FALLTHROUGH; 3061 case Instruction::ZExt: 3062 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3063 LookThroughSExt, Depth+1); 3064 case Instruction::Shl: 3065 case Instruction::Mul: { 3066 Value *Op0 = I->getOperand(0); 3067 Value *Op1 = I->getOperand(1); 3068 3069 if (I->getOpcode() == Instruction::Shl) { 3070 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3071 if (!Op1CI) return false; 3072 // Turn Op0 << Op1 into Op0 * 2^Op1 3073 APInt Op1Int = Op1CI->getValue(); 3074 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3075 APInt API(Op1Int.getBitWidth(), 0); 3076 API.setBit(BitToSet); 3077 Op1 = ConstantInt::get(V->getContext(), API); 3078 } 3079 3080 Value *Mul0 = nullptr; 3081 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3082 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3083 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3084 if (Op1C->getType()->getPrimitiveSizeInBits() < 3085 MulC->getType()->getPrimitiveSizeInBits()) 3086 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3087 if (Op1C->getType()->getPrimitiveSizeInBits() > 3088 MulC->getType()->getPrimitiveSizeInBits()) 3089 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3090 3091 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3092 Multiple = ConstantExpr::getMul(MulC, Op1C); 3093 return true; 3094 } 3095 3096 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3097 if (Mul0CI->getValue() == 1) { 3098 // V == Base * Op1, so return Op1 3099 Multiple = Op1; 3100 return true; 3101 } 3102 } 3103 3104 Value *Mul1 = nullptr; 3105 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3106 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3107 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3108 if (Op0C->getType()->getPrimitiveSizeInBits() < 3109 MulC->getType()->getPrimitiveSizeInBits()) 3110 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3111 if (Op0C->getType()->getPrimitiveSizeInBits() > 3112 MulC->getType()->getPrimitiveSizeInBits()) 3113 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3114 3115 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3116 Multiple = ConstantExpr::getMul(MulC, Op0C); 3117 return true; 3118 } 3119 3120 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3121 if (Mul1CI->getValue() == 1) { 3122 // V == Base * Op0, so return Op0 3123 Multiple = Op0; 3124 return true; 3125 } 3126 } 3127 } 3128 } 3129 3130 // We could not determine if V is a multiple of Base. 3131 return false; 3132 } 3133 3134 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3135 const TargetLibraryInfo *TLI) { 3136 const Function *F = CB.getCalledFunction(); 3137 if (!F) 3138 return Intrinsic::not_intrinsic; 3139 3140 if (F->isIntrinsic()) 3141 return F->getIntrinsicID(); 3142 3143 if (!TLI) 3144 return Intrinsic::not_intrinsic; 3145 3146 LibFunc Func; 3147 // We're going to make assumptions on the semantics of the functions, check 3148 // that the target knows that it's available in this environment and it does 3149 // not have local linkage. 3150 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3151 return Intrinsic::not_intrinsic; 3152 3153 if (!CB.onlyReadsMemory()) 3154 return Intrinsic::not_intrinsic; 3155 3156 // Otherwise check if we have a call to a function that can be turned into a 3157 // vector intrinsic. 3158 switch (Func) { 3159 default: 3160 break; 3161 case LibFunc_sin: 3162 case LibFunc_sinf: 3163 case LibFunc_sinl: 3164 return Intrinsic::sin; 3165 case LibFunc_cos: 3166 case LibFunc_cosf: 3167 case LibFunc_cosl: 3168 return Intrinsic::cos; 3169 case LibFunc_exp: 3170 case LibFunc_expf: 3171 case LibFunc_expl: 3172 return Intrinsic::exp; 3173 case LibFunc_exp2: 3174 case LibFunc_exp2f: 3175 case LibFunc_exp2l: 3176 return Intrinsic::exp2; 3177 case LibFunc_log: 3178 case LibFunc_logf: 3179 case LibFunc_logl: 3180 return Intrinsic::log; 3181 case LibFunc_log10: 3182 case LibFunc_log10f: 3183 case LibFunc_log10l: 3184 return Intrinsic::log10; 3185 case LibFunc_log2: 3186 case LibFunc_log2f: 3187 case LibFunc_log2l: 3188 return Intrinsic::log2; 3189 case LibFunc_fabs: 3190 case LibFunc_fabsf: 3191 case LibFunc_fabsl: 3192 return Intrinsic::fabs; 3193 case LibFunc_fmin: 3194 case LibFunc_fminf: 3195 case LibFunc_fminl: 3196 return Intrinsic::minnum; 3197 case LibFunc_fmax: 3198 case LibFunc_fmaxf: 3199 case LibFunc_fmaxl: 3200 return Intrinsic::maxnum; 3201 case LibFunc_copysign: 3202 case LibFunc_copysignf: 3203 case LibFunc_copysignl: 3204 return Intrinsic::copysign; 3205 case LibFunc_floor: 3206 case LibFunc_floorf: 3207 case LibFunc_floorl: 3208 return Intrinsic::floor; 3209 case LibFunc_ceil: 3210 case LibFunc_ceilf: 3211 case LibFunc_ceill: 3212 return Intrinsic::ceil; 3213 case LibFunc_trunc: 3214 case LibFunc_truncf: 3215 case LibFunc_truncl: 3216 return Intrinsic::trunc; 3217 case LibFunc_rint: 3218 case LibFunc_rintf: 3219 case LibFunc_rintl: 3220 return Intrinsic::rint; 3221 case LibFunc_nearbyint: 3222 case LibFunc_nearbyintf: 3223 case LibFunc_nearbyintl: 3224 return Intrinsic::nearbyint; 3225 case LibFunc_round: 3226 case LibFunc_roundf: 3227 case LibFunc_roundl: 3228 return Intrinsic::round; 3229 case LibFunc_pow: 3230 case LibFunc_powf: 3231 case LibFunc_powl: 3232 return Intrinsic::pow; 3233 case LibFunc_sqrt: 3234 case LibFunc_sqrtf: 3235 case LibFunc_sqrtl: 3236 return Intrinsic::sqrt; 3237 } 3238 3239 return Intrinsic::not_intrinsic; 3240 } 3241 3242 /// Return true if we can prove that the specified FP value is never equal to 3243 /// -0.0. 3244 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3245 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3246 /// the same as +0.0 in floating-point ops. 3247 /// 3248 /// NOTE: this function will need to be revisited when we support non-default 3249 /// rounding modes! 3250 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3251 unsigned Depth) { 3252 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3253 return !CFP->getValueAPF().isNegZero(); 3254 3255 // Limit search depth. 3256 if (Depth == MaxDepth) 3257 return false; 3258 3259 auto *Op = dyn_cast<Operator>(V); 3260 if (!Op) 3261 return false; 3262 3263 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3264 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3265 return true; 3266 3267 // sitofp and uitofp turn into +0.0 for zero. 3268 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3269 return true; 3270 3271 if (auto *Call = dyn_cast<CallInst>(Op)) { 3272 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3273 switch (IID) { 3274 default: 3275 break; 3276 // sqrt(-0.0) = -0.0, no other negative results are possible. 3277 case Intrinsic::sqrt: 3278 case Intrinsic::canonicalize: 3279 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3280 // fabs(x) != -0.0 3281 case Intrinsic::fabs: 3282 return true; 3283 } 3284 } 3285 3286 return false; 3287 } 3288 3289 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3290 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3291 /// bit despite comparing equal. 3292 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3293 const TargetLibraryInfo *TLI, 3294 bool SignBitOnly, 3295 unsigned Depth) { 3296 // TODO: This function does not do the right thing when SignBitOnly is true 3297 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3298 // which flips the sign bits of NaNs. See 3299 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3300 3301 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3302 return !CFP->getValueAPF().isNegative() || 3303 (!SignBitOnly && CFP->getValueAPF().isZero()); 3304 } 3305 3306 // Handle vector of constants. 3307 if (auto *CV = dyn_cast<Constant>(V)) { 3308 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3309 unsigned NumElts = CVFVTy->getNumElements(); 3310 for (unsigned i = 0; i != NumElts; ++i) { 3311 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3312 if (!CFP) 3313 return false; 3314 if (CFP->getValueAPF().isNegative() && 3315 (SignBitOnly || !CFP->getValueAPF().isZero())) 3316 return false; 3317 } 3318 3319 // All non-negative ConstantFPs. 3320 return true; 3321 } 3322 } 3323 3324 if (Depth == MaxDepth) 3325 return false; // Limit search depth. 3326 3327 const Operator *I = dyn_cast<Operator>(V); 3328 if (!I) 3329 return false; 3330 3331 switch (I->getOpcode()) { 3332 default: 3333 break; 3334 // Unsigned integers are always nonnegative. 3335 case Instruction::UIToFP: 3336 return true; 3337 case Instruction::FMul: 3338 // x*x is always non-negative or a NaN. 3339 if (I->getOperand(0) == I->getOperand(1) && 3340 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3341 return true; 3342 3343 LLVM_FALLTHROUGH; 3344 case Instruction::FAdd: 3345 case Instruction::FDiv: 3346 case Instruction::FRem: 3347 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3348 Depth + 1) && 3349 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3350 Depth + 1); 3351 case Instruction::Select: 3352 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3353 Depth + 1) && 3354 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3355 Depth + 1); 3356 case Instruction::FPExt: 3357 case Instruction::FPTrunc: 3358 // Widening/narrowing never change sign. 3359 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3360 Depth + 1); 3361 case Instruction::ExtractElement: 3362 // Look through extract element. At the moment we keep this simple and skip 3363 // tracking the specific element. But at least we might find information 3364 // valid for all elements of the vector. 3365 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3366 Depth + 1); 3367 case Instruction::Call: 3368 const auto *CI = cast<CallInst>(I); 3369 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3370 switch (IID) { 3371 default: 3372 break; 3373 case Intrinsic::maxnum: 3374 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3375 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3376 SignBitOnly, Depth + 1)) || 3377 (isKnownNeverNaN(I->getOperand(1), TLI) && 3378 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3379 SignBitOnly, Depth + 1)); 3380 3381 case Intrinsic::maximum: 3382 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3383 Depth + 1) || 3384 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3385 Depth + 1); 3386 case Intrinsic::minnum: 3387 case Intrinsic::minimum: 3388 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3389 Depth + 1) && 3390 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3391 Depth + 1); 3392 case Intrinsic::exp: 3393 case Intrinsic::exp2: 3394 case Intrinsic::fabs: 3395 return true; 3396 3397 case Intrinsic::sqrt: 3398 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3399 if (!SignBitOnly) 3400 return true; 3401 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3402 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3403 3404 case Intrinsic::powi: 3405 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3406 // powi(x,n) is non-negative if n is even. 3407 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3408 return true; 3409 } 3410 // TODO: This is not correct. Given that exp is an integer, here are the 3411 // ways that pow can return a negative value: 3412 // 3413 // pow(x, exp) --> negative if exp is odd and x is negative. 3414 // pow(-0, exp) --> -inf if exp is negative odd. 3415 // pow(-0, exp) --> -0 if exp is positive odd. 3416 // pow(-inf, exp) --> -0 if exp is negative odd. 3417 // pow(-inf, exp) --> -inf if exp is positive odd. 3418 // 3419 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3420 // but we must return false if x == -0. Unfortunately we do not currently 3421 // have a way of expressing this constraint. See details in 3422 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3423 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3424 Depth + 1); 3425 3426 case Intrinsic::fma: 3427 case Intrinsic::fmuladd: 3428 // x*x+y is non-negative if y is non-negative. 3429 return I->getOperand(0) == I->getOperand(1) && 3430 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3431 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3432 Depth + 1); 3433 } 3434 break; 3435 } 3436 return false; 3437 } 3438 3439 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3440 const TargetLibraryInfo *TLI) { 3441 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3442 } 3443 3444 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3445 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3446 } 3447 3448 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3449 unsigned Depth) { 3450 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3451 3452 // If we're told that infinities won't happen, assume they won't. 3453 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3454 if (FPMathOp->hasNoInfs()) 3455 return true; 3456 3457 // Handle scalar constants. 3458 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3459 return !CFP->isInfinity(); 3460 3461 if (Depth == MaxDepth) 3462 return false; 3463 3464 if (auto *Inst = dyn_cast<Instruction>(V)) { 3465 switch (Inst->getOpcode()) { 3466 case Instruction::Select: { 3467 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3468 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3469 } 3470 case Instruction::UIToFP: 3471 // If the input type fits into the floating type the result is finite. 3472 return ilogb(APFloat::getLargest( 3473 Inst->getType()->getScalarType()->getFltSemantics())) >= 3474 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3475 default: 3476 break; 3477 } 3478 } 3479 3480 // try to handle fixed width vector constants 3481 if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) { 3482 // For vectors, verify that each element is not infinity. 3483 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3484 for (unsigned i = 0; i != NumElts; ++i) { 3485 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3486 if (!Elt) 3487 return false; 3488 if (isa<UndefValue>(Elt)) 3489 continue; 3490 auto *CElt = dyn_cast<ConstantFP>(Elt); 3491 if (!CElt || CElt->isInfinity()) 3492 return false; 3493 } 3494 // All elements were confirmed non-infinity or undefined. 3495 return true; 3496 } 3497 3498 // was not able to prove that V never contains infinity 3499 return false; 3500 } 3501 3502 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3503 unsigned Depth) { 3504 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3505 3506 // If we're told that NaNs won't happen, assume they won't. 3507 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3508 if (FPMathOp->hasNoNaNs()) 3509 return true; 3510 3511 // Handle scalar constants. 3512 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3513 return !CFP->isNaN(); 3514 3515 if (Depth == MaxDepth) 3516 return false; 3517 3518 if (auto *Inst = dyn_cast<Instruction>(V)) { 3519 switch (Inst->getOpcode()) { 3520 case Instruction::FAdd: 3521 case Instruction::FSub: 3522 // Adding positive and negative infinity produces NaN. 3523 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3524 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3525 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3526 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3527 3528 case Instruction::FMul: 3529 // Zero multiplied with infinity produces NaN. 3530 // FIXME: If neither side can be zero fmul never produces NaN. 3531 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3532 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3533 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3534 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3535 3536 case Instruction::FDiv: 3537 case Instruction::FRem: 3538 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3539 return false; 3540 3541 case Instruction::Select: { 3542 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3543 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3544 } 3545 case Instruction::SIToFP: 3546 case Instruction::UIToFP: 3547 return true; 3548 case Instruction::FPTrunc: 3549 case Instruction::FPExt: 3550 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3551 default: 3552 break; 3553 } 3554 } 3555 3556 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3557 switch (II->getIntrinsicID()) { 3558 case Intrinsic::canonicalize: 3559 case Intrinsic::fabs: 3560 case Intrinsic::copysign: 3561 case Intrinsic::exp: 3562 case Intrinsic::exp2: 3563 case Intrinsic::floor: 3564 case Intrinsic::ceil: 3565 case Intrinsic::trunc: 3566 case Intrinsic::rint: 3567 case Intrinsic::nearbyint: 3568 case Intrinsic::round: 3569 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3570 case Intrinsic::sqrt: 3571 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3572 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3573 case Intrinsic::minnum: 3574 case Intrinsic::maxnum: 3575 // If either operand is not NaN, the result is not NaN. 3576 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3577 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3578 default: 3579 return false; 3580 } 3581 } 3582 3583 // Try to handle fixed width vector constants 3584 if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) { 3585 // For vectors, verify that each element is not NaN. 3586 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3587 for (unsigned i = 0; i != NumElts; ++i) { 3588 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3589 if (!Elt) 3590 return false; 3591 if (isa<UndefValue>(Elt)) 3592 continue; 3593 auto *CElt = dyn_cast<ConstantFP>(Elt); 3594 if (!CElt || CElt->isNaN()) 3595 return false; 3596 } 3597 // All elements were confirmed not-NaN or undefined. 3598 return true; 3599 } 3600 3601 // Was not able to prove that V never contains NaN 3602 return false; 3603 } 3604 3605 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3606 3607 // All byte-wide stores are splatable, even of arbitrary variables. 3608 if (V->getType()->isIntegerTy(8)) 3609 return V; 3610 3611 LLVMContext &Ctx = V->getContext(); 3612 3613 // Undef don't care. 3614 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3615 if (isa<UndefValue>(V)) 3616 return UndefInt8; 3617 3618 // Return Undef for zero-sized type. 3619 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3620 return UndefInt8; 3621 3622 Constant *C = dyn_cast<Constant>(V); 3623 if (!C) { 3624 // Conceptually, we could handle things like: 3625 // %a = zext i8 %X to i16 3626 // %b = shl i16 %a, 8 3627 // %c = or i16 %a, %b 3628 // but until there is an example that actually needs this, it doesn't seem 3629 // worth worrying about. 3630 return nullptr; 3631 } 3632 3633 // Handle 'null' ConstantArrayZero etc. 3634 if (C->isNullValue()) 3635 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3636 3637 // Constant floating-point values can be handled as integer values if the 3638 // corresponding integer value is "byteable". An important case is 0.0. 3639 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3640 Type *Ty = nullptr; 3641 if (CFP->getType()->isHalfTy()) 3642 Ty = Type::getInt16Ty(Ctx); 3643 else if (CFP->getType()->isFloatTy()) 3644 Ty = Type::getInt32Ty(Ctx); 3645 else if (CFP->getType()->isDoubleTy()) 3646 Ty = Type::getInt64Ty(Ctx); 3647 // Don't handle long double formats, which have strange constraints. 3648 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3649 : nullptr; 3650 } 3651 3652 // We can handle constant integers that are multiple of 8 bits. 3653 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3654 if (CI->getBitWidth() % 8 == 0) { 3655 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3656 if (!CI->getValue().isSplat(8)) 3657 return nullptr; 3658 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3659 } 3660 } 3661 3662 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3663 if (CE->getOpcode() == Instruction::IntToPtr) { 3664 auto PS = DL.getPointerSizeInBits( 3665 cast<PointerType>(CE->getType())->getAddressSpace()); 3666 return isBytewiseValue( 3667 ConstantExpr::getIntegerCast(CE->getOperand(0), 3668 Type::getIntNTy(Ctx, PS), false), 3669 DL); 3670 } 3671 } 3672 3673 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3674 if (LHS == RHS) 3675 return LHS; 3676 if (!LHS || !RHS) 3677 return nullptr; 3678 if (LHS == UndefInt8) 3679 return RHS; 3680 if (RHS == UndefInt8) 3681 return LHS; 3682 return nullptr; 3683 }; 3684 3685 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3686 Value *Val = UndefInt8; 3687 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3688 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3689 return nullptr; 3690 return Val; 3691 } 3692 3693 if (isa<ConstantAggregate>(C)) { 3694 Value *Val = UndefInt8; 3695 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3696 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3697 return nullptr; 3698 return Val; 3699 } 3700 3701 // Don't try to handle the handful of other constants. 3702 return nullptr; 3703 } 3704 3705 // This is the recursive version of BuildSubAggregate. It takes a few different 3706 // arguments. Idxs is the index within the nested struct From that we are 3707 // looking at now (which is of type IndexedType). IdxSkip is the number of 3708 // indices from Idxs that should be left out when inserting into the resulting 3709 // struct. To is the result struct built so far, new insertvalue instructions 3710 // build on that. 3711 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3712 SmallVectorImpl<unsigned> &Idxs, 3713 unsigned IdxSkip, 3714 Instruction *InsertBefore) { 3715 StructType *STy = dyn_cast<StructType>(IndexedType); 3716 if (STy) { 3717 // Save the original To argument so we can modify it 3718 Value *OrigTo = To; 3719 // General case, the type indexed by Idxs is a struct 3720 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3721 // Process each struct element recursively 3722 Idxs.push_back(i); 3723 Value *PrevTo = To; 3724 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3725 InsertBefore); 3726 Idxs.pop_back(); 3727 if (!To) { 3728 // Couldn't find any inserted value for this index? Cleanup 3729 while (PrevTo != OrigTo) { 3730 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3731 PrevTo = Del->getAggregateOperand(); 3732 Del->eraseFromParent(); 3733 } 3734 // Stop processing elements 3735 break; 3736 } 3737 } 3738 // If we successfully found a value for each of our subaggregates 3739 if (To) 3740 return To; 3741 } 3742 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3743 // the struct's elements had a value that was inserted directly. In the latter 3744 // case, perhaps we can't determine each of the subelements individually, but 3745 // we might be able to find the complete struct somewhere. 3746 3747 // Find the value that is at that particular spot 3748 Value *V = FindInsertedValue(From, Idxs); 3749 3750 if (!V) 3751 return nullptr; 3752 3753 // Insert the value in the new (sub) aggregate 3754 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3755 "tmp", InsertBefore); 3756 } 3757 3758 // This helper takes a nested struct and extracts a part of it (which is again a 3759 // struct) into a new value. For example, given the struct: 3760 // { a, { b, { c, d }, e } } 3761 // and the indices "1, 1" this returns 3762 // { c, d }. 3763 // 3764 // It does this by inserting an insertvalue for each element in the resulting 3765 // struct, as opposed to just inserting a single struct. This will only work if 3766 // each of the elements of the substruct are known (ie, inserted into From by an 3767 // insertvalue instruction somewhere). 3768 // 3769 // All inserted insertvalue instructions are inserted before InsertBefore 3770 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3771 Instruction *InsertBefore) { 3772 assert(InsertBefore && "Must have someplace to insert!"); 3773 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3774 idx_range); 3775 Value *To = UndefValue::get(IndexedType); 3776 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3777 unsigned IdxSkip = Idxs.size(); 3778 3779 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3780 } 3781 3782 /// Given an aggregate and a sequence of indices, see if the scalar value 3783 /// indexed is already around as a register, for example if it was inserted 3784 /// directly into the aggregate. 3785 /// 3786 /// If InsertBefore is not null, this function will duplicate (modified) 3787 /// insertvalues when a part of a nested struct is extracted. 3788 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3789 Instruction *InsertBefore) { 3790 // Nothing to index? Just return V then (this is useful at the end of our 3791 // recursion). 3792 if (idx_range.empty()) 3793 return V; 3794 // We have indices, so V should have an indexable type. 3795 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3796 "Not looking at a struct or array?"); 3797 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3798 "Invalid indices for type?"); 3799 3800 if (Constant *C = dyn_cast<Constant>(V)) { 3801 C = C->getAggregateElement(idx_range[0]); 3802 if (!C) return nullptr; 3803 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3804 } 3805 3806 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3807 // Loop the indices for the insertvalue instruction in parallel with the 3808 // requested indices 3809 const unsigned *req_idx = idx_range.begin(); 3810 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3811 i != e; ++i, ++req_idx) { 3812 if (req_idx == idx_range.end()) { 3813 // We can't handle this without inserting insertvalues 3814 if (!InsertBefore) 3815 return nullptr; 3816 3817 // The requested index identifies a part of a nested aggregate. Handle 3818 // this specially. For example, 3819 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3820 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3821 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3822 // This can be changed into 3823 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3824 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3825 // which allows the unused 0,0 element from the nested struct to be 3826 // removed. 3827 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3828 InsertBefore); 3829 } 3830 3831 // This insert value inserts something else than what we are looking for. 3832 // See if the (aggregate) value inserted into has the value we are 3833 // looking for, then. 3834 if (*req_idx != *i) 3835 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3836 InsertBefore); 3837 } 3838 // If we end up here, the indices of the insertvalue match with those 3839 // requested (though possibly only partially). Now we recursively look at 3840 // the inserted value, passing any remaining indices. 3841 return FindInsertedValue(I->getInsertedValueOperand(), 3842 makeArrayRef(req_idx, idx_range.end()), 3843 InsertBefore); 3844 } 3845 3846 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3847 // If we're extracting a value from an aggregate that was extracted from 3848 // something else, we can extract from that something else directly instead. 3849 // However, we will need to chain I's indices with the requested indices. 3850 3851 // Calculate the number of indices required 3852 unsigned size = I->getNumIndices() + idx_range.size(); 3853 // Allocate some space to put the new indices in 3854 SmallVector<unsigned, 5> Idxs; 3855 Idxs.reserve(size); 3856 // Add indices from the extract value instruction 3857 Idxs.append(I->idx_begin(), I->idx_end()); 3858 3859 // Add requested indices 3860 Idxs.append(idx_range.begin(), idx_range.end()); 3861 3862 assert(Idxs.size() == size 3863 && "Number of indices added not correct?"); 3864 3865 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3866 } 3867 // Otherwise, we don't know (such as, extracting from a function return value 3868 // or load instruction) 3869 return nullptr; 3870 } 3871 3872 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3873 unsigned CharSize) { 3874 // Make sure the GEP has exactly three arguments. 3875 if (GEP->getNumOperands() != 3) 3876 return false; 3877 3878 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3879 // CharSize. 3880 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3881 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3882 return false; 3883 3884 // Check to make sure that the first operand of the GEP is an integer and 3885 // has value 0 so that we are sure we're indexing into the initializer. 3886 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3887 if (!FirstIdx || !FirstIdx->isZero()) 3888 return false; 3889 3890 return true; 3891 } 3892 3893 bool llvm::getConstantDataArrayInfo(const Value *V, 3894 ConstantDataArraySlice &Slice, 3895 unsigned ElementSize, uint64_t Offset) { 3896 assert(V); 3897 3898 // Look through bitcast instructions and geps. 3899 V = V->stripPointerCasts(); 3900 3901 // If the value is a GEP instruction or constant expression, treat it as an 3902 // offset. 3903 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3904 // The GEP operator should be based on a pointer to string constant, and is 3905 // indexing into the string constant. 3906 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3907 return false; 3908 3909 // If the second index isn't a ConstantInt, then this is a variable index 3910 // into the array. If this occurs, we can't say anything meaningful about 3911 // the string. 3912 uint64_t StartIdx = 0; 3913 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3914 StartIdx = CI->getZExtValue(); 3915 else 3916 return false; 3917 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3918 StartIdx + Offset); 3919 } 3920 3921 // The GEP instruction, constant or instruction, must reference a global 3922 // variable that is a constant and is initialized. The referenced constant 3923 // initializer is the array that we'll use for optimization. 3924 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3925 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3926 return false; 3927 3928 const ConstantDataArray *Array; 3929 ArrayType *ArrayTy; 3930 if (GV->getInitializer()->isNullValue()) { 3931 Type *GVTy = GV->getValueType(); 3932 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3933 // A zeroinitializer for the array; there is no ConstantDataArray. 3934 Array = nullptr; 3935 } else { 3936 const DataLayout &DL = GV->getParent()->getDataLayout(); 3937 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3938 uint64_t Length = SizeInBytes / (ElementSize / 8); 3939 if (Length <= Offset) 3940 return false; 3941 3942 Slice.Array = nullptr; 3943 Slice.Offset = 0; 3944 Slice.Length = Length - Offset; 3945 return true; 3946 } 3947 } else { 3948 // This must be a ConstantDataArray. 3949 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3950 if (!Array) 3951 return false; 3952 ArrayTy = Array->getType(); 3953 } 3954 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3955 return false; 3956 3957 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3958 if (Offset > NumElts) 3959 return false; 3960 3961 Slice.Array = Array; 3962 Slice.Offset = Offset; 3963 Slice.Length = NumElts - Offset; 3964 return true; 3965 } 3966 3967 /// This function computes the length of a null-terminated C string pointed to 3968 /// by V. If successful, it returns true and returns the string in Str. 3969 /// If unsuccessful, it returns false. 3970 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3971 uint64_t Offset, bool TrimAtNul) { 3972 ConstantDataArraySlice Slice; 3973 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3974 return false; 3975 3976 if (Slice.Array == nullptr) { 3977 if (TrimAtNul) { 3978 Str = StringRef(); 3979 return true; 3980 } 3981 if (Slice.Length == 1) { 3982 Str = StringRef("", 1); 3983 return true; 3984 } 3985 // We cannot instantiate a StringRef as we do not have an appropriate string 3986 // of 0s at hand. 3987 return false; 3988 } 3989 3990 // Start out with the entire array in the StringRef. 3991 Str = Slice.Array->getAsString(); 3992 // Skip over 'offset' bytes. 3993 Str = Str.substr(Slice.Offset); 3994 3995 if (TrimAtNul) { 3996 // Trim off the \0 and anything after it. If the array is not nul 3997 // terminated, we just return the whole end of string. The client may know 3998 // some other way that the string is length-bound. 3999 Str = Str.substr(0, Str.find('\0')); 4000 } 4001 return true; 4002 } 4003 4004 // These next two are very similar to the above, but also look through PHI 4005 // nodes. 4006 // TODO: See if we can integrate these two together. 4007 4008 /// If we can compute the length of the string pointed to by 4009 /// the specified pointer, return 'len+1'. If we can't, return 0. 4010 static uint64_t GetStringLengthH(const Value *V, 4011 SmallPtrSetImpl<const PHINode*> &PHIs, 4012 unsigned CharSize) { 4013 // Look through noop bitcast instructions. 4014 V = V->stripPointerCasts(); 4015 4016 // If this is a PHI node, there are two cases: either we have already seen it 4017 // or we haven't. 4018 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4019 if (!PHIs.insert(PN).second) 4020 return ~0ULL; // already in the set. 4021 4022 // If it was new, see if all the input strings are the same length. 4023 uint64_t LenSoFar = ~0ULL; 4024 for (Value *IncValue : PN->incoming_values()) { 4025 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4026 if (Len == 0) return 0; // Unknown length -> unknown. 4027 4028 if (Len == ~0ULL) continue; 4029 4030 if (Len != LenSoFar && LenSoFar != ~0ULL) 4031 return 0; // Disagree -> unknown. 4032 LenSoFar = Len; 4033 } 4034 4035 // Success, all agree. 4036 return LenSoFar; 4037 } 4038 4039 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4040 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4041 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4042 if (Len1 == 0) return 0; 4043 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4044 if (Len2 == 0) return 0; 4045 if (Len1 == ~0ULL) return Len2; 4046 if (Len2 == ~0ULL) return Len1; 4047 if (Len1 != Len2) return 0; 4048 return Len1; 4049 } 4050 4051 // Otherwise, see if we can read the string. 4052 ConstantDataArraySlice Slice; 4053 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4054 return 0; 4055 4056 if (Slice.Array == nullptr) 4057 return 1; 4058 4059 // Search for nul characters 4060 unsigned NullIndex = 0; 4061 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4062 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4063 break; 4064 } 4065 4066 return NullIndex + 1; 4067 } 4068 4069 /// If we can compute the length of the string pointed to by 4070 /// the specified pointer, return 'len+1'. If we can't, return 0. 4071 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4072 if (!V->getType()->isPointerTy()) 4073 return 0; 4074 4075 SmallPtrSet<const PHINode*, 32> PHIs; 4076 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4077 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4078 // an empty string as a length. 4079 return Len == ~0ULL ? 1 : Len; 4080 } 4081 4082 const Value * 4083 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4084 bool MustPreserveNullness) { 4085 assert(Call && 4086 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4087 if (const Value *RV = Call->getReturnedArgOperand()) 4088 return RV; 4089 // This can be used only as a aliasing property. 4090 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4091 Call, MustPreserveNullness)) 4092 return Call->getArgOperand(0); 4093 return nullptr; 4094 } 4095 4096 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4097 const CallBase *Call, bool MustPreserveNullness) { 4098 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4099 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4100 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4101 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4102 (!MustPreserveNullness && 4103 Call->getIntrinsicID() == Intrinsic::ptrmask); 4104 } 4105 4106 /// \p PN defines a loop-variant pointer to an object. Check if the 4107 /// previous iteration of the loop was referring to the same object as \p PN. 4108 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4109 const LoopInfo *LI) { 4110 // Find the loop-defined value. 4111 Loop *L = LI->getLoopFor(PN->getParent()); 4112 if (PN->getNumIncomingValues() != 2) 4113 return true; 4114 4115 // Find the value from previous iteration. 4116 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4117 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4118 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4119 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4120 return true; 4121 4122 // If a new pointer is loaded in the loop, the pointer references a different 4123 // object in every iteration. E.g.: 4124 // for (i) 4125 // int *p = a[i]; 4126 // ... 4127 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4128 if (!L->isLoopInvariant(Load->getPointerOperand())) 4129 return false; 4130 return true; 4131 } 4132 4133 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4134 unsigned MaxLookup) { 4135 if (!V->getType()->isPointerTy()) 4136 return V; 4137 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4138 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4139 V = GEP->getPointerOperand(); 4140 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4141 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4142 V = cast<Operator>(V)->getOperand(0); 4143 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4144 if (GA->isInterposable()) 4145 return V; 4146 V = GA->getAliasee(); 4147 } else if (isa<AllocaInst>(V)) { 4148 // An alloca can't be further simplified. 4149 return V; 4150 } else { 4151 if (auto *Call = dyn_cast<CallBase>(V)) { 4152 // CaptureTracking can know about special capturing properties of some 4153 // intrinsics like launder.invariant.group, that can't be expressed with 4154 // the attributes, but have properties like returning aliasing pointer. 4155 // Because some analysis may assume that nocaptured pointer is not 4156 // returned from some special intrinsic (because function would have to 4157 // be marked with returns attribute), it is crucial to use this function 4158 // because it should be in sync with CaptureTracking. Not using it may 4159 // cause weird miscompilations where 2 aliasing pointers are assumed to 4160 // noalias. 4161 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4162 V = RP; 4163 continue; 4164 } 4165 } 4166 4167 // See if InstructionSimplify knows any relevant tricks. 4168 if (Instruction *I = dyn_cast<Instruction>(V)) 4169 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4170 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4171 V = Simplified; 4172 continue; 4173 } 4174 4175 return V; 4176 } 4177 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4178 } 4179 return V; 4180 } 4181 4182 void llvm::GetUnderlyingObjects(const Value *V, 4183 SmallVectorImpl<const Value *> &Objects, 4184 const DataLayout &DL, LoopInfo *LI, 4185 unsigned MaxLookup) { 4186 SmallPtrSet<const Value *, 4> Visited; 4187 SmallVector<const Value *, 4> Worklist; 4188 Worklist.push_back(V); 4189 do { 4190 const Value *P = Worklist.pop_back_val(); 4191 P = GetUnderlyingObject(P, DL, MaxLookup); 4192 4193 if (!Visited.insert(P).second) 4194 continue; 4195 4196 if (auto *SI = dyn_cast<SelectInst>(P)) { 4197 Worklist.push_back(SI->getTrueValue()); 4198 Worklist.push_back(SI->getFalseValue()); 4199 continue; 4200 } 4201 4202 if (auto *PN = dyn_cast<PHINode>(P)) { 4203 // If this PHI changes the underlying object in every iteration of the 4204 // loop, don't look through it. Consider: 4205 // int **A; 4206 // for (i) { 4207 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4208 // Curr = A[i]; 4209 // *Prev, *Curr; 4210 // 4211 // Prev is tracking Curr one iteration behind so they refer to different 4212 // underlying objects. 4213 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4214 isSameUnderlyingObjectInLoop(PN, LI)) 4215 for (Value *IncValue : PN->incoming_values()) 4216 Worklist.push_back(IncValue); 4217 continue; 4218 } 4219 4220 Objects.push_back(P); 4221 } while (!Worklist.empty()); 4222 } 4223 4224 /// This is the function that does the work of looking through basic 4225 /// ptrtoint+arithmetic+inttoptr sequences. 4226 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4227 do { 4228 if (const Operator *U = dyn_cast<Operator>(V)) { 4229 // If we find a ptrtoint, we can transfer control back to the 4230 // regular getUnderlyingObjectFromInt. 4231 if (U->getOpcode() == Instruction::PtrToInt) 4232 return U->getOperand(0); 4233 // If we find an add of a constant, a multiplied value, or a phi, it's 4234 // likely that the other operand will lead us to the base 4235 // object. We don't have to worry about the case where the 4236 // object address is somehow being computed by the multiply, 4237 // because our callers only care when the result is an 4238 // identifiable object. 4239 if (U->getOpcode() != Instruction::Add || 4240 (!isa<ConstantInt>(U->getOperand(1)) && 4241 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4242 !isa<PHINode>(U->getOperand(1)))) 4243 return V; 4244 V = U->getOperand(0); 4245 } else { 4246 return V; 4247 } 4248 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4249 } while (true); 4250 } 4251 4252 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4253 /// ptrtoint+arithmetic+inttoptr sequences. 4254 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4255 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4256 SmallVectorImpl<Value *> &Objects, 4257 const DataLayout &DL) { 4258 SmallPtrSet<const Value *, 16> Visited; 4259 SmallVector<const Value *, 4> Working(1, V); 4260 do { 4261 V = Working.pop_back_val(); 4262 4263 SmallVector<const Value *, 4> Objs; 4264 GetUnderlyingObjects(V, Objs, DL); 4265 4266 for (const Value *V : Objs) { 4267 if (!Visited.insert(V).second) 4268 continue; 4269 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4270 const Value *O = 4271 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4272 if (O->getType()->isPointerTy()) { 4273 Working.push_back(O); 4274 continue; 4275 } 4276 } 4277 // If GetUnderlyingObjects fails to find an identifiable object, 4278 // getUnderlyingObjectsForCodeGen also fails for safety. 4279 if (!isIdentifiedObject(V)) { 4280 Objects.clear(); 4281 return false; 4282 } 4283 Objects.push_back(const_cast<Value *>(V)); 4284 } 4285 } while (!Working.empty()); 4286 return true; 4287 } 4288 4289 /// Return true if the only users of this pointer are lifetime markers. 4290 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4291 for (const User *U : V->users()) { 4292 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4293 if (!II) return false; 4294 4295 if (!II->isLifetimeStartOrEnd()) 4296 return false; 4297 } 4298 return true; 4299 } 4300 4301 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4302 if (!LI.isUnordered()) 4303 return true; 4304 const Function &F = *LI.getFunction(); 4305 // Speculative load may create a race that did not exist in the source. 4306 return F.hasFnAttribute(Attribute::SanitizeThread) || 4307 // Speculative load may load data from dirty regions. 4308 F.hasFnAttribute(Attribute::SanitizeAddress) || 4309 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4310 } 4311 4312 4313 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4314 const Instruction *CtxI, 4315 const DominatorTree *DT) { 4316 const Operator *Inst = dyn_cast<Operator>(V); 4317 if (!Inst) 4318 return false; 4319 4320 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4321 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4322 if (C->canTrap()) 4323 return false; 4324 4325 switch (Inst->getOpcode()) { 4326 default: 4327 return true; 4328 case Instruction::UDiv: 4329 case Instruction::URem: { 4330 // x / y is undefined if y == 0. 4331 const APInt *V; 4332 if (match(Inst->getOperand(1), m_APInt(V))) 4333 return *V != 0; 4334 return false; 4335 } 4336 case Instruction::SDiv: 4337 case Instruction::SRem: { 4338 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4339 const APInt *Numerator, *Denominator; 4340 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4341 return false; 4342 // We cannot hoist this division if the denominator is 0. 4343 if (*Denominator == 0) 4344 return false; 4345 // It's safe to hoist if the denominator is not 0 or -1. 4346 if (*Denominator != -1) 4347 return true; 4348 // At this point we know that the denominator is -1. It is safe to hoist as 4349 // long we know that the numerator is not INT_MIN. 4350 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4351 return !Numerator->isMinSignedValue(); 4352 // The numerator *might* be MinSignedValue. 4353 return false; 4354 } 4355 case Instruction::Load: { 4356 const LoadInst *LI = cast<LoadInst>(Inst); 4357 if (mustSuppressSpeculation(*LI)) 4358 return false; 4359 const DataLayout &DL = LI->getModule()->getDataLayout(); 4360 return isDereferenceableAndAlignedPointer( 4361 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4362 DL, CtxI, DT); 4363 } 4364 case Instruction::Call: { 4365 auto *CI = cast<const CallInst>(Inst); 4366 const Function *Callee = CI->getCalledFunction(); 4367 4368 // The called function could have undefined behavior or side-effects, even 4369 // if marked readnone nounwind. 4370 return Callee && Callee->isSpeculatable(); 4371 } 4372 case Instruction::VAArg: 4373 case Instruction::Alloca: 4374 case Instruction::Invoke: 4375 case Instruction::CallBr: 4376 case Instruction::PHI: 4377 case Instruction::Store: 4378 case Instruction::Ret: 4379 case Instruction::Br: 4380 case Instruction::IndirectBr: 4381 case Instruction::Switch: 4382 case Instruction::Unreachable: 4383 case Instruction::Fence: 4384 case Instruction::AtomicRMW: 4385 case Instruction::AtomicCmpXchg: 4386 case Instruction::LandingPad: 4387 case Instruction::Resume: 4388 case Instruction::CatchSwitch: 4389 case Instruction::CatchPad: 4390 case Instruction::CatchRet: 4391 case Instruction::CleanupPad: 4392 case Instruction::CleanupRet: 4393 return false; // Misc instructions which have effects 4394 } 4395 } 4396 4397 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4398 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4399 } 4400 4401 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4402 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4403 switch (OR) { 4404 case ConstantRange::OverflowResult::MayOverflow: 4405 return OverflowResult::MayOverflow; 4406 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4407 return OverflowResult::AlwaysOverflowsLow; 4408 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4409 return OverflowResult::AlwaysOverflowsHigh; 4410 case ConstantRange::OverflowResult::NeverOverflows: 4411 return OverflowResult::NeverOverflows; 4412 } 4413 llvm_unreachable("Unknown OverflowResult"); 4414 } 4415 4416 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4417 static ConstantRange computeConstantRangeIncludingKnownBits( 4418 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4419 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4420 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4421 KnownBits Known = computeKnownBits( 4422 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4423 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4424 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4425 ConstantRange::PreferredRangeType RangeType = 4426 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4427 return CR1.intersectWith(CR2, RangeType); 4428 } 4429 4430 OverflowResult llvm::computeOverflowForUnsignedMul( 4431 const Value *LHS, const Value *RHS, const DataLayout &DL, 4432 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4433 bool UseInstrInfo) { 4434 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4435 nullptr, UseInstrInfo); 4436 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4437 nullptr, UseInstrInfo); 4438 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4439 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4440 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4441 } 4442 4443 OverflowResult 4444 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4445 const DataLayout &DL, AssumptionCache *AC, 4446 const Instruction *CxtI, 4447 const DominatorTree *DT, bool UseInstrInfo) { 4448 // Multiplying n * m significant bits yields a result of n + m significant 4449 // bits. If the total number of significant bits does not exceed the 4450 // result bit width (minus 1), there is no overflow. 4451 // This means if we have enough leading sign bits in the operands 4452 // we can guarantee that the result does not overflow. 4453 // Ref: "Hacker's Delight" by Henry Warren 4454 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4455 4456 // Note that underestimating the number of sign bits gives a more 4457 // conservative answer. 4458 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4459 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4460 4461 // First handle the easy case: if we have enough sign bits there's 4462 // definitely no overflow. 4463 if (SignBits > BitWidth + 1) 4464 return OverflowResult::NeverOverflows; 4465 4466 // There are two ambiguous cases where there can be no overflow: 4467 // SignBits == BitWidth + 1 and 4468 // SignBits == BitWidth 4469 // The second case is difficult to check, therefore we only handle the 4470 // first case. 4471 if (SignBits == BitWidth + 1) { 4472 // It overflows only when both arguments are negative and the true 4473 // product is exactly the minimum negative number. 4474 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4475 // For simplicity we just check if at least one side is not negative. 4476 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4477 nullptr, UseInstrInfo); 4478 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4479 nullptr, UseInstrInfo); 4480 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4481 return OverflowResult::NeverOverflows; 4482 } 4483 return OverflowResult::MayOverflow; 4484 } 4485 4486 OverflowResult llvm::computeOverflowForUnsignedAdd( 4487 const Value *LHS, const Value *RHS, const DataLayout &DL, 4488 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4489 bool UseInstrInfo) { 4490 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4491 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4492 nullptr, UseInstrInfo); 4493 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4494 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4495 nullptr, UseInstrInfo); 4496 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4497 } 4498 4499 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4500 const Value *RHS, 4501 const AddOperator *Add, 4502 const DataLayout &DL, 4503 AssumptionCache *AC, 4504 const Instruction *CxtI, 4505 const DominatorTree *DT) { 4506 if (Add && Add->hasNoSignedWrap()) { 4507 return OverflowResult::NeverOverflows; 4508 } 4509 4510 // If LHS and RHS each have at least two sign bits, the addition will look 4511 // like 4512 // 4513 // XX..... + 4514 // YY..... 4515 // 4516 // If the carry into the most significant position is 0, X and Y can't both 4517 // be 1 and therefore the carry out of the addition is also 0. 4518 // 4519 // If the carry into the most significant position is 1, X and Y can't both 4520 // be 0 and therefore the carry out of the addition is also 1. 4521 // 4522 // Since the carry into the most significant position is always equal to 4523 // the carry out of the addition, there is no signed overflow. 4524 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4525 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4526 return OverflowResult::NeverOverflows; 4527 4528 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4529 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4530 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4531 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4532 OverflowResult OR = 4533 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4534 if (OR != OverflowResult::MayOverflow) 4535 return OR; 4536 4537 // The remaining code needs Add to be available. Early returns if not so. 4538 if (!Add) 4539 return OverflowResult::MayOverflow; 4540 4541 // If the sign of Add is the same as at least one of the operands, this add 4542 // CANNOT overflow. If this can be determined from the known bits of the 4543 // operands the above signedAddMayOverflow() check will have already done so. 4544 // The only other way to improve on the known bits is from an assumption, so 4545 // call computeKnownBitsFromAssume() directly. 4546 bool LHSOrRHSKnownNonNegative = 4547 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4548 bool LHSOrRHSKnownNegative = 4549 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4550 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4551 KnownBits AddKnown(LHSRange.getBitWidth()); 4552 computeKnownBitsFromAssume( 4553 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4554 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4555 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4556 return OverflowResult::NeverOverflows; 4557 } 4558 4559 return OverflowResult::MayOverflow; 4560 } 4561 4562 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4563 const Value *RHS, 4564 const DataLayout &DL, 4565 AssumptionCache *AC, 4566 const Instruction *CxtI, 4567 const DominatorTree *DT) { 4568 // Checking for conditions implied by dominating conditions may be expensive. 4569 // Limit it to usub_with_overflow calls for now. 4570 if (match(CxtI, 4571 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4572 if (auto C = 4573 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4574 if (*C) 4575 return OverflowResult::NeverOverflows; 4576 return OverflowResult::AlwaysOverflowsLow; 4577 } 4578 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4579 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4580 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4581 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4582 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4583 } 4584 4585 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4586 const Value *RHS, 4587 const DataLayout &DL, 4588 AssumptionCache *AC, 4589 const Instruction *CxtI, 4590 const DominatorTree *DT) { 4591 // If LHS and RHS each have at least two sign bits, the subtraction 4592 // cannot overflow. 4593 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4594 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4595 return OverflowResult::NeverOverflows; 4596 4597 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4598 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4599 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4600 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4601 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4602 } 4603 4604 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4605 const DominatorTree &DT) { 4606 SmallVector<const BranchInst *, 2> GuardingBranches; 4607 SmallVector<const ExtractValueInst *, 2> Results; 4608 4609 for (const User *U : WO->users()) { 4610 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4611 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4612 4613 if (EVI->getIndices()[0] == 0) 4614 Results.push_back(EVI); 4615 else { 4616 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4617 4618 for (const auto *U : EVI->users()) 4619 if (const auto *B = dyn_cast<BranchInst>(U)) { 4620 assert(B->isConditional() && "How else is it using an i1?"); 4621 GuardingBranches.push_back(B); 4622 } 4623 } 4624 } else { 4625 // We are using the aggregate directly in a way we don't want to analyze 4626 // here (storing it to a global, say). 4627 return false; 4628 } 4629 } 4630 4631 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4632 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4633 if (!NoWrapEdge.isSingleEdge()) 4634 return false; 4635 4636 // Check if all users of the add are provably no-wrap. 4637 for (const auto *Result : Results) { 4638 // If the extractvalue itself is not executed on overflow, the we don't 4639 // need to check each use separately, since domination is transitive. 4640 if (DT.dominates(NoWrapEdge, Result->getParent())) 4641 continue; 4642 4643 for (auto &RU : Result->uses()) 4644 if (!DT.dominates(NoWrapEdge, RU)) 4645 return false; 4646 } 4647 4648 return true; 4649 }; 4650 4651 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4652 } 4653 4654 bool llvm::canCreatePoison(const Instruction *I) { 4655 // See whether I has flags that may create poison 4656 if (isa<OverflowingBinaryOperator>(I) && 4657 (I->hasNoSignedWrap() || I->hasNoUnsignedWrap())) 4658 return true; 4659 if (isa<PossiblyExactOperator>(I) && I->isExact()) 4660 return true; 4661 if (auto *FP = dyn_cast<FPMathOperator>(I)) { 4662 auto FMF = FP->getFastMathFlags(); 4663 if (FMF.noNaNs() || FMF.noInfs()) 4664 return true; 4665 } 4666 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4667 if (GEP->isInBounds()) 4668 return true; 4669 4670 unsigned Opcode = I->getOpcode(); 4671 4672 // Check whether opcode is a poison-generating operation 4673 switch (Opcode) { 4674 case Instruction::Shl: 4675 case Instruction::AShr: 4676 case Instruction::LShr: { 4677 // Shifts return poison if shiftwidth is larger than the bitwidth. 4678 if (auto *C = dyn_cast<Constant>(I->getOperand(1))) { 4679 SmallVector<Constant *, 4> ShiftAmounts; 4680 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4681 unsigned NumElts = FVTy->getNumElements(); 4682 for (unsigned i = 0; i < NumElts; ++i) 4683 ShiftAmounts.push_back(C->getAggregateElement(i)); 4684 } else if (isa<ScalableVectorType>(C->getType())) 4685 return true; // Can't tell, just return true to be safe 4686 else 4687 ShiftAmounts.push_back(C); 4688 4689 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4690 auto *CI = dyn_cast<ConstantInt>(C); 4691 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4692 }); 4693 return !Safe; 4694 } 4695 return true; 4696 } 4697 case Instruction::FPToSI: 4698 case Instruction::FPToUI: 4699 // fptosi/ui yields poison if the resulting value does not fit in the 4700 // destination type. 4701 return true; 4702 case Instruction::Call: 4703 case Instruction::CallBr: 4704 case Instruction::Invoke: 4705 // Function calls can return a poison value even if args are non-poison 4706 // values. 4707 return true; 4708 case Instruction::InsertElement: 4709 case Instruction::ExtractElement: { 4710 // If index exceeds the length of the vector, it returns poison 4711 auto *VTy = cast<VectorType>(I->getOperand(0)->getType()); 4712 unsigned IdxOp = I->getOpcode() == Instruction::InsertElement ? 2 : 1; 4713 auto *Idx = dyn_cast<ConstantInt>(I->getOperand(IdxOp)); 4714 if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min) 4715 return true; 4716 return false; 4717 } 4718 case Instruction::FNeg: 4719 case Instruction::PHI: 4720 case Instruction::Select: 4721 case Instruction::URem: 4722 case Instruction::SRem: 4723 case Instruction::ShuffleVector: 4724 case Instruction::ExtractValue: 4725 case Instruction::InsertValue: 4726 case Instruction::Freeze: 4727 case Instruction::ICmp: 4728 case Instruction::FCmp: 4729 case Instruction::GetElementPtr: 4730 return false; 4731 default: 4732 if (isa<CastInst>(I)) 4733 return false; 4734 else if (isa<BinaryOperator>(I)) 4735 return false; 4736 // Be conservative and return true. 4737 return true; 4738 } 4739 } 4740 4741 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4742 const Instruction *CtxI, 4743 const DominatorTree *DT, 4744 unsigned Depth) { 4745 if (Depth >= MaxDepth) 4746 return false; 4747 4748 // If the value is a freeze instruction, then it can never 4749 // be undef or poison. 4750 if (isa<FreezeInst>(V)) 4751 return true; 4752 // TODO: Some instructions are guaranteed to return neither undef 4753 // nor poison if their arguments are not poison/undef. 4754 4755 if (auto *C = dyn_cast<Constant>(V)) { 4756 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4757 // possibility of poison. 4758 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4759 return false; 4760 4761 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4762 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4763 return true; 4764 4765 if (C->getType()->isVectorTy()) 4766 return !C->containsUndefElement() && !C->containsConstantExpression(); 4767 4768 // TODO: Recursively analyze aggregates or other constants. 4769 return false; 4770 } 4771 4772 // Strip cast operations from a pointer value. 4773 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4774 // inbounds with zero offset. To guarantee that the result isn't poison, the 4775 // stripped pointer is checked as it has to be pointing into an allocated 4776 // object or be null `null` to ensure `inbounds` getelement pointers with a 4777 // zero offset could not produce poison. 4778 // It can strip off addrspacecast that do not change bit representation as 4779 // well. We believe that such addrspacecast is equivalent to no-op. 4780 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4781 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4782 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4783 return true; 4784 4785 auto OpCheck = [&](const Value *V) { 4786 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4787 }; 4788 4789 if (auto *I = dyn_cast<Instruction>(V)) { 4790 switch (I->getOpcode()) { 4791 case Instruction::GetElementPtr: { 4792 auto *GEPI = dyn_cast<GetElementPtrInst>(I); 4793 if (!GEPI->isInBounds() && llvm::all_of(GEPI->operands(), OpCheck)) 4794 return true; 4795 break; 4796 } 4797 case Instruction::FCmp: { 4798 auto *FI = dyn_cast<FCmpInst>(I); 4799 if (FI->getFastMathFlags().none() && 4800 llvm::all_of(FI->operands(), OpCheck)) 4801 return true; 4802 break; 4803 } 4804 case Instruction::BitCast: 4805 case Instruction::PHI: 4806 case Instruction::ICmp: 4807 if (llvm::all_of(I->operands(), OpCheck)) 4808 return true; 4809 break; 4810 default: 4811 break; 4812 } 4813 4814 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4815 // Note: once we have an agreement that poison is a value-wise concept, 4816 // we can remove the isIntegerTy(1) constraint. 4817 return true; 4818 } 4819 4820 // CxtI may be null or a cloned instruction. 4821 if (!CtxI || !CtxI->getParent() || !DT) 4822 return false; 4823 4824 auto *DNode = DT->getNode(CtxI->getParent()); 4825 if (!DNode) 4826 // Unreachable block 4827 return false; 4828 4829 // If V is used as a branch condition before reaching CtxI, V cannot be 4830 // undef or poison. 4831 // br V, BB1, BB2 4832 // BB1: 4833 // CtxI ; V cannot be undef or poison here 4834 auto *Dominator = DNode->getIDom(); 4835 while (Dominator) { 4836 auto *TI = Dominator->getBlock()->getTerminator(); 4837 4838 if (auto BI = dyn_cast<BranchInst>(TI)) { 4839 if (BI->isConditional() && BI->getCondition() == V) 4840 return true; 4841 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4842 if (SI->getCondition() == V) 4843 return true; 4844 } 4845 4846 Dominator = Dominator->getIDom(); 4847 } 4848 4849 return false; 4850 } 4851 4852 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4853 const DataLayout &DL, 4854 AssumptionCache *AC, 4855 const Instruction *CxtI, 4856 const DominatorTree *DT) { 4857 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4858 Add, DL, AC, CxtI, DT); 4859 } 4860 4861 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4862 const Value *RHS, 4863 const DataLayout &DL, 4864 AssumptionCache *AC, 4865 const Instruction *CxtI, 4866 const DominatorTree *DT) { 4867 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4868 } 4869 4870 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4871 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4872 // of time because it's possible for another thread to interfere with it for an 4873 // arbitrary length of time, but programs aren't allowed to rely on that. 4874 4875 // If there is no successor, then execution can't transfer to it. 4876 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4877 return !CRI->unwindsToCaller(); 4878 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4879 return !CatchSwitch->unwindsToCaller(); 4880 if (isa<ResumeInst>(I)) 4881 return false; 4882 if (isa<ReturnInst>(I)) 4883 return false; 4884 if (isa<UnreachableInst>(I)) 4885 return false; 4886 4887 // Calls can throw, or contain an infinite loop, or kill the process. 4888 if (const auto *CB = dyn_cast<CallBase>(I)) { 4889 // Call sites that throw have implicit non-local control flow. 4890 if (!CB->doesNotThrow()) 4891 return false; 4892 4893 // A function which doens't throw and has "willreturn" attribute will 4894 // always return. 4895 if (CB->hasFnAttr(Attribute::WillReturn)) 4896 return true; 4897 4898 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4899 // etc. and thus not return. However, LLVM already assumes that 4900 // 4901 // - Thread exiting actions are modeled as writes to memory invisible to 4902 // the program. 4903 // 4904 // - Loops that don't have side effects (side effects are volatile/atomic 4905 // stores and IO) always terminate (see http://llvm.org/PR965). 4906 // Furthermore IO itself is also modeled as writes to memory invisible to 4907 // the program. 4908 // 4909 // We rely on those assumptions here, and use the memory effects of the call 4910 // target as a proxy for checking that it always returns. 4911 4912 // FIXME: This isn't aggressive enough; a call which only writes to a global 4913 // is guaranteed to return. 4914 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4915 } 4916 4917 // Other instructions return normally. 4918 return true; 4919 } 4920 4921 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4922 // TODO: This is slightly conservative for invoke instruction since exiting 4923 // via an exception *is* normal control for them. 4924 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4925 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4926 return false; 4927 return true; 4928 } 4929 4930 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4931 const Loop *L) { 4932 // The loop header is guaranteed to be executed for every iteration. 4933 // 4934 // FIXME: Relax this constraint to cover all basic blocks that are 4935 // guaranteed to be executed at every iteration. 4936 if (I->getParent() != L->getHeader()) return false; 4937 4938 for (const Instruction &LI : *L->getHeader()) { 4939 if (&LI == I) return true; 4940 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4941 } 4942 llvm_unreachable("Instruction not contained in its own parent basic block."); 4943 } 4944 4945 bool llvm::propagatesPoison(const Instruction *I) { 4946 switch (I->getOpcode()) { 4947 case Instruction::Freeze: 4948 case Instruction::Select: 4949 case Instruction::PHI: 4950 case Instruction::Call: 4951 case Instruction::Invoke: 4952 return false; 4953 case Instruction::ICmp: 4954 case Instruction::FCmp: 4955 case Instruction::GetElementPtr: 4956 return true; 4957 default: 4958 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 4959 return true; 4960 4961 // Be conservative and return false. 4962 return false; 4963 } 4964 } 4965 4966 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) { 4967 switch (I->getOpcode()) { 4968 case Instruction::Store: 4969 return cast<StoreInst>(I)->getPointerOperand(); 4970 4971 case Instruction::Load: 4972 return cast<LoadInst>(I)->getPointerOperand(); 4973 4974 case Instruction::AtomicCmpXchg: 4975 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4976 4977 case Instruction::AtomicRMW: 4978 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4979 4980 case Instruction::UDiv: 4981 case Instruction::SDiv: 4982 case Instruction::URem: 4983 case Instruction::SRem: 4984 return I->getOperand(1); 4985 4986 case Instruction::Call: 4987 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4988 switch (II->getIntrinsicID()) { 4989 case Intrinsic::assume: 4990 return II->getArgOperand(0); 4991 default: 4992 return nullptr; 4993 } 4994 } 4995 return nullptr; 4996 4997 default: 4998 return nullptr; 4999 } 5000 } 5001 5002 bool llvm::mustTriggerUB(const Instruction *I, 5003 const SmallSet<const Value *, 16>& KnownPoison) { 5004 auto *NotPoison = getGuaranteedNonPoisonOp(I); 5005 return (NotPoison && KnownPoison.count(NotPoison)); 5006 } 5007 5008 5009 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 5010 // We currently only look for uses of poison values within the same basic 5011 // block, as that makes it easier to guarantee that the uses will be 5012 // executed given that PoisonI is executed. 5013 // 5014 // FIXME: Expand this to consider uses beyond the same basic block. To do 5015 // this, look out for the distinction between post-dominance and strong 5016 // post-dominance. 5017 const BasicBlock *BB = PoisonI->getParent(); 5018 5019 // Set of instructions that we have proved will yield poison if PoisonI 5020 // does. 5021 SmallSet<const Value *, 16> YieldsPoison; 5022 SmallSet<const BasicBlock *, 4> Visited; 5023 YieldsPoison.insert(PoisonI); 5024 Visited.insert(PoisonI->getParent()); 5025 5026 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 5027 5028 unsigned Iter = 0; 5029 while (Iter++ < MaxDepth) { 5030 for (auto &I : make_range(Begin, End)) { 5031 if (&I != PoisonI) { 5032 if (mustTriggerUB(&I, YieldsPoison)) 5033 return true; 5034 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5035 return false; 5036 } 5037 5038 // Mark poison that propagates from I through uses of I. 5039 if (YieldsPoison.count(&I)) { 5040 for (const User *User : I.users()) { 5041 const Instruction *UserI = cast<Instruction>(User); 5042 if (propagatesPoison(UserI)) 5043 YieldsPoison.insert(User); 5044 } 5045 } 5046 } 5047 5048 if (auto *NextBB = BB->getSingleSuccessor()) { 5049 if (Visited.insert(NextBB).second) { 5050 BB = NextBB; 5051 Begin = BB->getFirstNonPHI()->getIterator(); 5052 End = BB->end(); 5053 continue; 5054 } 5055 } 5056 5057 break; 5058 } 5059 return false; 5060 } 5061 5062 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5063 if (FMF.noNaNs()) 5064 return true; 5065 5066 if (auto *C = dyn_cast<ConstantFP>(V)) 5067 return !C->isNaN(); 5068 5069 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5070 if (!C->getElementType()->isFloatingPointTy()) 5071 return false; 5072 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5073 if (C->getElementAsAPFloat(I).isNaN()) 5074 return false; 5075 } 5076 return true; 5077 } 5078 5079 if (isa<ConstantAggregateZero>(V)) 5080 return true; 5081 5082 return false; 5083 } 5084 5085 static bool isKnownNonZero(const Value *V) { 5086 if (auto *C = dyn_cast<ConstantFP>(V)) 5087 return !C->isZero(); 5088 5089 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5090 if (!C->getElementType()->isFloatingPointTy()) 5091 return false; 5092 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5093 if (C->getElementAsAPFloat(I).isZero()) 5094 return false; 5095 } 5096 return true; 5097 } 5098 5099 return false; 5100 } 5101 5102 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5103 /// Given non-min/max outer cmp/select from the clamp pattern this 5104 /// function recognizes if it can be substitued by a "canonical" min/max 5105 /// pattern. 5106 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5107 Value *CmpLHS, Value *CmpRHS, 5108 Value *TrueVal, Value *FalseVal, 5109 Value *&LHS, Value *&RHS) { 5110 // Try to match 5111 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5112 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5113 // and return description of the outer Max/Min. 5114 5115 // First, check if select has inverse order: 5116 if (CmpRHS == FalseVal) { 5117 std::swap(TrueVal, FalseVal); 5118 Pred = CmpInst::getInversePredicate(Pred); 5119 } 5120 5121 // Assume success now. If there's no match, callers should not use these anyway. 5122 LHS = TrueVal; 5123 RHS = FalseVal; 5124 5125 const APFloat *FC1; 5126 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5127 return {SPF_UNKNOWN, SPNB_NA, false}; 5128 5129 const APFloat *FC2; 5130 switch (Pred) { 5131 case CmpInst::FCMP_OLT: 5132 case CmpInst::FCMP_OLE: 5133 case CmpInst::FCMP_ULT: 5134 case CmpInst::FCMP_ULE: 5135 if (match(FalseVal, 5136 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5137 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5138 *FC1 < *FC2) 5139 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5140 break; 5141 case CmpInst::FCMP_OGT: 5142 case CmpInst::FCMP_OGE: 5143 case CmpInst::FCMP_UGT: 5144 case CmpInst::FCMP_UGE: 5145 if (match(FalseVal, 5146 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5147 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5148 *FC1 > *FC2) 5149 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5150 break; 5151 default: 5152 break; 5153 } 5154 5155 return {SPF_UNKNOWN, SPNB_NA, false}; 5156 } 5157 5158 /// Recognize variations of: 5159 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5160 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5161 Value *CmpLHS, Value *CmpRHS, 5162 Value *TrueVal, Value *FalseVal) { 5163 // Swap the select operands and predicate to match the patterns below. 5164 if (CmpRHS != TrueVal) { 5165 Pred = ICmpInst::getSwappedPredicate(Pred); 5166 std::swap(TrueVal, FalseVal); 5167 } 5168 const APInt *C1; 5169 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5170 const APInt *C2; 5171 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5172 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5173 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5174 return {SPF_SMAX, SPNB_NA, false}; 5175 5176 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5177 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5178 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5179 return {SPF_SMIN, SPNB_NA, false}; 5180 5181 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5182 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5183 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5184 return {SPF_UMAX, SPNB_NA, false}; 5185 5186 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5187 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5188 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5189 return {SPF_UMIN, SPNB_NA, false}; 5190 } 5191 return {SPF_UNKNOWN, SPNB_NA, false}; 5192 } 5193 5194 /// Recognize variations of: 5195 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5196 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5197 Value *CmpLHS, Value *CmpRHS, 5198 Value *TVal, Value *FVal, 5199 unsigned Depth) { 5200 // TODO: Allow FP min/max with nnan/nsz. 5201 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5202 5203 Value *A = nullptr, *B = nullptr; 5204 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5205 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5206 return {SPF_UNKNOWN, SPNB_NA, false}; 5207 5208 Value *C = nullptr, *D = nullptr; 5209 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5210 if (L.Flavor != R.Flavor) 5211 return {SPF_UNKNOWN, SPNB_NA, false}; 5212 5213 // We have something like: x Pred y ? min(a, b) : min(c, d). 5214 // Try to match the compare to the min/max operations of the select operands. 5215 // First, make sure we have the right compare predicate. 5216 switch (L.Flavor) { 5217 case SPF_SMIN: 5218 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5219 Pred = ICmpInst::getSwappedPredicate(Pred); 5220 std::swap(CmpLHS, CmpRHS); 5221 } 5222 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5223 break; 5224 return {SPF_UNKNOWN, SPNB_NA, false}; 5225 case SPF_SMAX: 5226 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5227 Pred = ICmpInst::getSwappedPredicate(Pred); 5228 std::swap(CmpLHS, CmpRHS); 5229 } 5230 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5231 break; 5232 return {SPF_UNKNOWN, SPNB_NA, false}; 5233 case SPF_UMIN: 5234 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5235 Pred = ICmpInst::getSwappedPredicate(Pred); 5236 std::swap(CmpLHS, CmpRHS); 5237 } 5238 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5239 break; 5240 return {SPF_UNKNOWN, SPNB_NA, false}; 5241 case SPF_UMAX: 5242 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5243 Pred = ICmpInst::getSwappedPredicate(Pred); 5244 std::swap(CmpLHS, CmpRHS); 5245 } 5246 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5247 break; 5248 return {SPF_UNKNOWN, SPNB_NA, false}; 5249 default: 5250 return {SPF_UNKNOWN, SPNB_NA, false}; 5251 } 5252 5253 // If there is a common operand in the already matched min/max and the other 5254 // min/max operands match the compare operands (either directly or inverted), 5255 // then this is min/max of the same flavor. 5256 5257 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5258 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5259 if (D == B) { 5260 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5261 match(A, m_Not(m_Specific(CmpRHS))))) 5262 return {L.Flavor, SPNB_NA, false}; 5263 } 5264 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5265 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5266 if (C == B) { 5267 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5268 match(A, m_Not(m_Specific(CmpRHS))))) 5269 return {L.Flavor, SPNB_NA, false}; 5270 } 5271 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5272 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5273 if (D == A) { 5274 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5275 match(B, m_Not(m_Specific(CmpRHS))))) 5276 return {L.Flavor, SPNB_NA, false}; 5277 } 5278 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5279 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5280 if (C == A) { 5281 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5282 match(B, m_Not(m_Specific(CmpRHS))))) 5283 return {L.Flavor, SPNB_NA, false}; 5284 } 5285 5286 return {SPF_UNKNOWN, SPNB_NA, false}; 5287 } 5288 5289 /// If the input value is the result of a 'not' op, constant integer, or vector 5290 /// splat of a constant integer, return the bitwise-not source value. 5291 /// TODO: This could be extended to handle non-splat vector integer constants. 5292 static Value *getNotValue(Value *V) { 5293 Value *NotV; 5294 if (match(V, m_Not(m_Value(NotV)))) 5295 return NotV; 5296 5297 const APInt *C; 5298 if (match(V, m_APInt(C))) 5299 return ConstantInt::get(V->getType(), ~(*C)); 5300 5301 return nullptr; 5302 } 5303 5304 /// Match non-obvious integer minimum and maximum sequences. 5305 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5306 Value *CmpLHS, Value *CmpRHS, 5307 Value *TrueVal, Value *FalseVal, 5308 Value *&LHS, Value *&RHS, 5309 unsigned Depth) { 5310 // Assume success. If there's no match, callers should not use these anyway. 5311 LHS = TrueVal; 5312 RHS = FalseVal; 5313 5314 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5315 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5316 return SPR; 5317 5318 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5319 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5320 return SPR; 5321 5322 // Look through 'not' ops to find disguised min/max. 5323 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5324 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5325 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5326 switch (Pred) { 5327 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5328 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5329 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5330 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5331 default: break; 5332 } 5333 } 5334 5335 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5336 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5337 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5338 switch (Pred) { 5339 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5340 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5341 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5342 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5343 default: break; 5344 } 5345 } 5346 5347 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5348 return {SPF_UNKNOWN, SPNB_NA, false}; 5349 5350 // Z = X -nsw Y 5351 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5352 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5353 if (match(TrueVal, m_Zero()) && 5354 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5355 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5356 5357 // Z = X -nsw Y 5358 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5359 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5360 if (match(FalseVal, m_Zero()) && 5361 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5362 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5363 5364 const APInt *C1; 5365 if (!match(CmpRHS, m_APInt(C1))) 5366 return {SPF_UNKNOWN, SPNB_NA, false}; 5367 5368 // An unsigned min/max can be written with a signed compare. 5369 const APInt *C2; 5370 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5371 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5372 // Is the sign bit set? 5373 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5374 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5375 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5376 C2->isMaxSignedValue()) 5377 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5378 5379 // Is the sign bit clear? 5380 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5381 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5382 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5383 C2->isMinSignedValue()) 5384 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5385 } 5386 5387 return {SPF_UNKNOWN, SPNB_NA, false}; 5388 } 5389 5390 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5391 assert(X && Y && "Invalid operand"); 5392 5393 // X = sub (0, Y) || X = sub nsw (0, Y) 5394 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5395 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5396 return true; 5397 5398 // Y = sub (0, X) || Y = sub nsw (0, X) 5399 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5400 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5401 return true; 5402 5403 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5404 Value *A, *B; 5405 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5406 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5407 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5408 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5409 } 5410 5411 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5412 FastMathFlags FMF, 5413 Value *CmpLHS, Value *CmpRHS, 5414 Value *TrueVal, Value *FalseVal, 5415 Value *&LHS, Value *&RHS, 5416 unsigned Depth) { 5417 if (CmpInst::isFPPredicate(Pred)) { 5418 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5419 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5420 // purpose of identifying min/max. Disregard vector constants with undefined 5421 // elements because those can not be back-propagated for analysis. 5422 Value *OutputZeroVal = nullptr; 5423 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5424 !cast<Constant>(TrueVal)->containsUndefElement()) 5425 OutputZeroVal = TrueVal; 5426 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5427 !cast<Constant>(FalseVal)->containsUndefElement()) 5428 OutputZeroVal = FalseVal; 5429 5430 if (OutputZeroVal) { 5431 if (match(CmpLHS, m_AnyZeroFP())) 5432 CmpLHS = OutputZeroVal; 5433 if (match(CmpRHS, m_AnyZeroFP())) 5434 CmpRHS = OutputZeroVal; 5435 } 5436 } 5437 5438 LHS = CmpLHS; 5439 RHS = CmpRHS; 5440 5441 // Signed zero may return inconsistent results between implementations. 5442 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5443 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5444 // Therefore, we behave conservatively and only proceed if at least one of the 5445 // operands is known to not be zero or if we don't care about signed zero. 5446 switch (Pred) { 5447 default: break; 5448 // FIXME: Include OGT/OLT/UGT/ULT. 5449 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5450 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5451 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5452 !isKnownNonZero(CmpRHS)) 5453 return {SPF_UNKNOWN, SPNB_NA, false}; 5454 } 5455 5456 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5457 bool Ordered = false; 5458 5459 // When given one NaN and one non-NaN input: 5460 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5461 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5462 // ordered comparison fails), which could be NaN or non-NaN. 5463 // so here we discover exactly what NaN behavior is required/accepted. 5464 if (CmpInst::isFPPredicate(Pred)) { 5465 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5466 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5467 5468 if (LHSSafe && RHSSafe) { 5469 // Both operands are known non-NaN. 5470 NaNBehavior = SPNB_RETURNS_ANY; 5471 } else if (CmpInst::isOrdered(Pred)) { 5472 // An ordered comparison will return false when given a NaN, so it 5473 // returns the RHS. 5474 Ordered = true; 5475 if (LHSSafe) 5476 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5477 NaNBehavior = SPNB_RETURNS_NAN; 5478 else if (RHSSafe) 5479 NaNBehavior = SPNB_RETURNS_OTHER; 5480 else 5481 // Completely unsafe. 5482 return {SPF_UNKNOWN, SPNB_NA, false}; 5483 } else { 5484 Ordered = false; 5485 // An unordered comparison will return true when given a NaN, so it 5486 // returns the LHS. 5487 if (LHSSafe) 5488 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5489 NaNBehavior = SPNB_RETURNS_OTHER; 5490 else if (RHSSafe) 5491 NaNBehavior = SPNB_RETURNS_NAN; 5492 else 5493 // Completely unsafe. 5494 return {SPF_UNKNOWN, SPNB_NA, false}; 5495 } 5496 } 5497 5498 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5499 std::swap(CmpLHS, CmpRHS); 5500 Pred = CmpInst::getSwappedPredicate(Pred); 5501 if (NaNBehavior == SPNB_RETURNS_NAN) 5502 NaNBehavior = SPNB_RETURNS_OTHER; 5503 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5504 NaNBehavior = SPNB_RETURNS_NAN; 5505 Ordered = !Ordered; 5506 } 5507 5508 // ([if]cmp X, Y) ? X : Y 5509 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5510 switch (Pred) { 5511 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5512 case ICmpInst::ICMP_UGT: 5513 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5514 case ICmpInst::ICMP_SGT: 5515 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5516 case ICmpInst::ICMP_ULT: 5517 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5518 case ICmpInst::ICMP_SLT: 5519 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5520 case FCmpInst::FCMP_UGT: 5521 case FCmpInst::FCMP_UGE: 5522 case FCmpInst::FCMP_OGT: 5523 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5524 case FCmpInst::FCMP_ULT: 5525 case FCmpInst::FCMP_ULE: 5526 case FCmpInst::FCMP_OLT: 5527 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5528 } 5529 } 5530 5531 if (isKnownNegation(TrueVal, FalseVal)) { 5532 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5533 // match against either LHS or sext(LHS). 5534 auto MaybeSExtCmpLHS = 5535 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5536 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5537 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5538 if (match(TrueVal, MaybeSExtCmpLHS)) { 5539 // Set the return values. If the compare uses the negated value (-X >s 0), 5540 // swap the return values because the negated value is always 'RHS'. 5541 LHS = TrueVal; 5542 RHS = FalseVal; 5543 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5544 std::swap(LHS, RHS); 5545 5546 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5547 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5548 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5549 return {SPF_ABS, SPNB_NA, false}; 5550 5551 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5552 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5553 return {SPF_ABS, SPNB_NA, false}; 5554 5555 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5556 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5557 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5558 return {SPF_NABS, SPNB_NA, false}; 5559 } 5560 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5561 // Set the return values. If the compare uses the negated value (-X >s 0), 5562 // swap the return values because the negated value is always 'RHS'. 5563 LHS = FalseVal; 5564 RHS = TrueVal; 5565 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5566 std::swap(LHS, RHS); 5567 5568 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5569 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5570 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5571 return {SPF_NABS, SPNB_NA, false}; 5572 5573 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5574 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5575 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5576 return {SPF_ABS, SPNB_NA, false}; 5577 } 5578 } 5579 5580 if (CmpInst::isIntPredicate(Pred)) 5581 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5582 5583 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5584 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5585 // semantics than minNum. Be conservative in such case. 5586 if (NaNBehavior != SPNB_RETURNS_ANY || 5587 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5588 !isKnownNonZero(CmpRHS))) 5589 return {SPF_UNKNOWN, SPNB_NA, false}; 5590 5591 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5592 } 5593 5594 /// Helps to match a select pattern in case of a type mismatch. 5595 /// 5596 /// The function processes the case when type of true and false values of a 5597 /// select instruction differs from type of the cmp instruction operands because 5598 /// of a cast instruction. The function checks if it is legal to move the cast 5599 /// operation after "select". If yes, it returns the new second value of 5600 /// "select" (with the assumption that cast is moved): 5601 /// 1. As operand of cast instruction when both values of "select" are same cast 5602 /// instructions. 5603 /// 2. As restored constant (by applying reverse cast operation) when the first 5604 /// value of the "select" is a cast operation and the second value is a 5605 /// constant. 5606 /// NOTE: We return only the new second value because the first value could be 5607 /// accessed as operand of cast instruction. 5608 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5609 Instruction::CastOps *CastOp) { 5610 auto *Cast1 = dyn_cast<CastInst>(V1); 5611 if (!Cast1) 5612 return nullptr; 5613 5614 *CastOp = Cast1->getOpcode(); 5615 Type *SrcTy = Cast1->getSrcTy(); 5616 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5617 // If V1 and V2 are both the same cast from the same type, look through V1. 5618 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5619 return Cast2->getOperand(0); 5620 return nullptr; 5621 } 5622 5623 auto *C = dyn_cast<Constant>(V2); 5624 if (!C) 5625 return nullptr; 5626 5627 Constant *CastedTo = nullptr; 5628 switch (*CastOp) { 5629 case Instruction::ZExt: 5630 if (CmpI->isUnsigned()) 5631 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5632 break; 5633 case Instruction::SExt: 5634 if (CmpI->isSigned()) 5635 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5636 break; 5637 case Instruction::Trunc: 5638 Constant *CmpConst; 5639 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5640 CmpConst->getType() == SrcTy) { 5641 // Here we have the following case: 5642 // 5643 // %cond = cmp iN %x, CmpConst 5644 // %tr = trunc iN %x to iK 5645 // %narrowsel = select i1 %cond, iK %t, iK C 5646 // 5647 // We can always move trunc after select operation: 5648 // 5649 // %cond = cmp iN %x, CmpConst 5650 // %widesel = select i1 %cond, iN %x, iN CmpConst 5651 // %tr = trunc iN %widesel to iK 5652 // 5653 // Note that C could be extended in any way because we don't care about 5654 // upper bits after truncation. It can't be abs pattern, because it would 5655 // look like: 5656 // 5657 // select i1 %cond, x, -x. 5658 // 5659 // So only min/max pattern could be matched. Such match requires widened C 5660 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5661 // CmpConst == C is checked below. 5662 CastedTo = CmpConst; 5663 } else { 5664 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5665 } 5666 break; 5667 case Instruction::FPTrunc: 5668 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5669 break; 5670 case Instruction::FPExt: 5671 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5672 break; 5673 case Instruction::FPToUI: 5674 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5675 break; 5676 case Instruction::FPToSI: 5677 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5678 break; 5679 case Instruction::UIToFP: 5680 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5681 break; 5682 case Instruction::SIToFP: 5683 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5684 break; 5685 default: 5686 break; 5687 } 5688 5689 if (!CastedTo) 5690 return nullptr; 5691 5692 // Make sure the cast doesn't lose any information. 5693 Constant *CastedBack = 5694 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5695 if (CastedBack != C) 5696 return nullptr; 5697 5698 return CastedTo; 5699 } 5700 5701 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5702 Instruction::CastOps *CastOp, 5703 unsigned Depth) { 5704 if (Depth >= MaxDepth) 5705 return {SPF_UNKNOWN, SPNB_NA, false}; 5706 5707 SelectInst *SI = dyn_cast<SelectInst>(V); 5708 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5709 5710 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5711 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5712 5713 Value *TrueVal = SI->getTrueValue(); 5714 Value *FalseVal = SI->getFalseValue(); 5715 5716 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5717 CastOp, Depth); 5718 } 5719 5720 SelectPatternResult llvm::matchDecomposedSelectPattern( 5721 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5722 Instruction::CastOps *CastOp, unsigned Depth) { 5723 CmpInst::Predicate Pred = CmpI->getPredicate(); 5724 Value *CmpLHS = CmpI->getOperand(0); 5725 Value *CmpRHS = CmpI->getOperand(1); 5726 FastMathFlags FMF; 5727 if (isa<FPMathOperator>(CmpI)) 5728 FMF = CmpI->getFastMathFlags(); 5729 5730 // Bail out early. 5731 if (CmpI->isEquality()) 5732 return {SPF_UNKNOWN, SPNB_NA, false}; 5733 5734 // Deal with type mismatches. 5735 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5736 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5737 // If this is a potential fmin/fmax with a cast to integer, then ignore 5738 // -0.0 because there is no corresponding integer value. 5739 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5740 FMF.setNoSignedZeros(); 5741 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5742 cast<CastInst>(TrueVal)->getOperand(0), C, 5743 LHS, RHS, Depth); 5744 } 5745 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5746 // If this is a potential fmin/fmax with a cast to integer, then ignore 5747 // -0.0 because there is no corresponding integer value. 5748 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5749 FMF.setNoSignedZeros(); 5750 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5751 C, cast<CastInst>(FalseVal)->getOperand(0), 5752 LHS, RHS, Depth); 5753 } 5754 } 5755 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5756 LHS, RHS, Depth); 5757 } 5758 5759 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5760 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5761 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5762 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5763 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5764 if (SPF == SPF_FMINNUM) 5765 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5766 if (SPF == SPF_FMAXNUM) 5767 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5768 llvm_unreachable("unhandled!"); 5769 } 5770 5771 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5772 if (SPF == SPF_SMIN) return SPF_SMAX; 5773 if (SPF == SPF_UMIN) return SPF_UMAX; 5774 if (SPF == SPF_SMAX) return SPF_SMIN; 5775 if (SPF == SPF_UMAX) return SPF_UMIN; 5776 llvm_unreachable("unhandled!"); 5777 } 5778 5779 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5780 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5781 } 5782 5783 /// Return true if "icmp Pred LHS RHS" is always true. 5784 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5785 const Value *RHS, const DataLayout &DL, 5786 unsigned Depth) { 5787 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5788 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5789 return true; 5790 5791 switch (Pred) { 5792 default: 5793 return false; 5794 5795 case CmpInst::ICMP_SLE: { 5796 const APInt *C; 5797 5798 // LHS s<= LHS +_{nsw} C if C >= 0 5799 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5800 return !C->isNegative(); 5801 return false; 5802 } 5803 5804 case CmpInst::ICMP_ULE: { 5805 const APInt *C; 5806 5807 // LHS u<= LHS +_{nuw} C for any C 5808 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5809 return true; 5810 5811 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5812 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5813 const Value *&X, 5814 const APInt *&CA, const APInt *&CB) { 5815 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5816 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5817 return true; 5818 5819 // If X & C == 0 then (X | C) == X +_{nuw} C 5820 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5821 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5822 KnownBits Known(CA->getBitWidth()); 5823 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5824 /*CxtI*/ nullptr, /*DT*/ nullptr); 5825 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5826 return true; 5827 } 5828 5829 return false; 5830 }; 5831 5832 const Value *X; 5833 const APInt *CLHS, *CRHS; 5834 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5835 return CLHS->ule(*CRHS); 5836 5837 return false; 5838 } 5839 } 5840 } 5841 5842 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5843 /// ALHS ARHS" is true. Otherwise, return None. 5844 static Optional<bool> 5845 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5846 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5847 const DataLayout &DL, unsigned Depth) { 5848 switch (Pred) { 5849 default: 5850 return None; 5851 5852 case CmpInst::ICMP_SLT: 5853 case CmpInst::ICMP_SLE: 5854 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5855 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5856 return true; 5857 return None; 5858 5859 case CmpInst::ICMP_ULT: 5860 case CmpInst::ICMP_ULE: 5861 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5862 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5863 return true; 5864 return None; 5865 } 5866 } 5867 5868 /// Return true if the operands of the two compares match. IsSwappedOps is true 5869 /// when the operands match, but are swapped. 5870 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5871 const Value *BLHS, const Value *BRHS, 5872 bool &IsSwappedOps) { 5873 5874 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5875 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5876 return IsMatchingOps || IsSwappedOps; 5877 } 5878 5879 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5880 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5881 /// Otherwise, return None if we can't infer anything. 5882 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5883 CmpInst::Predicate BPred, 5884 bool AreSwappedOps) { 5885 // Canonicalize the predicate as if the operands were not commuted. 5886 if (AreSwappedOps) 5887 BPred = ICmpInst::getSwappedPredicate(BPred); 5888 5889 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5890 return true; 5891 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5892 return false; 5893 5894 return None; 5895 } 5896 5897 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5898 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5899 /// Otherwise, return None if we can't infer anything. 5900 static Optional<bool> 5901 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5902 const ConstantInt *C1, 5903 CmpInst::Predicate BPred, 5904 const ConstantInt *C2) { 5905 ConstantRange DomCR = 5906 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5907 ConstantRange CR = 5908 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5909 ConstantRange Intersection = DomCR.intersectWith(CR); 5910 ConstantRange Difference = DomCR.difference(CR); 5911 if (Intersection.isEmptySet()) 5912 return false; 5913 if (Difference.isEmptySet()) 5914 return true; 5915 return None; 5916 } 5917 5918 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5919 /// false. Otherwise, return None if we can't infer anything. 5920 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5921 CmpInst::Predicate BPred, 5922 const Value *BLHS, const Value *BRHS, 5923 const DataLayout &DL, bool LHSIsTrue, 5924 unsigned Depth) { 5925 Value *ALHS = LHS->getOperand(0); 5926 Value *ARHS = LHS->getOperand(1); 5927 5928 // The rest of the logic assumes the LHS condition is true. If that's not the 5929 // case, invert the predicate to make it so. 5930 CmpInst::Predicate APred = 5931 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5932 5933 // Can we infer anything when the two compares have matching operands? 5934 bool AreSwappedOps; 5935 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5936 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5937 APred, BPred, AreSwappedOps)) 5938 return Implication; 5939 // No amount of additional analysis will infer the second condition, so 5940 // early exit. 5941 return None; 5942 } 5943 5944 // Can we infer anything when the LHS operands match and the RHS operands are 5945 // constants (not necessarily matching)? 5946 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5947 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5948 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5949 return Implication; 5950 // No amount of additional analysis will infer the second condition, so 5951 // early exit. 5952 return None; 5953 } 5954 5955 if (APred == BPred) 5956 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5957 return None; 5958 } 5959 5960 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5961 /// false. Otherwise, return None if we can't infer anything. We expect the 5962 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5963 static Optional<bool> 5964 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5965 const Value *RHSOp0, const Value *RHSOp1, 5966 5967 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5968 // The LHS must be an 'or' or an 'and' instruction. 5969 assert((LHS->getOpcode() == Instruction::And || 5970 LHS->getOpcode() == Instruction::Or) && 5971 "Expected LHS to be 'and' or 'or'."); 5972 5973 assert(Depth <= MaxDepth && "Hit recursion limit"); 5974 5975 // If the result of an 'or' is false, then we know both legs of the 'or' are 5976 // false. Similarly, if the result of an 'and' is true, then we know both 5977 // legs of the 'and' are true. 5978 Value *ALHS, *ARHS; 5979 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5980 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5981 // FIXME: Make this non-recursion. 5982 if (Optional<bool> Implication = isImpliedCondition( 5983 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5984 return Implication; 5985 if (Optional<bool> Implication = isImpliedCondition( 5986 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5987 return Implication; 5988 return None; 5989 } 5990 return None; 5991 } 5992 5993 Optional<bool> 5994 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5995 const Value *RHSOp0, const Value *RHSOp1, 5996 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5997 // Bail out when we hit the limit. 5998 if (Depth == MaxDepth) 5999 return None; 6000 6001 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6002 // example. 6003 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6004 return None; 6005 6006 Type *OpTy = LHS->getType(); 6007 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6008 6009 // FIXME: Extending the code below to handle vectors. 6010 if (OpTy->isVectorTy()) 6011 return None; 6012 6013 assert(OpTy->isIntegerTy(1) && "implied by above"); 6014 6015 // Both LHS and RHS are icmps. 6016 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6017 if (LHSCmp) 6018 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6019 Depth); 6020 6021 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6022 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6023 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6024 if (LHSBO) { 6025 if ((LHSBO->getOpcode() == Instruction::And || 6026 LHSBO->getOpcode() == Instruction::Or)) 6027 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6028 Depth); 6029 } 6030 return None; 6031 } 6032 6033 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6034 const DataLayout &DL, bool LHSIsTrue, 6035 unsigned Depth) { 6036 // LHS ==> RHS by definition 6037 if (LHS == RHS) 6038 return LHSIsTrue; 6039 6040 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6041 if (RHSCmp) 6042 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6043 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6044 LHSIsTrue, Depth); 6045 return None; 6046 } 6047 6048 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6049 // condition dominating ContextI or nullptr, if no condition is found. 6050 static std::pair<Value *, bool> 6051 getDomPredecessorCondition(const Instruction *ContextI) { 6052 if (!ContextI || !ContextI->getParent()) 6053 return {nullptr, false}; 6054 6055 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6056 // dominator tree (eg, from a SimplifyQuery) instead? 6057 const BasicBlock *ContextBB = ContextI->getParent(); 6058 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6059 if (!PredBB) 6060 return {nullptr, false}; 6061 6062 // We need a conditional branch in the predecessor. 6063 Value *PredCond; 6064 BasicBlock *TrueBB, *FalseBB; 6065 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6066 return {nullptr, false}; 6067 6068 // The branch should get simplified. Don't bother simplifying this condition. 6069 if (TrueBB == FalseBB) 6070 return {nullptr, false}; 6071 6072 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6073 "Predecessor block does not point to successor?"); 6074 6075 // Is this condition implied by the predecessor condition? 6076 return {PredCond, TrueBB == ContextBB}; 6077 } 6078 6079 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6080 const Instruction *ContextI, 6081 const DataLayout &DL) { 6082 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6083 auto PredCond = getDomPredecessorCondition(ContextI); 6084 if (PredCond.first) 6085 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6086 return None; 6087 } 6088 6089 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6090 const Value *LHS, const Value *RHS, 6091 const Instruction *ContextI, 6092 const DataLayout &DL) { 6093 auto PredCond = getDomPredecessorCondition(ContextI); 6094 if (PredCond.first) 6095 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6096 PredCond.second); 6097 return None; 6098 } 6099 6100 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6101 APInt &Upper, const InstrInfoQuery &IIQ) { 6102 unsigned Width = Lower.getBitWidth(); 6103 const APInt *C; 6104 switch (BO.getOpcode()) { 6105 case Instruction::Add: 6106 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6107 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6108 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6109 // 'add nuw x, C' produces [C, UINT_MAX]. 6110 Lower = *C; 6111 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6112 if (C->isNegative()) { 6113 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6114 Lower = APInt::getSignedMinValue(Width); 6115 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6116 } else { 6117 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6118 Lower = APInt::getSignedMinValue(Width) + *C; 6119 Upper = APInt::getSignedMaxValue(Width) + 1; 6120 } 6121 } 6122 } 6123 break; 6124 6125 case Instruction::And: 6126 if (match(BO.getOperand(1), m_APInt(C))) 6127 // 'and x, C' produces [0, C]. 6128 Upper = *C + 1; 6129 break; 6130 6131 case Instruction::Or: 6132 if (match(BO.getOperand(1), m_APInt(C))) 6133 // 'or x, C' produces [C, UINT_MAX]. 6134 Lower = *C; 6135 break; 6136 6137 case Instruction::AShr: 6138 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6139 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6140 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6141 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6142 } else if (match(BO.getOperand(0), m_APInt(C))) { 6143 unsigned ShiftAmount = Width - 1; 6144 if (!C->isNullValue() && IIQ.isExact(&BO)) 6145 ShiftAmount = C->countTrailingZeros(); 6146 if (C->isNegative()) { 6147 // 'ashr C, x' produces [C, C >> (Width-1)] 6148 Lower = *C; 6149 Upper = C->ashr(ShiftAmount) + 1; 6150 } else { 6151 // 'ashr C, x' produces [C >> (Width-1), C] 6152 Lower = C->ashr(ShiftAmount); 6153 Upper = *C + 1; 6154 } 6155 } 6156 break; 6157 6158 case Instruction::LShr: 6159 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6160 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6161 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6162 } else if (match(BO.getOperand(0), m_APInt(C))) { 6163 // 'lshr C, x' produces [C >> (Width-1), C]. 6164 unsigned ShiftAmount = Width - 1; 6165 if (!C->isNullValue() && IIQ.isExact(&BO)) 6166 ShiftAmount = C->countTrailingZeros(); 6167 Lower = C->lshr(ShiftAmount); 6168 Upper = *C + 1; 6169 } 6170 break; 6171 6172 case Instruction::Shl: 6173 if (match(BO.getOperand(0), m_APInt(C))) { 6174 if (IIQ.hasNoUnsignedWrap(&BO)) { 6175 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6176 Lower = *C; 6177 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6178 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6179 if (C->isNegative()) { 6180 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6181 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6182 Lower = C->shl(ShiftAmount); 6183 Upper = *C + 1; 6184 } else { 6185 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6186 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6187 Lower = *C; 6188 Upper = C->shl(ShiftAmount) + 1; 6189 } 6190 } 6191 } 6192 break; 6193 6194 case Instruction::SDiv: 6195 if (match(BO.getOperand(1), m_APInt(C))) { 6196 APInt IntMin = APInt::getSignedMinValue(Width); 6197 APInt IntMax = APInt::getSignedMaxValue(Width); 6198 if (C->isAllOnesValue()) { 6199 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6200 // where C != -1 and C != 0 and C != 1 6201 Lower = IntMin + 1; 6202 Upper = IntMax + 1; 6203 } else if (C->countLeadingZeros() < Width - 1) { 6204 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6205 // where C != -1 and C != 0 and C != 1 6206 Lower = IntMin.sdiv(*C); 6207 Upper = IntMax.sdiv(*C); 6208 if (Lower.sgt(Upper)) 6209 std::swap(Lower, Upper); 6210 Upper = Upper + 1; 6211 assert(Upper != Lower && "Upper part of range has wrapped!"); 6212 } 6213 } else if (match(BO.getOperand(0), m_APInt(C))) { 6214 if (C->isMinSignedValue()) { 6215 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6216 Lower = *C; 6217 Upper = Lower.lshr(1) + 1; 6218 } else { 6219 // 'sdiv C, x' produces [-|C|, |C|]. 6220 Upper = C->abs() + 1; 6221 Lower = (-Upper) + 1; 6222 } 6223 } 6224 break; 6225 6226 case Instruction::UDiv: 6227 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6228 // 'udiv x, C' produces [0, UINT_MAX / C]. 6229 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6230 } else if (match(BO.getOperand(0), m_APInt(C))) { 6231 // 'udiv C, x' produces [0, C]. 6232 Upper = *C + 1; 6233 } 6234 break; 6235 6236 case Instruction::SRem: 6237 if (match(BO.getOperand(1), m_APInt(C))) { 6238 // 'srem x, C' produces (-|C|, |C|). 6239 Upper = C->abs(); 6240 Lower = (-Upper) + 1; 6241 } 6242 break; 6243 6244 case Instruction::URem: 6245 if (match(BO.getOperand(1), m_APInt(C))) 6246 // 'urem x, C' produces [0, C). 6247 Upper = *C; 6248 break; 6249 6250 default: 6251 break; 6252 } 6253 } 6254 6255 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6256 APInt &Upper) { 6257 unsigned Width = Lower.getBitWidth(); 6258 const APInt *C; 6259 switch (II.getIntrinsicID()) { 6260 case Intrinsic::uadd_sat: 6261 // uadd.sat(x, C) produces [C, UINT_MAX]. 6262 if (match(II.getOperand(0), m_APInt(C)) || 6263 match(II.getOperand(1), m_APInt(C))) 6264 Lower = *C; 6265 break; 6266 case Intrinsic::sadd_sat: 6267 if (match(II.getOperand(0), m_APInt(C)) || 6268 match(II.getOperand(1), m_APInt(C))) { 6269 if (C->isNegative()) { 6270 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6271 Lower = APInt::getSignedMinValue(Width); 6272 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6273 } else { 6274 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6275 Lower = APInt::getSignedMinValue(Width) + *C; 6276 Upper = APInt::getSignedMaxValue(Width) + 1; 6277 } 6278 } 6279 break; 6280 case Intrinsic::usub_sat: 6281 // usub.sat(C, x) produces [0, C]. 6282 if (match(II.getOperand(0), m_APInt(C))) 6283 Upper = *C + 1; 6284 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6285 else if (match(II.getOperand(1), m_APInt(C))) 6286 Upper = APInt::getMaxValue(Width) - *C + 1; 6287 break; 6288 case Intrinsic::ssub_sat: 6289 if (match(II.getOperand(0), m_APInt(C))) { 6290 if (C->isNegative()) { 6291 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6292 Lower = APInt::getSignedMinValue(Width); 6293 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6294 } else { 6295 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6296 Lower = *C - APInt::getSignedMaxValue(Width); 6297 Upper = APInt::getSignedMaxValue(Width) + 1; 6298 } 6299 } else if (match(II.getOperand(1), m_APInt(C))) { 6300 if (C->isNegative()) { 6301 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6302 Lower = APInt::getSignedMinValue(Width) - *C; 6303 Upper = APInt::getSignedMaxValue(Width) + 1; 6304 } else { 6305 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6306 Lower = APInt::getSignedMinValue(Width); 6307 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6308 } 6309 } 6310 break; 6311 default: 6312 break; 6313 } 6314 } 6315 6316 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6317 APInt &Upper, const InstrInfoQuery &IIQ) { 6318 const Value *LHS = nullptr, *RHS = nullptr; 6319 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6320 if (R.Flavor == SPF_UNKNOWN) 6321 return; 6322 6323 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6324 6325 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6326 // If the negation part of the abs (in RHS) has the NSW flag, 6327 // then the result of abs(X) is [0..SIGNED_MAX], 6328 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6329 Lower = APInt::getNullValue(BitWidth); 6330 if (match(RHS, m_Neg(m_Specific(LHS))) && 6331 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6332 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6333 else 6334 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6335 return; 6336 } 6337 6338 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6339 // The result of -abs(X) is <= 0. 6340 Lower = APInt::getSignedMinValue(BitWidth); 6341 Upper = APInt(BitWidth, 1); 6342 return; 6343 } 6344 6345 const APInt *C; 6346 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6347 return; 6348 6349 switch (R.Flavor) { 6350 case SPF_UMIN: 6351 Upper = *C + 1; 6352 break; 6353 case SPF_UMAX: 6354 Lower = *C; 6355 break; 6356 case SPF_SMIN: 6357 Lower = APInt::getSignedMinValue(BitWidth); 6358 Upper = *C + 1; 6359 break; 6360 case SPF_SMAX: 6361 Lower = *C; 6362 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6363 break; 6364 default: 6365 break; 6366 } 6367 } 6368 6369 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6370 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6371 6372 const APInt *C; 6373 if (match(V, m_APInt(C))) 6374 return ConstantRange(*C); 6375 6376 InstrInfoQuery IIQ(UseInstrInfo); 6377 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6378 APInt Lower = APInt(BitWidth, 0); 6379 APInt Upper = APInt(BitWidth, 0); 6380 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6381 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6382 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6383 setLimitsForIntrinsic(*II, Lower, Upper); 6384 else if (auto *SI = dyn_cast<SelectInst>(V)) 6385 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6386 6387 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6388 6389 if (auto *I = dyn_cast<Instruction>(V)) 6390 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6391 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6392 6393 return CR; 6394 } 6395 6396 static Optional<int64_t> 6397 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6398 // Skip over the first indices. 6399 gep_type_iterator GTI = gep_type_begin(GEP); 6400 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6401 /*skip along*/; 6402 6403 // Compute the offset implied by the rest of the indices. 6404 int64_t Offset = 0; 6405 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6406 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6407 if (!OpC) 6408 return None; 6409 if (OpC->isZero()) 6410 continue; // No offset. 6411 6412 // Handle struct indices, which add their field offset to the pointer. 6413 if (StructType *STy = GTI.getStructTypeOrNull()) { 6414 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6415 continue; 6416 } 6417 6418 // Otherwise, we have a sequential type like an array or fixed-length 6419 // vector. Multiply the index by the ElementSize. 6420 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6421 if (Size.isScalable()) 6422 return None; 6423 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6424 } 6425 6426 return Offset; 6427 } 6428 6429 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6430 const DataLayout &DL) { 6431 Ptr1 = Ptr1->stripPointerCasts(); 6432 Ptr2 = Ptr2->stripPointerCasts(); 6433 6434 // Handle the trivial case first. 6435 if (Ptr1 == Ptr2) { 6436 return 0; 6437 } 6438 6439 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6440 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6441 6442 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6443 // as in "P" and "gep P, 1". 6444 // Also do this iteratively to handle the the following case: 6445 // Ptr_t1 = GEP Ptr1, c1 6446 // Ptr_t2 = GEP Ptr_t1, c2 6447 // Ptr2 = GEP Ptr_t2, c3 6448 // where we will return c1+c2+c3. 6449 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6450 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6451 // are the same, and return the difference between offsets. 6452 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6453 const Value *Ptr) -> Optional<int64_t> { 6454 const GEPOperator *GEP_T = GEP; 6455 int64_t OffsetVal = 0; 6456 bool HasSameBase = false; 6457 while (GEP_T) { 6458 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6459 if (!Offset) 6460 return None; 6461 OffsetVal += *Offset; 6462 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6463 if (Op0 == Ptr) { 6464 HasSameBase = true; 6465 break; 6466 } 6467 GEP_T = dyn_cast<GEPOperator>(Op0); 6468 } 6469 if (!HasSameBase) 6470 return None; 6471 return OffsetVal; 6472 }; 6473 6474 if (GEP1) { 6475 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6476 if (Offset) 6477 return -*Offset; 6478 } 6479 if (GEP2) { 6480 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6481 if (Offset) 6482 return Offset; 6483 } 6484 6485 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6486 // base. After that base, they may have some number of common (and 6487 // potentially variable) indices. After that they handle some constant 6488 // offset, which determines their offset from each other. At this point, we 6489 // handle no other case. 6490 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6491 return None; 6492 6493 // Skip any common indices and track the GEP types. 6494 unsigned Idx = 1; 6495 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6496 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6497 break; 6498 6499 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6500 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6501 if (!Offset1 || !Offset2) 6502 return None; 6503 return *Offset2 - *Offset1; 6504 } 6505