1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = Shuf->getType()->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 178 if (DemandedElts.isNullValue()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 Type *Ty = V->getType(); 210 APInt DemandedElts = 211 Ty->isVectorTy() 212 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 213 : APInt(1, 1); 214 computeKnownBits(V, DemandedElts, Known, Depth, Q); 215 } 216 217 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 218 const DataLayout &DL, unsigned Depth, 219 AssumptionCache *AC, const Instruction *CxtI, 220 const DominatorTree *DT, 221 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 222 ::computeKnownBits(V, Known, Depth, 223 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 224 } 225 226 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 227 KnownBits &Known, const DataLayout &DL, 228 unsigned Depth, AssumptionCache *AC, 229 const Instruction *CxtI, const DominatorTree *DT, 230 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 231 ::computeKnownBits(V, DemandedElts, Known, Depth, 232 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 233 } 234 235 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 236 unsigned Depth, const Query &Q); 237 238 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 239 const Query &Q); 240 241 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 242 unsigned Depth, AssumptionCache *AC, 243 const Instruction *CxtI, 244 const DominatorTree *DT, 245 OptimizationRemarkEmitter *ORE, 246 bool UseInstrInfo) { 247 return ::computeKnownBits( 248 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 249 } 250 251 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 252 const DataLayout &DL, unsigned Depth, 253 AssumptionCache *AC, const Instruction *CxtI, 254 const DominatorTree *DT, 255 OptimizationRemarkEmitter *ORE, 256 bool UseInstrInfo) { 257 return ::computeKnownBits( 258 V, DemandedElts, Depth, 259 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 260 } 261 262 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 263 const DataLayout &DL, AssumptionCache *AC, 264 const Instruction *CxtI, const DominatorTree *DT, 265 bool UseInstrInfo) { 266 assert(LHS->getType() == RHS->getType() && 267 "LHS and RHS should have the same type"); 268 assert(LHS->getType()->isIntOrIntVectorTy() && 269 "LHS and RHS should be integers"); 270 // Look for an inverted mask: (X & ~M) op (Y & M). 271 Value *M; 272 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 273 match(RHS, m_c_And(m_Specific(M), m_Value()))) 274 return true; 275 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(LHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 279 KnownBits LHSKnown(IT->getBitWidth()); 280 KnownBits RHSKnown(IT->getBitWidth()); 281 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 282 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 283 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 284 } 285 286 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 287 for (const User *U : CxtI->users()) { 288 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 289 if (IC->isEquality()) 290 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 291 if (C->isNullValue()) 292 continue; 293 return false; 294 } 295 return true; 296 } 297 298 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 299 const Query &Q); 300 301 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 302 bool OrZero, unsigned Depth, 303 AssumptionCache *AC, const Instruction *CxtI, 304 const DominatorTree *DT, bool UseInstrInfo) { 305 return ::isKnownToBeAPowerOfTwo( 306 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 307 } 308 309 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 310 unsigned Depth, const Query &Q); 311 312 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 313 314 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 315 AssumptionCache *AC, const Instruction *CxtI, 316 const DominatorTree *DT, bool UseInstrInfo) { 317 return ::isKnownNonZero(V, Depth, 318 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 319 } 320 321 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 322 unsigned Depth, AssumptionCache *AC, 323 const Instruction *CxtI, const DominatorTree *DT, 324 bool UseInstrInfo) { 325 KnownBits Known = 326 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 327 return Known.isNonNegative(); 328 } 329 330 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 331 AssumptionCache *AC, const Instruction *CxtI, 332 const DominatorTree *DT, bool UseInstrInfo) { 333 if (auto *CI = dyn_cast<ConstantInt>(V)) 334 return CI->getValue().isStrictlyPositive(); 335 336 // TODO: We'd doing two recursive queries here. We should factor this such 337 // that only a single query is needed. 338 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 339 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 340 } 341 342 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 343 AssumptionCache *AC, const Instruction *CxtI, 344 const DominatorTree *DT, bool UseInstrInfo) { 345 KnownBits Known = 346 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 347 return Known.isNegative(); 348 } 349 350 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 351 352 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 353 const DataLayout &DL, AssumptionCache *AC, 354 const Instruction *CxtI, const DominatorTree *DT, 355 bool UseInstrInfo) { 356 return ::isKnownNonEqual(V1, V2, 357 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 358 UseInstrInfo, /*ORE=*/nullptr)); 359 } 360 361 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 362 const Query &Q); 363 364 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 365 const DataLayout &DL, unsigned Depth, 366 AssumptionCache *AC, const Instruction *CxtI, 367 const DominatorTree *DT, bool UseInstrInfo) { 368 return ::MaskedValueIsZero( 369 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 370 } 371 372 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 373 unsigned Depth, const Query &Q); 374 375 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 376 const Query &Q) { 377 Type *Ty = V->getType(); 378 APInt DemandedElts = 379 Ty->isVectorTy() 380 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 381 : APInt(1, 1); 382 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 383 } 384 385 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 386 unsigned Depth, AssumptionCache *AC, 387 const Instruction *CxtI, 388 const DominatorTree *DT, bool UseInstrInfo) { 389 return ::ComputeNumSignBits( 390 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 391 } 392 393 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 394 bool NSW, const APInt &DemandedElts, 395 KnownBits &KnownOut, KnownBits &Known2, 396 unsigned Depth, const Query &Q) { 397 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 398 399 // If one operand is unknown and we have no nowrap information, 400 // the result will be unknown independently of the second operand. 401 if (KnownOut.isUnknown() && !NSW) 402 return; 403 404 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 405 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 406 } 407 408 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 409 const APInt &DemandedElts, KnownBits &Known, 410 KnownBits &Known2, unsigned Depth, 411 const Query &Q) { 412 unsigned BitWidth = Known.getBitWidth(); 413 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 414 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 415 416 bool isKnownNegative = false; 417 bool isKnownNonNegative = false; 418 // If the multiplication is known not to overflow, compute the sign bit. 419 if (NSW) { 420 if (Op0 == Op1) { 421 // The product of a number with itself is non-negative. 422 isKnownNonNegative = true; 423 } else { 424 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 425 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 426 bool isKnownNegativeOp1 = Known.isNegative(); 427 bool isKnownNegativeOp0 = Known2.isNegative(); 428 // The product of two numbers with the same sign is non-negative. 429 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 430 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 431 // The product of a negative number and a non-negative number is either 432 // negative or zero. 433 if (!isKnownNonNegative) 434 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 435 isKnownNonZero(Op0, Depth, Q)) || 436 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 437 isKnownNonZero(Op1, Depth, Q)); 438 } 439 } 440 441 assert(!Known.hasConflict() && !Known2.hasConflict()); 442 // Compute a conservative estimate for high known-0 bits. 443 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 444 Known2.countMinLeadingZeros(), 445 BitWidth) - BitWidth; 446 LeadZ = std::min(LeadZ, BitWidth); 447 448 // The result of the bottom bits of an integer multiply can be 449 // inferred by looking at the bottom bits of both operands and 450 // multiplying them together. 451 // We can infer at least the minimum number of known trailing bits 452 // of both operands. Depending on number of trailing zeros, we can 453 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 454 // a and b are divisible by m and n respectively. 455 // We then calculate how many of those bits are inferrable and set 456 // the output. For example, the i8 mul: 457 // a = XXXX1100 (12) 458 // b = XXXX1110 (14) 459 // We know the bottom 3 bits are zero since the first can be divided by 460 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 461 // Applying the multiplication to the trimmed arguments gets: 462 // XX11 (3) 463 // X111 (7) 464 // ------- 465 // XX11 466 // XX11 467 // XX11 468 // XX11 469 // ------- 470 // XXXXX01 471 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 472 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 473 // The proof for this can be described as: 474 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 475 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 476 // umin(countTrailingZeros(C2), C6) + 477 // umin(C5 - umin(countTrailingZeros(C1), C5), 478 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 479 // %aa = shl i8 %a, C5 480 // %bb = shl i8 %b, C6 481 // %aaa = or i8 %aa, C1 482 // %bbb = or i8 %bb, C2 483 // %mul = mul i8 %aaa, %bbb 484 // %mask = and i8 %mul, C7 485 // => 486 // %mask = i8 ((C1*C2)&C7) 487 // Where C5, C6 describe the known bits of %a, %b 488 // C1, C2 describe the known bottom bits of %a, %b. 489 // C7 describes the mask of the known bits of the result. 490 APInt Bottom0 = Known.One; 491 APInt Bottom1 = Known2.One; 492 493 // How many times we'd be able to divide each argument by 2 (shr by 1). 494 // This gives us the number of trailing zeros on the multiplication result. 495 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 496 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 497 unsigned TrailZero0 = Known.countMinTrailingZeros(); 498 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 499 unsigned TrailZ = TrailZero0 + TrailZero1; 500 501 // Figure out the fewest known-bits operand. 502 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 503 TrailBitsKnown1 - TrailZero1); 504 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 505 506 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 507 Bottom1.getLoBits(TrailBitsKnown1); 508 509 Known.resetAll(); 510 Known.Zero.setHighBits(LeadZ); 511 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 512 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 513 514 // Only make use of no-wrap flags if we failed to compute the sign bit 515 // directly. This matters if the multiplication always overflows, in 516 // which case we prefer to follow the result of the direct computation, 517 // though as the program is invoking undefined behaviour we can choose 518 // whatever we like here. 519 if (isKnownNonNegative && !Known.isNegative()) 520 Known.makeNonNegative(); 521 else if (isKnownNegative && !Known.isNonNegative()) 522 Known.makeNegative(); 523 } 524 525 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 526 KnownBits &Known) { 527 unsigned BitWidth = Known.getBitWidth(); 528 unsigned NumRanges = Ranges.getNumOperands() / 2; 529 assert(NumRanges >= 1); 530 531 Known.Zero.setAllBits(); 532 Known.One.setAllBits(); 533 534 for (unsigned i = 0; i < NumRanges; ++i) { 535 ConstantInt *Lower = 536 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 537 ConstantInt *Upper = 538 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 539 ConstantRange Range(Lower->getValue(), Upper->getValue()); 540 541 // The first CommonPrefixBits of all values in Range are equal. 542 unsigned CommonPrefixBits = 543 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 544 545 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 546 Known.One &= Range.getUnsignedMax() & Mask; 547 Known.Zero &= ~Range.getUnsignedMax() & Mask; 548 } 549 } 550 551 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 552 SmallVector<const Value *, 16> WorkSet(1, I); 553 SmallPtrSet<const Value *, 32> Visited; 554 SmallPtrSet<const Value *, 16> EphValues; 555 556 // The instruction defining an assumption's condition itself is always 557 // considered ephemeral to that assumption (even if it has other 558 // non-ephemeral users). See r246696's test case for an example. 559 if (is_contained(I->operands(), E)) 560 return true; 561 562 while (!WorkSet.empty()) { 563 const Value *V = WorkSet.pop_back_val(); 564 if (!Visited.insert(V).second) 565 continue; 566 567 // If all uses of this value are ephemeral, then so is this value. 568 if (llvm::all_of(V->users(), [&](const User *U) { 569 return EphValues.count(U); 570 })) { 571 if (V == E) 572 return true; 573 574 if (V == I || isSafeToSpeculativelyExecute(V)) { 575 EphValues.insert(V); 576 if (const User *U = dyn_cast<User>(V)) 577 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 578 J != JE; ++J) 579 WorkSet.push_back(*J); 580 } 581 } 582 } 583 584 return false; 585 } 586 587 // Is this an intrinsic that cannot be speculated but also cannot trap? 588 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 589 if (const CallInst *CI = dyn_cast<CallInst>(I)) 590 if (Function *F = CI->getCalledFunction()) 591 switch (F->getIntrinsicID()) { 592 default: break; 593 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 594 case Intrinsic::assume: 595 case Intrinsic::sideeffect: 596 case Intrinsic::dbg_declare: 597 case Intrinsic::dbg_value: 598 case Intrinsic::dbg_label: 599 case Intrinsic::invariant_start: 600 case Intrinsic::invariant_end: 601 case Intrinsic::lifetime_start: 602 case Intrinsic::lifetime_end: 603 case Intrinsic::objectsize: 604 case Intrinsic::ptr_annotation: 605 case Intrinsic::var_annotation: 606 return true; 607 } 608 609 return false; 610 } 611 612 bool llvm::isValidAssumeForContext(const Instruction *Inv, 613 const Instruction *CxtI, 614 const DominatorTree *DT) { 615 // There are two restrictions on the use of an assume: 616 // 1. The assume must dominate the context (or the control flow must 617 // reach the assume whenever it reaches the context). 618 // 2. The context must not be in the assume's set of ephemeral values 619 // (otherwise we will use the assume to prove that the condition 620 // feeding the assume is trivially true, thus causing the removal of 621 // the assume). 622 623 if (Inv->getParent() == CxtI->getParent()) { 624 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 625 // in the BB. 626 if (Inv->comesBefore(CxtI)) 627 return true; 628 629 // Don't let an assume affect itself - this would cause the problems 630 // `isEphemeralValueOf` is trying to prevent, and it would also make 631 // the loop below go out of bounds. 632 if (Inv == CxtI) 633 return false; 634 635 // The context comes first, but they're both in the same block. 636 // Make sure there is nothing in between that might interrupt 637 // the control flow, not even CxtI itself. 638 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 639 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 640 return false; 641 642 return !isEphemeralValueOf(Inv, CxtI); 643 } 644 645 // Inv and CxtI are in different blocks. 646 if (DT) { 647 if (DT->dominates(Inv, CxtI)) 648 return true; 649 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 650 // We don't have a DT, but this trivially dominates. 651 return true; 652 } 653 654 return false; 655 } 656 657 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 658 // Use of assumptions is context-sensitive. If we don't have a context, we 659 // cannot use them! 660 if (!Q.AC || !Q.CxtI) 661 return false; 662 663 // Note that the patterns below need to be kept in sync with the code 664 // in AssumptionCache::updateAffectedValues. 665 666 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 667 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 668 669 Value *RHS; 670 CmpInst::Predicate Pred; 671 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 672 return false; 673 // assume(v u> y) -> assume(v != 0) 674 if (Pred == ICmpInst::ICMP_UGT) 675 return true; 676 677 // assume(v != 0) 678 // We special-case this one to ensure that we handle `assume(v != null)`. 679 if (Pred == ICmpInst::ICMP_NE) 680 return match(RHS, m_Zero()); 681 682 // All other predicates - rely on generic ConstantRange handling. 683 ConstantInt *CI; 684 if (!match(RHS, m_ConstantInt(CI))) 685 return false; 686 ConstantRange RHSRange(CI->getValue()); 687 ConstantRange TrueValues = 688 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 689 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 690 }; 691 692 if (Q.CxtI && V->getType()->isPointerTy()) { 693 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 694 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 695 V->getType()->getPointerAddressSpace())) 696 AttrKinds.push_back(Attribute::Dereferenceable); 697 698 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 699 return true; 700 } 701 702 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 703 if (!AssumeVH) 704 continue; 705 CallInst *I = cast<CallInst>(AssumeVH); 706 assert(I->getFunction() == Q.CxtI->getFunction() && 707 "Got assumption for the wrong function!"); 708 if (Q.isExcluded(I)) 709 continue; 710 711 // Warning: This loop can end up being somewhat performance sensitive. 712 // We're running this loop for once for each value queried resulting in a 713 // runtime of ~O(#assumes * #values). 714 715 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 716 "must be an assume intrinsic"); 717 718 Value *Arg = I->getArgOperand(0); 719 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 720 if (!Cmp) 721 continue; 722 723 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 724 return true; 725 } 726 727 return false; 728 } 729 730 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 731 unsigned Depth, const Query &Q) { 732 // Use of assumptions is context-sensitive. If we don't have a context, we 733 // cannot use them! 734 if (!Q.AC || !Q.CxtI) 735 return; 736 737 unsigned BitWidth = Known.getBitWidth(); 738 739 // Note that the patterns below need to be kept in sync with the code 740 // in AssumptionCache::updateAffectedValues. 741 742 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 743 if (!AssumeVH) 744 continue; 745 CallInst *I = cast<CallInst>(AssumeVH); 746 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 747 "Got assumption for the wrong function!"); 748 if (Q.isExcluded(I)) 749 continue; 750 751 // Warning: This loop can end up being somewhat performance sensitive. 752 // We're running this loop for once for each value queried resulting in a 753 // runtime of ~O(#assumes * #values). 754 755 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 756 "must be an assume intrinsic"); 757 758 Value *Arg = I->getArgOperand(0); 759 760 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 assert(BitWidth == 1 && "assume operand is not i1?"); 762 Known.setAllOnes(); 763 return; 764 } 765 if (match(Arg, m_Not(m_Specific(V))) && 766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllZero(); 769 return; 770 } 771 772 // The remaining tests are all recursive, so bail out if we hit the limit. 773 if (Depth == MaxDepth) 774 continue; 775 776 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 777 if (!Cmp) 778 continue; 779 780 Value *A, *B; 781 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 782 783 CmpInst::Predicate Pred; 784 uint64_t C; 785 switch (Cmp->getPredicate()) { 786 default: 787 break; 788 case ICmpInst::ICMP_EQ: 789 // assume(v = a) 790 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 791 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 792 KnownBits RHSKnown(BitWidth); 793 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 794 Known.Zero |= RHSKnown.Zero; 795 Known.One |= RHSKnown.One; 796 // assume(v & b = a) 797 } else if (match(Cmp, 798 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown(BitWidth); 801 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 802 KnownBits MaskKnown(BitWidth); 803 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 804 805 // For those bits in the mask that are known to be one, we can propagate 806 // known bits from the RHS to V. 807 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 808 Known.One |= RHSKnown.One & MaskKnown.One; 809 // assume(~(v & b) = a) 810 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 811 m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown(BitWidth); 814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 815 KnownBits MaskKnown(BitWidth); 816 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 817 818 // For those bits in the mask that are known to be one, we can propagate 819 // inverted known bits from the RHS to V. 820 Known.Zero |= RHSKnown.One & MaskKnown.One; 821 Known.One |= RHSKnown.Zero & MaskKnown.One; 822 // assume(v | b = a) 823 } else if (match(Cmp, 824 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 825 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 826 KnownBits RHSKnown(BitWidth); 827 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 828 KnownBits BKnown(BitWidth); 829 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 830 831 // For those bits in B that are known to be zero, we can propagate known 832 // bits from the RHS to V. 833 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 834 Known.One |= RHSKnown.One & BKnown.Zero; 835 // assume(~(v | b) = a) 836 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 837 m_Value(A))) && 838 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 839 KnownBits RHSKnown(BitWidth); 840 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 841 KnownBits BKnown(BitWidth); 842 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 843 844 // For those bits in B that are known to be zero, we can propagate 845 // inverted known bits from the RHS to V. 846 Known.Zero |= RHSKnown.One & BKnown.Zero; 847 Known.One |= RHSKnown.Zero & BKnown.Zero; 848 // assume(v ^ b = a) 849 } else if (match(Cmp, 850 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 852 KnownBits RHSKnown(BitWidth); 853 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 854 KnownBits BKnown(BitWidth); 855 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 856 857 // For those bits in B that are known to be zero, we can propagate known 858 // bits from the RHS to V. For those bits in B that are known to be one, 859 // we can propagate inverted known bits from the RHS to V. 860 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 861 Known.One |= RHSKnown.One & BKnown.Zero; 862 Known.Zero |= RHSKnown.One & BKnown.One; 863 Known.One |= RHSKnown.Zero & BKnown.One; 864 // assume(~(v ^ b) = a) 865 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 866 m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown(BitWidth); 869 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 870 KnownBits BKnown(BitWidth); 871 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 872 873 // For those bits in B that are known to be zero, we can propagate 874 // inverted known bits from the RHS to V. For those bits in B that are 875 // known to be one, we can propagate known bits from the RHS to V. 876 Known.Zero |= RHSKnown.One & BKnown.Zero; 877 Known.One |= RHSKnown.Zero & BKnown.Zero; 878 Known.Zero |= RHSKnown.Zero & BKnown.One; 879 Known.One |= RHSKnown.One & BKnown.One; 880 // assume(v << c = a) 881 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 882 m_Value(A))) && 883 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 884 KnownBits RHSKnown(BitWidth); 885 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 886 // For those bits in RHS that are known, we can propagate them to known 887 // bits in V shifted to the right by C. 888 RHSKnown.Zero.lshrInPlace(C); 889 Known.Zero |= RHSKnown.Zero; 890 RHSKnown.One.lshrInPlace(C); 891 Known.One |= RHSKnown.One; 892 // assume(~(v << c) = a) 893 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 894 m_Value(A))) && 895 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 896 KnownBits RHSKnown(BitWidth); 897 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 898 // For those bits in RHS that are known, we can propagate them inverted 899 // to known bits in V shifted to the right by C. 900 RHSKnown.One.lshrInPlace(C); 901 Known.Zero |= RHSKnown.One; 902 RHSKnown.Zero.lshrInPlace(C); 903 Known.One |= RHSKnown.Zero; 904 // assume(v >> c = a) 905 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 906 m_Value(A))) && 907 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 908 KnownBits RHSKnown(BitWidth); 909 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 910 // For those bits in RHS that are known, we can propagate them to known 911 // bits in V shifted to the right by C. 912 Known.Zero |= RHSKnown.Zero << C; 913 Known.One |= RHSKnown.One << C; 914 // assume(~(v >> c) = a) 915 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 916 m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 918 KnownBits RHSKnown(BitWidth); 919 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 920 // For those bits in RHS that are known, we can propagate them inverted 921 // to known bits in V shifted to the right by C. 922 Known.Zero |= RHSKnown.One << C; 923 Known.One |= RHSKnown.Zero << C; 924 } 925 break; 926 case ICmpInst::ICMP_SGE: 927 // assume(v >=_s c) where c is non-negative 928 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 929 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 930 KnownBits RHSKnown(BitWidth); 931 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 932 933 if (RHSKnown.isNonNegative()) { 934 // We know that the sign bit is zero. 935 Known.makeNonNegative(); 936 } 937 } 938 break; 939 case ICmpInst::ICMP_SGT: 940 // assume(v >_s c) where c is at least -1. 941 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 942 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 943 KnownBits RHSKnown(BitWidth); 944 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 945 946 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 947 // We know that the sign bit is zero. 948 Known.makeNonNegative(); 949 } 950 } 951 break; 952 case ICmpInst::ICMP_SLE: 953 // assume(v <=_s c) where c is negative 954 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 955 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 956 KnownBits RHSKnown(BitWidth); 957 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 958 959 if (RHSKnown.isNegative()) { 960 // We know that the sign bit is one. 961 Known.makeNegative(); 962 } 963 } 964 break; 965 case ICmpInst::ICMP_SLT: 966 // assume(v <_s c) where c is non-positive 967 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 968 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 969 KnownBits RHSKnown(BitWidth); 970 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 971 972 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 973 // We know that the sign bit is one. 974 Known.makeNegative(); 975 } 976 } 977 break; 978 case ICmpInst::ICMP_ULE: 979 // assume(v <=_u c) 980 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 981 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 982 KnownBits RHSKnown(BitWidth); 983 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 984 985 // Whatever high bits in c are zero are known to be zero. 986 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 987 } 988 break; 989 case ICmpInst::ICMP_ULT: 990 // assume(v <_u c) 991 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 992 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 993 KnownBits RHSKnown(BitWidth); 994 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 995 996 // If the RHS is known zero, then this assumption must be wrong (nothing 997 // is unsigned less than zero). Signal a conflict and get out of here. 998 if (RHSKnown.isZero()) { 999 Known.Zero.setAllBits(); 1000 Known.One.setAllBits(); 1001 break; 1002 } 1003 1004 // Whatever high bits in c are zero are known to be zero (if c is a power 1005 // of 2, then one more). 1006 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1007 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1008 else 1009 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1010 } 1011 break; 1012 } 1013 } 1014 1015 // If assumptions conflict with each other or previous known bits, then we 1016 // have a logical fallacy. It's possible that the assumption is not reachable, 1017 // so this isn't a real bug. On the other hand, the program may have undefined 1018 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1019 // clear out the known bits, try to warn the user, and hope for the best. 1020 if (Known.Zero.intersects(Known.One)) { 1021 Known.resetAll(); 1022 1023 if (Q.ORE) 1024 Q.ORE->emit([&]() { 1025 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1026 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1027 CxtI) 1028 << "Detected conflicting code assumptions. Program may " 1029 "have undefined behavior, or compiler may have " 1030 "internal error."; 1031 }); 1032 } 1033 } 1034 1035 /// Compute known bits from a shift operator, including those with a 1036 /// non-constant shift amount. Known is the output of this function. Known2 is a 1037 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1038 /// operator-specific functions that, given the known-zero or known-one bits 1039 /// respectively, and a shift amount, compute the implied known-zero or 1040 /// known-one bits of the shift operator's result respectively for that shift 1041 /// amount. The results from calling KZF and KOF are conservatively combined for 1042 /// all permitted shift amounts. 1043 static void computeKnownBitsFromShiftOperator( 1044 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1045 KnownBits &Known2, unsigned Depth, const Query &Q, 1046 function_ref<APInt(const APInt &, unsigned)> KZF, 1047 function_ref<APInt(const APInt &, unsigned)> KOF) { 1048 unsigned BitWidth = Known.getBitWidth(); 1049 1050 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1051 if (Known.isConstant()) { 1052 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1053 1054 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1055 Known.Zero = KZF(Known.Zero, ShiftAmt); 1056 Known.One = KOF(Known.One, ShiftAmt); 1057 // If the known bits conflict, this must be an overflowing left shift, so 1058 // the shift result is poison. We can return anything we want. Choose 0 for 1059 // the best folding opportunity. 1060 if (Known.hasConflict()) 1061 Known.setAllZero(); 1062 1063 return; 1064 } 1065 1066 // If the shift amount could be greater than or equal to the bit-width of the 1067 // LHS, the value could be poison, but bail out because the check below is 1068 // expensive. 1069 // TODO: Should we just carry on? 1070 if (Known.getMaxValue().uge(BitWidth)) { 1071 Known.resetAll(); 1072 return; 1073 } 1074 1075 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1076 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1077 // limit value (which implies all bits are known). 1078 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1079 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1080 1081 // It would be more-clearly correct to use the two temporaries for this 1082 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1083 Known.resetAll(); 1084 1085 // If we know the shifter operand is nonzero, we can sometimes infer more 1086 // known bits. However this is expensive to compute, so be lazy about it and 1087 // only compute it when absolutely necessary. 1088 Optional<bool> ShifterOperandIsNonZero; 1089 1090 // Early exit if we can't constrain any well-defined shift amount. 1091 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1092 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1093 ShifterOperandIsNonZero = 1094 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1095 if (!*ShifterOperandIsNonZero) 1096 return; 1097 } 1098 1099 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1100 1101 Known.Zero.setAllBits(); 1102 Known.One.setAllBits(); 1103 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1104 // Combine the shifted known input bits only for those shift amounts 1105 // compatible with its known constraints. 1106 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1107 continue; 1108 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1109 continue; 1110 // If we know the shifter is nonzero, we may be able to infer more known 1111 // bits. This check is sunk down as far as possible to avoid the expensive 1112 // call to isKnownNonZero if the cheaper checks above fail. 1113 if (ShiftAmt == 0) { 1114 if (!ShifterOperandIsNonZero.hasValue()) 1115 ShifterOperandIsNonZero = 1116 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1117 if (*ShifterOperandIsNonZero) 1118 continue; 1119 } 1120 1121 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1122 Known.One &= KOF(Known2.One, ShiftAmt); 1123 } 1124 1125 // If the known bits conflict, the result is poison. Return a 0 and hope the 1126 // caller can further optimize that. 1127 if (Known.hasConflict()) 1128 Known.setAllZero(); 1129 } 1130 1131 static void computeKnownBitsFromOperator(const Operator *I, 1132 const APInt &DemandedElts, 1133 KnownBits &Known, unsigned Depth, 1134 const Query &Q) { 1135 unsigned BitWidth = Known.getBitWidth(); 1136 1137 KnownBits Known2(BitWidth); 1138 switch (I->getOpcode()) { 1139 default: break; 1140 case Instruction::Load: 1141 if (MDNode *MD = 1142 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1143 computeKnownBitsFromRangeMetadata(*MD, Known); 1144 break; 1145 case Instruction::And: { 1146 // If either the LHS or the RHS are Zero, the result is zero. 1147 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1148 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1149 1150 Known &= Known2; 1151 1152 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1153 // here we handle the more general case of adding any odd number by 1154 // matching the form add(x, add(x, y)) where y is odd. 1155 // TODO: This could be generalized to clearing any bit set in y where the 1156 // following bit is known to be unset in y. 1157 Value *X = nullptr, *Y = nullptr; 1158 if (!Known.Zero[0] && !Known.One[0] && 1159 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1160 Known2.resetAll(); 1161 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1162 if (Known2.countMinTrailingOnes() > 0) 1163 Known.Zero.setBit(0); 1164 } 1165 break; 1166 } 1167 case Instruction::Or: 1168 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1169 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1170 1171 Known |= Known2; 1172 break; 1173 case Instruction::Xor: 1174 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1175 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1176 1177 Known ^= Known2; 1178 break; 1179 case Instruction::Mul: { 1180 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1181 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1182 Known, Known2, Depth, Q); 1183 break; 1184 } 1185 case Instruction::UDiv: { 1186 // For the purposes of computing leading zeros we can conservatively 1187 // treat a udiv as a logical right shift by the power of 2 known to 1188 // be less than the denominator. 1189 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1190 unsigned LeadZ = Known2.countMinLeadingZeros(); 1191 1192 Known2.resetAll(); 1193 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1194 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1195 if (RHSMaxLeadingZeros != BitWidth) 1196 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1197 1198 Known.Zero.setHighBits(LeadZ); 1199 break; 1200 } 1201 case Instruction::Select: { 1202 const Value *LHS = nullptr, *RHS = nullptr; 1203 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1204 if (SelectPatternResult::isMinOrMax(SPF)) { 1205 computeKnownBits(RHS, Known, Depth + 1, Q); 1206 computeKnownBits(LHS, Known2, Depth + 1, Q); 1207 } else { 1208 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1209 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1210 } 1211 1212 unsigned MaxHighOnes = 0; 1213 unsigned MaxHighZeros = 0; 1214 if (SPF == SPF_SMAX) { 1215 // If both sides are negative, the result is negative. 1216 if (Known.isNegative() && Known2.isNegative()) 1217 // We can derive a lower bound on the result by taking the max of the 1218 // leading one bits. 1219 MaxHighOnes = 1220 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1221 // If either side is non-negative, the result is non-negative. 1222 else if (Known.isNonNegative() || Known2.isNonNegative()) 1223 MaxHighZeros = 1; 1224 } else if (SPF == SPF_SMIN) { 1225 // If both sides are non-negative, the result is non-negative. 1226 if (Known.isNonNegative() && Known2.isNonNegative()) 1227 // We can derive an upper bound on the result by taking the max of the 1228 // leading zero bits. 1229 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1230 Known2.countMinLeadingZeros()); 1231 // If either side is negative, the result is negative. 1232 else if (Known.isNegative() || Known2.isNegative()) 1233 MaxHighOnes = 1; 1234 } else if (SPF == SPF_UMAX) { 1235 // We can derive a lower bound on the result by taking the max of the 1236 // leading one bits. 1237 MaxHighOnes = 1238 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1239 } else if (SPF == SPF_UMIN) { 1240 // We can derive an upper bound on the result by taking the max of the 1241 // leading zero bits. 1242 MaxHighZeros = 1243 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1244 } else if (SPF == SPF_ABS) { 1245 // RHS from matchSelectPattern returns the negation part of abs pattern. 1246 // If the negate has an NSW flag we can assume the sign bit of the result 1247 // will be 0 because that makes abs(INT_MIN) undefined. 1248 if (match(RHS, m_Neg(m_Specific(LHS))) && 1249 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1250 MaxHighZeros = 1; 1251 } 1252 1253 // Only known if known in both the LHS and RHS. 1254 Known.One &= Known2.One; 1255 Known.Zero &= Known2.Zero; 1256 if (MaxHighOnes > 0) 1257 Known.One.setHighBits(MaxHighOnes); 1258 if (MaxHighZeros > 0) 1259 Known.Zero.setHighBits(MaxHighZeros); 1260 break; 1261 } 1262 case Instruction::FPTrunc: 1263 case Instruction::FPExt: 1264 case Instruction::FPToUI: 1265 case Instruction::FPToSI: 1266 case Instruction::SIToFP: 1267 case Instruction::UIToFP: 1268 break; // Can't work with floating point. 1269 case Instruction::PtrToInt: 1270 case Instruction::IntToPtr: 1271 // Fall through and handle them the same as zext/trunc. 1272 LLVM_FALLTHROUGH; 1273 case Instruction::ZExt: 1274 case Instruction::Trunc: { 1275 Type *SrcTy = I->getOperand(0)->getType(); 1276 1277 unsigned SrcBitWidth; 1278 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1279 // which fall through here. 1280 Type *ScalarTy = SrcTy->getScalarType(); 1281 SrcBitWidth = ScalarTy->isPointerTy() ? 1282 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1283 Q.DL.getTypeSizeInBits(ScalarTy); 1284 1285 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1286 Known = Known.anyextOrTrunc(SrcBitWidth); 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 Known = Known.zextOrTrunc(BitWidth); 1289 break; 1290 } 1291 case Instruction::BitCast: { 1292 Type *SrcTy = I->getOperand(0)->getType(); 1293 if (SrcTy->isIntOrPtrTy() && 1294 // TODO: For now, not handling conversions like: 1295 // (bitcast i64 %x to <2 x i32>) 1296 !I->getType()->isVectorTy()) { 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 break; 1299 } 1300 break; 1301 } 1302 case Instruction::SExt: { 1303 // Compute the bits in the result that are not present in the input. 1304 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1305 1306 Known = Known.trunc(SrcBitWidth); 1307 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1308 // If the sign bit of the input is known set or clear, then we know the 1309 // top bits of the result. 1310 Known = Known.sext(BitWidth); 1311 break; 1312 } 1313 case Instruction::Shl: { 1314 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1315 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1316 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1317 APInt KZResult = KnownZero << ShiftAmt; 1318 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1319 // If this shift has "nsw" keyword, then the result is either a poison 1320 // value or has the same sign bit as the first operand. 1321 if (NSW && KnownZero.isSignBitSet()) 1322 KZResult.setSignBit(); 1323 return KZResult; 1324 }; 1325 1326 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1327 APInt KOResult = KnownOne << ShiftAmt; 1328 if (NSW && KnownOne.isSignBitSet()) 1329 KOResult.setSignBit(); 1330 return KOResult; 1331 }; 1332 1333 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1334 KZF, KOF); 1335 break; 1336 } 1337 case Instruction::LShr: { 1338 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1339 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1340 APInt KZResult = KnownZero.lshr(ShiftAmt); 1341 // High bits known zero. 1342 KZResult.setHighBits(ShiftAmt); 1343 return KZResult; 1344 }; 1345 1346 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1347 return KnownOne.lshr(ShiftAmt); 1348 }; 1349 1350 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1351 KZF, KOF); 1352 break; 1353 } 1354 case Instruction::AShr: { 1355 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1356 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1357 return KnownZero.ashr(ShiftAmt); 1358 }; 1359 1360 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1361 return KnownOne.ashr(ShiftAmt); 1362 }; 1363 1364 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1365 KZF, KOF); 1366 break; 1367 } 1368 case Instruction::Sub: { 1369 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1370 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1371 DemandedElts, Known, Known2, Depth, Q); 1372 break; 1373 } 1374 case Instruction::Add: { 1375 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1376 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1377 DemandedElts, Known, Known2, Depth, Q); 1378 break; 1379 } 1380 case Instruction::SRem: 1381 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1382 APInt RA = Rem->getValue().abs(); 1383 if (RA.isPowerOf2()) { 1384 APInt LowBits = RA - 1; 1385 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1386 1387 // The low bits of the first operand are unchanged by the srem. 1388 Known.Zero = Known2.Zero & LowBits; 1389 Known.One = Known2.One & LowBits; 1390 1391 // If the first operand is non-negative or has all low bits zero, then 1392 // the upper bits are all zero. 1393 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1394 Known.Zero |= ~LowBits; 1395 1396 // If the first operand is negative and not all low bits are zero, then 1397 // the upper bits are all one. 1398 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1399 Known.One |= ~LowBits; 1400 1401 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1402 break; 1403 } 1404 } 1405 1406 // The sign bit is the LHS's sign bit, except when the result of the 1407 // remainder is zero. 1408 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1409 // If it's known zero, our sign bit is also zero. 1410 if (Known2.isNonNegative()) 1411 Known.makeNonNegative(); 1412 1413 break; 1414 case Instruction::URem: { 1415 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1416 const APInt &RA = Rem->getValue(); 1417 if (RA.isPowerOf2()) { 1418 APInt LowBits = (RA - 1); 1419 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1420 Known.Zero |= ~LowBits; 1421 Known.One &= LowBits; 1422 break; 1423 } 1424 } 1425 1426 // Since the result is less than or equal to either operand, any leading 1427 // zero bits in either operand must also exist in the result. 1428 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1429 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1430 1431 unsigned Leaders = 1432 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1433 Known.resetAll(); 1434 Known.Zero.setHighBits(Leaders); 1435 break; 1436 } 1437 1438 case Instruction::Alloca: { 1439 const AllocaInst *AI = cast<AllocaInst>(I); 1440 unsigned Align = AI->getAlignment(); 1441 if (Align == 0) 1442 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1443 1444 if (Align > 0) 1445 Known.Zero.setLowBits(countTrailingZeros(Align)); 1446 break; 1447 } 1448 case Instruction::GetElementPtr: { 1449 // Analyze all of the subscripts of this getelementptr instruction 1450 // to determine if we can prove known low zero bits. 1451 KnownBits LocalKnown(BitWidth); 1452 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1453 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1454 1455 gep_type_iterator GTI = gep_type_begin(I); 1456 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1457 // TrailZ can only become smaller, short-circuit if we hit zero. 1458 if (TrailZ == 0) 1459 break; 1460 1461 Value *Index = I->getOperand(i); 1462 if (StructType *STy = GTI.getStructTypeOrNull()) { 1463 // Handle struct member offset arithmetic. 1464 1465 // Handle case when index is vector zeroinitializer 1466 Constant *CIndex = cast<Constant>(Index); 1467 if (CIndex->isZeroValue()) 1468 continue; 1469 1470 if (CIndex->getType()->isVectorTy()) 1471 Index = CIndex->getSplatValue(); 1472 1473 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1474 const StructLayout *SL = Q.DL.getStructLayout(STy); 1475 uint64_t Offset = SL->getElementOffset(Idx); 1476 TrailZ = std::min<unsigned>(TrailZ, 1477 countTrailingZeros(Offset)); 1478 } else { 1479 // Handle array index arithmetic. 1480 Type *IndexedTy = GTI.getIndexedType(); 1481 if (!IndexedTy->isSized()) { 1482 TrailZ = 0; 1483 break; 1484 } 1485 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1486 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1487 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1488 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1489 TrailZ = std::min(TrailZ, 1490 unsigned(countTrailingZeros(TypeSize) + 1491 LocalKnown.countMinTrailingZeros())); 1492 } 1493 } 1494 1495 Known.Zero.setLowBits(TrailZ); 1496 break; 1497 } 1498 case Instruction::PHI: { 1499 const PHINode *P = cast<PHINode>(I); 1500 // Handle the case of a simple two-predecessor recurrence PHI. 1501 // There's a lot more that could theoretically be done here, but 1502 // this is sufficient to catch some interesting cases. 1503 if (P->getNumIncomingValues() == 2) { 1504 for (unsigned i = 0; i != 2; ++i) { 1505 Value *L = P->getIncomingValue(i); 1506 Value *R = P->getIncomingValue(!i); 1507 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1508 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1509 Operator *LU = dyn_cast<Operator>(L); 1510 if (!LU) 1511 continue; 1512 unsigned Opcode = LU->getOpcode(); 1513 // Check for operations that have the property that if 1514 // both their operands have low zero bits, the result 1515 // will have low zero bits. 1516 if (Opcode == Instruction::Add || 1517 Opcode == Instruction::Sub || 1518 Opcode == Instruction::And || 1519 Opcode == Instruction::Or || 1520 Opcode == Instruction::Mul) { 1521 Value *LL = LU->getOperand(0); 1522 Value *LR = LU->getOperand(1); 1523 // Find a recurrence. 1524 if (LL == I) 1525 L = LR; 1526 else if (LR == I) 1527 L = LL; 1528 else 1529 continue; // Check for recurrence with L and R flipped. 1530 1531 // Change the context instruction to the "edge" that flows into the 1532 // phi. This is important because that is where the value is actually 1533 // "evaluated" even though it is used later somewhere else. (see also 1534 // D69571). 1535 Query RecQ = Q; 1536 1537 // Ok, we have a PHI of the form L op= R. Check for low 1538 // zero bits. 1539 RecQ.CxtI = RInst; 1540 computeKnownBits(R, Known2, Depth + 1, RecQ); 1541 1542 // We need to take the minimum number of known bits 1543 KnownBits Known3(BitWidth); 1544 RecQ.CxtI = LInst; 1545 computeKnownBits(L, Known3, Depth + 1, RecQ); 1546 1547 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1548 Known3.countMinTrailingZeros())); 1549 1550 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1551 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1552 // If initial value of recurrence is nonnegative, and we are adding 1553 // a nonnegative number with nsw, the result can only be nonnegative 1554 // or poison value regardless of the number of times we execute the 1555 // add in phi recurrence. If initial value is negative and we are 1556 // adding a negative number with nsw, the result can only be 1557 // negative or poison value. Similar arguments apply to sub and mul. 1558 // 1559 // (add non-negative, non-negative) --> non-negative 1560 // (add negative, negative) --> negative 1561 if (Opcode == Instruction::Add) { 1562 if (Known2.isNonNegative() && Known3.isNonNegative()) 1563 Known.makeNonNegative(); 1564 else if (Known2.isNegative() && Known3.isNegative()) 1565 Known.makeNegative(); 1566 } 1567 1568 // (sub nsw non-negative, negative) --> non-negative 1569 // (sub nsw negative, non-negative) --> negative 1570 else if (Opcode == Instruction::Sub && LL == I) { 1571 if (Known2.isNonNegative() && Known3.isNegative()) 1572 Known.makeNonNegative(); 1573 else if (Known2.isNegative() && Known3.isNonNegative()) 1574 Known.makeNegative(); 1575 } 1576 1577 // (mul nsw non-negative, non-negative) --> non-negative 1578 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1579 Known3.isNonNegative()) 1580 Known.makeNonNegative(); 1581 } 1582 1583 break; 1584 } 1585 } 1586 } 1587 1588 // Unreachable blocks may have zero-operand PHI nodes. 1589 if (P->getNumIncomingValues() == 0) 1590 break; 1591 1592 // Otherwise take the unions of the known bit sets of the operands, 1593 // taking conservative care to avoid excessive recursion. 1594 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1595 // Skip if every incoming value references to ourself. 1596 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1597 break; 1598 1599 Known.Zero.setAllBits(); 1600 Known.One.setAllBits(); 1601 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1602 Value *IncValue = P->getIncomingValue(u); 1603 // Skip direct self references. 1604 if (IncValue == P) continue; 1605 1606 // Change the context instruction to the "edge" that flows into the 1607 // phi. This is important because that is where the value is actually 1608 // "evaluated" even though it is used later somewhere else. (see also 1609 // D69571). 1610 Query RecQ = Q; 1611 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1612 1613 Known2 = KnownBits(BitWidth); 1614 // Recurse, but cap the recursion to one level, because we don't 1615 // want to waste time spinning around in loops. 1616 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1617 Known.Zero &= Known2.Zero; 1618 Known.One &= Known2.One; 1619 // If all bits have been ruled out, there's no need to check 1620 // more operands. 1621 if (!Known.Zero && !Known.One) 1622 break; 1623 } 1624 } 1625 break; 1626 } 1627 case Instruction::Call: 1628 case Instruction::Invoke: 1629 // If range metadata is attached to this call, set known bits from that, 1630 // and then intersect with known bits based on other properties of the 1631 // function. 1632 if (MDNode *MD = 1633 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1634 computeKnownBitsFromRangeMetadata(*MD, Known); 1635 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1636 computeKnownBits(RV, Known2, Depth + 1, Q); 1637 Known.Zero |= Known2.Zero; 1638 Known.One |= Known2.One; 1639 } 1640 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1641 switch (II->getIntrinsicID()) { 1642 default: break; 1643 case Intrinsic::bitreverse: 1644 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1645 Known.Zero |= Known2.Zero.reverseBits(); 1646 Known.One |= Known2.One.reverseBits(); 1647 break; 1648 case Intrinsic::bswap: 1649 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1650 Known.Zero |= Known2.Zero.byteSwap(); 1651 Known.One |= Known2.One.byteSwap(); 1652 break; 1653 case Intrinsic::ctlz: { 1654 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1655 // If we have a known 1, its position is our upper bound. 1656 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1657 // If this call is undefined for 0, the result will be less than 2^n. 1658 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1659 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1660 unsigned LowBits = Log2_32(PossibleLZ)+1; 1661 Known.Zero.setBitsFrom(LowBits); 1662 break; 1663 } 1664 case Intrinsic::cttz: { 1665 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1666 // If we have a known 1, its position is our upper bound. 1667 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1668 // If this call is undefined for 0, the result will be less than 2^n. 1669 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1670 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1671 unsigned LowBits = Log2_32(PossibleTZ)+1; 1672 Known.Zero.setBitsFrom(LowBits); 1673 break; 1674 } 1675 case Intrinsic::ctpop: { 1676 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1677 // We can bound the space the count needs. Also, bits known to be zero 1678 // can't contribute to the population. 1679 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1680 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1681 Known.Zero.setBitsFrom(LowBits); 1682 // TODO: we could bound KnownOne using the lower bound on the number 1683 // of bits which might be set provided by popcnt KnownOne2. 1684 break; 1685 } 1686 case Intrinsic::fshr: 1687 case Intrinsic::fshl: { 1688 const APInt *SA; 1689 if (!match(I->getOperand(2), m_APInt(SA))) 1690 break; 1691 1692 // Normalize to funnel shift left. 1693 uint64_t ShiftAmt = SA->urem(BitWidth); 1694 if (II->getIntrinsicID() == Intrinsic::fshr) 1695 ShiftAmt = BitWidth - ShiftAmt; 1696 1697 KnownBits Known3(BitWidth); 1698 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1699 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1700 1701 Known.Zero = 1702 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1703 Known.One = 1704 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1705 break; 1706 } 1707 case Intrinsic::uadd_sat: 1708 case Intrinsic::usub_sat: { 1709 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1710 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1711 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1712 1713 // Add: Leading ones of either operand are preserved. 1714 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1715 // as leading zeros in the result. 1716 unsigned LeadingKnown; 1717 if (IsAdd) 1718 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1719 Known2.countMinLeadingOnes()); 1720 else 1721 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1722 Known2.countMinLeadingOnes()); 1723 1724 Known = KnownBits::computeForAddSub( 1725 IsAdd, /* NSW */ false, Known, Known2); 1726 1727 // We select between the operation result and all-ones/zero 1728 // respectively, so we can preserve known ones/zeros. 1729 if (IsAdd) { 1730 Known.One.setHighBits(LeadingKnown); 1731 Known.Zero.clearAllBits(); 1732 } else { 1733 Known.Zero.setHighBits(LeadingKnown); 1734 Known.One.clearAllBits(); 1735 } 1736 break; 1737 } 1738 case Intrinsic::x86_sse42_crc32_64_64: 1739 Known.Zero.setBitsFrom(32); 1740 break; 1741 } 1742 } 1743 break; 1744 case Instruction::ShuffleVector: { 1745 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1746 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1747 if (!Shuf) { 1748 Known.resetAll(); 1749 return; 1750 } 1751 // For undef elements, we don't know anything about the common state of 1752 // the shuffle result. 1753 APInt DemandedLHS, DemandedRHS; 1754 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1755 Known.resetAll(); 1756 return; 1757 } 1758 Known.One.setAllBits(); 1759 Known.Zero.setAllBits(); 1760 if (!!DemandedLHS) { 1761 const Value *LHS = Shuf->getOperand(0); 1762 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1763 // If we don't know any bits, early out. 1764 if (Known.isUnknown()) 1765 break; 1766 } 1767 if (!!DemandedRHS) { 1768 const Value *RHS = Shuf->getOperand(1); 1769 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1770 Known.One &= Known2.One; 1771 Known.Zero &= Known2.Zero; 1772 } 1773 break; 1774 } 1775 case Instruction::InsertElement: { 1776 const Value *Vec = I->getOperand(0); 1777 const Value *Elt = I->getOperand(1); 1778 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1779 // Early out if the index is non-constant or out-of-range. 1780 unsigned NumElts = DemandedElts.getBitWidth(); 1781 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1782 Known.resetAll(); 1783 return; 1784 } 1785 Known.One.setAllBits(); 1786 Known.Zero.setAllBits(); 1787 unsigned EltIdx = CIdx->getZExtValue(); 1788 // Do we demand the inserted element? 1789 if (DemandedElts[EltIdx]) { 1790 computeKnownBits(Elt, Known, Depth + 1, Q); 1791 // If we don't know any bits, early out. 1792 if (Known.isUnknown()) 1793 break; 1794 } 1795 // We don't need the base vector element that has been inserted. 1796 APInt DemandedVecElts = DemandedElts; 1797 DemandedVecElts.clearBit(EltIdx); 1798 if (!!DemandedVecElts) { 1799 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1800 Known.One &= Known2.One; 1801 Known.Zero &= Known2.Zero; 1802 } 1803 break; 1804 } 1805 case Instruction::ExtractElement: { 1806 // Look through extract element. If the index is non-constant or 1807 // out-of-range demand all elements, otherwise just the extracted element. 1808 const Value *Vec = I->getOperand(0); 1809 const Value *Idx = I->getOperand(1); 1810 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1811 unsigned NumElts = cast<VectorType>(Vec->getType())->getNumElements(); 1812 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1813 if (CIdx && CIdx->getValue().ult(NumElts)) 1814 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1815 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1816 break; 1817 } 1818 case Instruction::ExtractValue: 1819 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1820 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1821 if (EVI->getNumIndices() != 1) break; 1822 if (EVI->getIndices()[0] == 0) { 1823 switch (II->getIntrinsicID()) { 1824 default: break; 1825 case Intrinsic::uadd_with_overflow: 1826 case Intrinsic::sadd_with_overflow: 1827 computeKnownBitsAddSub(true, II->getArgOperand(0), 1828 II->getArgOperand(1), false, DemandedElts, 1829 Known, Known2, Depth, Q); 1830 break; 1831 case Intrinsic::usub_with_overflow: 1832 case Intrinsic::ssub_with_overflow: 1833 computeKnownBitsAddSub(false, II->getArgOperand(0), 1834 II->getArgOperand(1), false, DemandedElts, 1835 Known, Known2, Depth, Q); 1836 break; 1837 case Intrinsic::umul_with_overflow: 1838 case Intrinsic::smul_with_overflow: 1839 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1840 DemandedElts, Known, Known2, Depth, Q); 1841 break; 1842 } 1843 } 1844 } 1845 break; 1846 } 1847 } 1848 1849 /// Determine which bits of V are known to be either zero or one and return 1850 /// them. 1851 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1852 unsigned Depth, const Query &Q) { 1853 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1854 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1855 return Known; 1856 } 1857 1858 /// Determine which bits of V are known to be either zero or one and return 1859 /// them. 1860 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1861 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1862 computeKnownBits(V, Known, Depth, Q); 1863 return Known; 1864 } 1865 1866 /// Determine which bits of V are known to be either zero or one and return 1867 /// them in the Known bit set. 1868 /// 1869 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1870 /// we cannot optimize based on the assumption that it is zero without changing 1871 /// it to be an explicit zero. If we don't change it to zero, other code could 1872 /// optimized based on the contradictory assumption that it is non-zero. 1873 /// Because instcombine aggressively folds operations with undef args anyway, 1874 /// this won't lose us code quality. 1875 /// 1876 /// This function is defined on values with integer type, values with pointer 1877 /// type, and vectors of integers. In the case 1878 /// where V is a vector, known zero, and known one values are the 1879 /// same width as the vector element, and the bit is set only if it is true 1880 /// for all of the demanded elements in the vector specified by DemandedElts. 1881 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1882 KnownBits &Known, unsigned Depth, const Query &Q) { 1883 assert(V && "No Value?"); 1884 assert(Depth <= MaxDepth && "Limit Search Depth"); 1885 unsigned BitWidth = Known.getBitWidth(); 1886 1887 Type *Ty = V->getType(); 1888 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1889 "Not integer or pointer type!"); 1890 assert(((Ty->isVectorTy() && cast<VectorType>(Ty)->getNumElements() == 1891 DemandedElts.getBitWidth()) || 1892 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1893 "Unexpected vector size"); 1894 1895 Type *ScalarTy = Ty->getScalarType(); 1896 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1897 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1898 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1899 (void)BitWidth; 1900 (void)ExpectedWidth; 1901 1902 if (!DemandedElts) { 1903 // No demanded elts, better to assume we don't know anything. 1904 Known.resetAll(); 1905 return; 1906 } 1907 1908 const APInt *C; 1909 if (match(V, m_APInt(C))) { 1910 // We know all of the bits for a scalar constant or a splat vector constant! 1911 Known.One = *C; 1912 Known.Zero = ~Known.One; 1913 return; 1914 } 1915 // Null and aggregate-zero are all-zeros. 1916 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1917 Known.setAllZero(); 1918 return; 1919 } 1920 // Handle a constant vector by taking the intersection of the known bits of 1921 // each element. 1922 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1923 assert((!Ty->isVectorTy() || 1924 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1925 "Unexpected vector size"); 1926 // We know that CDS must be a vector of integers. Take the intersection of 1927 // each element. 1928 Known.Zero.setAllBits(); Known.One.setAllBits(); 1929 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1930 if (Ty->isVectorTy() && !DemandedElts[i]) 1931 continue; 1932 APInt Elt = CDS->getElementAsAPInt(i); 1933 Known.Zero &= ~Elt; 1934 Known.One &= Elt; 1935 } 1936 return; 1937 } 1938 1939 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1940 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1941 "Unexpected vector size"); 1942 // We know that CV must be a vector of integers. Take the intersection of 1943 // each element. 1944 Known.Zero.setAllBits(); Known.One.setAllBits(); 1945 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1946 if (!DemandedElts[i]) 1947 continue; 1948 Constant *Element = CV->getAggregateElement(i); 1949 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1950 if (!ElementCI) { 1951 Known.resetAll(); 1952 return; 1953 } 1954 const APInt &Elt = ElementCI->getValue(); 1955 Known.Zero &= ~Elt; 1956 Known.One &= Elt; 1957 } 1958 return; 1959 } 1960 1961 // Start out not knowing anything. 1962 Known.resetAll(); 1963 1964 // We can't imply anything about undefs. 1965 if (isa<UndefValue>(V)) 1966 return; 1967 1968 // There's no point in looking through other users of ConstantData for 1969 // assumptions. Confirm that we've handled them all. 1970 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1971 1972 // Limit search depth. 1973 // All recursive calls that increase depth must come after this. 1974 if (Depth == MaxDepth) 1975 return; 1976 1977 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1978 // the bits of its aliasee. 1979 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1980 if (!GA->isInterposable()) 1981 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1982 return; 1983 } 1984 1985 if (const Operator *I = dyn_cast<Operator>(V)) 1986 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1987 1988 // Aligned pointers have trailing zeros - refine Known.Zero set 1989 if (Ty->isPointerTy()) { 1990 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1991 if (Align) 1992 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1993 } 1994 1995 // computeKnownBitsFromAssume strictly refines Known. 1996 // Therefore, we run them after computeKnownBitsFromOperator. 1997 1998 // Check whether a nearby assume intrinsic can determine some known bits. 1999 computeKnownBitsFromAssume(V, Known, Depth, Q); 2000 2001 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2002 } 2003 2004 /// Return true if the given value is known to have exactly one 2005 /// bit set when defined. For vectors return true if every element is known to 2006 /// be a power of two when defined. Supports values with integer or pointer 2007 /// types and vectors of integers. 2008 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2009 const Query &Q) { 2010 assert(Depth <= MaxDepth && "Limit Search Depth"); 2011 2012 // Attempt to match against constants. 2013 if (OrZero && match(V, m_Power2OrZero())) 2014 return true; 2015 if (match(V, m_Power2())) 2016 return true; 2017 2018 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2019 // it is shifted off the end then the result is undefined. 2020 if (match(V, m_Shl(m_One(), m_Value()))) 2021 return true; 2022 2023 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2024 // the bottom. If it is shifted off the bottom then the result is undefined. 2025 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2026 return true; 2027 2028 // The remaining tests are all recursive, so bail out if we hit the limit. 2029 if (Depth++ == MaxDepth) 2030 return false; 2031 2032 Value *X = nullptr, *Y = nullptr; 2033 // A shift left or a logical shift right of a power of two is a power of two 2034 // or zero. 2035 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2036 match(V, m_LShr(m_Value(X), m_Value())))) 2037 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2038 2039 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2040 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2041 2042 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2043 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2044 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2045 2046 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2047 // A power of two and'd with anything is a power of two or zero. 2048 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2049 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2050 return true; 2051 // X & (-X) is always a power of two or zero. 2052 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2053 return true; 2054 return false; 2055 } 2056 2057 // Adding a power-of-two or zero to the same power-of-two or zero yields 2058 // either the original power-of-two, a larger power-of-two or zero. 2059 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2060 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2061 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2062 Q.IIQ.hasNoSignedWrap(VOBO)) { 2063 if (match(X, m_And(m_Specific(Y), m_Value())) || 2064 match(X, m_And(m_Value(), m_Specific(Y)))) 2065 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2066 return true; 2067 if (match(Y, m_And(m_Specific(X), m_Value())) || 2068 match(Y, m_And(m_Value(), m_Specific(X)))) 2069 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2070 return true; 2071 2072 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2073 KnownBits LHSBits(BitWidth); 2074 computeKnownBits(X, LHSBits, Depth, Q); 2075 2076 KnownBits RHSBits(BitWidth); 2077 computeKnownBits(Y, RHSBits, Depth, Q); 2078 // If i8 V is a power of two or zero: 2079 // ZeroBits: 1 1 1 0 1 1 1 1 2080 // ~ZeroBits: 0 0 0 1 0 0 0 0 2081 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2082 // If OrZero isn't set, we cannot give back a zero result. 2083 // Make sure either the LHS or RHS has a bit set. 2084 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2085 return true; 2086 } 2087 } 2088 2089 // An exact divide or right shift can only shift off zero bits, so the result 2090 // is a power of two only if the first operand is a power of two and not 2091 // copying a sign bit (sdiv int_min, 2). 2092 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2093 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2094 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2095 Depth, Q); 2096 } 2097 2098 return false; 2099 } 2100 2101 /// Test whether a GEP's result is known to be non-null. 2102 /// 2103 /// Uses properties inherent in a GEP to try to determine whether it is known 2104 /// to be non-null. 2105 /// 2106 /// Currently this routine does not support vector GEPs. 2107 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2108 const Query &Q) { 2109 const Function *F = nullptr; 2110 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2111 F = I->getFunction(); 2112 2113 if (!GEP->isInBounds() || 2114 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2115 return false; 2116 2117 // FIXME: Support vector-GEPs. 2118 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2119 2120 // If the base pointer is non-null, we cannot walk to a null address with an 2121 // inbounds GEP in address space zero. 2122 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2123 return true; 2124 2125 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2126 // If so, then the GEP cannot produce a null pointer, as doing so would 2127 // inherently violate the inbounds contract within address space zero. 2128 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2129 GTI != GTE; ++GTI) { 2130 // Struct types are easy -- they must always be indexed by a constant. 2131 if (StructType *STy = GTI.getStructTypeOrNull()) { 2132 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2133 unsigned ElementIdx = OpC->getZExtValue(); 2134 const StructLayout *SL = Q.DL.getStructLayout(STy); 2135 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2136 if (ElementOffset > 0) 2137 return true; 2138 continue; 2139 } 2140 2141 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2142 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2143 continue; 2144 2145 // Fast path the constant operand case both for efficiency and so we don't 2146 // increment Depth when just zipping down an all-constant GEP. 2147 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2148 if (!OpC->isZero()) 2149 return true; 2150 continue; 2151 } 2152 2153 // We post-increment Depth here because while isKnownNonZero increments it 2154 // as well, when we pop back up that increment won't persist. We don't want 2155 // to recurse 10k times just because we have 10k GEP operands. We don't 2156 // bail completely out because we want to handle constant GEPs regardless 2157 // of depth. 2158 if (Depth++ >= MaxDepth) 2159 continue; 2160 2161 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2162 return true; 2163 } 2164 2165 return false; 2166 } 2167 2168 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2169 const Instruction *CtxI, 2170 const DominatorTree *DT) { 2171 if (isa<Constant>(V)) 2172 return false; 2173 2174 if (!CtxI || !DT) 2175 return false; 2176 2177 unsigned NumUsesExplored = 0; 2178 for (auto *U : V->users()) { 2179 // Avoid massive lists 2180 if (NumUsesExplored >= DomConditionsMaxUses) 2181 break; 2182 NumUsesExplored++; 2183 2184 // If the value is used as an argument to a call or invoke, then argument 2185 // attributes may provide an answer about null-ness. 2186 if (const auto *CB = dyn_cast<CallBase>(U)) 2187 if (auto *CalledFunc = CB->getCalledFunction()) 2188 for (const Argument &Arg : CalledFunc->args()) 2189 if (CB->getArgOperand(Arg.getArgNo()) == V && 2190 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2191 return true; 2192 2193 // If the value is used as a load/store, then the pointer must be non null. 2194 if (V == getLoadStorePointerOperand(U)) { 2195 const Instruction *I = cast<Instruction>(U); 2196 if (!NullPointerIsDefined(I->getFunction(), 2197 V->getType()->getPointerAddressSpace()) && 2198 DT->dominates(I, CtxI)) 2199 return true; 2200 } 2201 2202 // Consider only compare instructions uniquely controlling a branch 2203 CmpInst::Predicate Pred; 2204 if (!match(const_cast<User *>(U), 2205 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2206 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2207 continue; 2208 2209 SmallVector<const User *, 4> WorkList; 2210 SmallPtrSet<const User *, 4> Visited; 2211 for (auto *CmpU : U->users()) { 2212 assert(WorkList.empty() && "Should be!"); 2213 if (Visited.insert(CmpU).second) 2214 WorkList.push_back(CmpU); 2215 2216 while (!WorkList.empty()) { 2217 auto *Curr = WorkList.pop_back_val(); 2218 2219 // If a user is an AND, add all its users to the work list. We only 2220 // propagate "pred != null" condition through AND because it is only 2221 // correct to assume that all conditions of AND are met in true branch. 2222 // TODO: Support similar logic of OR and EQ predicate? 2223 if (Pred == ICmpInst::ICMP_NE) 2224 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2225 if (BO->getOpcode() == Instruction::And) { 2226 for (auto *BOU : BO->users()) 2227 if (Visited.insert(BOU).second) 2228 WorkList.push_back(BOU); 2229 continue; 2230 } 2231 2232 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2233 assert(BI->isConditional() && "uses a comparison!"); 2234 2235 BasicBlock *NonNullSuccessor = 2236 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2237 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2238 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2239 return true; 2240 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2241 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2242 return true; 2243 } 2244 } 2245 } 2246 } 2247 2248 return false; 2249 } 2250 2251 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2252 /// ensure that the value it's attached to is never Value? 'RangeType' is 2253 /// is the type of the value described by the range. 2254 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2255 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2256 assert(NumRanges >= 1); 2257 for (unsigned i = 0; i < NumRanges; ++i) { 2258 ConstantInt *Lower = 2259 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2260 ConstantInt *Upper = 2261 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2262 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2263 if (Range.contains(Value)) 2264 return false; 2265 } 2266 return true; 2267 } 2268 2269 /// Return true if the given value is known to be non-zero when defined. For 2270 /// vectors, return true if every demanded element is known to be non-zero when 2271 /// defined. For pointers, if the context instruction and dominator tree are 2272 /// specified, perform context-sensitive analysis and return true if the 2273 /// pointer couldn't possibly be null at the specified instruction. 2274 /// Supports values with integer or pointer type and vectors of integers. 2275 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2276 const Query &Q) { 2277 if (auto *C = dyn_cast<Constant>(V)) { 2278 if (C->isNullValue()) 2279 return false; 2280 if (isa<ConstantInt>(C)) 2281 // Must be non-zero due to null test above. 2282 return true; 2283 2284 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2285 // See the comment for IntToPtr/PtrToInt instructions below. 2286 if (CE->getOpcode() == Instruction::IntToPtr || 2287 CE->getOpcode() == Instruction::PtrToInt) 2288 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2289 Q.DL.getTypeSizeInBits(CE->getType())) 2290 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2291 } 2292 2293 // For constant vectors, check that all elements are undefined or known 2294 // non-zero to determine that the whole vector is known non-zero. 2295 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2296 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2297 if (!DemandedElts[i]) 2298 continue; 2299 Constant *Elt = C->getAggregateElement(i); 2300 if (!Elt || Elt->isNullValue()) 2301 return false; 2302 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2303 return false; 2304 } 2305 return true; 2306 } 2307 2308 // A global variable in address space 0 is non null unless extern weak 2309 // or an absolute symbol reference. Other address spaces may have null as a 2310 // valid address for a global, so we can't assume anything. 2311 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2312 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2313 GV->getType()->getAddressSpace() == 0) 2314 return true; 2315 } else 2316 return false; 2317 } 2318 2319 if (auto *I = dyn_cast<Instruction>(V)) { 2320 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2321 // If the possible ranges don't contain zero, then the value is 2322 // definitely non-zero. 2323 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2324 const APInt ZeroValue(Ty->getBitWidth(), 0); 2325 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2326 return true; 2327 } 2328 } 2329 } 2330 2331 if (isKnownNonZeroFromAssume(V, Q)) 2332 return true; 2333 2334 // Some of the tests below are recursive, so bail out if we hit the limit. 2335 if (Depth++ >= MaxDepth) 2336 return false; 2337 2338 // Check for pointer simplifications. 2339 if (V->getType()->isPointerTy()) { 2340 // Alloca never returns null, malloc might. 2341 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2342 return true; 2343 2344 // A byval, inalloca, or nonnull argument is never null. 2345 if (const Argument *A = dyn_cast<Argument>(V)) 2346 if (A->hasPassPointeeByValueAttr() || A->hasNonNullAttr()) 2347 return true; 2348 2349 // A Load tagged with nonnull metadata is never null. 2350 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2351 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2352 return true; 2353 2354 if (const auto *Call = dyn_cast<CallBase>(V)) { 2355 if (Call->isReturnNonNull()) 2356 return true; 2357 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2358 return isKnownNonZero(RP, Depth, Q); 2359 } 2360 } 2361 2362 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2363 return true; 2364 2365 // Check for recursive pointer simplifications. 2366 if (V->getType()->isPointerTy()) { 2367 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2368 // do not alter the value, or at least not the nullness property of the 2369 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2370 // 2371 // Note that we have to take special care to avoid looking through 2372 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2373 // as casts that can alter the value, e.g., AddrSpaceCasts. 2374 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2375 if (isGEPKnownNonNull(GEP, Depth, Q)) 2376 return true; 2377 2378 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2379 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2380 2381 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2382 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2383 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2384 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2385 } 2386 2387 // Similar to int2ptr above, we can look through ptr2int here if the cast 2388 // is a no-op or an extend and not a truncate. 2389 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2390 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2391 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2392 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2393 2394 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2395 2396 // X | Y != 0 if X != 0 or Y != 0. 2397 Value *X = nullptr, *Y = nullptr; 2398 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2399 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2400 isKnownNonZero(Y, DemandedElts, Depth, Q); 2401 2402 // ext X != 0 if X != 0. 2403 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2404 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2405 2406 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2407 // if the lowest bit is shifted off the end. 2408 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2409 // shl nuw can't remove any non-zero bits. 2410 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2411 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2412 return isKnownNonZero(X, Depth, Q); 2413 2414 KnownBits Known(BitWidth); 2415 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2416 if (Known.One[0]) 2417 return true; 2418 } 2419 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2420 // defined if the sign bit is shifted off the end. 2421 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2422 // shr exact can only shift out zero bits. 2423 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2424 if (BO->isExact()) 2425 return isKnownNonZero(X, Depth, Q); 2426 2427 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2428 if (Known.isNegative()) 2429 return true; 2430 2431 // If the shifter operand is a constant, and all of the bits shifted 2432 // out are known to be zero, and X is known non-zero then at least one 2433 // non-zero bit must remain. 2434 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2435 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2436 // Is there a known one in the portion not shifted out? 2437 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2438 return true; 2439 // Are all the bits to be shifted out known zero? 2440 if (Known.countMinTrailingZeros() >= ShiftVal) 2441 return isKnownNonZero(X, DemandedElts, Depth, Q); 2442 } 2443 } 2444 // div exact can only produce a zero if the dividend is zero. 2445 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2446 return isKnownNonZero(X, DemandedElts, Depth, Q); 2447 } 2448 // X + Y. 2449 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2450 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2451 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2452 2453 // If X and Y are both non-negative (as signed values) then their sum is not 2454 // zero unless both X and Y are zero. 2455 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2456 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2457 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2458 return true; 2459 2460 // If X and Y are both negative (as signed values) then their sum is not 2461 // zero unless both X and Y equal INT_MIN. 2462 if (XKnown.isNegative() && YKnown.isNegative()) { 2463 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2464 // The sign bit of X is set. If some other bit is set then X is not equal 2465 // to INT_MIN. 2466 if (XKnown.One.intersects(Mask)) 2467 return true; 2468 // The sign bit of Y is set. If some other bit is set then Y is not equal 2469 // to INT_MIN. 2470 if (YKnown.One.intersects(Mask)) 2471 return true; 2472 } 2473 2474 // The sum of a non-negative number and a power of two is not zero. 2475 if (XKnown.isNonNegative() && 2476 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2477 return true; 2478 if (YKnown.isNonNegative() && 2479 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2480 return true; 2481 } 2482 // X * Y. 2483 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2484 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2485 // If X and Y are non-zero then so is X * Y as long as the multiplication 2486 // does not overflow. 2487 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2488 isKnownNonZero(X, DemandedElts, Depth, Q) && 2489 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2490 return true; 2491 } 2492 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2493 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2494 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2495 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2496 return true; 2497 } 2498 // PHI 2499 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2500 // Try and detect a recurrence that monotonically increases from a 2501 // starting value, as these are common as induction variables. 2502 if (PN->getNumIncomingValues() == 2) { 2503 Value *Start = PN->getIncomingValue(0); 2504 Value *Induction = PN->getIncomingValue(1); 2505 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2506 std::swap(Start, Induction); 2507 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2508 if (!C->isZero() && !C->isNegative()) { 2509 ConstantInt *X; 2510 if (Q.IIQ.UseInstrInfo && 2511 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2512 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2513 !X->isNegative()) 2514 return true; 2515 } 2516 } 2517 } 2518 // Check if all incoming values are non-zero constant. 2519 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2520 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2521 }); 2522 if (AllNonZeroConstants) 2523 return true; 2524 } 2525 // ExtractElement 2526 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2527 const Value *Vec = EEI->getVectorOperand(); 2528 const Value *Idx = EEI->getIndexOperand(); 2529 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2530 unsigned NumElts = cast<VectorType>(Vec->getType())->getNumElements(); 2531 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2532 if (CIdx && CIdx->getValue().ult(NumElts)) 2533 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2534 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2535 } 2536 2537 KnownBits Known(BitWidth); 2538 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2539 return Known.One != 0; 2540 } 2541 2542 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2543 Type *Ty = V->getType(); 2544 APInt DemandedElts = 2545 Ty->isVectorTy() 2546 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 2547 : APInt(1, 1); 2548 return isKnownNonZero(V, DemandedElts, Depth, Q); 2549 } 2550 2551 /// Return true if V2 == V1 + X, where X is known non-zero. 2552 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2553 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2554 if (!BO || BO->getOpcode() != Instruction::Add) 2555 return false; 2556 Value *Op = nullptr; 2557 if (V2 == BO->getOperand(0)) 2558 Op = BO->getOperand(1); 2559 else if (V2 == BO->getOperand(1)) 2560 Op = BO->getOperand(0); 2561 else 2562 return false; 2563 return isKnownNonZero(Op, 0, Q); 2564 } 2565 2566 /// Return true if it is known that V1 != V2. 2567 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2568 if (V1 == V2) 2569 return false; 2570 if (V1->getType() != V2->getType()) 2571 // We can't look through casts yet. 2572 return false; 2573 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2574 return true; 2575 2576 if (V1->getType()->isIntOrIntVectorTy()) { 2577 // Are any known bits in V1 contradictory to known bits in V2? If V1 2578 // has a known zero where V2 has a known one, they must not be equal. 2579 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2580 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2581 2582 if (Known1.Zero.intersects(Known2.One) || 2583 Known2.Zero.intersects(Known1.One)) 2584 return true; 2585 } 2586 return false; 2587 } 2588 2589 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2590 /// simplify operations downstream. Mask is known to be zero for bits that V 2591 /// cannot have. 2592 /// 2593 /// This function is defined on values with integer type, values with pointer 2594 /// type, and vectors of integers. In the case 2595 /// where V is a vector, the mask, known zero, and known one values are the 2596 /// same width as the vector element, and the bit is set only if it is true 2597 /// for all of the elements in the vector. 2598 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2599 const Query &Q) { 2600 KnownBits Known(Mask.getBitWidth()); 2601 computeKnownBits(V, Known, Depth, Q); 2602 return Mask.isSubsetOf(Known.Zero); 2603 } 2604 2605 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2606 // Returns the input and lower/upper bounds. 2607 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2608 const APInt *&CLow, const APInt *&CHigh) { 2609 assert(isa<Operator>(Select) && 2610 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2611 "Input should be a Select!"); 2612 2613 const Value *LHS = nullptr, *RHS = nullptr; 2614 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2615 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2616 return false; 2617 2618 if (!match(RHS, m_APInt(CLow))) 2619 return false; 2620 2621 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2622 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2623 if (getInverseMinMaxFlavor(SPF) != SPF2) 2624 return false; 2625 2626 if (!match(RHS2, m_APInt(CHigh))) 2627 return false; 2628 2629 if (SPF == SPF_SMIN) 2630 std::swap(CLow, CHigh); 2631 2632 In = LHS2; 2633 return CLow->sle(*CHigh); 2634 } 2635 2636 /// For vector constants, loop over the elements and find the constant with the 2637 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2638 /// or if any element was not analyzed; otherwise, return the count for the 2639 /// element with the minimum number of sign bits. 2640 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2641 const APInt &DemandedElts, 2642 unsigned TyBits) { 2643 const auto *CV = dyn_cast<Constant>(V); 2644 if (!CV || !CV->getType()->isVectorTy()) 2645 return 0; 2646 2647 unsigned MinSignBits = TyBits; 2648 unsigned NumElts = cast<VectorType>(CV->getType())->getNumElements(); 2649 for (unsigned i = 0; i != NumElts; ++i) { 2650 if (!DemandedElts[i]) 2651 continue; 2652 // If we find a non-ConstantInt, bail out. 2653 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2654 if (!Elt) 2655 return 0; 2656 2657 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2658 } 2659 2660 return MinSignBits; 2661 } 2662 2663 static unsigned ComputeNumSignBitsImpl(const Value *V, 2664 const APInt &DemandedElts, 2665 unsigned Depth, const Query &Q); 2666 2667 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2668 unsigned Depth, const Query &Q) { 2669 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2670 assert(Result > 0 && "At least one sign bit needs to be present!"); 2671 return Result; 2672 } 2673 2674 /// Return the number of times the sign bit of the register is replicated into 2675 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2676 /// (itself), but other cases can give us information. For example, immediately 2677 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2678 /// other, so we return 3. For vectors, return the number of sign bits for the 2679 /// vector element with the minimum number of known sign bits of the demanded 2680 /// elements in the vector specified by DemandedElts. 2681 static unsigned ComputeNumSignBitsImpl(const Value *V, 2682 const APInt &DemandedElts, 2683 unsigned Depth, const Query &Q) { 2684 assert(Depth <= MaxDepth && "Limit Search Depth"); 2685 2686 // We return the minimum number of sign bits that are guaranteed to be present 2687 // in V, so for undef we have to conservatively return 1. We don't have the 2688 // same behavior for poison though -- that's a FIXME today. 2689 2690 Type *Ty = V->getType(); 2691 assert(((Ty->isVectorTy() && cast<VectorType>(Ty)->getNumElements() == 2692 DemandedElts.getBitWidth()) || 2693 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2694 "Unexpected vector size"); 2695 2696 Type *ScalarTy = Ty->getScalarType(); 2697 unsigned TyBits = ScalarTy->isPointerTy() ? 2698 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2699 Q.DL.getTypeSizeInBits(ScalarTy); 2700 2701 unsigned Tmp, Tmp2; 2702 unsigned FirstAnswer = 1; 2703 2704 // Note that ConstantInt is handled by the general computeKnownBits case 2705 // below. 2706 2707 if (Depth == MaxDepth) 2708 return 1; // Limit search depth. 2709 2710 if (auto *U = dyn_cast<Operator>(V)) { 2711 switch (Operator::getOpcode(V)) { 2712 default: break; 2713 case Instruction::SExt: 2714 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2715 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2716 2717 case Instruction::SDiv: { 2718 const APInt *Denominator; 2719 // sdiv X, C -> adds log(C) sign bits. 2720 if (match(U->getOperand(1), m_APInt(Denominator))) { 2721 2722 // Ignore non-positive denominator. 2723 if (!Denominator->isStrictlyPositive()) 2724 break; 2725 2726 // Calculate the incoming numerator bits. 2727 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2728 2729 // Add floor(log(C)) bits to the numerator bits. 2730 return std::min(TyBits, NumBits + Denominator->logBase2()); 2731 } 2732 break; 2733 } 2734 2735 case Instruction::SRem: { 2736 const APInt *Denominator; 2737 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2738 // positive constant. This let us put a lower bound on the number of sign 2739 // bits. 2740 if (match(U->getOperand(1), m_APInt(Denominator))) { 2741 2742 // Ignore non-positive denominator. 2743 if (!Denominator->isStrictlyPositive()) 2744 break; 2745 2746 // Calculate the incoming numerator bits. SRem by a positive constant 2747 // can't lower the number of sign bits. 2748 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2749 2750 // Calculate the leading sign bit constraints by examining the 2751 // denominator. Given that the denominator is positive, there are two 2752 // cases: 2753 // 2754 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2755 // (1 << ceilLogBase2(C)). 2756 // 2757 // 2. the numerator is negative. Then the result range is (-C,0] and 2758 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2759 // 2760 // Thus a lower bound on the number of sign bits is `TyBits - 2761 // ceilLogBase2(C)`. 2762 2763 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2764 return std::max(NumrBits, ResBits); 2765 } 2766 break; 2767 } 2768 2769 case Instruction::AShr: { 2770 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2771 // ashr X, C -> adds C sign bits. Vectors too. 2772 const APInt *ShAmt; 2773 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2774 if (ShAmt->uge(TyBits)) 2775 break; // Bad shift. 2776 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2777 Tmp += ShAmtLimited; 2778 if (Tmp > TyBits) Tmp = TyBits; 2779 } 2780 return Tmp; 2781 } 2782 case Instruction::Shl: { 2783 const APInt *ShAmt; 2784 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2785 // shl destroys sign bits. 2786 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2787 if (ShAmt->uge(TyBits) || // Bad shift. 2788 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2789 Tmp2 = ShAmt->getZExtValue(); 2790 return Tmp - Tmp2; 2791 } 2792 break; 2793 } 2794 case Instruction::And: 2795 case Instruction::Or: 2796 case Instruction::Xor: // NOT is handled here. 2797 // Logical binary ops preserve the number of sign bits at the worst. 2798 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2799 if (Tmp != 1) { 2800 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2801 FirstAnswer = std::min(Tmp, Tmp2); 2802 // We computed what we know about the sign bits as our first 2803 // answer. Now proceed to the generic code that uses 2804 // computeKnownBits, and pick whichever answer is better. 2805 } 2806 break; 2807 2808 case Instruction::Select: { 2809 // If we have a clamp pattern, we know that the number of sign bits will 2810 // be the minimum of the clamp min/max range. 2811 const Value *X; 2812 const APInt *CLow, *CHigh; 2813 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2814 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2815 2816 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2817 if (Tmp == 1) break; 2818 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2819 return std::min(Tmp, Tmp2); 2820 } 2821 2822 case Instruction::Add: 2823 // Add can have at most one carry bit. Thus we know that the output 2824 // is, at worst, one more bit than the inputs. 2825 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2826 if (Tmp == 1) break; 2827 2828 // Special case decrementing a value (ADD X, -1): 2829 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2830 if (CRHS->isAllOnesValue()) { 2831 KnownBits Known(TyBits); 2832 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2833 2834 // If the input is known to be 0 or 1, the output is 0/-1, which is 2835 // all sign bits set. 2836 if ((Known.Zero | 1).isAllOnesValue()) 2837 return TyBits; 2838 2839 // If we are subtracting one from a positive number, there is no carry 2840 // out of the result. 2841 if (Known.isNonNegative()) 2842 return Tmp; 2843 } 2844 2845 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2846 if (Tmp2 == 1) break; 2847 return std::min(Tmp, Tmp2) - 1; 2848 2849 case Instruction::Sub: 2850 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2851 if (Tmp2 == 1) break; 2852 2853 // Handle NEG. 2854 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2855 if (CLHS->isNullValue()) { 2856 KnownBits Known(TyBits); 2857 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2858 // If the input is known to be 0 or 1, the output is 0/-1, which is 2859 // all sign bits set. 2860 if ((Known.Zero | 1).isAllOnesValue()) 2861 return TyBits; 2862 2863 // If the input is known to be positive (the sign bit is known clear), 2864 // the output of the NEG has the same number of sign bits as the 2865 // input. 2866 if (Known.isNonNegative()) 2867 return Tmp2; 2868 2869 // Otherwise, we treat this like a SUB. 2870 } 2871 2872 // Sub can have at most one carry bit. Thus we know that the output 2873 // is, at worst, one more bit than the inputs. 2874 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2875 if (Tmp == 1) break; 2876 return std::min(Tmp, Tmp2) - 1; 2877 2878 case Instruction::Mul: { 2879 // The output of the Mul can be at most twice the valid bits in the 2880 // inputs. 2881 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2882 if (SignBitsOp0 == 1) break; 2883 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2884 if (SignBitsOp1 == 1) break; 2885 unsigned OutValidBits = 2886 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2887 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2888 } 2889 2890 case Instruction::PHI: { 2891 const PHINode *PN = cast<PHINode>(U); 2892 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2893 // Don't analyze large in-degree PHIs. 2894 if (NumIncomingValues > 4) break; 2895 // Unreachable blocks may have zero-operand PHI nodes. 2896 if (NumIncomingValues == 0) break; 2897 2898 // Take the minimum of all incoming values. This can't infinitely loop 2899 // because of our depth threshold. 2900 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2901 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2902 if (Tmp == 1) return Tmp; 2903 Tmp = std::min( 2904 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2905 } 2906 return Tmp; 2907 } 2908 2909 case Instruction::Trunc: 2910 // FIXME: it's tricky to do anything useful for this, but it is an 2911 // important case for targets like X86. 2912 break; 2913 2914 case Instruction::ExtractElement: 2915 // Look through extract element. At the moment we keep this simple and 2916 // skip tracking the specific element. But at least we might find 2917 // information valid for all elements of the vector (for example if vector 2918 // is sign extended, shifted, etc). 2919 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2920 2921 case Instruction::ShuffleVector: { 2922 // Collect the minimum number of sign bits that are shared by every vector 2923 // element referenced by the shuffle. 2924 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2925 if (!Shuf) { 2926 // FIXME: Add support for shufflevector constant expressions. 2927 return 1; 2928 } 2929 APInt DemandedLHS, DemandedRHS; 2930 // For undef elements, we don't know anything about the common state of 2931 // the shuffle result. 2932 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2933 return 1; 2934 Tmp = std::numeric_limits<unsigned>::max(); 2935 if (!!DemandedLHS) { 2936 const Value *LHS = Shuf->getOperand(0); 2937 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2938 } 2939 // If we don't know anything, early out and try computeKnownBits 2940 // fall-back. 2941 if (Tmp == 1) 2942 break; 2943 if (!!DemandedRHS) { 2944 const Value *RHS = Shuf->getOperand(1); 2945 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2946 Tmp = std::min(Tmp, Tmp2); 2947 } 2948 // If we don't know anything, early out and try computeKnownBits 2949 // fall-back. 2950 if (Tmp == 1) 2951 break; 2952 assert(Tmp <= Ty->getScalarSizeInBits() && 2953 "Failed to determine minimum sign bits"); 2954 return Tmp; 2955 } 2956 } 2957 } 2958 2959 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2960 // use this information. 2961 2962 // If we can examine all elements of a vector constant successfully, we're 2963 // done (we can't do any better than that). If not, keep trying. 2964 if (unsigned VecSignBits = 2965 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2966 return VecSignBits; 2967 2968 KnownBits Known(TyBits); 2969 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2970 2971 // If we know that the sign bit is either zero or one, determine the number of 2972 // identical bits in the top of the input value. 2973 return std::max(FirstAnswer, Known.countMinSignBits()); 2974 } 2975 2976 /// This function computes the integer multiple of Base that equals V. 2977 /// If successful, it returns true and returns the multiple in 2978 /// Multiple. If unsuccessful, it returns false. It looks 2979 /// through SExt instructions only if LookThroughSExt is true. 2980 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2981 bool LookThroughSExt, unsigned Depth) { 2982 assert(V && "No Value?"); 2983 assert(Depth <= MaxDepth && "Limit Search Depth"); 2984 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2985 2986 Type *T = V->getType(); 2987 2988 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2989 2990 if (Base == 0) 2991 return false; 2992 2993 if (Base == 1) { 2994 Multiple = V; 2995 return true; 2996 } 2997 2998 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2999 Constant *BaseVal = ConstantInt::get(T, Base); 3000 if (CO && CO == BaseVal) { 3001 // Multiple is 1. 3002 Multiple = ConstantInt::get(T, 1); 3003 return true; 3004 } 3005 3006 if (CI && CI->getZExtValue() % Base == 0) { 3007 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3008 return true; 3009 } 3010 3011 if (Depth == MaxDepth) return false; // Limit search depth. 3012 3013 Operator *I = dyn_cast<Operator>(V); 3014 if (!I) return false; 3015 3016 switch (I->getOpcode()) { 3017 default: break; 3018 case Instruction::SExt: 3019 if (!LookThroughSExt) return false; 3020 // otherwise fall through to ZExt 3021 LLVM_FALLTHROUGH; 3022 case Instruction::ZExt: 3023 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3024 LookThroughSExt, Depth+1); 3025 case Instruction::Shl: 3026 case Instruction::Mul: { 3027 Value *Op0 = I->getOperand(0); 3028 Value *Op1 = I->getOperand(1); 3029 3030 if (I->getOpcode() == Instruction::Shl) { 3031 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3032 if (!Op1CI) return false; 3033 // Turn Op0 << Op1 into Op0 * 2^Op1 3034 APInt Op1Int = Op1CI->getValue(); 3035 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3036 APInt API(Op1Int.getBitWidth(), 0); 3037 API.setBit(BitToSet); 3038 Op1 = ConstantInt::get(V->getContext(), API); 3039 } 3040 3041 Value *Mul0 = nullptr; 3042 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3043 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3044 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3045 if (Op1C->getType()->getPrimitiveSizeInBits() < 3046 MulC->getType()->getPrimitiveSizeInBits()) 3047 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3048 if (Op1C->getType()->getPrimitiveSizeInBits() > 3049 MulC->getType()->getPrimitiveSizeInBits()) 3050 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3051 3052 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3053 Multiple = ConstantExpr::getMul(MulC, Op1C); 3054 return true; 3055 } 3056 3057 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3058 if (Mul0CI->getValue() == 1) { 3059 // V == Base * Op1, so return Op1 3060 Multiple = Op1; 3061 return true; 3062 } 3063 } 3064 3065 Value *Mul1 = nullptr; 3066 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3067 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3068 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3069 if (Op0C->getType()->getPrimitiveSizeInBits() < 3070 MulC->getType()->getPrimitiveSizeInBits()) 3071 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3072 if (Op0C->getType()->getPrimitiveSizeInBits() > 3073 MulC->getType()->getPrimitiveSizeInBits()) 3074 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3075 3076 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3077 Multiple = ConstantExpr::getMul(MulC, Op0C); 3078 return true; 3079 } 3080 3081 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3082 if (Mul1CI->getValue() == 1) { 3083 // V == Base * Op0, so return Op0 3084 Multiple = Op0; 3085 return true; 3086 } 3087 } 3088 } 3089 } 3090 3091 // We could not determine if V is a multiple of Base. 3092 return false; 3093 } 3094 3095 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3096 const TargetLibraryInfo *TLI) { 3097 const Function *F = CB.getCalledFunction(); 3098 if (!F) 3099 return Intrinsic::not_intrinsic; 3100 3101 if (F->isIntrinsic()) 3102 return F->getIntrinsicID(); 3103 3104 if (!TLI) 3105 return Intrinsic::not_intrinsic; 3106 3107 LibFunc Func; 3108 // We're going to make assumptions on the semantics of the functions, check 3109 // that the target knows that it's available in this environment and it does 3110 // not have local linkage. 3111 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3112 return Intrinsic::not_intrinsic; 3113 3114 if (!CB.onlyReadsMemory()) 3115 return Intrinsic::not_intrinsic; 3116 3117 // Otherwise check if we have a call to a function that can be turned into a 3118 // vector intrinsic. 3119 switch (Func) { 3120 default: 3121 break; 3122 case LibFunc_sin: 3123 case LibFunc_sinf: 3124 case LibFunc_sinl: 3125 return Intrinsic::sin; 3126 case LibFunc_cos: 3127 case LibFunc_cosf: 3128 case LibFunc_cosl: 3129 return Intrinsic::cos; 3130 case LibFunc_exp: 3131 case LibFunc_expf: 3132 case LibFunc_expl: 3133 return Intrinsic::exp; 3134 case LibFunc_exp2: 3135 case LibFunc_exp2f: 3136 case LibFunc_exp2l: 3137 return Intrinsic::exp2; 3138 case LibFunc_log: 3139 case LibFunc_logf: 3140 case LibFunc_logl: 3141 return Intrinsic::log; 3142 case LibFunc_log10: 3143 case LibFunc_log10f: 3144 case LibFunc_log10l: 3145 return Intrinsic::log10; 3146 case LibFunc_log2: 3147 case LibFunc_log2f: 3148 case LibFunc_log2l: 3149 return Intrinsic::log2; 3150 case LibFunc_fabs: 3151 case LibFunc_fabsf: 3152 case LibFunc_fabsl: 3153 return Intrinsic::fabs; 3154 case LibFunc_fmin: 3155 case LibFunc_fminf: 3156 case LibFunc_fminl: 3157 return Intrinsic::minnum; 3158 case LibFunc_fmax: 3159 case LibFunc_fmaxf: 3160 case LibFunc_fmaxl: 3161 return Intrinsic::maxnum; 3162 case LibFunc_copysign: 3163 case LibFunc_copysignf: 3164 case LibFunc_copysignl: 3165 return Intrinsic::copysign; 3166 case LibFunc_floor: 3167 case LibFunc_floorf: 3168 case LibFunc_floorl: 3169 return Intrinsic::floor; 3170 case LibFunc_ceil: 3171 case LibFunc_ceilf: 3172 case LibFunc_ceill: 3173 return Intrinsic::ceil; 3174 case LibFunc_trunc: 3175 case LibFunc_truncf: 3176 case LibFunc_truncl: 3177 return Intrinsic::trunc; 3178 case LibFunc_rint: 3179 case LibFunc_rintf: 3180 case LibFunc_rintl: 3181 return Intrinsic::rint; 3182 case LibFunc_nearbyint: 3183 case LibFunc_nearbyintf: 3184 case LibFunc_nearbyintl: 3185 return Intrinsic::nearbyint; 3186 case LibFunc_round: 3187 case LibFunc_roundf: 3188 case LibFunc_roundl: 3189 return Intrinsic::round; 3190 case LibFunc_pow: 3191 case LibFunc_powf: 3192 case LibFunc_powl: 3193 return Intrinsic::pow; 3194 case LibFunc_sqrt: 3195 case LibFunc_sqrtf: 3196 case LibFunc_sqrtl: 3197 return Intrinsic::sqrt; 3198 } 3199 3200 return Intrinsic::not_intrinsic; 3201 } 3202 3203 /// Return true if we can prove that the specified FP value is never equal to 3204 /// -0.0. 3205 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3206 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3207 /// the same as +0.0 in floating-point ops. 3208 /// 3209 /// NOTE: this function will need to be revisited when we support non-default 3210 /// rounding modes! 3211 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3212 unsigned Depth) { 3213 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3214 return !CFP->getValueAPF().isNegZero(); 3215 3216 // Limit search depth. 3217 if (Depth == MaxDepth) 3218 return false; 3219 3220 auto *Op = dyn_cast<Operator>(V); 3221 if (!Op) 3222 return false; 3223 3224 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3225 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3226 return true; 3227 3228 // sitofp and uitofp turn into +0.0 for zero. 3229 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3230 return true; 3231 3232 if (auto *Call = dyn_cast<CallInst>(Op)) { 3233 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3234 switch (IID) { 3235 default: 3236 break; 3237 // sqrt(-0.0) = -0.0, no other negative results are possible. 3238 case Intrinsic::sqrt: 3239 case Intrinsic::canonicalize: 3240 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3241 // fabs(x) != -0.0 3242 case Intrinsic::fabs: 3243 return true; 3244 } 3245 } 3246 3247 return false; 3248 } 3249 3250 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3251 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3252 /// bit despite comparing equal. 3253 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3254 const TargetLibraryInfo *TLI, 3255 bool SignBitOnly, 3256 unsigned Depth) { 3257 // TODO: This function does not do the right thing when SignBitOnly is true 3258 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3259 // which flips the sign bits of NaNs. See 3260 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3261 3262 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3263 return !CFP->getValueAPF().isNegative() || 3264 (!SignBitOnly && CFP->getValueAPF().isZero()); 3265 } 3266 3267 // Handle vector of constants. 3268 if (auto *CV = dyn_cast<Constant>(V)) { 3269 if (auto *CVVTy = dyn_cast<VectorType>(CV->getType())) { 3270 unsigned NumElts = CVVTy->getNumElements(); 3271 for (unsigned i = 0; i != NumElts; ++i) { 3272 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3273 if (!CFP) 3274 return false; 3275 if (CFP->getValueAPF().isNegative() && 3276 (SignBitOnly || !CFP->getValueAPF().isZero())) 3277 return false; 3278 } 3279 3280 // All non-negative ConstantFPs. 3281 return true; 3282 } 3283 } 3284 3285 if (Depth == MaxDepth) 3286 return false; // Limit search depth. 3287 3288 const Operator *I = dyn_cast<Operator>(V); 3289 if (!I) 3290 return false; 3291 3292 switch (I->getOpcode()) { 3293 default: 3294 break; 3295 // Unsigned integers are always nonnegative. 3296 case Instruction::UIToFP: 3297 return true; 3298 case Instruction::FMul: 3299 // x*x is always non-negative or a NaN. 3300 if (I->getOperand(0) == I->getOperand(1) && 3301 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3302 return true; 3303 3304 LLVM_FALLTHROUGH; 3305 case Instruction::FAdd: 3306 case Instruction::FDiv: 3307 case Instruction::FRem: 3308 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3309 Depth + 1) && 3310 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3311 Depth + 1); 3312 case Instruction::Select: 3313 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3314 Depth + 1) && 3315 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3316 Depth + 1); 3317 case Instruction::FPExt: 3318 case Instruction::FPTrunc: 3319 // Widening/narrowing never change sign. 3320 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3321 Depth + 1); 3322 case Instruction::ExtractElement: 3323 // Look through extract element. At the moment we keep this simple and skip 3324 // tracking the specific element. But at least we might find information 3325 // valid for all elements of the vector. 3326 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3327 Depth + 1); 3328 case Instruction::Call: 3329 const auto *CI = cast<CallInst>(I); 3330 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3331 switch (IID) { 3332 default: 3333 break; 3334 case Intrinsic::maxnum: 3335 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3336 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3337 SignBitOnly, Depth + 1)) || 3338 (isKnownNeverNaN(I->getOperand(1), TLI) && 3339 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3340 SignBitOnly, Depth + 1)); 3341 3342 case Intrinsic::maximum: 3343 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3344 Depth + 1) || 3345 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3346 Depth + 1); 3347 case Intrinsic::minnum: 3348 case Intrinsic::minimum: 3349 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3350 Depth + 1) && 3351 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3352 Depth + 1); 3353 case Intrinsic::exp: 3354 case Intrinsic::exp2: 3355 case Intrinsic::fabs: 3356 return true; 3357 3358 case Intrinsic::sqrt: 3359 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3360 if (!SignBitOnly) 3361 return true; 3362 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3363 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3364 3365 case Intrinsic::powi: 3366 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3367 // powi(x,n) is non-negative if n is even. 3368 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3369 return true; 3370 } 3371 // TODO: This is not correct. Given that exp is an integer, here are the 3372 // ways that pow can return a negative value: 3373 // 3374 // pow(x, exp) --> negative if exp is odd and x is negative. 3375 // pow(-0, exp) --> -inf if exp is negative odd. 3376 // pow(-0, exp) --> -0 if exp is positive odd. 3377 // pow(-inf, exp) --> -0 if exp is negative odd. 3378 // pow(-inf, exp) --> -inf if exp is positive odd. 3379 // 3380 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3381 // but we must return false if x == -0. Unfortunately we do not currently 3382 // have a way of expressing this constraint. See details in 3383 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3384 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3385 Depth + 1); 3386 3387 case Intrinsic::fma: 3388 case Intrinsic::fmuladd: 3389 // x*x+y is non-negative if y is non-negative. 3390 return I->getOperand(0) == I->getOperand(1) && 3391 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3392 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3393 Depth + 1); 3394 } 3395 break; 3396 } 3397 return false; 3398 } 3399 3400 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3401 const TargetLibraryInfo *TLI) { 3402 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3403 } 3404 3405 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3406 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3407 } 3408 3409 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3410 unsigned Depth) { 3411 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3412 3413 // If we're told that infinities won't happen, assume they won't. 3414 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3415 if (FPMathOp->hasNoInfs()) 3416 return true; 3417 3418 // Handle scalar constants. 3419 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3420 return !CFP->isInfinity(); 3421 3422 if (Depth == MaxDepth) 3423 return false; 3424 3425 if (auto *Inst = dyn_cast<Instruction>(V)) { 3426 switch (Inst->getOpcode()) { 3427 case Instruction::Select: { 3428 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3429 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3430 } 3431 case Instruction::UIToFP: 3432 // If the input type fits into the floating type the result is finite. 3433 return ilogb(APFloat::getLargest( 3434 Inst->getType()->getScalarType()->getFltSemantics())) >= 3435 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3436 default: 3437 break; 3438 } 3439 } 3440 3441 // Bail out for constant expressions, but try to handle vector constants. 3442 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3443 return false; 3444 3445 // For vectors, verify that each element is not infinity. 3446 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3447 for (unsigned i = 0; i != NumElts; ++i) { 3448 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3449 if (!Elt) 3450 return false; 3451 if (isa<UndefValue>(Elt)) 3452 continue; 3453 auto *CElt = dyn_cast<ConstantFP>(Elt); 3454 if (!CElt || CElt->isInfinity()) 3455 return false; 3456 } 3457 // All elements were confirmed non-infinity or undefined. 3458 return true; 3459 } 3460 3461 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3462 unsigned Depth) { 3463 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3464 3465 // If we're told that NaNs won't happen, assume they won't. 3466 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3467 if (FPMathOp->hasNoNaNs()) 3468 return true; 3469 3470 // Handle scalar constants. 3471 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3472 return !CFP->isNaN(); 3473 3474 if (Depth == MaxDepth) 3475 return false; 3476 3477 if (auto *Inst = dyn_cast<Instruction>(V)) { 3478 switch (Inst->getOpcode()) { 3479 case Instruction::FAdd: 3480 case Instruction::FSub: 3481 // Adding positive and negative infinity produces NaN. 3482 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3483 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3484 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3485 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3486 3487 case Instruction::FMul: 3488 // Zero multiplied with infinity produces NaN. 3489 // FIXME: If neither side can be zero fmul never produces NaN. 3490 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3491 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3492 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3493 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3494 3495 case Instruction::FDiv: 3496 case Instruction::FRem: 3497 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3498 return false; 3499 3500 case Instruction::Select: { 3501 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3502 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3503 } 3504 case Instruction::SIToFP: 3505 case Instruction::UIToFP: 3506 return true; 3507 case Instruction::FPTrunc: 3508 case Instruction::FPExt: 3509 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3510 default: 3511 break; 3512 } 3513 } 3514 3515 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3516 switch (II->getIntrinsicID()) { 3517 case Intrinsic::canonicalize: 3518 case Intrinsic::fabs: 3519 case Intrinsic::copysign: 3520 case Intrinsic::exp: 3521 case Intrinsic::exp2: 3522 case Intrinsic::floor: 3523 case Intrinsic::ceil: 3524 case Intrinsic::trunc: 3525 case Intrinsic::rint: 3526 case Intrinsic::nearbyint: 3527 case Intrinsic::round: 3528 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3529 case Intrinsic::sqrt: 3530 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3531 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3532 case Intrinsic::minnum: 3533 case Intrinsic::maxnum: 3534 // If either operand is not NaN, the result is not NaN. 3535 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3536 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3537 default: 3538 return false; 3539 } 3540 } 3541 3542 // Bail out for constant expressions, but try to handle vector constants. 3543 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3544 return false; 3545 3546 // For vectors, verify that each element is not NaN. 3547 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3548 for (unsigned i = 0; i != NumElts; ++i) { 3549 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3550 if (!Elt) 3551 return false; 3552 if (isa<UndefValue>(Elt)) 3553 continue; 3554 auto *CElt = dyn_cast<ConstantFP>(Elt); 3555 if (!CElt || CElt->isNaN()) 3556 return false; 3557 } 3558 // All elements were confirmed not-NaN or undefined. 3559 return true; 3560 } 3561 3562 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3563 3564 // All byte-wide stores are splatable, even of arbitrary variables. 3565 if (V->getType()->isIntegerTy(8)) 3566 return V; 3567 3568 LLVMContext &Ctx = V->getContext(); 3569 3570 // Undef don't care. 3571 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3572 if (isa<UndefValue>(V)) 3573 return UndefInt8; 3574 3575 // Return Undef for zero-sized type. 3576 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3577 return UndefInt8; 3578 3579 Constant *C = dyn_cast<Constant>(V); 3580 if (!C) { 3581 // Conceptually, we could handle things like: 3582 // %a = zext i8 %X to i16 3583 // %b = shl i16 %a, 8 3584 // %c = or i16 %a, %b 3585 // but until there is an example that actually needs this, it doesn't seem 3586 // worth worrying about. 3587 return nullptr; 3588 } 3589 3590 // Handle 'null' ConstantArrayZero etc. 3591 if (C->isNullValue()) 3592 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3593 3594 // Constant floating-point values can be handled as integer values if the 3595 // corresponding integer value is "byteable". An important case is 0.0. 3596 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3597 Type *Ty = nullptr; 3598 if (CFP->getType()->isHalfTy()) 3599 Ty = Type::getInt16Ty(Ctx); 3600 else if (CFP->getType()->isFloatTy()) 3601 Ty = Type::getInt32Ty(Ctx); 3602 else if (CFP->getType()->isDoubleTy()) 3603 Ty = Type::getInt64Ty(Ctx); 3604 // Don't handle long double formats, which have strange constraints. 3605 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3606 : nullptr; 3607 } 3608 3609 // We can handle constant integers that are multiple of 8 bits. 3610 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3611 if (CI->getBitWidth() % 8 == 0) { 3612 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3613 if (!CI->getValue().isSplat(8)) 3614 return nullptr; 3615 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3616 } 3617 } 3618 3619 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3620 if (CE->getOpcode() == Instruction::IntToPtr) { 3621 auto PS = DL.getPointerSizeInBits( 3622 cast<PointerType>(CE->getType())->getAddressSpace()); 3623 return isBytewiseValue( 3624 ConstantExpr::getIntegerCast(CE->getOperand(0), 3625 Type::getIntNTy(Ctx, PS), false), 3626 DL); 3627 } 3628 } 3629 3630 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3631 if (LHS == RHS) 3632 return LHS; 3633 if (!LHS || !RHS) 3634 return nullptr; 3635 if (LHS == UndefInt8) 3636 return RHS; 3637 if (RHS == UndefInt8) 3638 return LHS; 3639 return nullptr; 3640 }; 3641 3642 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3643 Value *Val = UndefInt8; 3644 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3645 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3646 return nullptr; 3647 return Val; 3648 } 3649 3650 if (isa<ConstantAggregate>(C)) { 3651 Value *Val = UndefInt8; 3652 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3653 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3654 return nullptr; 3655 return Val; 3656 } 3657 3658 // Don't try to handle the handful of other constants. 3659 return nullptr; 3660 } 3661 3662 // This is the recursive version of BuildSubAggregate. It takes a few different 3663 // arguments. Idxs is the index within the nested struct From that we are 3664 // looking at now (which is of type IndexedType). IdxSkip is the number of 3665 // indices from Idxs that should be left out when inserting into the resulting 3666 // struct. To is the result struct built so far, new insertvalue instructions 3667 // build on that. 3668 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3669 SmallVectorImpl<unsigned> &Idxs, 3670 unsigned IdxSkip, 3671 Instruction *InsertBefore) { 3672 StructType *STy = dyn_cast<StructType>(IndexedType); 3673 if (STy) { 3674 // Save the original To argument so we can modify it 3675 Value *OrigTo = To; 3676 // General case, the type indexed by Idxs is a struct 3677 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3678 // Process each struct element recursively 3679 Idxs.push_back(i); 3680 Value *PrevTo = To; 3681 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3682 InsertBefore); 3683 Idxs.pop_back(); 3684 if (!To) { 3685 // Couldn't find any inserted value for this index? Cleanup 3686 while (PrevTo != OrigTo) { 3687 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3688 PrevTo = Del->getAggregateOperand(); 3689 Del->eraseFromParent(); 3690 } 3691 // Stop processing elements 3692 break; 3693 } 3694 } 3695 // If we successfully found a value for each of our subaggregates 3696 if (To) 3697 return To; 3698 } 3699 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3700 // the struct's elements had a value that was inserted directly. In the latter 3701 // case, perhaps we can't determine each of the subelements individually, but 3702 // we might be able to find the complete struct somewhere. 3703 3704 // Find the value that is at that particular spot 3705 Value *V = FindInsertedValue(From, Idxs); 3706 3707 if (!V) 3708 return nullptr; 3709 3710 // Insert the value in the new (sub) aggregate 3711 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3712 "tmp", InsertBefore); 3713 } 3714 3715 // This helper takes a nested struct and extracts a part of it (which is again a 3716 // struct) into a new value. For example, given the struct: 3717 // { a, { b, { c, d }, e } } 3718 // and the indices "1, 1" this returns 3719 // { c, d }. 3720 // 3721 // It does this by inserting an insertvalue for each element in the resulting 3722 // struct, as opposed to just inserting a single struct. This will only work if 3723 // each of the elements of the substruct are known (ie, inserted into From by an 3724 // insertvalue instruction somewhere). 3725 // 3726 // All inserted insertvalue instructions are inserted before InsertBefore 3727 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3728 Instruction *InsertBefore) { 3729 assert(InsertBefore && "Must have someplace to insert!"); 3730 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3731 idx_range); 3732 Value *To = UndefValue::get(IndexedType); 3733 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3734 unsigned IdxSkip = Idxs.size(); 3735 3736 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3737 } 3738 3739 /// Given an aggregate and a sequence of indices, see if the scalar value 3740 /// indexed is already around as a register, for example if it was inserted 3741 /// directly into the aggregate. 3742 /// 3743 /// If InsertBefore is not null, this function will duplicate (modified) 3744 /// insertvalues when a part of a nested struct is extracted. 3745 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3746 Instruction *InsertBefore) { 3747 // Nothing to index? Just return V then (this is useful at the end of our 3748 // recursion). 3749 if (idx_range.empty()) 3750 return V; 3751 // We have indices, so V should have an indexable type. 3752 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3753 "Not looking at a struct or array?"); 3754 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3755 "Invalid indices for type?"); 3756 3757 if (Constant *C = dyn_cast<Constant>(V)) { 3758 C = C->getAggregateElement(idx_range[0]); 3759 if (!C) return nullptr; 3760 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3761 } 3762 3763 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3764 // Loop the indices for the insertvalue instruction in parallel with the 3765 // requested indices 3766 const unsigned *req_idx = idx_range.begin(); 3767 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3768 i != e; ++i, ++req_idx) { 3769 if (req_idx == idx_range.end()) { 3770 // We can't handle this without inserting insertvalues 3771 if (!InsertBefore) 3772 return nullptr; 3773 3774 // The requested index identifies a part of a nested aggregate. Handle 3775 // this specially. For example, 3776 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3777 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3778 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3779 // This can be changed into 3780 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3781 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3782 // which allows the unused 0,0 element from the nested struct to be 3783 // removed. 3784 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3785 InsertBefore); 3786 } 3787 3788 // This insert value inserts something else than what we are looking for. 3789 // See if the (aggregate) value inserted into has the value we are 3790 // looking for, then. 3791 if (*req_idx != *i) 3792 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3793 InsertBefore); 3794 } 3795 // If we end up here, the indices of the insertvalue match with those 3796 // requested (though possibly only partially). Now we recursively look at 3797 // the inserted value, passing any remaining indices. 3798 return FindInsertedValue(I->getInsertedValueOperand(), 3799 makeArrayRef(req_idx, idx_range.end()), 3800 InsertBefore); 3801 } 3802 3803 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3804 // If we're extracting a value from an aggregate that was extracted from 3805 // something else, we can extract from that something else directly instead. 3806 // However, we will need to chain I's indices with the requested indices. 3807 3808 // Calculate the number of indices required 3809 unsigned size = I->getNumIndices() + idx_range.size(); 3810 // Allocate some space to put the new indices in 3811 SmallVector<unsigned, 5> Idxs; 3812 Idxs.reserve(size); 3813 // Add indices from the extract value instruction 3814 Idxs.append(I->idx_begin(), I->idx_end()); 3815 3816 // Add requested indices 3817 Idxs.append(idx_range.begin(), idx_range.end()); 3818 3819 assert(Idxs.size() == size 3820 && "Number of indices added not correct?"); 3821 3822 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3823 } 3824 // Otherwise, we don't know (such as, extracting from a function return value 3825 // or load instruction) 3826 return nullptr; 3827 } 3828 3829 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3830 unsigned CharSize) { 3831 // Make sure the GEP has exactly three arguments. 3832 if (GEP->getNumOperands() != 3) 3833 return false; 3834 3835 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3836 // CharSize. 3837 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3838 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3839 return false; 3840 3841 // Check to make sure that the first operand of the GEP is an integer and 3842 // has value 0 so that we are sure we're indexing into the initializer. 3843 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3844 if (!FirstIdx || !FirstIdx->isZero()) 3845 return false; 3846 3847 return true; 3848 } 3849 3850 bool llvm::getConstantDataArrayInfo(const Value *V, 3851 ConstantDataArraySlice &Slice, 3852 unsigned ElementSize, uint64_t Offset) { 3853 assert(V); 3854 3855 // Look through bitcast instructions and geps. 3856 V = V->stripPointerCasts(); 3857 3858 // If the value is a GEP instruction or constant expression, treat it as an 3859 // offset. 3860 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3861 // The GEP operator should be based on a pointer to string constant, and is 3862 // indexing into the string constant. 3863 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3864 return false; 3865 3866 // If the second index isn't a ConstantInt, then this is a variable index 3867 // into the array. If this occurs, we can't say anything meaningful about 3868 // the string. 3869 uint64_t StartIdx = 0; 3870 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3871 StartIdx = CI->getZExtValue(); 3872 else 3873 return false; 3874 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3875 StartIdx + Offset); 3876 } 3877 3878 // The GEP instruction, constant or instruction, must reference a global 3879 // variable that is a constant and is initialized. The referenced constant 3880 // initializer is the array that we'll use for optimization. 3881 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3882 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3883 return false; 3884 3885 const ConstantDataArray *Array; 3886 ArrayType *ArrayTy; 3887 if (GV->getInitializer()->isNullValue()) { 3888 Type *GVTy = GV->getValueType(); 3889 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3890 // A zeroinitializer for the array; there is no ConstantDataArray. 3891 Array = nullptr; 3892 } else { 3893 const DataLayout &DL = GV->getParent()->getDataLayout(); 3894 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3895 uint64_t Length = SizeInBytes / (ElementSize / 8); 3896 if (Length <= Offset) 3897 return false; 3898 3899 Slice.Array = nullptr; 3900 Slice.Offset = 0; 3901 Slice.Length = Length - Offset; 3902 return true; 3903 } 3904 } else { 3905 // This must be a ConstantDataArray. 3906 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3907 if (!Array) 3908 return false; 3909 ArrayTy = Array->getType(); 3910 } 3911 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3912 return false; 3913 3914 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3915 if (Offset > NumElts) 3916 return false; 3917 3918 Slice.Array = Array; 3919 Slice.Offset = Offset; 3920 Slice.Length = NumElts - Offset; 3921 return true; 3922 } 3923 3924 /// This function computes the length of a null-terminated C string pointed to 3925 /// by V. If successful, it returns true and returns the string in Str. 3926 /// If unsuccessful, it returns false. 3927 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3928 uint64_t Offset, bool TrimAtNul) { 3929 ConstantDataArraySlice Slice; 3930 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3931 return false; 3932 3933 if (Slice.Array == nullptr) { 3934 if (TrimAtNul) { 3935 Str = StringRef(); 3936 return true; 3937 } 3938 if (Slice.Length == 1) { 3939 Str = StringRef("", 1); 3940 return true; 3941 } 3942 // We cannot instantiate a StringRef as we do not have an appropriate string 3943 // of 0s at hand. 3944 return false; 3945 } 3946 3947 // Start out with the entire array in the StringRef. 3948 Str = Slice.Array->getAsString(); 3949 // Skip over 'offset' bytes. 3950 Str = Str.substr(Slice.Offset); 3951 3952 if (TrimAtNul) { 3953 // Trim off the \0 and anything after it. If the array is not nul 3954 // terminated, we just return the whole end of string. The client may know 3955 // some other way that the string is length-bound. 3956 Str = Str.substr(0, Str.find('\0')); 3957 } 3958 return true; 3959 } 3960 3961 // These next two are very similar to the above, but also look through PHI 3962 // nodes. 3963 // TODO: See if we can integrate these two together. 3964 3965 /// If we can compute the length of the string pointed to by 3966 /// the specified pointer, return 'len+1'. If we can't, return 0. 3967 static uint64_t GetStringLengthH(const Value *V, 3968 SmallPtrSetImpl<const PHINode*> &PHIs, 3969 unsigned CharSize) { 3970 // Look through noop bitcast instructions. 3971 V = V->stripPointerCasts(); 3972 3973 // If this is a PHI node, there are two cases: either we have already seen it 3974 // or we haven't. 3975 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3976 if (!PHIs.insert(PN).second) 3977 return ~0ULL; // already in the set. 3978 3979 // If it was new, see if all the input strings are the same length. 3980 uint64_t LenSoFar = ~0ULL; 3981 for (Value *IncValue : PN->incoming_values()) { 3982 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3983 if (Len == 0) return 0; // Unknown length -> unknown. 3984 3985 if (Len == ~0ULL) continue; 3986 3987 if (Len != LenSoFar && LenSoFar != ~0ULL) 3988 return 0; // Disagree -> unknown. 3989 LenSoFar = Len; 3990 } 3991 3992 // Success, all agree. 3993 return LenSoFar; 3994 } 3995 3996 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3997 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3998 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3999 if (Len1 == 0) return 0; 4000 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4001 if (Len2 == 0) return 0; 4002 if (Len1 == ~0ULL) return Len2; 4003 if (Len2 == ~0ULL) return Len1; 4004 if (Len1 != Len2) return 0; 4005 return Len1; 4006 } 4007 4008 // Otherwise, see if we can read the string. 4009 ConstantDataArraySlice Slice; 4010 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4011 return 0; 4012 4013 if (Slice.Array == nullptr) 4014 return 1; 4015 4016 // Search for nul characters 4017 unsigned NullIndex = 0; 4018 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4019 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4020 break; 4021 } 4022 4023 return NullIndex + 1; 4024 } 4025 4026 /// If we can compute the length of the string pointed to by 4027 /// the specified pointer, return 'len+1'. If we can't, return 0. 4028 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4029 if (!V->getType()->isPointerTy()) 4030 return 0; 4031 4032 SmallPtrSet<const PHINode*, 32> PHIs; 4033 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4034 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4035 // an empty string as a length. 4036 return Len == ~0ULL ? 1 : Len; 4037 } 4038 4039 const Value * 4040 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4041 bool MustPreserveNullness) { 4042 assert(Call && 4043 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4044 if (const Value *RV = Call->getReturnedArgOperand()) 4045 return RV; 4046 // This can be used only as a aliasing property. 4047 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4048 Call, MustPreserveNullness)) 4049 return Call->getArgOperand(0); 4050 return nullptr; 4051 } 4052 4053 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4054 const CallBase *Call, bool MustPreserveNullness) { 4055 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4056 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4057 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4058 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4059 (!MustPreserveNullness && 4060 Call->getIntrinsicID() == Intrinsic::ptrmask); 4061 } 4062 4063 /// \p PN defines a loop-variant pointer to an object. Check if the 4064 /// previous iteration of the loop was referring to the same object as \p PN. 4065 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4066 const LoopInfo *LI) { 4067 // Find the loop-defined value. 4068 Loop *L = LI->getLoopFor(PN->getParent()); 4069 if (PN->getNumIncomingValues() != 2) 4070 return true; 4071 4072 // Find the value from previous iteration. 4073 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4074 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4075 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4076 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4077 return true; 4078 4079 // If a new pointer is loaded in the loop, the pointer references a different 4080 // object in every iteration. E.g.: 4081 // for (i) 4082 // int *p = a[i]; 4083 // ... 4084 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4085 if (!L->isLoopInvariant(Load->getPointerOperand())) 4086 return false; 4087 return true; 4088 } 4089 4090 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4091 unsigned MaxLookup) { 4092 if (!V->getType()->isPointerTy()) 4093 return V; 4094 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4095 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4096 V = GEP->getPointerOperand(); 4097 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4098 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4099 V = cast<Operator>(V)->getOperand(0); 4100 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4101 if (GA->isInterposable()) 4102 return V; 4103 V = GA->getAliasee(); 4104 } else if (isa<AllocaInst>(V)) { 4105 // An alloca can't be further simplified. 4106 return V; 4107 } else { 4108 if (auto *Call = dyn_cast<CallBase>(V)) { 4109 // CaptureTracking can know about special capturing properties of some 4110 // intrinsics like launder.invariant.group, that can't be expressed with 4111 // the attributes, but have properties like returning aliasing pointer. 4112 // Because some analysis may assume that nocaptured pointer is not 4113 // returned from some special intrinsic (because function would have to 4114 // be marked with returns attribute), it is crucial to use this function 4115 // because it should be in sync with CaptureTracking. Not using it may 4116 // cause weird miscompilations where 2 aliasing pointers are assumed to 4117 // noalias. 4118 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4119 V = RP; 4120 continue; 4121 } 4122 } 4123 4124 // See if InstructionSimplify knows any relevant tricks. 4125 if (Instruction *I = dyn_cast<Instruction>(V)) 4126 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4127 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4128 V = Simplified; 4129 continue; 4130 } 4131 4132 return V; 4133 } 4134 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4135 } 4136 return V; 4137 } 4138 4139 void llvm::GetUnderlyingObjects(const Value *V, 4140 SmallVectorImpl<const Value *> &Objects, 4141 const DataLayout &DL, LoopInfo *LI, 4142 unsigned MaxLookup) { 4143 SmallPtrSet<const Value *, 4> Visited; 4144 SmallVector<const Value *, 4> Worklist; 4145 Worklist.push_back(V); 4146 do { 4147 const Value *P = Worklist.pop_back_val(); 4148 P = GetUnderlyingObject(P, DL, MaxLookup); 4149 4150 if (!Visited.insert(P).second) 4151 continue; 4152 4153 if (auto *SI = dyn_cast<SelectInst>(P)) { 4154 Worklist.push_back(SI->getTrueValue()); 4155 Worklist.push_back(SI->getFalseValue()); 4156 continue; 4157 } 4158 4159 if (auto *PN = dyn_cast<PHINode>(P)) { 4160 // If this PHI changes the underlying object in every iteration of the 4161 // loop, don't look through it. Consider: 4162 // int **A; 4163 // for (i) { 4164 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4165 // Curr = A[i]; 4166 // *Prev, *Curr; 4167 // 4168 // Prev is tracking Curr one iteration behind so they refer to different 4169 // underlying objects. 4170 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4171 isSameUnderlyingObjectInLoop(PN, LI)) 4172 for (Value *IncValue : PN->incoming_values()) 4173 Worklist.push_back(IncValue); 4174 continue; 4175 } 4176 4177 Objects.push_back(P); 4178 } while (!Worklist.empty()); 4179 } 4180 4181 /// This is the function that does the work of looking through basic 4182 /// ptrtoint+arithmetic+inttoptr sequences. 4183 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4184 do { 4185 if (const Operator *U = dyn_cast<Operator>(V)) { 4186 // If we find a ptrtoint, we can transfer control back to the 4187 // regular getUnderlyingObjectFromInt. 4188 if (U->getOpcode() == Instruction::PtrToInt) 4189 return U->getOperand(0); 4190 // If we find an add of a constant, a multiplied value, or a phi, it's 4191 // likely that the other operand will lead us to the base 4192 // object. We don't have to worry about the case where the 4193 // object address is somehow being computed by the multiply, 4194 // because our callers only care when the result is an 4195 // identifiable object. 4196 if (U->getOpcode() != Instruction::Add || 4197 (!isa<ConstantInt>(U->getOperand(1)) && 4198 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4199 !isa<PHINode>(U->getOperand(1)))) 4200 return V; 4201 V = U->getOperand(0); 4202 } else { 4203 return V; 4204 } 4205 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4206 } while (true); 4207 } 4208 4209 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4210 /// ptrtoint+arithmetic+inttoptr sequences. 4211 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4212 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4213 SmallVectorImpl<Value *> &Objects, 4214 const DataLayout &DL) { 4215 SmallPtrSet<const Value *, 16> Visited; 4216 SmallVector<const Value *, 4> Working(1, V); 4217 do { 4218 V = Working.pop_back_val(); 4219 4220 SmallVector<const Value *, 4> Objs; 4221 GetUnderlyingObjects(V, Objs, DL); 4222 4223 for (const Value *V : Objs) { 4224 if (!Visited.insert(V).second) 4225 continue; 4226 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4227 const Value *O = 4228 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4229 if (O->getType()->isPointerTy()) { 4230 Working.push_back(O); 4231 continue; 4232 } 4233 } 4234 // If GetUnderlyingObjects fails to find an identifiable object, 4235 // getUnderlyingObjectsForCodeGen also fails for safety. 4236 if (!isIdentifiedObject(V)) { 4237 Objects.clear(); 4238 return false; 4239 } 4240 Objects.push_back(const_cast<Value *>(V)); 4241 } 4242 } while (!Working.empty()); 4243 return true; 4244 } 4245 4246 /// Return true if the only users of this pointer are lifetime markers. 4247 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4248 for (const User *U : V->users()) { 4249 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4250 if (!II) return false; 4251 4252 if (!II->isLifetimeStartOrEnd()) 4253 return false; 4254 } 4255 return true; 4256 } 4257 4258 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4259 if (!LI.isUnordered()) 4260 return true; 4261 const Function &F = *LI.getFunction(); 4262 // Speculative load may create a race that did not exist in the source. 4263 return F.hasFnAttribute(Attribute::SanitizeThread) || 4264 // Speculative load may load data from dirty regions. 4265 F.hasFnAttribute(Attribute::SanitizeAddress) || 4266 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4267 } 4268 4269 4270 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4271 const Instruction *CtxI, 4272 const DominatorTree *DT) { 4273 const Operator *Inst = dyn_cast<Operator>(V); 4274 if (!Inst) 4275 return false; 4276 4277 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4278 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4279 if (C->canTrap()) 4280 return false; 4281 4282 switch (Inst->getOpcode()) { 4283 default: 4284 return true; 4285 case Instruction::UDiv: 4286 case Instruction::URem: { 4287 // x / y is undefined if y == 0. 4288 const APInt *V; 4289 if (match(Inst->getOperand(1), m_APInt(V))) 4290 return *V != 0; 4291 return false; 4292 } 4293 case Instruction::SDiv: 4294 case Instruction::SRem: { 4295 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4296 const APInt *Numerator, *Denominator; 4297 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4298 return false; 4299 // We cannot hoist this division if the denominator is 0. 4300 if (*Denominator == 0) 4301 return false; 4302 // It's safe to hoist if the denominator is not 0 or -1. 4303 if (*Denominator != -1) 4304 return true; 4305 // At this point we know that the denominator is -1. It is safe to hoist as 4306 // long we know that the numerator is not INT_MIN. 4307 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4308 return !Numerator->isMinSignedValue(); 4309 // The numerator *might* be MinSignedValue. 4310 return false; 4311 } 4312 case Instruction::Load: { 4313 const LoadInst *LI = cast<LoadInst>(Inst); 4314 if (mustSuppressSpeculation(*LI)) 4315 return false; 4316 const DataLayout &DL = LI->getModule()->getDataLayout(); 4317 return isDereferenceableAndAlignedPointer( 4318 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4319 DL, CtxI, DT); 4320 } 4321 case Instruction::Call: { 4322 auto *CI = cast<const CallInst>(Inst); 4323 const Function *Callee = CI->getCalledFunction(); 4324 4325 // The called function could have undefined behavior or side-effects, even 4326 // if marked readnone nounwind. 4327 return Callee && Callee->isSpeculatable(); 4328 } 4329 case Instruction::VAArg: 4330 case Instruction::Alloca: 4331 case Instruction::Invoke: 4332 case Instruction::CallBr: 4333 case Instruction::PHI: 4334 case Instruction::Store: 4335 case Instruction::Ret: 4336 case Instruction::Br: 4337 case Instruction::IndirectBr: 4338 case Instruction::Switch: 4339 case Instruction::Unreachable: 4340 case Instruction::Fence: 4341 case Instruction::AtomicRMW: 4342 case Instruction::AtomicCmpXchg: 4343 case Instruction::LandingPad: 4344 case Instruction::Resume: 4345 case Instruction::CatchSwitch: 4346 case Instruction::CatchPad: 4347 case Instruction::CatchRet: 4348 case Instruction::CleanupPad: 4349 case Instruction::CleanupRet: 4350 return false; // Misc instructions which have effects 4351 } 4352 } 4353 4354 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4355 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4356 } 4357 4358 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4359 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4360 switch (OR) { 4361 case ConstantRange::OverflowResult::MayOverflow: 4362 return OverflowResult::MayOverflow; 4363 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4364 return OverflowResult::AlwaysOverflowsLow; 4365 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4366 return OverflowResult::AlwaysOverflowsHigh; 4367 case ConstantRange::OverflowResult::NeverOverflows: 4368 return OverflowResult::NeverOverflows; 4369 } 4370 llvm_unreachable("Unknown OverflowResult"); 4371 } 4372 4373 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4374 static ConstantRange computeConstantRangeIncludingKnownBits( 4375 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4376 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4377 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4378 KnownBits Known = computeKnownBits( 4379 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4380 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4381 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4382 ConstantRange::PreferredRangeType RangeType = 4383 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4384 return CR1.intersectWith(CR2, RangeType); 4385 } 4386 4387 OverflowResult llvm::computeOverflowForUnsignedMul( 4388 const Value *LHS, const Value *RHS, const DataLayout &DL, 4389 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4390 bool UseInstrInfo) { 4391 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4392 nullptr, UseInstrInfo); 4393 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4394 nullptr, UseInstrInfo); 4395 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4396 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4397 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4398 } 4399 4400 OverflowResult 4401 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4402 const DataLayout &DL, AssumptionCache *AC, 4403 const Instruction *CxtI, 4404 const DominatorTree *DT, bool UseInstrInfo) { 4405 // Multiplying n * m significant bits yields a result of n + m significant 4406 // bits. If the total number of significant bits does not exceed the 4407 // result bit width (minus 1), there is no overflow. 4408 // This means if we have enough leading sign bits in the operands 4409 // we can guarantee that the result does not overflow. 4410 // Ref: "Hacker's Delight" by Henry Warren 4411 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4412 4413 // Note that underestimating the number of sign bits gives a more 4414 // conservative answer. 4415 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4416 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4417 4418 // First handle the easy case: if we have enough sign bits there's 4419 // definitely no overflow. 4420 if (SignBits > BitWidth + 1) 4421 return OverflowResult::NeverOverflows; 4422 4423 // There are two ambiguous cases where there can be no overflow: 4424 // SignBits == BitWidth + 1 and 4425 // SignBits == BitWidth 4426 // The second case is difficult to check, therefore we only handle the 4427 // first case. 4428 if (SignBits == BitWidth + 1) { 4429 // It overflows only when both arguments are negative and the true 4430 // product is exactly the minimum negative number. 4431 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4432 // For simplicity we just check if at least one side is not negative. 4433 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4434 nullptr, UseInstrInfo); 4435 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4436 nullptr, UseInstrInfo); 4437 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4438 return OverflowResult::NeverOverflows; 4439 } 4440 return OverflowResult::MayOverflow; 4441 } 4442 4443 OverflowResult llvm::computeOverflowForUnsignedAdd( 4444 const Value *LHS, const Value *RHS, const DataLayout &DL, 4445 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4446 bool UseInstrInfo) { 4447 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4448 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4449 nullptr, UseInstrInfo); 4450 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4451 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4452 nullptr, UseInstrInfo); 4453 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4454 } 4455 4456 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4457 const Value *RHS, 4458 const AddOperator *Add, 4459 const DataLayout &DL, 4460 AssumptionCache *AC, 4461 const Instruction *CxtI, 4462 const DominatorTree *DT) { 4463 if (Add && Add->hasNoSignedWrap()) { 4464 return OverflowResult::NeverOverflows; 4465 } 4466 4467 // If LHS and RHS each have at least two sign bits, the addition will look 4468 // like 4469 // 4470 // XX..... + 4471 // YY..... 4472 // 4473 // If the carry into the most significant position is 0, X and Y can't both 4474 // be 1 and therefore the carry out of the addition is also 0. 4475 // 4476 // If the carry into the most significant position is 1, X and Y can't both 4477 // be 0 and therefore the carry out of the addition is also 1. 4478 // 4479 // Since the carry into the most significant position is always equal to 4480 // the carry out of the addition, there is no signed overflow. 4481 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4482 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4483 return OverflowResult::NeverOverflows; 4484 4485 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4486 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4487 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4488 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4489 OverflowResult OR = 4490 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4491 if (OR != OverflowResult::MayOverflow) 4492 return OR; 4493 4494 // The remaining code needs Add to be available. Early returns if not so. 4495 if (!Add) 4496 return OverflowResult::MayOverflow; 4497 4498 // If the sign of Add is the same as at least one of the operands, this add 4499 // CANNOT overflow. If this can be determined from the known bits of the 4500 // operands the above signedAddMayOverflow() check will have already done so. 4501 // The only other way to improve on the known bits is from an assumption, so 4502 // call computeKnownBitsFromAssume() directly. 4503 bool LHSOrRHSKnownNonNegative = 4504 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4505 bool LHSOrRHSKnownNegative = 4506 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4507 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4508 KnownBits AddKnown(LHSRange.getBitWidth()); 4509 computeKnownBitsFromAssume( 4510 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4511 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4512 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4513 return OverflowResult::NeverOverflows; 4514 } 4515 4516 return OverflowResult::MayOverflow; 4517 } 4518 4519 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4520 const Value *RHS, 4521 const DataLayout &DL, 4522 AssumptionCache *AC, 4523 const Instruction *CxtI, 4524 const DominatorTree *DT) { 4525 // Checking for conditions implied by dominating conditions may be expensive. 4526 // Limit it to usub_with_overflow calls for now. 4527 if (match(CxtI, 4528 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4529 if (auto C = 4530 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4531 if (*C) 4532 return OverflowResult::NeverOverflows; 4533 return OverflowResult::AlwaysOverflowsLow; 4534 } 4535 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4536 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4537 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4538 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4539 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4540 } 4541 4542 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4543 const Value *RHS, 4544 const DataLayout &DL, 4545 AssumptionCache *AC, 4546 const Instruction *CxtI, 4547 const DominatorTree *DT) { 4548 // If LHS and RHS each have at least two sign bits, the subtraction 4549 // cannot overflow. 4550 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4551 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4552 return OverflowResult::NeverOverflows; 4553 4554 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4555 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4556 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4557 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4558 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4559 } 4560 4561 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4562 const DominatorTree &DT) { 4563 SmallVector<const BranchInst *, 2> GuardingBranches; 4564 SmallVector<const ExtractValueInst *, 2> Results; 4565 4566 for (const User *U : WO->users()) { 4567 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4568 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4569 4570 if (EVI->getIndices()[0] == 0) 4571 Results.push_back(EVI); 4572 else { 4573 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4574 4575 for (const auto *U : EVI->users()) 4576 if (const auto *B = dyn_cast<BranchInst>(U)) { 4577 assert(B->isConditional() && "How else is it using an i1?"); 4578 GuardingBranches.push_back(B); 4579 } 4580 } 4581 } else { 4582 // We are using the aggregate directly in a way we don't want to analyze 4583 // here (storing it to a global, say). 4584 return false; 4585 } 4586 } 4587 4588 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4589 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4590 if (!NoWrapEdge.isSingleEdge()) 4591 return false; 4592 4593 // Check if all users of the add are provably no-wrap. 4594 for (const auto *Result : Results) { 4595 // If the extractvalue itself is not executed on overflow, the we don't 4596 // need to check each use separately, since domination is transitive. 4597 if (DT.dominates(NoWrapEdge, Result->getParent())) 4598 continue; 4599 4600 for (auto &RU : Result->uses()) 4601 if (!DT.dominates(NoWrapEdge, RU)) 4602 return false; 4603 } 4604 4605 return true; 4606 }; 4607 4608 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4609 } 4610 4611 bool llvm::canCreatePoison(const Instruction *I) { 4612 // See whether I has flags that may create poison 4613 if (isa<OverflowingBinaryOperator>(I) && 4614 (I->hasNoSignedWrap() || I->hasNoUnsignedWrap())) 4615 return true; 4616 if (isa<PossiblyExactOperator>(I) && I->isExact()) 4617 return true; 4618 if (auto *FP = dyn_cast<FPMathOperator>(I)) { 4619 auto FMF = FP->getFastMathFlags(); 4620 if (FMF.noNaNs() || FMF.noInfs()) 4621 return true; 4622 } 4623 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4624 if (GEP->isInBounds()) 4625 return true; 4626 4627 unsigned Opcode = I->getOpcode(); 4628 4629 // Check whether opcode is a poison-generating operation 4630 switch (Opcode) { 4631 case Instruction::Shl: 4632 case Instruction::AShr: 4633 case Instruction::LShr: { 4634 // Shifts return poison if shiftwidth is larger than the bitwidth. 4635 if (auto *C = dyn_cast<Constant>(I->getOperand(1))) { 4636 SmallVector<Constant *, 4> ShiftAmounts; 4637 if (C->getType()->isVectorTy()) { 4638 unsigned NumElts = cast<VectorType>(C->getType())->getNumElements(); 4639 for (unsigned i = 0; i < NumElts; ++i) 4640 ShiftAmounts.push_back(C->getAggregateElement(i)); 4641 } else 4642 ShiftAmounts.push_back(C); 4643 4644 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4645 auto *CI = dyn_cast<ConstantInt>(C); 4646 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4647 }); 4648 return !Safe; 4649 } 4650 return true; 4651 } 4652 case Instruction::FPToSI: 4653 case Instruction::FPToUI: 4654 // fptosi/ui yields poison if the resulting value does not fit in the 4655 // destination type. 4656 return true; 4657 case Instruction::Call: 4658 case Instruction::CallBr: 4659 case Instruction::Invoke: 4660 // Function calls can return a poison value even if args are non-poison 4661 // values. 4662 return true; 4663 case Instruction::InsertElement: 4664 case Instruction::ExtractElement: { 4665 // If index exceeds the length of the vector, it returns poison 4666 auto *VTy = cast<VectorType>(I->getOperand(0)->getType()); 4667 unsigned IdxOp = I->getOpcode() == Instruction::InsertElement ? 2 : 1; 4668 auto *Idx = dyn_cast<ConstantInt>(I->getOperand(IdxOp)); 4669 if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min) 4670 return true; 4671 return false; 4672 } 4673 case Instruction::FNeg: 4674 case Instruction::PHI: 4675 case Instruction::Select: 4676 case Instruction::URem: 4677 case Instruction::SRem: 4678 case Instruction::ShuffleVector: 4679 case Instruction::ExtractValue: 4680 case Instruction::InsertValue: 4681 case Instruction::Freeze: 4682 case Instruction::ICmp: 4683 case Instruction::FCmp: 4684 case Instruction::GetElementPtr: 4685 return false; 4686 default: 4687 if (isa<CastInst>(I)) 4688 return false; 4689 else if (isa<BinaryOperator>(I)) 4690 return false; 4691 // Be conservative and return true. 4692 return true; 4693 } 4694 } 4695 4696 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4697 const Instruction *CtxI, 4698 const DominatorTree *DT, 4699 unsigned Depth) { 4700 if (Depth >= MaxDepth) 4701 return false; 4702 4703 // If the value is a freeze instruction, then it can never 4704 // be undef or poison. 4705 if (isa<FreezeInst>(V)) 4706 return true; 4707 // TODO: Some instructions are guaranteed to return neither undef 4708 // nor poison if their arguments are not poison/undef. 4709 4710 if (auto *C = dyn_cast<Constant>(V)) { 4711 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4712 // possibility of poison. 4713 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4714 return false; 4715 4716 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4717 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4718 return true; 4719 4720 if (C->getType()->isVectorTy()) 4721 return !C->containsUndefElement() && !C->containsConstantExpression(); 4722 4723 // TODO: Recursively analyze aggregates or other constants. 4724 return false; 4725 } 4726 4727 // Strip cast operations from a pointer value. 4728 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4729 // inbounds with zero offset. To guarantee that the result isn't poison, the 4730 // stripped pointer is checked as it has to be pointing into an allocated 4731 // object or be null `null` to ensure `inbounds` getelement pointers with a 4732 // zero offset could not produce poison. 4733 // It can strip off addrspacecast that do not change bit representation as 4734 // well. We believe that such addrspacecast is equivalent to no-op. 4735 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4736 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4737 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4738 return true; 4739 4740 auto OpCheck = [&](const Value *V) { 4741 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4742 }; 4743 4744 if (auto *I = dyn_cast<Instruction>(V)) { 4745 switch (I->getOpcode()) { 4746 case Instruction::GetElementPtr: { 4747 auto *GEPI = dyn_cast<GetElementPtrInst>(I); 4748 if (!GEPI->isInBounds() && llvm::all_of(GEPI->operands(), OpCheck)) 4749 return true; 4750 break; 4751 } 4752 case Instruction::FCmp: { 4753 auto *FI = dyn_cast<FCmpInst>(I); 4754 if (FI->getFastMathFlags().none() && 4755 llvm::all_of(FI->operands(), OpCheck)) 4756 return true; 4757 break; 4758 } 4759 case Instruction::BitCast: 4760 case Instruction::PHI: 4761 case Instruction::ICmp: 4762 if (llvm::all_of(I->operands(), OpCheck)) 4763 return true; 4764 break; 4765 default: 4766 break; 4767 } 4768 4769 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4770 // Note: once we have an agreement that poison is a value-wise concept, 4771 // we can remove the isIntegerTy(1) constraint. 4772 return true; 4773 } 4774 4775 // CxtI may be null or a cloned instruction. 4776 if (!CtxI || !CtxI->getParent() || !DT) 4777 return false; 4778 4779 // If V is used as a branch condition before reaching CtxI, V cannot be 4780 // undef or poison. 4781 // br V, BB1, BB2 4782 // BB1: 4783 // CtxI ; V cannot be undef or poison here 4784 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4785 while (Dominator) { 4786 auto *TI = Dominator->getBlock()->getTerminator(); 4787 4788 if (auto BI = dyn_cast<BranchInst>(TI)) { 4789 if (BI->isConditional() && BI->getCondition() == V) 4790 return true; 4791 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4792 if (SI->getCondition() == V) 4793 return true; 4794 } 4795 4796 Dominator = Dominator->getIDom(); 4797 } 4798 4799 return false; 4800 } 4801 4802 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4803 const DataLayout &DL, 4804 AssumptionCache *AC, 4805 const Instruction *CxtI, 4806 const DominatorTree *DT) { 4807 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4808 Add, DL, AC, CxtI, DT); 4809 } 4810 4811 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4812 const Value *RHS, 4813 const DataLayout &DL, 4814 AssumptionCache *AC, 4815 const Instruction *CxtI, 4816 const DominatorTree *DT) { 4817 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4818 } 4819 4820 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4821 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4822 // of time because it's possible for another thread to interfere with it for an 4823 // arbitrary length of time, but programs aren't allowed to rely on that. 4824 4825 // If there is no successor, then execution can't transfer to it. 4826 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4827 return !CRI->unwindsToCaller(); 4828 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4829 return !CatchSwitch->unwindsToCaller(); 4830 if (isa<ResumeInst>(I)) 4831 return false; 4832 if (isa<ReturnInst>(I)) 4833 return false; 4834 if (isa<UnreachableInst>(I)) 4835 return false; 4836 4837 // Calls can throw, or contain an infinite loop, or kill the process. 4838 if (const auto *CB = dyn_cast<CallBase>(I)) { 4839 // Call sites that throw have implicit non-local control flow. 4840 if (!CB->doesNotThrow()) 4841 return false; 4842 4843 // A function which doens't throw and has "willreturn" attribute will 4844 // always return. 4845 if (CB->hasFnAttr(Attribute::WillReturn)) 4846 return true; 4847 4848 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4849 // etc. and thus not return. However, LLVM already assumes that 4850 // 4851 // - Thread exiting actions are modeled as writes to memory invisible to 4852 // the program. 4853 // 4854 // - Loops that don't have side effects (side effects are volatile/atomic 4855 // stores and IO) always terminate (see http://llvm.org/PR965). 4856 // Furthermore IO itself is also modeled as writes to memory invisible to 4857 // the program. 4858 // 4859 // We rely on those assumptions here, and use the memory effects of the call 4860 // target as a proxy for checking that it always returns. 4861 4862 // FIXME: This isn't aggressive enough; a call which only writes to a global 4863 // is guaranteed to return. 4864 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4865 } 4866 4867 // Other instructions return normally. 4868 return true; 4869 } 4870 4871 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4872 // TODO: This is slightly conservative for invoke instruction since exiting 4873 // via an exception *is* normal control for them. 4874 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4875 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4876 return false; 4877 return true; 4878 } 4879 4880 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4881 const Loop *L) { 4882 // The loop header is guaranteed to be executed for every iteration. 4883 // 4884 // FIXME: Relax this constraint to cover all basic blocks that are 4885 // guaranteed to be executed at every iteration. 4886 if (I->getParent() != L->getHeader()) return false; 4887 4888 for (const Instruction &LI : *L->getHeader()) { 4889 if (&LI == I) return true; 4890 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4891 } 4892 llvm_unreachable("Instruction not contained in its own parent basic block."); 4893 } 4894 4895 bool llvm::propagatesPoison(const Instruction *I) { 4896 // TODO: This should include all instructions apart from phis, selects and 4897 // call-like instructions. 4898 switch (I->getOpcode()) { 4899 case Instruction::Add: 4900 case Instruction::Sub: 4901 case Instruction::Xor: 4902 case Instruction::Trunc: 4903 case Instruction::BitCast: 4904 case Instruction::AddrSpaceCast: 4905 case Instruction::Mul: 4906 case Instruction::Shl: 4907 case Instruction::GetElementPtr: 4908 // These operations all propagate poison unconditionally. Note that poison 4909 // is not any particular value, so xor or subtraction of poison with 4910 // itself still yields poison, not zero. 4911 return true; 4912 4913 case Instruction::AShr: 4914 case Instruction::SExt: 4915 // For these operations, one bit of the input is replicated across 4916 // multiple output bits. A replicated poison bit is still poison. 4917 return true; 4918 4919 case Instruction::ICmp: 4920 // Comparing poison with any value yields poison. This is why, for 4921 // instance, x s< (x +nsw 1) can be folded to true. 4922 return true; 4923 4924 default: 4925 return false; 4926 } 4927 } 4928 4929 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) { 4930 switch (I->getOpcode()) { 4931 case Instruction::Store: 4932 return cast<StoreInst>(I)->getPointerOperand(); 4933 4934 case Instruction::Load: 4935 return cast<LoadInst>(I)->getPointerOperand(); 4936 4937 case Instruction::AtomicCmpXchg: 4938 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4939 4940 case Instruction::AtomicRMW: 4941 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4942 4943 case Instruction::UDiv: 4944 case Instruction::SDiv: 4945 case Instruction::URem: 4946 case Instruction::SRem: 4947 return I->getOperand(1); 4948 4949 case Instruction::Call: 4950 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4951 switch (II->getIntrinsicID()) { 4952 case Intrinsic::assume: 4953 return II->getArgOperand(0); 4954 default: 4955 return nullptr; 4956 } 4957 } 4958 return nullptr; 4959 4960 default: 4961 return nullptr; 4962 } 4963 } 4964 4965 bool llvm::mustTriggerUB(const Instruction *I, 4966 const SmallSet<const Value *, 16>& KnownPoison) { 4967 auto *NotPoison = getGuaranteedNonPoisonOp(I); 4968 return (NotPoison && KnownPoison.count(NotPoison)); 4969 } 4970 4971 4972 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 4973 // We currently only look for uses of poison values within the same basic 4974 // block, as that makes it easier to guarantee that the uses will be 4975 // executed given that PoisonI is executed. 4976 // 4977 // FIXME: Expand this to consider uses beyond the same basic block. To do 4978 // this, look out for the distinction between post-dominance and strong 4979 // post-dominance. 4980 const BasicBlock *BB = PoisonI->getParent(); 4981 4982 // Set of instructions that we have proved will yield poison if PoisonI 4983 // does. 4984 SmallSet<const Value *, 16> YieldsPoison; 4985 SmallSet<const BasicBlock *, 4> Visited; 4986 YieldsPoison.insert(PoisonI); 4987 Visited.insert(PoisonI->getParent()); 4988 4989 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4990 4991 unsigned Iter = 0; 4992 while (Iter++ < MaxDepth) { 4993 for (auto &I : make_range(Begin, End)) { 4994 if (&I != PoisonI) { 4995 if (mustTriggerUB(&I, YieldsPoison)) 4996 return true; 4997 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4998 return false; 4999 } 5000 5001 // Mark poison that propagates from I through uses of I. 5002 if (YieldsPoison.count(&I)) { 5003 for (const User *User : I.users()) { 5004 const Instruction *UserI = cast<Instruction>(User); 5005 if (propagatesPoison(UserI)) 5006 YieldsPoison.insert(User); 5007 } 5008 } 5009 } 5010 5011 if (auto *NextBB = BB->getSingleSuccessor()) { 5012 if (Visited.insert(NextBB).second) { 5013 BB = NextBB; 5014 Begin = BB->getFirstNonPHI()->getIterator(); 5015 End = BB->end(); 5016 continue; 5017 } 5018 } 5019 5020 break; 5021 } 5022 return false; 5023 } 5024 5025 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5026 if (FMF.noNaNs()) 5027 return true; 5028 5029 if (auto *C = dyn_cast<ConstantFP>(V)) 5030 return !C->isNaN(); 5031 5032 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5033 if (!C->getElementType()->isFloatingPointTy()) 5034 return false; 5035 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5036 if (C->getElementAsAPFloat(I).isNaN()) 5037 return false; 5038 } 5039 return true; 5040 } 5041 5042 if (isa<ConstantAggregateZero>(V)) 5043 return true; 5044 5045 return false; 5046 } 5047 5048 static bool isKnownNonZero(const Value *V) { 5049 if (auto *C = dyn_cast<ConstantFP>(V)) 5050 return !C->isZero(); 5051 5052 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5053 if (!C->getElementType()->isFloatingPointTy()) 5054 return false; 5055 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5056 if (C->getElementAsAPFloat(I).isZero()) 5057 return false; 5058 } 5059 return true; 5060 } 5061 5062 return false; 5063 } 5064 5065 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5066 /// Given non-min/max outer cmp/select from the clamp pattern this 5067 /// function recognizes if it can be substitued by a "canonical" min/max 5068 /// pattern. 5069 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5070 Value *CmpLHS, Value *CmpRHS, 5071 Value *TrueVal, Value *FalseVal, 5072 Value *&LHS, Value *&RHS) { 5073 // Try to match 5074 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5075 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5076 // and return description of the outer Max/Min. 5077 5078 // First, check if select has inverse order: 5079 if (CmpRHS == FalseVal) { 5080 std::swap(TrueVal, FalseVal); 5081 Pred = CmpInst::getInversePredicate(Pred); 5082 } 5083 5084 // Assume success now. If there's no match, callers should not use these anyway. 5085 LHS = TrueVal; 5086 RHS = FalseVal; 5087 5088 const APFloat *FC1; 5089 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5090 return {SPF_UNKNOWN, SPNB_NA, false}; 5091 5092 const APFloat *FC2; 5093 switch (Pred) { 5094 case CmpInst::FCMP_OLT: 5095 case CmpInst::FCMP_OLE: 5096 case CmpInst::FCMP_ULT: 5097 case CmpInst::FCMP_ULE: 5098 if (match(FalseVal, 5099 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5100 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5101 *FC1 < *FC2) 5102 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5103 break; 5104 case CmpInst::FCMP_OGT: 5105 case CmpInst::FCMP_OGE: 5106 case CmpInst::FCMP_UGT: 5107 case CmpInst::FCMP_UGE: 5108 if (match(FalseVal, 5109 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5110 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5111 *FC1 > *FC2) 5112 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5113 break; 5114 default: 5115 break; 5116 } 5117 5118 return {SPF_UNKNOWN, SPNB_NA, false}; 5119 } 5120 5121 /// Recognize variations of: 5122 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5123 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5124 Value *CmpLHS, Value *CmpRHS, 5125 Value *TrueVal, Value *FalseVal) { 5126 // Swap the select operands and predicate to match the patterns below. 5127 if (CmpRHS != TrueVal) { 5128 Pred = ICmpInst::getSwappedPredicate(Pred); 5129 std::swap(TrueVal, FalseVal); 5130 } 5131 const APInt *C1; 5132 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5133 const APInt *C2; 5134 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5135 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5136 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5137 return {SPF_SMAX, SPNB_NA, false}; 5138 5139 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5140 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5141 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5142 return {SPF_SMIN, SPNB_NA, false}; 5143 5144 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5145 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5146 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5147 return {SPF_UMAX, SPNB_NA, false}; 5148 5149 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5150 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5151 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5152 return {SPF_UMIN, SPNB_NA, false}; 5153 } 5154 return {SPF_UNKNOWN, SPNB_NA, false}; 5155 } 5156 5157 /// Recognize variations of: 5158 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5159 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5160 Value *CmpLHS, Value *CmpRHS, 5161 Value *TVal, Value *FVal, 5162 unsigned Depth) { 5163 // TODO: Allow FP min/max with nnan/nsz. 5164 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5165 5166 Value *A = nullptr, *B = nullptr; 5167 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5168 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5169 return {SPF_UNKNOWN, SPNB_NA, false}; 5170 5171 Value *C = nullptr, *D = nullptr; 5172 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5173 if (L.Flavor != R.Flavor) 5174 return {SPF_UNKNOWN, SPNB_NA, false}; 5175 5176 // We have something like: x Pred y ? min(a, b) : min(c, d). 5177 // Try to match the compare to the min/max operations of the select operands. 5178 // First, make sure we have the right compare predicate. 5179 switch (L.Flavor) { 5180 case SPF_SMIN: 5181 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5182 Pred = ICmpInst::getSwappedPredicate(Pred); 5183 std::swap(CmpLHS, CmpRHS); 5184 } 5185 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5186 break; 5187 return {SPF_UNKNOWN, SPNB_NA, false}; 5188 case SPF_SMAX: 5189 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5190 Pred = ICmpInst::getSwappedPredicate(Pred); 5191 std::swap(CmpLHS, CmpRHS); 5192 } 5193 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5194 break; 5195 return {SPF_UNKNOWN, SPNB_NA, false}; 5196 case SPF_UMIN: 5197 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5198 Pred = ICmpInst::getSwappedPredicate(Pred); 5199 std::swap(CmpLHS, CmpRHS); 5200 } 5201 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5202 break; 5203 return {SPF_UNKNOWN, SPNB_NA, false}; 5204 case SPF_UMAX: 5205 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5206 Pred = ICmpInst::getSwappedPredicate(Pred); 5207 std::swap(CmpLHS, CmpRHS); 5208 } 5209 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5210 break; 5211 return {SPF_UNKNOWN, SPNB_NA, false}; 5212 default: 5213 return {SPF_UNKNOWN, SPNB_NA, false}; 5214 } 5215 5216 // If there is a common operand in the already matched min/max and the other 5217 // min/max operands match the compare operands (either directly or inverted), 5218 // then this is min/max of the same flavor. 5219 5220 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5221 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5222 if (D == B) { 5223 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5224 match(A, m_Not(m_Specific(CmpRHS))))) 5225 return {L.Flavor, SPNB_NA, false}; 5226 } 5227 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5228 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5229 if (C == B) { 5230 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5231 match(A, m_Not(m_Specific(CmpRHS))))) 5232 return {L.Flavor, SPNB_NA, false}; 5233 } 5234 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5235 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5236 if (D == A) { 5237 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5238 match(B, m_Not(m_Specific(CmpRHS))))) 5239 return {L.Flavor, SPNB_NA, false}; 5240 } 5241 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5242 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5243 if (C == A) { 5244 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5245 match(B, m_Not(m_Specific(CmpRHS))))) 5246 return {L.Flavor, SPNB_NA, false}; 5247 } 5248 5249 return {SPF_UNKNOWN, SPNB_NA, false}; 5250 } 5251 5252 /// If the input value is the result of a 'not' op, constant integer, or vector 5253 /// splat of a constant integer, return the bitwise-not source value. 5254 /// TODO: This could be extended to handle non-splat vector integer constants. 5255 static Value *getNotValue(Value *V) { 5256 Value *NotV; 5257 if (match(V, m_Not(m_Value(NotV)))) 5258 return NotV; 5259 5260 const APInt *C; 5261 if (match(V, m_APInt(C))) 5262 return ConstantInt::get(V->getType(), ~(*C)); 5263 5264 return nullptr; 5265 } 5266 5267 /// Match non-obvious integer minimum and maximum sequences. 5268 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5269 Value *CmpLHS, Value *CmpRHS, 5270 Value *TrueVal, Value *FalseVal, 5271 Value *&LHS, Value *&RHS, 5272 unsigned Depth) { 5273 // Assume success. If there's no match, callers should not use these anyway. 5274 LHS = TrueVal; 5275 RHS = FalseVal; 5276 5277 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5278 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5279 return SPR; 5280 5281 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5282 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5283 return SPR; 5284 5285 // Look through 'not' ops to find disguised min/max. 5286 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5287 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5288 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5289 switch (Pred) { 5290 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5291 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5292 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5293 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5294 default: break; 5295 } 5296 } 5297 5298 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5299 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5300 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5301 switch (Pred) { 5302 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5303 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5304 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5305 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5306 default: break; 5307 } 5308 } 5309 5310 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5311 return {SPF_UNKNOWN, SPNB_NA, false}; 5312 5313 // Z = X -nsw Y 5314 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5315 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5316 if (match(TrueVal, m_Zero()) && 5317 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5318 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5319 5320 // Z = X -nsw Y 5321 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5322 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5323 if (match(FalseVal, m_Zero()) && 5324 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5325 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5326 5327 const APInt *C1; 5328 if (!match(CmpRHS, m_APInt(C1))) 5329 return {SPF_UNKNOWN, SPNB_NA, false}; 5330 5331 // An unsigned min/max can be written with a signed compare. 5332 const APInt *C2; 5333 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5334 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5335 // Is the sign bit set? 5336 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5337 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5338 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5339 C2->isMaxSignedValue()) 5340 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5341 5342 // Is the sign bit clear? 5343 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5344 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5345 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5346 C2->isMinSignedValue()) 5347 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5348 } 5349 5350 return {SPF_UNKNOWN, SPNB_NA, false}; 5351 } 5352 5353 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5354 assert(X && Y && "Invalid operand"); 5355 5356 // X = sub (0, Y) || X = sub nsw (0, Y) 5357 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5358 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5359 return true; 5360 5361 // Y = sub (0, X) || Y = sub nsw (0, X) 5362 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5363 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5364 return true; 5365 5366 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5367 Value *A, *B; 5368 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5369 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5370 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5371 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5372 } 5373 5374 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5375 FastMathFlags FMF, 5376 Value *CmpLHS, Value *CmpRHS, 5377 Value *TrueVal, Value *FalseVal, 5378 Value *&LHS, Value *&RHS, 5379 unsigned Depth) { 5380 if (CmpInst::isFPPredicate(Pred)) { 5381 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5382 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5383 // purpose of identifying min/max. Disregard vector constants with undefined 5384 // elements because those can not be back-propagated for analysis. 5385 Value *OutputZeroVal = nullptr; 5386 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5387 !cast<Constant>(TrueVal)->containsUndefElement()) 5388 OutputZeroVal = TrueVal; 5389 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5390 !cast<Constant>(FalseVal)->containsUndefElement()) 5391 OutputZeroVal = FalseVal; 5392 5393 if (OutputZeroVal) { 5394 if (match(CmpLHS, m_AnyZeroFP())) 5395 CmpLHS = OutputZeroVal; 5396 if (match(CmpRHS, m_AnyZeroFP())) 5397 CmpRHS = OutputZeroVal; 5398 } 5399 } 5400 5401 LHS = CmpLHS; 5402 RHS = CmpRHS; 5403 5404 // Signed zero may return inconsistent results between implementations. 5405 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5406 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5407 // Therefore, we behave conservatively and only proceed if at least one of the 5408 // operands is known to not be zero or if we don't care about signed zero. 5409 switch (Pred) { 5410 default: break; 5411 // FIXME: Include OGT/OLT/UGT/ULT. 5412 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5413 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5414 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5415 !isKnownNonZero(CmpRHS)) 5416 return {SPF_UNKNOWN, SPNB_NA, false}; 5417 } 5418 5419 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5420 bool Ordered = false; 5421 5422 // When given one NaN and one non-NaN input: 5423 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5424 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5425 // ordered comparison fails), which could be NaN or non-NaN. 5426 // so here we discover exactly what NaN behavior is required/accepted. 5427 if (CmpInst::isFPPredicate(Pred)) { 5428 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5429 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5430 5431 if (LHSSafe && RHSSafe) { 5432 // Both operands are known non-NaN. 5433 NaNBehavior = SPNB_RETURNS_ANY; 5434 } else if (CmpInst::isOrdered(Pred)) { 5435 // An ordered comparison will return false when given a NaN, so it 5436 // returns the RHS. 5437 Ordered = true; 5438 if (LHSSafe) 5439 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5440 NaNBehavior = SPNB_RETURNS_NAN; 5441 else if (RHSSafe) 5442 NaNBehavior = SPNB_RETURNS_OTHER; 5443 else 5444 // Completely unsafe. 5445 return {SPF_UNKNOWN, SPNB_NA, false}; 5446 } else { 5447 Ordered = false; 5448 // An unordered comparison will return true when given a NaN, so it 5449 // returns the LHS. 5450 if (LHSSafe) 5451 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5452 NaNBehavior = SPNB_RETURNS_OTHER; 5453 else if (RHSSafe) 5454 NaNBehavior = SPNB_RETURNS_NAN; 5455 else 5456 // Completely unsafe. 5457 return {SPF_UNKNOWN, SPNB_NA, false}; 5458 } 5459 } 5460 5461 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5462 std::swap(CmpLHS, CmpRHS); 5463 Pred = CmpInst::getSwappedPredicate(Pred); 5464 if (NaNBehavior == SPNB_RETURNS_NAN) 5465 NaNBehavior = SPNB_RETURNS_OTHER; 5466 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5467 NaNBehavior = SPNB_RETURNS_NAN; 5468 Ordered = !Ordered; 5469 } 5470 5471 // ([if]cmp X, Y) ? X : Y 5472 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5473 switch (Pred) { 5474 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5475 case ICmpInst::ICMP_UGT: 5476 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5477 case ICmpInst::ICMP_SGT: 5478 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5479 case ICmpInst::ICMP_ULT: 5480 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5481 case ICmpInst::ICMP_SLT: 5482 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5483 case FCmpInst::FCMP_UGT: 5484 case FCmpInst::FCMP_UGE: 5485 case FCmpInst::FCMP_OGT: 5486 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5487 case FCmpInst::FCMP_ULT: 5488 case FCmpInst::FCMP_ULE: 5489 case FCmpInst::FCMP_OLT: 5490 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5491 } 5492 } 5493 5494 if (isKnownNegation(TrueVal, FalseVal)) { 5495 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5496 // match against either LHS or sext(LHS). 5497 auto MaybeSExtCmpLHS = 5498 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5499 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5500 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5501 if (match(TrueVal, MaybeSExtCmpLHS)) { 5502 // Set the return values. If the compare uses the negated value (-X >s 0), 5503 // swap the return values because the negated value is always 'RHS'. 5504 LHS = TrueVal; 5505 RHS = FalseVal; 5506 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5507 std::swap(LHS, RHS); 5508 5509 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5510 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5511 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5512 return {SPF_ABS, SPNB_NA, false}; 5513 5514 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5515 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5516 return {SPF_ABS, SPNB_NA, false}; 5517 5518 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5519 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5520 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5521 return {SPF_NABS, SPNB_NA, false}; 5522 } 5523 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5524 // Set the return values. If the compare uses the negated value (-X >s 0), 5525 // swap the return values because the negated value is always 'RHS'. 5526 LHS = FalseVal; 5527 RHS = TrueVal; 5528 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5529 std::swap(LHS, RHS); 5530 5531 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5532 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5533 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5534 return {SPF_NABS, SPNB_NA, false}; 5535 5536 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5537 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5538 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5539 return {SPF_ABS, SPNB_NA, false}; 5540 } 5541 } 5542 5543 if (CmpInst::isIntPredicate(Pred)) 5544 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5545 5546 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5547 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5548 // semantics than minNum. Be conservative in such case. 5549 if (NaNBehavior != SPNB_RETURNS_ANY || 5550 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5551 !isKnownNonZero(CmpRHS))) 5552 return {SPF_UNKNOWN, SPNB_NA, false}; 5553 5554 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5555 } 5556 5557 /// Helps to match a select pattern in case of a type mismatch. 5558 /// 5559 /// The function processes the case when type of true and false values of a 5560 /// select instruction differs from type of the cmp instruction operands because 5561 /// of a cast instruction. The function checks if it is legal to move the cast 5562 /// operation after "select". If yes, it returns the new second value of 5563 /// "select" (with the assumption that cast is moved): 5564 /// 1. As operand of cast instruction when both values of "select" are same cast 5565 /// instructions. 5566 /// 2. As restored constant (by applying reverse cast operation) when the first 5567 /// value of the "select" is a cast operation and the second value is a 5568 /// constant. 5569 /// NOTE: We return only the new second value because the first value could be 5570 /// accessed as operand of cast instruction. 5571 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5572 Instruction::CastOps *CastOp) { 5573 auto *Cast1 = dyn_cast<CastInst>(V1); 5574 if (!Cast1) 5575 return nullptr; 5576 5577 *CastOp = Cast1->getOpcode(); 5578 Type *SrcTy = Cast1->getSrcTy(); 5579 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5580 // If V1 and V2 are both the same cast from the same type, look through V1. 5581 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5582 return Cast2->getOperand(0); 5583 return nullptr; 5584 } 5585 5586 auto *C = dyn_cast<Constant>(V2); 5587 if (!C) 5588 return nullptr; 5589 5590 Constant *CastedTo = nullptr; 5591 switch (*CastOp) { 5592 case Instruction::ZExt: 5593 if (CmpI->isUnsigned()) 5594 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5595 break; 5596 case Instruction::SExt: 5597 if (CmpI->isSigned()) 5598 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5599 break; 5600 case Instruction::Trunc: 5601 Constant *CmpConst; 5602 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5603 CmpConst->getType() == SrcTy) { 5604 // Here we have the following case: 5605 // 5606 // %cond = cmp iN %x, CmpConst 5607 // %tr = trunc iN %x to iK 5608 // %narrowsel = select i1 %cond, iK %t, iK C 5609 // 5610 // We can always move trunc after select operation: 5611 // 5612 // %cond = cmp iN %x, CmpConst 5613 // %widesel = select i1 %cond, iN %x, iN CmpConst 5614 // %tr = trunc iN %widesel to iK 5615 // 5616 // Note that C could be extended in any way because we don't care about 5617 // upper bits after truncation. It can't be abs pattern, because it would 5618 // look like: 5619 // 5620 // select i1 %cond, x, -x. 5621 // 5622 // So only min/max pattern could be matched. Such match requires widened C 5623 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5624 // CmpConst == C is checked below. 5625 CastedTo = CmpConst; 5626 } else { 5627 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5628 } 5629 break; 5630 case Instruction::FPTrunc: 5631 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5632 break; 5633 case Instruction::FPExt: 5634 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5635 break; 5636 case Instruction::FPToUI: 5637 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5638 break; 5639 case Instruction::FPToSI: 5640 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5641 break; 5642 case Instruction::UIToFP: 5643 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5644 break; 5645 case Instruction::SIToFP: 5646 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5647 break; 5648 default: 5649 break; 5650 } 5651 5652 if (!CastedTo) 5653 return nullptr; 5654 5655 // Make sure the cast doesn't lose any information. 5656 Constant *CastedBack = 5657 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5658 if (CastedBack != C) 5659 return nullptr; 5660 5661 return CastedTo; 5662 } 5663 5664 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5665 Instruction::CastOps *CastOp, 5666 unsigned Depth) { 5667 if (Depth >= MaxDepth) 5668 return {SPF_UNKNOWN, SPNB_NA, false}; 5669 5670 SelectInst *SI = dyn_cast<SelectInst>(V); 5671 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5672 5673 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5674 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5675 5676 Value *TrueVal = SI->getTrueValue(); 5677 Value *FalseVal = SI->getFalseValue(); 5678 5679 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5680 CastOp, Depth); 5681 } 5682 5683 SelectPatternResult llvm::matchDecomposedSelectPattern( 5684 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5685 Instruction::CastOps *CastOp, unsigned Depth) { 5686 CmpInst::Predicate Pred = CmpI->getPredicate(); 5687 Value *CmpLHS = CmpI->getOperand(0); 5688 Value *CmpRHS = CmpI->getOperand(1); 5689 FastMathFlags FMF; 5690 if (isa<FPMathOperator>(CmpI)) 5691 FMF = CmpI->getFastMathFlags(); 5692 5693 // Bail out early. 5694 if (CmpI->isEquality()) 5695 return {SPF_UNKNOWN, SPNB_NA, false}; 5696 5697 // Deal with type mismatches. 5698 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5699 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5700 // If this is a potential fmin/fmax with a cast to integer, then ignore 5701 // -0.0 because there is no corresponding integer value. 5702 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5703 FMF.setNoSignedZeros(); 5704 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5705 cast<CastInst>(TrueVal)->getOperand(0), C, 5706 LHS, RHS, Depth); 5707 } 5708 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5709 // If this is a potential fmin/fmax with a cast to integer, then ignore 5710 // -0.0 because there is no corresponding integer value. 5711 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5712 FMF.setNoSignedZeros(); 5713 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5714 C, cast<CastInst>(FalseVal)->getOperand(0), 5715 LHS, RHS, Depth); 5716 } 5717 } 5718 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5719 LHS, RHS, Depth); 5720 } 5721 5722 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5723 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5724 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5725 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5726 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5727 if (SPF == SPF_FMINNUM) 5728 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5729 if (SPF == SPF_FMAXNUM) 5730 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5731 llvm_unreachable("unhandled!"); 5732 } 5733 5734 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5735 if (SPF == SPF_SMIN) return SPF_SMAX; 5736 if (SPF == SPF_UMIN) return SPF_UMAX; 5737 if (SPF == SPF_SMAX) return SPF_SMIN; 5738 if (SPF == SPF_UMAX) return SPF_UMIN; 5739 llvm_unreachable("unhandled!"); 5740 } 5741 5742 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5743 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5744 } 5745 5746 /// Return true if "icmp Pred LHS RHS" is always true. 5747 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5748 const Value *RHS, const DataLayout &DL, 5749 unsigned Depth) { 5750 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5751 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5752 return true; 5753 5754 switch (Pred) { 5755 default: 5756 return false; 5757 5758 case CmpInst::ICMP_SLE: { 5759 const APInt *C; 5760 5761 // LHS s<= LHS +_{nsw} C if C >= 0 5762 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5763 return !C->isNegative(); 5764 return false; 5765 } 5766 5767 case CmpInst::ICMP_ULE: { 5768 const APInt *C; 5769 5770 // LHS u<= LHS +_{nuw} C for any C 5771 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5772 return true; 5773 5774 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5775 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5776 const Value *&X, 5777 const APInt *&CA, const APInt *&CB) { 5778 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5779 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5780 return true; 5781 5782 // If X & C == 0 then (X | C) == X +_{nuw} C 5783 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5784 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5785 KnownBits Known(CA->getBitWidth()); 5786 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5787 /*CxtI*/ nullptr, /*DT*/ nullptr); 5788 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5789 return true; 5790 } 5791 5792 return false; 5793 }; 5794 5795 const Value *X; 5796 const APInt *CLHS, *CRHS; 5797 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5798 return CLHS->ule(*CRHS); 5799 5800 return false; 5801 } 5802 } 5803 } 5804 5805 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5806 /// ALHS ARHS" is true. Otherwise, return None. 5807 static Optional<bool> 5808 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5809 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5810 const DataLayout &DL, unsigned Depth) { 5811 switch (Pred) { 5812 default: 5813 return None; 5814 5815 case CmpInst::ICMP_SLT: 5816 case CmpInst::ICMP_SLE: 5817 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5818 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5819 return true; 5820 return None; 5821 5822 case CmpInst::ICMP_ULT: 5823 case CmpInst::ICMP_ULE: 5824 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5825 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5826 return true; 5827 return None; 5828 } 5829 } 5830 5831 /// Return true if the operands of the two compares match. IsSwappedOps is true 5832 /// when the operands match, but are swapped. 5833 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5834 const Value *BLHS, const Value *BRHS, 5835 bool &IsSwappedOps) { 5836 5837 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5838 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5839 return IsMatchingOps || IsSwappedOps; 5840 } 5841 5842 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5843 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5844 /// Otherwise, return None if we can't infer anything. 5845 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5846 CmpInst::Predicate BPred, 5847 bool AreSwappedOps) { 5848 // Canonicalize the predicate as if the operands were not commuted. 5849 if (AreSwappedOps) 5850 BPred = ICmpInst::getSwappedPredicate(BPred); 5851 5852 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5853 return true; 5854 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5855 return false; 5856 5857 return None; 5858 } 5859 5860 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5861 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5862 /// Otherwise, return None if we can't infer anything. 5863 static Optional<bool> 5864 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5865 const ConstantInt *C1, 5866 CmpInst::Predicate BPred, 5867 const ConstantInt *C2) { 5868 ConstantRange DomCR = 5869 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5870 ConstantRange CR = 5871 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5872 ConstantRange Intersection = DomCR.intersectWith(CR); 5873 ConstantRange Difference = DomCR.difference(CR); 5874 if (Intersection.isEmptySet()) 5875 return false; 5876 if (Difference.isEmptySet()) 5877 return true; 5878 return None; 5879 } 5880 5881 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5882 /// false. Otherwise, return None if we can't infer anything. 5883 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5884 CmpInst::Predicate BPred, 5885 const Value *BLHS, const Value *BRHS, 5886 const DataLayout &DL, bool LHSIsTrue, 5887 unsigned Depth) { 5888 Value *ALHS = LHS->getOperand(0); 5889 Value *ARHS = LHS->getOperand(1); 5890 5891 // The rest of the logic assumes the LHS condition is true. If that's not the 5892 // case, invert the predicate to make it so. 5893 CmpInst::Predicate APred = 5894 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5895 5896 // Can we infer anything when the two compares have matching operands? 5897 bool AreSwappedOps; 5898 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5899 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5900 APred, BPred, AreSwappedOps)) 5901 return Implication; 5902 // No amount of additional analysis will infer the second condition, so 5903 // early exit. 5904 return None; 5905 } 5906 5907 // Can we infer anything when the LHS operands match and the RHS operands are 5908 // constants (not necessarily matching)? 5909 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5910 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5911 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5912 return Implication; 5913 // No amount of additional analysis will infer the second condition, so 5914 // early exit. 5915 return None; 5916 } 5917 5918 if (APred == BPred) 5919 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5920 return None; 5921 } 5922 5923 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5924 /// false. Otherwise, return None if we can't infer anything. We expect the 5925 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5926 static Optional<bool> 5927 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5928 const Value *RHSOp0, const Value *RHSOp1, 5929 5930 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5931 // The LHS must be an 'or' or an 'and' instruction. 5932 assert((LHS->getOpcode() == Instruction::And || 5933 LHS->getOpcode() == Instruction::Or) && 5934 "Expected LHS to be 'and' or 'or'."); 5935 5936 assert(Depth <= MaxDepth && "Hit recursion limit"); 5937 5938 // If the result of an 'or' is false, then we know both legs of the 'or' are 5939 // false. Similarly, if the result of an 'and' is true, then we know both 5940 // legs of the 'and' are true. 5941 Value *ALHS, *ARHS; 5942 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5943 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5944 // FIXME: Make this non-recursion. 5945 if (Optional<bool> Implication = isImpliedCondition( 5946 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5947 return Implication; 5948 if (Optional<bool> Implication = isImpliedCondition( 5949 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5950 return Implication; 5951 return None; 5952 } 5953 return None; 5954 } 5955 5956 Optional<bool> 5957 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5958 const Value *RHSOp0, const Value *RHSOp1, 5959 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5960 // Bail out when we hit the limit. 5961 if (Depth == MaxDepth) 5962 return None; 5963 5964 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5965 // example. 5966 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5967 return None; 5968 5969 Type *OpTy = LHS->getType(); 5970 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5971 5972 // FIXME: Extending the code below to handle vectors. 5973 if (OpTy->isVectorTy()) 5974 return None; 5975 5976 assert(OpTy->isIntegerTy(1) && "implied by above"); 5977 5978 // Both LHS and RHS are icmps. 5979 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5980 if (LHSCmp) 5981 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5982 Depth); 5983 5984 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5985 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5986 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5987 if (LHSBO) { 5988 if ((LHSBO->getOpcode() == Instruction::And || 5989 LHSBO->getOpcode() == Instruction::Or)) 5990 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5991 Depth); 5992 } 5993 return None; 5994 } 5995 5996 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5997 const DataLayout &DL, bool LHSIsTrue, 5998 unsigned Depth) { 5999 // LHS ==> RHS by definition 6000 if (LHS == RHS) 6001 return LHSIsTrue; 6002 6003 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6004 if (RHSCmp) 6005 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6006 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6007 LHSIsTrue, Depth); 6008 return None; 6009 } 6010 6011 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6012 // condition dominating ContextI or nullptr, if no condition is found. 6013 static std::pair<Value *, bool> 6014 getDomPredecessorCondition(const Instruction *ContextI) { 6015 if (!ContextI || !ContextI->getParent()) 6016 return {nullptr, false}; 6017 6018 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6019 // dominator tree (eg, from a SimplifyQuery) instead? 6020 const BasicBlock *ContextBB = ContextI->getParent(); 6021 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6022 if (!PredBB) 6023 return {nullptr, false}; 6024 6025 // We need a conditional branch in the predecessor. 6026 Value *PredCond; 6027 BasicBlock *TrueBB, *FalseBB; 6028 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6029 return {nullptr, false}; 6030 6031 // The branch should get simplified. Don't bother simplifying this condition. 6032 if (TrueBB == FalseBB) 6033 return {nullptr, false}; 6034 6035 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6036 "Predecessor block does not point to successor?"); 6037 6038 // Is this condition implied by the predecessor condition? 6039 return {PredCond, TrueBB == ContextBB}; 6040 } 6041 6042 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6043 const Instruction *ContextI, 6044 const DataLayout &DL) { 6045 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6046 auto PredCond = getDomPredecessorCondition(ContextI); 6047 if (PredCond.first) 6048 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6049 return None; 6050 } 6051 6052 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6053 const Value *LHS, const Value *RHS, 6054 const Instruction *ContextI, 6055 const DataLayout &DL) { 6056 auto PredCond = getDomPredecessorCondition(ContextI); 6057 if (PredCond.first) 6058 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6059 PredCond.second); 6060 return None; 6061 } 6062 6063 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6064 APInt &Upper, const InstrInfoQuery &IIQ) { 6065 unsigned Width = Lower.getBitWidth(); 6066 const APInt *C; 6067 switch (BO.getOpcode()) { 6068 case Instruction::Add: 6069 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6070 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6071 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6072 // 'add nuw x, C' produces [C, UINT_MAX]. 6073 Lower = *C; 6074 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6075 if (C->isNegative()) { 6076 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6077 Lower = APInt::getSignedMinValue(Width); 6078 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6079 } else { 6080 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6081 Lower = APInt::getSignedMinValue(Width) + *C; 6082 Upper = APInt::getSignedMaxValue(Width) + 1; 6083 } 6084 } 6085 } 6086 break; 6087 6088 case Instruction::And: 6089 if (match(BO.getOperand(1), m_APInt(C))) 6090 // 'and x, C' produces [0, C]. 6091 Upper = *C + 1; 6092 break; 6093 6094 case Instruction::Or: 6095 if (match(BO.getOperand(1), m_APInt(C))) 6096 // 'or x, C' produces [C, UINT_MAX]. 6097 Lower = *C; 6098 break; 6099 6100 case Instruction::AShr: 6101 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6102 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6103 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6104 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6105 } else if (match(BO.getOperand(0), m_APInt(C))) { 6106 unsigned ShiftAmount = Width - 1; 6107 if (!C->isNullValue() && IIQ.isExact(&BO)) 6108 ShiftAmount = C->countTrailingZeros(); 6109 if (C->isNegative()) { 6110 // 'ashr C, x' produces [C, C >> (Width-1)] 6111 Lower = *C; 6112 Upper = C->ashr(ShiftAmount) + 1; 6113 } else { 6114 // 'ashr C, x' produces [C >> (Width-1), C] 6115 Lower = C->ashr(ShiftAmount); 6116 Upper = *C + 1; 6117 } 6118 } 6119 break; 6120 6121 case Instruction::LShr: 6122 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6123 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6124 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6125 } else if (match(BO.getOperand(0), m_APInt(C))) { 6126 // 'lshr C, x' produces [C >> (Width-1), C]. 6127 unsigned ShiftAmount = Width - 1; 6128 if (!C->isNullValue() && IIQ.isExact(&BO)) 6129 ShiftAmount = C->countTrailingZeros(); 6130 Lower = C->lshr(ShiftAmount); 6131 Upper = *C + 1; 6132 } 6133 break; 6134 6135 case Instruction::Shl: 6136 if (match(BO.getOperand(0), m_APInt(C))) { 6137 if (IIQ.hasNoUnsignedWrap(&BO)) { 6138 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6139 Lower = *C; 6140 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6141 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6142 if (C->isNegative()) { 6143 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6144 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6145 Lower = C->shl(ShiftAmount); 6146 Upper = *C + 1; 6147 } else { 6148 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6149 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6150 Lower = *C; 6151 Upper = C->shl(ShiftAmount) + 1; 6152 } 6153 } 6154 } 6155 break; 6156 6157 case Instruction::SDiv: 6158 if (match(BO.getOperand(1), m_APInt(C))) { 6159 APInt IntMin = APInt::getSignedMinValue(Width); 6160 APInt IntMax = APInt::getSignedMaxValue(Width); 6161 if (C->isAllOnesValue()) { 6162 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6163 // where C != -1 and C != 0 and C != 1 6164 Lower = IntMin + 1; 6165 Upper = IntMax + 1; 6166 } else if (C->countLeadingZeros() < Width - 1) { 6167 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6168 // where C != -1 and C != 0 and C != 1 6169 Lower = IntMin.sdiv(*C); 6170 Upper = IntMax.sdiv(*C); 6171 if (Lower.sgt(Upper)) 6172 std::swap(Lower, Upper); 6173 Upper = Upper + 1; 6174 assert(Upper != Lower && "Upper part of range has wrapped!"); 6175 } 6176 } else if (match(BO.getOperand(0), m_APInt(C))) { 6177 if (C->isMinSignedValue()) { 6178 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6179 Lower = *C; 6180 Upper = Lower.lshr(1) + 1; 6181 } else { 6182 // 'sdiv C, x' produces [-|C|, |C|]. 6183 Upper = C->abs() + 1; 6184 Lower = (-Upper) + 1; 6185 } 6186 } 6187 break; 6188 6189 case Instruction::UDiv: 6190 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6191 // 'udiv x, C' produces [0, UINT_MAX / C]. 6192 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6193 } else if (match(BO.getOperand(0), m_APInt(C))) { 6194 // 'udiv C, x' produces [0, C]. 6195 Upper = *C + 1; 6196 } 6197 break; 6198 6199 case Instruction::SRem: 6200 if (match(BO.getOperand(1), m_APInt(C))) { 6201 // 'srem x, C' produces (-|C|, |C|). 6202 Upper = C->abs(); 6203 Lower = (-Upper) + 1; 6204 } 6205 break; 6206 6207 case Instruction::URem: 6208 if (match(BO.getOperand(1), m_APInt(C))) 6209 // 'urem x, C' produces [0, C). 6210 Upper = *C; 6211 break; 6212 6213 default: 6214 break; 6215 } 6216 } 6217 6218 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6219 APInt &Upper) { 6220 unsigned Width = Lower.getBitWidth(); 6221 const APInt *C; 6222 switch (II.getIntrinsicID()) { 6223 case Intrinsic::uadd_sat: 6224 // uadd.sat(x, C) produces [C, UINT_MAX]. 6225 if (match(II.getOperand(0), m_APInt(C)) || 6226 match(II.getOperand(1), m_APInt(C))) 6227 Lower = *C; 6228 break; 6229 case Intrinsic::sadd_sat: 6230 if (match(II.getOperand(0), m_APInt(C)) || 6231 match(II.getOperand(1), m_APInt(C))) { 6232 if (C->isNegative()) { 6233 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6234 Lower = APInt::getSignedMinValue(Width); 6235 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6236 } else { 6237 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6238 Lower = APInt::getSignedMinValue(Width) + *C; 6239 Upper = APInt::getSignedMaxValue(Width) + 1; 6240 } 6241 } 6242 break; 6243 case Intrinsic::usub_sat: 6244 // usub.sat(C, x) produces [0, C]. 6245 if (match(II.getOperand(0), m_APInt(C))) 6246 Upper = *C + 1; 6247 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6248 else if (match(II.getOperand(1), m_APInt(C))) 6249 Upper = APInt::getMaxValue(Width) - *C + 1; 6250 break; 6251 case Intrinsic::ssub_sat: 6252 if (match(II.getOperand(0), m_APInt(C))) { 6253 if (C->isNegative()) { 6254 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6255 Lower = APInt::getSignedMinValue(Width); 6256 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6257 } else { 6258 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6259 Lower = *C - APInt::getSignedMaxValue(Width); 6260 Upper = APInt::getSignedMaxValue(Width) + 1; 6261 } 6262 } else if (match(II.getOperand(1), m_APInt(C))) { 6263 if (C->isNegative()) { 6264 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6265 Lower = APInt::getSignedMinValue(Width) - *C; 6266 Upper = APInt::getSignedMaxValue(Width) + 1; 6267 } else { 6268 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6269 Lower = APInt::getSignedMinValue(Width); 6270 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6271 } 6272 } 6273 break; 6274 default: 6275 break; 6276 } 6277 } 6278 6279 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6280 APInt &Upper, const InstrInfoQuery &IIQ) { 6281 const Value *LHS = nullptr, *RHS = nullptr; 6282 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6283 if (R.Flavor == SPF_UNKNOWN) 6284 return; 6285 6286 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6287 6288 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6289 // If the negation part of the abs (in RHS) has the NSW flag, 6290 // then the result of abs(X) is [0..SIGNED_MAX], 6291 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6292 Lower = APInt::getNullValue(BitWidth); 6293 if (match(RHS, m_Neg(m_Specific(LHS))) && 6294 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6295 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6296 else 6297 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6298 return; 6299 } 6300 6301 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6302 // The result of -abs(X) is <= 0. 6303 Lower = APInt::getSignedMinValue(BitWidth); 6304 Upper = APInt(BitWidth, 1); 6305 return; 6306 } 6307 6308 const APInt *C; 6309 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6310 return; 6311 6312 switch (R.Flavor) { 6313 case SPF_UMIN: 6314 Upper = *C + 1; 6315 break; 6316 case SPF_UMAX: 6317 Lower = *C; 6318 break; 6319 case SPF_SMIN: 6320 Lower = APInt::getSignedMinValue(BitWidth); 6321 Upper = *C + 1; 6322 break; 6323 case SPF_SMAX: 6324 Lower = *C; 6325 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6326 break; 6327 default: 6328 break; 6329 } 6330 } 6331 6332 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6333 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6334 6335 const APInt *C; 6336 if (match(V, m_APInt(C))) 6337 return ConstantRange(*C); 6338 6339 InstrInfoQuery IIQ(UseInstrInfo); 6340 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6341 APInt Lower = APInt(BitWidth, 0); 6342 APInt Upper = APInt(BitWidth, 0); 6343 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6344 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6345 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6346 setLimitsForIntrinsic(*II, Lower, Upper); 6347 else if (auto *SI = dyn_cast<SelectInst>(V)) 6348 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6349 6350 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6351 6352 if (auto *I = dyn_cast<Instruction>(V)) 6353 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6354 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6355 6356 return CR; 6357 } 6358 6359 static Optional<int64_t> 6360 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6361 // Skip over the first indices. 6362 gep_type_iterator GTI = gep_type_begin(GEP); 6363 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6364 /*skip along*/; 6365 6366 // Compute the offset implied by the rest of the indices. 6367 int64_t Offset = 0; 6368 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6369 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6370 if (!OpC) 6371 return None; 6372 if (OpC->isZero()) 6373 continue; // No offset. 6374 6375 // Handle struct indices, which add their field offset to the pointer. 6376 if (StructType *STy = GTI.getStructTypeOrNull()) { 6377 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6378 continue; 6379 } 6380 6381 // Otherwise, we have a sequential type like an array or fixed-length 6382 // vector. Multiply the index by the ElementSize. 6383 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6384 if (Size.isScalable()) 6385 return None; 6386 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6387 } 6388 6389 return Offset; 6390 } 6391 6392 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6393 const DataLayout &DL) { 6394 Ptr1 = Ptr1->stripPointerCasts(); 6395 Ptr2 = Ptr2->stripPointerCasts(); 6396 6397 // Handle the trivial case first. 6398 if (Ptr1 == Ptr2) { 6399 return 0; 6400 } 6401 6402 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6403 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6404 6405 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6406 // as in "P" and "gep P, 1". 6407 // Also do this iteratively to handle the the following case: 6408 // Ptr_t1 = GEP Ptr1, c1 6409 // Ptr_t2 = GEP Ptr_t1, c2 6410 // Ptr2 = GEP Ptr_t2, c3 6411 // where we will return c1+c2+c3. 6412 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6413 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6414 // are the same, and return the difference between offsets. 6415 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6416 const Value *Ptr) -> Optional<int64_t> { 6417 const GEPOperator *GEP_T = GEP; 6418 int64_t OffsetVal = 0; 6419 bool HasSameBase = false; 6420 while (GEP_T) { 6421 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6422 if (!Offset) 6423 return None; 6424 OffsetVal += *Offset; 6425 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6426 if (Op0 == Ptr) { 6427 HasSameBase = true; 6428 break; 6429 } 6430 GEP_T = dyn_cast<GEPOperator>(Op0); 6431 } 6432 if (!HasSameBase) 6433 return None; 6434 return OffsetVal; 6435 }; 6436 6437 if (GEP1) { 6438 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6439 if (Offset) 6440 return -*Offset; 6441 } 6442 if (GEP2) { 6443 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6444 if (Offset) 6445 return Offset; 6446 } 6447 6448 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6449 // base. After that base, they may have some number of common (and 6450 // potentially variable) indices. After that they handle some constant 6451 // offset, which determines their offset from each other. At this point, we 6452 // handle no other case. 6453 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6454 return None; 6455 6456 // Skip any common indices and track the GEP types. 6457 unsigned Idx = 1; 6458 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6459 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6460 break; 6461 6462 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6463 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6464 if (!Offset1 || !Offset2) 6465 return None; 6466 return *Offset2 - *Offset1; 6467 } 6468