1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
165   // If we've been provided with a context instruction, then use that (provided
166   // it has been inserted).
167   if (CxtI && CxtI->getParent())
168     return CxtI;
169 
170   // If the value is really an already-inserted instruction, then use that.
171   CxtI = dyn_cast<Instruction>(V1);
172   if (CxtI && CxtI->getParent())
173     return CxtI;
174 
175   CxtI = dyn_cast<Instruction>(V2);
176   if (CxtI && CxtI->getParent())
177     return CxtI;
178 
179   return nullptr;
180 }
181 
182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
183                                    const APInt &DemandedElts,
184                                    APInt &DemandedLHS, APInt &DemandedRHS) {
185   // The length of scalable vectors is unknown at compile time, thus we
186   // cannot check their values
187   if (isa<ScalableVectorType>(Shuf->getType()))
188     return false;
189 
190   int NumElts =
191       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
192   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
193   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
194   if (DemandedElts.isNullValue())
195     return true;
196   // Simple case of a shuffle with zeroinitializer.
197   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
198     DemandedLHS.setBit(0);
199     return true;
200   }
201   for (int i = 0; i != NumMaskElts; ++i) {
202     if (!DemandedElts[i])
203       continue;
204     int M = Shuf->getMaskValue(i);
205     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
206 
207     // For undef elements, we don't know anything about the common state of
208     // the shuffle result.
209     if (M == -1)
210       return false;
211     if (M < NumElts)
212       DemandedLHS.setBit(M % NumElts);
213     else
214       DemandedRHS.setBit(M % NumElts);
215   }
216 
217   return true;
218 }
219 
220 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
221                              KnownBits &Known, unsigned Depth, const Query &Q);
222 
223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
224                              const Query &Q) {
225   // FIXME: We currently have no way to represent the DemandedElts of a scalable
226   // vector
227   if (isa<ScalableVectorType>(V->getType())) {
228     Known.resetAll();
229     return;
230   }
231 
232   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
233   APInt DemandedElts =
234       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
235   computeKnownBits(V, DemandedElts, Known, Depth, Q);
236 }
237 
238 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
239                             const DataLayout &DL, unsigned Depth,
240                             AssumptionCache *AC, const Instruction *CxtI,
241                             const DominatorTree *DT,
242                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
243   ::computeKnownBits(V, Known, Depth,
244                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
245 }
246 
247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
248                             KnownBits &Known, const DataLayout &DL,
249                             unsigned Depth, AssumptionCache *AC,
250                             const Instruction *CxtI, const DominatorTree *DT,
251                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
252   ::computeKnownBits(V, DemandedElts, Known, Depth,
253                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
257                                   unsigned Depth, const Query &Q);
258 
259 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
260                                   const Query &Q);
261 
262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
263                                  unsigned Depth, AssumptionCache *AC,
264                                  const Instruction *CxtI,
265                                  const DominatorTree *DT,
266                                  OptimizationRemarkEmitter *ORE,
267                                  bool UseInstrInfo) {
268   return ::computeKnownBits(
269       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
270 }
271 
272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
273                                  const DataLayout &DL, unsigned Depth,
274                                  AssumptionCache *AC, const Instruction *CxtI,
275                                  const DominatorTree *DT,
276                                  OptimizationRemarkEmitter *ORE,
277                                  bool UseInstrInfo) {
278   return ::computeKnownBits(
279       V, DemandedElts, Depth,
280       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
281 }
282 
283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
284                                const DataLayout &DL, AssumptionCache *AC,
285                                const Instruction *CxtI, const DominatorTree *DT,
286                                bool UseInstrInfo) {
287   assert(LHS->getType() == RHS->getType() &&
288          "LHS and RHS should have the same type");
289   assert(LHS->getType()->isIntOrIntVectorTy() &&
290          "LHS and RHS should be integers");
291   // Look for an inverted mask: (X & ~M) op (Y & M).
292   Value *M;
293   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
294       match(RHS, m_c_And(m_Specific(M), m_Value())))
295     return true;
296   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
297       match(LHS, m_c_And(m_Specific(M), m_Value())))
298     return true;
299   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
300   KnownBits LHSKnown(IT->getBitWidth());
301   KnownBits RHSKnown(IT->getBitWidth());
302   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
303   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
304   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
305 }
306 
307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
308   for (const User *U : CxtI->users()) {
309     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
310       if (IC->isEquality())
311         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
312           if (C->isNullValue())
313             continue;
314     return false;
315   }
316   return true;
317 }
318 
319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
320                                    const Query &Q);
321 
322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
323                                   bool OrZero, unsigned Depth,
324                                   AssumptionCache *AC, const Instruction *CxtI,
325                                   const DominatorTree *DT, bool UseInstrInfo) {
326   return ::isKnownToBeAPowerOfTwo(
327       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
328 }
329 
330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
331                            unsigned Depth, const Query &Q);
332 
333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
334 
335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
336                           AssumptionCache *AC, const Instruction *CxtI,
337                           const DominatorTree *DT, bool UseInstrInfo) {
338   return ::isKnownNonZero(V, Depth,
339                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
340 }
341 
342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
343                               unsigned Depth, AssumptionCache *AC,
344                               const Instruction *CxtI, const DominatorTree *DT,
345                               bool UseInstrInfo) {
346   KnownBits Known =
347       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
348   return Known.isNonNegative();
349 }
350 
351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
352                            AssumptionCache *AC, const Instruction *CxtI,
353                            const DominatorTree *DT, bool UseInstrInfo) {
354   if (auto *CI = dyn_cast<ConstantInt>(V))
355     return CI->getValue().isStrictlyPositive();
356 
357   // TODO: We'd doing two recursive queries here.  We should factor this such
358   // that only a single query is needed.
359   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
360          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
361 }
362 
363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
364                            AssumptionCache *AC, const Instruction *CxtI,
365                            const DominatorTree *DT, bool UseInstrInfo) {
366   KnownBits Known =
367       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
368   return Known.isNegative();
369 }
370 
371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
372                             const Query &Q);
373 
374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
375                            const DataLayout &DL, AssumptionCache *AC,
376                            const Instruction *CxtI, const DominatorTree *DT,
377                            bool UseInstrInfo) {
378   return ::isKnownNonEqual(V1, V2, 0,
379                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
380                                  UseInstrInfo, /*ORE=*/nullptr));
381 }
382 
383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
384                               const Query &Q);
385 
386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
387                              const DataLayout &DL, unsigned Depth,
388                              AssumptionCache *AC, const Instruction *CxtI,
389                              const DominatorTree *DT, bool UseInstrInfo) {
390   return ::MaskedValueIsZero(
391       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
392 }
393 
394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
395                                    unsigned Depth, const Query &Q);
396 
397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
398                                    const Query &Q) {
399   // FIXME: We currently have no way to represent the DemandedElts of a scalable
400   // vector
401   if (isa<ScalableVectorType>(V->getType()))
402     return 1;
403 
404   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
405   APInt DemandedElts =
406       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
407   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
408 }
409 
410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
411                                   unsigned Depth, AssumptionCache *AC,
412                                   const Instruction *CxtI,
413                                   const DominatorTree *DT, bool UseInstrInfo) {
414   return ::ComputeNumSignBits(
415       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
416 }
417 
418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
419                                    bool NSW, const APInt &DemandedElts,
420                                    KnownBits &KnownOut, KnownBits &Known2,
421                                    unsigned Depth, const Query &Q) {
422   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
423 
424   // If one operand is unknown and we have no nowrap information,
425   // the result will be unknown independently of the second operand.
426   if (KnownOut.isUnknown() && !NSW)
427     return;
428 
429   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
430   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
431 }
432 
433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
434                                 const APInt &DemandedElts, KnownBits &Known,
435                                 KnownBits &Known2, unsigned Depth,
436                                 const Query &Q) {
437   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
438   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
439 
440   bool isKnownNegative = false;
441   bool isKnownNonNegative = false;
442   // If the multiplication is known not to overflow, compute the sign bit.
443   if (NSW) {
444     if (Op0 == Op1) {
445       // The product of a number with itself is non-negative.
446       isKnownNonNegative = true;
447     } else {
448       bool isKnownNonNegativeOp1 = Known.isNonNegative();
449       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
450       bool isKnownNegativeOp1 = Known.isNegative();
451       bool isKnownNegativeOp0 = Known2.isNegative();
452       // The product of two numbers with the same sign is non-negative.
453       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
454                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
455       // The product of a negative number and a non-negative number is either
456       // negative or zero.
457       if (!isKnownNonNegative)
458         isKnownNegative =
459             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
460              Known2.isNonZero()) ||
461             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
462     }
463   }
464 
465   Known = KnownBits::mul(Known, Known2);
466 
467   // Only make use of no-wrap flags if we failed to compute the sign bit
468   // directly.  This matters if the multiplication always overflows, in
469   // which case we prefer to follow the result of the direct computation,
470   // though as the program is invoking undefined behaviour we can choose
471   // whatever we like here.
472   if (isKnownNonNegative && !Known.isNegative())
473     Known.makeNonNegative();
474   else if (isKnownNegative && !Known.isNonNegative())
475     Known.makeNegative();
476 }
477 
478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
479                                              KnownBits &Known) {
480   unsigned BitWidth = Known.getBitWidth();
481   unsigned NumRanges = Ranges.getNumOperands() / 2;
482   assert(NumRanges >= 1);
483 
484   Known.Zero.setAllBits();
485   Known.One.setAllBits();
486 
487   for (unsigned i = 0; i < NumRanges; ++i) {
488     ConstantInt *Lower =
489         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
490     ConstantInt *Upper =
491         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
492     ConstantRange Range(Lower->getValue(), Upper->getValue());
493 
494     // The first CommonPrefixBits of all values in Range are equal.
495     unsigned CommonPrefixBits =
496         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
497     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
498     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
499     Known.One &= UnsignedMax & Mask;
500     Known.Zero &= ~UnsignedMax & Mask;
501   }
502 }
503 
504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
505   SmallVector<const Value *, 16> WorkSet(1, I);
506   SmallPtrSet<const Value *, 32> Visited;
507   SmallPtrSet<const Value *, 16> EphValues;
508 
509   // The instruction defining an assumption's condition itself is always
510   // considered ephemeral to that assumption (even if it has other
511   // non-ephemeral users). See r246696's test case for an example.
512   if (is_contained(I->operands(), E))
513     return true;
514 
515   while (!WorkSet.empty()) {
516     const Value *V = WorkSet.pop_back_val();
517     if (!Visited.insert(V).second)
518       continue;
519 
520     // If all uses of this value are ephemeral, then so is this value.
521     if (llvm::all_of(V->users(), [&](const User *U) {
522                                    return EphValues.count(U);
523                                  })) {
524       if (V == E)
525         return true;
526 
527       if (V == I || isSafeToSpeculativelyExecute(V)) {
528        EphValues.insert(V);
529        if (const User *U = dyn_cast<User>(V))
530          append_range(WorkSet, U->operands());
531       }
532     }
533   }
534 
535   return false;
536 }
537 
538 // Is this an intrinsic that cannot be speculated but also cannot trap?
539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
540   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
541     return CI->isAssumeLikeIntrinsic();
542 
543   return false;
544 }
545 
546 bool llvm::isValidAssumeForContext(const Instruction *Inv,
547                                    const Instruction *CxtI,
548                                    const DominatorTree *DT) {
549   // There are two restrictions on the use of an assume:
550   //  1. The assume must dominate the context (or the control flow must
551   //     reach the assume whenever it reaches the context).
552   //  2. The context must not be in the assume's set of ephemeral values
553   //     (otherwise we will use the assume to prove that the condition
554   //     feeding the assume is trivially true, thus causing the removal of
555   //     the assume).
556 
557   if (Inv->getParent() == CxtI->getParent()) {
558     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
559     // in the BB.
560     if (Inv->comesBefore(CxtI))
561       return true;
562 
563     // Don't let an assume affect itself - this would cause the problems
564     // `isEphemeralValueOf` is trying to prevent, and it would also make
565     // the loop below go out of bounds.
566     if (Inv == CxtI)
567       return false;
568 
569     // The context comes first, but they're both in the same block.
570     // Make sure there is nothing in between that might interrupt
571     // the control flow, not even CxtI itself.
572     // We limit the scan distance between the assume and its context instruction
573     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
574     // it can be adjusted if needed (could be turned into a cl::opt).
575     unsigned ScanLimit = 15;
576     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
577       if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0)
578         return false;
579 
580     return !isEphemeralValueOf(Inv, CxtI);
581   }
582 
583   // Inv and CxtI are in different blocks.
584   if (DT) {
585     if (DT->dominates(Inv, CxtI))
586       return true;
587   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
588     // We don't have a DT, but this trivially dominates.
589     return true;
590   }
591 
592   return false;
593 }
594 
595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
596   // v u> y implies v != 0.
597   if (Pred == ICmpInst::ICMP_UGT)
598     return true;
599 
600   // Special-case v != 0 to also handle v != null.
601   if (Pred == ICmpInst::ICMP_NE)
602     return match(RHS, m_Zero());
603 
604   // All other predicates - rely on generic ConstantRange handling.
605   const APInt *C;
606   if (!match(RHS, m_APInt(C)))
607     return false;
608 
609   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
610   return !TrueValues.contains(APInt::getNullValue(C->getBitWidth()));
611 }
612 
613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
614   // Use of assumptions is context-sensitive. If we don't have a context, we
615   // cannot use them!
616   if (!Q.AC || !Q.CxtI)
617     return false;
618 
619   if (Q.CxtI && V->getType()->isPointerTy()) {
620     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
621     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
622                               V->getType()->getPointerAddressSpace()))
623       AttrKinds.push_back(Attribute::Dereferenceable);
624 
625     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
626       return true;
627   }
628 
629   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
630     if (!AssumeVH)
631       continue;
632     CallInst *I = cast<CallInst>(AssumeVH);
633     assert(I->getFunction() == Q.CxtI->getFunction() &&
634            "Got assumption for the wrong function!");
635     if (Q.isExcluded(I))
636       continue;
637 
638     // Warning: This loop can end up being somewhat performance sensitive.
639     // We're running this loop for once for each value queried resulting in a
640     // runtime of ~O(#assumes * #values).
641 
642     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
643            "must be an assume intrinsic");
644 
645     Value *RHS;
646     CmpInst::Predicate Pred;
647     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
648     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
649       return false;
650 
651     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
652       return true;
653   }
654 
655   return false;
656 }
657 
658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
659                                        unsigned Depth, const Query &Q) {
660   // Use of assumptions is context-sensitive. If we don't have a context, we
661   // cannot use them!
662   if (!Q.AC || !Q.CxtI)
663     return;
664 
665   unsigned BitWidth = Known.getBitWidth();
666 
667   // Refine Known set if the pointer alignment is set by assume bundles.
668   if (V->getType()->isPointerTy()) {
669     if (RetainedKnowledge RK = getKnowledgeValidInContext(
670             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
671       Known.Zero.setLowBits(Log2_32(RK.ArgValue));
672     }
673   }
674 
675   // Note that the patterns below need to be kept in sync with the code
676   // in AssumptionCache::updateAffectedValues.
677 
678   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
679     if (!AssumeVH)
680       continue;
681     CallInst *I = cast<CallInst>(AssumeVH);
682     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
683            "Got assumption for the wrong function!");
684     if (Q.isExcluded(I))
685       continue;
686 
687     // Warning: This loop can end up being somewhat performance sensitive.
688     // We're running this loop for once for each value queried resulting in a
689     // runtime of ~O(#assumes * #values).
690 
691     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
692            "must be an assume intrinsic");
693 
694     Value *Arg = I->getArgOperand(0);
695 
696     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
697       assert(BitWidth == 1 && "assume operand is not i1?");
698       Known.setAllOnes();
699       return;
700     }
701     if (match(Arg, m_Not(m_Specific(V))) &&
702         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
703       assert(BitWidth == 1 && "assume operand is not i1?");
704       Known.setAllZero();
705       return;
706     }
707 
708     // The remaining tests are all recursive, so bail out if we hit the limit.
709     if (Depth == MaxAnalysisRecursionDepth)
710       continue;
711 
712     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
713     if (!Cmp)
714       continue;
715 
716     // Note that ptrtoint may change the bitwidth.
717     Value *A, *B;
718     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
719 
720     CmpInst::Predicate Pred;
721     uint64_t C;
722     switch (Cmp->getPredicate()) {
723     default:
724       break;
725     case ICmpInst::ICMP_EQ:
726       // assume(v = a)
727       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
728           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
729         KnownBits RHSKnown =
730             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
731         Known.Zero |= RHSKnown.Zero;
732         Known.One  |= RHSKnown.One;
733       // assume(v & b = a)
734       } else if (match(Cmp,
735                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
736                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
737         KnownBits RHSKnown =
738             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
739         KnownBits MaskKnown =
740             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
741 
742         // For those bits in the mask that are known to be one, we can propagate
743         // known bits from the RHS to V.
744         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
745         Known.One  |= RHSKnown.One  & MaskKnown.One;
746       // assume(~(v & b) = a)
747       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
748                                      m_Value(A))) &&
749                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
750         KnownBits RHSKnown =
751             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
752         KnownBits MaskKnown =
753             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
754 
755         // For those bits in the mask that are known to be one, we can propagate
756         // inverted known bits from the RHS to V.
757         Known.Zero |= RHSKnown.One  & MaskKnown.One;
758         Known.One  |= RHSKnown.Zero & MaskKnown.One;
759       // assume(v | b = a)
760       } else if (match(Cmp,
761                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
762                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
763         KnownBits RHSKnown =
764             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
765         KnownBits BKnown =
766             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
767 
768         // For those bits in B that are known to be zero, we can propagate known
769         // bits from the RHS to V.
770         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
771         Known.One  |= RHSKnown.One  & BKnown.Zero;
772       // assume(~(v | b) = a)
773       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
774                                      m_Value(A))) &&
775                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
776         KnownBits RHSKnown =
777             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
778         KnownBits BKnown =
779             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
780 
781         // For those bits in B that are known to be zero, we can propagate
782         // inverted known bits from the RHS to V.
783         Known.Zero |= RHSKnown.One  & BKnown.Zero;
784         Known.One  |= RHSKnown.Zero & BKnown.Zero;
785       // assume(v ^ b = a)
786       } else if (match(Cmp,
787                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
788                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
789         KnownBits RHSKnown =
790             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
791         KnownBits BKnown =
792             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
793 
794         // For those bits in B that are known to be zero, we can propagate known
795         // bits from the RHS to V. For those bits in B that are known to be one,
796         // we can propagate inverted known bits from the RHS to V.
797         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
798         Known.One  |= RHSKnown.One  & BKnown.Zero;
799         Known.Zero |= RHSKnown.One  & BKnown.One;
800         Known.One  |= RHSKnown.Zero & BKnown.One;
801       // assume(~(v ^ b) = a)
802       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
803                                      m_Value(A))) &&
804                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
805         KnownBits RHSKnown =
806             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
807         KnownBits BKnown =
808             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
809 
810         // For those bits in B that are known to be zero, we can propagate
811         // inverted known bits from the RHS to V. For those bits in B that are
812         // known to be one, we can propagate known bits from the RHS to V.
813         Known.Zero |= RHSKnown.One  & BKnown.Zero;
814         Known.One  |= RHSKnown.Zero & BKnown.Zero;
815         Known.Zero |= RHSKnown.Zero & BKnown.One;
816         Known.One  |= RHSKnown.One  & BKnown.One;
817       // assume(v << c = a)
818       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
819                                      m_Value(A))) &&
820                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
821         KnownBits RHSKnown =
822             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
823 
824         // For those bits in RHS that are known, we can propagate them to known
825         // bits in V shifted to the right by C.
826         RHSKnown.Zero.lshrInPlace(C);
827         Known.Zero |= RHSKnown.Zero;
828         RHSKnown.One.lshrInPlace(C);
829         Known.One  |= RHSKnown.One;
830       // assume(~(v << c) = a)
831       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
832                                      m_Value(A))) &&
833                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
834         KnownBits RHSKnown =
835             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
836         // For those bits in RHS that are known, we can propagate them inverted
837         // to known bits in V shifted to the right by C.
838         RHSKnown.One.lshrInPlace(C);
839         Known.Zero |= RHSKnown.One;
840         RHSKnown.Zero.lshrInPlace(C);
841         Known.One  |= RHSKnown.Zero;
842       // assume(v >> c = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
848         // For those bits in RHS that are known, we can propagate them to known
849         // bits in V shifted to the right by C.
850         Known.Zero |= RHSKnown.Zero << C;
851         Known.One  |= RHSKnown.One  << C;
852       // assume(~(v >> c) = a)
853       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
854                                      m_Value(A))) &&
855                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
856         KnownBits RHSKnown =
857             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
858         // For those bits in RHS that are known, we can propagate them inverted
859         // to known bits in V shifted to the right by C.
860         Known.Zero |= RHSKnown.One  << C;
861         Known.One  |= RHSKnown.Zero << C;
862       }
863       break;
864     case ICmpInst::ICMP_SGE:
865       // assume(v >=_s c) where c is non-negative
866       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
867           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
868         KnownBits RHSKnown =
869             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
870 
871         if (RHSKnown.isNonNegative()) {
872           // We know that the sign bit is zero.
873           Known.makeNonNegative();
874         }
875       }
876       break;
877     case ICmpInst::ICMP_SGT:
878       // assume(v >_s c) where c is at least -1.
879       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
880           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
881         KnownBits RHSKnown =
882             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
883 
884         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
885           // We know that the sign bit is zero.
886           Known.makeNonNegative();
887         }
888       }
889       break;
890     case ICmpInst::ICMP_SLE:
891       // assume(v <=_s c) where c is negative
892       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
893           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
894         KnownBits RHSKnown =
895             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
896 
897         if (RHSKnown.isNegative()) {
898           // We know that the sign bit is one.
899           Known.makeNegative();
900         }
901       }
902       break;
903     case ICmpInst::ICMP_SLT:
904       // assume(v <_s c) where c is non-positive
905       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
906           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
907         KnownBits RHSKnown =
908             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
909 
910         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
911           // We know that the sign bit is one.
912           Known.makeNegative();
913         }
914       }
915       break;
916     case ICmpInst::ICMP_ULE:
917       // assume(v <=_u c)
918       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
919           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
920         KnownBits RHSKnown =
921             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
922 
923         // Whatever high bits in c are zero are known to be zero.
924         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
925       }
926       break;
927     case ICmpInst::ICMP_ULT:
928       // assume(v <_u c)
929       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
930           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
931         KnownBits RHSKnown =
932             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
933 
934         // If the RHS is known zero, then this assumption must be wrong (nothing
935         // is unsigned less than zero). Signal a conflict and get out of here.
936         if (RHSKnown.isZero()) {
937           Known.Zero.setAllBits();
938           Known.One.setAllBits();
939           break;
940         }
941 
942         // Whatever high bits in c are zero are known to be zero (if c is a power
943         // of 2, then one more).
944         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
945           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
946         else
947           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
948       }
949       break;
950     }
951   }
952 
953   // If assumptions conflict with each other or previous known bits, then we
954   // have a logical fallacy. It's possible that the assumption is not reachable,
955   // so this isn't a real bug. On the other hand, the program may have undefined
956   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
957   // clear out the known bits, try to warn the user, and hope for the best.
958   if (Known.Zero.intersects(Known.One)) {
959     Known.resetAll();
960 
961     if (Q.ORE)
962       Q.ORE->emit([&]() {
963         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
964         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
965                                           CxtI)
966                << "Detected conflicting code assumptions. Program may "
967                   "have undefined behavior, or compiler may have "
968                   "internal error.";
969       });
970   }
971 }
972 
973 /// Compute known bits from a shift operator, including those with a
974 /// non-constant shift amount. Known is the output of this function. Known2 is a
975 /// pre-allocated temporary with the same bit width as Known and on return
976 /// contains the known bit of the shift value source. KF is an
977 /// operator-specific function that, given the known-bits and a shift amount,
978 /// compute the implied known-bits of the shift operator's result respectively
979 /// for that shift amount. The results from calling KF are conservatively
980 /// combined for all permitted shift amounts.
981 static void computeKnownBitsFromShiftOperator(
982     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
983     KnownBits &Known2, unsigned Depth, const Query &Q,
984     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
985   unsigned BitWidth = Known.getBitWidth();
986   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
987   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
988 
989   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
990   // BitWidth > 64 and any upper bits are known, we'll end up returning the
991   // limit value (which implies all bits are known).
992   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
993   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
994   bool ShiftAmtIsConstant = Known.isConstant();
995   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
996 
997   if (ShiftAmtIsConstant) {
998     Known = KF(Known2, Known);
999 
1000     // If the known bits conflict, this must be an overflowing left shift, so
1001     // the shift result is poison. We can return anything we want. Choose 0 for
1002     // the best folding opportunity.
1003     if (Known.hasConflict())
1004       Known.setAllZero();
1005 
1006     return;
1007   }
1008 
1009   // If the shift amount could be greater than or equal to the bit-width of the
1010   // LHS, the value could be poison, but bail out because the check below is
1011   // expensive.
1012   // TODO: Should we just carry on?
1013   if (MaxShiftAmtIsOutOfRange) {
1014     Known.resetAll();
1015     return;
1016   }
1017 
1018   // It would be more-clearly correct to use the two temporaries for this
1019   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1020   Known.resetAll();
1021 
1022   // If we know the shifter operand is nonzero, we can sometimes infer more
1023   // known bits. However this is expensive to compute, so be lazy about it and
1024   // only compute it when absolutely necessary.
1025   Optional<bool> ShifterOperandIsNonZero;
1026 
1027   // Early exit if we can't constrain any well-defined shift amount.
1028   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1029       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1030     ShifterOperandIsNonZero =
1031         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1032     if (!*ShifterOperandIsNonZero)
1033       return;
1034   }
1035 
1036   Known.Zero.setAllBits();
1037   Known.One.setAllBits();
1038   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1039     // Combine the shifted known input bits only for those shift amounts
1040     // compatible with its known constraints.
1041     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1042       continue;
1043     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1044       continue;
1045     // If we know the shifter is nonzero, we may be able to infer more known
1046     // bits. This check is sunk down as far as possible to avoid the expensive
1047     // call to isKnownNonZero if the cheaper checks above fail.
1048     if (ShiftAmt == 0) {
1049       if (!ShifterOperandIsNonZero.hasValue())
1050         ShifterOperandIsNonZero =
1051             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1052       if (*ShifterOperandIsNonZero)
1053         continue;
1054     }
1055 
1056     Known = KnownBits::commonBits(
1057         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1058   }
1059 
1060   // If the known bits conflict, the result is poison. Return a 0 and hope the
1061   // caller can further optimize that.
1062   if (Known.hasConflict())
1063     Known.setAllZero();
1064 }
1065 
1066 static void computeKnownBitsFromOperator(const Operator *I,
1067                                          const APInt &DemandedElts,
1068                                          KnownBits &Known, unsigned Depth,
1069                                          const Query &Q) {
1070   unsigned BitWidth = Known.getBitWidth();
1071 
1072   KnownBits Known2(BitWidth);
1073   switch (I->getOpcode()) {
1074   default: break;
1075   case Instruction::Load:
1076     if (MDNode *MD =
1077             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1078       computeKnownBitsFromRangeMetadata(*MD, Known);
1079     break;
1080   case Instruction::And: {
1081     // If either the LHS or the RHS are Zero, the result is zero.
1082     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1083     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1084 
1085     Known &= Known2;
1086 
1087     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1088     // here we handle the more general case of adding any odd number by
1089     // matching the form add(x, add(x, y)) where y is odd.
1090     // TODO: This could be generalized to clearing any bit set in y where the
1091     // following bit is known to be unset in y.
1092     Value *X = nullptr, *Y = nullptr;
1093     if (!Known.Zero[0] && !Known.One[0] &&
1094         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1095       Known2.resetAll();
1096       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1097       if (Known2.countMinTrailingOnes() > 0)
1098         Known.Zero.setBit(0);
1099     }
1100     break;
1101   }
1102   case Instruction::Or:
1103     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1104     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1105 
1106     Known |= Known2;
1107     break;
1108   case Instruction::Xor:
1109     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1110     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1111 
1112     Known ^= Known2;
1113     break;
1114   case Instruction::Mul: {
1115     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1116     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1117                         Known, Known2, Depth, Q);
1118     break;
1119   }
1120   case Instruction::UDiv: {
1121     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1122     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1123     Known = KnownBits::udiv(Known, Known2);
1124     break;
1125   }
1126   case Instruction::Select: {
1127     const Value *LHS = nullptr, *RHS = nullptr;
1128     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1129     if (SelectPatternResult::isMinOrMax(SPF)) {
1130       computeKnownBits(RHS, Known, Depth + 1, Q);
1131       computeKnownBits(LHS, Known2, Depth + 1, Q);
1132       switch (SPF) {
1133       default:
1134         llvm_unreachable("Unhandled select pattern flavor!");
1135       case SPF_SMAX:
1136         Known = KnownBits::smax(Known, Known2);
1137         break;
1138       case SPF_SMIN:
1139         Known = KnownBits::smin(Known, Known2);
1140         break;
1141       case SPF_UMAX:
1142         Known = KnownBits::umax(Known, Known2);
1143         break;
1144       case SPF_UMIN:
1145         Known = KnownBits::umin(Known, Known2);
1146         break;
1147       }
1148       break;
1149     }
1150 
1151     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1152     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1153 
1154     // Only known if known in both the LHS and RHS.
1155     Known = KnownBits::commonBits(Known, Known2);
1156 
1157     if (SPF == SPF_ABS) {
1158       // RHS from matchSelectPattern returns the negation part of abs pattern.
1159       // If the negate has an NSW flag we can assume the sign bit of the result
1160       // will be 0 because that makes abs(INT_MIN) undefined.
1161       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1162           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1163         Known.Zero.setSignBit();
1164     }
1165 
1166     break;
1167   }
1168   case Instruction::FPTrunc:
1169   case Instruction::FPExt:
1170   case Instruction::FPToUI:
1171   case Instruction::FPToSI:
1172   case Instruction::SIToFP:
1173   case Instruction::UIToFP:
1174     break; // Can't work with floating point.
1175   case Instruction::PtrToInt:
1176   case Instruction::IntToPtr:
1177     // Fall through and handle them the same as zext/trunc.
1178     LLVM_FALLTHROUGH;
1179   case Instruction::ZExt:
1180   case Instruction::Trunc: {
1181     Type *SrcTy = I->getOperand(0)->getType();
1182 
1183     unsigned SrcBitWidth;
1184     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1185     // which fall through here.
1186     Type *ScalarTy = SrcTy->getScalarType();
1187     SrcBitWidth = ScalarTy->isPointerTy() ?
1188       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1189       Q.DL.getTypeSizeInBits(ScalarTy);
1190 
1191     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1192     Known = Known.anyextOrTrunc(SrcBitWidth);
1193     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1194     Known = Known.zextOrTrunc(BitWidth);
1195     break;
1196   }
1197   case Instruction::BitCast: {
1198     Type *SrcTy = I->getOperand(0)->getType();
1199     if (SrcTy->isIntOrPtrTy() &&
1200         // TODO: For now, not handling conversions like:
1201         // (bitcast i64 %x to <2 x i32>)
1202         !I->getType()->isVectorTy()) {
1203       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1204       break;
1205     }
1206     break;
1207   }
1208   case Instruction::SExt: {
1209     // Compute the bits in the result that are not present in the input.
1210     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1211 
1212     Known = Known.trunc(SrcBitWidth);
1213     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1214     // If the sign bit of the input is known set or clear, then we know the
1215     // top bits of the result.
1216     Known = Known.sext(BitWidth);
1217     break;
1218   }
1219   case Instruction::Shl: {
1220     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1221     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1222       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1223       // If this shift has "nsw" keyword, then the result is either a poison
1224       // value or has the same sign bit as the first operand.
1225       if (NSW) {
1226         if (KnownVal.Zero.isSignBitSet())
1227           Result.Zero.setSignBit();
1228         if (KnownVal.One.isSignBitSet())
1229           Result.One.setSignBit();
1230       }
1231       return Result;
1232     };
1233     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1234                                       KF);
1235     // Trailing zeros of a right-shifted constant never decrease.
1236     const APInt *C;
1237     if (match(I->getOperand(0), m_APInt(C)))
1238       Known.Zero.setLowBits(C->countTrailingZeros());
1239     break;
1240   }
1241   case Instruction::LShr: {
1242     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1243       return KnownBits::lshr(KnownVal, KnownAmt);
1244     };
1245     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1246                                       KF);
1247     // Leading zeros of a left-shifted constant never decrease.
1248     const APInt *C;
1249     if (match(I->getOperand(0), m_APInt(C)))
1250       Known.Zero.setHighBits(C->countLeadingZeros());
1251     break;
1252   }
1253   case Instruction::AShr: {
1254     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1255       return KnownBits::ashr(KnownVal, KnownAmt);
1256     };
1257     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1258                                       KF);
1259     break;
1260   }
1261   case Instruction::Sub: {
1262     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1263     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1264                            DemandedElts, Known, Known2, Depth, Q);
1265     break;
1266   }
1267   case Instruction::Add: {
1268     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1269     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1270                            DemandedElts, Known, Known2, Depth, Q);
1271     break;
1272   }
1273   case Instruction::SRem:
1274     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1276     Known = KnownBits::srem(Known, Known2);
1277     break;
1278 
1279   case Instruction::URem:
1280     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1281     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1282     Known = KnownBits::urem(Known, Known2);
1283     break;
1284   case Instruction::Alloca:
1285     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1286     break;
1287   case Instruction::GetElementPtr: {
1288     // Analyze all of the subscripts of this getelementptr instruction
1289     // to determine if we can prove known low zero bits.
1290     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1291     // Accumulate the constant indices in a separate variable
1292     // to minimize the number of calls to computeForAddSub.
1293     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1294 
1295     gep_type_iterator GTI = gep_type_begin(I);
1296     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1297       // TrailZ can only become smaller, short-circuit if we hit zero.
1298       if (Known.isUnknown())
1299         break;
1300 
1301       Value *Index = I->getOperand(i);
1302 
1303       // Handle case when index is zero.
1304       Constant *CIndex = dyn_cast<Constant>(Index);
1305       if (CIndex && CIndex->isZeroValue())
1306         continue;
1307 
1308       if (StructType *STy = GTI.getStructTypeOrNull()) {
1309         // Handle struct member offset arithmetic.
1310 
1311         assert(CIndex &&
1312                "Access to structure field must be known at compile time");
1313 
1314         if (CIndex->getType()->isVectorTy())
1315           Index = CIndex->getSplatValue();
1316 
1317         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1318         const StructLayout *SL = Q.DL.getStructLayout(STy);
1319         uint64_t Offset = SL->getElementOffset(Idx);
1320         AccConstIndices += Offset;
1321         continue;
1322       }
1323 
1324       // Handle array index arithmetic.
1325       Type *IndexedTy = GTI.getIndexedType();
1326       if (!IndexedTy->isSized()) {
1327         Known.resetAll();
1328         break;
1329       }
1330 
1331       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1332       KnownBits IndexBits(IndexBitWidth);
1333       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1334       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1335       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1336       KnownBits ScalingFactor(IndexBitWidth);
1337       // Multiply by current sizeof type.
1338       // &A[i] == A + i * sizeof(*A[i]).
1339       if (IndexTypeSize.isScalable()) {
1340         // For scalable types the only thing we know about sizeof is
1341         // that this is a multiple of the minimum size.
1342         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1343       } else if (IndexBits.isConstant()) {
1344         APInt IndexConst = IndexBits.getConstant();
1345         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1346         IndexConst *= ScalingFactor;
1347         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1348         continue;
1349       } else {
1350         ScalingFactor =
1351             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1352       }
1353       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1354 
1355       // If the offsets have a different width from the pointer, according
1356       // to the language reference we need to sign-extend or truncate them
1357       // to the width of the pointer.
1358       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1359 
1360       // Note that inbounds does *not* guarantee nsw for the addition, as only
1361       // the offset is signed, while the base address is unsigned.
1362       Known = KnownBits::computeForAddSub(
1363           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1364     }
1365     if (!Known.isUnknown() && !AccConstIndices.isNullValue()) {
1366       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1367       Known = KnownBits::computeForAddSub(
1368           /*Add=*/true, /*NSW=*/false, Known, Index);
1369     }
1370     break;
1371   }
1372   case Instruction::PHI: {
1373     const PHINode *P = cast<PHINode>(I);
1374     BinaryOperator *BO = nullptr;
1375     Value *R = nullptr, *L = nullptr;
1376     if (matchSimpleRecurrence(P, BO, R, L)) {
1377       // Handle the case of a simple two-predecessor recurrence PHI.
1378       // There's a lot more that could theoretically be done here, but
1379       // this is sufficient to catch some interesting cases.
1380       unsigned Opcode = BO->getOpcode();
1381 
1382       // If this is a shift recurrence, we know the bits being shifted in.
1383       // We can combine that with information about the start value of the
1384       // recurrence to conclude facts about the result.
1385       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1386            Opcode == Instruction::Shl) &&
1387           BO->getOperand(0) == I) {
1388 
1389         // We have matched a recurrence of the form:
1390         // %iv = [R, %entry], [%iv.next, %backedge]
1391         // %iv.next = shift_op %iv, L
1392 
1393         // Recurse with the phi context to avoid concern about whether facts
1394         // inferred hold at original context instruction.  TODO: It may be
1395         // correct to use the original context.  IF warranted, explore and
1396         // add sufficient tests to cover.
1397         Query RecQ = Q;
1398         RecQ.CxtI = P;
1399         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1400         switch (Opcode) {
1401         case Instruction::Shl:
1402           // A shl recurrence will only increase the tailing zeros
1403           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1404           break;
1405         case Instruction::LShr:
1406           // A lshr recurrence will preserve the leading zeros of the
1407           // start value
1408           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1409           break;
1410         case Instruction::AShr:
1411           // An ashr recurrence will extend the initial sign bit
1412           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1413           Known.One.setHighBits(Known2.countMinLeadingOnes());
1414           break;
1415         };
1416       }
1417 
1418       // Check for operations that have the property that if
1419       // both their operands have low zero bits, the result
1420       // will have low zero bits.
1421       if (Opcode == Instruction::Add ||
1422           Opcode == Instruction::Sub ||
1423           Opcode == Instruction::And ||
1424           Opcode == Instruction::Or ||
1425           Opcode == Instruction::Mul) {
1426         // Change the context instruction to the "edge" that flows into the
1427         // phi. This is important because that is where the value is actually
1428         // "evaluated" even though it is used later somewhere else. (see also
1429         // D69571).
1430         Query RecQ = Q;
1431 
1432         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1433         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1434         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1435 
1436         // Ok, we have a PHI of the form L op= R. Check for low
1437         // zero bits.
1438         RecQ.CxtI = RInst;
1439         computeKnownBits(R, Known2, Depth + 1, RecQ);
1440 
1441         // We need to take the minimum number of known bits
1442         KnownBits Known3(BitWidth);
1443         RecQ.CxtI = LInst;
1444         computeKnownBits(L, Known3, Depth + 1, RecQ);
1445 
1446         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1447                                        Known3.countMinTrailingZeros()));
1448 
1449         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1450         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1451           // If initial value of recurrence is nonnegative, and we are adding
1452           // a nonnegative number with nsw, the result can only be nonnegative
1453           // or poison value regardless of the number of times we execute the
1454           // add in phi recurrence. If initial value is negative and we are
1455           // adding a negative number with nsw, the result can only be
1456           // negative or poison value. Similar arguments apply to sub and mul.
1457           //
1458           // (add non-negative, non-negative) --> non-negative
1459           // (add negative, negative) --> negative
1460           if (Opcode == Instruction::Add) {
1461             if (Known2.isNonNegative() && Known3.isNonNegative())
1462               Known.makeNonNegative();
1463             else if (Known2.isNegative() && Known3.isNegative())
1464               Known.makeNegative();
1465           }
1466 
1467           // (sub nsw non-negative, negative) --> non-negative
1468           // (sub nsw negative, non-negative) --> negative
1469           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1470             if (Known2.isNonNegative() && Known3.isNegative())
1471               Known.makeNonNegative();
1472             else if (Known2.isNegative() && Known3.isNonNegative())
1473               Known.makeNegative();
1474           }
1475 
1476           // (mul nsw non-negative, non-negative) --> non-negative
1477           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1478                    Known3.isNonNegative())
1479             Known.makeNonNegative();
1480         }
1481 
1482         break;
1483       }
1484     }
1485 
1486     // Unreachable blocks may have zero-operand PHI nodes.
1487     if (P->getNumIncomingValues() == 0)
1488       break;
1489 
1490     // Otherwise take the unions of the known bit sets of the operands,
1491     // taking conservative care to avoid excessive recursion.
1492     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1493       // Skip if every incoming value references to ourself.
1494       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1495         break;
1496 
1497       Known.Zero.setAllBits();
1498       Known.One.setAllBits();
1499       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1500         Value *IncValue = P->getIncomingValue(u);
1501         // Skip direct self references.
1502         if (IncValue == P) continue;
1503 
1504         // Change the context instruction to the "edge" that flows into the
1505         // phi. This is important because that is where the value is actually
1506         // "evaluated" even though it is used later somewhere else. (see also
1507         // D69571).
1508         Query RecQ = Q;
1509         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1510 
1511         Known2 = KnownBits(BitWidth);
1512         // Recurse, but cap the recursion to one level, because we don't
1513         // want to waste time spinning around in loops.
1514         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1515         Known = KnownBits::commonBits(Known, Known2);
1516         // If all bits have been ruled out, there's no need to check
1517         // more operands.
1518         if (Known.isUnknown())
1519           break;
1520       }
1521     }
1522     break;
1523   }
1524   case Instruction::Call:
1525   case Instruction::Invoke:
1526     // If range metadata is attached to this call, set known bits from that,
1527     // and then intersect with known bits based on other properties of the
1528     // function.
1529     if (MDNode *MD =
1530             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1531       computeKnownBitsFromRangeMetadata(*MD, Known);
1532     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1533       computeKnownBits(RV, Known2, Depth + 1, Q);
1534       Known.Zero |= Known2.Zero;
1535       Known.One |= Known2.One;
1536     }
1537     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1538       switch (II->getIntrinsicID()) {
1539       default: break;
1540       case Intrinsic::abs: {
1541         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1542         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1543         Known = Known2.abs(IntMinIsPoison);
1544         break;
1545       }
1546       case Intrinsic::bitreverse:
1547         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1548         Known.Zero |= Known2.Zero.reverseBits();
1549         Known.One |= Known2.One.reverseBits();
1550         break;
1551       case Intrinsic::bswap:
1552         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1553         Known.Zero |= Known2.Zero.byteSwap();
1554         Known.One |= Known2.One.byteSwap();
1555         break;
1556       case Intrinsic::ctlz: {
1557         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1558         // If we have a known 1, its position is our upper bound.
1559         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1560         // If this call is undefined for 0, the result will be less than 2^n.
1561         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1562           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1563         unsigned LowBits = Log2_32(PossibleLZ)+1;
1564         Known.Zero.setBitsFrom(LowBits);
1565         break;
1566       }
1567       case Intrinsic::cttz: {
1568         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1569         // If we have a known 1, its position is our upper bound.
1570         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1571         // If this call is undefined for 0, the result will be less than 2^n.
1572         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1573           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1574         unsigned LowBits = Log2_32(PossibleTZ)+1;
1575         Known.Zero.setBitsFrom(LowBits);
1576         break;
1577       }
1578       case Intrinsic::ctpop: {
1579         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1580         // We can bound the space the count needs.  Also, bits known to be zero
1581         // can't contribute to the population.
1582         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1583         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1584         Known.Zero.setBitsFrom(LowBits);
1585         // TODO: we could bound KnownOne using the lower bound on the number
1586         // of bits which might be set provided by popcnt KnownOne2.
1587         break;
1588       }
1589       case Intrinsic::fshr:
1590       case Intrinsic::fshl: {
1591         const APInt *SA;
1592         if (!match(I->getOperand(2), m_APInt(SA)))
1593           break;
1594 
1595         // Normalize to funnel shift left.
1596         uint64_t ShiftAmt = SA->urem(BitWidth);
1597         if (II->getIntrinsicID() == Intrinsic::fshr)
1598           ShiftAmt = BitWidth - ShiftAmt;
1599 
1600         KnownBits Known3(BitWidth);
1601         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1602         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1603 
1604         Known.Zero =
1605             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1606         Known.One =
1607             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1608         break;
1609       }
1610       case Intrinsic::uadd_sat:
1611       case Intrinsic::usub_sat: {
1612         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1613         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1614         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1615 
1616         // Add: Leading ones of either operand are preserved.
1617         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1618         // as leading zeros in the result.
1619         unsigned LeadingKnown;
1620         if (IsAdd)
1621           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1622                                   Known2.countMinLeadingOnes());
1623         else
1624           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1625                                   Known2.countMinLeadingOnes());
1626 
1627         Known = KnownBits::computeForAddSub(
1628             IsAdd, /* NSW */ false, Known, Known2);
1629 
1630         // We select between the operation result and all-ones/zero
1631         // respectively, so we can preserve known ones/zeros.
1632         if (IsAdd) {
1633           Known.One.setHighBits(LeadingKnown);
1634           Known.Zero.clearAllBits();
1635         } else {
1636           Known.Zero.setHighBits(LeadingKnown);
1637           Known.One.clearAllBits();
1638         }
1639         break;
1640       }
1641       case Intrinsic::umin:
1642         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1643         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1644         Known = KnownBits::umin(Known, Known2);
1645         break;
1646       case Intrinsic::umax:
1647         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1648         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1649         Known = KnownBits::umax(Known, Known2);
1650         break;
1651       case Intrinsic::smin:
1652         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1653         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1654         Known = KnownBits::smin(Known, Known2);
1655         break;
1656       case Intrinsic::smax:
1657         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1658         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1659         Known = KnownBits::smax(Known, Known2);
1660         break;
1661       case Intrinsic::x86_sse42_crc32_64_64:
1662         Known.Zero.setBitsFrom(32);
1663         break;
1664       }
1665     }
1666     break;
1667   case Instruction::ShuffleVector: {
1668     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1669     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1670     if (!Shuf) {
1671       Known.resetAll();
1672       return;
1673     }
1674     // For undef elements, we don't know anything about the common state of
1675     // the shuffle result.
1676     APInt DemandedLHS, DemandedRHS;
1677     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1678       Known.resetAll();
1679       return;
1680     }
1681     Known.One.setAllBits();
1682     Known.Zero.setAllBits();
1683     if (!!DemandedLHS) {
1684       const Value *LHS = Shuf->getOperand(0);
1685       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1686       // If we don't know any bits, early out.
1687       if (Known.isUnknown())
1688         break;
1689     }
1690     if (!!DemandedRHS) {
1691       const Value *RHS = Shuf->getOperand(1);
1692       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1693       Known = KnownBits::commonBits(Known, Known2);
1694     }
1695     break;
1696   }
1697   case Instruction::InsertElement: {
1698     const Value *Vec = I->getOperand(0);
1699     const Value *Elt = I->getOperand(1);
1700     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1701     // Early out if the index is non-constant or out-of-range.
1702     unsigned NumElts = DemandedElts.getBitWidth();
1703     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1704       Known.resetAll();
1705       return;
1706     }
1707     Known.One.setAllBits();
1708     Known.Zero.setAllBits();
1709     unsigned EltIdx = CIdx->getZExtValue();
1710     // Do we demand the inserted element?
1711     if (DemandedElts[EltIdx]) {
1712       computeKnownBits(Elt, Known, Depth + 1, Q);
1713       // If we don't know any bits, early out.
1714       if (Known.isUnknown())
1715         break;
1716     }
1717     // We don't need the base vector element that has been inserted.
1718     APInt DemandedVecElts = DemandedElts;
1719     DemandedVecElts.clearBit(EltIdx);
1720     if (!!DemandedVecElts) {
1721       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1722       Known = KnownBits::commonBits(Known, Known2);
1723     }
1724     break;
1725   }
1726   case Instruction::ExtractElement: {
1727     // Look through extract element. If the index is non-constant or
1728     // out-of-range demand all elements, otherwise just the extracted element.
1729     const Value *Vec = I->getOperand(0);
1730     const Value *Idx = I->getOperand(1);
1731     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1732     if (isa<ScalableVectorType>(Vec->getType())) {
1733       // FIXME: there's probably *something* we can do with scalable vectors
1734       Known.resetAll();
1735       break;
1736     }
1737     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1738     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1739     if (CIdx && CIdx->getValue().ult(NumElts))
1740       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1741     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1742     break;
1743   }
1744   case Instruction::ExtractValue:
1745     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1746       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1747       if (EVI->getNumIndices() != 1) break;
1748       if (EVI->getIndices()[0] == 0) {
1749         switch (II->getIntrinsicID()) {
1750         default: break;
1751         case Intrinsic::uadd_with_overflow:
1752         case Intrinsic::sadd_with_overflow:
1753           computeKnownBitsAddSub(true, II->getArgOperand(0),
1754                                  II->getArgOperand(1), false, DemandedElts,
1755                                  Known, Known2, Depth, Q);
1756           break;
1757         case Intrinsic::usub_with_overflow:
1758         case Intrinsic::ssub_with_overflow:
1759           computeKnownBitsAddSub(false, II->getArgOperand(0),
1760                                  II->getArgOperand(1), false, DemandedElts,
1761                                  Known, Known2, Depth, Q);
1762           break;
1763         case Intrinsic::umul_with_overflow:
1764         case Intrinsic::smul_with_overflow:
1765           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1766                               DemandedElts, Known, Known2, Depth, Q);
1767           break;
1768         }
1769       }
1770     }
1771     break;
1772   case Instruction::Freeze:
1773     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1774                                   Depth + 1))
1775       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1776     break;
1777   }
1778 }
1779 
1780 /// Determine which bits of V are known to be either zero or one and return
1781 /// them.
1782 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1783                            unsigned Depth, const Query &Q) {
1784   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1785   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1786   return Known;
1787 }
1788 
1789 /// Determine which bits of V are known to be either zero or one and return
1790 /// them.
1791 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1792   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1793   computeKnownBits(V, Known, Depth, Q);
1794   return Known;
1795 }
1796 
1797 /// Determine which bits of V are known to be either zero or one and return
1798 /// them in the Known bit set.
1799 ///
1800 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1801 /// we cannot optimize based on the assumption that it is zero without changing
1802 /// it to be an explicit zero.  If we don't change it to zero, other code could
1803 /// optimized based on the contradictory assumption that it is non-zero.
1804 /// Because instcombine aggressively folds operations with undef args anyway,
1805 /// this won't lose us code quality.
1806 ///
1807 /// This function is defined on values with integer type, values with pointer
1808 /// type, and vectors of integers.  In the case
1809 /// where V is a vector, known zero, and known one values are the
1810 /// same width as the vector element, and the bit is set only if it is true
1811 /// for all of the demanded elements in the vector specified by DemandedElts.
1812 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1813                       KnownBits &Known, unsigned Depth, const Query &Q) {
1814   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1815     // No demanded elts or V is a scalable vector, better to assume we don't
1816     // know anything.
1817     Known.resetAll();
1818     return;
1819   }
1820 
1821   assert(V && "No Value?");
1822   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1823 
1824 #ifndef NDEBUG
1825   Type *Ty = V->getType();
1826   unsigned BitWidth = Known.getBitWidth();
1827 
1828   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1829          "Not integer or pointer type!");
1830 
1831   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1832     assert(
1833         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1834         "DemandedElt width should equal the fixed vector number of elements");
1835   } else {
1836     assert(DemandedElts == APInt(1, 1) &&
1837            "DemandedElt width should be 1 for scalars");
1838   }
1839 
1840   Type *ScalarTy = Ty->getScalarType();
1841   if (ScalarTy->isPointerTy()) {
1842     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1843            "V and Known should have same BitWidth");
1844   } else {
1845     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1846            "V and Known should have same BitWidth");
1847   }
1848 #endif
1849 
1850   const APInt *C;
1851   if (match(V, m_APInt(C))) {
1852     // We know all of the bits for a scalar constant or a splat vector constant!
1853     Known = KnownBits::makeConstant(*C);
1854     return;
1855   }
1856   // Null and aggregate-zero are all-zeros.
1857   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1858     Known.setAllZero();
1859     return;
1860   }
1861   // Handle a constant vector by taking the intersection of the known bits of
1862   // each element.
1863   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1864     // We know that CDV must be a vector of integers. Take the intersection of
1865     // each element.
1866     Known.Zero.setAllBits(); Known.One.setAllBits();
1867     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1868       if (!DemandedElts[i])
1869         continue;
1870       APInt Elt = CDV->getElementAsAPInt(i);
1871       Known.Zero &= ~Elt;
1872       Known.One &= Elt;
1873     }
1874     return;
1875   }
1876 
1877   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1878     // We know that CV must be a vector of integers. Take the intersection of
1879     // each element.
1880     Known.Zero.setAllBits(); Known.One.setAllBits();
1881     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1882       if (!DemandedElts[i])
1883         continue;
1884       Constant *Element = CV->getAggregateElement(i);
1885       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1886       if (!ElementCI) {
1887         Known.resetAll();
1888         return;
1889       }
1890       const APInt &Elt = ElementCI->getValue();
1891       Known.Zero &= ~Elt;
1892       Known.One &= Elt;
1893     }
1894     return;
1895   }
1896 
1897   // Start out not knowing anything.
1898   Known.resetAll();
1899 
1900   // We can't imply anything about undefs.
1901   if (isa<UndefValue>(V))
1902     return;
1903 
1904   // There's no point in looking through other users of ConstantData for
1905   // assumptions.  Confirm that we've handled them all.
1906   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1907 
1908   // All recursive calls that increase depth must come after this.
1909   if (Depth == MaxAnalysisRecursionDepth)
1910     return;
1911 
1912   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1913   // the bits of its aliasee.
1914   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1915     if (!GA->isInterposable())
1916       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1917     return;
1918   }
1919 
1920   if (const Operator *I = dyn_cast<Operator>(V))
1921     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1922 
1923   // Aligned pointers have trailing zeros - refine Known.Zero set
1924   if (isa<PointerType>(V->getType())) {
1925     Align Alignment = V->getPointerAlignment(Q.DL);
1926     Known.Zero.setLowBits(Log2(Alignment));
1927   }
1928 
1929   // computeKnownBitsFromAssume strictly refines Known.
1930   // Therefore, we run them after computeKnownBitsFromOperator.
1931 
1932   // Check whether a nearby assume intrinsic can determine some known bits.
1933   computeKnownBitsFromAssume(V, Known, Depth, Q);
1934 
1935   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1936 }
1937 
1938 /// Return true if the given value is known to have exactly one
1939 /// bit set when defined. For vectors return true if every element is known to
1940 /// be a power of two when defined. Supports values with integer or pointer
1941 /// types and vectors of integers.
1942 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1943                             const Query &Q) {
1944   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1945 
1946   // Attempt to match against constants.
1947   if (OrZero && match(V, m_Power2OrZero()))
1948       return true;
1949   if (match(V, m_Power2()))
1950       return true;
1951 
1952   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1953   // it is shifted off the end then the result is undefined.
1954   if (match(V, m_Shl(m_One(), m_Value())))
1955     return true;
1956 
1957   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1958   // the bottom.  If it is shifted off the bottom then the result is undefined.
1959   if (match(V, m_LShr(m_SignMask(), m_Value())))
1960     return true;
1961 
1962   // The remaining tests are all recursive, so bail out if we hit the limit.
1963   if (Depth++ == MaxAnalysisRecursionDepth)
1964     return false;
1965 
1966   Value *X = nullptr, *Y = nullptr;
1967   // A shift left or a logical shift right of a power of two is a power of two
1968   // or zero.
1969   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1970                  match(V, m_LShr(m_Value(X), m_Value()))))
1971     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1972 
1973   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1974     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1975 
1976   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1977     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1978            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1979 
1980   // Peek through min/max.
1981   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
1982     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
1983            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
1984   }
1985 
1986   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1987     // A power of two and'd with anything is a power of two or zero.
1988     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1989         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1990       return true;
1991     // X & (-X) is always a power of two or zero.
1992     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1993       return true;
1994     return false;
1995   }
1996 
1997   // Adding a power-of-two or zero to the same power-of-two or zero yields
1998   // either the original power-of-two, a larger power-of-two or zero.
1999   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2000     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2001     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2002         Q.IIQ.hasNoSignedWrap(VOBO)) {
2003       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2004           match(X, m_And(m_Value(), m_Specific(Y))))
2005         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2006           return true;
2007       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2008           match(Y, m_And(m_Value(), m_Specific(X))))
2009         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2010           return true;
2011 
2012       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2013       KnownBits LHSBits(BitWidth);
2014       computeKnownBits(X, LHSBits, Depth, Q);
2015 
2016       KnownBits RHSBits(BitWidth);
2017       computeKnownBits(Y, RHSBits, Depth, Q);
2018       // If i8 V is a power of two or zero:
2019       //  ZeroBits: 1 1 1 0 1 1 1 1
2020       // ~ZeroBits: 0 0 0 1 0 0 0 0
2021       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2022         // If OrZero isn't set, we cannot give back a zero result.
2023         // Make sure either the LHS or RHS has a bit set.
2024         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2025           return true;
2026     }
2027   }
2028 
2029   // An exact divide or right shift can only shift off zero bits, so the result
2030   // is a power of two only if the first operand is a power of two and not
2031   // copying a sign bit (sdiv int_min, 2).
2032   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2033       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2034     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2035                                   Depth, Q);
2036   }
2037 
2038   return false;
2039 }
2040 
2041 /// Test whether a GEP's result is known to be non-null.
2042 ///
2043 /// Uses properties inherent in a GEP to try to determine whether it is known
2044 /// to be non-null.
2045 ///
2046 /// Currently this routine does not support vector GEPs.
2047 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2048                               const Query &Q) {
2049   const Function *F = nullptr;
2050   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2051     F = I->getFunction();
2052 
2053   if (!GEP->isInBounds() ||
2054       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2055     return false;
2056 
2057   // FIXME: Support vector-GEPs.
2058   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2059 
2060   // If the base pointer is non-null, we cannot walk to a null address with an
2061   // inbounds GEP in address space zero.
2062   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2063     return true;
2064 
2065   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2066   // If so, then the GEP cannot produce a null pointer, as doing so would
2067   // inherently violate the inbounds contract within address space zero.
2068   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2069        GTI != GTE; ++GTI) {
2070     // Struct types are easy -- they must always be indexed by a constant.
2071     if (StructType *STy = GTI.getStructTypeOrNull()) {
2072       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2073       unsigned ElementIdx = OpC->getZExtValue();
2074       const StructLayout *SL = Q.DL.getStructLayout(STy);
2075       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2076       if (ElementOffset > 0)
2077         return true;
2078       continue;
2079     }
2080 
2081     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2082     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2083       continue;
2084 
2085     // Fast path the constant operand case both for efficiency and so we don't
2086     // increment Depth when just zipping down an all-constant GEP.
2087     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2088       if (!OpC->isZero())
2089         return true;
2090       continue;
2091     }
2092 
2093     // We post-increment Depth here because while isKnownNonZero increments it
2094     // as well, when we pop back up that increment won't persist. We don't want
2095     // to recurse 10k times just because we have 10k GEP operands. We don't
2096     // bail completely out because we want to handle constant GEPs regardless
2097     // of depth.
2098     if (Depth++ >= MaxAnalysisRecursionDepth)
2099       continue;
2100 
2101     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2102       return true;
2103   }
2104 
2105   return false;
2106 }
2107 
2108 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2109                                                   const Instruction *CtxI,
2110                                                   const DominatorTree *DT) {
2111   if (isa<Constant>(V))
2112     return false;
2113 
2114   if (!CtxI || !DT)
2115     return false;
2116 
2117   unsigned NumUsesExplored = 0;
2118   for (auto *U : V->users()) {
2119     // Avoid massive lists
2120     if (NumUsesExplored >= DomConditionsMaxUses)
2121       break;
2122     NumUsesExplored++;
2123 
2124     // If the value is used as an argument to a call or invoke, then argument
2125     // attributes may provide an answer about null-ness.
2126     if (const auto *CB = dyn_cast<CallBase>(U))
2127       if (auto *CalledFunc = CB->getCalledFunction())
2128         for (const Argument &Arg : CalledFunc->args())
2129           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2130               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2131               DT->dominates(CB, CtxI))
2132             return true;
2133 
2134     // If the value is used as a load/store, then the pointer must be non null.
2135     if (V == getLoadStorePointerOperand(U)) {
2136       const Instruction *I = cast<Instruction>(U);
2137       if (!NullPointerIsDefined(I->getFunction(),
2138                                 V->getType()->getPointerAddressSpace()) &&
2139           DT->dominates(I, CtxI))
2140         return true;
2141     }
2142 
2143     // Consider only compare instructions uniquely controlling a branch
2144     Value *RHS;
2145     CmpInst::Predicate Pred;
2146     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2147       continue;
2148 
2149     bool NonNullIfTrue;
2150     if (cmpExcludesZero(Pred, RHS))
2151       NonNullIfTrue = true;
2152     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2153       NonNullIfTrue = false;
2154     else
2155       continue;
2156 
2157     SmallVector<const User *, 4> WorkList;
2158     SmallPtrSet<const User *, 4> Visited;
2159     for (auto *CmpU : U->users()) {
2160       assert(WorkList.empty() && "Should be!");
2161       if (Visited.insert(CmpU).second)
2162         WorkList.push_back(CmpU);
2163 
2164       while (!WorkList.empty()) {
2165         auto *Curr = WorkList.pop_back_val();
2166 
2167         // If a user is an AND, add all its users to the work list. We only
2168         // propagate "pred != null" condition through AND because it is only
2169         // correct to assume that all conditions of AND are met in true branch.
2170         // TODO: Support similar logic of OR and EQ predicate?
2171         if (NonNullIfTrue)
2172           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2173             for (auto *CurrU : Curr->users())
2174               if (Visited.insert(CurrU).second)
2175                 WorkList.push_back(CurrU);
2176             continue;
2177           }
2178 
2179         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2180           assert(BI->isConditional() && "uses a comparison!");
2181 
2182           BasicBlock *NonNullSuccessor =
2183               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2184           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2185           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2186             return true;
2187         } else if (NonNullIfTrue && isGuard(Curr) &&
2188                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2189           return true;
2190         }
2191       }
2192     }
2193   }
2194 
2195   return false;
2196 }
2197 
2198 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2199 /// ensure that the value it's attached to is never Value?  'RangeType' is
2200 /// is the type of the value described by the range.
2201 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2202   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2203   assert(NumRanges >= 1);
2204   for (unsigned i = 0; i < NumRanges; ++i) {
2205     ConstantInt *Lower =
2206         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2207     ConstantInt *Upper =
2208         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2209     ConstantRange Range(Lower->getValue(), Upper->getValue());
2210     if (Range.contains(Value))
2211       return false;
2212   }
2213   return true;
2214 }
2215 
2216 /// Try to detect a recurrence that monotonically increases/decreases from a
2217 /// non-zero starting value. These are common as induction variables.
2218 static bool isNonZeroRecurrence(const PHINode *PN) {
2219   BinaryOperator *BO = nullptr;
2220   Value *Start = nullptr, *Step = nullptr;
2221   const APInt *StartC, *StepC;
2222   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2223       !match(Start, m_APInt(StartC)) || StartC->isNullValue())
2224     return false;
2225 
2226   switch (BO->getOpcode()) {
2227   case Instruction::Add:
2228     // Starting from non-zero and stepping away from zero can never wrap back
2229     // to zero.
2230     return BO->hasNoUnsignedWrap() ||
2231            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2232             StartC->isNegative() == StepC->isNegative());
2233   case Instruction::Mul:
2234     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2235            match(Step, m_APInt(StepC)) && !StepC->isNullValue();
2236   case Instruction::Shl:
2237     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2238   case Instruction::AShr:
2239   case Instruction::LShr:
2240     return BO->isExact();
2241   default:
2242     return false;
2243   }
2244 }
2245 
2246 /// Return true if the given value is known to be non-zero when defined. For
2247 /// vectors, return true if every demanded element is known to be non-zero when
2248 /// defined. For pointers, if the context instruction and dominator tree are
2249 /// specified, perform context-sensitive analysis and return true if the
2250 /// pointer couldn't possibly be null at the specified instruction.
2251 /// Supports values with integer or pointer type and vectors of integers.
2252 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2253                     const Query &Q) {
2254   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2255   // vector
2256   if (isa<ScalableVectorType>(V->getType()))
2257     return false;
2258 
2259   if (auto *C = dyn_cast<Constant>(V)) {
2260     if (C->isNullValue())
2261       return false;
2262     if (isa<ConstantInt>(C))
2263       // Must be non-zero due to null test above.
2264       return true;
2265 
2266     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2267       // See the comment for IntToPtr/PtrToInt instructions below.
2268       if (CE->getOpcode() == Instruction::IntToPtr ||
2269           CE->getOpcode() == Instruction::PtrToInt)
2270         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2271                 .getFixedSize() <=
2272             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2273           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2274     }
2275 
2276     // For constant vectors, check that all elements are undefined or known
2277     // non-zero to determine that the whole vector is known non-zero.
2278     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2279       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2280         if (!DemandedElts[i])
2281           continue;
2282         Constant *Elt = C->getAggregateElement(i);
2283         if (!Elt || Elt->isNullValue())
2284           return false;
2285         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2286           return false;
2287       }
2288       return true;
2289     }
2290 
2291     // A global variable in address space 0 is non null unless extern weak
2292     // or an absolute symbol reference. Other address spaces may have null as a
2293     // valid address for a global, so we can't assume anything.
2294     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2295       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2296           GV->getType()->getAddressSpace() == 0)
2297         return true;
2298     } else
2299       return false;
2300   }
2301 
2302   if (auto *I = dyn_cast<Instruction>(V)) {
2303     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2304       // If the possible ranges don't contain zero, then the value is
2305       // definitely non-zero.
2306       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2307         const APInt ZeroValue(Ty->getBitWidth(), 0);
2308         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2309           return true;
2310       }
2311     }
2312   }
2313 
2314   if (isKnownNonZeroFromAssume(V, Q))
2315     return true;
2316 
2317   // Some of the tests below are recursive, so bail out if we hit the limit.
2318   if (Depth++ >= MaxAnalysisRecursionDepth)
2319     return false;
2320 
2321   // Check for pointer simplifications.
2322 
2323   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2324     // Alloca never returns null, malloc might.
2325     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2326       return true;
2327 
2328     // A byval, inalloca may not be null in a non-default addres space. A
2329     // nonnull argument is assumed never 0.
2330     if (const Argument *A = dyn_cast<Argument>(V)) {
2331       if (((A->hasPassPointeeByValueCopyAttr() &&
2332             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2333            A->hasNonNullAttr()))
2334         return true;
2335     }
2336 
2337     // A Load tagged with nonnull metadata is never null.
2338     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2339       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2340         return true;
2341 
2342     if (const auto *Call = dyn_cast<CallBase>(V)) {
2343       if (Call->isReturnNonNull())
2344         return true;
2345       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2346         return isKnownNonZero(RP, Depth, Q);
2347     }
2348   }
2349 
2350   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2351     return true;
2352 
2353   // Check for recursive pointer simplifications.
2354   if (V->getType()->isPointerTy()) {
2355     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2356     // do not alter the value, or at least not the nullness property of the
2357     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2358     //
2359     // Note that we have to take special care to avoid looking through
2360     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2361     // as casts that can alter the value, e.g., AddrSpaceCasts.
2362     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2363       return isGEPKnownNonNull(GEP, Depth, Q);
2364 
2365     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2366       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2367 
2368     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2369       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2370           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2371         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2372   }
2373 
2374   // Similar to int2ptr above, we can look through ptr2int here if the cast
2375   // is a no-op or an extend and not a truncate.
2376   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2377     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2378         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2379       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2380 
2381   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2382 
2383   // X | Y != 0 if X != 0 or Y != 0.
2384   Value *X = nullptr, *Y = nullptr;
2385   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2386     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2387            isKnownNonZero(Y, DemandedElts, Depth, Q);
2388 
2389   // ext X != 0 if X != 0.
2390   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2391     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2392 
2393   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2394   // if the lowest bit is shifted off the end.
2395   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2396     // shl nuw can't remove any non-zero bits.
2397     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2398     if (Q.IIQ.hasNoUnsignedWrap(BO))
2399       return isKnownNonZero(X, Depth, Q);
2400 
2401     KnownBits Known(BitWidth);
2402     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2403     if (Known.One[0])
2404       return true;
2405   }
2406   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2407   // defined if the sign bit is shifted off the end.
2408   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2409     // shr exact can only shift out zero bits.
2410     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2411     if (BO->isExact())
2412       return isKnownNonZero(X, Depth, Q);
2413 
2414     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2415     if (Known.isNegative())
2416       return true;
2417 
2418     // If the shifter operand is a constant, and all of the bits shifted
2419     // out are known to be zero, and X is known non-zero then at least one
2420     // non-zero bit must remain.
2421     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2422       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2423       // Is there a known one in the portion not shifted out?
2424       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2425         return true;
2426       // Are all the bits to be shifted out known zero?
2427       if (Known.countMinTrailingZeros() >= ShiftVal)
2428         return isKnownNonZero(X, DemandedElts, Depth, Q);
2429     }
2430   }
2431   // div exact can only produce a zero if the dividend is zero.
2432   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2433     return isKnownNonZero(X, DemandedElts, Depth, Q);
2434   }
2435   // X + Y.
2436   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2437     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2438     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2439 
2440     // If X and Y are both non-negative (as signed values) then their sum is not
2441     // zero unless both X and Y are zero.
2442     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2443       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2444           isKnownNonZero(Y, DemandedElts, Depth, Q))
2445         return true;
2446 
2447     // If X and Y are both negative (as signed values) then their sum is not
2448     // zero unless both X and Y equal INT_MIN.
2449     if (XKnown.isNegative() && YKnown.isNegative()) {
2450       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2451       // The sign bit of X is set.  If some other bit is set then X is not equal
2452       // to INT_MIN.
2453       if (XKnown.One.intersects(Mask))
2454         return true;
2455       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2456       // to INT_MIN.
2457       if (YKnown.One.intersects(Mask))
2458         return true;
2459     }
2460 
2461     // The sum of a non-negative number and a power of two is not zero.
2462     if (XKnown.isNonNegative() &&
2463         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2464       return true;
2465     if (YKnown.isNonNegative() &&
2466         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2467       return true;
2468   }
2469   // X * Y.
2470   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2471     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2472     // If X and Y are non-zero then so is X * Y as long as the multiplication
2473     // does not overflow.
2474     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2475         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2476         isKnownNonZero(Y, DemandedElts, Depth, Q))
2477       return true;
2478   }
2479   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2480   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2481     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2482         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2483       return true;
2484   }
2485   // PHI
2486   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2487     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2488       return true;
2489 
2490     // Check if all incoming values are non-zero using recursion.
2491     Query RecQ = Q;
2492     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2493     return llvm::all_of(PN->operands(), [&](const Use &U) {
2494       if (U.get() == PN)
2495         return true;
2496       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2497       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2498     });
2499   }
2500   // ExtractElement
2501   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2502     const Value *Vec = EEI->getVectorOperand();
2503     const Value *Idx = EEI->getIndexOperand();
2504     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2505     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2506       unsigned NumElts = VecTy->getNumElements();
2507       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2508       if (CIdx && CIdx->getValue().ult(NumElts))
2509         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2510       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2511     }
2512   }
2513   // Freeze
2514   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2515     auto *Op = FI->getOperand(0);
2516     if (isKnownNonZero(Op, Depth, Q) &&
2517         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2518       return true;
2519   }
2520 
2521   KnownBits Known(BitWidth);
2522   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2523   return Known.One != 0;
2524 }
2525 
2526 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2527   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2528   // vector
2529   if (isa<ScalableVectorType>(V->getType()))
2530     return false;
2531 
2532   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2533   APInt DemandedElts =
2534       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2535   return isKnownNonZero(V, DemandedElts, Depth, Q);
2536 }
2537 
2538 /// If the pair of operators are the same invertible function of a single
2539 /// operand return the index of that operand.  Otherwise, return None.  An
2540 /// invertible function is one that is 1-to-1 and maps every input value
2541 /// to exactly one output value.  This is equivalent to saying that Op1
2542 /// and Op2 are equal exactly when the specified pair of operands are equal,
2543 /// (except that Op1 and Op2 may be poison more often.)
2544 static Optional<unsigned> getInvertibleOperand(const Operator *Op1,
2545                                                const Operator *Op2) {
2546   if (Op1->getOpcode() != Op2->getOpcode())
2547     return None;
2548 
2549   switch (Op1->getOpcode()) {
2550   default:
2551     break;
2552   case Instruction::Add:
2553   case Instruction::Sub:
2554     if (Op1->getOperand(0) == Op2->getOperand(0))
2555       return 1;
2556     if (Op1->getOperand(1) == Op2->getOperand(1))
2557       return 0;
2558     break;
2559   case Instruction::Mul: {
2560     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2561     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2562     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2563     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2564     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2565     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2566         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2567       break;
2568 
2569     // Assume operand order has been canonicalized
2570     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2571         isa<ConstantInt>(Op1->getOperand(1)) &&
2572         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2573       return 0;
2574     break;
2575   }
2576   case Instruction::Shl: {
2577     // Same as multiplies, with the difference that we don't need to check
2578     // for a non-zero multiply. Shifts always multiply by non-zero.
2579     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2580     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2581     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2582         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2583       break;
2584 
2585     if (Op1->getOperand(1) == Op2->getOperand(1))
2586       return 0;
2587     break;
2588   }
2589   case Instruction::AShr:
2590   case Instruction::LShr: {
2591     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2592     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2593     if (!PEO1->isExact() || !PEO2->isExact())
2594       break;
2595 
2596     if (Op1->getOperand(1) == Op2->getOperand(1))
2597       return 0;
2598     break;
2599   }
2600   case Instruction::SExt:
2601   case Instruction::ZExt:
2602     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2603       return 0;
2604     break;
2605   }
2606   return None;
2607 }
2608 
2609 /// Return true if V2 == V1 + X, where X is known non-zero.
2610 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2611                            const Query &Q) {
2612   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2613   if (!BO || BO->getOpcode() != Instruction::Add)
2614     return false;
2615   Value *Op = nullptr;
2616   if (V2 == BO->getOperand(0))
2617     Op = BO->getOperand(1);
2618   else if (V2 == BO->getOperand(1))
2619     Op = BO->getOperand(0);
2620   else
2621     return false;
2622   return isKnownNonZero(Op, Depth + 1, Q);
2623 }
2624 
2625 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2626 /// the multiplication is nuw or nsw.
2627 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2628                           const Query &Q) {
2629   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2630     const APInt *C;
2631     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2632            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2633            !C->isNullValue() && !C->isOneValue() &&
2634            isKnownNonZero(V1, Depth + 1, Q);
2635   }
2636   return false;
2637 }
2638 
2639 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2640 /// the shift is nuw or nsw.
2641 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2642                           const Query &Q) {
2643   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2644     const APInt *C;
2645     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2646            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2647            !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q);
2648   }
2649   return false;
2650 }
2651 
2652 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2653                            unsigned Depth, const Query &Q) {
2654   // Check two PHIs are in same block.
2655   if (PN1->getParent() != PN2->getParent())
2656     return false;
2657 
2658   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2659   bool UsedFullRecursion = false;
2660   for (const BasicBlock *IncomBB : PN1->blocks()) {
2661     if (!VisitedBBs.insert(IncomBB).second)
2662       continue; // Don't reprocess blocks that we have dealt with already.
2663     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2664     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2665     const APInt *C1, *C2;
2666     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2667       continue;
2668 
2669     // Only one pair of phi operands is allowed for full recursion.
2670     if (UsedFullRecursion)
2671       return false;
2672 
2673     Query RecQ = Q;
2674     RecQ.CxtI = IncomBB->getTerminator();
2675     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2676       return false;
2677     UsedFullRecursion = true;
2678   }
2679   return true;
2680 }
2681 
2682 /// Return true if it is known that V1 != V2.
2683 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2684                             const Query &Q) {
2685   if (V1 == V2)
2686     return false;
2687   if (V1->getType() != V2->getType())
2688     // We can't look through casts yet.
2689     return false;
2690 
2691   if (Depth >= MaxAnalysisRecursionDepth)
2692     return false;
2693 
2694   // See if we can recurse through (exactly one of) our operands.  This
2695   // requires our operation be 1-to-1 and map every input value to exactly
2696   // one output value.  Such an operation is invertible.
2697   auto *O1 = dyn_cast<Operator>(V1);
2698   auto *O2 = dyn_cast<Operator>(V2);
2699   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2700     if (Optional<unsigned> Opt = getInvertibleOperand(O1, O2)) {
2701       unsigned Idx = *Opt;
2702       return isKnownNonEqual(O1->getOperand(Idx), O2->getOperand(Idx),
2703                              Depth + 1, Q);
2704     }
2705     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2706       const PHINode *PN2 = cast<PHINode>(V2);
2707       // FIXME: This is missing a generalization to handle the case where one is
2708       // a PHI and another one isn't.
2709       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2710         return true;
2711     };
2712   }
2713 
2714   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2715     return true;
2716 
2717   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2718     return true;
2719 
2720   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2721     return true;
2722 
2723   if (V1->getType()->isIntOrIntVectorTy()) {
2724     // Are any known bits in V1 contradictory to known bits in V2? If V1
2725     // has a known zero where V2 has a known one, they must not be equal.
2726     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2727     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2728 
2729     if (Known1.Zero.intersects(Known2.One) ||
2730         Known2.Zero.intersects(Known1.One))
2731       return true;
2732   }
2733   return false;
2734 }
2735 
2736 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2737 /// simplify operations downstream. Mask is known to be zero for bits that V
2738 /// cannot have.
2739 ///
2740 /// This function is defined on values with integer type, values with pointer
2741 /// type, and vectors of integers.  In the case
2742 /// where V is a vector, the mask, known zero, and known one values are the
2743 /// same width as the vector element, and the bit is set only if it is true
2744 /// for all of the elements in the vector.
2745 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2746                        const Query &Q) {
2747   KnownBits Known(Mask.getBitWidth());
2748   computeKnownBits(V, Known, Depth, Q);
2749   return Mask.isSubsetOf(Known.Zero);
2750 }
2751 
2752 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2753 // Returns the input and lower/upper bounds.
2754 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2755                                 const APInt *&CLow, const APInt *&CHigh) {
2756   assert(isa<Operator>(Select) &&
2757          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2758          "Input should be a Select!");
2759 
2760   const Value *LHS = nullptr, *RHS = nullptr;
2761   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2762   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2763     return false;
2764 
2765   if (!match(RHS, m_APInt(CLow)))
2766     return false;
2767 
2768   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2769   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2770   if (getInverseMinMaxFlavor(SPF) != SPF2)
2771     return false;
2772 
2773   if (!match(RHS2, m_APInt(CHigh)))
2774     return false;
2775 
2776   if (SPF == SPF_SMIN)
2777     std::swap(CLow, CHigh);
2778 
2779   In = LHS2;
2780   return CLow->sle(*CHigh);
2781 }
2782 
2783 /// For vector constants, loop over the elements and find the constant with the
2784 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2785 /// or if any element was not analyzed; otherwise, return the count for the
2786 /// element with the minimum number of sign bits.
2787 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2788                                                  const APInt &DemandedElts,
2789                                                  unsigned TyBits) {
2790   const auto *CV = dyn_cast<Constant>(V);
2791   if (!CV || !isa<FixedVectorType>(CV->getType()))
2792     return 0;
2793 
2794   unsigned MinSignBits = TyBits;
2795   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2796   for (unsigned i = 0; i != NumElts; ++i) {
2797     if (!DemandedElts[i])
2798       continue;
2799     // If we find a non-ConstantInt, bail out.
2800     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2801     if (!Elt)
2802       return 0;
2803 
2804     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2805   }
2806 
2807   return MinSignBits;
2808 }
2809 
2810 static unsigned ComputeNumSignBitsImpl(const Value *V,
2811                                        const APInt &DemandedElts,
2812                                        unsigned Depth, const Query &Q);
2813 
2814 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2815                                    unsigned Depth, const Query &Q) {
2816   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2817   assert(Result > 0 && "At least one sign bit needs to be present!");
2818   return Result;
2819 }
2820 
2821 /// Return the number of times the sign bit of the register is replicated into
2822 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2823 /// (itself), but other cases can give us information. For example, immediately
2824 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2825 /// other, so we return 3. For vectors, return the number of sign bits for the
2826 /// vector element with the minimum number of known sign bits of the demanded
2827 /// elements in the vector specified by DemandedElts.
2828 static unsigned ComputeNumSignBitsImpl(const Value *V,
2829                                        const APInt &DemandedElts,
2830                                        unsigned Depth, const Query &Q) {
2831   Type *Ty = V->getType();
2832 
2833   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2834   // vector
2835   if (isa<ScalableVectorType>(Ty))
2836     return 1;
2837 
2838 #ifndef NDEBUG
2839   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2840 
2841   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2842     assert(
2843         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2844         "DemandedElt width should equal the fixed vector number of elements");
2845   } else {
2846     assert(DemandedElts == APInt(1, 1) &&
2847            "DemandedElt width should be 1 for scalars");
2848   }
2849 #endif
2850 
2851   // We return the minimum number of sign bits that are guaranteed to be present
2852   // in V, so for undef we have to conservatively return 1.  We don't have the
2853   // same behavior for poison though -- that's a FIXME today.
2854 
2855   Type *ScalarTy = Ty->getScalarType();
2856   unsigned TyBits = ScalarTy->isPointerTy() ?
2857     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2858     Q.DL.getTypeSizeInBits(ScalarTy);
2859 
2860   unsigned Tmp, Tmp2;
2861   unsigned FirstAnswer = 1;
2862 
2863   // Note that ConstantInt is handled by the general computeKnownBits case
2864   // below.
2865 
2866   if (Depth == MaxAnalysisRecursionDepth)
2867     return 1;
2868 
2869   if (auto *U = dyn_cast<Operator>(V)) {
2870     switch (Operator::getOpcode(V)) {
2871     default: break;
2872     case Instruction::SExt:
2873       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2874       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2875 
2876     case Instruction::SDiv: {
2877       const APInt *Denominator;
2878       // sdiv X, C -> adds log(C) sign bits.
2879       if (match(U->getOperand(1), m_APInt(Denominator))) {
2880 
2881         // Ignore non-positive denominator.
2882         if (!Denominator->isStrictlyPositive())
2883           break;
2884 
2885         // Calculate the incoming numerator bits.
2886         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2887 
2888         // Add floor(log(C)) bits to the numerator bits.
2889         return std::min(TyBits, NumBits + Denominator->logBase2());
2890       }
2891       break;
2892     }
2893 
2894     case Instruction::SRem: {
2895       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2896 
2897       const APInt *Denominator;
2898       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2899       // positive constant.  This let us put a lower bound on the number of sign
2900       // bits.
2901       if (match(U->getOperand(1), m_APInt(Denominator))) {
2902 
2903         // Ignore non-positive denominator.
2904         if (Denominator->isStrictlyPositive()) {
2905           // Calculate the leading sign bit constraints by examining the
2906           // denominator.  Given that the denominator is positive, there are two
2907           // cases:
2908           //
2909           //  1. The numerator is positive. The result range is [0,C) and
2910           //     [0,C) u< (1 << ceilLogBase2(C)).
2911           //
2912           //  2. The numerator is negative. Then the result range is (-C,0] and
2913           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2914           //
2915           // Thus a lower bound on the number of sign bits is `TyBits -
2916           // ceilLogBase2(C)`.
2917 
2918           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2919           Tmp = std::max(Tmp, ResBits);
2920         }
2921       }
2922       return Tmp;
2923     }
2924 
2925     case Instruction::AShr: {
2926       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2927       // ashr X, C   -> adds C sign bits.  Vectors too.
2928       const APInt *ShAmt;
2929       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2930         if (ShAmt->uge(TyBits))
2931           break; // Bad shift.
2932         unsigned ShAmtLimited = ShAmt->getZExtValue();
2933         Tmp += ShAmtLimited;
2934         if (Tmp > TyBits) Tmp = TyBits;
2935       }
2936       return Tmp;
2937     }
2938     case Instruction::Shl: {
2939       const APInt *ShAmt;
2940       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2941         // shl destroys sign bits.
2942         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2943         if (ShAmt->uge(TyBits) ||   // Bad shift.
2944             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2945         Tmp2 = ShAmt->getZExtValue();
2946         return Tmp - Tmp2;
2947       }
2948       break;
2949     }
2950     case Instruction::And:
2951     case Instruction::Or:
2952     case Instruction::Xor: // NOT is handled here.
2953       // Logical binary ops preserve the number of sign bits at the worst.
2954       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2955       if (Tmp != 1) {
2956         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2957         FirstAnswer = std::min(Tmp, Tmp2);
2958         // We computed what we know about the sign bits as our first
2959         // answer. Now proceed to the generic code that uses
2960         // computeKnownBits, and pick whichever answer is better.
2961       }
2962       break;
2963 
2964     case Instruction::Select: {
2965       // If we have a clamp pattern, we know that the number of sign bits will
2966       // be the minimum of the clamp min/max range.
2967       const Value *X;
2968       const APInt *CLow, *CHigh;
2969       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2970         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2971 
2972       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2973       if (Tmp == 1) break;
2974       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2975       return std::min(Tmp, Tmp2);
2976     }
2977 
2978     case Instruction::Add:
2979       // Add can have at most one carry bit.  Thus we know that the output
2980       // is, at worst, one more bit than the inputs.
2981       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2982       if (Tmp == 1) break;
2983 
2984       // Special case decrementing a value (ADD X, -1):
2985       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2986         if (CRHS->isAllOnesValue()) {
2987           KnownBits Known(TyBits);
2988           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2989 
2990           // If the input is known to be 0 or 1, the output is 0/-1, which is
2991           // all sign bits set.
2992           if ((Known.Zero | 1).isAllOnesValue())
2993             return TyBits;
2994 
2995           // If we are subtracting one from a positive number, there is no carry
2996           // out of the result.
2997           if (Known.isNonNegative())
2998             return Tmp;
2999         }
3000 
3001       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3002       if (Tmp2 == 1) break;
3003       return std::min(Tmp, Tmp2) - 1;
3004 
3005     case Instruction::Sub:
3006       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3007       if (Tmp2 == 1) break;
3008 
3009       // Handle NEG.
3010       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3011         if (CLHS->isNullValue()) {
3012           KnownBits Known(TyBits);
3013           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3014           // If the input is known to be 0 or 1, the output is 0/-1, which is
3015           // all sign bits set.
3016           if ((Known.Zero | 1).isAllOnesValue())
3017             return TyBits;
3018 
3019           // If the input is known to be positive (the sign bit is known clear),
3020           // the output of the NEG has the same number of sign bits as the
3021           // input.
3022           if (Known.isNonNegative())
3023             return Tmp2;
3024 
3025           // Otherwise, we treat this like a SUB.
3026         }
3027 
3028       // Sub can have at most one carry bit.  Thus we know that the output
3029       // is, at worst, one more bit than the inputs.
3030       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3031       if (Tmp == 1) break;
3032       return std::min(Tmp, Tmp2) - 1;
3033 
3034     case Instruction::Mul: {
3035       // The output of the Mul can be at most twice the valid bits in the
3036       // inputs.
3037       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3038       if (SignBitsOp0 == 1) break;
3039       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3040       if (SignBitsOp1 == 1) break;
3041       unsigned OutValidBits =
3042           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3043       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3044     }
3045 
3046     case Instruction::PHI: {
3047       const PHINode *PN = cast<PHINode>(U);
3048       unsigned NumIncomingValues = PN->getNumIncomingValues();
3049       // Don't analyze large in-degree PHIs.
3050       if (NumIncomingValues > 4) break;
3051       // Unreachable blocks may have zero-operand PHI nodes.
3052       if (NumIncomingValues == 0) break;
3053 
3054       // Take the minimum of all incoming values.  This can't infinitely loop
3055       // because of our depth threshold.
3056       Query RecQ = Q;
3057       Tmp = TyBits;
3058       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3059         if (Tmp == 1) return Tmp;
3060         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3061         Tmp = std::min(
3062             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3063       }
3064       return Tmp;
3065     }
3066 
3067     case Instruction::Trunc:
3068       // FIXME: it's tricky to do anything useful for this, but it is an
3069       // important case for targets like X86.
3070       break;
3071 
3072     case Instruction::ExtractElement:
3073       // Look through extract element. At the moment we keep this simple and
3074       // skip tracking the specific element. But at least we might find
3075       // information valid for all elements of the vector (for example if vector
3076       // is sign extended, shifted, etc).
3077       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3078 
3079     case Instruction::ShuffleVector: {
3080       // Collect the minimum number of sign bits that are shared by every vector
3081       // element referenced by the shuffle.
3082       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3083       if (!Shuf) {
3084         // FIXME: Add support for shufflevector constant expressions.
3085         return 1;
3086       }
3087       APInt DemandedLHS, DemandedRHS;
3088       // For undef elements, we don't know anything about the common state of
3089       // the shuffle result.
3090       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3091         return 1;
3092       Tmp = std::numeric_limits<unsigned>::max();
3093       if (!!DemandedLHS) {
3094         const Value *LHS = Shuf->getOperand(0);
3095         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3096       }
3097       // If we don't know anything, early out and try computeKnownBits
3098       // fall-back.
3099       if (Tmp == 1)
3100         break;
3101       if (!!DemandedRHS) {
3102         const Value *RHS = Shuf->getOperand(1);
3103         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3104         Tmp = std::min(Tmp, Tmp2);
3105       }
3106       // If we don't know anything, early out and try computeKnownBits
3107       // fall-back.
3108       if (Tmp == 1)
3109         break;
3110       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3111       return Tmp;
3112     }
3113     case Instruction::Call: {
3114       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3115         switch (II->getIntrinsicID()) {
3116         default: break;
3117         case Intrinsic::abs:
3118           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3119           if (Tmp == 1) break;
3120 
3121           // Absolute value reduces number of sign bits by at most 1.
3122           return Tmp - 1;
3123         }
3124       }
3125     }
3126     }
3127   }
3128 
3129   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3130   // use this information.
3131 
3132   // If we can examine all elements of a vector constant successfully, we're
3133   // done (we can't do any better than that). If not, keep trying.
3134   if (unsigned VecSignBits =
3135           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3136     return VecSignBits;
3137 
3138   KnownBits Known(TyBits);
3139   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3140 
3141   // If we know that the sign bit is either zero or one, determine the number of
3142   // identical bits in the top of the input value.
3143   return std::max(FirstAnswer, Known.countMinSignBits());
3144 }
3145 
3146 /// This function computes the integer multiple of Base that equals V.
3147 /// If successful, it returns true and returns the multiple in
3148 /// Multiple. If unsuccessful, it returns false. It looks
3149 /// through SExt instructions only if LookThroughSExt is true.
3150 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3151                            bool LookThroughSExt, unsigned Depth) {
3152   assert(V && "No Value?");
3153   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3154   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3155 
3156   Type *T = V->getType();
3157 
3158   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3159 
3160   if (Base == 0)
3161     return false;
3162 
3163   if (Base == 1) {
3164     Multiple = V;
3165     return true;
3166   }
3167 
3168   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3169   Constant *BaseVal = ConstantInt::get(T, Base);
3170   if (CO && CO == BaseVal) {
3171     // Multiple is 1.
3172     Multiple = ConstantInt::get(T, 1);
3173     return true;
3174   }
3175 
3176   if (CI && CI->getZExtValue() % Base == 0) {
3177     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3178     return true;
3179   }
3180 
3181   if (Depth == MaxAnalysisRecursionDepth) return false;
3182 
3183   Operator *I = dyn_cast<Operator>(V);
3184   if (!I) return false;
3185 
3186   switch (I->getOpcode()) {
3187   default: break;
3188   case Instruction::SExt:
3189     if (!LookThroughSExt) return false;
3190     // otherwise fall through to ZExt
3191     LLVM_FALLTHROUGH;
3192   case Instruction::ZExt:
3193     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3194                            LookThroughSExt, Depth+1);
3195   case Instruction::Shl:
3196   case Instruction::Mul: {
3197     Value *Op0 = I->getOperand(0);
3198     Value *Op1 = I->getOperand(1);
3199 
3200     if (I->getOpcode() == Instruction::Shl) {
3201       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3202       if (!Op1CI) return false;
3203       // Turn Op0 << Op1 into Op0 * 2^Op1
3204       APInt Op1Int = Op1CI->getValue();
3205       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3206       APInt API(Op1Int.getBitWidth(), 0);
3207       API.setBit(BitToSet);
3208       Op1 = ConstantInt::get(V->getContext(), API);
3209     }
3210 
3211     Value *Mul0 = nullptr;
3212     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3213       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3214         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3215           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3216               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3217             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3218           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3219               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3220             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3221 
3222           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3223           Multiple = ConstantExpr::getMul(MulC, Op1C);
3224           return true;
3225         }
3226 
3227       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3228         if (Mul0CI->getValue() == 1) {
3229           // V == Base * Op1, so return Op1
3230           Multiple = Op1;
3231           return true;
3232         }
3233     }
3234 
3235     Value *Mul1 = nullptr;
3236     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3237       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3238         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3239           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3240               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3241             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3242           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3243               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3244             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3245 
3246           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3247           Multiple = ConstantExpr::getMul(MulC, Op0C);
3248           return true;
3249         }
3250 
3251       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3252         if (Mul1CI->getValue() == 1) {
3253           // V == Base * Op0, so return Op0
3254           Multiple = Op0;
3255           return true;
3256         }
3257     }
3258   }
3259   }
3260 
3261   // We could not determine if V is a multiple of Base.
3262   return false;
3263 }
3264 
3265 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3266                                             const TargetLibraryInfo *TLI) {
3267   const Function *F = CB.getCalledFunction();
3268   if (!F)
3269     return Intrinsic::not_intrinsic;
3270 
3271   if (F->isIntrinsic())
3272     return F->getIntrinsicID();
3273 
3274   // We are going to infer semantics of a library function based on mapping it
3275   // to an LLVM intrinsic. Check that the library function is available from
3276   // this callbase and in this environment.
3277   LibFunc Func;
3278   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3279       !CB.onlyReadsMemory())
3280     return Intrinsic::not_intrinsic;
3281 
3282   switch (Func) {
3283   default:
3284     break;
3285   case LibFunc_sin:
3286   case LibFunc_sinf:
3287   case LibFunc_sinl:
3288     return Intrinsic::sin;
3289   case LibFunc_cos:
3290   case LibFunc_cosf:
3291   case LibFunc_cosl:
3292     return Intrinsic::cos;
3293   case LibFunc_exp:
3294   case LibFunc_expf:
3295   case LibFunc_expl:
3296     return Intrinsic::exp;
3297   case LibFunc_exp2:
3298   case LibFunc_exp2f:
3299   case LibFunc_exp2l:
3300     return Intrinsic::exp2;
3301   case LibFunc_log:
3302   case LibFunc_logf:
3303   case LibFunc_logl:
3304     return Intrinsic::log;
3305   case LibFunc_log10:
3306   case LibFunc_log10f:
3307   case LibFunc_log10l:
3308     return Intrinsic::log10;
3309   case LibFunc_log2:
3310   case LibFunc_log2f:
3311   case LibFunc_log2l:
3312     return Intrinsic::log2;
3313   case LibFunc_fabs:
3314   case LibFunc_fabsf:
3315   case LibFunc_fabsl:
3316     return Intrinsic::fabs;
3317   case LibFunc_fmin:
3318   case LibFunc_fminf:
3319   case LibFunc_fminl:
3320     return Intrinsic::minnum;
3321   case LibFunc_fmax:
3322   case LibFunc_fmaxf:
3323   case LibFunc_fmaxl:
3324     return Intrinsic::maxnum;
3325   case LibFunc_copysign:
3326   case LibFunc_copysignf:
3327   case LibFunc_copysignl:
3328     return Intrinsic::copysign;
3329   case LibFunc_floor:
3330   case LibFunc_floorf:
3331   case LibFunc_floorl:
3332     return Intrinsic::floor;
3333   case LibFunc_ceil:
3334   case LibFunc_ceilf:
3335   case LibFunc_ceill:
3336     return Intrinsic::ceil;
3337   case LibFunc_trunc:
3338   case LibFunc_truncf:
3339   case LibFunc_truncl:
3340     return Intrinsic::trunc;
3341   case LibFunc_rint:
3342   case LibFunc_rintf:
3343   case LibFunc_rintl:
3344     return Intrinsic::rint;
3345   case LibFunc_nearbyint:
3346   case LibFunc_nearbyintf:
3347   case LibFunc_nearbyintl:
3348     return Intrinsic::nearbyint;
3349   case LibFunc_round:
3350   case LibFunc_roundf:
3351   case LibFunc_roundl:
3352     return Intrinsic::round;
3353   case LibFunc_roundeven:
3354   case LibFunc_roundevenf:
3355   case LibFunc_roundevenl:
3356     return Intrinsic::roundeven;
3357   case LibFunc_pow:
3358   case LibFunc_powf:
3359   case LibFunc_powl:
3360     return Intrinsic::pow;
3361   case LibFunc_sqrt:
3362   case LibFunc_sqrtf:
3363   case LibFunc_sqrtl:
3364     return Intrinsic::sqrt;
3365   }
3366 
3367   return Intrinsic::not_intrinsic;
3368 }
3369 
3370 /// Return true if we can prove that the specified FP value is never equal to
3371 /// -0.0.
3372 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3373 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3374 ///       the same as +0.0 in floating-point ops.
3375 ///
3376 /// NOTE: this function will need to be revisited when we support non-default
3377 /// rounding modes!
3378 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3379                                 unsigned Depth) {
3380   if (auto *CFP = dyn_cast<ConstantFP>(V))
3381     return !CFP->getValueAPF().isNegZero();
3382 
3383   if (Depth == MaxAnalysisRecursionDepth)
3384     return false;
3385 
3386   auto *Op = dyn_cast<Operator>(V);
3387   if (!Op)
3388     return false;
3389 
3390   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3391   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3392     return true;
3393 
3394   // sitofp and uitofp turn into +0.0 for zero.
3395   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3396     return true;
3397 
3398   if (auto *Call = dyn_cast<CallInst>(Op)) {
3399     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3400     switch (IID) {
3401     default:
3402       break;
3403     // sqrt(-0.0) = -0.0, no other negative results are possible.
3404     case Intrinsic::sqrt:
3405     case Intrinsic::canonicalize:
3406       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3407     // fabs(x) != -0.0
3408     case Intrinsic::fabs:
3409       return true;
3410     }
3411   }
3412 
3413   return false;
3414 }
3415 
3416 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3417 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3418 /// bit despite comparing equal.
3419 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3420                                             const TargetLibraryInfo *TLI,
3421                                             bool SignBitOnly,
3422                                             unsigned Depth) {
3423   // TODO: This function does not do the right thing when SignBitOnly is true
3424   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3425   // which flips the sign bits of NaNs.  See
3426   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3427 
3428   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3429     return !CFP->getValueAPF().isNegative() ||
3430            (!SignBitOnly && CFP->getValueAPF().isZero());
3431   }
3432 
3433   // Handle vector of constants.
3434   if (auto *CV = dyn_cast<Constant>(V)) {
3435     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3436       unsigned NumElts = CVFVTy->getNumElements();
3437       for (unsigned i = 0; i != NumElts; ++i) {
3438         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3439         if (!CFP)
3440           return false;
3441         if (CFP->getValueAPF().isNegative() &&
3442             (SignBitOnly || !CFP->getValueAPF().isZero()))
3443           return false;
3444       }
3445 
3446       // All non-negative ConstantFPs.
3447       return true;
3448     }
3449   }
3450 
3451   if (Depth == MaxAnalysisRecursionDepth)
3452     return false;
3453 
3454   const Operator *I = dyn_cast<Operator>(V);
3455   if (!I)
3456     return false;
3457 
3458   switch (I->getOpcode()) {
3459   default:
3460     break;
3461   // Unsigned integers are always nonnegative.
3462   case Instruction::UIToFP:
3463     return true;
3464   case Instruction::FMul:
3465   case Instruction::FDiv:
3466     // X * X is always non-negative or a NaN.
3467     // X / X is always exactly 1.0 or a NaN.
3468     if (I->getOperand(0) == I->getOperand(1) &&
3469         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3470       return true;
3471 
3472     LLVM_FALLTHROUGH;
3473   case Instruction::FAdd:
3474   case Instruction::FRem:
3475     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3476                                            Depth + 1) &&
3477            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3478                                            Depth + 1);
3479   case Instruction::Select:
3480     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3481                                            Depth + 1) &&
3482            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3483                                            Depth + 1);
3484   case Instruction::FPExt:
3485   case Instruction::FPTrunc:
3486     // Widening/narrowing never change sign.
3487     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3488                                            Depth + 1);
3489   case Instruction::ExtractElement:
3490     // Look through extract element. At the moment we keep this simple and skip
3491     // tracking the specific element. But at least we might find information
3492     // valid for all elements of the vector.
3493     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3494                                            Depth + 1);
3495   case Instruction::Call:
3496     const auto *CI = cast<CallInst>(I);
3497     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3498     switch (IID) {
3499     default:
3500       break;
3501     case Intrinsic::maxnum: {
3502       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3503       auto isPositiveNum = [&](Value *V) {
3504         if (SignBitOnly) {
3505           // With SignBitOnly, this is tricky because the result of
3506           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3507           // a constant strictly greater than 0.0.
3508           const APFloat *C;
3509           return match(V, m_APFloat(C)) &&
3510                  *C > APFloat::getZero(C->getSemantics());
3511         }
3512 
3513         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3514         // maxnum can't be ordered-less-than-zero.
3515         return isKnownNeverNaN(V, TLI) &&
3516                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3517       };
3518 
3519       // TODO: This could be improved. We could also check that neither operand
3520       //       has its sign bit set (and at least 1 is not-NAN?).
3521       return isPositiveNum(V0) || isPositiveNum(V1);
3522     }
3523 
3524     case Intrinsic::maximum:
3525       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3526                                              Depth + 1) ||
3527              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3528                                              Depth + 1);
3529     case Intrinsic::minnum:
3530     case Intrinsic::minimum:
3531       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3532                                              Depth + 1) &&
3533              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3534                                              Depth + 1);
3535     case Intrinsic::exp:
3536     case Intrinsic::exp2:
3537     case Intrinsic::fabs:
3538       return true;
3539 
3540     case Intrinsic::sqrt:
3541       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3542       if (!SignBitOnly)
3543         return true;
3544       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3545                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3546 
3547     case Intrinsic::powi:
3548       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3549         // powi(x,n) is non-negative if n is even.
3550         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3551           return true;
3552       }
3553       // TODO: This is not correct.  Given that exp is an integer, here are the
3554       // ways that pow can return a negative value:
3555       //
3556       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3557       //   pow(-0, exp)   --> -inf if exp is negative odd.
3558       //   pow(-0, exp)   --> -0 if exp is positive odd.
3559       //   pow(-inf, exp) --> -0 if exp is negative odd.
3560       //   pow(-inf, exp) --> -inf if exp is positive odd.
3561       //
3562       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3563       // but we must return false if x == -0.  Unfortunately we do not currently
3564       // have a way of expressing this constraint.  See details in
3565       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3566       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3567                                              Depth + 1);
3568 
3569     case Intrinsic::fma:
3570     case Intrinsic::fmuladd:
3571       // x*x+y is non-negative if y is non-negative.
3572       return I->getOperand(0) == I->getOperand(1) &&
3573              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3574              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3575                                              Depth + 1);
3576     }
3577     break;
3578   }
3579   return false;
3580 }
3581 
3582 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3583                                        const TargetLibraryInfo *TLI) {
3584   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3585 }
3586 
3587 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3588   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3589 }
3590 
3591 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3592                                 unsigned Depth) {
3593   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3594 
3595   // If we're told that infinities won't happen, assume they won't.
3596   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3597     if (FPMathOp->hasNoInfs())
3598       return true;
3599 
3600   // Handle scalar constants.
3601   if (auto *CFP = dyn_cast<ConstantFP>(V))
3602     return !CFP->isInfinity();
3603 
3604   if (Depth == MaxAnalysisRecursionDepth)
3605     return false;
3606 
3607   if (auto *Inst = dyn_cast<Instruction>(V)) {
3608     switch (Inst->getOpcode()) {
3609     case Instruction::Select: {
3610       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3611              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3612     }
3613     case Instruction::SIToFP:
3614     case Instruction::UIToFP: {
3615       // Get width of largest magnitude integer (remove a bit if signed).
3616       // This still works for a signed minimum value because the largest FP
3617       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3618       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3619       if (Inst->getOpcode() == Instruction::SIToFP)
3620         --IntSize;
3621 
3622       // If the exponent of the largest finite FP value can hold the largest
3623       // integer, the result of the cast must be finite.
3624       Type *FPTy = Inst->getType()->getScalarType();
3625       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3626     }
3627     default:
3628       break;
3629     }
3630   }
3631 
3632   // try to handle fixed width vector constants
3633   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3634   if (VFVTy && isa<Constant>(V)) {
3635     // For vectors, verify that each element is not infinity.
3636     unsigned NumElts = VFVTy->getNumElements();
3637     for (unsigned i = 0; i != NumElts; ++i) {
3638       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3639       if (!Elt)
3640         return false;
3641       if (isa<UndefValue>(Elt))
3642         continue;
3643       auto *CElt = dyn_cast<ConstantFP>(Elt);
3644       if (!CElt || CElt->isInfinity())
3645         return false;
3646     }
3647     // All elements were confirmed non-infinity or undefined.
3648     return true;
3649   }
3650 
3651   // was not able to prove that V never contains infinity
3652   return false;
3653 }
3654 
3655 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3656                            unsigned Depth) {
3657   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3658 
3659   // If we're told that NaNs won't happen, assume they won't.
3660   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3661     if (FPMathOp->hasNoNaNs())
3662       return true;
3663 
3664   // Handle scalar constants.
3665   if (auto *CFP = dyn_cast<ConstantFP>(V))
3666     return !CFP->isNaN();
3667 
3668   if (Depth == MaxAnalysisRecursionDepth)
3669     return false;
3670 
3671   if (auto *Inst = dyn_cast<Instruction>(V)) {
3672     switch (Inst->getOpcode()) {
3673     case Instruction::FAdd:
3674     case Instruction::FSub:
3675       // Adding positive and negative infinity produces NaN.
3676       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3677              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3678              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3679               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3680 
3681     case Instruction::FMul:
3682       // Zero multiplied with infinity produces NaN.
3683       // FIXME: If neither side can be zero fmul never produces NaN.
3684       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3685              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3686              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3687              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3688 
3689     case Instruction::FDiv:
3690     case Instruction::FRem:
3691       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3692       return false;
3693 
3694     case Instruction::Select: {
3695       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3696              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3697     }
3698     case Instruction::SIToFP:
3699     case Instruction::UIToFP:
3700       return true;
3701     case Instruction::FPTrunc:
3702     case Instruction::FPExt:
3703       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3704     default:
3705       break;
3706     }
3707   }
3708 
3709   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3710     switch (II->getIntrinsicID()) {
3711     case Intrinsic::canonicalize:
3712     case Intrinsic::fabs:
3713     case Intrinsic::copysign:
3714     case Intrinsic::exp:
3715     case Intrinsic::exp2:
3716     case Intrinsic::floor:
3717     case Intrinsic::ceil:
3718     case Intrinsic::trunc:
3719     case Intrinsic::rint:
3720     case Intrinsic::nearbyint:
3721     case Intrinsic::round:
3722     case Intrinsic::roundeven:
3723       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3724     case Intrinsic::sqrt:
3725       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3726              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3727     case Intrinsic::minnum:
3728     case Intrinsic::maxnum:
3729       // If either operand is not NaN, the result is not NaN.
3730       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3731              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3732     default:
3733       return false;
3734     }
3735   }
3736 
3737   // Try to handle fixed width vector constants
3738   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3739   if (VFVTy && isa<Constant>(V)) {
3740     // For vectors, verify that each element is not NaN.
3741     unsigned NumElts = VFVTy->getNumElements();
3742     for (unsigned i = 0; i != NumElts; ++i) {
3743       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3744       if (!Elt)
3745         return false;
3746       if (isa<UndefValue>(Elt))
3747         continue;
3748       auto *CElt = dyn_cast<ConstantFP>(Elt);
3749       if (!CElt || CElt->isNaN())
3750         return false;
3751     }
3752     // All elements were confirmed not-NaN or undefined.
3753     return true;
3754   }
3755 
3756   // Was not able to prove that V never contains NaN
3757   return false;
3758 }
3759 
3760 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3761 
3762   // All byte-wide stores are splatable, even of arbitrary variables.
3763   if (V->getType()->isIntegerTy(8))
3764     return V;
3765 
3766   LLVMContext &Ctx = V->getContext();
3767 
3768   // Undef don't care.
3769   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3770   if (isa<UndefValue>(V))
3771     return UndefInt8;
3772 
3773   // Return Undef for zero-sized type.
3774   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3775     return UndefInt8;
3776 
3777   Constant *C = dyn_cast<Constant>(V);
3778   if (!C) {
3779     // Conceptually, we could handle things like:
3780     //   %a = zext i8 %X to i16
3781     //   %b = shl i16 %a, 8
3782     //   %c = or i16 %a, %b
3783     // but until there is an example that actually needs this, it doesn't seem
3784     // worth worrying about.
3785     return nullptr;
3786   }
3787 
3788   // Handle 'null' ConstantArrayZero etc.
3789   if (C->isNullValue())
3790     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3791 
3792   // Constant floating-point values can be handled as integer values if the
3793   // corresponding integer value is "byteable".  An important case is 0.0.
3794   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3795     Type *Ty = nullptr;
3796     if (CFP->getType()->isHalfTy())
3797       Ty = Type::getInt16Ty(Ctx);
3798     else if (CFP->getType()->isFloatTy())
3799       Ty = Type::getInt32Ty(Ctx);
3800     else if (CFP->getType()->isDoubleTy())
3801       Ty = Type::getInt64Ty(Ctx);
3802     // Don't handle long double formats, which have strange constraints.
3803     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3804               : nullptr;
3805   }
3806 
3807   // We can handle constant integers that are multiple of 8 bits.
3808   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3809     if (CI->getBitWidth() % 8 == 0) {
3810       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3811       if (!CI->getValue().isSplat(8))
3812         return nullptr;
3813       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3814     }
3815   }
3816 
3817   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3818     if (CE->getOpcode() == Instruction::IntToPtr) {
3819       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3820         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3821         return isBytewiseValue(
3822             ConstantExpr::getIntegerCast(CE->getOperand(0),
3823                                          Type::getIntNTy(Ctx, BitWidth), false),
3824             DL);
3825       }
3826     }
3827   }
3828 
3829   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3830     if (LHS == RHS)
3831       return LHS;
3832     if (!LHS || !RHS)
3833       return nullptr;
3834     if (LHS == UndefInt8)
3835       return RHS;
3836     if (RHS == UndefInt8)
3837       return LHS;
3838     return nullptr;
3839   };
3840 
3841   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3842     Value *Val = UndefInt8;
3843     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3844       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3845         return nullptr;
3846     return Val;
3847   }
3848 
3849   if (isa<ConstantAggregate>(C)) {
3850     Value *Val = UndefInt8;
3851     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3852       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3853         return nullptr;
3854     return Val;
3855   }
3856 
3857   // Don't try to handle the handful of other constants.
3858   return nullptr;
3859 }
3860 
3861 // This is the recursive version of BuildSubAggregate. It takes a few different
3862 // arguments. Idxs is the index within the nested struct From that we are
3863 // looking at now (which is of type IndexedType). IdxSkip is the number of
3864 // indices from Idxs that should be left out when inserting into the resulting
3865 // struct. To is the result struct built so far, new insertvalue instructions
3866 // build on that.
3867 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3868                                 SmallVectorImpl<unsigned> &Idxs,
3869                                 unsigned IdxSkip,
3870                                 Instruction *InsertBefore) {
3871   StructType *STy = dyn_cast<StructType>(IndexedType);
3872   if (STy) {
3873     // Save the original To argument so we can modify it
3874     Value *OrigTo = To;
3875     // General case, the type indexed by Idxs is a struct
3876     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3877       // Process each struct element recursively
3878       Idxs.push_back(i);
3879       Value *PrevTo = To;
3880       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3881                              InsertBefore);
3882       Idxs.pop_back();
3883       if (!To) {
3884         // Couldn't find any inserted value for this index? Cleanup
3885         while (PrevTo != OrigTo) {
3886           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3887           PrevTo = Del->getAggregateOperand();
3888           Del->eraseFromParent();
3889         }
3890         // Stop processing elements
3891         break;
3892       }
3893     }
3894     // If we successfully found a value for each of our subaggregates
3895     if (To)
3896       return To;
3897   }
3898   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3899   // the struct's elements had a value that was inserted directly. In the latter
3900   // case, perhaps we can't determine each of the subelements individually, but
3901   // we might be able to find the complete struct somewhere.
3902 
3903   // Find the value that is at that particular spot
3904   Value *V = FindInsertedValue(From, Idxs);
3905 
3906   if (!V)
3907     return nullptr;
3908 
3909   // Insert the value in the new (sub) aggregate
3910   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3911                                  "tmp", InsertBefore);
3912 }
3913 
3914 // This helper takes a nested struct and extracts a part of it (which is again a
3915 // struct) into a new value. For example, given the struct:
3916 // { a, { b, { c, d }, e } }
3917 // and the indices "1, 1" this returns
3918 // { c, d }.
3919 //
3920 // It does this by inserting an insertvalue for each element in the resulting
3921 // struct, as opposed to just inserting a single struct. This will only work if
3922 // each of the elements of the substruct are known (ie, inserted into From by an
3923 // insertvalue instruction somewhere).
3924 //
3925 // All inserted insertvalue instructions are inserted before InsertBefore
3926 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3927                                 Instruction *InsertBefore) {
3928   assert(InsertBefore && "Must have someplace to insert!");
3929   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3930                                                              idx_range);
3931   Value *To = UndefValue::get(IndexedType);
3932   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3933   unsigned IdxSkip = Idxs.size();
3934 
3935   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3936 }
3937 
3938 /// Given an aggregate and a sequence of indices, see if the scalar value
3939 /// indexed is already around as a register, for example if it was inserted
3940 /// directly into the aggregate.
3941 ///
3942 /// If InsertBefore is not null, this function will duplicate (modified)
3943 /// insertvalues when a part of a nested struct is extracted.
3944 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3945                                Instruction *InsertBefore) {
3946   // Nothing to index? Just return V then (this is useful at the end of our
3947   // recursion).
3948   if (idx_range.empty())
3949     return V;
3950   // We have indices, so V should have an indexable type.
3951   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3952          "Not looking at a struct or array?");
3953   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3954          "Invalid indices for type?");
3955 
3956   if (Constant *C = dyn_cast<Constant>(V)) {
3957     C = C->getAggregateElement(idx_range[0]);
3958     if (!C) return nullptr;
3959     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3960   }
3961 
3962   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3963     // Loop the indices for the insertvalue instruction in parallel with the
3964     // requested indices
3965     const unsigned *req_idx = idx_range.begin();
3966     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3967          i != e; ++i, ++req_idx) {
3968       if (req_idx == idx_range.end()) {
3969         // We can't handle this without inserting insertvalues
3970         if (!InsertBefore)
3971           return nullptr;
3972 
3973         // The requested index identifies a part of a nested aggregate. Handle
3974         // this specially. For example,
3975         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3976         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3977         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3978         // This can be changed into
3979         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3980         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3981         // which allows the unused 0,0 element from the nested struct to be
3982         // removed.
3983         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3984                                  InsertBefore);
3985       }
3986 
3987       // This insert value inserts something else than what we are looking for.
3988       // See if the (aggregate) value inserted into has the value we are
3989       // looking for, then.
3990       if (*req_idx != *i)
3991         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3992                                  InsertBefore);
3993     }
3994     // If we end up here, the indices of the insertvalue match with those
3995     // requested (though possibly only partially). Now we recursively look at
3996     // the inserted value, passing any remaining indices.
3997     return FindInsertedValue(I->getInsertedValueOperand(),
3998                              makeArrayRef(req_idx, idx_range.end()),
3999                              InsertBefore);
4000   }
4001 
4002   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4003     // If we're extracting a value from an aggregate that was extracted from
4004     // something else, we can extract from that something else directly instead.
4005     // However, we will need to chain I's indices with the requested indices.
4006 
4007     // Calculate the number of indices required
4008     unsigned size = I->getNumIndices() + idx_range.size();
4009     // Allocate some space to put the new indices in
4010     SmallVector<unsigned, 5> Idxs;
4011     Idxs.reserve(size);
4012     // Add indices from the extract value instruction
4013     Idxs.append(I->idx_begin(), I->idx_end());
4014 
4015     // Add requested indices
4016     Idxs.append(idx_range.begin(), idx_range.end());
4017 
4018     assert(Idxs.size() == size
4019            && "Number of indices added not correct?");
4020 
4021     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4022   }
4023   // Otherwise, we don't know (such as, extracting from a function return value
4024   // or load instruction)
4025   return nullptr;
4026 }
4027 
4028 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4029                                        unsigned CharSize) {
4030   // Make sure the GEP has exactly three arguments.
4031   if (GEP->getNumOperands() != 3)
4032     return false;
4033 
4034   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4035   // CharSize.
4036   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4037   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4038     return false;
4039 
4040   // Check to make sure that the first operand of the GEP is an integer and
4041   // has value 0 so that we are sure we're indexing into the initializer.
4042   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4043   if (!FirstIdx || !FirstIdx->isZero())
4044     return false;
4045 
4046   return true;
4047 }
4048 
4049 bool llvm::getConstantDataArrayInfo(const Value *V,
4050                                     ConstantDataArraySlice &Slice,
4051                                     unsigned ElementSize, uint64_t Offset) {
4052   assert(V);
4053 
4054   // Look through bitcast instructions and geps.
4055   V = V->stripPointerCasts();
4056 
4057   // If the value is a GEP instruction or constant expression, treat it as an
4058   // offset.
4059   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4060     // The GEP operator should be based on a pointer to string constant, and is
4061     // indexing into the string constant.
4062     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4063       return false;
4064 
4065     // If the second index isn't a ConstantInt, then this is a variable index
4066     // into the array.  If this occurs, we can't say anything meaningful about
4067     // the string.
4068     uint64_t StartIdx = 0;
4069     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4070       StartIdx = CI->getZExtValue();
4071     else
4072       return false;
4073     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4074                                     StartIdx + Offset);
4075   }
4076 
4077   // The GEP instruction, constant or instruction, must reference a global
4078   // variable that is a constant and is initialized. The referenced constant
4079   // initializer is the array that we'll use for optimization.
4080   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4081   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4082     return false;
4083 
4084   const ConstantDataArray *Array;
4085   ArrayType *ArrayTy;
4086   if (GV->getInitializer()->isNullValue()) {
4087     Type *GVTy = GV->getValueType();
4088     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4089       // A zeroinitializer for the array; there is no ConstantDataArray.
4090       Array = nullptr;
4091     } else {
4092       const DataLayout &DL = GV->getParent()->getDataLayout();
4093       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4094       uint64_t Length = SizeInBytes / (ElementSize / 8);
4095       if (Length <= Offset)
4096         return false;
4097 
4098       Slice.Array = nullptr;
4099       Slice.Offset = 0;
4100       Slice.Length = Length - Offset;
4101       return true;
4102     }
4103   } else {
4104     // This must be a ConstantDataArray.
4105     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4106     if (!Array)
4107       return false;
4108     ArrayTy = Array->getType();
4109   }
4110   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4111     return false;
4112 
4113   uint64_t NumElts = ArrayTy->getArrayNumElements();
4114   if (Offset > NumElts)
4115     return false;
4116 
4117   Slice.Array = Array;
4118   Slice.Offset = Offset;
4119   Slice.Length = NumElts - Offset;
4120   return true;
4121 }
4122 
4123 /// This function computes the length of a null-terminated C string pointed to
4124 /// by V. If successful, it returns true and returns the string in Str.
4125 /// If unsuccessful, it returns false.
4126 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4127                                  uint64_t Offset, bool TrimAtNul) {
4128   ConstantDataArraySlice Slice;
4129   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4130     return false;
4131 
4132   if (Slice.Array == nullptr) {
4133     if (TrimAtNul) {
4134       Str = StringRef();
4135       return true;
4136     }
4137     if (Slice.Length == 1) {
4138       Str = StringRef("", 1);
4139       return true;
4140     }
4141     // We cannot instantiate a StringRef as we do not have an appropriate string
4142     // of 0s at hand.
4143     return false;
4144   }
4145 
4146   // Start out with the entire array in the StringRef.
4147   Str = Slice.Array->getAsString();
4148   // Skip over 'offset' bytes.
4149   Str = Str.substr(Slice.Offset);
4150 
4151   if (TrimAtNul) {
4152     // Trim off the \0 and anything after it.  If the array is not nul
4153     // terminated, we just return the whole end of string.  The client may know
4154     // some other way that the string is length-bound.
4155     Str = Str.substr(0, Str.find('\0'));
4156   }
4157   return true;
4158 }
4159 
4160 // These next two are very similar to the above, but also look through PHI
4161 // nodes.
4162 // TODO: See if we can integrate these two together.
4163 
4164 /// If we can compute the length of the string pointed to by
4165 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4166 static uint64_t GetStringLengthH(const Value *V,
4167                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4168                                  unsigned CharSize) {
4169   // Look through noop bitcast instructions.
4170   V = V->stripPointerCasts();
4171 
4172   // If this is a PHI node, there are two cases: either we have already seen it
4173   // or we haven't.
4174   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4175     if (!PHIs.insert(PN).second)
4176       return ~0ULL;  // already in the set.
4177 
4178     // If it was new, see if all the input strings are the same length.
4179     uint64_t LenSoFar = ~0ULL;
4180     for (Value *IncValue : PN->incoming_values()) {
4181       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4182       if (Len == 0) return 0; // Unknown length -> unknown.
4183 
4184       if (Len == ~0ULL) continue;
4185 
4186       if (Len != LenSoFar && LenSoFar != ~0ULL)
4187         return 0;    // Disagree -> unknown.
4188       LenSoFar = Len;
4189     }
4190 
4191     // Success, all agree.
4192     return LenSoFar;
4193   }
4194 
4195   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4196   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4197     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4198     if (Len1 == 0) return 0;
4199     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4200     if (Len2 == 0) return 0;
4201     if (Len1 == ~0ULL) return Len2;
4202     if (Len2 == ~0ULL) return Len1;
4203     if (Len1 != Len2) return 0;
4204     return Len1;
4205   }
4206 
4207   // Otherwise, see if we can read the string.
4208   ConstantDataArraySlice Slice;
4209   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4210     return 0;
4211 
4212   if (Slice.Array == nullptr)
4213     return 1;
4214 
4215   // Search for nul characters
4216   unsigned NullIndex = 0;
4217   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4218     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4219       break;
4220   }
4221 
4222   return NullIndex + 1;
4223 }
4224 
4225 /// If we can compute the length of the string pointed to by
4226 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4227 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4228   if (!V->getType()->isPointerTy())
4229     return 0;
4230 
4231   SmallPtrSet<const PHINode*, 32> PHIs;
4232   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4233   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4234   // an empty string as a length.
4235   return Len == ~0ULL ? 1 : Len;
4236 }
4237 
4238 const Value *
4239 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4240                                            bool MustPreserveNullness) {
4241   assert(Call &&
4242          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4243   if (const Value *RV = Call->getReturnedArgOperand())
4244     return RV;
4245   // This can be used only as a aliasing property.
4246   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4247           Call, MustPreserveNullness))
4248     return Call->getArgOperand(0);
4249   return nullptr;
4250 }
4251 
4252 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4253     const CallBase *Call, bool MustPreserveNullness) {
4254   switch (Call->getIntrinsicID()) {
4255   case Intrinsic::launder_invariant_group:
4256   case Intrinsic::strip_invariant_group:
4257   case Intrinsic::aarch64_irg:
4258   case Intrinsic::aarch64_tagp:
4259     return true;
4260   case Intrinsic::ptrmask:
4261     return !MustPreserveNullness;
4262   default:
4263     return false;
4264   }
4265 }
4266 
4267 /// \p PN defines a loop-variant pointer to an object.  Check if the
4268 /// previous iteration of the loop was referring to the same object as \p PN.
4269 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4270                                          const LoopInfo *LI) {
4271   // Find the loop-defined value.
4272   Loop *L = LI->getLoopFor(PN->getParent());
4273   if (PN->getNumIncomingValues() != 2)
4274     return true;
4275 
4276   // Find the value from previous iteration.
4277   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4278   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4279     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4280   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4281     return true;
4282 
4283   // If a new pointer is loaded in the loop, the pointer references a different
4284   // object in every iteration.  E.g.:
4285   //    for (i)
4286   //       int *p = a[i];
4287   //       ...
4288   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4289     if (!L->isLoopInvariant(Load->getPointerOperand()))
4290       return false;
4291   return true;
4292 }
4293 
4294 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4295   if (!V->getType()->isPointerTy())
4296     return V;
4297   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4298     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4299       V = GEP->getPointerOperand();
4300     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4301                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4302       V = cast<Operator>(V)->getOperand(0);
4303       if (!V->getType()->isPointerTy())
4304         return V;
4305     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4306       if (GA->isInterposable())
4307         return V;
4308       V = GA->getAliasee();
4309     } else {
4310       if (auto *PHI = dyn_cast<PHINode>(V)) {
4311         // Look through single-arg phi nodes created by LCSSA.
4312         if (PHI->getNumIncomingValues() == 1) {
4313           V = PHI->getIncomingValue(0);
4314           continue;
4315         }
4316       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4317         // CaptureTracking can know about special capturing properties of some
4318         // intrinsics like launder.invariant.group, that can't be expressed with
4319         // the attributes, but have properties like returning aliasing pointer.
4320         // Because some analysis may assume that nocaptured pointer is not
4321         // returned from some special intrinsic (because function would have to
4322         // be marked with returns attribute), it is crucial to use this function
4323         // because it should be in sync with CaptureTracking. Not using it may
4324         // cause weird miscompilations where 2 aliasing pointers are assumed to
4325         // noalias.
4326         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4327           V = RP;
4328           continue;
4329         }
4330       }
4331 
4332       return V;
4333     }
4334     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4335   }
4336   return V;
4337 }
4338 
4339 void llvm::getUnderlyingObjects(const Value *V,
4340                                 SmallVectorImpl<const Value *> &Objects,
4341                                 LoopInfo *LI, unsigned MaxLookup) {
4342   SmallPtrSet<const Value *, 4> Visited;
4343   SmallVector<const Value *, 4> Worklist;
4344   Worklist.push_back(V);
4345   do {
4346     const Value *P = Worklist.pop_back_val();
4347     P = getUnderlyingObject(P, MaxLookup);
4348 
4349     if (!Visited.insert(P).second)
4350       continue;
4351 
4352     if (auto *SI = dyn_cast<SelectInst>(P)) {
4353       Worklist.push_back(SI->getTrueValue());
4354       Worklist.push_back(SI->getFalseValue());
4355       continue;
4356     }
4357 
4358     if (auto *PN = dyn_cast<PHINode>(P)) {
4359       // If this PHI changes the underlying object in every iteration of the
4360       // loop, don't look through it.  Consider:
4361       //   int **A;
4362       //   for (i) {
4363       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4364       //     Curr = A[i];
4365       //     *Prev, *Curr;
4366       //
4367       // Prev is tracking Curr one iteration behind so they refer to different
4368       // underlying objects.
4369       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4370           isSameUnderlyingObjectInLoop(PN, LI))
4371         append_range(Worklist, PN->incoming_values());
4372       continue;
4373     }
4374 
4375     Objects.push_back(P);
4376   } while (!Worklist.empty());
4377 }
4378 
4379 /// This is the function that does the work of looking through basic
4380 /// ptrtoint+arithmetic+inttoptr sequences.
4381 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4382   do {
4383     if (const Operator *U = dyn_cast<Operator>(V)) {
4384       // If we find a ptrtoint, we can transfer control back to the
4385       // regular getUnderlyingObjectFromInt.
4386       if (U->getOpcode() == Instruction::PtrToInt)
4387         return U->getOperand(0);
4388       // If we find an add of a constant, a multiplied value, or a phi, it's
4389       // likely that the other operand will lead us to the base
4390       // object. We don't have to worry about the case where the
4391       // object address is somehow being computed by the multiply,
4392       // because our callers only care when the result is an
4393       // identifiable object.
4394       if (U->getOpcode() != Instruction::Add ||
4395           (!isa<ConstantInt>(U->getOperand(1)) &&
4396            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4397            !isa<PHINode>(U->getOperand(1))))
4398         return V;
4399       V = U->getOperand(0);
4400     } else {
4401       return V;
4402     }
4403     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4404   } while (true);
4405 }
4406 
4407 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4408 /// ptrtoint+arithmetic+inttoptr sequences.
4409 /// It returns false if unidentified object is found in getUnderlyingObjects.
4410 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4411                                           SmallVectorImpl<Value *> &Objects) {
4412   SmallPtrSet<const Value *, 16> Visited;
4413   SmallVector<const Value *, 4> Working(1, V);
4414   do {
4415     V = Working.pop_back_val();
4416 
4417     SmallVector<const Value *, 4> Objs;
4418     getUnderlyingObjects(V, Objs);
4419 
4420     for (const Value *V : Objs) {
4421       if (!Visited.insert(V).second)
4422         continue;
4423       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4424         const Value *O =
4425           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4426         if (O->getType()->isPointerTy()) {
4427           Working.push_back(O);
4428           continue;
4429         }
4430       }
4431       // If getUnderlyingObjects fails to find an identifiable object,
4432       // getUnderlyingObjectsForCodeGen also fails for safety.
4433       if (!isIdentifiedObject(V)) {
4434         Objects.clear();
4435         return false;
4436       }
4437       Objects.push_back(const_cast<Value *>(V));
4438     }
4439   } while (!Working.empty());
4440   return true;
4441 }
4442 
4443 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4444   AllocaInst *Result = nullptr;
4445   SmallPtrSet<Value *, 4> Visited;
4446   SmallVector<Value *, 4> Worklist;
4447 
4448   auto AddWork = [&](Value *V) {
4449     if (Visited.insert(V).second)
4450       Worklist.push_back(V);
4451   };
4452 
4453   AddWork(V);
4454   do {
4455     V = Worklist.pop_back_val();
4456     assert(Visited.count(V));
4457 
4458     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4459       if (Result && Result != AI)
4460         return nullptr;
4461       Result = AI;
4462     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4463       AddWork(CI->getOperand(0));
4464     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4465       for (Value *IncValue : PN->incoming_values())
4466         AddWork(IncValue);
4467     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4468       AddWork(SI->getTrueValue());
4469       AddWork(SI->getFalseValue());
4470     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4471       if (OffsetZero && !GEP->hasAllZeroIndices())
4472         return nullptr;
4473       AddWork(GEP->getPointerOperand());
4474     } else {
4475       return nullptr;
4476     }
4477   } while (!Worklist.empty());
4478 
4479   return Result;
4480 }
4481 
4482 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4483     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4484   for (const User *U : V->users()) {
4485     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4486     if (!II)
4487       return false;
4488 
4489     if (AllowLifetime && II->isLifetimeStartOrEnd())
4490       continue;
4491 
4492     if (AllowDroppable && II->isDroppable())
4493       continue;
4494 
4495     return false;
4496   }
4497   return true;
4498 }
4499 
4500 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4501   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4502       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4503 }
4504 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4505   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4506       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4507 }
4508 
4509 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4510   if (!LI.isUnordered())
4511     return true;
4512   const Function &F = *LI.getFunction();
4513   // Speculative load may create a race that did not exist in the source.
4514   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4515     // Speculative load may load data from dirty regions.
4516     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4517     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4518 }
4519 
4520 
4521 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4522                                         const Instruction *CtxI,
4523                                         const DominatorTree *DT,
4524                                         const TargetLibraryInfo *TLI) {
4525   const Operator *Inst = dyn_cast<Operator>(V);
4526   if (!Inst)
4527     return false;
4528 
4529   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4530     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4531       if (C->canTrap())
4532         return false;
4533 
4534   switch (Inst->getOpcode()) {
4535   default:
4536     return true;
4537   case Instruction::UDiv:
4538   case Instruction::URem: {
4539     // x / y is undefined if y == 0.
4540     const APInt *V;
4541     if (match(Inst->getOperand(1), m_APInt(V)))
4542       return *V != 0;
4543     return false;
4544   }
4545   case Instruction::SDiv:
4546   case Instruction::SRem: {
4547     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4548     const APInt *Numerator, *Denominator;
4549     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4550       return false;
4551     // We cannot hoist this division if the denominator is 0.
4552     if (*Denominator == 0)
4553       return false;
4554     // It's safe to hoist if the denominator is not 0 or -1.
4555     if (!Denominator->isAllOnesValue())
4556       return true;
4557     // At this point we know that the denominator is -1.  It is safe to hoist as
4558     // long we know that the numerator is not INT_MIN.
4559     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4560       return !Numerator->isMinSignedValue();
4561     // The numerator *might* be MinSignedValue.
4562     return false;
4563   }
4564   case Instruction::Load: {
4565     const LoadInst *LI = cast<LoadInst>(Inst);
4566     if (mustSuppressSpeculation(*LI))
4567       return false;
4568     const DataLayout &DL = LI->getModule()->getDataLayout();
4569     return isDereferenceableAndAlignedPointer(
4570         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4571         DL, CtxI, DT, TLI);
4572   }
4573   case Instruction::Call: {
4574     auto *CI = cast<const CallInst>(Inst);
4575     const Function *Callee = CI->getCalledFunction();
4576 
4577     // The called function could have undefined behavior or side-effects, even
4578     // if marked readnone nounwind.
4579     return Callee && Callee->isSpeculatable();
4580   }
4581   case Instruction::VAArg:
4582   case Instruction::Alloca:
4583   case Instruction::Invoke:
4584   case Instruction::CallBr:
4585   case Instruction::PHI:
4586   case Instruction::Store:
4587   case Instruction::Ret:
4588   case Instruction::Br:
4589   case Instruction::IndirectBr:
4590   case Instruction::Switch:
4591   case Instruction::Unreachable:
4592   case Instruction::Fence:
4593   case Instruction::AtomicRMW:
4594   case Instruction::AtomicCmpXchg:
4595   case Instruction::LandingPad:
4596   case Instruction::Resume:
4597   case Instruction::CatchSwitch:
4598   case Instruction::CatchPad:
4599   case Instruction::CatchRet:
4600   case Instruction::CleanupPad:
4601   case Instruction::CleanupRet:
4602     return false; // Misc instructions which have effects
4603   }
4604 }
4605 
4606 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4607   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4608 }
4609 
4610 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4611 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4612   switch (OR) {
4613     case ConstantRange::OverflowResult::MayOverflow:
4614       return OverflowResult::MayOverflow;
4615     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4616       return OverflowResult::AlwaysOverflowsLow;
4617     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4618       return OverflowResult::AlwaysOverflowsHigh;
4619     case ConstantRange::OverflowResult::NeverOverflows:
4620       return OverflowResult::NeverOverflows;
4621   }
4622   llvm_unreachable("Unknown OverflowResult");
4623 }
4624 
4625 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4626 static ConstantRange computeConstantRangeIncludingKnownBits(
4627     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4628     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4629     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4630   KnownBits Known = computeKnownBits(
4631       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4632   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4633   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4634   ConstantRange::PreferredRangeType RangeType =
4635       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4636   return CR1.intersectWith(CR2, RangeType);
4637 }
4638 
4639 OverflowResult llvm::computeOverflowForUnsignedMul(
4640     const Value *LHS, const Value *RHS, const DataLayout &DL,
4641     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4642     bool UseInstrInfo) {
4643   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4644                                         nullptr, UseInstrInfo);
4645   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4646                                         nullptr, UseInstrInfo);
4647   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4648   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4649   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4650 }
4651 
4652 OverflowResult
4653 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4654                                   const DataLayout &DL, AssumptionCache *AC,
4655                                   const Instruction *CxtI,
4656                                   const DominatorTree *DT, bool UseInstrInfo) {
4657   // Multiplying n * m significant bits yields a result of n + m significant
4658   // bits. If the total number of significant bits does not exceed the
4659   // result bit width (minus 1), there is no overflow.
4660   // This means if we have enough leading sign bits in the operands
4661   // we can guarantee that the result does not overflow.
4662   // Ref: "Hacker's Delight" by Henry Warren
4663   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4664 
4665   // Note that underestimating the number of sign bits gives a more
4666   // conservative answer.
4667   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4668                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4669 
4670   // First handle the easy case: if we have enough sign bits there's
4671   // definitely no overflow.
4672   if (SignBits > BitWidth + 1)
4673     return OverflowResult::NeverOverflows;
4674 
4675   // There are two ambiguous cases where there can be no overflow:
4676   //   SignBits == BitWidth + 1    and
4677   //   SignBits == BitWidth
4678   // The second case is difficult to check, therefore we only handle the
4679   // first case.
4680   if (SignBits == BitWidth + 1) {
4681     // It overflows only when both arguments are negative and the true
4682     // product is exactly the minimum negative number.
4683     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4684     // For simplicity we just check if at least one side is not negative.
4685     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4686                                           nullptr, UseInstrInfo);
4687     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4688                                           nullptr, UseInstrInfo);
4689     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4690       return OverflowResult::NeverOverflows;
4691   }
4692   return OverflowResult::MayOverflow;
4693 }
4694 
4695 OverflowResult llvm::computeOverflowForUnsignedAdd(
4696     const Value *LHS, const Value *RHS, const DataLayout &DL,
4697     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4698     bool UseInstrInfo) {
4699   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4700       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4701       nullptr, UseInstrInfo);
4702   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4703       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4704       nullptr, UseInstrInfo);
4705   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4706 }
4707 
4708 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4709                                                   const Value *RHS,
4710                                                   const AddOperator *Add,
4711                                                   const DataLayout &DL,
4712                                                   AssumptionCache *AC,
4713                                                   const Instruction *CxtI,
4714                                                   const DominatorTree *DT) {
4715   if (Add && Add->hasNoSignedWrap()) {
4716     return OverflowResult::NeverOverflows;
4717   }
4718 
4719   // If LHS and RHS each have at least two sign bits, the addition will look
4720   // like
4721   //
4722   // XX..... +
4723   // YY.....
4724   //
4725   // If the carry into the most significant position is 0, X and Y can't both
4726   // be 1 and therefore the carry out of the addition is also 0.
4727   //
4728   // If the carry into the most significant position is 1, X and Y can't both
4729   // be 0 and therefore the carry out of the addition is also 1.
4730   //
4731   // Since the carry into the most significant position is always equal to
4732   // the carry out of the addition, there is no signed overflow.
4733   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4734       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4735     return OverflowResult::NeverOverflows;
4736 
4737   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4738       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4739   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4740       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4741   OverflowResult OR =
4742       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4743   if (OR != OverflowResult::MayOverflow)
4744     return OR;
4745 
4746   // The remaining code needs Add to be available. Early returns if not so.
4747   if (!Add)
4748     return OverflowResult::MayOverflow;
4749 
4750   // If the sign of Add is the same as at least one of the operands, this add
4751   // CANNOT overflow. If this can be determined from the known bits of the
4752   // operands the above signedAddMayOverflow() check will have already done so.
4753   // The only other way to improve on the known bits is from an assumption, so
4754   // call computeKnownBitsFromAssume() directly.
4755   bool LHSOrRHSKnownNonNegative =
4756       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4757   bool LHSOrRHSKnownNegative =
4758       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4759   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4760     KnownBits AddKnown(LHSRange.getBitWidth());
4761     computeKnownBitsFromAssume(
4762         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4763     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4764         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4765       return OverflowResult::NeverOverflows;
4766   }
4767 
4768   return OverflowResult::MayOverflow;
4769 }
4770 
4771 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4772                                                    const Value *RHS,
4773                                                    const DataLayout &DL,
4774                                                    AssumptionCache *AC,
4775                                                    const Instruction *CxtI,
4776                                                    const DominatorTree *DT) {
4777   // Checking for conditions implied by dominating conditions may be expensive.
4778   // Limit it to usub_with_overflow calls for now.
4779   if (match(CxtI,
4780             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4781     if (auto C =
4782             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4783       if (*C)
4784         return OverflowResult::NeverOverflows;
4785       return OverflowResult::AlwaysOverflowsLow;
4786     }
4787   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4788       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4789   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4790       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4791   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4792 }
4793 
4794 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4795                                                  const Value *RHS,
4796                                                  const DataLayout &DL,
4797                                                  AssumptionCache *AC,
4798                                                  const Instruction *CxtI,
4799                                                  const DominatorTree *DT) {
4800   // If LHS and RHS each have at least two sign bits, the subtraction
4801   // cannot overflow.
4802   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4803       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4804     return OverflowResult::NeverOverflows;
4805 
4806   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4807       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4808   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4809       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4810   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4811 }
4812 
4813 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4814                                      const DominatorTree &DT) {
4815   SmallVector<const BranchInst *, 2> GuardingBranches;
4816   SmallVector<const ExtractValueInst *, 2> Results;
4817 
4818   for (const User *U : WO->users()) {
4819     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4820       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4821 
4822       if (EVI->getIndices()[0] == 0)
4823         Results.push_back(EVI);
4824       else {
4825         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4826 
4827         for (const auto *U : EVI->users())
4828           if (const auto *B = dyn_cast<BranchInst>(U)) {
4829             assert(B->isConditional() && "How else is it using an i1?");
4830             GuardingBranches.push_back(B);
4831           }
4832       }
4833     } else {
4834       // We are using the aggregate directly in a way we don't want to analyze
4835       // here (storing it to a global, say).
4836       return false;
4837     }
4838   }
4839 
4840   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4841     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4842     if (!NoWrapEdge.isSingleEdge())
4843       return false;
4844 
4845     // Check if all users of the add are provably no-wrap.
4846     for (const auto *Result : Results) {
4847       // If the extractvalue itself is not executed on overflow, the we don't
4848       // need to check each use separately, since domination is transitive.
4849       if (DT.dominates(NoWrapEdge, Result->getParent()))
4850         continue;
4851 
4852       for (auto &RU : Result->uses())
4853         if (!DT.dominates(NoWrapEdge, RU))
4854           return false;
4855     }
4856 
4857     return true;
4858   };
4859 
4860   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4861 }
4862 
4863 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4864   // See whether I has flags that may create poison
4865   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4866     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4867       return true;
4868   }
4869   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4870     if (ExactOp->isExact())
4871       return true;
4872   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4873     auto FMF = FP->getFastMathFlags();
4874     if (FMF.noNaNs() || FMF.noInfs())
4875       return true;
4876   }
4877 
4878   unsigned Opcode = Op->getOpcode();
4879 
4880   // Check whether opcode is a poison/undef-generating operation
4881   switch (Opcode) {
4882   case Instruction::Shl:
4883   case Instruction::AShr:
4884   case Instruction::LShr: {
4885     // Shifts return poison if shiftwidth is larger than the bitwidth.
4886     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4887       SmallVector<Constant *, 4> ShiftAmounts;
4888       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4889         unsigned NumElts = FVTy->getNumElements();
4890         for (unsigned i = 0; i < NumElts; ++i)
4891           ShiftAmounts.push_back(C->getAggregateElement(i));
4892       } else if (isa<ScalableVectorType>(C->getType()))
4893         return true; // Can't tell, just return true to be safe
4894       else
4895         ShiftAmounts.push_back(C);
4896 
4897       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4898         auto *CI = dyn_cast_or_null<ConstantInt>(C);
4899         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4900       });
4901       return !Safe;
4902     }
4903     return true;
4904   }
4905   case Instruction::FPToSI:
4906   case Instruction::FPToUI:
4907     // fptosi/ui yields poison if the resulting value does not fit in the
4908     // destination type.
4909     return true;
4910   case Instruction::Call:
4911     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
4912       switch (II->getIntrinsicID()) {
4913       // TODO: Add more intrinsics.
4914       case Intrinsic::ctpop:
4915       case Intrinsic::sadd_with_overflow:
4916       case Intrinsic::ssub_with_overflow:
4917       case Intrinsic::smul_with_overflow:
4918       case Intrinsic::uadd_with_overflow:
4919       case Intrinsic::usub_with_overflow:
4920       case Intrinsic::umul_with_overflow:
4921         return false;
4922       }
4923     }
4924     LLVM_FALLTHROUGH;
4925   case Instruction::CallBr:
4926   case Instruction::Invoke: {
4927     const auto *CB = cast<CallBase>(Op);
4928     return !CB->hasRetAttr(Attribute::NoUndef);
4929   }
4930   case Instruction::InsertElement:
4931   case Instruction::ExtractElement: {
4932     // If index exceeds the length of the vector, it returns poison
4933     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4934     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4935     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4936     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4937       return true;
4938     return false;
4939   }
4940   case Instruction::ShuffleVector: {
4941     // shufflevector may return undef.
4942     if (PoisonOnly)
4943       return false;
4944     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4945                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4946                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4947     return is_contained(Mask, UndefMaskElem);
4948   }
4949   case Instruction::FNeg:
4950   case Instruction::PHI:
4951   case Instruction::Select:
4952   case Instruction::URem:
4953   case Instruction::SRem:
4954   case Instruction::ExtractValue:
4955   case Instruction::InsertValue:
4956   case Instruction::Freeze:
4957   case Instruction::ICmp:
4958   case Instruction::FCmp:
4959     return false;
4960   case Instruction::GetElementPtr: {
4961     const auto *GEP = cast<GEPOperator>(Op);
4962     return GEP->isInBounds();
4963   }
4964   default: {
4965     const auto *CE = dyn_cast<ConstantExpr>(Op);
4966     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4967       return false;
4968     else if (Instruction::isBinaryOp(Opcode))
4969       return false;
4970     // Be conservative and return true.
4971     return true;
4972   }
4973   }
4974 }
4975 
4976 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4977   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4978 }
4979 
4980 bool llvm::canCreatePoison(const Operator *Op) {
4981   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4982 }
4983 
4984 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
4985                                   const Value *V, unsigned Depth) {
4986   if (ValAssumedPoison == V)
4987     return true;
4988 
4989   const unsigned MaxDepth = 2;
4990   if (Depth >= MaxDepth)
4991     return false;
4992 
4993   if (const auto *I = dyn_cast<Instruction>(V)) {
4994     if (propagatesPoison(cast<Operator>(I)))
4995       return any_of(I->operands(), [=](const Value *Op) {
4996         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
4997       });
4998 
4999     // 'select ValAssumedPoison, _, _' is poison.
5000     if (const auto *SI = dyn_cast<SelectInst>(I))
5001       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5002                                    Depth + 1);
5003     // V  = extractvalue V0, idx
5004     // V2 = extractvalue V0, idx2
5005     // V0's elements are all poison or not. (e.g., add_with_overflow)
5006     const WithOverflowInst *II;
5007     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5008         match(ValAssumedPoison, m_ExtractValue(m_Specific(II))))
5009       return true;
5010   }
5011   return false;
5012 }
5013 
5014 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5015                           unsigned Depth) {
5016   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5017     return true;
5018 
5019   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5020     return true;
5021 
5022   const unsigned MaxDepth = 2;
5023   if (Depth >= MaxDepth)
5024     return false;
5025 
5026   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5027   if (I && !canCreatePoison(cast<Operator>(I))) {
5028     return all_of(I->operands(), [=](const Value *Op) {
5029       return impliesPoison(Op, V, Depth + 1);
5030     });
5031   }
5032   return false;
5033 }
5034 
5035 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5036   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5037 }
5038 
5039 static bool programUndefinedIfUndefOrPoison(const Value *V,
5040                                             bool PoisonOnly);
5041 
5042 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5043                                              AssumptionCache *AC,
5044                                              const Instruction *CtxI,
5045                                              const DominatorTree *DT,
5046                                              unsigned Depth, bool PoisonOnly) {
5047   if (Depth >= MaxAnalysisRecursionDepth)
5048     return false;
5049 
5050   if (isa<MetadataAsValue>(V))
5051     return false;
5052 
5053   if (const auto *A = dyn_cast<Argument>(V)) {
5054     if (A->hasAttribute(Attribute::NoUndef))
5055       return true;
5056   }
5057 
5058   if (auto *C = dyn_cast<Constant>(V)) {
5059     if (isa<UndefValue>(C))
5060       return PoisonOnly && !isa<PoisonValue>(C);
5061 
5062     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5063         isa<ConstantPointerNull>(C) || isa<Function>(C))
5064       return true;
5065 
5066     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5067       return (PoisonOnly ? !C->containsPoisonElement()
5068                          : !C->containsUndefOrPoisonElement()) &&
5069              !C->containsConstantExpression();
5070   }
5071 
5072   // Strip cast operations from a pointer value.
5073   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5074   // inbounds with zero offset. To guarantee that the result isn't poison, the
5075   // stripped pointer is checked as it has to be pointing into an allocated
5076   // object or be null `null` to ensure `inbounds` getelement pointers with a
5077   // zero offset could not produce poison.
5078   // It can strip off addrspacecast that do not change bit representation as
5079   // well. We believe that such addrspacecast is equivalent to no-op.
5080   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5081   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5082       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5083     return true;
5084 
5085   auto OpCheck = [&](const Value *V) {
5086     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5087                                             PoisonOnly);
5088   };
5089 
5090   if (auto *Opr = dyn_cast<Operator>(V)) {
5091     // If the value is a freeze instruction, then it can never
5092     // be undef or poison.
5093     if (isa<FreezeInst>(V))
5094       return true;
5095 
5096     if (const auto *CB = dyn_cast<CallBase>(V)) {
5097       if (CB->hasRetAttr(Attribute::NoUndef))
5098         return true;
5099     }
5100 
5101     if (const auto *PN = dyn_cast<PHINode>(V)) {
5102       unsigned Num = PN->getNumIncomingValues();
5103       bool IsWellDefined = true;
5104       for (unsigned i = 0; i < Num; ++i) {
5105         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5106         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5107                                               DT, Depth + 1, PoisonOnly)) {
5108           IsWellDefined = false;
5109           break;
5110         }
5111       }
5112       if (IsWellDefined)
5113         return true;
5114     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5115       return true;
5116   }
5117 
5118   if (auto *I = dyn_cast<LoadInst>(V))
5119     if (I->getMetadata(LLVMContext::MD_noundef))
5120       return true;
5121 
5122   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5123     return true;
5124 
5125   // CxtI may be null or a cloned instruction.
5126   if (!CtxI || !CtxI->getParent() || !DT)
5127     return false;
5128 
5129   auto *DNode = DT->getNode(CtxI->getParent());
5130   if (!DNode)
5131     // Unreachable block
5132     return false;
5133 
5134   // If V is used as a branch condition before reaching CtxI, V cannot be
5135   // undef or poison.
5136   //   br V, BB1, BB2
5137   // BB1:
5138   //   CtxI ; V cannot be undef or poison here
5139   auto *Dominator = DNode->getIDom();
5140   while (Dominator) {
5141     auto *TI = Dominator->getBlock()->getTerminator();
5142 
5143     Value *Cond = nullptr;
5144     if (auto BI = dyn_cast<BranchInst>(TI)) {
5145       if (BI->isConditional())
5146         Cond = BI->getCondition();
5147     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
5148       Cond = SI->getCondition();
5149     }
5150 
5151     if (Cond) {
5152       if (Cond == V)
5153         return true;
5154       else if (PoisonOnly && isa<Operator>(Cond)) {
5155         // For poison, we can analyze further
5156         auto *Opr = cast<Operator>(Cond);
5157         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5158           return true;
5159       }
5160     }
5161 
5162     Dominator = Dominator->getIDom();
5163   }
5164 
5165   SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
5166   if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
5167     return true;
5168 
5169   return false;
5170 }
5171 
5172 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5173                                             const Instruction *CtxI,
5174                                             const DominatorTree *DT,
5175                                             unsigned Depth) {
5176   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5177 }
5178 
5179 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5180                                      const Instruction *CtxI,
5181                                      const DominatorTree *DT, unsigned Depth) {
5182   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5183 }
5184 
5185 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5186                                                  const DataLayout &DL,
5187                                                  AssumptionCache *AC,
5188                                                  const Instruction *CxtI,
5189                                                  const DominatorTree *DT) {
5190   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5191                                        Add, DL, AC, CxtI, DT);
5192 }
5193 
5194 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5195                                                  const Value *RHS,
5196                                                  const DataLayout &DL,
5197                                                  AssumptionCache *AC,
5198                                                  const Instruction *CxtI,
5199                                                  const DominatorTree *DT) {
5200   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5201 }
5202 
5203 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5204   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5205   // of time because it's possible for another thread to interfere with it for an
5206   // arbitrary length of time, but programs aren't allowed to rely on that.
5207 
5208   // If there is no successor, then execution can't transfer to it.
5209   if (isa<ReturnInst>(I))
5210     return false;
5211   if (isa<UnreachableInst>(I))
5212     return false;
5213 
5214   // An instruction that returns without throwing must transfer control flow
5215   // to a successor.
5216   return !I->mayThrow() && I->willReturn();
5217 }
5218 
5219 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5220   // TODO: This is slightly conservative for invoke instruction since exiting
5221   // via an exception *is* normal control for them.
5222   for (const Instruction &I : *BB)
5223     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5224       return false;
5225   return true;
5226 }
5227 
5228 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5229                                                   const Loop *L) {
5230   // The loop header is guaranteed to be executed for every iteration.
5231   //
5232   // FIXME: Relax this constraint to cover all basic blocks that are
5233   // guaranteed to be executed at every iteration.
5234   if (I->getParent() != L->getHeader()) return false;
5235 
5236   for (const Instruction &LI : *L->getHeader()) {
5237     if (&LI == I) return true;
5238     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5239   }
5240   llvm_unreachable("Instruction not contained in its own parent basic block.");
5241 }
5242 
5243 bool llvm::propagatesPoison(const Operator *I) {
5244   switch (I->getOpcode()) {
5245   case Instruction::Freeze:
5246   case Instruction::Select:
5247   case Instruction::PHI:
5248   case Instruction::Invoke:
5249     return false;
5250   case Instruction::Call:
5251     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5252       switch (II->getIntrinsicID()) {
5253       // TODO: Add more intrinsics.
5254       case Intrinsic::sadd_with_overflow:
5255       case Intrinsic::ssub_with_overflow:
5256       case Intrinsic::smul_with_overflow:
5257       case Intrinsic::uadd_with_overflow:
5258       case Intrinsic::usub_with_overflow:
5259       case Intrinsic::umul_with_overflow:
5260         // If an input is a vector containing a poison element, the
5261         // two output vectors (calculated results, overflow bits)'
5262         // corresponding lanes are poison.
5263         return true;
5264       }
5265     }
5266     return false;
5267   case Instruction::ICmp:
5268   case Instruction::FCmp:
5269   case Instruction::GetElementPtr:
5270     return true;
5271   default:
5272     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5273       return true;
5274 
5275     // Be conservative and return false.
5276     return false;
5277   }
5278 }
5279 
5280 void llvm::getGuaranteedWellDefinedOps(
5281     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5282   switch (I->getOpcode()) {
5283     case Instruction::Store:
5284       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5285       break;
5286 
5287     case Instruction::Load:
5288       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5289       break;
5290 
5291     // Since dereferenceable attribute imply noundef, atomic operations
5292     // also implicitly have noundef pointers too
5293     case Instruction::AtomicCmpXchg:
5294       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5295       break;
5296 
5297     case Instruction::AtomicRMW:
5298       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5299       break;
5300 
5301     case Instruction::Call:
5302     case Instruction::Invoke: {
5303       const CallBase *CB = cast<CallBase>(I);
5304       if (CB->isIndirectCall())
5305         Operands.insert(CB->getCalledOperand());
5306       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5307         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5308             CB->paramHasAttr(i, Attribute::Dereferenceable))
5309           Operands.insert(CB->getArgOperand(i));
5310       }
5311       break;
5312     }
5313 
5314     default:
5315       break;
5316   }
5317 }
5318 
5319 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5320                                      SmallPtrSetImpl<const Value *> &Operands) {
5321   getGuaranteedWellDefinedOps(I, Operands);
5322   switch (I->getOpcode()) {
5323   // Divisors of these operations are allowed to be partially undef.
5324   case Instruction::UDiv:
5325   case Instruction::SDiv:
5326   case Instruction::URem:
5327   case Instruction::SRem:
5328     Operands.insert(I->getOperand(1));
5329     break;
5330 
5331   default:
5332     break;
5333   }
5334 }
5335 
5336 bool llvm::mustTriggerUB(const Instruction *I,
5337                          const SmallSet<const Value *, 16>& KnownPoison) {
5338   SmallPtrSet<const Value *, 4> NonPoisonOps;
5339   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5340 
5341   for (const auto *V : NonPoisonOps)
5342     if (KnownPoison.count(V))
5343       return true;
5344 
5345   return false;
5346 }
5347 
5348 static bool programUndefinedIfUndefOrPoison(const Value *V,
5349                                             bool PoisonOnly) {
5350   // We currently only look for uses of values within the same basic
5351   // block, as that makes it easier to guarantee that the uses will be
5352   // executed given that Inst is executed.
5353   //
5354   // FIXME: Expand this to consider uses beyond the same basic block. To do
5355   // this, look out for the distinction between post-dominance and strong
5356   // post-dominance.
5357   const BasicBlock *BB = nullptr;
5358   BasicBlock::const_iterator Begin;
5359   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5360     BB = Inst->getParent();
5361     Begin = Inst->getIterator();
5362     Begin++;
5363   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5364     BB = &Arg->getParent()->getEntryBlock();
5365     Begin = BB->begin();
5366   } else {
5367     return false;
5368   }
5369 
5370   BasicBlock::const_iterator End = BB->end();
5371 
5372   if (!PoisonOnly) {
5373     // Since undef does not propagate eagerly, be conservative & just check
5374     // whether a value is directly passed to an instruction that must take
5375     // well-defined operands.
5376 
5377     for (auto &I : make_range(Begin, End)) {
5378       SmallPtrSet<const Value *, 4> WellDefinedOps;
5379       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5380       for (auto *Op : WellDefinedOps) {
5381         if (Op == V)
5382           return true;
5383       }
5384       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5385         break;
5386     }
5387     return false;
5388   }
5389 
5390   // Set of instructions that we have proved will yield poison if Inst
5391   // does.
5392   SmallSet<const Value *, 16> YieldsPoison;
5393   SmallSet<const BasicBlock *, 4> Visited;
5394 
5395   YieldsPoison.insert(V);
5396   auto Propagate = [&](const User *User) {
5397     if (propagatesPoison(cast<Operator>(User)))
5398       YieldsPoison.insert(User);
5399   };
5400   for_each(V->users(), Propagate);
5401   Visited.insert(BB);
5402 
5403   unsigned Iter = 0;
5404   while (Iter++ < MaxAnalysisRecursionDepth) {
5405     for (auto &I : make_range(Begin, End)) {
5406       if (mustTriggerUB(&I, YieldsPoison))
5407         return true;
5408       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5409         return false;
5410 
5411       // Mark poison that propagates from I through uses of I.
5412       if (YieldsPoison.count(&I))
5413         for_each(I.users(), Propagate);
5414     }
5415 
5416     if (auto *NextBB = BB->getSingleSuccessor()) {
5417       if (Visited.insert(NextBB).second) {
5418         BB = NextBB;
5419         Begin = BB->getFirstNonPHI()->getIterator();
5420         End = BB->end();
5421         continue;
5422       }
5423     }
5424 
5425     break;
5426   }
5427   return false;
5428 }
5429 
5430 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5431   return ::programUndefinedIfUndefOrPoison(Inst, false);
5432 }
5433 
5434 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5435   return ::programUndefinedIfUndefOrPoison(Inst, true);
5436 }
5437 
5438 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5439   if (FMF.noNaNs())
5440     return true;
5441 
5442   if (auto *C = dyn_cast<ConstantFP>(V))
5443     return !C->isNaN();
5444 
5445   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5446     if (!C->getElementType()->isFloatingPointTy())
5447       return false;
5448     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5449       if (C->getElementAsAPFloat(I).isNaN())
5450         return false;
5451     }
5452     return true;
5453   }
5454 
5455   if (isa<ConstantAggregateZero>(V))
5456     return true;
5457 
5458   return false;
5459 }
5460 
5461 static bool isKnownNonZero(const Value *V) {
5462   if (auto *C = dyn_cast<ConstantFP>(V))
5463     return !C->isZero();
5464 
5465   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5466     if (!C->getElementType()->isFloatingPointTy())
5467       return false;
5468     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5469       if (C->getElementAsAPFloat(I).isZero())
5470         return false;
5471     }
5472     return true;
5473   }
5474 
5475   return false;
5476 }
5477 
5478 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5479 /// Given non-min/max outer cmp/select from the clamp pattern this
5480 /// function recognizes if it can be substitued by a "canonical" min/max
5481 /// pattern.
5482 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5483                                                Value *CmpLHS, Value *CmpRHS,
5484                                                Value *TrueVal, Value *FalseVal,
5485                                                Value *&LHS, Value *&RHS) {
5486   // Try to match
5487   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5488   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5489   // and return description of the outer Max/Min.
5490 
5491   // First, check if select has inverse order:
5492   if (CmpRHS == FalseVal) {
5493     std::swap(TrueVal, FalseVal);
5494     Pred = CmpInst::getInversePredicate(Pred);
5495   }
5496 
5497   // Assume success now. If there's no match, callers should not use these anyway.
5498   LHS = TrueVal;
5499   RHS = FalseVal;
5500 
5501   const APFloat *FC1;
5502   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5503     return {SPF_UNKNOWN, SPNB_NA, false};
5504 
5505   const APFloat *FC2;
5506   switch (Pred) {
5507   case CmpInst::FCMP_OLT:
5508   case CmpInst::FCMP_OLE:
5509   case CmpInst::FCMP_ULT:
5510   case CmpInst::FCMP_ULE:
5511     if (match(FalseVal,
5512               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5513                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5514         *FC1 < *FC2)
5515       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5516     break;
5517   case CmpInst::FCMP_OGT:
5518   case CmpInst::FCMP_OGE:
5519   case CmpInst::FCMP_UGT:
5520   case CmpInst::FCMP_UGE:
5521     if (match(FalseVal,
5522               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5523                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5524         *FC1 > *FC2)
5525       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5526     break;
5527   default:
5528     break;
5529   }
5530 
5531   return {SPF_UNKNOWN, SPNB_NA, false};
5532 }
5533 
5534 /// Recognize variations of:
5535 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5536 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5537                                       Value *CmpLHS, Value *CmpRHS,
5538                                       Value *TrueVal, Value *FalseVal) {
5539   // Swap the select operands and predicate to match the patterns below.
5540   if (CmpRHS != TrueVal) {
5541     Pred = ICmpInst::getSwappedPredicate(Pred);
5542     std::swap(TrueVal, FalseVal);
5543   }
5544   const APInt *C1;
5545   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5546     const APInt *C2;
5547     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5548     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5549         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5550       return {SPF_SMAX, SPNB_NA, false};
5551 
5552     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5553     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5554         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5555       return {SPF_SMIN, SPNB_NA, false};
5556 
5557     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5558     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5559         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5560       return {SPF_UMAX, SPNB_NA, false};
5561 
5562     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5563     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5564         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5565       return {SPF_UMIN, SPNB_NA, false};
5566   }
5567   return {SPF_UNKNOWN, SPNB_NA, false};
5568 }
5569 
5570 /// Recognize variations of:
5571 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5572 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5573                                                Value *CmpLHS, Value *CmpRHS,
5574                                                Value *TVal, Value *FVal,
5575                                                unsigned Depth) {
5576   // TODO: Allow FP min/max with nnan/nsz.
5577   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5578 
5579   Value *A = nullptr, *B = nullptr;
5580   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5581   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5582     return {SPF_UNKNOWN, SPNB_NA, false};
5583 
5584   Value *C = nullptr, *D = nullptr;
5585   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5586   if (L.Flavor != R.Flavor)
5587     return {SPF_UNKNOWN, SPNB_NA, false};
5588 
5589   // We have something like: x Pred y ? min(a, b) : min(c, d).
5590   // Try to match the compare to the min/max operations of the select operands.
5591   // First, make sure we have the right compare predicate.
5592   switch (L.Flavor) {
5593   case SPF_SMIN:
5594     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5595       Pred = ICmpInst::getSwappedPredicate(Pred);
5596       std::swap(CmpLHS, CmpRHS);
5597     }
5598     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5599       break;
5600     return {SPF_UNKNOWN, SPNB_NA, false};
5601   case SPF_SMAX:
5602     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5603       Pred = ICmpInst::getSwappedPredicate(Pred);
5604       std::swap(CmpLHS, CmpRHS);
5605     }
5606     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5607       break;
5608     return {SPF_UNKNOWN, SPNB_NA, false};
5609   case SPF_UMIN:
5610     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5611       Pred = ICmpInst::getSwappedPredicate(Pred);
5612       std::swap(CmpLHS, CmpRHS);
5613     }
5614     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5615       break;
5616     return {SPF_UNKNOWN, SPNB_NA, false};
5617   case SPF_UMAX:
5618     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5619       Pred = ICmpInst::getSwappedPredicate(Pred);
5620       std::swap(CmpLHS, CmpRHS);
5621     }
5622     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5623       break;
5624     return {SPF_UNKNOWN, SPNB_NA, false};
5625   default:
5626     return {SPF_UNKNOWN, SPNB_NA, false};
5627   }
5628 
5629   // If there is a common operand in the already matched min/max and the other
5630   // min/max operands match the compare operands (either directly or inverted),
5631   // then this is min/max of the same flavor.
5632 
5633   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5634   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5635   if (D == B) {
5636     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5637                                          match(A, m_Not(m_Specific(CmpRHS)))))
5638       return {L.Flavor, SPNB_NA, false};
5639   }
5640   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5641   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5642   if (C == B) {
5643     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5644                                          match(A, m_Not(m_Specific(CmpRHS)))))
5645       return {L.Flavor, SPNB_NA, false};
5646   }
5647   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5648   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5649   if (D == A) {
5650     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5651                                          match(B, m_Not(m_Specific(CmpRHS)))))
5652       return {L.Flavor, SPNB_NA, false};
5653   }
5654   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5655   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5656   if (C == A) {
5657     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5658                                          match(B, m_Not(m_Specific(CmpRHS)))))
5659       return {L.Flavor, SPNB_NA, false};
5660   }
5661 
5662   return {SPF_UNKNOWN, SPNB_NA, false};
5663 }
5664 
5665 /// If the input value is the result of a 'not' op, constant integer, or vector
5666 /// splat of a constant integer, return the bitwise-not source value.
5667 /// TODO: This could be extended to handle non-splat vector integer constants.
5668 static Value *getNotValue(Value *V) {
5669   Value *NotV;
5670   if (match(V, m_Not(m_Value(NotV))))
5671     return NotV;
5672 
5673   const APInt *C;
5674   if (match(V, m_APInt(C)))
5675     return ConstantInt::get(V->getType(), ~(*C));
5676 
5677   return nullptr;
5678 }
5679 
5680 /// Match non-obvious integer minimum and maximum sequences.
5681 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5682                                        Value *CmpLHS, Value *CmpRHS,
5683                                        Value *TrueVal, Value *FalseVal,
5684                                        Value *&LHS, Value *&RHS,
5685                                        unsigned Depth) {
5686   // Assume success. If there's no match, callers should not use these anyway.
5687   LHS = TrueVal;
5688   RHS = FalseVal;
5689 
5690   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5691   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5692     return SPR;
5693 
5694   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5695   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5696     return SPR;
5697 
5698   // Look through 'not' ops to find disguised min/max.
5699   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5700   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5701   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5702     switch (Pred) {
5703     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5704     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5705     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5706     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5707     default: break;
5708     }
5709   }
5710 
5711   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5712   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5713   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5714     switch (Pred) {
5715     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5716     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5717     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5718     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5719     default: break;
5720     }
5721   }
5722 
5723   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5724     return {SPF_UNKNOWN, SPNB_NA, false};
5725 
5726   // Z = X -nsw Y
5727   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5728   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5729   if (match(TrueVal, m_Zero()) &&
5730       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5731     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5732 
5733   // Z = X -nsw Y
5734   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5735   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5736   if (match(FalseVal, m_Zero()) &&
5737       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5738     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5739 
5740   const APInt *C1;
5741   if (!match(CmpRHS, m_APInt(C1)))
5742     return {SPF_UNKNOWN, SPNB_NA, false};
5743 
5744   // An unsigned min/max can be written with a signed compare.
5745   const APInt *C2;
5746   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5747       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5748     // Is the sign bit set?
5749     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5750     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5751     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5752         C2->isMaxSignedValue())
5753       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5754 
5755     // Is the sign bit clear?
5756     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5757     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5758     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5759         C2->isMinSignedValue())
5760       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5761   }
5762 
5763   return {SPF_UNKNOWN, SPNB_NA, false};
5764 }
5765 
5766 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5767   assert(X && Y && "Invalid operand");
5768 
5769   // X = sub (0, Y) || X = sub nsw (0, Y)
5770   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5771       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5772     return true;
5773 
5774   // Y = sub (0, X) || Y = sub nsw (0, X)
5775   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5776       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5777     return true;
5778 
5779   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5780   Value *A, *B;
5781   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5782                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5783          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5784                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5785 }
5786 
5787 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5788                                               FastMathFlags FMF,
5789                                               Value *CmpLHS, Value *CmpRHS,
5790                                               Value *TrueVal, Value *FalseVal,
5791                                               Value *&LHS, Value *&RHS,
5792                                               unsigned Depth) {
5793   if (CmpInst::isFPPredicate(Pred)) {
5794     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5795     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5796     // purpose of identifying min/max. Disregard vector constants with undefined
5797     // elements because those can not be back-propagated for analysis.
5798     Value *OutputZeroVal = nullptr;
5799     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5800         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5801       OutputZeroVal = TrueVal;
5802     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5803              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5804       OutputZeroVal = FalseVal;
5805 
5806     if (OutputZeroVal) {
5807       if (match(CmpLHS, m_AnyZeroFP()))
5808         CmpLHS = OutputZeroVal;
5809       if (match(CmpRHS, m_AnyZeroFP()))
5810         CmpRHS = OutputZeroVal;
5811     }
5812   }
5813 
5814   LHS = CmpLHS;
5815   RHS = CmpRHS;
5816 
5817   // Signed zero may return inconsistent results between implementations.
5818   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5819   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5820   // Therefore, we behave conservatively and only proceed if at least one of the
5821   // operands is known to not be zero or if we don't care about signed zero.
5822   switch (Pred) {
5823   default: break;
5824   // FIXME: Include OGT/OLT/UGT/ULT.
5825   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5826   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5827     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5828         !isKnownNonZero(CmpRHS))
5829       return {SPF_UNKNOWN, SPNB_NA, false};
5830   }
5831 
5832   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5833   bool Ordered = false;
5834 
5835   // When given one NaN and one non-NaN input:
5836   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5837   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5838   //     ordered comparison fails), which could be NaN or non-NaN.
5839   // so here we discover exactly what NaN behavior is required/accepted.
5840   if (CmpInst::isFPPredicate(Pred)) {
5841     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5842     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5843 
5844     if (LHSSafe && RHSSafe) {
5845       // Both operands are known non-NaN.
5846       NaNBehavior = SPNB_RETURNS_ANY;
5847     } else if (CmpInst::isOrdered(Pred)) {
5848       // An ordered comparison will return false when given a NaN, so it
5849       // returns the RHS.
5850       Ordered = true;
5851       if (LHSSafe)
5852         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5853         NaNBehavior = SPNB_RETURNS_NAN;
5854       else if (RHSSafe)
5855         NaNBehavior = SPNB_RETURNS_OTHER;
5856       else
5857         // Completely unsafe.
5858         return {SPF_UNKNOWN, SPNB_NA, false};
5859     } else {
5860       Ordered = false;
5861       // An unordered comparison will return true when given a NaN, so it
5862       // returns the LHS.
5863       if (LHSSafe)
5864         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5865         NaNBehavior = SPNB_RETURNS_OTHER;
5866       else if (RHSSafe)
5867         NaNBehavior = SPNB_RETURNS_NAN;
5868       else
5869         // Completely unsafe.
5870         return {SPF_UNKNOWN, SPNB_NA, false};
5871     }
5872   }
5873 
5874   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5875     std::swap(CmpLHS, CmpRHS);
5876     Pred = CmpInst::getSwappedPredicate(Pred);
5877     if (NaNBehavior == SPNB_RETURNS_NAN)
5878       NaNBehavior = SPNB_RETURNS_OTHER;
5879     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5880       NaNBehavior = SPNB_RETURNS_NAN;
5881     Ordered = !Ordered;
5882   }
5883 
5884   // ([if]cmp X, Y) ? X : Y
5885   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5886     switch (Pred) {
5887     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5888     case ICmpInst::ICMP_UGT:
5889     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5890     case ICmpInst::ICMP_SGT:
5891     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5892     case ICmpInst::ICMP_ULT:
5893     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5894     case ICmpInst::ICMP_SLT:
5895     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5896     case FCmpInst::FCMP_UGT:
5897     case FCmpInst::FCMP_UGE:
5898     case FCmpInst::FCMP_OGT:
5899     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5900     case FCmpInst::FCMP_ULT:
5901     case FCmpInst::FCMP_ULE:
5902     case FCmpInst::FCMP_OLT:
5903     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5904     }
5905   }
5906 
5907   if (isKnownNegation(TrueVal, FalseVal)) {
5908     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5909     // match against either LHS or sext(LHS).
5910     auto MaybeSExtCmpLHS =
5911         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5912     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5913     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5914     if (match(TrueVal, MaybeSExtCmpLHS)) {
5915       // Set the return values. If the compare uses the negated value (-X >s 0),
5916       // swap the return values because the negated value is always 'RHS'.
5917       LHS = TrueVal;
5918       RHS = FalseVal;
5919       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5920         std::swap(LHS, RHS);
5921 
5922       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5923       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5924       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5925         return {SPF_ABS, SPNB_NA, false};
5926 
5927       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5928       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5929         return {SPF_ABS, SPNB_NA, false};
5930 
5931       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5932       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5933       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5934         return {SPF_NABS, SPNB_NA, false};
5935     }
5936     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5937       // Set the return values. If the compare uses the negated value (-X >s 0),
5938       // swap the return values because the negated value is always 'RHS'.
5939       LHS = FalseVal;
5940       RHS = TrueVal;
5941       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5942         std::swap(LHS, RHS);
5943 
5944       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5945       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5946       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5947         return {SPF_NABS, SPNB_NA, false};
5948 
5949       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5950       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5951       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5952         return {SPF_ABS, SPNB_NA, false};
5953     }
5954   }
5955 
5956   if (CmpInst::isIntPredicate(Pred))
5957     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5958 
5959   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5960   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5961   // semantics than minNum. Be conservative in such case.
5962   if (NaNBehavior != SPNB_RETURNS_ANY ||
5963       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5964        !isKnownNonZero(CmpRHS)))
5965     return {SPF_UNKNOWN, SPNB_NA, false};
5966 
5967   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5968 }
5969 
5970 /// Helps to match a select pattern in case of a type mismatch.
5971 ///
5972 /// The function processes the case when type of true and false values of a
5973 /// select instruction differs from type of the cmp instruction operands because
5974 /// of a cast instruction. The function checks if it is legal to move the cast
5975 /// operation after "select". If yes, it returns the new second value of
5976 /// "select" (with the assumption that cast is moved):
5977 /// 1. As operand of cast instruction when both values of "select" are same cast
5978 /// instructions.
5979 /// 2. As restored constant (by applying reverse cast operation) when the first
5980 /// value of the "select" is a cast operation and the second value is a
5981 /// constant.
5982 /// NOTE: We return only the new second value because the first value could be
5983 /// accessed as operand of cast instruction.
5984 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5985                               Instruction::CastOps *CastOp) {
5986   auto *Cast1 = dyn_cast<CastInst>(V1);
5987   if (!Cast1)
5988     return nullptr;
5989 
5990   *CastOp = Cast1->getOpcode();
5991   Type *SrcTy = Cast1->getSrcTy();
5992   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5993     // If V1 and V2 are both the same cast from the same type, look through V1.
5994     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5995       return Cast2->getOperand(0);
5996     return nullptr;
5997   }
5998 
5999   auto *C = dyn_cast<Constant>(V2);
6000   if (!C)
6001     return nullptr;
6002 
6003   Constant *CastedTo = nullptr;
6004   switch (*CastOp) {
6005   case Instruction::ZExt:
6006     if (CmpI->isUnsigned())
6007       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6008     break;
6009   case Instruction::SExt:
6010     if (CmpI->isSigned())
6011       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6012     break;
6013   case Instruction::Trunc:
6014     Constant *CmpConst;
6015     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6016         CmpConst->getType() == SrcTy) {
6017       // Here we have the following case:
6018       //
6019       //   %cond = cmp iN %x, CmpConst
6020       //   %tr = trunc iN %x to iK
6021       //   %narrowsel = select i1 %cond, iK %t, iK C
6022       //
6023       // We can always move trunc after select operation:
6024       //
6025       //   %cond = cmp iN %x, CmpConst
6026       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6027       //   %tr = trunc iN %widesel to iK
6028       //
6029       // Note that C could be extended in any way because we don't care about
6030       // upper bits after truncation. It can't be abs pattern, because it would
6031       // look like:
6032       //
6033       //   select i1 %cond, x, -x.
6034       //
6035       // So only min/max pattern could be matched. Such match requires widened C
6036       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6037       // CmpConst == C is checked below.
6038       CastedTo = CmpConst;
6039     } else {
6040       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6041     }
6042     break;
6043   case Instruction::FPTrunc:
6044     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6045     break;
6046   case Instruction::FPExt:
6047     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6048     break;
6049   case Instruction::FPToUI:
6050     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6051     break;
6052   case Instruction::FPToSI:
6053     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6054     break;
6055   case Instruction::UIToFP:
6056     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6057     break;
6058   case Instruction::SIToFP:
6059     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6060     break;
6061   default:
6062     break;
6063   }
6064 
6065   if (!CastedTo)
6066     return nullptr;
6067 
6068   // Make sure the cast doesn't lose any information.
6069   Constant *CastedBack =
6070       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6071   if (CastedBack != C)
6072     return nullptr;
6073 
6074   return CastedTo;
6075 }
6076 
6077 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6078                                              Instruction::CastOps *CastOp,
6079                                              unsigned Depth) {
6080   if (Depth >= MaxAnalysisRecursionDepth)
6081     return {SPF_UNKNOWN, SPNB_NA, false};
6082 
6083   SelectInst *SI = dyn_cast<SelectInst>(V);
6084   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6085 
6086   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6087   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6088 
6089   Value *TrueVal = SI->getTrueValue();
6090   Value *FalseVal = SI->getFalseValue();
6091 
6092   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6093                                             CastOp, Depth);
6094 }
6095 
6096 SelectPatternResult llvm::matchDecomposedSelectPattern(
6097     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6098     Instruction::CastOps *CastOp, unsigned Depth) {
6099   CmpInst::Predicate Pred = CmpI->getPredicate();
6100   Value *CmpLHS = CmpI->getOperand(0);
6101   Value *CmpRHS = CmpI->getOperand(1);
6102   FastMathFlags FMF;
6103   if (isa<FPMathOperator>(CmpI))
6104     FMF = CmpI->getFastMathFlags();
6105 
6106   // Bail out early.
6107   if (CmpI->isEquality())
6108     return {SPF_UNKNOWN, SPNB_NA, false};
6109 
6110   // Deal with type mismatches.
6111   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6112     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6113       // If this is a potential fmin/fmax with a cast to integer, then ignore
6114       // -0.0 because there is no corresponding integer value.
6115       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6116         FMF.setNoSignedZeros();
6117       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6118                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6119                                   LHS, RHS, Depth);
6120     }
6121     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6122       // If this is a potential fmin/fmax with a cast to integer, then ignore
6123       // -0.0 because there is no corresponding integer value.
6124       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6125         FMF.setNoSignedZeros();
6126       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6127                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6128                                   LHS, RHS, Depth);
6129     }
6130   }
6131   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6132                               LHS, RHS, Depth);
6133 }
6134 
6135 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6136   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6137   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6138   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6139   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6140   if (SPF == SPF_FMINNUM)
6141     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6142   if (SPF == SPF_FMAXNUM)
6143     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6144   llvm_unreachable("unhandled!");
6145 }
6146 
6147 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6148   if (SPF == SPF_SMIN) return SPF_SMAX;
6149   if (SPF == SPF_UMIN) return SPF_UMAX;
6150   if (SPF == SPF_SMAX) return SPF_SMIN;
6151   if (SPF == SPF_UMAX) return SPF_UMIN;
6152   llvm_unreachable("unhandled!");
6153 }
6154 
6155 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6156   switch (MinMaxID) {
6157   case Intrinsic::smax: return Intrinsic::smin;
6158   case Intrinsic::smin: return Intrinsic::smax;
6159   case Intrinsic::umax: return Intrinsic::umin;
6160   case Intrinsic::umin: return Intrinsic::umax;
6161   default: llvm_unreachable("Unexpected intrinsic");
6162   }
6163 }
6164 
6165 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6166   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6167 }
6168 
6169 std::pair<Intrinsic::ID, bool>
6170 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6171   // Check if VL contains select instructions that can be folded into a min/max
6172   // vector intrinsic and return the intrinsic if it is possible.
6173   // TODO: Support floating point min/max.
6174   bool AllCmpSingleUse = true;
6175   SelectPatternResult SelectPattern;
6176   SelectPattern.Flavor = SPF_UNKNOWN;
6177   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6178         Value *LHS, *RHS;
6179         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6180         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6181             CurrentPattern.Flavor == SPF_FMINNUM ||
6182             CurrentPattern.Flavor == SPF_FMAXNUM ||
6183             !I->getType()->isIntOrIntVectorTy())
6184           return false;
6185         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6186             SelectPattern.Flavor != CurrentPattern.Flavor)
6187           return false;
6188         SelectPattern = CurrentPattern;
6189         AllCmpSingleUse &=
6190             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6191         return true;
6192       })) {
6193     switch (SelectPattern.Flavor) {
6194     case SPF_SMIN:
6195       return {Intrinsic::smin, AllCmpSingleUse};
6196     case SPF_UMIN:
6197       return {Intrinsic::umin, AllCmpSingleUse};
6198     case SPF_SMAX:
6199       return {Intrinsic::smax, AllCmpSingleUse};
6200     case SPF_UMAX:
6201       return {Intrinsic::umax, AllCmpSingleUse};
6202     default:
6203       llvm_unreachable("unexpected select pattern flavor");
6204     }
6205   }
6206   return {Intrinsic::not_intrinsic, false};
6207 }
6208 
6209 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6210                                  Value *&Start, Value *&Step) {
6211   // Handle the case of a simple two-predecessor recurrence PHI.
6212   // There's a lot more that could theoretically be done here, but
6213   // this is sufficient to catch some interesting cases.
6214   if (P->getNumIncomingValues() != 2)
6215     return false;
6216 
6217   for (unsigned i = 0; i != 2; ++i) {
6218     Value *L = P->getIncomingValue(i);
6219     Value *R = P->getIncomingValue(!i);
6220     Operator *LU = dyn_cast<Operator>(L);
6221     if (!LU)
6222       continue;
6223     unsigned Opcode = LU->getOpcode();
6224 
6225     switch (Opcode) {
6226     default:
6227       continue;
6228     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6229     case Instruction::LShr:
6230     case Instruction::AShr:
6231     case Instruction::Shl:
6232     case Instruction::Add:
6233     case Instruction::Sub:
6234     case Instruction::And:
6235     case Instruction::Or:
6236     case Instruction::Mul: {
6237       Value *LL = LU->getOperand(0);
6238       Value *LR = LU->getOperand(1);
6239       // Find a recurrence.
6240       if (LL == P)
6241         L = LR;
6242       else if (LR == P)
6243         L = LL;
6244       else
6245         continue; // Check for recurrence with L and R flipped.
6246 
6247       break; // Match!
6248     }
6249     };
6250 
6251     // We have matched a recurrence of the form:
6252     //   %iv = [R, %entry], [%iv.next, %backedge]
6253     //   %iv.next = binop %iv, L
6254     // OR
6255     //   %iv = [R, %entry], [%iv.next, %backedge]
6256     //   %iv.next = binop L, %iv
6257     BO = cast<BinaryOperator>(LU);
6258     Start = R;
6259     Step = L;
6260     return true;
6261   }
6262   return false;
6263 }
6264 
6265 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6266                                  Value *&Start, Value *&Step) {
6267   BinaryOperator *BO = nullptr;
6268   P = dyn_cast<PHINode>(I->getOperand(0));
6269   if (!P)
6270     P = dyn_cast<PHINode>(I->getOperand(1));
6271   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6272 }
6273 
6274 /// Return true if "icmp Pred LHS RHS" is always true.
6275 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6276                             const Value *RHS, const DataLayout &DL,
6277                             unsigned Depth) {
6278   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6279   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6280     return true;
6281 
6282   switch (Pred) {
6283   default:
6284     return false;
6285 
6286   case CmpInst::ICMP_SLE: {
6287     const APInt *C;
6288 
6289     // LHS s<= LHS +_{nsw} C   if C >= 0
6290     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6291       return !C->isNegative();
6292     return false;
6293   }
6294 
6295   case CmpInst::ICMP_ULE: {
6296     const APInt *C;
6297 
6298     // LHS u<= LHS +_{nuw} C   for any C
6299     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6300       return true;
6301 
6302     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6303     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6304                                        const Value *&X,
6305                                        const APInt *&CA, const APInt *&CB) {
6306       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6307           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6308         return true;
6309 
6310       // If X & C == 0 then (X | C) == X +_{nuw} C
6311       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6312           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6313         KnownBits Known(CA->getBitWidth());
6314         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6315                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6316         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6317           return true;
6318       }
6319 
6320       return false;
6321     };
6322 
6323     const Value *X;
6324     const APInt *CLHS, *CRHS;
6325     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6326       return CLHS->ule(*CRHS);
6327 
6328     return false;
6329   }
6330   }
6331 }
6332 
6333 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6334 /// ALHS ARHS" is true.  Otherwise, return None.
6335 static Optional<bool>
6336 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6337                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6338                       const DataLayout &DL, unsigned Depth) {
6339   switch (Pred) {
6340   default:
6341     return None;
6342 
6343   case CmpInst::ICMP_SLT:
6344   case CmpInst::ICMP_SLE:
6345     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6346         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6347       return true;
6348     return None;
6349 
6350   case CmpInst::ICMP_ULT:
6351   case CmpInst::ICMP_ULE:
6352     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6353         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6354       return true;
6355     return None;
6356   }
6357 }
6358 
6359 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6360 /// when the operands match, but are swapped.
6361 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6362                           const Value *BLHS, const Value *BRHS,
6363                           bool &IsSwappedOps) {
6364 
6365   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6366   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6367   return IsMatchingOps || IsSwappedOps;
6368 }
6369 
6370 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6371 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6372 /// Otherwise, return None if we can't infer anything.
6373 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6374                                                     CmpInst::Predicate BPred,
6375                                                     bool AreSwappedOps) {
6376   // Canonicalize the predicate as if the operands were not commuted.
6377   if (AreSwappedOps)
6378     BPred = ICmpInst::getSwappedPredicate(BPred);
6379 
6380   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6381     return true;
6382   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6383     return false;
6384 
6385   return None;
6386 }
6387 
6388 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6389 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6390 /// Otherwise, return None if we can't infer anything.
6391 static Optional<bool>
6392 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6393                                  const ConstantInt *C1,
6394                                  CmpInst::Predicate BPred,
6395                                  const ConstantInt *C2) {
6396   ConstantRange DomCR =
6397       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6398   ConstantRange CR =
6399       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6400   ConstantRange Intersection = DomCR.intersectWith(CR);
6401   ConstantRange Difference = DomCR.difference(CR);
6402   if (Intersection.isEmptySet())
6403     return false;
6404   if (Difference.isEmptySet())
6405     return true;
6406   return None;
6407 }
6408 
6409 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6410 /// false.  Otherwise, return None if we can't infer anything.
6411 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6412                                          CmpInst::Predicate BPred,
6413                                          const Value *BLHS, const Value *BRHS,
6414                                          const DataLayout &DL, bool LHSIsTrue,
6415                                          unsigned Depth) {
6416   Value *ALHS = LHS->getOperand(0);
6417   Value *ARHS = LHS->getOperand(1);
6418 
6419   // The rest of the logic assumes the LHS condition is true.  If that's not the
6420   // case, invert the predicate to make it so.
6421   CmpInst::Predicate APred =
6422       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6423 
6424   // Can we infer anything when the two compares have matching operands?
6425   bool AreSwappedOps;
6426   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6427     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6428             APred, BPred, AreSwappedOps))
6429       return Implication;
6430     // No amount of additional analysis will infer the second condition, so
6431     // early exit.
6432     return None;
6433   }
6434 
6435   // Can we infer anything when the LHS operands match and the RHS operands are
6436   // constants (not necessarily matching)?
6437   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6438     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6439             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6440       return Implication;
6441     // No amount of additional analysis will infer the second condition, so
6442     // early exit.
6443     return None;
6444   }
6445 
6446   if (APred == BPred)
6447     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6448   return None;
6449 }
6450 
6451 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6452 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6453 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6454 static Optional<bool>
6455 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6456                    const Value *RHSOp0, const Value *RHSOp1,
6457                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6458   // The LHS must be an 'or', 'and', or a 'select' instruction.
6459   assert((LHS->getOpcode() == Instruction::And ||
6460           LHS->getOpcode() == Instruction::Or ||
6461           LHS->getOpcode() == Instruction::Select) &&
6462          "Expected LHS to be 'and', 'or', or 'select'.");
6463 
6464   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6465 
6466   // If the result of an 'or' is false, then we know both legs of the 'or' are
6467   // false.  Similarly, if the result of an 'and' is true, then we know both
6468   // legs of the 'and' are true.
6469   const Value *ALHS, *ARHS;
6470   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6471       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6472     // FIXME: Make this non-recursion.
6473     if (Optional<bool> Implication = isImpliedCondition(
6474             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6475       return Implication;
6476     if (Optional<bool> Implication = isImpliedCondition(
6477             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6478       return Implication;
6479     return None;
6480   }
6481   return None;
6482 }
6483 
6484 Optional<bool>
6485 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6486                          const Value *RHSOp0, const Value *RHSOp1,
6487                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6488   // Bail out when we hit the limit.
6489   if (Depth == MaxAnalysisRecursionDepth)
6490     return None;
6491 
6492   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6493   // example.
6494   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6495     return None;
6496 
6497   Type *OpTy = LHS->getType();
6498   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6499 
6500   // FIXME: Extending the code below to handle vectors.
6501   if (OpTy->isVectorTy())
6502     return None;
6503 
6504   assert(OpTy->isIntegerTy(1) && "implied by above");
6505 
6506   // Both LHS and RHS are icmps.
6507   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6508   if (LHSCmp)
6509     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6510                               Depth);
6511 
6512   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6513   /// the RHS to be an icmp.
6514   /// FIXME: Add support for and/or/select on the RHS.
6515   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6516     if ((LHSI->getOpcode() == Instruction::And ||
6517          LHSI->getOpcode() == Instruction::Or ||
6518          LHSI->getOpcode() == Instruction::Select))
6519       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6520                                 Depth);
6521   }
6522   return None;
6523 }
6524 
6525 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6526                                         const DataLayout &DL, bool LHSIsTrue,
6527                                         unsigned Depth) {
6528   // LHS ==> RHS by definition
6529   if (LHS == RHS)
6530     return LHSIsTrue;
6531 
6532   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6533   if (RHSCmp)
6534     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6535                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6536                               LHSIsTrue, Depth);
6537   return None;
6538 }
6539 
6540 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6541 // condition dominating ContextI or nullptr, if no condition is found.
6542 static std::pair<Value *, bool>
6543 getDomPredecessorCondition(const Instruction *ContextI) {
6544   if (!ContextI || !ContextI->getParent())
6545     return {nullptr, false};
6546 
6547   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6548   // dominator tree (eg, from a SimplifyQuery) instead?
6549   const BasicBlock *ContextBB = ContextI->getParent();
6550   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6551   if (!PredBB)
6552     return {nullptr, false};
6553 
6554   // We need a conditional branch in the predecessor.
6555   Value *PredCond;
6556   BasicBlock *TrueBB, *FalseBB;
6557   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6558     return {nullptr, false};
6559 
6560   // The branch should get simplified. Don't bother simplifying this condition.
6561   if (TrueBB == FalseBB)
6562     return {nullptr, false};
6563 
6564   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6565          "Predecessor block does not point to successor?");
6566 
6567   // Is this condition implied by the predecessor condition?
6568   return {PredCond, TrueBB == ContextBB};
6569 }
6570 
6571 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6572                                              const Instruction *ContextI,
6573                                              const DataLayout &DL) {
6574   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6575   auto PredCond = getDomPredecessorCondition(ContextI);
6576   if (PredCond.first)
6577     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6578   return None;
6579 }
6580 
6581 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6582                                              const Value *LHS, const Value *RHS,
6583                                              const Instruction *ContextI,
6584                                              const DataLayout &DL) {
6585   auto PredCond = getDomPredecessorCondition(ContextI);
6586   if (PredCond.first)
6587     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6588                               PredCond.second);
6589   return None;
6590 }
6591 
6592 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6593                               APInt &Upper, const InstrInfoQuery &IIQ) {
6594   unsigned Width = Lower.getBitWidth();
6595   const APInt *C;
6596   switch (BO.getOpcode()) {
6597   case Instruction::Add:
6598     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6599       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6600       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6601         // 'add nuw x, C' produces [C, UINT_MAX].
6602         Lower = *C;
6603       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6604         if (C->isNegative()) {
6605           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6606           Lower = APInt::getSignedMinValue(Width);
6607           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6608         } else {
6609           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6610           Lower = APInt::getSignedMinValue(Width) + *C;
6611           Upper = APInt::getSignedMaxValue(Width) + 1;
6612         }
6613       }
6614     }
6615     break;
6616 
6617   case Instruction::And:
6618     if (match(BO.getOperand(1), m_APInt(C)))
6619       // 'and x, C' produces [0, C].
6620       Upper = *C + 1;
6621     break;
6622 
6623   case Instruction::Or:
6624     if (match(BO.getOperand(1), m_APInt(C)))
6625       // 'or x, C' produces [C, UINT_MAX].
6626       Lower = *C;
6627     break;
6628 
6629   case Instruction::AShr:
6630     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6631       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6632       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6633       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6634     } else if (match(BO.getOperand(0), m_APInt(C))) {
6635       unsigned ShiftAmount = Width - 1;
6636       if (!C->isNullValue() && IIQ.isExact(&BO))
6637         ShiftAmount = C->countTrailingZeros();
6638       if (C->isNegative()) {
6639         // 'ashr C, x' produces [C, C >> (Width-1)]
6640         Lower = *C;
6641         Upper = C->ashr(ShiftAmount) + 1;
6642       } else {
6643         // 'ashr C, x' produces [C >> (Width-1), C]
6644         Lower = C->ashr(ShiftAmount);
6645         Upper = *C + 1;
6646       }
6647     }
6648     break;
6649 
6650   case Instruction::LShr:
6651     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6652       // 'lshr x, C' produces [0, UINT_MAX >> C].
6653       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6654     } else if (match(BO.getOperand(0), m_APInt(C))) {
6655       // 'lshr C, x' produces [C >> (Width-1), C].
6656       unsigned ShiftAmount = Width - 1;
6657       if (!C->isNullValue() && IIQ.isExact(&BO))
6658         ShiftAmount = C->countTrailingZeros();
6659       Lower = C->lshr(ShiftAmount);
6660       Upper = *C + 1;
6661     }
6662     break;
6663 
6664   case Instruction::Shl:
6665     if (match(BO.getOperand(0), m_APInt(C))) {
6666       if (IIQ.hasNoUnsignedWrap(&BO)) {
6667         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6668         Lower = *C;
6669         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6670       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6671         if (C->isNegative()) {
6672           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6673           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6674           Lower = C->shl(ShiftAmount);
6675           Upper = *C + 1;
6676         } else {
6677           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6678           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6679           Lower = *C;
6680           Upper = C->shl(ShiftAmount) + 1;
6681         }
6682       }
6683     }
6684     break;
6685 
6686   case Instruction::SDiv:
6687     if (match(BO.getOperand(1), m_APInt(C))) {
6688       APInt IntMin = APInt::getSignedMinValue(Width);
6689       APInt IntMax = APInt::getSignedMaxValue(Width);
6690       if (C->isAllOnesValue()) {
6691         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6692         //    where C != -1 and C != 0 and C != 1
6693         Lower = IntMin + 1;
6694         Upper = IntMax + 1;
6695       } else if (C->countLeadingZeros() < Width - 1) {
6696         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6697         //    where C != -1 and C != 0 and C != 1
6698         Lower = IntMin.sdiv(*C);
6699         Upper = IntMax.sdiv(*C);
6700         if (Lower.sgt(Upper))
6701           std::swap(Lower, Upper);
6702         Upper = Upper + 1;
6703         assert(Upper != Lower && "Upper part of range has wrapped!");
6704       }
6705     } else if (match(BO.getOperand(0), m_APInt(C))) {
6706       if (C->isMinSignedValue()) {
6707         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6708         Lower = *C;
6709         Upper = Lower.lshr(1) + 1;
6710       } else {
6711         // 'sdiv C, x' produces [-|C|, |C|].
6712         Upper = C->abs() + 1;
6713         Lower = (-Upper) + 1;
6714       }
6715     }
6716     break;
6717 
6718   case Instruction::UDiv:
6719     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6720       // 'udiv x, C' produces [0, UINT_MAX / C].
6721       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6722     } else if (match(BO.getOperand(0), m_APInt(C))) {
6723       // 'udiv C, x' produces [0, C].
6724       Upper = *C + 1;
6725     }
6726     break;
6727 
6728   case Instruction::SRem:
6729     if (match(BO.getOperand(1), m_APInt(C))) {
6730       // 'srem x, C' produces (-|C|, |C|).
6731       Upper = C->abs();
6732       Lower = (-Upper) + 1;
6733     }
6734     break;
6735 
6736   case Instruction::URem:
6737     if (match(BO.getOperand(1), m_APInt(C)))
6738       // 'urem x, C' produces [0, C).
6739       Upper = *C;
6740     break;
6741 
6742   default:
6743     break;
6744   }
6745 }
6746 
6747 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6748                                   APInt &Upper) {
6749   unsigned Width = Lower.getBitWidth();
6750   const APInt *C;
6751   switch (II.getIntrinsicID()) {
6752   case Intrinsic::ctpop:
6753   case Intrinsic::ctlz:
6754   case Intrinsic::cttz:
6755     // Maximum of set/clear bits is the bit width.
6756     assert(Lower == 0 && "Expected lower bound to be zero");
6757     Upper = Width + 1;
6758     break;
6759   case Intrinsic::uadd_sat:
6760     // uadd.sat(x, C) produces [C, UINT_MAX].
6761     if (match(II.getOperand(0), m_APInt(C)) ||
6762         match(II.getOperand(1), m_APInt(C)))
6763       Lower = *C;
6764     break;
6765   case Intrinsic::sadd_sat:
6766     if (match(II.getOperand(0), m_APInt(C)) ||
6767         match(II.getOperand(1), m_APInt(C))) {
6768       if (C->isNegative()) {
6769         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6770         Lower = APInt::getSignedMinValue(Width);
6771         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6772       } else {
6773         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6774         Lower = APInt::getSignedMinValue(Width) + *C;
6775         Upper = APInt::getSignedMaxValue(Width) + 1;
6776       }
6777     }
6778     break;
6779   case Intrinsic::usub_sat:
6780     // usub.sat(C, x) produces [0, C].
6781     if (match(II.getOperand(0), m_APInt(C)))
6782       Upper = *C + 1;
6783     // usub.sat(x, C) produces [0, UINT_MAX - C].
6784     else if (match(II.getOperand(1), m_APInt(C)))
6785       Upper = APInt::getMaxValue(Width) - *C + 1;
6786     break;
6787   case Intrinsic::ssub_sat:
6788     if (match(II.getOperand(0), m_APInt(C))) {
6789       if (C->isNegative()) {
6790         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6791         Lower = APInt::getSignedMinValue(Width);
6792         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6793       } else {
6794         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6795         Lower = *C - APInt::getSignedMaxValue(Width);
6796         Upper = APInt::getSignedMaxValue(Width) + 1;
6797       }
6798     } else if (match(II.getOperand(1), m_APInt(C))) {
6799       if (C->isNegative()) {
6800         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6801         Lower = APInt::getSignedMinValue(Width) - *C;
6802         Upper = APInt::getSignedMaxValue(Width) + 1;
6803       } else {
6804         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6805         Lower = APInt::getSignedMinValue(Width);
6806         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6807       }
6808     }
6809     break;
6810   case Intrinsic::umin:
6811   case Intrinsic::umax:
6812   case Intrinsic::smin:
6813   case Intrinsic::smax:
6814     if (!match(II.getOperand(0), m_APInt(C)) &&
6815         !match(II.getOperand(1), m_APInt(C)))
6816       break;
6817 
6818     switch (II.getIntrinsicID()) {
6819     case Intrinsic::umin:
6820       Upper = *C + 1;
6821       break;
6822     case Intrinsic::umax:
6823       Lower = *C;
6824       break;
6825     case Intrinsic::smin:
6826       Lower = APInt::getSignedMinValue(Width);
6827       Upper = *C + 1;
6828       break;
6829     case Intrinsic::smax:
6830       Lower = *C;
6831       Upper = APInt::getSignedMaxValue(Width) + 1;
6832       break;
6833     default:
6834       llvm_unreachable("Must be min/max intrinsic");
6835     }
6836     break;
6837   case Intrinsic::abs:
6838     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6839     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6840     if (match(II.getOperand(1), m_One()))
6841       Upper = APInt::getSignedMaxValue(Width) + 1;
6842     else
6843       Upper = APInt::getSignedMinValue(Width) + 1;
6844     break;
6845   default:
6846     break;
6847   }
6848 }
6849 
6850 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6851                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6852   const Value *LHS = nullptr, *RHS = nullptr;
6853   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6854   if (R.Flavor == SPF_UNKNOWN)
6855     return;
6856 
6857   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6858 
6859   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6860     // If the negation part of the abs (in RHS) has the NSW flag,
6861     // then the result of abs(X) is [0..SIGNED_MAX],
6862     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6863     Lower = APInt::getNullValue(BitWidth);
6864     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6865         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6866       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6867     else
6868       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6869     return;
6870   }
6871 
6872   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6873     // The result of -abs(X) is <= 0.
6874     Lower = APInt::getSignedMinValue(BitWidth);
6875     Upper = APInt(BitWidth, 1);
6876     return;
6877   }
6878 
6879   const APInt *C;
6880   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6881     return;
6882 
6883   switch (R.Flavor) {
6884     case SPF_UMIN:
6885       Upper = *C + 1;
6886       break;
6887     case SPF_UMAX:
6888       Lower = *C;
6889       break;
6890     case SPF_SMIN:
6891       Lower = APInt::getSignedMinValue(BitWidth);
6892       Upper = *C + 1;
6893       break;
6894     case SPF_SMAX:
6895       Lower = *C;
6896       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6897       break;
6898     default:
6899       break;
6900   }
6901 }
6902 
6903 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6904                                          AssumptionCache *AC,
6905                                          const Instruction *CtxI,
6906                                          unsigned Depth) {
6907   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6908 
6909   if (Depth == MaxAnalysisRecursionDepth)
6910     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6911 
6912   const APInt *C;
6913   if (match(V, m_APInt(C)))
6914     return ConstantRange(*C);
6915 
6916   InstrInfoQuery IIQ(UseInstrInfo);
6917   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6918   APInt Lower = APInt(BitWidth, 0);
6919   APInt Upper = APInt(BitWidth, 0);
6920   if (auto *BO = dyn_cast<BinaryOperator>(V))
6921     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6922   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6923     setLimitsForIntrinsic(*II, Lower, Upper);
6924   else if (auto *SI = dyn_cast<SelectInst>(V))
6925     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6926 
6927   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6928 
6929   if (auto *I = dyn_cast<Instruction>(V))
6930     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6931       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6932 
6933   if (CtxI && AC) {
6934     // Try to restrict the range based on information from assumptions.
6935     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6936       if (!AssumeVH)
6937         continue;
6938       CallInst *I = cast<CallInst>(AssumeVH);
6939       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6940              "Got assumption for the wrong function!");
6941       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6942              "must be an assume intrinsic");
6943 
6944       if (!isValidAssumeForContext(I, CtxI, nullptr))
6945         continue;
6946       Value *Arg = I->getArgOperand(0);
6947       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6948       // Currently we just use information from comparisons.
6949       if (!Cmp || Cmp->getOperand(0) != V)
6950         continue;
6951       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6952                                                AC, I, Depth + 1);
6953       CR = CR.intersectWith(
6954           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6955     }
6956   }
6957 
6958   return CR;
6959 }
6960 
6961 static Optional<int64_t>
6962 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6963   // Skip over the first indices.
6964   gep_type_iterator GTI = gep_type_begin(GEP);
6965   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6966     /*skip along*/;
6967 
6968   // Compute the offset implied by the rest of the indices.
6969   int64_t Offset = 0;
6970   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6971     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6972     if (!OpC)
6973       return None;
6974     if (OpC->isZero())
6975       continue; // No offset.
6976 
6977     // Handle struct indices, which add their field offset to the pointer.
6978     if (StructType *STy = GTI.getStructTypeOrNull()) {
6979       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6980       continue;
6981     }
6982 
6983     // Otherwise, we have a sequential type like an array or fixed-length
6984     // vector. Multiply the index by the ElementSize.
6985     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6986     if (Size.isScalable())
6987       return None;
6988     Offset += Size.getFixedSize() * OpC->getSExtValue();
6989   }
6990 
6991   return Offset;
6992 }
6993 
6994 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6995                                         const DataLayout &DL) {
6996   Ptr1 = Ptr1->stripPointerCasts();
6997   Ptr2 = Ptr2->stripPointerCasts();
6998 
6999   // Handle the trivial case first.
7000   if (Ptr1 == Ptr2) {
7001     return 0;
7002   }
7003 
7004   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7005   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7006 
7007   // If one pointer is a GEP see if the GEP is a constant offset from the base,
7008   // as in "P" and "gep P, 1".
7009   // Also do this iteratively to handle the the following case:
7010   //   Ptr_t1 = GEP Ptr1, c1
7011   //   Ptr_t2 = GEP Ptr_t1, c2
7012   //   Ptr2 = GEP Ptr_t2, c3
7013   // where we will return c1+c2+c3.
7014   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
7015   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
7016   // are the same, and return the difference between offsets.
7017   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
7018                                  const Value *Ptr) -> Optional<int64_t> {
7019     const GEPOperator *GEP_T = GEP;
7020     int64_t OffsetVal = 0;
7021     bool HasSameBase = false;
7022     while (GEP_T) {
7023       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
7024       if (!Offset)
7025         return None;
7026       OffsetVal += *Offset;
7027       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
7028       if (Op0 == Ptr) {
7029         HasSameBase = true;
7030         break;
7031       }
7032       GEP_T = dyn_cast<GEPOperator>(Op0);
7033     }
7034     if (!HasSameBase)
7035       return None;
7036     return OffsetVal;
7037   };
7038 
7039   if (GEP1) {
7040     auto Offset = getOffsetFromBase(GEP1, Ptr2);
7041     if (Offset)
7042       return -*Offset;
7043   }
7044   if (GEP2) {
7045     auto Offset = getOffsetFromBase(GEP2, Ptr1);
7046     if (Offset)
7047       return Offset;
7048   }
7049 
7050   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7051   // base.  After that base, they may have some number of common (and
7052   // potentially variable) indices.  After that they handle some constant
7053   // offset, which determines their offset from each other.  At this point, we
7054   // handle no other case.
7055   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
7056     return None;
7057 
7058   // Skip any common indices and track the GEP types.
7059   unsigned Idx = 1;
7060   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7061     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7062       break;
7063 
7064   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
7065   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
7066   if (!Offset1 || !Offset2)
7067     return None;
7068   return *Offset2 - *Offset1;
7069 }
7070