1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 165 // If we've been provided with a context instruction, then use that (provided 166 // it has been inserted). 167 if (CxtI && CxtI->getParent()) 168 return CxtI; 169 170 // If the value is really an already-inserted instruction, then use that. 171 CxtI = dyn_cast<Instruction>(V1); 172 if (CxtI && CxtI->getParent()) 173 return CxtI; 174 175 CxtI = dyn_cast<Instruction>(V2); 176 if (CxtI && CxtI->getParent()) 177 return CxtI; 178 179 return nullptr; 180 } 181 182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 183 const APInt &DemandedElts, 184 APInt &DemandedLHS, APInt &DemandedRHS) { 185 // The length of scalable vectors is unknown at compile time, thus we 186 // cannot check their values 187 if (isa<ScalableVectorType>(Shuf->getType())) 188 return false; 189 190 int NumElts = 191 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 192 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 193 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 194 if (DemandedElts.isNullValue()) 195 return true; 196 // Simple case of a shuffle with zeroinitializer. 197 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 198 DemandedLHS.setBit(0); 199 return true; 200 } 201 for (int i = 0; i != NumMaskElts; ++i) { 202 if (!DemandedElts[i]) 203 continue; 204 int M = Shuf->getMaskValue(i); 205 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 206 207 // For undef elements, we don't know anything about the common state of 208 // the shuffle result. 209 if (M == -1) 210 return false; 211 if (M < NumElts) 212 DemandedLHS.setBit(M % NumElts); 213 else 214 DemandedRHS.setBit(M % NumElts); 215 } 216 217 return true; 218 } 219 220 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 221 KnownBits &Known, unsigned Depth, const Query &Q); 222 223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 224 const Query &Q) { 225 // FIXME: We currently have no way to represent the DemandedElts of a scalable 226 // vector 227 if (isa<ScalableVectorType>(V->getType())) { 228 Known.resetAll(); 229 return; 230 } 231 232 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 233 APInt DemandedElts = 234 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 235 computeKnownBits(V, DemandedElts, Known, Depth, Q); 236 } 237 238 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 239 const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, 242 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 243 ::computeKnownBits(V, Known, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 245 } 246 247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 248 KnownBits &Known, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, const DominatorTree *DT, 251 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 252 ::computeKnownBits(V, DemandedElts, Known, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 257 unsigned Depth, const Query &Q); 258 259 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 260 const Query &Q); 261 262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 263 unsigned Depth, AssumptionCache *AC, 264 const Instruction *CxtI, 265 const DominatorTree *DT, 266 OptimizationRemarkEmitter *ORE, 267 bool UseInstrInfo) { 268 return ::computeKnownBits( 269 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 270 } 271 272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 273 const DataLayout &DL, unsigned Depth, 274 AssumptionCache *AC, const Instruction *CxtI, 275 const DominatorTree *DT, 276 OptimizationRemarkEmitter *ORE, 277 bool UseInstrInfo) { 278 return ::computeKnownBits( 279 V, DemandedElts, Depth, 280 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 281 } 282 283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 284 const DataLayout &DL, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT, 286 bool UseInstrInfo) { 287 assert(LHS->getType() == RHS->getType() && 288 "LHS and RHS should have the same type"); 289 assert(LHS->getType()->isIntOrIntVectorTy() && 290 "LHS and RHS should be integers"); 291 // Look for an inverted mask: (X & ~M) op (Y & M). 292 Value *M; 293 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 294 match(RHS, m_c_And(m_Specific(M), m_Value()))) 295 return true; 296 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 297 match(LHS, m_c_And(m_Specific(M), m_Value()))) 298 return true; 299 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 300 KnownBits LHSKnown(IT->getBitWidth()); 301 KnownBits RHSKnown(IT->getBitWidth()); 302 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 303 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 304 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 305 } 306 307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 308 for (const User *U : CxtI->users()) { 309 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 310 if (IC->isEquality()) 311 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 312 if (C->isNullValue()) 313 continue; 314 return false; 315 } 316 return true; 317 } 318 319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 320 const Query &Q); 321 322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 323 bool OrZero, unsigned Depth, 324 AssumptionCache *AC, const Instruction *CxtI, 325 const DominatorTree *DT, bool UseInstrInfo) { 326 return ::isKnownToBeAPowerOfTwo( 327 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 328 } 329 330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 331 unsigned Depth, const Query &Q); 332 333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 334 335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 return ::isKnownNonZero(V, Depth, 339 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 340 } 341 342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 343 unsigned Depth, AssumptionCache *AC, 344 const Instruction *CxtI, const DominatorTree *DT, 345 bool UseInstrInfo) { 346 KnownBits Known = 347 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 348 return Known.isNonNegative(); 349 } 350 351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 352 AssumptionCache *AC, const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 if (auto *CI = dyn_cast<ConstantInt>(V)) 355 return CI->getValue().isStrictlyPositive(); 356 357 // TODO: We'd doing two recursive queries here. We should factor this such 358 // that only a single query is needed. 359 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 360 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 361 } 362 363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 364 AssumptionCache *AC, const Instruction *CxtI, 365 const DominatorTree *DT, bool UseInstrInfo) { 366 KnownBits Known = 367 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 368 return Known.isNegative(); 369 } 370 371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 372 const Query &Q); 373 374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 375 const DataLayout &DL, AssumptionCache *AC, 376 const Instruction *CxtI, const DominatorTree *DT, 377 bool UseInstrInfo) { 378 return ::isKnownNonEqual(V1, V2, 0, 379 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 380 UseInstrInfo, /*ORE=*/nullptr)); 381 } 382 383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 384 const Query &Q); 385 386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 387 const DataLayout &DL, unsigned Depth, 388 AssumptionCache *AC, const Instruction *CxtI, 389 const DominatorTree *DT, bool UseInstrInfo) { 390 return ::MaskedValueIsZero( 391 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 392 } 393 394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 395 unsigned Depth, const Query &Q); 396 397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 398 const Query &Q) { 399 // FIXME: We currently have no way to represent the DemandedElts of a scalable 400 // vector 401 if (isa<ScalableVectorType>(V->getType())) 402 return 1; 403 404 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 405 APInt DemandedElts = 406 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 407 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 408 } 409 410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 411 unsigned Depth, AssumptionCache *AC, 412 const Instruction *CxtI, 413 const DominatorTree *DT, bool UseInstrInfo) { 414 return ::ComputeNumSignBits( 415 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 416 } 417 418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 419 bool NSW, const APInt &DemandedElts, 420 KnownBits &KnownOut, KnownBits &Known2, 421 unsigned Depth, const Query &Q) { 422 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 423 424 // If one operand is unknown and we have no nowrap information, 425 // the result will be unknown independently of the second operand. 426 if (KnownOut.isUnknown() && !NSW) 427 return; 428 429 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 430 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 431 } 432 433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 434 const APInt &DemandedElts, KnownBits &Known, 435 KnownBits &Known2, unsigned Depth, 436 const Query &Q) { 437 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 438 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 439 440 bool isKnownNegative = false; 441 bool isKnownNonNegative = false; 442 // If the multiplication is known not to overflow, compute the sign bit. 443 if (NSW) { 444 if (Op0 == Op1) { 445 // The product of a number with itself is non-negative. 446 isKnownNonNegative = true; 447 } else { 448 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 449 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 450 bool isKnownNegativeOp1 = Known.isNegative(); 451 bool isKnownNegativeOp0 = Known2.isNegative(); 452 // The product of two numbers with the same sign is non-negative. 453 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 454 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 455 // The product of a negative number and a non-negative number is either 456 // negative or zero. 457 if (!isKnownNonNegative) 458 isKnownNegative = 459 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 460 Known2.isNonZero()) || 461 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 462 } 463 } 464 465 Known = KnownBits::mul(Known, Known2); 466 467 // Only make use of no-wrap flags if we failed to compute the sign bit 468 // directly. This matters if the multiplication always overflows, in 469 // which case we prefer to follow the result of the direct computation, 470 // though as the program is invoking undefined behaviour we can choose 471 // whatever we like here. 472 if (isKnownNonNegative && !Known.isNegative()) 473 Known.makeNonNegative(); 474 else if (isKnownNegative && !Known.isNonNegative()) 475 Known.makeNegative(); 476 } 477 478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 479 KnownBits &Known) { 480 unsigned BitWidth = Known.getBitWidth(); 481 unsigned NumRanges = Ranges.getNumOperands() / 2; 482 assert(NumRanges >= 1); 483 484 Known.Zero.setAllBits(); 485 Known.One.setAllBits(); 486 487 for (unsigned i = 0; i < NumRanges; ++i) { 488 ConstantInt *Lower = 489 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 490 ConstantInt *Upper = 491 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 492 ConstantRange Range(Lower->getValue(), Upper->getValue()); 493 494 // The first CommonPrefixBits of all values in Range are equal. 495 unsigned CommonPrefixBits = 496 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 497 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 498 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 499 Known.One &= UnsignedMax & Mask; 500 Known.Zero &= ~UnsignedMax & Mask; 501 } 502 } 503 504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 505 SmallVector<const Value *, 16> WorkSet(1, I); 506 SmallPtrSet<const Value *, 32> Visited; 507 SmallPtrSet<const Value *, 16> EphValues; 508 509 // The instruction defining an assumption's condition itself is always 510 // considered ephemeral to that assumption (even if it has other 511 // non-ephemeral users). See r246696's test case for an example. 512 if (is_contained(I->operands(), E)) 513 return true; 514 515 while (!WorkSet.empty()) { 516 const Value *V = WorkSet.pop_back_val(); 517 if (!Visited.insert(V).second) 518 continue; 519 520 // If all uses of this value are ephemeral, then so is this value. 521 if (llvm::all_of(V->users(), [&](const User *U) { 522 return EphValues.count(U); 523 })) { 524 if (V == E) 525 return true; 526 527 if (V == I || isSafeToSpeculativelyExecute(V)) { 528 EphValues.insert(V); 529 if (const User *U = dyn_cast<User>(V)) 530 append_range(WorkSet, U->operands()); 531 } 532 } 533 } 534 535 return false; 536 } 537 538 // Is this an intrinsic that cannot be speculated but also cannot trap? 539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 540 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 541 return CI->isAssumeLikeIntrinsic(); 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 // We limit the scan distance between the assume and its context instruction 573 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 574 // it can be adjusted if needed (could be turned into a cl::opt). 575 unsigned ScanLimit = 15; 576 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 577 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 578 return false; 579 580 return !isEphemeralValueOf(Inv, CxtI); 581 } 582 583 // Inv and CxtI are in different blocks. 584 if (DT) { 585 if (DT->dominates(Inv, CxtI)) 586 return true; 587 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 588 // We don't have a DT, but this trivially dominates. 589 return true; 590 } 591 592 return false; 593 } 594 595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 596 // v u> y implies v != 0. 597 if (Pred == ICmpInst::ICMP_UGT) 598 return true; 599 600 // Special-case v != 0 to also handle v != null. 601 if (Pred == ICmpInst::ICMP_NE) 602 return match(RHS, m_Zero()); 603 604 // All other predicates - rely on generic ConstantRange handling. 605 const APInt *C; 606 if (!match(RHS, m_APInt(C))) 607 return false; 608 609 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 610 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 611 } 612 613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 614 // Use of assumptions is context-sensitive. If we don't have a context, we 615 // cannot use them! 616 if (!Q.AC || !Q.CxtI) 617 return false; 618 619 if (Q.CxtI && V->getType()->isPointerTy()) { 620 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 621 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 622 V->getType()->getPointerAddressSpace())) 623 AttrKinds.push_back(Attribute::Dereferenceable); 624 625 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 626 return true; 627 } 628 629 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 630 if (!AssumeVH) 631 continue; 632 CallInst *I = cast<CallInst>(AssumeVH); 633 assert(I->getFunction() == Q.CxtI->getFunction() && 634 "Got assumption for the wrong function!"); 635 if (Q.isExcluded(I)) 636 continue; 637 638 // Warning: This loop can end up being somewhat performance sensitive. 639 // We're running this loop for once for each value queried resulting in a 640 // runtime of ~O(#assumes * #values). 641 642 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 643 "must be an assume intrinsic"); 644 645 Value *RHS; 646 CmpInst::Predicate Pred; 647 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 648 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 649 return false; 650 651 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 652 return true; 653 } 654 655 return false; 656 } 657 658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 659 unsigned Depth, const Query &Q) { 660 // Use of assumptions is context-sensitive. If we don't have a context, we 661 // cannot use them! 662 if (!Q.AC || !Q.CxtI) 663 return; 664 665 unsigned BitWidth = Known.getBitWidth(); 666 667 // Refine Known set if the pointer alignment is set by assume bundles. 668 if (V->getType()->isPointerTy()) { 669 if (RetainedKnowledge RK = getKnowledgeValidInContext( 670 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 671 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 672 } 673 } 674 675 // Note that the patterns below need to be kept in sync with the code 676 // in AssumptionCache::updateAffectedValues. 677 678 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 679 if (!AssumeVH) 680 continue; 681 CallInst *I = cast<CallInst>(AssumeVH); 682 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 683 "Got assumption for the wrong function!"); 684 if (Q.isExcluded(I)) 685 continue; 686 687 // Warning: This loop can end up being somewhat performance sensitive. 688 // We're running this loop for once for each value queried resulting in a 689 // runtime of ~O(#assumes * #values). 690 691 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 692 "must be an assume intrinsic"); 693 694 Value *Arg = I->getArgOperand(0); 695 696 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 assert(BitWidth == 1 && "assume operand is not i1?"); 698 Known.setAllOnes(); 699 return; 700 } 701 if (match(Arg, m_Not(m_Specific(V))) && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllZero(); 705 return; 706 } 707 708 // The remaining tests are all recursive, so bail out if we hit the limit. 709 if (Depth == MaxAnalysisRecursionDepth) 710 continue; 711 712 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 713 if (!Cmp) 714 continue; 715 716 // Note that ptrtoint may change the bitwidth. 717 Value *A, *B; 718 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 719 720 CmpInst::Predicate Pred; 721 uint64_t C; 722 switch (Cmp->getPredicate()) { 723 default: 724 break; 725 case ICmpInst::ICMP_EQ: 726 // assume(v = a) 727 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 731 Known.Zero |= RHSKnown.Zero; 732 Known.One |= RHSKnown.One; 733 // assume(v & b = a) 734 } else if (match(Cmp, 735 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // known bits from the RHS to V. 744 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 745 Known.One |= RHSKnown.One & MaskKnown.One; 746 // assume(~(v & b) = a) 747 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 748 m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 KnownBits MaskKnown = 753 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 754 755 // For those bits in the mask that are known to be one, we can propagate 756 // inverted known bits from the RHS to V. 757 Known.Zero |= RHSKnown.One & MaskKnown.One; 758 Known.One |= RHSKnown.Zero & MaskKnown.One; 759 // assume(v | b = a) 760 } else if (match(Cmp, 761 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate known 769 // bits from the RHS to V. 770 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 771 Known.One |= RHSKnown.One & BKnown.Zero; 772 // assume(~(v | b) = a) 773 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 774 m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate 782 // inverted known bits from the RHS to V. 783 Known.Zero |= RHSKnown.One & BKnown.Zero; 784 Known.One |= RHSKnown.Zero & BKnown.Zero; 785 // assume(v ^ b = a) 786 } else if (match(Cmp, 787 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 789 KnownBits RHSKnown = 790 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 KnownBits BKnown = 792 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 793 794 // For those bits in B that are known to be zero, we can propagate known 795 // bits from the RHS to V. For those bits in B that are known to be one, 796 // we can propagate inverted known bits from the RHS to V. 797 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 798 Known.One |= RHSKnown.One & BKnown.Zero; 799 Known.Zero |= RHSKnown.One & BKnown.One; 800 Known.One |= RHSKnown.Zero & BKnown.One; 801 // assume(~(v ^ b) = a) 802 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 803 m_Value(A))) && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown = 806 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 KnownBits BKnown = 808 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 810 // For those bits in B that are known to be zero, we can propagate 811 // inverted known bits from the RHS to V. For those bits in B that are 812 // known to be one, we can propagate known bits from the RHS to V. 813 Known.Zero |= RHSKnown.One & BKnown.Zero; 814 Known.One |= RHSKnown.Zero & BKnown.Zero; 815 Known.Zero |= RHSKnown.Zero & BKnown.One; 816 Known.One |= RHSKnown.One & BKnown.One; 817 // assume(v << c = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 823 824 // For those bits in RHS that are known, we can propagate them to known 825 // bits in V shifted to the right by C. 826 RHSKnown.Zero.lshrInPlace(C); 827 Known.Zero |= RHSKnown.Zero; 828 RHSKnown.One.lshrInPlace(C); 829 Known.One |= RHSKnown.One; 830 // assume(~(v << c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 RHSKnown.One.lshrInPlace(C); 839 Known.Zero |= RHSKnown.One; 840 RHSKnown.Zero.lshrInPlace(C); 841 Known.One |= RHSKnown.Zero; 842 // assume(v >> c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 Known.Zero |= RHSKnown.Zero << C; 851 Known.One |= RHSKnown.One << C; 852 // assume(~(v >> c) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 856 KnownBits RHSKnown = 857 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 858 // For those bits in RHS that are known, we can propagate them inverted 859 // to known bits in V shifted to the right by C. 860 Known.Zero |= RHSKnown.One << C; 861 Known.One |= RHSKnown.Zero << C; 862 } 863 break; 864 case ICmpInst::ICMP_SGE: 865 // assume(v >=_s c) where c is non-negative 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SGT: 878 // assume(v >_s c) where c is at least -1. 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 885 // We know that the sign bit is zero. 886 Known.makeNonNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLE: 891 // assume(v <=_s c) where c is negative 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_SLT: 904 // assume(v <_s c) where c is non-positive 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 909 910 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 911 // We know that the sign bit is one. 912 Known.makeNegative(); 913 } 914 } 915 break; 916 case ICmpInst::ICMP_ULE: 917 // assume(v <=_u c) 918 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 919 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 920 KnownBits RHSKnown = 921 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 922 923 // Whatever high bits in c are zero are known to be zero. 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 925 } 926 break; 927 case ICmpInst::ICMP_ULT: 928 // assume(v <_u c) 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 933 934 // If the RHS is known zero, then this assumption must be wrong (nothing 935 // is unsigned less than zero). Signal a conflict and get out of here. 936 if (RHSKnown.isZero()) { 937 Known.Zero.setAllBits(); 938 Known.One.setAllBits(); 939 break; 940 } 941 942 // Whatever high bits in c are zero are known to be zero (if c is a power 943 // of 2, then one more). 944 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 946 else 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 } 951 } 952 953 // If assumptions conflict with each other or previous known bits, then we 954 // have a logical fallacy. It's possible that the assumption is not reachable, 955 // so this isn't a real bug. On the other hand, the program may have undefined 956 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 957 // clear out the known bits, try to warn the user, and hope for the best. 958 if (Known.Zero.intersects(Known.One)) { 959 Known.resetAll(); 960 961 if (Q.ORE) 962 Q.ORE->emit([&]() { 963 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 964 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 965 CxtI) 966 << "Detected conflicting code assumptions. Program may " 967 "have undefined behavior, or compiler may have " 968 "internal error."; 969 }); 970 } 971 } 972 973 /// Compute known bits from a shift operator, including those with a 974 /// non-constant shift amount. Known is the output of this function. Known2 is a 975 /// pre-allocated temporary with the same bit width as Known and on return 976 /// contains the known bit of the shift value source. KF is an 977 /// operator-specific function that, given the known-bits and a shift amount, 978 /// compute the implied known-bits of the shift operator's result respectively 979 /// for that shift amount. The results from calling KF are conservatively 980 /// combined for all permitted shift amounts. 981 static void computeKnownBitsFromShiftOperator( 982 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 983 KnownBits &Known2, unsigned Depth, const Query &Q, 984 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 985 unsigned BitWidth = Known.getBitWidth(); 986 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 988 989 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 990 // BitWidth > 64 and any upper bits are known, we'll end up returning the 991 // limit value (which implies all bits are known). 992 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 993 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 994 bool ShiftAmtIsConstant = Known.isConstant(); 995 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 996 997 if (ShiftAmtIsConstant) { 998 Known = KF(Known2, Known); 999 1000 // If the known bits conflict, this must be an overflowing left shift, so 1001 // the shift result is poison. We can return anything we want. Choose 0 for 1002 // the best folding opportunity. 1003 if (Known.hasConflict()) 1004 Known.setAllZero(); 1005 1006 return; 1007 } 1008 1009 // If the shift amount could be greater than or equal to the bit-width of the 1010 // LHS, the value could be poison, but bail out because the check below is 1011 // expensive. 1012 // TODO: Should we just carry on? 1013 if (MaxShiftAmtIsOutOfRange) { 1014 Known.resetAll(); 1015 return; 1016 } 1017 1018 // It would be more-clearly correct to use the two temporaries for this 1019 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1020 Known.resetAll(); 1021 1022 // If we know the shifter operand is nonzero, we can sometimes infer more 1023 // known bits. However this is expensive to compute, so be lazy about it and 1024 // only compute it when absolutely necessary. 1025 Optional<bool> ShifterOperandIsNonZero; 1026 1027 // Early exit if we can't constrain any well-defined shift amount. 1028 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1029 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1032 if (!*ShifterOperandIsNonZero) 1033 return; 1034 } 1035 1036 Known.Zero.setAllBits(); 1037 Known.One.setAllBits(); 1038 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1039 // Combine the shifted known input bits only for those shift amounts 1040 // compatible with its known constraints. 1041 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1042 continue; 1043 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1044 continue; 1045 // If we know the shifter is nonzero, we may be able to infer more known 1046 // bits. This check is sunk down as far as possible to avoid the expensive 1047 // call to isKnownNonZero if the cheaper checks above fail. 1048 if (ShiftAmt == 0) { 1049 if (!ShifterOperandIsNonZero.hasValue()) 1050 ShifterOperandIsNonZero = 1051 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1052 if (*ShifterOperandIsNonZero) 1053 continue; 1054 } 1055 1056 Known = KnownBits::commonBits( 1057 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1058 } 1059 1060 // If the known bits conflict, the result is poison. Return a 0 and hope the 1061 // caller can further optimize that. 1062 if (Known.hasConflict()) 1063 Known.setAllZero(); 1064 } 1065 1066 static void computeKnownBitsFromOperator(const Operator *I, 1067 const APInt &DemandedElts, 1068 KnownBits &Known, unsigned Depth, 1069 const Query &Q) { 1070 unsigned BitWidth = Known.getBitWidth(); 1071 1072 KnownBits Known2(BitWidth); 1073 switch (I->getOpcode()) { 1074 default: break; 1075 case Instruction::Load: 1076 if (MDNode *MD = 1077 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1078 computeKnownBitsFromRangeMetadata(*MD, Known); 1079 break; 1080 case Instruction::And: { 1081 // If either the LHS or the RHS are Zero, the result is zero. 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known &= Known2; 1086 1087 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1088 // here we handle the more general case of adding any odd number by 1089 // matching the form add(x, add(x, y)) where y is odd. 1090 // TODO: This could be generalized to clearing any bit set in y where the 1091 // following bit is known to be unset in y. 1092 Value *X = nullptr, *Y = nullptr; 1093 if (!Known.Zero[0] && !Known.One[0] && 1094 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1095 Known2.resetAll(); 1096 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1097 if (Known2.countMinTrailingOnes() > 0) 1098 Known.Zero.setBit(0); 1099 } 1100 break; 1101 } 1102 case Instruction::Or: 1103 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1104 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1105 1106 Known |= Known2; 1107 break; 1108 case Instruction::Xor: 1109 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1111 1112 Known ^= Known2; 1113 break; 1114 case Instruction::Mul: { 1115 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1116 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1117 Known, Known2, Depth, Q); 1118 break; 1119 } 1120 case Instruction::UDiv: { 1121 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1123 Known = KnownBits::udiv(Known, Known2); 1124 break; 1125 } 1126 case Instruction::Select: { 1127 const Value *LHS = nullptr, *RHS = nullptr; 1128 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1129 if (SelectPatternResult::isMinOrMax(SPF)) { 1130 computeKnownBits(RHS, Known, Depth + 1, Q); 1131 computeKnownBits(LHS, Known2, Depth + 1, Q); 1132 switch (SPF) { 1133 default: 1134 llvm_unreachable("Unhandled select pattern flavor!"); 1135 case SPF_SMAX: 1136 Known = KnownBits::smax(Known, Known2); 1137 break; 1138 case SPF_SMIN: 1139 Known = KnownBits::smin(Known, Known2); 1140 break; 1141 case SPF_UMAX: 1142 Known = KnownBits::umax(Known, Known2); 1143 break; 1144 case SPF_UMIN: 1145 Known = KnownBits::umin(Known, Known2); 1146 break; 1147 } 1148 break; 1149 } 1150 1151 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1152 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1153 1154 // Only known if known in both the LHS and RHS. 1155 Known = KnownBits::commonBits(Known, Known2); 1156 1157 if (SPF == SPF_ABS) { 1158 // RHS from matchSelectPattern returns the negation part of abs pattern. 1159 // If the negate has an NSW flag we can assume the sign bit of the result 1160 // will be 0 because that makes abs(INT_MIN) undefined. 1161 if (match(RHS, m_Neg(m_Specific(LHS))) && 1162 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1163 Known.Zero.setSignBit(); 1164 } 1165 1166 break; 1167 } 1168 case Instruction::FPTrunc: 1169 case Instruction::FPExt: 1170 case Instruction::FPToUI: 1171 case Instruction::FPToSI: 1172 case Instruction::SIToFP: 1173 case Instruction::UIToFP: 1174 break; // Can't work with floating point. 1175 case Instruction::PtrToInt: 1176 case Instruction::IntToPtr: 1177 // Fall through and handle them the same as zext/trunc. 1178 LLVM_FALLTHROUGH; 1179 case Instruction::ZExt: 1180 case Instruction::Trunc: { 1181 Type *SrcTy = I->getOperand(0)->getType(); 1182 1183 unsigned SrcBitWidth; 1184 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1185 // which fall through here. 1186 Type *ScalarTy = SrcTy->getScalarType(); 1187 SrcBitWidth = ScalarTy->isPointerTy() ? 1188 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1189 Q.DL.getTypeSizeInBits(ScalarTy); 1190 1191 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1192 Known = Known.anyextOrTrunc(SrcBitWidth); 1193 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1194 Known = Known.zextOrTrunc(BitWidth); 1195 break; 1196 } 1197 case Instruction::BitCast: { 1198 Type *SrcTy = I->getOperand(0)->getType(); 1199 if (SrcTy->isIntOrPtrTy() && 1200 // TODO: For now, not handling conversions like: 1201 // (bitcast i64 %x to <2 x i32>) 1202 !I->getType()->isVectorTy()) { 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 break; 1205 } 1206 break; 1207 } 1208 case Instruction::SExt: { 1209 // Compute the bits in the result that are not present in the input. 1210 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1211 1212 Known = Known.trunc(SrcBitWidth); 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 // If the sign bit of the input is known set or clear, then we know the 1215 // top bits of the result. 1216 Known = Known.sext(BitWidth); 1217 break; 1218 } 1219 case Instruction::Shl: { 1220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1221 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1222 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1223 // If this shift has "nsw" keyword, then the result is either a poison 1224 // value or has the same sign bit as the first operand. 1225 if (NSW) { 1226 if (KnownVal.Zero.isSignBitSet()) 1227 Result.Zero.setSignBit(); 1228 if (KnownVal.One.isSignBitSet()) 1229 Result.One.setSignBit(); 1230 } 1231 return Result; 1232 }; 1233 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1234 KF); 1235 // Trailing zeros of a right-shifted constant never decrease. 1236 const APInt *C; 1237 if (match(I->getOperand(0), m_APInt(C))) 1238 Known.Zero.setLowBits(C->countTrailingZeros()); 1239 break; 1240 } 1241 case Instruction::LShr: { 1242 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1243 return KnownBits::lshr(KnownVal, KnownAmt); 1244 }; 1245 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1246 KF); 1247 // Leading zeros of a left-shifted constant never decrease. 1248 const APInt *C; 1249 if (match(I->getOperand(0), m_APInt(C))) 1250 Known.Zero.setHighBits(C->countLeadingZeros()); 1251 break; 1252 } 1253 case Instruction::AShr: { 1254 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1255 return KnownBits::ashr(KnownVal, KnownAmt); 1256 }; 1257 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1258 KF); 1259 break; 1260 } 1261 case Instruction::Sub: { 1262 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1263 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1264 DemandedElts, Known, Known2, Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 DemandedElts, Known, Known2, Depth, Q); 1271 break; 1272 } 1273 case Instruction::SRem: 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 Known = KnownBits::srem(Known, Known2); 1277 break; 1278 1279 case Instruction::URem: 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1282 Known = KnownBits::urem(Known, Known2); 1283 break; 1284 case Instruction::Alloca: 1285 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1286 break; 1287 case Instruction::GetElementPtr: { 1288 // Analyze all of the subscripts of this getelementptr instruction 1289 // to determine if we can prove known low zero bits. 1290 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1291 // Accumulate the constant indices in a separate variable 1292 // to minimize the number of calls to computeForAddSub. 1293 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1294 1295 gep_type_iterator GTI = gep_type_begin(I); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor = 1351 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1352 } 1353 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 // Note that inbounds does *not* guarantee nsw for the addition, as only 1361 // the offset is signed, while the base address is unsigned. 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1364 } 1365 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1366 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1367 Known = KnownBits::computeForAddSub( 1368 /*Add=*/true, /*NSW=*/false, Known, Index); 1369 } 1370 break; 1371 } 1372 case Instruction::PHI: { 1373 const PHINode *P = cast<PHINode>(I); 1374 BinaryOperator *BO = nullptr; 1375 Value *R = nullptr, *L = nullptr; 1376 if (matchSimpleRecurrence(P, BO, R, L)) { 1377 // Handle the case of a simple two-predecessor recurrence PHI. 1378 // There's a lot more that could theoretically be done here, but 1379 // this is sufficient to catch some interesting cases. 1380 unsigned Opcode = BO->getOpcode(); 1381 1382 // If this is a shift recurrence, we know the bits being shifted in. 1383 // We can combine that with information about the start value of the 1384 // recurrence to conclude facts about the result. 1385 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1386 Opcode == Instruction::Shl) && 1387 BO->getOperand(0) == I) { 1388 1389 // We have matched a recurrence of the form: 1390 // %iv = [R, %entry], [%iv.next, %backedge] 1391 // %iv.next = shift_op %iv, L 1392 1393 // Recurse with the phi context to avoid concern about whether facts 1394 // inferred hold at original context instruction. TODO: It may be 1395 // correct to use the original context. IF warranted, explore and 1396 // add sufficient tests to cover. 1397 Query RecQ = Q; 1398 RecQ.CxtI = P; 1399 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1400 switch (Opcode) { 1401 case Instruction::Shl: 1402 // A shl recurrence will only increase the tailing zeros 1403 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1404 break; 1405 case Instruction::LShr: 1406 // A lshr recurrence will preserve the leading zeros of the 1407 // start value 1408 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1409 break; 1410 case Instruction::AShr: 1411 // An ashr recurrence will extend the initial sign bit 1412 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1413 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1414 break; 1415 }; 1416 } 1417 1418 // Check for operations that have the property that if 1419 // both their operands have low zero bits, the result 1420 // will have low zero bits. 1421 if (Opcode == Instruction::Add || 1422 Opcode == Instruction::Sub || 1423 Opcode == Instruction::And || 1424 Opcode == Instruction::Or || 1425 Opcode == Instruction::Mul) { 1426 // Change the context instruction to the "edge" that flows into the 1427 // phi. This is important because that is where the value is actually 1428 // "evaluated" even though it is used later somewhere else. (see also 1429 // D69571). 1430 Query RecQ = Q; 1431 1432 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1433 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1434 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1435 1436 // Ok, we have a PHI of the form L op= R. Check for low 1437 // zero bits. 1438 RecQ.CxtI = RInst; 1439 computeKnownBits(R, Known2, Depth + 1, RecQ); 1440 1441 // We need to take the minimum number of known bits 1442 KnownBits Known3(BitWidth); 1443 RecQ.CxtI = LInst; 1444 computeKnownBits(L, Known3, Depth + 1, RecQ); 1445 1446 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1447 Known3.countMinTrailingZeros())); 1448 1449 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1450 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1451 // If initial value of recurrence is nonnegative, and we are adding 1452 // a nonnegative number with nsw, the result can only be nonnegative 1453 // or poison value regardless of the number of times we execute the 1454 // add in phi recurrence. If initial value is negative and we are 1455 // adding a negative number with nsw, the result can only be 1456 // negative or poison value. Similar arguments apply to sub and mul. 1457 // 1458 // (add non-negative, non-negative) --> non-negative 1459 // (add negative, negative) --> negative 1460 if (Opcode == Instruction::Add) { 1461 if (Known2.isNonNegative() && Known3.isNonNegative()) 1462 Known.makeNonNegative(); 1463 else if (Known2.isNegative() && Known3.isNegative()) 1464 Known.makeNegative(); 1465 } 1466 1467 // (sub nsw non-negative, negative) --> non-negative 1468 // (sub nsw negative, non-negative) --> negative 1469 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1470 if (Known2.isNonNegative() && Known3.isNegative()) 1471 Known.makeNonNegative(); 1472 else if (Known2.isNegative() && Known3.isNonNegative()) 1473 Known.makeNegative(); 1474 } 1475 1476 // (mul nsw non-negative, non-negative) --> non-negative 1477 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1478 Known3.isNonNegative()) 1479 Known.makeNonNegative(); 1480 } 1481 1482 break; 1483 } 1484 } 1485 1486 // Unreachable blocks may have zero-operand PHI nodes. 1487 if (P->getNumIncomingValues() == 0) 1488 break; 1489 1490 // Otherwise take the unions of the known bit sets of the operands, 1491 // taking conservative care to avoid excessive recursion. 1492 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1493 // Skip if every incoming value references to ourself. 1494 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1495 break; 1496 1497 Known.Zero.setAllBits(); 1498 Known.One.setAllBits(); 1499 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1500 Value *IncValue = P->getIncomingValue(u); 1501 // Skip direct self references. 1502 if (IncValue == P) continue; 1503 1504 // Change the context instruction to the "edge" that flows into the 1505 // phi. This is important because that is where the value is actually 1506 // "evaluated" even though it is used later somewhere else. (see also 1507 // D69571). 1508 Query RecQ = Q; 1509 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1510 1511 Known2 = KnownBits(BitWidth); 1512 // Recurse, but cap the recursion to one level, because we don't 1513 // want to waste time spinning around in loops. 1514 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1515 Known = KnownBits::commonBits(Known, Known2); 1516 // If all bits have been ruled out, there's no need to check 1517 // more operands. 1518 if (Known.isUnknown()) 1519 break; 1520 } 1521 } 1522 break; 1523 } 1524 case Instruction::Call: 1525 case Instruction::Invoke: 1526 // If range metadata is attached to this call, set known bits from that, 1527 // and then intersect with known bits based on other properties of the 1528 // function. 1529 if (MDNode *MD = 1530 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1531 computeKnownBitsFromRangeMetadata(*MD, Known); 1532 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1533 computeKnownBits(RV, Known2, Depth + 1, Q); 1534 Known.Zero |= Known2.Zero; 1535 Known.One |= Known2.One; 1536 } 1537 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1538 switch (II->getIntrinsicID()) { 1539 default: break; 1540 case Intrinsic::abs: { 1541 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1542 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1543 Known = Known2.abs(IntMinIsPoison); 1544 break; 1545 } 1546 case Intrinsic::bitreverse: 1547 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1548 Known.Zero |= Known2.Zero.reverseBits(); 1549 Known.One |= Known2.One.reverseBits(); 1550 break; 1551 case Intrinsic::bswap: 1552 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1553 Known.Zero |= Known2.Zero.byteSwap(); 1554 Known.One |= Known2.One.byteSwap(); 1555 break; 1556 case Intrinsic::ctlz: { 1557 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1558 // If we have a known 1, its position is our upper bound. 1559 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1560 // If this call is undefined for 0, the result will be less than 2^n. 1561 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1562 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1563 unsigned LowBits = Log2_32(PossibleLZ)+1; 1564 Known.Zero.setBitsFrom(LowBits); 1565 break; 1566 } 1567 case Intrinsic::cttz: { 1568 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1569 // If we have a known 1, its position is our upper bound. 1570 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1571 // If this call is undefined for 0, the result will be less than 2^n. 1572 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1573 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1574 unsigned LowBits = Log2_32(PossibleTZ)+1; 1575 Known.Zero.setBitsFrom(LowBits); 1576 break; 1577 } 1578 case Intrinsic::ctpop: { 1579 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1580 // We can bound the space the count needs. Also, bits known to be zero 1581 // can't contribute to the population. 1582 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1583 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1584 Known.Zero.setBitsFrom(LowBits); 1585 // TODO: we could bound KnownOne using the lower bound on the number 1586 // of bits which might be set provided by popcnt KnownOne2. 1587 break; 1588 } 1589 case Intrinsic::fshr: 1590 case Intrinsic::fshl: { 1591 const APInt *SA; 1592 if (!match(I->getOperand(2), m_APInt(SA))) 1593 break; 1594 1595 // Normalize to funnel shift left. 1596 uint64_t ShiftAmt = SA->urem(BitWidth); 1597 if (II->getIntrinsicID() == Intrinsic::fshr) 1598 ShiftAmt = BitWidth - ShiftAmt; 1599 1600 KnownBits Known3(BitWidth); 1601 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1602 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1603 1604 Known.Zero = 1605 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1606 Known.One = 1607 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1608 break; 1609 } 1610 case Intrinsic::uadd_sat: 1611 case Intrinsic::usub_sat: { 1612 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1613 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1614 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1615 1616 // Add: Leading ones of either operand are preserved. 1617 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1618 // as leading zeros in the result. 1619 unsigned LeadingKnown; 1620 if (IsAdd) 1621 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1622 Known2.countMinLeadingOnes()); 1623 else 1624 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1625 Known2.countMinLeadingOnes()); 1626 1627 Known = KnownBits::computeForAddSub( 1628 IsAdd, /* NSW */ false, Known, Known2); 1629 1630 // We select between the operation result and all-ones/zero 1631 // respectively, so we can preserve known ones/zeros. 1632 if (IsAdd) { 1633 Known.One.setHighBits(LeadingKnown); 1634 Known.Zero.clearAllBits(); 1635 } else { 1636 Known.Zero.setHighBits(LeadingKnown); 1637 Known.One.clearAllBits(); 1638 } 1639 break; 1640 } 1641 case Intrinsic::umin: 1642 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1644 Known = KnownBits::umin(Known, Known2); 1645 break; 1646 case Intrinsic::umax: 1647 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1648 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1649 Known = KnownBits::umax(Known, Known2); 1650 break; 1651 case Intrinsic::smin: 1652 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1653 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1654 Known = KnownBits::smin(Known, Known2); 1655 break; 1656 case Intrinsic::smax: 1657 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1658 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1659 Known = KnownBits::smax(Known, Known2); 1660 break; 1661 case Intrinsic::x86_sse42_crc32_64_64: 1662 Known.Zero.setBitsFrom(32); 1663 break; 1664 } 1665 } 1666 break; 1667 case Instruction::ShuffleVector: { 1668 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1669 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1670 if (!Shuf) { 1671 Known.resetAll(); 1672 return; 1673 } 1674 // For undef elements, we don't know anything about the common state of 1675 // the shuffle result. 1676 APInt DemandedLHS, DemandedRHS; 1677 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1678 Known.resetAll(); 1679 return; 1680 } 1681 Known.One.setAllBits(); 1682 Known.Zero.setAllBits(); 1683 if (!!DemandedLHS) { 1684 const Value *LHS = Shuf->getOperand(0); 1685 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1686 // If we don't know any bits, early out. 1687 if (Known.isUnknown()) 1688 break; 1689 } 1690 if (!!DemandedRHS) { 1691 const Value *RHS = Shuf->getOperand(1); 1692 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1693 Known = KnownBits::commonBits(Known, Known2); 1694 } 1695 break; 1696 } 1697 case Instruction::InsertElement: { 1698 const Value *Vec = I->getOperand(0); 1699 const Value *Elt = I->getOperand(1); 1700 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1701 // Early out if the index is non-constant or out-of-range. 1702 unsigned NumElts = DemandedElts.getBitWidth(); 1703 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1704 Known.resetAll(); 1705 return; 1706 } 1707 Known.One.setAllBits(); 1708 Known.Zero.setAllBits(); 1709 unsigned EltIdx = CIdx->getZExtValue(); 1710 // Do we demand the inserted element? 1711 if (DemandedElts[EltIdx]) { 1712 computeKnownBits(Elt, Known, Depth + 1, Q); 1713 // If we don't know any bits, early out. 1714 if (Known.isUnknown()) 1715 break; 1716 } 1717 // We don't need the base vector element that has been inserted. 1718 APInt DemandedVecElts = DemandedElts; 1719 DemandedVecElts.clearBit(EltIdx); 1720 if (!!DemandedVecElts) { 1721 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1722 Known = KnownBits::commonBits(Known, Known2); 1723 } 1724 break; 1725 } 1726 case Instruction::ExtractElement: { 1727 // Look through extract element. If the index is non-constant or 1728 // out-of-range demand all elements, otherwise just the extracted element. 1729 const Value *Vec = I->getOperand(0); 1730 const Value *Idx = I->getOperand(1); 1731 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1732 if (isa<ScalableVectorType>(Vec->getType())) { 1733 // FIXME: there's probably *something* we can do with scalable vectors 1734 Known.resetAll(); 1735 break; 1736 } 1737 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1738 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1739 if (CIdx && CIdx->getValue().ult(NumElts)) 1740 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1741 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1742 break; 1743 } 1744 case Instruction::ExtractValue: 1745 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1746 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1747 if (EVI->getNumIndices() != 1) break; 1748 if (EVI->getIndices()[0] == 0) { 1749 switch (II->getIntrinsicID()) { 1750 default: break; 1751 case Intrinsic::uadd_with_overflow: 1752 case Intrinsic::sadd_with_overflow: 1753 computeKnownBitsAddSub(true, II->getArgOperand(0), 1754 II->getArgOperand(1), false, DemandedElts, 1755 Known, Known2, Depth, Q); 1756 break; 1757 case Intrinsic::usub_with_overflow: 1758 case Intrinsic::ssub_with_overflow: 1759 computeKnownBitsAddSub(false, II->getArgOperand(0), 1760 II->getArgOperand(1), false, DemandedElts, 1761 Known, Known2, Depth, Q); 1762 break; 1763 case Intrinsic::umul_with_overflow: 1764 case Intrinsic::smul_with_overflow: 1765 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1766 DemandedElts, Known, Known2, Depth, Q); 1767 break; 1768 } 1769 } 1770 } 1771 break; 1772 case Instruction::Freeze: 1773 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1774 Depth + 1)) 1775 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1776 break; 1777 } 1778 } 1779 1780 /// Determine which bits of V are known to be either zero or one and return 1781 /// them. 1782 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1783 unsigned Depth, const Query &Q) { 1784 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1785 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1786 return Known; 1787 } 1788 1789 /// Determine which bits of V are known to be either zero or one and return 1790 /// them. 1791 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1792 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1793 computeKnownBits(V, Known, Depth, Q); 1794 return Known; 1795 } 1796 1797 /// Determine which bits of V are known to be either zero or one and return 1798 /// them in the Known bit set. 1799 /// 1800 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1801 /// we cannot optimize based on the assumption that it is zero without changing 1802 /// it to be an explicit zero. If we don't change it to zero, other code could 1803 /// optimized based on the contradictory assumption that it is non-zero. 1804 /// Because instcombine aggressively folds operations with undef args anyway, 1805 /// this won't lose us code quality. 1806 /// 1807 /// This function is defined on values with integer type, values with pointer 1808 /// type, and vectors of integers. In the case 1809 /// where V is a vector, known zero, and known one values are the 1810 /// same width as the vector element, and the bit is set only if it is true 1811 /// for all of the demanded elements in the vector specified by DemandedElts. 1812 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1813 KnownBits &Known, unsigned Depth, const Query &Q) { 1814 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1815 // No demanded elts or V is a scalable vector, better to assume we don't 1816 // know anything. 1817 Known.resetAll(); 1818 return; 1819 } 1820 1821 assert(V && "No Value?"); 1822 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1823 1824 #ifndef NDEBUG 1825 Type *Ty = V->getType(); 1826 unsigned BitWidth = Known.getBitWidth(); 1827 1828 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1829 "Not integer or pointer type!"); 1830 1831 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1832 assert( 1833 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1834 "DemandedElt width should equal the fixed vector number of elements"); 1835 } else { 1836 assert(DemandedElts == APInt(1, 1) && 1837 "DemandedElt width should be 1 for scalars"); 1838 } 1839 1840 Type *ScalarTy = Ty->getScalarType(); 1841 if (ScalarTy->isPointerTy()) { 1842 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1843 "V and Known should have same BitWidth"); 1844 } else { 1845 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1846 "V and Known should have same BitWidth"); 1847 } 1848 #endif 1849 1850 const APInt *C; 1851 if (match(V, m_APInt(C))) { 1852 // We know all of the bits for a scalar constant or a splat vector constant! 1853 Known = KnownBits::makeConstant(*C); 1854 return; 1855 } 1856 // Null and aggregate-zero are all-zeros. 1857 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1858 Known.setAllZero(); 1859 return; 1860 } 1861 // Handle a constant vector by taking the intersection of the known bits of 1862 // each element. 1863 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1864 // We know that CDV must be a vector of integers. Take the intersection of 1865 // each element. 1866 Known.Zero.setAllBits(); Known.One.setAllBits(); 1867 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1868 if (!DemandedElts[i]) 1869 continue; 1870 APInt Elt = CDV->getElementAsAPInt(i); 1871 Known.Zero &= ~Elt; 1872 Known.One &= Elt; 1873 } 1874 return; 1875 } 1876 1877 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1878 // We know that CV must be a vector of integers. Take the intersection of 1879 // each element. 1880 Known.Zero.setAllBits(); Known.One.setAllBits(); 1881 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1882 if (!DemandedElts[i]) 1883 continue; 1884 Constant *Element = CV->getAggregateElement(i); 1885 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1886 if (!ElementCI) { 1887 Known.resetAll(); 1888 return; 1889 } 1890 const APInt &Elt = ElementCI->getValue(); 1891 Known.Zero &= ~Elt; 1892 Known.One &= Elt; 1893 } 1894 return; 1895 } 1896 1897 // Start out not knowing anything. 1898 Known.resetAll(); 1899 1900 // We can't imply anything about undefs. 1901 if (isa<UndefValue>(V)) 1902 return; 1903 1904 // There's no point in looking through other users of ConstantData for 1905 // assumptions. Confirm that we've handled them all. 1906 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1907 1908 // All recursive calls that increase depth must come after this. 1909 if (Depth == MaxAnalysisRecursionDepth) 1910 return; 1911 1912 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1913 // the bits of its aliasee. 1914 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1915 if (!GA->isInterposable()) 1916 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1917 return; 1918 } 1919 1920 if (const Operator *I = dyn_cast<Operator>(V)) 1921 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1922 1923 // Aligned pointers have trailing zeros - refine Known.Zero set 1924 if (isa<PointerType>(V->getType())) { 1925 Align Alignment = V->getPointerAlignment(Q.DL); 1926 Known.Zero.setLowBits(Log2(Alignment)); 1927 } 1928 1929 // computeKnownBitsFromAssume strictly refines Known. 1930 // Therefore, we run them after computeKnownBitsFromOperator. 1931 1932 // Check whether a nearby assume intrinsic can determine some known bits. 1933 computeKnownBitsFromAssume(V, Known, Depth, Q); 1934 1935 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1936 } 1937 1938 /// Return true if the given value is known to have exactly one 1939 /// bit set when defined. For vectors return true if every element is known to 1940 /// be a power of two when defined. Supports values with integer or pointer 1941 /// types and vectors of integers. 1942 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1943 const Query &Q) { 1944 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1945 1946 // Attempt to match against constants. 1947 if (OrZero && match(V, m_Power2OrZero())) 1948 return true; 1949 if (match(V, m_Power2())) 1950 return true; 1951 1952 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1953 // it is shifted off the end then the result is undefined. 1954 if (match(V, m_Shl(m_One(), m_Value()))) 1955 return true; 1956 1957 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1958 // the bottom. If it is shifted off the bottom then the result is undefined. 1959 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1960 return true; 1961 1962 // The remaining tests are all recursive, so bail out if we hit the limit. 1963 if (Depth++ == MaxAnalysisRecursionDepth) 1964 return false; 1965 1966 Value *X = nullptr, *Y = nullptr; 1967 // A shift left or a logical shift right of a power of two is a power of two 1968 // or zero. 1969 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1970 match(V, m_LShr(m_Value(X), m_Value())))) 1971 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1972 1973 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1974 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1975 1976 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1977 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1978 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1979 1980 // Peek through min/max. 1981 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 1982 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 1983 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 1984 } 1985 1986 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1987 // A power of two and'd with anything is a power of two or zero. 1988 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1989 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1990 return true; 1991 // X & (-X) is always a power of two or zero. 1992 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1993 return true; 1994 return false; 1995 } 1996 1997 // Adding a power-of-two or zero to the same power-of-two or zero yields 1998 // either the original power-of-two, a larger power-of-two or zero. 1999 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2000 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2001 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2002 Q.IIQ.hasNoSignedWrap(VOBO)) { 2003 if (match(X, m_And(m_Specific(Y), m_Value())) || 2004 match(X, m_And(m_Value(), m_Specific(Y)))) 2005 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2006 return true; 2007 if (match(Y, m_And(m_Specific(X), m_Value())) || 2008 match(Y, m_And(m_Value(), m_Specific(X)))) 2009 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2010 return true; 2011 2012 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2013 KnownBits LHSBits(BitWidth); 2014 computeKnownBits(X, LHSBits, Depth, Q); 2015 2016 KnownBits RHSBits(BitWidth); 2017 computeKnownBits(Y, RHSBits, Depth, Q); 2018 // If i8 V is a power of two or zero: 2019 // ZeroBits: 1 1 1 0 1 1 1 1 2020 // ~ZeroBits: 0 0 0 1 0 0 0 0 2021 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2022 // If OrZero isn't set, we cannot give back a zero result. 2023 // Make sure either the LHS or RHS has a bit set. 2024 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2025 return true; 2026 } 2027 } 2028 2029 // An exact divide or right shift can only shift off zero bits, so the result 2030 // is a power of two only if the first operand is a power of two and not 2031 // copying a sign bit (sdiv int_min, 2). 2032 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2033 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2034 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2035 Depth, Q); 2036 } 2037 2038 return false; 2039 } 2040 2041 /// Test whether a GEP's result is known to be non-null. 2042 /// 2043 /// Uses properties inherent in a GEP to try to determine whether it is known 2044 /// to be non-null. 2045 /// 2046 /// Currently this routine does not support vector GEPs. 2047 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2048 const Query &Q) { 2049 const Function *F = nullptr; 2050 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2051 F = I->getFunction(); 2052 2053 if (!GEP->isInBounds() || 2054 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2055 return false; 2056 2057 // FIXME: Support vector-GEPs. 2058 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2059 2060 // If the base pointer is non-null, we cannot walk to a null address with an 2061 // inbounds GEP in address space zero. 2062 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2063 return true; 2064 2065 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2066 // If so, then the GEP cannot produce a null pointer, as doing so would 2067 // inherently violate the inbounds contract within address space zero. 2068 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2069 GTI != GTE; ++GTI) { 2070 // Struct types are easy -- they must always be indexed by a constant. 2071 if (StructType *STy = GTI.getStructTypeOrNull()) { 2072 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2073 unsigned ElementIdx = OpC->getZExtValue(); 2074 const StructLayout *SL = Q.DL.getStructLayout(STy); 2075 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2076 if (ElementOffset > 0) 2077 return true; 2078 continue; 2079 } 2080 2081 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2082 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2083 continue; 2084 2085 // Fast path the constant operand case both for efficiency and so we don't 2086 // increment Depth when just zipping down an all-constant GEP. 2087 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2088 if (!OpC->isZero()) 2089 return true; 2090 continue; 2091 } 2092 2093 // We post-increment Depth here because while isKnownNonZero increments it 2094 // as well, when we pop back up that increment won't persist. We don't want 2095 // to recurse 10k times just because we have 10k GEP operands. We don't 2096 // bail completely out because we want to handle constant GEPs regardless 2097 // of depth. 2098 if (Depth++ >= MaxAnalysisRecursionDepth) 2099 continue; 2100 2101 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2102 return true; 2103 } 2104 2105 return false; 2106 } 2107 2108 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2109 const Instruction *CtxI, 2110 const DominatorTree *DT) { 2111 if (isa<Constant>(V)) 2112 return false; 2113 2114 if (!CtxI || !DT) 2115 return false; 2116 2117 unsigned NumUsesExplored = 0; 2118 for (auto *U : V->users()) { 2119 // Avoid massive lists 2120 if (NumUsesExplored >= DomConditionsMaxUses) 2121 break; 2122 NumUsesExplored++; 2123 2124 // If the value is used as an argument to a call or invoke, then argument 2125 // attributes may provide an answer about null-ness. 2126 if (const auto *CB = dyn_cast<CallBase>(U)) 2127 if (auto *CalledFunc = CB->getCalledFunction()) 2128 for (const Argument &Arg : CalledFunc->args()) 2129 if (CB->getArgOperand(Arg.getArgNo()) == V && 2130 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2131 DT->dominates(CB, CtxI)) 2132 return true; 2133 2134 // If the value is used as a load/store, then the pointer must be non null. 2135 if (V == getLoadStorePointerOperand(U)) { 2136 const Instruction *I = cast<Instruction>(U); 2137 if (!NullPointerIsDefined(I->getFunction(), 2138 V->getType()->getPointerAddressSpace()) && 2139 DT->dominates(I, CtxI)) 2140 return true; 2141 } 2142 2143 // Consider only compare instructions uniquely controlling a branch 2144 Value *RHS; 2145 CmpInst::Predicate Pred; 2146 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2147 continue; 2148 2149 bool NonNullIfTrue; 2150 if (cmpExcludesZero(Pred, RHS)) 2151 NonNullIfTrue = true; 2152 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2153 NonNullIfTrue = false; 2154 else 2155 continue; 2156 2157 SmallVector<const User *, 4> WorkList; 2158 SmallPtrSet<const User *, 4> Visited; 2159 for (auto *CmpU : U->users()) { 2160 assert(WorkList.empty() && "Should be!"); 2161 if (Visited.insert(CmpU).second) 2162 WorkList.push_back(CmpU); 2163 2164 while (!WorkList.empty()) { 2165 auto *Curr = WorkList.pop_back_val(); 2166 2167 // If a user is an AND, add all its users to the work list. We only 2168 // propagate "pred != null" condition through AND because it is only 2169 // correct to assume that all conditions of AND are met in true branch. 2170 // TODO: Support similar logic of OR and EQ predicate? 2171 if (NonNullIfTrue) 2172 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2173 for (auto *CurrU : Curr->users()) 2174 if (Visited.insert(CurrU).second) 2175 WorkList.push_back(CurrU); 2176 continue; 2177 } 2178 2179 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2180 assert(BI->isConditional() && "uses a comparison!"); 2181 2182 BasicBlock *NonNullSuccessor = 2183 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2184 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2185 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2186 return true; 2187 } else if (NonNullIfTrue && isGuard(Curr) && 2188 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2189 return true; 2190 } 2191 } 2192 } 2193 } 2194 2195 return false; 2196 } 2197 2198 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2199 /// ensure that the value it's attached to is never Value? 'RangeType' is 2200 /// is the type of the value described by the range. 2201 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2202 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2203 assert(NumRanges >= 1); 2204 for (unsigned i = 0; i < NumRanges; ++i) { 2205 ConstantInt *Lower = 2206 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2207 ConstantInt *Upper = 2208 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2209 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2210 if (Range.contains(Value)) 2211 return false; 2212 } 2213 return true; 2214 } 2215 2216 /// Try to detect a recurrence that monotonically increases/decreases from a 2217 /// non-zero starting value. These are common as induction variables. 2218 static bool isNonZeroRecurrence(const PHINode *PN) { 2219 BinaryOperator *BO = nullptr; 2220 Value *Start = nullptr, *Step = nullptr; 2221 const APInt *StartC, *StepC; 2222 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2223 !match(Start, m_APInt(StartC)) || StartC->isNullValue()) 2224 return false; 2225 2226 switch (BO->getOpcode()) { 2227 case Instruction::Add: 2228 // Starting from non-zero and stepping away from zero can never wrap back 2229 // to zero. 2230 return BO->hasNoUnsignedWrap() || 2231 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2232 StartC->isNegative() == StepC->isNegative()); 2233 case Instruction::Mul: 2234 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2235 match(Step, m_APInt(StepC)) && !StepC->isNullValue(); 2236 case Instruction::Shl: 2237 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2238 case Instruction::AShr: 2239 case Instruction::LShr: 2240 return BO->isExact(); 2241 default: 2242 return false; 2243 } 2244 } 2245 2246 /// Return true if the given value is known to be non-zero when defined. For 2247 /// vectors, return true if every demanded element is known to be non-zero when 2248 /// defined. For pointers, if the context instruction and dominator tree are 2249 /// specified, perform context-sensitive analysis and return true if the 2250 /// pointer couldn't possibly be null at the specified instruction. 2251 /// Supports values with integer or pointer type and vectors of integers. 2252 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2253 const Query &Q) { 2254 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2255 // vector 2256 if (isa<ScalableVectorType>(V->getType())) 2257 return false; 2258 2259 if (auto *C = dyn_cast<Constant>(V)) { 2260 if (C->isNullValue()) 2261 return false; 2262 if (isa<ConstantInt>(C)) 2263 // Must be non-zero due to null test above. 2264 return true; 2265 2266 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2267 // See the comment for IntToPtr/PtrToInt instructions below. 2268 if (CE->getOpcode() == Instruction::IntToPtr || 2269 CE->getOpcode() == Instruction::PtrToInt) 2270 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2271 .getFixedSize() <= 2272 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2273 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2274 } 2275 2276 // For constant vectors, check that all elements are undefined or known 2277 // non-zero to determine that the whole vector is known non-zero. 2278 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2279 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2280 if (!DemandedElts[i]) 2281 continue; 2282 Constant *Elt = C->getAggregateElement(i); 2283 if (!Elt || Elt->isNullValue()) 2284 return false; 2285 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2286 return false; 2287 } 2288 return true; 2289 } 2290 2291 // A global variable in address space 0 is non null unless extern weak 2292 // or an absolute symbol reference. Other address spaces may have null as a 2293 // valid address for a global, so we can't assume anything. 2294 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2295 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2296 GV->getType()->getAddressSpace() == 0) 2297 return true; 2298 } else 2299 return false; 2300 } 2301 2302 if (auto *I = dyn_cast<Instruction>(V)) { 2303 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2304 // If the possible ranges don't contain zero, then the value is 2305 // definitely non-zero. 2306 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2307 const APInt ZeroValue(Ty->getBitWidth(), 0); 2308 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2309 return true; 2310 } 2311 } 2312 } 2313 2314 if (isKnownNonZeroFromAssume(V, Q)) 2315 return true; 2316 2317 // Some of the tests below are recursive, so bail out if we hit the limit. 2318 if (Depth++ >= MaxAnalysisRecursionDepth) 2319 return false; 2320 2321 // Check for pointer simplifications. 2322 2323 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2324 // Alloca never returns null, malloc might. 2325 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2326 return true; 2327 2328 // A byval, inalloca may not be null in a non-default addres space. A 2329 // nonnull argument is assumed never 0. 2330 if (const Argument *A = dyn_cast<Argument>(V)) { 2331 if (((A->hasPassPointeeByValueCopyAttr() && 2332 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2333 A->hasNonNullAttr())) 2334 return true; 2335 } 2336 2337 // A Load tagged with nonnull metadata is never null. 2338 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2339 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2340 return true; 2341 2342 if (const auto *Call = dyn_cast<CallBase>(V)) { 2343 if (Call->isReturnNonNull()) 2344 return true; 2345 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2346 return isKnownNonZero(RP, Depth, Q); 2347 } 2348 } 2349 2350 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2351 return true; 2352 2353 // Check for recursive pointer simplifications. 2354 if (V->getType()->isPointerTy()) { 2355 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2356 // do not alter the value, or at least not the nullness property of the 2357 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2358 // 2359 // Note that we have to take special care to avoid looking through 2360 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2361 // as casts that can alter the value, e.g., AddrSpaceCasts. 2362 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2363 return isGEPKnownNonNull(GEP, Depth, Q); 2364 2365 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2366 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2367 2368 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2369 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2370 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2371 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2372 } 2373 2374 // Similar to int2ptr above, we can look through ptr2int here if the cast 2375 // is a no-op or an extend and not a truncate. 2376 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2377 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2378 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2379 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2380 2381 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2382 2383 // X | Y != 0 if X != 0 or Y != 0. 2384 Value *X = nullptr, *Y = nullptr; 2385 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2386 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2387 isKnownNonZero(Y, DemandedElts, Depth, Q); 2388 2389 // ext X != 0 if X != 0. 2390 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2391 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2392 2393 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2394 // if the lowest bit is shifted off the end. 2395 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2396 // shl nuw can't remove any non-zero bits. 2397 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2398 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2399 return isKnownNonZero(X, Depth, Q); 2400 2401 KnownBits Known(BitWidth); 2402 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2403 if (Known.One[0]) 2404 return true; 2405 } 2406 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2407 // defined if the sign bit is shifted off the end. 2408 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2409 // shr exact can only shift out zero bits. 2410 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2411 if (BO->isExact()) 2412 return isKnownNonZero(X, Depth, Q); 2413 2414 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2415 if (Known.isNegative()) 2416 return true; 2417 2418 // If the shifter operand is a constant, and all of the bits shifted 2419 // out are known to be zero, and X is known non-zero then at least one 2420 // non-zero bit must remain. 2421 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2422 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2423 // Is there a known one in the portion not shifted out? 2424 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2425 return true; 2426 // Are all the bits to be shifted out known zero? 2427 if (Known.countMinTrailingZeros() >= ShiftVal) 2428 return isKnownNonZero(X, DemandedElts, Depth, Q); 2429 } 2430 } 2431 // div exact can only produce a zero if the dividend is zero. 2432 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2433 return isKnownNonZero(X, DemandedElts, Depth, Q); 2434 } 2435 // X + Y. 2436 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2437 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2438 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2439 2440 // If X and Y are both non-negative (as signed values) then their sum is not 2441 // zero unless both X and Y are zero. 2442 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2443 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2444 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2445 return true; 2446 2447 // If X and Y are both negative (as signed values) then their sum is not 2448 // zero unless both X and Y equal INT_MIN. 2449 if (XKnown.isNegative() && YKnown.isNegative()) { 2450 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2451 // The sign bit of X is set. If some other bit is set then X is not equal 2452 // to INT_MIN. 2453 if (XKnown.One.intersects(Mask)) 2454 return true; 2455 // The sign bit of Y is set. If some other bit is set then Y is not equal 2456 // to INT_MIN. 2457 if (YKnown.One.intersects(Mask)) 2458 return true; 2459 } 2460 2461 // The sum of a non-negative number and a power of two is not zero. 2462 if (XKnown.isNonNegative() && 2463 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2464 return true; 2465 if (YKnown.isNonNegative() && 2466 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2467 return true; 2468 } 2469 // X * Y. 2470 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2471 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2472 // If X and Y are non-zero then so is X * Y as long as the multiplication 2473 // does not overflow. 2474 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2475 isKnownNonZero(X, DemandedElts, Depth, Q) && 2476 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2477 return true; 2478 } 2479 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2480 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2481 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2482 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2483 return true; 2484 } 2485 // PHI 2486 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2487 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2488 return true; 2489 2490 // Check if all incoming values are non-zero using recursion. 2491 Query RecQ = Q; 2492 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2493 return llvm::all_of(PN->operands(), [&](const Use &U) { 2494 if (U.get() == PN) 2495 return true; 2496 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2497 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2498 }); 2499 } 2500 // ExtractElement 2501 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2502 const Value *Vec = EEI->getVectorOperand(); 2503 const Value *Idx = EEI->getIndexOperand(); 2504 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2505 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2506 unsigned NumElts = VecTy->getNumElements(); 2507 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2508 if (CIdx && CIdx->getValue().ult(NumElts)) 2509 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2510 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2511 } 2512 } 2513 // Freeze 2514 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2515 auto *Op = FI->getOperand(0); 2516 if (isKnownNonZero(Op, Depth, Q) && 2517 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2518 return true; 2519 } 2520 2521 KnownBits Known(BitWidth); 2522 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2523 return Known.One != 0; 2524 } 2525 2526 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2527 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2528 // vector 2529 if (isa<ScalableVectorType>(V->getType())) 2530 return false; 2531 2532 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2533 APInt DemandedElts = 2534 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2535 return isKnownNonZero(V, DemandedElts, Depth, Q); 2536 } 2537 2538 /// If the pair of operators are the same invertible function of a single 2539 /// operand return the index of that operand. Otherwise, return None. An 2540 /// invertible function is one that is 1-to-1 and maps every input value 2541 /// to exactly one output value. This is equivalent to saying that Op1 2542 /// and Op2 are equal exactly when the specified pair of operands are equal, 2543 /// (except that Op1 and Op2 may be poison more often.) 2544 static Optional<unsigned> getInvertibleOperand(const Operator *Op1, 2545 const Operator *Op2) { 2546 if (Op1->getOpcode() != Op2->getOpcode()) 2547 return None; 2548 2549 switch (Op1->getOpcode()) { 2550 default: 2551 break; 2552 case Instruction::Add: 2553 case Instruction::Sub: 2554 if (Op1->getOperand(0) == Op2->getOperand(0)) 2555 return 1; 2556 if (Op1->getOperand(1) == Op2->getOperand(1)) 2557 return 0; 2558 break; 2559 case Instruction::Mul: { 2560 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2561 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2562 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2563 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2564 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2565 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2566 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2567 break; 2568 2569 // Assume operand order has been canonicalized 2570 if (Op1->getOperand(1) == Op2->getOperand(1) && 2571 isa<ConstantInt>(Op1->getOperand(1)) && 2572 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2573 return 0; 2574 break; 2575 } 2576 case Instruction::Shl: { 2577 // Same as multiplies, with the difference that we don't need to check 2578 // for a non-zero multiply. Shifts always multiply by non-zero. 2579 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2580 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2581 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2582 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2583 break; 2584 2585 if (Op1->getOperand(1) == Op2->getOperand(1)) 2586 return 0; 2587 break; 2588 } 2589 case Instruction::AShr: 2590 case Instruction::LShr: { 2591 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2592 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2593 if (!PEO1->isExact() || !PEO2->isExact()) 2594 break; 2595 2596 if (Op1->getOperand(1) == Op2->getOperand(1)) 2597 return 0; 2598 break; 2599 } 2600 case Instruction::SExt: 2601 case Instruction::ZExt: 2602 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2603 return 0; 2604 break; 2605 } 2606 return None; 2607 } 2608 2609 /// Return true if V2 == V1 + X, where X is known non-zero. 2610 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2611 const Query &Q) { 2612 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2613 if (!BO || BO->getOpcode() != Instruction::Add) 2614 return false; 2615 Value *Op = nullptr; 2616 if (V2 == BO->getOperand(0)) 2617 Op = BO->getOperand(1); 2618 else if (V2 == BO->getOperand(1)) 2619 Op = BO->getOperand(0); 2620 else 2621 return false; 2622 return isKnownNonZero(Op, Depth + 1, Q); 2623 } 2624 2625 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2626 /// the multiplication is nuw or nsw. 2627 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2628 const Query &Q) { 2629 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2630 const APInt *C; 2631 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2632 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2633 !C->isNullValue() && !C->isOneValue() && 2634 isKnownNonZero(V1, Depth + 1, Q); 2635 } 2636 return false; 2637 } 2638 2639 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2640 /// the shift is nuw or nsw. 2641 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2642 const Query &Q) { 2643 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2644 const APInt *C; 2645 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2646 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2647 !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); 2648 } 2649 return false; 2650 } 2651 2652 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2653 unsigned Depth, const Query &Q) { 2654 // Check two PHIs are in same block. 2655 if (PN1->getParent() != PN2->getParent()) 2656 return false; 2657 2658 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2659 bool UsedFullRecursion = false; 2660 for (const BasicBlock *IncomBB : PN1->blocks()) { 2661 if (!VisitedBBs.insert(IncomBB).second) 2662 continue; // Don't reprocess blocks that we have dealt with already. 2663 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2664 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2665 const APInt *C1, *C2; 2666 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2667 continue; 2668 2669 // Only one pair of phi operands is allowed for full recursion. 2670 if (UsedFullRecursion) 2671 return false; 2672 2673 Query RecQ = Q; 2674 RecQ.CxtI = IncomBB->getTerminator(); 2675 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2676 return false; 2677 UsedFullRecursion = true; 2678 } 2679 return true; 2680 } 2681 2682 /// Return true if it is known that V1 != V2. 2683 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2684 const Query &Q) { 2685 if (V1 == V2) 2686 return false; 2687 if (V1->getType() != V2->getType()) 2688 // We can't look through casts yet. 2689 return false; 2690 2691 if (Depth >= MaxAnalysisRecursionDepth) 2692 return false; 2693 2694 // See if we can recurse through (exactly one of) our operands. This 2695 // requires our operation be 1-to-1 and map every input value to exactly 2696 // one output value. Such an operation is invertible. 2697 auto *O1 = dyn_cast<Operator>(V1); 2698 auto *O2 = dyn_cast<Operator>(V2); 2699 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2700 if (Optional<unsigned> Opt = getInvertibleOperand(O1, O2)) { 2701 unsigned Idx = *Opt; 2702 return isKnownNonEqual(O1->getOperand(Idx), O2->getOperand(Idx), 2703 Depth + 1, Q); 2704 } 2705 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2706 const PHINode *PN2 = cast<PHINode>(V2); 2707 // FIXME: This is missing a generalization to handle the case where one is 2708 // a PHI and another one isn't. 2709 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2710 return true; 2711 }; 2712 } 2713 2714 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2715 return true; 2716 2717 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2718 return true; 2719 2720 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2721 return true; 2722 2723 if (V1->getType()->isIntOrIntVectorTy()) { 2724 // Are any known bits in V1 contradictory to known bits in V2? If V1 2725 // has a known zero where V2 has a known one, they must not be equal. 2726 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2727 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2728 2729 if (Known1.Zero.intersects(Known2.One) || 2730 Known2.Zero.intersects(Known1.One)) 2731 return true; 2732 } 2733 return false; 2734 } 2735 2736 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2737 /// simplify operations downstream. Mask is known to be zero for bits that V 2738 /// cannot have. 2739 /// 2740 /// This function is defined on values with integer type, values with pointer 2741 /// type, and vectors of integers. In the case 2742 /// where V is a vector, the mask, known zero, and known one values are the 2743 /// same width as the vector element, and the bit is set only if it is true 2744 /// for all of the elements in the vector. 2745 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2746 const Query &Q) { 2747 KnownBits Known(Mask.getBitWidth()); 2748 computeKnownBits(V, Known, Depth, Q); 2749 return Mask.isSubsetOf(Known.Zero); 2750 } 2751 2752 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2753 // Returns the input and lower/upper bounds. 2754 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2755 const APInt *&CLow, const APInt *&CHigh) { 2756 assert(isa<Operator>(Select) && 2757 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2758 "Input should be a Select!"); 2759 2760 const Value *LHS = nullptr, *RHS = nullptr; 2761 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2762 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2763 return false; 2764 2765 if (!match(RHS, m_APInt(CLow))) 2766 return false; 2767 2768 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2769 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2770 if (getInverseMinMaxFlavor(SPF) != SPF2) 2771 return false; 2772 2773 if (!match(RHS2, m_APInt(CHigh))) 2774 return false; 2775 2776 if (SPF == SPF_SMIN) 2777 std::swap(CLow, CHigh); 2778 2779 In = LHS2; 2780 return CLow->sle(*CHigh); 2781 } 2782 2783 /// For vector constants, loop over the elements and find the constant with the 2784 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2785 /// or if any element was not analyzed; otherwise, return the count for the 2786 /// element with the minimum number of sign bits. 2787 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2788 const APInt &DemandedElts, 2789 unsigned TyBits) { 2790 const auto *CV = dyn_cast<Constant>(V); 2791 if (!CV || !isa<FixedVectorType>(CV->getType())) 2792 return 0; 2793 2794 unsigned MinSignBits = TyBits; 2795 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2796 for (unsigned i = 0; i != NumElts; ++i) { 2797 if (!DemandedElts[i]) 2798 continue; 2799 // If we find a non-ConstantInt, bail out. 2800 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2801 if (!Elt) 2802 return 0; 2803 2804 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2805 } 2806 2807 return MinSignBits; 2808 } 2809 2810 static unsigned ComputeNumSignBitsImpl(const Value *V, 2811 const APInt &DemandedElts, 2812 unsigned Depth, const Query &Q); 2813 2814 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2815 unsigned Depth, const Query &Q) { 2816 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2817 assert(Result > 0 && "At least one sign bit needs to be present!"); 2818 return Result; 2819 } 2820 2821 /// Return the number of times the sign bit of the register is replicated into 2822 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2823 /// (itself), but other cases can give us information. For example, immediately 2824 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2825 /// other, so we return 3. For vectors, return the number of sign bits for the 2826 /// vector element with the minimum number of known sign bits of the demanded 2827 /// elements in the vector specified by DemandedElts. 2828 static unsigned ComputeNumSignBitsImpl(const Value *V, 2829 const APInt &DemandedElts, 2830 unsigned Depth, const Query &Q) { 2831 Type *Ty = V->getType(); 2832 2833 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2834 // vector 2835 if (isa<ScalableVectorType>(Ty)) 2836 return 1; 2837 2838 #ifndef NDEBUG 2839 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2840 2841 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2842 assert( 2843 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2844 "DemandedElt width should equal the fixed vector number of elements"); 2845 } else { 2846 assert(DemandedElts == APInt(1, 1) && 2847 "DemandedElt width should be 1 for scalars"); 2848 } 2849 #endif 2850 2851 // We return the minimum number of sign bits that are guaranteed to be present 2852 // in V, so for undef we have to conservatively return 1. We don't have the 2853 // same behavior for poison though -- that's a FIXME today. 2854 2855 Type *ScalarTy = Ty->getScalarType(); 2856 unsigned TyBits = ScalarTy->isPointerTy() ? 2857 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2858 Q.DL.getTypeSizeInBits(ScalarTy); 2859 2860 unsigned Tmp, Tmp2; 2861 unsigned FirstAnswer = 1; 2862 2863 // Note that ConstantInt is handled by the general computeKnownBits case 2864 // below. 2865 2866 if (Depth == MaxAnalysisRecursionDepth) 2867 return 1; 2868 2869 if (auto *U = dyn_cast<Operator>(V)) { 2870 switch (Operator::getOpcode(V)) { 2871 default: break; 2872 case Instruction::SExt: 2873 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2874 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2875 2876 case Instruction::SDiv: { 2877 const APInt *Denominator; 2878 // sdiv X, C -> adds log(C) sign bits. 2879 if (match(U->getOperand(1), m_APInt(Denominator))) { 2880 2881 // Ignore non-positive denominator. 2882 if (!Denominator->isStrictlyPositive()) 2883 break; 2884 2885 // Calculate the incoming numerator bits. 2886 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2887 2888 // Add floor(log(C)) bits to the numerator bits. 2889 return std::min(TyBits, NumBits + Denominator->logBase2()); 2890 } 2891 break; 2892 } 2893 2894 case Instruction::SRem: { 2895 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2896 2897 const APInt *Denominator; 2898 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2899 // positive constant. This let us put a lower bound on the number of sign 2900 // bits. 2901 if (match(U->getOperand(1), m_APInt(Denominator))) { 2902 2903 // Ignore non-positive denominator. 2904 if (Denominator->isStrictlyPositive()) { 2905 // Calculate the leading sign bit constraints by examining the 2906 // denominator. Given that the denominator is positive, there are two 2907 // cases: 2908 // 2909 // 1. The numerator is positive. The result range is [0,C) and 2910 // [0,C) u< (1 << ceilLogBase2(C)). 2911 // 2912 // 2. The numerator is negative. Then the result range is (-C,0] and 2913 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2914 // 2915 // Thus a lower bound on the number of sign bits is `TyBits - 2916 // ceilLogBase2(C)`. 2917 2918 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2919 Tmp = std::max(Tmp, ResBits); 2920 } 2921 } 2922 return Tmp; 2923 } 2924 2925 case Instruction::AShr: { 2926 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2927 // ashr X, C -> adds C sign bits. Vectors too. 2928 const APInt *ShAmt; 2929 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2930 if (ShAmt->uge(TyBits)) 2931 break; // Bad shift. 2932 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2933 Tmp += ShAmtLimited; 2934 if (Tmp > TyBits) Tmp = TyBits; 2935 } 2936 return Tmp; 2937 } 2938 case Instruction::Shl: { 2939 const APInt *ShAmt; 2940 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2941 // shl destroys sign bits. 2942 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2943 if (ShAmt->uge(TyBits) || // Bad shift. 2944 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2945 Tmp2 = ShAmt->getZExtValue(); 2946 return Tmp - Tmp2; 2947 } 2948 break; 2949 } 2950 case Instruction::And: 2951 case Instruction::Or: 2952 case Instruction::Xor: // NOT is handled here. 2953 // Logical binary ops preserve the number of sign bits at the worst. 2954 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2955 if (Tmp != 1) { 2956 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2957 FirstAnswer = std::min(Tmp, Tmp2); 2958 // We computed what we know about the sign bits as our first 2959 // answer. Now proceed to the generic code that uses 2960 // computeKnownBits, and pick whichever answer is better. 2961 } 2962 break; 2963 2964 case Instruction::Select: { 2965 // If we have a clamp pattern, we know that the number of sign bits will 2966 // be the minimum of the clamp min/max range. 2967 const Value *X; 2968 const APInt *CLow, *CHigh; 2969 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2970 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2971 2972 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2973 if (Tmp == 1) break; 2974 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2975 return std::min(Tmp, Tmp2); 2976 } 2977 2978 case Instruction::Add: 2979 // Add can have at most one carry bit. Thus we know that the output 2980 // is, at worst, one more bit than the inputs. 2981 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2982 if (Tmp == 1) break; 2983 2984 // Special case decrementing a value (ADD X, -1): 2985 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2986 if (CRHS->isAllOnesValue()) { 2987 KnownBits Known(TyBits); 2988 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2989 2990 // If the input is known to be 0 or 1, the output is 0/-1, which is 2991 // all sign bits set. 2992 if ((Known.Zero | 1).isAllOnesValue()) 2993 return TyBits; 2994 2995 // If we are subtracting one from a positive number, there is no carry 2996 // out of the result. 2997 if (Known.isNonNegative()) 2998 return Tmp; 2999 } 3000 3001 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3002 if (Tmp2 == 1) break; 3003 return std::min(Tmp, Tmp2) - 1; 3004 3005 case Instruction::Sub: 3006 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3007 if (Tmp2 == 1) break; 3008 3009 // Handle NEG. 3010 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3011 if (CLHS->isNullValue()) { 3012 KnownBits Known(TyBits); 3013 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3014 // If the input is known to be 0 or 1, the output is 0/-1, which is 3015 // all sign bits set. 3016 if ((Known.Zero | 1).isAllOnesValue()) 3017 return TyBits; 3018 3019 // If the input is known to be positive (the sign bit is known clear), 3020 // the output of the NEG has the same number of sign bits as the 3021 // input. 3022 if (Known.isNonNegative()) 3023 return Tmp2; 3024 3025 // Otherwise, we treat this like a SUB. 3026 } 3027 3028 // Sub can have at most one carry bit. Thus we know that the output 3029 // is, at worst, one more bit than the inputs. 3030 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3031 if (Tmp == 1) break; 3032 return std::min(Tmp, Tmp2) - 1; 3033 3034 case Instruction::Mul: { 3035 // The output of the Mul can be at most twice the valid bits in the 3036 // inputs. 3037 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3038 if (SignBitsOp0 == 1) break; 3039 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3040 if (SignBitsOp1 == 1) break; 3041 unsigned OutValidBits = 3042 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3043 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3044 } 3045 3046 case Instruction::PHI: { 3047 const PHINode *PN = cast<PHINode>(U); 3048 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3049 // Don't analyze large in-degree PHIs. 3050 if (NumIncomingValues > 4) break; 3051 // Unreachable blocks may have zero-operand PHI nodes. 3052 if (NumIncomingValues == 0) break; 3053 3054 // Take the minimum of all incoming values. This can't infinitely loop 3055 // because of our depth threshold. 3056 Query RecQ = Q; 3057 Tmp = TyBits; 3058 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3059 if (Tmp == 1) return Tmp; 3060 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3061 Tmp = std::min( 3062 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3063 } 3064 return Tmp; 3065 } 3066 3067 case Instruction::Trunc: 3068 // FIXME: it's tricky to do anything useful for this, but it is an 3069 // important case for targets like X86. 3070 break; 3071 3072 case Instruction::ExtractElement: 3073 // Look through extract element. At the moment we keep this simple and 3074 // skip tracking the specific element. But at least we might find 3075 // information valid for all elements of the vector (for example if vector 3076 // is sign extended, shifted, etc). 3077 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3078 3079 case Instruction::ShuffleVector: { 3080 // Collect the minimum number of sign bits that are shared by every vector 3081 // element referenced by the shuffle. 3082 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3083 if (!Shuf) { 3084 // FIXME: Add support for shufflevector constant expressions. 3085 return 1; 3086 } 3087 APInt DemandedLHS, DemandedRHS; 3088 // For undef elements, we don't know anything about the common state of 3089 // the shuffle result. 3090 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3091 return 1; 3092 Tmp = std::numeric_limits<unsigned>::max(); 3093 if (!!DemandedLHS) { 3094 const Value *LHS = Shuf->getOperand(0); 3095 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3096 } 3097 // If we don't know anything, early out and try computeKnownBits 3098 // fall-back. 3099 if (Tmp == 1) 3100 break; 3101 if (!!DemandedRHS) { 3102 const Value *RHS = Shuf->getOperand(1); 3103 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3104 Tmp = std::min(Tmp, Tmp2); 3105 } 3106 // If we don't know anything, early out and try computeKnownBits 3107 // fall-back. 3108 if (Tmp == 1) 3109 break; 3110 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3111 return Tmp; 3112 } 3113 case Instruction::Call: { 3114 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3115 switch (II->getIntrinsicID()) { 3116 default: break; 3117 case Intrinsic::abs: 3118 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3119 if (Tmp == 1) break; 3120 3121 // Absolute value reduces number of sign bits by at most 1. 3122 return Tmp - 1; 3123 } 3124 } 3125 } 3126 } 3127 } 3128 3129 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3130 // use this information. 3131 3132 // If we can examine all elements of a vector constant successfully, we're 3133 // done (we can't do any better than that). If not, keep trying. 3134 if (unsigned VecSignBits = 3135 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3136 return VecSignBits; 3137 3138 KnownBits Known(TyBits); 3139 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3140 3141 // If we know that the sign bit is either zero or one, determine the number of 3142 // identical bits in the top of the input value. 3143 return std::max(FirstAnswer, Known.countMinSignBits()); 3144 } 3145 3146 /// This function computes the integer multiple of Base that equals V. 3147 /// If successful, it returns true and returns the multiple in 3148 /// Multiple. If unsuccessful, it returns false. It looks 3149 /// through SExt instructions only if LookThroughSExt is true. 3150 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3151 bool LookThroughSExt, unsigned Depth) { 3152 assert(V && "No Value?"); 3153 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3154 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3155 3156 Type *T = V->getType(); 3157 3158 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3159 3160 if (Base == 0) 3161 return false; 3162 3163 if (Base == 1) { 3164 Multiple = V; 3165 return true; 3166 } 3167 3168 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3169 Constant *BaseVal = ConstantInt::get(T, Base); 3170 if (CO && CO == BaseVal) { 3171 // Multiple is 1. 3172 Multiple = ConstantInt::get(T, 1); 3173 return true; 3174 } 3175 3176 if (CI && CI->getZExtValue() % Base == 0) { 3177 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3178 return true; 3179 } 3180 3181 if (Depth == MaxAnalysisRecursionDepth) return false; 3182 3183 Operator *I = dyn_cast<Operator>(V); 3184 if (!I) return false; 3185 3186 switch (I->getOpcode()) { 3187 default: break; 3188 case Instruction::SExt: 3189 if (!LookThroughSExt) return false; 3190 // otherwise fall through to ZExt 3191 LLVM_FALLTHROUGH; 3192 case Instruction::ZExt: 3193 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3194 LookThroughSExt, Depth+1); 3195 case Instruction::Shl: 3196 case Instruction::Mul: { 3197 Value *Op0 = I->getOperand(0); 3198 Value *Op1 = I->getOperand(1); 3199 3200 if (I->getOpcode() == Instruction::Shl) { 3201 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3202 if (!Op1CI) return false; 3203 // Turn Op0 << Op1 into Op0 * 2^Op1 3204 APInt Op1Int = Op1CI->getValue(); 3205 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3206 APInt API(Op1Int.getBitWidth(), 0); 3207 API.setBit(BitToSet); 3208 Op1 = ConstantInt::get(V->getContext(), API); 3209 } 3210 3211 Value *Mul0 = nullptr; 3212 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3213 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3214 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3215 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3216 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3217 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3218 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3219 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3220 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3221 3222 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3223 Multiple = ConstantExpr::getMul(MulC, Op1C); 3224 return true; 3225 } 3226 3227 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3228 if (Mul0CI->getValue() == 1) { 3229 // V == Base * Op1, so return Op1 3230 Multiple = Op1; 3231 return true; 3232 } 3233 } 3234 3235 Value *Mul1 = nullptr; 3236 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3237 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3238 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3239 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3240 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3241 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3242 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3243 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3244 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3245 3246 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3247 Multiple = ConstantExpr::getMul(MulC, Op0C); 3248 return true; 3249 } 3250 3251 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3252 if (Mul1CI->getValue() == 1) { 3253 // V == Base * Op0, so return Op0 3254 Multiple = Op0; 3255 return true; 3256 } 3257 } 3258 } 3259 } 3260 3261 // We could not determine if V is a multiple of Base. 3262 return false; 3263 } 3264 3265 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3266 const TargetLibraryInfo *TLI) { 3267 const Function *F = CB.getCalledFunction(); 3268 if (!F) 3269 return Intrinsic::not_intrinsic; 3270 3271 if (F->isIntrinsic()) 3272 return F->getIntrinsicID(); 3273 3274 // We are going to infer semantics of a library function based on mapping it 3275 // to an LLVM intrinsic. Check that the library function is available from 3276 // this callbase and in this environment. 3277 LibFunc Func; 3278 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3279 !CB.onlyReadsMemory()) 3280 return Intrinsic::not_intrinsic; 3281 3282 switch (Func) { 3283 default: 3284 break; 3285 case LibFunc_sin: 3286 case LibFunc_sinf: 3287 case LibFunc_sinl: 3288 return Intrinsic::sin; 3289 case LibFunc_cos: 3290 case LibFunc_cosf: 3291 case LibFunc_cosl: 3292 return Intrinsic::cos; 3293 case LibFunc_exp: 3294 case LibFunc_expf: 3295 case LibFunc_expl: 3296 return Intrinsic::exp; 3297 case LibFunc_exp2: 3298 case LibFunc_exp2f: 3299 case LibFunc_exp2l: 3300 return Intrinsic::exp2; 3301 case LibFunc_log: 3302 case LibFunc_logf: 3303 case LibFunc_logl: 3304 return Intrinsic::log; 3305 case LibFunc_log10: 3306 case LibFunc_log10f: 3307 case LibFunc_log10l: 3308 return Intrinsic::log10; 3309 case LibFunc_log2: 3310 case LibFunc_log2f: 3311 case LibFunc_log2l: 3312 return Intrinsic::log2; 3313 case LibFunc_fabs: 3314 case LibFunc_fabsf: 3315 case LibFunc_fabsl: 3316 return Intrinsic::fabs; 3317 case LibFunc_fmin: 3318 case LibFunc_fminf: 3319 case LibFunc_fminl: 3320 return Intrinsic::minnum; 3321 case LibFunc_fmax: 3322 case LibFunc_fmaxf: 3323 case LibFunc_fmaxl: 3324 return Intrinsic::maxnum; 3325 case LibFunc_copysign: 3326 case LibFunc_copysignf: 3327 case LibFunc_copysignl: 3328 return Intrinsic::copysign; 3329 case LibFunc_floor: 3330 case LibFunc_floorf: 3331 case LibFunc_floorl: 3332 return Intrinsic::floor; 3333 case LibFunc_ceil: 3334 case LibFunc_ceilf: 3335 case LibFunc_ceill: 3336 return Intrinsic::ceil; 3337 case LibFunc_trunc: 3338 case LibFunc_truncf: 3339 case LibFunc_truncl: 3340 return Intrinsic::trunc; 3341 case LibFunc_rint: 3342 case LibFunc_rintf: 3343 case LibFunc_rintl: 3344 return Intrinsic::rint; 3345 case LibFunc_nearbyint: 3346 case LibFunc_nearbyintf: 3347 case LibFunc_nearbyintl: 3348 return Intrinsic::nearbyint; 3349 case LibFunc_round: 3350 case LibFunc_roundf: 3351 case LibFunc_roundl: 3352 return Intrinsic::round; 3353 case LibFunc_roundeven: 3354 case LibFunc_roundevenf: 3355 case LibFunc_roundevenl: 3356 return Intrinsic::roundeven; 3357 case LibFunc_pow: 3358 case LibFunc_powf: 3359 case LibFunc_powl: 3360 return Intrinsic::pow; 3361 case LibFunc_sqrt: 3362 case LibFunc_sqrtf: 3363 case LibFunc_sqrtl: 3364 return Intrinsic::sqrt; 3365 } 3366 3367 return Intrinsic::not_intrinsic; 3368 } 3369 3370 /// Return true if we can prove that the specified FP value is never equal to 3371 /// -0.0. 3372 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3373 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3374 /// the same as +0.0 in floating-point ops. 3375 /// 3376 /// NOTE: this function will need to be revisited when we support non-default 3377 /// rounding modes! 3378 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3379 unsigned Depth) { 3380 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3381 return !CFP->getValueAPF().isNegZero(); 3382 3383 if (Depth == MaxAnalysisRecursionDepth) 3384 return false; 3385 3386 auto *Op = dyn_cast<Operator>(V); 3387 if (!Op) 3388 return false; 3389 3390 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3391 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3392 return true; 3393 3394 // sitofp and uitofp turn into +0.0 for zero. 3395 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3396 return true; 3397 3398 if (auto *Call = dyn_cast<CallInst>(Op)) { 3399 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3400 switch (IID) { 3401 default: 3402 break; 3403 // sqrt(-0.0) = -0.0, no other negative results are possible. 3404 case Intrinsic::sqrt: 3405 case Intrinsic::canonicalize: 3406 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3407 // fabs(x) != -0.0 3408 case Intrinsic::fabs: 3409 return true; 3410 } 3411 } 3412 3413 return false; 3414 } 3415 3416 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3417 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3418 /// bit despite comparing equal. 3419 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3420 const TargetLibraryInfo *TLI, 3421 bool SignBitOnly, 3422 unsigned Depth) { 3423 // TODO: This function does not do the right thing when SignBitOnly is true 3424 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3425 // which flips the sign bits of NaNs. See 3426 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3427 3428 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3429 return !CFP->getValueAPF().isNegative() || 3430 (!SignBitOnly && CFP->getValueAPF().isZero()); 3431 } 3432 3433 // Handle vector of constants. 3434 if (auto *CV = dyn_cast<Constant>(V)) { 3435 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3436 unsigned NumElts = CVFVTy->getNumElements(); 3437 for (unsigned i = 0; i != NumElts; ++i) { 3438 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3439 if (!CFP) 3440 return false; 3441 if (CFP->getValueAPF().isNegative() && 3442 (SignBitOnly || !CFP->getValueAPF().isZero())) 3443 return false; 3444 } 3445 3446 // All non-negative ConstantFPs. 3447 return true; 3448 } 3449 } 3450 3451 if (Depth == MaxAnalysisRecursionDepth) 3452 return false; 3453 3454 const Operator *I = dyn_cast<Operator>(V); 3455 if (!I) 3456 return false; 3457 3458 switch (I->getOpcode()) { 3459 default: 3460 break; 3461 // Unsigned integers are always nonnegative. 3462 case Instruction::UIToFP: 3463 return true; 3464 case Instruction::FMul: 3465 case Instruction::FDiv: 3466 // X * X is always non-negative or a NaN. 3467 // X / X is always exactly 1.0 or a NaN. 3468 if (I->getOperand(0) == I->getOperand(1) && 3469 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3470 return true; 3471 3472 LLVM_FALLTHROUGH; 3473 case Instruction::FAdd: 3474 case Instruction::FRem: 3475 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3476 Depth + 1) && 3477 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3478 Depth + 1); 3479 case Instruction::Select: 3480 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3481 Depth + 1) && 3482 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3483 Depth + 1); 3484 case Instruction::FPExt: 3485 case Instruction::FPTrunc: 3486 // Widening/narrowing never change sign. 3487 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3488 Depth + 1); 3489 case Instruction::ExtractElement: 3490 // Look through extract element. At the moment we keep this simple and skip 3491 // tracking the specific element. But at least we might find information 3492 // valid for all elements of the vector. 3493 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3494 Depth + 1); 3495 case Instruction::Call: 3496 const auto *CI = cast<CallInst>(I); 3497 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3498 switch (IID) { 3499 default: 3500 break; 3501 case Intrinsic::maxnum: { 3502 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3503 auto isPositiveNum = [&](Value *V) { 3504 if (SignBitOnly) { 3505 // With SignBitOnly, this is tricky because the result of 3506 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3507 // a constant strictly greater than 0.0. 3508 const APFloat *C; 3509 return match(V, m_APFloat(C)) && 3510 *C > APFloat::getZero(C->getSemantics()); 3511 } 3512 3513 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3514 // maxnum can't be ordered-less-than-zero. 3515 return isKnownNeverNaN(V, TLI) && 3516 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3517 }; 3518 3519 // TODO: This could be improved. We could also check that neither operand 3520 // has its sign bit set (and at least 1 is not-NAN?). 3521 return isPositiveNum(V0) || isPositiveNum(V1); 3522 } 3523 3524 case Intrinsic::maximum: 3525 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3526 Depth + 1) || 3527 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3528 Depth + 1); 3529 case Intrinsic::minnum: 3530 case Intrinsic::minimum: 3531 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3532 Depth + 1) && 3533 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3534 Depth + 1); 3535 case Intrinsic::exp: 3536 case Intrinsic::exp2: 3537 case Intrinsic::fabs: 3538 return true; 3539 3540 case Intrinsic::sqrt: 3541 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3542 if (!SignBitOnly) 3543 return true; 3544 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3545 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3546 3547 case Intrinsic::powi: 3548 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3549 // powi(x,n) is non-negative if n is even. 3550 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3551 return true; 3552 } 3553 // TODO: This is not correct. Given that exp is an integer, here are the 3554 // ways that pow can return a negative value: 3555 // 3556 // pow(x, exp) --> negative if exp is odd and x is negative. 3557 // pow(-0, exp) --> -inf if exp is negative odd. 3558 // pow(-0, exp) --> -0 if exp is positive odd. 3559 // pow(-inf, exp) --> -0 if exp is negative odd. 3560 // pow(-inf, exp) --> -inf if exp is positive odd. 3561 // 3562 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3563 // but we must return false if x == -0. Unfortunately we do not currently 3564 // have a way of expressing this constraint. See details in 3565 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3566 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3567 Depth + 1); 3568 3569 case Intrinsic::fma: 3570 case Intrinsic::fmuladd: 3571 // x*x+y is non-negative if y is non-negative. 3572 return I->getOperand(0) == I->getOperand(1) && 3573 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3574 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3575 Depth + 1); 3576 } 3577 break; 3578 } 3579 return false; 3580 } 3581 3582 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3583 const TargetLibraryInfo *TLI) { 3584 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3585 } 3586 3587 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3588 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3589 } 3590 3591 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3592 unsigned Depth) { 3593 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3594 3595 // If we're told that infinities won't happen, assume they won't. 3596 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3597 if (FPMathOp->hasNoInfs()) 3598 return true; 3599 3600 // Handle scalar constants. 3601 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3602 return !CFP->isInfinity(); 3603 3604 if (Depth == MaxAnalysisRecursionDepth) 3605 return false; 3606 3607 if (auto *Inst = dyn_cast<Instruction>(V)) { 3608 switch (Inst->getOpcode()) { 3609 case Instruction::Select: { 3610 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3611 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3612 } 3613 case Instruction::SIToFP: 3614 case Instruction::UIToFP: { 3615 // Get width of largest magnitude integer (remove a bit if signed). 3616 // This still works for a signed minimum value because the largest FP 3617 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3618 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3619 if (Inst->getOpcode() == Instruction::SIToFP) 3620 --IntSize; 3621 3622 // If the exponent of the largest finite FP value can hold the largest 3623 // integer, the result of the cast must be finite. 3624 Type *FPTy = Inst->getType()->getScalarType(); 3625 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3626 } 3627 default: 3628 break; 3629 } 3630 } 3631 3632 // try to handle fixed width vector constants 3633 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3634 if (VFVTy && isa<Constant>(V)) { 3635 // For vectors, verify that each element is not infinity. 3636 unsigned NumElts = VFVTy->getNumElements(); 3637 for (unsigned i = 0; i != NumElts; ++i) { 3638 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3639 if (!Elt) 3640 return false; 3641 if (isa<UndefValue>(Elt)) 3642 continue; 3643 auto *CElt = dyn_cast<ConstantFP>(Elt); 3644 if (!CElt || CElt->isInfinity()) 3645 return false; 3646 } 3647 // All elements were confirmed non-infinity or undefined. 3648 return true; 3649 } 3650 3651 // was not able to prove that V never contains infinity 3652 return false; 3653 } 3654 3655 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3656 unsigned Depth) { 3657 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3658 3659 // If we're told that NaNs won't happen, assume they won't. 3660 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3661 if (FPMathOp->hasNoNaNs()) 3662 return true; 3663 3664 // Handle scalar constants. 3665 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3666 return !CFP->isNaN(); 3667 3668 if (Depth == MaxAnalysisRecursionDepth) 3669 return false; 3670 3671 if (auto *Inst = dyn_cast<Instruction>(V)) { 3672 switch (Inst->getOpcode()) { 3673 case Instruction::FAdd: 3674 case Instruction::FSub: 3675 // Adding positive and negative infinity produces NaN. 3676 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3677 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3678 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3679 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3680 3681 case Instruction::FMul: 3682 // Zero multiplied with infinity produces NaN. 3683 // FIXME: If neither side can be zero fmul never produces NaN. 3684 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3685 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3686 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3687 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3688 3689 case Instruction::FDiv: 3690 case Instruction::FRem: 3691 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3692 return false; 3693 3694 case Instruction::Select: { 3695 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3696 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3697 } 3698 case Instruction::SIToFP: 3699 case Instruction::UIToFP: 3700 return true; 3701 case Instruction::FPTrunc: 3702 case Instruction::FPExt: 3703 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3704 default: 3705 break; 3706 } 3707 } 3708 3709 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3710 switch (II->getIntrinsicID()) { 3711 case Intrinsic::canonicalize: 3712 case Intrinsic::fabs: 3713 case Intrinsic::copysign: 3714 case Intrinsic::exp: 3715 case Intrinsic::exp2: 3716 case Intrinsic::floor: 3717 case Intrinsic::ceil: 3718 case Intrinsic::trunc: 3719 case Intrinsic::rint: 3720 case Intrinsic::nearbyint: 3721 case Intrinsic::round: 3722 case Intrinsic::roundeven: 3723 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3724 case Intrinsic::sqrt: 3725 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3726 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3727 case Intrinsic::minnum: 3728 case Intrinsic::maxnum: 3729 // If either operand is not NaN, the result is not NaN. 3730 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3731 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3732 default: 3733 return false; 3734 } 3735 } 3736 3737 // Try to handle fixed width vector constants 3738 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3739 if (VFVTy && isa<Constant>(V)) { 3740 // For vectors, verify that each element is not NaN. 3741 unsigned NumElts = VFVTy->getNumElements(); 3742 for (unsigned i = 0; i != NumElts; ++i) { 3743 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3744 if (!Elt) 3745 return false; 3746 if (isa<UndefValue>(Elt)) 3747 continue; 3748 auto *CElt = dyn_cast<ConstantFP>(Elt); 3749 if (!CElt || CElt->isNaN()) 3750 return false; 3751 } 3752 // All elements were confirmed not-NaN or undefined. 3753 return true; 3754 } 3755 3756 // Was not able to prove that V never contains NaN 3757 return false; 3758 } 3759 3760 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3761 3762 // All byte-wide stores are splatable, even of arbitrary variables. 3763 if (V->getType()->isIntegerTy(8)) 3764 return V; 3765 3766 LLVMContext &Ctx = V->getContext(); 3767 3768 // Undef don't care. 3769 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3770 if (isa<UndefValue>(V)) 3771 return UndefInt8; 3772 3773 // Return Undef for zero-sized type. 3774 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3775 return UndefInt8; 3776 3777 Constant *C = dyn_cast<Constant>(V); 3778 if (!C) { 3779 // Conceptually, we could handle things like: 3780 // %a = zext i8 %X to i16 3781 // %b = shl i16 %a, 8 3782 // %c = or i16 %a, %b 3783 // but until there is an example that actually needs this, it doesn't seem 3784 // worth worrying about. 3785 return nullptr; 3786 } 3787 3788 // Handle 'null' ConstantArrayZero etc. 3789 if (C->isNullValue()) 3790 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3791 3792 // Constant floating-point values can be handled as integer values if the 3793 // corresponding integer value is "byteable". An important case is 0.0. 3794 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3795 Type *Ty = nullptr; 3796 if (CFP->getType()->isHalfTy()) 3797 Ty = Type::getInt16Ty(Ctx); 3798 else if (CFP->getType()->isFloatTy()) 3799 Ty = Type::getInt32Ty(Ctx); 3800 else if (CFP->getType()->isDoubleTy()) 3801 Ty = Type::getInt64Ty(Ctx); 3802 // Don't handle long double formats, which have strange constraints. 3803 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3804 : nullptr; 3805 } 3806 3807 // We can handle constant integers that are multiple of 8 bits. 3808 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3809 if (CI->getBitWidth() % 8 == 0) { 3810 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3811 if (!CI->getValue().isSplat(8)) 3812 return nullptr; 3813 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3814 } 3815 } 3816 3817 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3818 if (CE->getOpcode() == Instruction::IntToPtr) { 3819 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3820 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3821 return isBytewiseValue( 3822 ConstantExpr::getIntegerCast(CE->getOperand(0), 3823 Type::getIntNTy(Ctx, BitWidth), false), 3824 DL); 3825 } 3826 } 3827 } 3828 3829 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3830 if (LHS == RHS) 3831 return LHS; 3832 if (!LHS || !RHS) 3833 return nullptr; 3834 if (LHS == UndefInt8) 3835 return RHS; 3836 if (RHS == UndefInt8) 3837 return LHS; 3838 return nullptr; 3839 }; 3840 3841 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3842 Value *Val = UndefInt8; 3843 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3844 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3845 return nullptr; 3846 return Val; 3847 } 3848 3849 if (isa<ConstantAggregate>(C)) { 3850 Value *Val = UndefInt8; 3851 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3852 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3853 return nullptr; 3854 return Val; 3855 } 3856 3857 // Don't try to handle the handful of other constants. 3858 return nullptr; 3859 } 3860 3861 // This is the recursive version of BuildSubAggregate. It takes a few different 3862 // arguments. Idxs is the index within the nested struct From that we are 3863 // looking at now (which is of type IndexedType). IdxSkip is the number of 3864 // indices from Idxs that should be left out when inserting into the resulting 3865 // struct. To is the result struct built so far, new insertvalue instructions 3866 // build on that. 3867 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3868 SmallVectorImpl<unsigned> &Idxs, 3869 unsigned IdxSkip, 3870 Instruction *InsertBefore) { 3871 StructType *STy = dyn_cast<StructType>(IndexedType); 3872 if (STy) { 3873 // Save the original To argument so we can modify it 3874 Value *OrigTo = To; 3875 // General case, the type indexed by Idxs is a struct 3876 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3877 // Process each struct element recursively 3878 Idxs.push_back(i); 3879 Value *PrevTo = To; 3880 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3881 InsertBefore); 3882 Idxs.pop_back(); 3883 if (!To) { 3884 // Couldn't find any inserted value for this index? Cleanup 3885 while (PrevTo != OrigTo) { 3886 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3887 PrevTo = Del->getAggregateOperand(); 3888 Del->eraseFromParent(); 3889 } 3890 // Stop processing elements 3891 break; 3892 } 3893 } 3894 // If we successfully found a value for each of our subaggregates 3895 if (To) 3896 return To; 3897 } 3898 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3899 // the struct's elements had a value that was inserted directly. In the latter 3900 // case, perhaps we can't determine each of the subelements individually, but 3901 // we might be able to find the complete struct somewhere. 3902 3903 // Find the value that is at that particular spot 3904 Value *V = FindInsertedValue(From, Idxs); 3905 3906 if (!V) 3907 return nullptr; 3908 3909 // Insert the value in the new (sub) aggregate 3910 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3911 "tmp", InsertBefore); 3912 } 3913 3914 // This helper takes a nested struct and extracts a part of it (which is again a 3915 // struct) into a new value. For example, given the struct: 3916 // { a, { b, { c, d }, e } } 3917 // and the indices "1, 1" this returns 3918 // { c, d }. 3919 // 3920 // It does this by inserting an insertvalue for each element in the resulting 3921 // struct, as opposed to just inserting a single struct. This will only work if 3922 // each of the elements of the substruct are known (ie, inserted into From by an 3923 // insertvalue instruction somewhere). 3924 // 3925 // All inserted insertvalue instructions are inserted before InsertBefore 3926 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3927 Instruction *InsertBefore) { 3928 assert(InsertBefore && "Must have someplace to insert!"); 3929 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3930 idx_range); 3931 Value *To = UndefValue::get(IndexedType); 3932 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3933 unsigned IdxSkip = Idxs.size(); 3934 3935 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3936 } 3937 3938 /// Given an aggregate and a sequence of indices, see if the scalar value 3939 /// indexed is already around as a register, for example if it was inserted 3940 /// directly into the aggregate. 3941 /// 3942 /// If InsertBefore is not null, this function will duplicate (modified) 3943 /// insertvalues when a part of a nested struct is extracted. 3944 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3945 Instruction *InsertBefore) { 3946 // Nothing to index? Just return V then (this is useful at the end of our 3947 // recursion). 3948 if (idx_range.empty()) 3949 return V; 3950 // We have indices, so V should have an indexable type. 3951 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3952 "Not looking at a struct or array?"); 3953 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3954 "Invalid indices for type?"); 3955 3956 if (Constant *C = dyn_cast<Constant>(V)) { 3957 C = C->getAggregateElement(idx_range[0]); 3958 if (!C) return nullptr; 3959 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3960 } 3961 3962 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3963 // Loop the indices for the insertvalue instruction in parallel with the 3964 // requested indices 3965 const unsigned *req_idx = idx_range.begin(); 3966 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3967 i != e; ++i, ++req_idx) { 3968 if (req_idx == idx_range.end()) { 3969 // We can't handle this without inserting insertvalues 3970 if (!InsertBefore) 3971 return nullptr; 3972 3973 // The requested index identifies a part of a nested aggregate. Handle 3974 // this specially. For example, 3975 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3976 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3977 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3978 // This can be changed into 3979 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3980 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3981 // which allows the unused 0,0 element from the nested struct to be 3982 // removed. 3983 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3984 InsertBefore); 3985 } 3986 3987 // This insert value inserts something else than what we are looking for. 3988 // See if the (aggregate) value inserted into has the value we are 3989 // looking for, then. 3990 if (*req_idx != *i) 3991 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3992 InsertBefore); 3993 } 3994 // If we end up here, the indices of the insertvalue match with those 3995 // requested (though possibly only partially). Now we recursively look at 3996 // the inserted value, passing any remaining indices. 3997 return FindInsertedValue(I->getInsertedValueOperand(), 3998 makeArrayRef(req_idx, idx_range.end()), 3999 InsertBefore); 4000 } 4001 4002 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4003 // If we're extracting a value from an aggregate that was extracted from 4004 // something else, we can extract from that something else directly instead. 4005 // However, we will need to chain I's indices with the requested indices. 4006 4007 // Calculate the number of indices required 4008 unsigned size = I->getNumIndices() + idx_range.size(); 4009 // Allocate some space to put the new indices in 4010 SmallVector<unsigned, 5> Idxs; 4011 Idxs.reserve(size); 4012 // Add indices from the extract value instruction 4013 Idxs.append(I->idx_begin(), I->idx_end()); 4014 4015 // Add requested indices 4016 Idxs.append(idx_range.begin(), idx_range.end()); 4017 4018 assert(Idxs.size() == size 4019 && "Number of indices added not correct?"); 4020 4021 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4022 } 4023 // Otherwise, we don't know (such as, extracting from a function return value 4024 // or load instruction) 4025 return nullptr; 4026 } 4027 4028 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4029 unsigned CharSize) { 4030 // Make sure the GEP has exactly three arguments. 4031 if (GEP->getNumOperands() != 3) 4032 return false; 4033 4034 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4035 // CharSize. 4036 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4037 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4038 return false; 4039 4040 // Check to make sure that the first operand of the GEP is an integer and 4041 // has value 0 so that we are sure we're indexing into the initializer. 4042 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4043 if (!FirstIdx || !FirstIdx->isZero()) 4044 return false; 4045 4046 return true; 4047 } 4048 4049 bool llvm::getConstantDataArrayInfo(const Value *V, 4050 ConstantDataArraySlice &Slice, 4051 unsigned ElementSize, uint64_t Offset) { 4052 assert(V); 4053 4054 // Look through bitcast instructions and geps. 4055 V = V->stripPointerCasts(); 4056 4057 // If the value is a GEP instruction or constant expression, treat it as an 4058 // offset. 4059 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4060 // The GEP operator should be based on a pointer to string constant, and is 4061 // indexing into the string constant. 4062 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4063 return false; 4064 4065 // If the second index isn't a ConstantInt, then this is a variable index 4066 // into the array. If this occurs, we can't say anything meaningful about 4067 // the string. 4068 uint64_t StartIdx = 0; 4069 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4070 StartIdx = CI->getZExtValue(); 4071 else 4072 return false; 4073 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4074 StartIdx + Offset); 4075 } 4076 4077 // The GEP instruction, constant or instruction, must reference a global 4078 // variable that is a constant and is initialized. The referenced constant 4079 // initializer is the array that we'll use for optimization. 4080 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4081 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4082 return false; 4083 4084 const ConstantDataArray *Array; 4085 ArrayType *ArrayTy; 4086 if (GV->getInitializer()->isNullValue()) { 4087 Type *GVTy = GV->getValueType(); 4088 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4089 // A zeroinitializer for the array; there is no ConstantDataArray. 4090 Array = nullptr; 4091 } else { 4092 const DataLayout &DL = GV->getParent()->getDataLayout(); 4093 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4094 uint64_t Length = SizeInBytes / (ElementSize / 8); 4095 if (Length <= Offset) 4096 return false; 4097 4098 Slice.Array = nullptr; 4099 Slice.Offset = 0; 4100 Slice.Length = Length - Offset; 4101 return true; 4102 } 4103 } else { 4104 // This must be a ConstantDataArray. 4105 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4106 if (!Array) 4107 return false; 4108 ArrayTy = Array->getType(); 4109 } 4110 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4111 return false; 4112 4113 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4114 if (Offset > NumElts) 4115 return false; 4116 4117 Slice.Array = Array; 4118 Slice.Offset = Offset; 4119 Slice.Length = NumElts - Offset; 4120 return true; 4121 } 4122 4123 /// This function computes the length of a null-terminated C string pointed to 4124 /// by V. If successful, it returns true and returns the string in Str. 4125 /// If unsuccessful, it returns false. 4126 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4127 uint64_t Offset, bool TrimAtNul) { 4128 ConstantDataArraySlice Slice; 4129 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4130 return false; 4131 4132 if (Slice.Array == nullptr) { 4133 if (TrimAtNul) { 4134 Str = StringRef(); 4135 return true; 4136 } 4137 if (Slice.Length == 1) { 4138 Str = StringRef("", 1); 4139 return true; 4140 } 4141 // We cannot instantiate a StringRef as we do not have an appropriate string 4142 // of 0s at hand. 4143 return false; 4144 } 4145 4146 // Start out with the entire array in the StringRef. 4147 Str = Slice.Array->getAsString(); 4148 // Skip over 'offset' bytes. 4149 Str = Str.substr(Slice.Offset); 4150 4151 if (TrimAtNul) { 4152 // Trim off the \0 and anything after it. If the array is not nul 4153 // terminated, we just return the whole end of string. The client may know 4154 // some other way that the string is length-bound. 4155 Str = Str.substr(0, Str.find('\0')); 4156 } 4157 return true; 4158 } 4159 4160 // These next two are very similar to the above, but also look through PHI 4161 // nodes. 4162 // TODO: See if we can integrate these two together. 4163 4164 /// If we can compute the length of the string pointed to by 4165 /// the specified pointer, return 'len+1'. If we can't, return 0. 4166 static uint64_t GetStringLengthH(const Value *V, 4167 SmallPtrSetImpl<const PHINode*> &PHIs, 4168 unsigned CharSize) { 4169 // Look through noop bitcast instructions. 4170 V = V->stripPointerCasts(); 4171 4172 // If this is a PHI node, there are two cases: either we have already seen it 4173 // or we haven't. 4174 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4175 if (!PHIs.insert(PN).second) 4176 return ~0ULL; // already in the set. 4177 4178 // If it was new, see if all the input strings are the same length. 4179 uint64_t LenSoFar = ~0ULL; 4180 for (Value *IncValue : PN->incoming_values()) { 4181 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4182 if (Len == 0) return 0; // Unknown length -> unknown. 4183 4184 if (Len == ~0ULL) continue; 4185 4186 if (Len != LenSoFar && LenSoFar != ~0ULL) 4187 return 0; // Disagree -> unknown. 4188 LenSoFar = Len; 4189 } 4190 4191 // Success, all agree. 4192 return LenSoFar; 4193 } 4194 4195 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4196 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4197 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4198 if (Len1 == 0) return 0; 4199 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4200 if (Len2 == 0) return 0; 4201 if (Len1 == ~0ULL) return Len2; 4202 if (Len2 == ~0ULL) return Len1; 4203 if (Len1 != Len2) return 0; 4204 return Len1; 4205 } 4206 4207 // Otherwise, see if we can read the string. 4208 ConstantDataArraySlice Slice; 4209 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4210 return 0; 4211 4212 if (Slice.Array == nullptr) 4213 return 1; 4214 4215 // Search for nul characters 4216 unsigned NullIndex = 0; 4217 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4218 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4219 break; 4220 } 4221 4222 return NullIndex + 1; 4223 } 4224 4225 /// If we can compute the length of the string pointed to by 4226 /// the specified pointer, return 'len+1'. If we can't, return 0. 4227 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4228 if (!V->getType()->isPointerTy()) 4229 return 0; 4230 4231 SmallPtrSet<const PHINode*, 32> PHIs; 4232 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4233 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4234 // an empty string as a length. 4235 return Len == ~0ULL ? 1 : Len; 4236 } 4237 4238 const Value * 4239 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4240 bool MustPreserveNullness) { 4241 assert(Call && 4242 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4243 if (const Value *RV = Call->getReturnedArgOperand()) 4244 return RV; 4245 // This can be used only as a aliasing property. 4246 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4247 Call, MustPreserveNullness)) 4248 return Call->getArgOperand(0); 4249 return nullptr; 4250 } 4251 4252 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4253 const CallBase *Call, bool MustPreserveNullness) { 4254 switch (Call->getIntrinsicID()) { 4255 case Intrinsic::launder_invariant_group: 4256 case Intrinsic::strip_invariant_group: 4257 case Intrinsic::aarch64_irg: 4258 case Intrinsic::aarch64_tagp: 4259 return true; 4260 case Intrinsic::ptrmask: 4261 return !MustPreserveNullness; 4262 default: 4263 return false; 4264 } 4265 } 4266 4267 /// \p PN defines a loop-variant pointer to an object. Check if the 4268 /// previous iteration of the loop was referring to the same object as \p PN. 4269 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4270 const LoopInfo *LI) { 4271 // Find the loop-defined value. 4272 Loop *L = LI->getLoopFor(PN->getParent()); 4273 if (PN->getNumIncomingValues() != 2) 4274 return true; 4275 4276 // Find the value from previous iteration. 4277 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4278 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4279 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4280 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4281 return true; 4282 4283 // If a new pointer is loaded in the loop, the pointer references a different 4284 // object in every iteration. E.g.: 4285 // for (i) 4286 // int *p = a[i]; 4287 // ... 4288 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4289 if (!L->isLoopInvariant(Load->getPointerOperand())) 4290 return false; 4291 return true; 4292 } 4293 4294 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4295 if (!V->getType()->isPointerTy()) 4296 return V; 4297 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4298 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4299 V = GEP->getPointerOperand(); 4300 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4301 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4302 V = cast<Operator>(V)->getOperand(0); 4303 if (!V->getType()->isPointerTy()) 4304 return V; 4305 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4306 if (GA->isInterposable()) 4307 return V; 4308 V = GA->getAliasee(); 4309 } else { 4310 if (auto *PHI = dyn_cast<PHINode>(V)) { 4311 // Look through single-arg phi nodes created by LCSSA. 4312 if (PHI->getNumIncomingValues() == 1) { 4313 V = PHI->getIncomingValue(0); 4314 continue; 4315 } 4316 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4317 // CaptureTracking can know about special capturing properties of some 4318 // intrinsics like launder.invariant.group, that can't be expressed with 4319 // the attributes, but have properties like returning aliasing pointer. 4320 // Because some analysis may assume that nocaptured pointer is not 4321 // returned from some special intrinsic (because function would have to 4322 // be marked with returns attribute), it is crucial to use this function 4323 // because it should be in sync with CaptureTracking. Not using it may 4324 // cause weird miscompilations where 2 aliasing pointers are assumed to 4325 // noalias. 4326 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4327 V = RP; 4328 continue; 4329 } 4330 } 4331 4332 return V; 4333 } 4334 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4335 } 4336 return V; 4337 } 4338 4339 void llvm::getUnderlyingObjects(const Value *V, 4340 SmallVectorImpl<const Value *> &Objects, 4341 LoopInfo *LI, unsigned MaxLookup) { 4342 SmallPtrSet<const Value *, 4> Visited; 4343 SmallVector<const Value *, 4> Worklist; 4344 Worklist.push_back(V); 4345 do { 4346 const Value *P = Worklist.pop_back_val(); 4347 P = getUnderlyingObject(P, MaxLookup); 4348 4349 if (!Visited.insert(P).second) 4350 continue; 4351 4352 if (auto *SI = dyn_cast<SelectInst>(P)) { 4353 Worklist.push_back(SI->getTrueValue()); 4354 Worklist.push_back(SI->getFalseValue()); 4355 continue; 4356 } 4357 4358 if (auto *PN = dyn_cast<PHINode>(P)) { 4359 // If this PHI changes the underlying object in every iteration of the 4360 // loop, don't look through it. Consider: 4361 // int **A; 4362 // for (i) { 4363 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4364 // Curr = A[i]; 4365 // *Prev, *Curr; 4366 // 4367 // Prev is tracking Curr one iteration behind so they refer to different 4368 // underlying objects. 4369 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4370 isSameUnderlyingObjectInLoop(PN, LI)) 4371 append_range(Worklist, PN->incoming_values()); 4372 continue; 4373 } 4374 4375 Objects.push_back(P); 4376 } while (!Worklist.empty()); 4377 } 4378 4379 /// This is the function that does the work of looking through basic 4380 /// ptrtoint+arithmetic+inttoptr sequences. 4381 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4382 do { 4383 if (const Operator *U = dyn_cast<Operator>(V)) { 4384 // If we find a ptrtoint, we can transfer control back to the 4385 // regular getUnderlyingObjectFromInt. 4386 if (U->getOpcode() == Instruction::PtrToInt) 4387 return U->getOperand(0); 4388 // If we find an add of a constant, a multiplied value, or a phi, it's 4389 // likely that the other operand will lead us to the base 4390 // object. We don't have to worry about the case where the 4391 // object address is somehow being computed by the multiply, 4392 // because our callers only care when the result is an 4393 // identifiable object. 4394 if (U->getOpcode() != Instruction::Add || 4395 (!isa<ConstantInt>(U->getOperand(1)) && 4396 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4397 !isa<PHINode>(U->getOperand(1)))) 4398 return V; 4399 V = U->getOperand(0); 4400 } else { 4401 return V; 4402 } 4403 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4404 } while (true); 4405 } 4406 4407 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4408 /// ptrtoint+arithmetic+inttoptr sequences. 4409 /// It returns false if unidentified object is found in getUnderlyingObjects. 4410 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4411 SmallVectorImpl<Value *> &Objects) { 4412 SmallPtrSet<const Value *, 16> Visited; 4413 SmallVector<const Value *, 4> Working(1, V); 4414 do { 4415 V = Working.pop_back_val(); 4416 4417 SmallVector<const Value *, 4> Objs; 4418 getUnderlyingObjects(V, Objs); 4419 4420 for (const Value *V : Objs) { 4421 if (!Visited.insert(V).second) 4422 continue; 4423 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4424 const Value *O = 4425 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4426 if (O->getType()->isPointerTy()) { 4427 Working.push_back(O); 4428 continue; 4429 } 4430 } 4431 // If getUnderlyingObjects fails to find an identifiable object, 4432 // getUnderlyingObjectsForCodeGen also fails for safety. 4433 if (!isIdentifiedObject(V)) { 4434 Objects.clear(); 4435 return false; 4436 } 4437 Objects.push_back(const_cast<Value *>(V)); 4438 } 4439 } while (!Working.empty()); 4440 return true; 4441 } 4442 4443 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4444 AllocaInst *Result = nullptr; 4445 SmallPtrSet<Value *, 4> Visited; 4446 SmallVector<Value *, 4> Worklist; 4447 4448 auto AddWork = [&](Value *V) { 4449 if (Visited.insert(V).second) 4450 Worklist.push_back(V); 4451 }; 4452 4453 AddWork(V); 4454 do { 4455 V = Worklist.pop_back_val(); 4456 assert(Visited.count(V)); 4457 4458 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4459 if (Result && Result != AI) 4460 return nullptr; 4461 Result = AI; 4462 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4463 AddWork(CI->getOperand(0)); 4464 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4465 for (Value *IncValue : PN->incoming_values()) 4466 AddWork(IncValue); 4467 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4468 AddWork(SI->getTrueValue()); 4469 AddWork(SI->getFalseValue()); 4470 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4471 if (OffsetZero && !GEP->hasAllZeroIndices()) 4472 return nullptr; 4473 AddWork(GEP->getPointerOperand()); 4474 } else { 4475 return nullptr; 4476 } 4477 } while (!Worklist.empty()); 4478 4479 return Result; 4480 } 4481 4482 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4483 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4484 for (const User *U : V->users()) { 4485 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4486 if (!II) 4487 return false; 4488 4489 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4490 continue; 4491 4492 if (AllowDroppable && II->isDroppable()) 4493 continue; 4494 4495 return false; 4496 } 4497 return true; 4498 } 4499 4500 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4501 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4502 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4503 } 4504 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4505 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4506 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4507 } 4508 4509 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4510 if (!LI.isUnordered()) 4511 return true; 4512 const Function &F = *LI.getFunction(); 4513 // Speculative load may create a race that did not exist in the source. 4514 return F.hasFnAttribute(Attribute::SanitizeThread) || 4515 // Speculative load may load data from dirty regions. 4516 F.hasFnAttribute(Attribute::SanitizeAddress) || 4517 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4518 } 4519 4520 4521 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4522 const Instruction *CtxI, 4523 const DominatorTree *DT, 4524 const TargetLibraryInfo *TLI) { 4525 const Operator *Inst = dyn_cast<Operator>(V); 4526 if (!Inst) 4527 return false; 4528 4529 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4530 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4531 if (C->canTrap()) 4532 return false; 4533 4534 switch (Inst->getOpcode()) { 4535 default: 4536 return true; 4537 case Instruction::UDiv: 4538 case Instruction::URem: { 4539 // x / y is undefined if y == 0. 4540 const APInt *V; 4541 if (match(Inst->getOperand(1), m_APInt(V))) 4542 return *V != 0; 4543 return false; 4544 } 4545 case Instruction::SDiv: 4546 case Instruction::SRem: { 4547 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4548 const APInt *Numerator, *Denominator; 4549 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4550 return false; 4551 // We cannot hoist this division if the denominator is 0. 4552 if (*Denominator == 0) 4553 return false; 4554 // It's safe to hoist if the denominator is not 0 or -1. 4555 if (!Denominator->isAllOnesValue()) 4556 return true; 4557 // At this point we know that the denominator is -1. It is safe to hoist as 4558 // long we know that the numerator is not INT_MIN. 4559 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4560 return !Numerator->isMinSignedValue(); 4561 // The numerator *might* be MinSignedValue. 4562 return false; 4563 } 4564 case Instruction::Load: { 4565 const LoadInst *LI = cast<LoadInst>(Inst); 4566 if (mustSuppressSpeculation(*LI)) 4567 return false; 4568 const DataLayout &DL = LI->getModule()->getDataLayout(); 4569 return isDereferenceableAndAlignedPointer( 4570 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4571 DL, CtxI, DT, TLI); 4572 } 4573 case Instruction::Call: { 4574 auto *CI = cast<const CallInst>(Inst); 4575 const Function *Callee = CI->getCalledFunction(); 4576 4577 // The called function could have undefined behavior or side-effects, even 4578 // if marked readnone nounwind. 4579 return Callee && Callee->isSpeculatable(); 4580 } 4581 case Instruction::VAArg: 4582 case Instruction::Alloca: 4583 case Instruction::Invoke: 4584 case Instruction::CallBr: 4585 case Instruction::PHI: 4586 case Instruction::Store: 4587 case Instruction::Ret: 4588 case Instruction::Br: 4589 case Instruction::IndirectBr: 4590 case Instruction::Switch: 4591 case Instruction::Unreachable: 4592 case Instruction::Fence: 4593 case Instruction::AtomicRMW: 4594 case Instruction::AtomicCmpXchg: 4595 case Instruction::LandingPad: 4596 case Instruction::Resume: 4597 case Instruction::CatchSwitch: 4598 case Instruction::CatchPad: 4599 case Instruction::CatchRet: 4600 case Instruction::CleanupPad: 4601 case Instruction::CleanupRet: 4602 return false; // Misc instructions which have effects 4603 } 4604 } 4605 4606 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4607 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4608 } 4609 4610 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4611 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4612 switch (OR) { 4613 case ConstantRange::OverflowResult::MayOverflow: 4614 return OverflowResult::MayOverflow; 4615 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4616 return OverflowResult::AlwaysOverflowsLow; 4617 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4618 return OverflowResult::AlwaysOverflowsHigh; 4619 case ConstantRange::OverflowResult::NeverOverflows: 4620 return OverflowResult::NeverOverflows; 4621 } 4622 llvm_unreachable("Unknown OverflowResult"); 4623 } 4624 4625 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4626 static ConstantRange computeConstantRangeIncludingKnownBits( 4627 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4628 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4629 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4630 KnownBits Known = computeKnownBits( 4631 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4632 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4633 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4634 ConstantRange::PreferredRangeType RangeType = 4635 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4636 return CR1.intersectWith(CR2, RangeType); 4637 } 4638 4639 OverflowResult llvm::computeOverflowForUnsignedMul( 4640 const Value *LHS, const Value *RHS, const DataLayout &DL, 4641 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4642 bool UseInstrInfo) { 4643 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4644 nullptr, UseInstrInfo); 4645 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4646 nullptr, UseInstrInfo); 4647 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4648 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4649 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4650 } 4651 4652 OverflowResult 4653 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4654 const DataLayout &DL, AssumptionCache *AC, 4655 const Instruction *CxtI, 4656 const DominatorTree *DT, bool UseInstrInfo) { 4657 // Multiplying n * m significant bits yields a result of n + m significant 4658 // bits. If the total number of significant bits does not exceed the 4659 // result bit width (minus 1), there is no overflow. 4660 // This means if we have enough leading sign bits in the operands 4661 // we can guarantee that the result does not overflow. 4662 // Ref: "Hacker's Delight" by Henry Warren 4663 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4664 4665 // Note that underestimating the number of sign bits gives a more 4666 // conservative answer. 4667 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4668 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4669 4670 // First handle the easy case: if we have enough sign bits there's 4671 // definitely no overflow. 4672 if (SignBits > BitWidth + 1) 4673 return OverflowResult::NeverOverflows; 4674 4675 // There are two ambiguous cases where there can be no overflow: 4676 // SignBits == BitWidth + 1 and 4677 // SignBits == BitWidth 4678 // The second case is difficult to check, therefore we only handle the 4679 // first case. 4680 if (SignBits == BitWidth + 1) { 4681 // It overflows only when both arguments are negative and the true 4682 // product is exactly the minimum negative number. 4683 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4684 // For simplicity we just check if at least one side is not negative. 4685 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4686 nullptr, UseInstrInfo); 4687 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4688 nullptr, UseInstrInfo); 4689 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4690 return OverflowResult::NeverOverflows; 4691 } 4692 return OverflowResult::MayOverflow; 4693 } 4694 4695 OverflowResult llvm::computeOverflowForUnsignedAdd( 4696 const Value *LHS, const Value *RHS, const DataLayout &DL, 4697 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4698 bool UseInstrInfo) { 4699 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4700 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4701 nullptr, UseInstrInfo); 4702 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4703 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4704 nullptr, UseInstrInfo); 4705 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4706 } 4707 4708 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4709 const Value *RHS, 4710 const AddOperator *Add, 4711 const DataLayout &DL, 4712 AssumptionCache *AC, 4713 const Instruction *CxtI, 4714 const DominatorTree *DT) { 4715 if (Add && Add->hasNoSignedWrap()) { 4716 return OverflowResult::NeverOverflows; 4717 } 4718 4719 // If LHS and RHS each have at least two sign bits, the addition will look 4720 // like 4721 // 4722 // XX..... + 4723 // YY..... 4724 // 4725 // If the carry into the most significant position is 0, X and Y can't both 4726 // be 1 and therefore the carry out of the addition is also 0. 4727 // 4728 // If the carry into the most significant position is 1, X and Y can't both 4729 // be 0 and therefore the carry out of the addition is also 1. 4730 // 4731 // Since the carry into the most significant position is always equal to 4732 // the carry out of the addition, there is no signed overflow. 4733 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4734 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4735 return OverflowResult::NeverOverflows; 4736 4737 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4738 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4739 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4740 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4741 OverflowResult OR = 4742 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4743 if (OR != OverflowResult::MayOverflow) 4744 return OR; 4745 4746 // The remaining code needs Add to be available. Early returns if not so. 4747 if (!Add) 4748 return OverflowResult::MayOverflow; 4749 4750 // If the sign of Add is the same as at least one of the operands, this add 4751 // CANNOT overflow. If this can be determined from the known bits of the 4752 // operands the above signedAddMayOverflow() check will have already done so. 4753 // The only other way to improve on the known bits is from an assumption, so 4754 // call computeKnownBitsFromAssume() directly. 4755 bool LHSOrRHSKnownNonNegative = 4756 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4757 bool LHSOrRHSKnownNegative = 4758 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4759 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4760 KnownBits AddKnown(LHSRange.getBitWidth()); 4761 computeKnownBitsFromAssume( 4762 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4763 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4764 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4765 return OverflowResult::NeverOverflows; 4766 } 4767 4768 return OverflowResult::MayOverflow; 4769 } 4770 4771 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4772 const Value *RHS, 4773 const DataLayout &DL, 4774 AssumptionCache *AC, 4775 const Instruction *CxtI, 4776 const DominatorTree *DT) { 4777 // Checking for conditions implied by dominating conditions may be expensive. 4778 // Limit it to usub_with_overflow calls for now. 4779 if (match(CxtI, 4780 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4781 if (auto C = 4782 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4783 if (*C) 4784 return OverflowResult::NeverOverflows; 4785 return OverflowResult::AlwaysOverflowsLow; 4786 } 4787 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4788 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4789 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4790 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4791 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4792 } 4793 4794 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4795 const Value *RHS, 4796 const DataLayout &DL, 4797 AssumptionCache *AC, 4798 const Instruction *CxtI, 4799 const DominatorTree *DT) { 4800 // If LHS and RHS each have at least two sign bits, the subtraction 4801 // cannot overflow. 4802 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4803 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4804 return OverflowResult::NeverOverflows; 4805 4806 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4807 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4808 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4809 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4810 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4811 } 4812 4813 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4814 const DominatorTree &DT) { 4815 SmallVector<const BranchInst *, 2> GuardingBranches; 4816 SmallVector<const ExtractValueInst *, 2> Results; 4817 4818 for (const User *U : WO->users()) { 4819 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4820 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4821 4822 if (EVI->getIndices()[0] == 0) 4823 Results.push_back(EVI); 4824 else { 4825 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4826 4827 for (const auto *U : EVI->users()) 4828 if (const auto *B = dyn_cast<BranchInst>(U)) { 4829 assert(B->isConditional() && "How else is it using an i1?"); 4830 GuardingBranches.push_back(B); 4831 } 4832 } 4833 } else { 4834 // We are using the aggregate directly in a way we don't want to analyze 4835 // here (storing it to a global, say). 4836 return false; 4837 } 4838 } 4839 4840 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4841 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4842 if (!NoWrapEdge.isSingleEdge()) 4843 return false; 4844 4845 // Check if all users of the add are provably no-wrap. 4846 for (const auto *Result : Results) { 4847 // If the extractvalue itself is not executed on overflow, the we don't 4848 // need to check each use separately, since domination is transitive. 4849 if (DT.dominates(NoWrapEdge, Result->getParent())) 4850 continue; 4851 4852 for (auto &RU : Result->uses()) 4853 if (!DT.dominates(NoWrapEdge, RU)) 4854 return false; 4855 } 4856 4857 return true; 4858 }; 4859 4860 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4861 } 4862 4863 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4864 // See whether I has flags that may create poison 4865 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4866 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4867 return true; 4868 } 4869 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4870 if (ExactOp->isExact()) 4871 return true; 4872 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4873 auto FMF = FP->getFastMathFlags(); 4874 if (FMF.noNaNs() || FMF.noInfs()) 4875 return true; 4876 } 4877 4878 unsigned Opcode = Op->getOpcode(); 4879 4880 // Check whether opcode is a poison/undef-generating operation 4881 switch (Opcode) { 4882 case Instruction::Shl: 4883 case Instruction::AShr: 4884 case Instruction::LShr: { 4885 // Shifts return poison if shiftwidth is larger than the bitwidth. 4886 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4887 SmallVector<Constant *, 4> ShiftAmounts; 4888 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4889 unsigned NumElts = FVTy->getNumElements(); 4890 for (unsigned i = 0; i < NumElts; ++i) 4891 ShiftAmounts.push_back(C->getAggregateElement(i)); 4892 } else if (isa<ScalableVectorType>(C->getType())) 4893 return true; // Can't tell, just return true to be safe 4894 else 4895 ShiftAmounts.push_back(C); 4896 4897 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4898 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4899 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4900 }); 4901 return !Safe; 4902 } 4903 return true; 4904 } 4905 case Instruction::FPToSI: 4906 case Instruction::FPToUI: 4907 // fptosi/ui yields poison if the resulting value does not fit in the 4908 // destination type. 4909 return true; 4910 case Instruction::Call: 4911 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4912 switch (II->getIntrinsicID()) { 4913 // TODO: Add more intrinsics. 4914 case Intrinsic::ctpop: 4915 case Intrinsic::sadd_with_overflow: 4916 case Intrinsic::ssub_with_overflow: 4917 case Intrinsic::smul_with_overflow: 4918 case Intrinsic::uadd_with_overflow: 4919 case Intrinsic::usub_with_overflow: 4920 case Intrinsic::umul_with_overflow: 4921 return false; 4922 } 4923 } 4924 LLVM_FALLTHROUGH; 4925 case Instruction::CallBr: 4926 case Instruction::Invoke: { 4927 const auto *CB = cast<CallBase>(Op); 4928 return !CB->hasRetAttr(Attribute::NoUndef); 4929 } 4930 case Instruction::InsertElement: 4931 case Instruction::ExtractElement: { 4932 // If index exceeds the length of the vector, it returns poison 4933 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4934 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4935 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4936 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4937 return true; 4938 return false; 4939 } 4940 case Instruction::ShuffleVector: { 4941 // shufflevector may return undef. 4942 if (PoisonOnly) 4943 return false; 4944 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4945 ? cast<ConstantExpr>(Op)->getShuffleMask() 4946 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4947 return is_contained(Mask, UndefMaskElem); 4948 } 4949 case Instruction::FNeg: 4950 case Instruction::PHI: 4951 case Instruction::Select: 4952 case Instruction::URem: 4953 case Instruction::SRem: 4954 case Instruction::ExtractValue: 4955 case Instruction::InsertValue: 4956 case Instruction::Freeze: 4957 case Instruction::ICmp: 4958 case Instruction::FCmp: 4959 return false; 4960 case Instruction::GetElementPtr: { 4961 const auto *GEP = cast<GEPOperator>(Op); 4962 return GEP->isInBounds(); 4963 } 4964 default: { 4965 const auto *CE = dyn_cast<ConstantExpr>(Op); 4966 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4967 return false; 4968 else if (Instruction::isBinaryOp(Opcode)) 4969 return false; 4970 // Be conservative and return true. 4971 return true; 4972 } 4973 } 4974 } 4975 4976 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4977 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4978 } 4979 4980 bool llvm::canCreatePoison(const Operator *Op) { 4981 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4982 } 4983 4984 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4985 const Value *V, unsigned Depth) { 4986 if (ValAssumedPoison == V) 4987 return true; 4988 4989 const unsigned MaxDepth = 2; 4990 if (Depth >= MaxDepth) 4991 return false; 4992 4993 if (const auto *I = dyn_cast<Instruction>(V)) { 4994 if (propagatesPoison(cast<Operator>(I))) 4995 return any_of(I->operands(), [=](const Value *Op) { 4996 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4997 }); 4998 4999 // 'select ValAssumedPoison, _, _' is poison. 5000 if (const auto *SI = dyn_cast<SelectInst>(I)) 5001 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5002 Depth + 1); 5003 // V = extractvalue V0, idx 5004 // V2 = extractvalue V0, idx2 5005 // V0's elements are all poison or not. (e.g., add_with_overflow) 5006 const WithOverflowInst *II; 5007 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5008 match(ValAssumedPoison, m_ExtractValue(m_Specific(II)))) 5009 return true; 5010 } 5011 return false; 5012 } 5013 5014 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5015 unsigned Depth) { 5016 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5017 return true; 5018 5019 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5020 return true; 5021 5022 const unsigned MaxDepth = 2; 5023 if (Depth >= MaxDepth) 5024 return false; 5025 5026 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5027 if (I && !canCreatePoison(cast<Operator>(I))) { 5028 return all_of(I->operands(), [=](const Value *Op) { 5029 return impliesPoison(Op, V, Depth + 1); 5030 }); 5031 } 5032 return false; 5033 } 5034 5035 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5036 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5037 } 5038 5039 static bool programUndefinedIfUndefOrPoison(const Value *V, 5040 bool PoisonOnly); 5041 5042 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5043 AssumptionCache *AC, 5044 const Instruction *CtxI, 5045 const DominatorTree *DT, 5046 unsigned Depth, bool PoisonOnly) { 5047 if (Depth >= MaxAnalysisRecursionDepth) 5048 return false; 5049 5050 if (isa<MetadataAsValue>(V)) 5051 return false; 5052 5053 if (const auto *A = dyn_cast<Argument>(V)) { 5054 if (A->hasAttribute(Attribute::NoUndef)) 5055 return true; 5056 } 5057 5058 if (auto *C = dyn_cast<Constant>(V)) { 5059 if (isa<UndefValue>(C)) 5060 return PoisonOnly && !isa<PoisonValue>(C); 5061 5062 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5063 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5064 return true; 5065 5066 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5067 return (PoisonOnly ? !C->containsPoisonElement() 5068 : !C->containsUndefOrPoisonElement()) && 5069 !C->containsConstantExpression(); 5070 } 5071 5072 // Strip cast operations from a pointer value. 5073 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5074 // inbounds with zero offset. To guarantee that the result isn't poison, the 5075 // stripped pointer is checked as it has to be pointing into an allocated 5076 // object or be null `null` to ensure `inbounds` getelement pointers with a 5077 // zero offset could not produce poison. 5078 // It can strip off addrspacecast that do not change bit representation as 5079 // well. We believe that such addrspacecast is equivalent to no-op. 5080 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5081 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5082 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5083 return true; 5084 5085 auto OpCheck = [&](const Value *V) { 5086 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5087 PoisonOnly); 5088 }; 5089 5090 if (auto *Opr = dyn_cast<Operator>(V)) { 5091 // If the value is a freeze instruction, then it can never 5092 // be undef or poison. 5093 if (isa<FreezeInst>(V)) 5094 return true; 5095 5096 if (const auto *CB = dyn_cast<CallBase>(V)) { 5097 if (CB->hasRetAttr(Attribute::NoUndef)) 5098 return true; 5099 } 5100 5101 if (const auto *PN = dyn_cast<PHINode>(V)) { 5102 unsigned Num = PN->getNumIncomingValues(); 5103 bool IsWellDefined = true; 5104 for (unsigned i = 0; i < Num; ++i) { 5105 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5106 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5107 DT, Depth + 1, PoisonOnly)) { 5108 IsWellDefined = false; 5109 break; 5110 } 5111 } 5112 if (IsWellDefined) 5113 return true; 5114 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5115 return true; 5116 } 5117 5118 if (auto *I = dyn_cast<LoadInst>(V)) 5119 if (I->getMetadata(LLVMContext::MD_noundef)) 5120 return true; 5121 5122 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5123 return true; 5124 5125 // CxtI may be null or a cloned instruction. 5126 if (!CtxI || !CtxI->getParent() || !DT) 5127 return false; 5128 5129 auto *DNode = DT->getNode(CtxI->getParent()); 5130 if (!DNode) 5131 // Unreachable block 5132 return false; 5133 5134 // If V is used as a branch condition before reaching CtxI, V cannot be 5135 // undef or poison. 5136 // br V, BB1, BB2 5137 // BB1: 5138 // CtxI ; V cannot be undef or poison here 5139 auto *Dominator = DNode->getIDom(); 5140 while (Dominator) { 5141 auto *TI = Dominator->getBlock()->getTerminator(); 5142 5143 Value *Cond = nullptr; 5144 if (auto BI = dyn_cast<BranchInst>(TI)) { 5145 if (BI->isConditional()) 5146 Cond = BI->getCondition(); 5147 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5148 Cond = SI->getCondition(); 5149 } 5150 5151 if (Cond) { 5152 if (Cond == V) 5153 return true; 5154 else if (PoisonOnly && isa<Operator>(Cond)) { 5155 // For poison, we can analyze further 5156 auto *Opr = cast<Operator>(Cond); 5157 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5158 return true; 5159 } 5160 } 5161 5162 Dominator = Dominator->getIDom(); 5163 } 5164 5165 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5166 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5167 return true; 5168 5169 return false; 5170 } 5171 5172 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5173 const Instruction *CtxI, 5174 const DominatorTree *DT, 5175 unsigned Depth) { 5176 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5177 } 5178 5179 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5180 const Instruction *CtxI, 5181 const DominatorTree *DT, unsigned Depth) { 5182 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5183 } 5184 5185 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5186 const DataLayout &DL, 5187 AssumptionCache *AC, 5188 const Instruction *CxtI, 5189 const DominatorTree *DT) { 5190 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5191 Add, DL, AC, CxtI, DT); 5192 } 5193 5194 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5195 const Value *RHS, 5196 const DataLayout &DL, 5197 AssumptionCache *AC, 5198 const Instruction *CxtI, 5199 const DominatorTree *DT) { 5200 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5201 } 5202 5203 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5204 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5205 // of time because it's possible for another thread to interfere with it for an 5206 // arbitrary length of time, but programs aren't allowed to rely on that. 5207 5208 // If there is no successor, then execution can't transfer to it. 5209 if (isa<ReturnInst>(I)) 5210 return false; 5211 if (isa<UnreachableInst>(I)) 5212 return false; 5213 5214 // An instruction that returns without throwing must transfer control flow 5215 // to a successor. 5216 return !I->mayThrow() && I->willReturn(); 5217 } 5218 5219 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5220 // TODO: This is slightly conservative for invoke instruction since exiting 5221 // via an exception *is* normal control for them. 5222 for (const Instruction &I : *BB) 5223 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5224 return false; 5225 return true; 5226 } 5227 5228 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5229 const Loop *L) { 5230 // The loop header is guaranteed to be executed for every iteration. 5231 // 5232 // FIXME: Relax this constraint to cover all basic blocks that are 5233 // guaranteed to be executed at every iteration. 5234 if (I->getParent() != L->getHeader()) return false; 5235 5236 for (const Instruction &LI : *L->getHeader()) { 5237 if (&LI == I) return true; 5238 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5239 } 5240 llvm_unreachable("Instruction not contained in its own parent basic block."); 5241 } 5242 5243 bool llvm::propagatesPoison(const Operator *I) { 5244 switch (I->getOpcode()) { 5245 case Instruction::Freeze: 5246 case Instruction::Select: 5247 case Instruction::PHI: 5248 case Instruction::Invoke: 5249 return false; 5250 case Instruction::Call: 5251 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5252 switch (II->getIntrinsicID()) { 5253 // TODO: Add more intrinsics. 5254 case Intrinsic::sadd_with_overflow: 5255 case Intrinsic::ssub_with_overflow: 5256 case Intrinsic::smul_with_overflow: 5257 case Intrinsic::uadd_with_overflow: 5258 case Intrinsic::usub_with_overflow: 5259 case Intrinsic::umul_with_overflow: 5260 // If an input is a vector containing a poison element, the 5261 // two output vectors (calculated results, overflow bits)' 5262 // corresponding lanes are poison. 5263 return true; 5264 } 5265 } 5266 return false; 5267 case Instruction::ICmp: 5268 case Instruction::FCmp: 5269 case Instruction::GetElementPtr: 5270 return true; 5271 default: 5272 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5273 return true; 5274 5275 // Be conservative and return false. 5276 return false; 5277 } 5278 } 5279 5280 void llvm::getGuaranteedWellDefinedOps( 5281 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5282 switch (I->getOpcode()) { 5283 case Instruction::Store: 5284 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5285 break; 5286 5287 case Instruction::Load: 5288 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5289 break; 5290 5291 // Since dereferenceable attribute imply noundef, atomic operations 5292 // also implicitly have noundef pointers too 5293 case Instruction::AtomicCmpXchg: 5294 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5295 break; 5296 5297 case Instruction::AtomicRMW: 5298 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5299 break; 5300 5301 case Instruction::Call: 5302 case Instruction::Invoke: { 5303 const CallBase *CB = cast<CallBase>(I); 5304 if (CB->isIndirectCall()) 5305 Operands.insert(CB->getCalledOperand()); 5306 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5307 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5308 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5309 Operands.insert(CB->getArgOperand(i)); 5310 } 5311 break; 5312 } 5313 5314 default: 5315 break; 5316 } 5317 } 5318 5319 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5320 SmallPtrSetImpl<const Value *> &Operands) { 5321 getGuaranteedWellDefinedOps(I, Operands); 5322 switch (I->getOpcode()) { 5323 // Divisors of these operations are allowed to be partially undef. 5324 case Instruction::UDiv: 5325 case Instruction::SDiv: 5326 case Instruction::URem: 5327 case Instruction::SRem: 5328 Operands.insert(I->getOperand(1)); 5329 break; 5330 5331 default: 5332 break; 5333 } 5334 } 5335 5336 bool llvm::mustTriggerUB(const Instruction *I, 5337 const SmallSet<const Value *, 16>& KnownPoison) { 5338 SmallPtrSet<const Value *, 4> NonPoisonOps; 5339 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5340 5341 for (const auto *V : NonPoisonOps) 5342 if (KnownPoison.count(V)) 5343 return true; 5344 5345 return false; 5346 } 5347 5348 static bool programUndefinedIfUndefOrPoison(const Value *V, 5349 bool PoisonOnly) { 5350 // We currently only look for uses of values within the same basic 5351 // block, as that makes it easier to guarantee that the uses will be 5352 // executed given that Inst is executed. 5353 // 5354 // FIXME: Expand this to consider uses beyond the same basic block. To do 5355 // this, look out for the distinction between post-dominance and strong 5356 // post-dominance. 5357 const BasicBlock *BB = nullptr; 5358 BasicBlock::const_iterator Begin; 5359 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5360 BB = Inst->getParent(); 5361 Begin = Inst->getIterator(); 5362 Begin++; 5363 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5364 BB = &Arg->getParent()->getEntryBlock(); 5365 Begin = BB->begin(); 5366 } else { 5367 return false; 5368 } 5369 5370 BasicBlock::const_iterator End = BB->end(); 5371 5372 if (!PoisonOnly) { 5373 // Since undef does not propagate eagerly, be conservative & just check 5374 // whether a value is directly passed to an instruction that must take 5375 // well-defined operands. 5376 5377 for (auto &I : make_range(Begin, End)) { 5378 SmallPtrSet<const Value *, 4> WellDefinedOps; 5379 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5380 for (auto *Op : WellDefinedOps) { 5381 if (Op == V) 5382 return true; 5383 } 5384 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5385 break; 5386 } 5387 return false; 5388 } 5389 5390 // Set of instructions that we have proved will yield poison if Inst 5391 // does. 5392 SmallSet<const Value *, 16> YieldsPoison; 5393 SmallSet<const BasicBlock *, 4> Visited; 5394 5395 YieldsPoison.insert(V); 5396 auto Propagate = [&](const User *User) { 5397 if (propagatesPoison(cast<Operator>(User))) 5398 YieldsPoison.insert(User); 5399 }; 5400 for_each(V->users(), Propagate); 5401 Visited.insert(BB); 5402 5403 unsigned Iter = 0; 5404 while (Iter++ < MaxAnalysisRecursionDepth) { 5405 for (auto &I : make_range(Begin, End)) { 5406 if (mustTriggerUB(&I, YieldsPoison)) 5407 return true; 5408 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5409 return false; 5410 5411 // Mark poison that propagates from I through uses of I. 5412 if (YieldsPoison.count(&I)) 5413 for_each(I.users(), Propagate); 5414 } 5415 5416 if (auto *NextBB = BB->getSingleSuccessor()) { 5417 if (Visited.insert(NextBB).second) { 5418 BB = NextBB; 5419 Begin = BB->getFirstNonPHI()->getIterator(); 5420 End = BB->end(); 5421 continue; 5422 } 5423 } 5424 5425 break; 5426 } 5427 return false; 5428 } 5429 5430 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5431 return ::programUndefinedIfUndefOrPoison(Inst, false); 5432 } 5433 5434 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5435 return ::programUndefinedIfUndefOrPoison(Inst, true); 5436 } 5437 5438 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5439 if (FMF.noNaNs()) 5440 return true; 5441 5442 if (auto *C = dyn_cast<ConstantFP>(V)) 5443 return !C->isNaN(); 5444 5445 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5446 if (!C->getElementType()->isFloatingPointTy()) 5447 return false; 5448 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5449 if (C->getElementAsAPFloat(I).isNaN()) 5450 return false; 5451 } 5452 return true; 5453 } 5454 5455 if (isa<ConstantAggregateZero>(V)) 5456 return true; 5457 5458 return false; 5459 } 5460 5461 static bool isKnownNonZero(const Value *V) { 5462 if (auto *C = dyn_cast<ConstantFP>(V)) 5463 return !C->isZero(); 5464 5465 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5466 if (!C->getElementType()->isFloatingPointTy()) 5467 return false; 5468 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5469 if (C->getElementAsAPFloat(I).isZero()) 5470 return false; 5471 } 5472 return true; 5473 } 5474 5475 return false; 5476 } 5477 5478 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5479 /// Given non-min/max outer cmp/select from the clamp pattern this 5480 /// function recognizes if it can be substitued by a "canonical" min/max 5481 /// pattern. 5482 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5483 Value *CmpLHS, Value *CmpRHS, 5484 Value *TrueVal, Value *FalseVal, 5485 Value *&LHS, Value *&RHS) { 5486 // Try to match 5487 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5488 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5489 // and return description of the outer Max/Min. 5490 5491 // First, check if select has inverse order: 5492 if (CmpRHS == FalseVal) { 5493 std::swap(TrueVal, FalseVal); 5494 Pred = CmpInst::getInversePredicate(Pred); 5495 } 5496 5497 // Assume success now. If there's no match, callers should not use these anyway. 5498 LHS = TrueVal; 5499 RHS = FalseVal; 5500 5501 const APFloat *FC1; 5502 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5503 return {SPF_UNKNOWN, SPNB_NA, false}; 5504 5505 const APFloat *FC2; 5506 switch (Pred) { 5507 case CmpInst::FCMP_OLT: 5508 case CmpInst::FCMP_OLE: 5509 case CmpInst::FCMP_ULT: 5510 case CmpInst::FCMP_ULE: 5511 if (match(FalseVal, 5512 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5513 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5514 *FC1 < *FC2) 5515 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5516 break; 5517 case CmpInst::FCMP_OGT: 5518 case CmpInst::FCMP_OGE: 5519 case CmpInst::FCMP_UGT: 5520 case CmpInst::FCMP_UGE: 5521 if (match(FalseVal, 5522 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5523 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5524 *FC1 > *FC2) 5525 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5526 break; 5527 default: 5528 break; 5529 } 5530 5531 return {SPF_UNKNOWN, SPNB_NA, false}; 5532 } 5533 5534 /// Recognize variations of: 5535 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5536 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5537 Value *CmpLHS, Value *CmpRHS, 5538 Value *TrueVal, Value *FalseVal) { 5539 // Swap the select operands and predicate to match the patterns below. 5540 if (CmpRHS != TrueVal) { 5541 Pred = ICmpInst::getSwappedPredicate(Pred); 5542 std::swap(TrueVal, FalseVal); 5543 } 5544 const APInt *C1; 5545 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5546 const APInt *C2; 5547 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5548 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5549 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5550 return {SPF_SMAX, SPNB_NA, false}; 5551 5552 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5553 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5554 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5555 return {SPF_SMIN, SPNB_NA, false}; 5556 5557 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5558 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5559 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5560 return {SPF_UMAX, SPNB_NA, false}; 5561 5562 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5563 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5564 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5565 return {SPF_UMIN, SPNB_NA, false}; 5566 } 5567 return {SPF_UNKNOWN, SPNB_NA, false}; 5568 } 5569 5570 /// Recognize variations of: 5571 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5572 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5573 Value *CmpLHS, Value *CmpRHS, 5574 Value *TVal, Value *FVal, 5575 unsigned Depth) { 5576 // TODO: Allow FP min/max with nnan/nsz. 5577 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5578 5579 Value *A = nullptr, *B = nullptr; 5580 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5581 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5582 return {SPF_UNKNOWN, SPNB_NA, false}; 5583 5584 Value *C = nullptr, *D = nullptr; 5585 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5586 if (L.Flavor != R.Flavor) 5587 return {SPF_UNKNOWN, SPNB_NA, false}; 5588 5589 // We have something like: x Pred y ? min(a, b) : min(c, d). 5590 // Try to match the compare to the min/max operations of the select operands. 5591 // First, make sure we have the right compare predicate. 5592 switch (L.Flavor) { 5593 case SPF_SMIN: 5594 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5595 Pred = ICmpInst::getSwappedPredicate(Pred); 5596 std::swap(CmpLHS, CmpRHS); 5597 } 5598 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5599 break; 5600 return {SPF_UNKNOWN, SPNB_NA, false}; 5601 case SPF_SMAX: 5602 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5603 Pred = ICmpInst::getSwappedPredicate(Pred); 5604 std::swap(CmpLHS, CmpRHS); 5605 } 5606 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5607 break; 5608 return {SPF_UNKNOWN, SPNB_NA, false}; 5609 case SPF_UMIN: 5610 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5611 Pred = ICmpInst::getSwappedPredicate(Pred); 5612 std::swap(CmpLHS, CmpRHS); 5613 } 5614 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5615 break; 5616 return {SPF_UNKNOWN, SPNB_NA, false}; 5617 case SPF_UMAX: 5618 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5619 Pred = ICmpInst::getSwappedPredicate(Pred); 5620 std::swap(CmpLHS, CmpRHS); 5621 } 5622 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5623 break; 5624 return {SPF_UNKNOWN, SPNB_NA, false}; 5625 default: 5626 return {SPF_UNKNOWN, SPNB_NA, false}; 5627 } 5628 5629 // If there is a common operand in the already matched min/max and the other 5630 // min/max operands match the compare operands (either directly or inverted), 5631 // then this is min/max of the same flavor. 5632 5633 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5634 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5635 if (D == B) { 5636 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5637 match(A, m_Not(m_Specific(CmpRHS))))) 5638 return {L.Flavor, SPNB_NA, false}; 5639 } 5640 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5641 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5642 if (C == B) { 5643 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5644 match(A, m_Not(m_Specific(CmpRHS))))) 5645 return {L.Flavor, SPNB_NA, false}; 5646 } 5647 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5648 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5649 if (D == A) { 5650 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5651 match(B, m_Not(m_Specific(CmpRHS))))) 5652 return {L.Flavor, SPNB_NA, false}; 5653 } 5654 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5655 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5656 if (C == A) { 5657 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5658 match(B, m_Not(m_Specific(CmpRHS))))) 5659 return {L.Flavor, SPNB_NA, false}; 5660 } 5661 5662 return {SPF_UNKNOWN, SPNB_NA, false}; 5663 } 5664 5665 /// If the input value is the result of a 'not' op, constant integer, or vector 5666 /// splat of a constant integer, return the bitwise-not source value. 5667 /// TODO: This could be extended to handle non-splat vector integer constants. 5668 static Value *getNotValue(Value *V) { 5669 Value *NotV; 5670 if (match(V, m_Not(m_Value(NotV)))) 5671 return NotV; 5672 5673 const APInt *C; 5674 if (match(V, m_APInt(C))) 5675 return ConstantInt::get(V->getType(), ~(*C)); 5676 5677 return nullptr; 5678 } 5679 5680 /// Match non-obvious integer minimum and maximum sequences. 5681 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5682 Value *CmpLHS, Value *CmpRHS, 5683 Value *TrueVal, Value *FalseVal, 5684 Value *&LHS, Value *&RHS, 5685 unsigned Depth) { 5686 // Assume success. If there's no match, callers should not use these anyway. 5687 LHS = TrueVal; 5688 RHS = FalseVal; 5689 5690 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5691 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5692 return SPR; 5693 5694 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5695 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5696 return SPR; 5697 5698 // Look through 'not' ops to find disguised min/max. 5699 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5700 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5701 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5702 switch (Pred) { 5703 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5704 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5705 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5706 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5707 default: break; 5708 } 5709 } 5710 5711 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5712 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5713 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5714 switch (Pred) { 5715 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5716 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5717 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5718 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5719 default: break; 5720 } 5721 } 5722 5723 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5724 return {SPF_UNKNOWN, SPNB_NA, false}; 5725 5726 // Z = X -nsw Y 5727 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5728 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5729 if (match(TrueVal, m_Zero()) && 5730 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5731 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5732 5733 // Z = X -nsw Y 5734 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5735 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5736 if (match(FalseVal, m_Zero()) && 5737 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5738 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5739 5740 const APInt *C1; 5741 if (!match(CmpRHS, m_APInt(C1))) 5742 return {SPF_UNKNOWN, SPNB_NA, false}; 5743 5744 // An unsigned min/max can be written with a signed compare. 5745 const APInt *C2; 5746 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5747 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5748 // Is the sign bit set? 5749 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5750 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5751 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5752 C2->isMaxSignedValue()) 5753 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5754 5755 // Is the sign bit clear? 5756 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5757 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5758 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5759 C2->isMinSignedValue()) 5760 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5761 } 5762 5763 return {SPF_UNKNOWN, SPNB_NA, false}; 5764 } 5765 5766 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5767 assert(X && Y && "Invalid operand"); 5768 5769 // X = sub (0, Y) || X = sub nsw (0, Y) 5770 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5771 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5772 return true; 5773 5774 // Y = sub (0, X) || Y = sub nsw (0, X) 5775 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5776 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5777 return true; 5778 5779 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5780 Value *A, *B; 5781 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5782 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5783 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5784 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5785 } 5786 5787 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5788 FastMathFlags FMF, 5789 Value *CmpLHS, Value *CmpRHS, 5790 Value *TrueVal, Value *FalseVal, 5791 Value *&LHS, Value *&RHS, 5792 unsigned Depth) { 5793 if (CmpInst::isFPPredicate(Pred)) { 5794 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5795 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5796 // purpose of identifying min/max. Disregard vector constants with undefined 5797 // elements because those can not be back-propagated for analysis. 5798 Value *OutputZeroVal = nullptr; 5799 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5800 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5801 OutputZeroVal = TrueVal; 5802 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5803 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5804 OutputZeroVal = FalseVal; 5805 5806 if (OutputZeroVal) { 5807 if (match(CmpLHS, m_AnyZeroFP())) 5808 CmpLHS = OutputZeroVal; 5809 if (match(CmpRHS, m_AnyZeroFP())) 5810 CmpRHS = OutputZeroVal; 5811 } 5812 } 5813 5814 LHS = CmpLHS; 5815 RHS = CmpRHS; 5816 5817 // Signed zero may return inconsistent results between implementations. 5818 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5819 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5820 // Therefore, we behave conservatively and only proceed if at least one of the 5821 // operands is known to not be zero or if we don't care about signed zero. 5822 switch (Pred) { 5823 default: break; 5824 // FIXME: Include OGT/OLT/UGT/ULT. 5825 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5826 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5827 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5828 !isKnownNonZero(CmpRHS)) 5829 return {SPF_UNKNOWN, SPNB_NA, false}; 5830 } 5831 5832 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5833 bool Ordered = false; 5834 5835 // When given one NaN and one non-NaN input: 5836 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5837 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5838 // ordered comparison fails), which could be NaN or non-NaN. 5839 // so here we discover exactly what NaN behavior is required/accepted. 5840 if (CmpInst::isFPPredicate(Pred)) { 5841 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5842 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5843 5844 if (LHSSafe && RHSSafe) { 5845 // Both operands are known non-NaN. 5846 NaNBehavior = SPNB_RETURNS_ANY; 5847 } else if (CmpInst::isOrdered(Pred)) { 5848 // An ordered comparison will return false when given a NaN, so it 5849 // returns the RHS. 5850 Ordered = true; 5851 if (LHSSafe) 5852 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5853 NaNBehavior = SPNB_RETURNS_NAN; 5854 else if (RHSSafe) 5855 NaNBehavior = SPNB_RETURNS_OTHER; 5856 else 5857 // Completely unsafe. 5858 return {SPF_UNKNOWN, SPNB_NA, false}; 5859 } else { 5860 Ordered = false; 5861 // An unordered comparison will return true when given a NaN, so it 5862 // returns the LHS. 5863 if (LHSSafe) 5864 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5865 NaNBehavior = SPNB_RETURNS_OTHER; 5866 else if (RHSSafe) 5867 NaNBehavior = SPNB_RETURNS_NAN; 5868 else 5869 // Completely unsafe. 5870 return {SPF_UNKNOWN, SPNB_NA, false}; 5871 } 5872 } 5873 5874 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5875 std::swap(CmpLHS, CmpRHS); 5876 Pred = CmpInst::getSwappedPredicate(Pred); 5877 if (NaNBehavior == SPNB_RETURNS_NAN) 5878 NaNBehavior = SPNB_RETURNS_OTHER; 5879 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5880 NaNBehavior = SPNB_RETURNS_NAN; 5881 Ordered = !Ordered; 5882 } 5883 5884 // ([if]cmp X, Y) ? X : Y 5885 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5886 switch (Pred) { 5887 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5888 case ICmpInst::ICMP_UGT: 5889 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5890 case ICmpInst::ICMP_SGT: 5891 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5892 case ICmpInst::ICMP_ULT: 5893 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5894 case ICmpInst::ICMP_SLT: 5895 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5896 case FCmpInst::FCMP_UGT: 5897 case FCmpInst::FCMP_UGE: 5898 case FCmpInst::FCMP_OGT: 5899 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5900 case FCmpInst::FCMP_ULT: 5901 case FCmpInst::FCMP_ULE: 5902 case FCmpInst::FCMP_OLT: 5903 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5904 } 5905 } 5906 5907 if (isKnownNegation(TrueVal, FalseVal)) { 5908 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5909 // match against either LHS or sext(LHS). 5910 auto MaybeSExtCmpLHS = 5911 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5912 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5913 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5914 if (match(TrueVal, MaybeSExtCmpLHS)) { 5915 // Set the return values. If the compare uses the negated value (-X >s 0), 5916 // swap the return values because the negated value is always 'RHS'. 5917 LHS = TrueVal; 5918 RHS = FalseVal; 5919 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5920 std::swap(LHS, RHS); 5921 5922 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5923 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5924 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5925 return {SPF_ABS, SPNB_NA, false}; 5926 5927 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5928 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5929 return {SPF_ABS, SPNB_NA, false}; 5930 5931 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5932 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5933 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5934 return {SPF_NABS, SPNB_NA, false}; 5935 } 5936 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5937 // Set the return values. If the compare uses the negated value (-X >s 0), 5938 // swap the return values because the negated value is always 'RHS'. 5939 LHS = FalseVal; 5940 RHS = TrueVal; 5941 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5942 std::swap(LHS, RHS); 5943 5944 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5945 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5946 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5947 return {SPF_NABS, SPNB_NA, false}; 5948 5949 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5950 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5951 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5952 return {SPF_ABS, SPNB_NA, false}; 5953 } 5954 } 5955 5956 if (CmpInst::isIntPredicate(Pred)) 5957 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5958 5959 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5960 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5961 // semantics than minNum. Be conservative in such case. 5962 if (NaNBehavior != SPNB_RETURNS_ANY || 5963 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5964 !isKnownNonZero(CmpRHS))) 5965 return {SPF_UNKNOWN, SPNB_NA, false}; 5966 5967 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5968 } 5969 5970 /// Helps to match a select pattern in case of a type mismatch. 5971 /// 5972 /// The function processes the case when type of true and false values of a 5973 /// select instruction differs from type of the cmp instruction operands because 5974 /// of a cast instruction. The function checks if it is legal to move the cast 5975 /// operation after "select". If yes, it returns the new second value of 5976 /// "select" (with the assumption that cast is moved): 5977 /// 1. As operand of cast instruction when both values of "select" are same cast 5978 /// instructions. 5979 /// 2. As restored constant (by applying reverse cast operation) when the first 5980 /// value of the "select" is a cast operation and the second value is a 5981 /// constant. 5982 /// NOTE: We return only the new second value because the first value could be 5983 /// accessed as operand of cast instruction. 5984 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5985 Instruction::CastOps *CastOp) { 5986 auto *Cast1 = dyn_cast<CastInst>(V1); 5987 if (!Cast1) 5988 return nullptr; 5989 5990 *CastOp = Cast1->getOpcode(); 5991 Type *SrcTy = Cast1->getSrcTy(); 5992 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5993 // If V1 and V2 are both the same cast from the same type, look through V1. 5994 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5995 return Cast2->getOperand(0); 5996 return nullptr; 5997 } 5998 5999 auto *C = dyn_cast<Constant>(V2); 6000 if (!C) 6001 return nullptr; 6002 6003 Constant *CastedTo = nullptr; 6004 switch (*CastOp) { 6005 case Instruction::ZExt: 6006 if (CmpI->isUnsigned()) 6007 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6008 break; 6009 case Instruction::SExt: 6010 if (CmpI->isSigned()) 6011 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6012 break; 6013 case Instruction::Trunc: 6014 Constant *CmpConst; 6015 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6016 CmpConst->getType() == SrcTy) { 6017 // Here we have the following case: 6018 // 6019 // %cond = cmp iN %x, CmpConst 6020 // %tr = trunc iN %x to iK 6021 // %narrowsel = select i1 %cond, iK %t, iK C 6022 // 6023 // We can always move trunc after select operation: 6024 // 6025 // %cond = cmp iN %x, CmpConst 6026 // %widesel = select i1 %cond, iN %x, iN CmpConst 6027 // %tr = trunc iN %widesel to iK 6028 // 6029 // Note that C could be extended in any way because we don't care about 6030 // upper bits after truncation. It can't be abs pattern, because it would 6031 // look like: 6032 // 6033 // select i1 %cond, x, -x. 6034 // 6035 // So only min/max pattern could be matched. Such match requires widened C 6036 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6037 // CmpConst == C is checked below. 6038 CastedTo = CmpConst; 6039 } else { 6040 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6041 } 6042 break; 6043 case Instruction::FPTrunc: 6044 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6045 break; 6046 case Instruction::FPExt: 6047 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6048 break; 6049 case Instruction::FPToUI: 6050 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6051 break; 6052 case Instruction::FPToSI: 6053 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6054 break; 6055 case Instruction::UIToFP: 6056 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6057 break; 6058 case Instruction::SIToFP: 6059 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6060 break; 6061 default: 6062 break; 6063 } 6064 6065 if (!CastedTo) 6066 return nullptr; 6067 6068 // Make sure the cast doesn't lose any information. 6069 Constant *CastedBack = 6070 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6071 if (CastedBack != C) 6072 return nullptr; 6073 6074 return CastedTo; 6075 } 6076 6077 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6078 Instruction::CastOps *CastOp, 6079 unsigned Depth) { 6080 if (Depth >= MaxAnalysisRecursionDepth) 6081 return {SPF_UNKNOWN, SPNB_NA, false}; 6082 6083 SelectInst *SI = dyn_cast<SelectInst>(V); 6084 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6085 6086 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6087 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6088 6089 Value *TrueVal = SI->getTrueValue(); 6090 Value *FalseVal = SI->getFalseValue(); 6091 6092 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6093 CastOp, Depth); 6094 } 6095 6096 SelectPatternResult llvm::matchDecomposedSelectPattern( 6097 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6098 Instruction::CastOps *CastOp, unsigned Depth) { 6099 CmpInst::Predicate Pred = CmpI->getPredicate(); 6100 Value *CmpLHS = CmpI->getOperand(0); 6101 Value *CmpRHS = CmpI->getOperand(1); 6102 FastMathFlags FMF; 6103 if (isa<FPMathOperator>(CmpI)) 6104 FMF = CmpI->getFastMathFlags(); 6105 6106 // Bail out early. 6107 if (CmpI->isEquality()) 6108 return {SPF_UNKNOWN, SPNB_NA, false}; 6109 6110 // Deal with type mismatches. 6111 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6112 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6113 // If this is a potential fmin/fmax with a cast to integer, then ignore 6114 // -0.0 because there is no corresponding integer value. 6115 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6116 FMF.setNoSignedZeros(); 6117 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6118 cast<CastInst>(TrueVal)->getOperand(0), C, 6119 LHS, RHS, Depth); 6120 } 6121 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6122 // If this is a potential fmin/fmax with a cast to integer, then ignore 6123 // -0.0 because there is no corresponding integer value. 6124 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6125 FMF.setNoSignedZeros(); 6126 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6127 C, cast<CastInst>(FalseVal)->getOperand(0), 6128 LHS, RHS, Depth); 6129 } 6130 } 6131 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6132 LHS, RHS, Depth); 6133 } 6134 6135 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6136 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6137 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6138 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6139 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6140 if (SPF == SPF_FMINNUM) 6141 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6142 if (SPF == SPF_FMAXNUM) 6143 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6144 llvm_unreachable("unhandled!"); 6145 } 6146 6147 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6148 if (SPF == SPF_SMIN) return SPF_SMAX; 6149 if (SPF == SPF_UMIN) return SPF_UMAX; 6150 if (SPF == SPF_SMAX) return SPF_SMIN; 6151 if (SPF == SPF_UMAX) return SPF_UMIN; 6152 llvm_unreachable("unhandled!"); 6153 } 6154 6155 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6156 switch (MinMaxID) { 6157 case Intrinsic::smax: return Intrinsic::smin; 6158 case Intrinsic::smin: return Intrinsic::smax; 6159 case Intrinsic::umax: return Intrinsic::umin; 6160 case Intrinsic::umin: return Intrinsic::umax; 6161 default: llvm_unreachable("Unexpected intrinsic"); 6162 } 6163 } 6164 6165 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6166 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6167 } 6168 6169 std::pair<Intrinsic::ID, bool> 6170 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6171 // Check if VL contains select instructions that can be folded into a min/max 6172 // vector intrinsic and return the intrinsic if it is possible. 6173 // TODO: Support floating point min/max. 6174 bool AllCmpSingleUse = true; 6175 SelectPatternResult SelectPattern; 6176 SelectPattern.Flavor = SPF_UNKNOWN; 6177 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6178 Value *LHS, *RHS; 6179 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6180 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6181 CurrentPattern.Flavor == SPF_FMINNUM || 6182 CurrentPattern.Flavor == SPF_FMAXNUM || 6183 !I->getType()->isIntOrIntVectorTy()) 6184 return false; 6185 if (SelectPattern.Flavor != SPF_UNKNOWN && 6186 SelectPattern.Flavor != CurrentPattern.Flavor) 6187 return false; 6188 SelectPattern = CurrentPattern; 6189 AllCmpSingleUse &= 6190 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6191 return true; 6192 })) { 6193 switch (SelectPattern.Flavor) { 6194 case SPF_SMIN: 6195 return {Intrinsic::smin, AllCmpSingleUse}; 6196 case SPF_UMIN: 6197 return {Intrinsic::umin, AllCmpSingleUse}; 6198 case SPF_SMAX: 6199 return {Intrinsic::smax, AllCmpSingleUse}; 6200 case SPF_UMAX: 6201 return {Intrinsic::umax, AllCmpSingleUse}; 6202 default: 6203 llvm_unreachable("unexpected select pattern flavor"); 6204 } 6205 } 6206 return {Intrinsic::not_intrinsic, false}; 6207 } 6208 6209 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6210 Value *&Start, Value *&Step) { 6211 // Handle the case of a simple two-predecessor recurrence PHI. 6212 // There's a lot more that could theoretically be done here, but 6213 // this is sufficient to catch some interesting cases. 6214 if (P->getNumIncomingValues() != 2) 6215 return false; 6216 6217 for (unsigned i = 0; i != 2; ++i) { 6218 Value *L = P->getIncomingValue(i); 6219 Value *R = P->getIncomingValue(!i); 6220 Operator *LU = dyn_cast<Operator>(L); 6221 if (!LU) 6222 continue; 6223 unsigned Opcode = LU->getOpcode(); 6224 6225 switch (Opcode) { 6226 default: 6227 continue; 6228 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6229 case Instruction::LShr: 6230 case Instruction::AShr: 6231 case Instruction::Shl: 6232 case Instruction::Add: 6233 case Instruction::Sub: 6234 case Instruction::And: 6235 case Instruction::Or: 6236 case Instruction::Mul: { 6237 Value *LL = LU->getOperand(0); 6238 Value *LR = LU->getOperand(1); 6239 // Find a recurrence. 6240 if (LL == P) 6241 L = LR; 6242 else if (LR == P) 6243 L = LL; 6244 else 6245 continue; // Check for recurrence with L and R flipped. 6246 6247 break; // Match! 6248 } 6249 }; 6250 6251 // We have matched a recurrence of the form: 6252 // %iv = [R, %entry], [%iv.next, %backedge] 6253 // %iv.next = binop %iv, L 6254 // OR 6255 // %iv = [R, %entry], [%iv.next, %backedge] 6256 // %iv.next = binop L, %iv 6257 BO = cast<BinaryOperator>(LU); 6258 Start = R; 6259 Step = L; 6260 return true; 6261 } 6262 return false; 6263 } 6264 6265 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6266 Value *&Start, Value *&Step) { 6267 BinaryOperator *BO = nullptr; 6268 P = dyn_cast<PHINode>(I->getOperand(0)); 6269 if (!P) 6270 P = dyn_cast<PHINode>(I->getOperand(1)); 6271 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6272 } 6273 6274 /// Return true if "icmp Pred LHS RHS" is always true. 6275 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6276 const Value *RHS, const DataLayout &DL, 6277 unsigned Depth) { 6278 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6279 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6280 return true; 6281 6282 switch (Pred) { 6283 default: 6284 return false; 6285 6286 case CmpInst::ICMP_SLE: { 6287 const APInt *C; 6288 6289 // LHS s<= LHS +_{nsw} C if C >= 0 6290 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6291 return !C->isNegative(); 6292 return false; 6293 } 6294 6295 case CmpInst::ICMP_ULE: { 6296 const APInt *C; 6297 6298 // LHS u<= LHS +_{nuw} C for any C 6299 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6300 return true; 6301 6302 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6303 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6304 const Value *&X, 6305 const APInt *&CA, const APInt *&CB) { 6306 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6307 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6308 return true; 6309 6310 // If X & C == 0 then (X | C) == X +_{nuw} C 6311 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6312 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6313 KnownBits Known(CA->getBitWidth()); 6314 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6315 /*CxtI*/ nullptr, /*DT*/ nullptr); 6316 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6317 return true; 6318 } 6319 6320 return false; 6321 }; 6322 6323 const Value *X; 6324 const APInt *CLHS, *CRHS; 6325 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6326 return CLHS->ule(*CRHS); 6327 6328 return false; 6329 } 6330 } 6331 } 6332 6333 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6334 /// ALHS ARHS" is true. Otherwise, return None. 6335 static Optional<bool> 6336 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6337 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6338 const DataLayout &DL, unsigned Depth) { 6339 switch (Pred) { 6340 default: 6341 return None; 6342 6343 case CmpInst::ICMP_SLT: 6344 case CmpInst::ICMP_SLE: 6345 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6346 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6347 return true; 6348 return None; 6349 6350 case CmpInst::ICMP_ULT: 6351 case CmpInst::ICMP_ULE: 6352 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6353 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6354 return true; 6355 return None; 6356 } 6357 } 6358 6359 /// Return true if the operands of the two compares match. IsSwappedOps is true 6360 /// when the operands match, but are swapped. 6361 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6362 const Value *BLHS, const Value *BRHS, 6363 bool &IsSwappedOps) { 6364 6365 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6366 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6367 return IsMatchingOps || IsSwappedOps; 6368 } 6369 6370 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6371 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6372 /// Otherwise, return None if we can't infer anything. 6373 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6374 CmpInst::Predicate BPred, 6375 bool AreSwappedOps) { 6376 // Canonicalize the predicate as if the operands were not commuted. 6377 if (AreSwappedOps) 6378 BPred = ICmpInst::getSwappedPredicate(BPred); 6379 6380 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6381 return true; 6382 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6383 return false; 6384 6385 return None; 6386 } 6387 6388 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6389 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6390 /// Otherwise, return None if we can't infer anything. 6391 static Optional<bool> 6392 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6393 const ConstantInt *C1, 6394 CmpInst::Predicate BPred, 6395 const ConstantInt *C2) { 6396 ConstantRange DomCR = 6397 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6398 ConstantRange CR = 6399 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6400 ConstantRange Intersection = DomCR.intersectWith(CR); 6401 ConstantRange Difference = DomCR.difference(CR); 6402 if (Intersection.isEmptySet()) 6403 return false; 6404 if (Difference.isEmptySet()) 6405 return true; 6406 return None; 6407 } 6408 6409 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6410 /// false. Otherwise, return None if we can't infer anything. 6411 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6412 CmpInst::Predicate BPred, 6413 const Value *BLHS, const Value *BRHS, 6414 const DataLayout &DL, bool LHSIsTrue, 6415 unsigned Depth) { 6416 Value *ALHS = LHS->getOperand(0); 6417 Value *ARHS = LHS->getOperand(1); 6418 6419 // The rest of the logic assumes the LHS condition is true. If that's not the 6420 // case, invert the predicate to make it so. 6421 CmpInst::Predicate APred = 6422 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6423 6424 // Can we infer anything when the two compares have matching operands? 6425 bool AreSwappedOps; 6426 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6427 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6428 APred, BPred, AreSwappedOps)) 6429 return Implication; 6430 // No amount of additional analysis will infer the second condition, so 6431 // early exit. 6432 return None; 6433 } 6434 6435 // Can we infer anything when the LHS operands match and the RHS operands are 6436 // constants (not necessarily matching)? 6437 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6438 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6439 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6440 return Implication; 6441 // No amount of additional analysis will infer the second condition, so 6442 // early exit. 6443 return None; 6444 } 6445 6446 if (APred == BPred) 6447 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6448 return None; 6449 } 6450 6451 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6452 /// false. Otherwise, return None if we can't infer anything. We expect the 6453 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6454 static Optional<bool> 6455 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6456 const Value *RHSOp0, const Value *RHSOp1, 6457 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6458 // The LHS must be an 'or', 'and', or a 'select' instruction. 6459 assert((LHS->getOpcode() == Instruction::And || 6460 LHS->getOpcode() == Instruction::Or || 6461 LHS->getOpcode() == Instruction::Select) && 6462 "Expected LHS to be 'and', 'or', or 'select'."); 6463 6464 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6465 6466 // If the result of an 'or' is false, then we know both legs of the 'or' are 6467 // false. Similarly, if the result of an 'and' is true, then we know both 6468 // legs of the 'and' are true. 6469 const Value *ALHS, *ARHS; 6470 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6471 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6472 // FIXME: Make this non-recursion. 6473 if (Optional<bool> Implication = isImpliedCondition( 6474 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6475 return Implication; 6476 if (Optional<bool> Implication = isImpliedCondition( 6477 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6478 return Implication; 6479 return None; 6480 } 6481 return None; 6482 } 6483 6484 Optional<bool> 6485 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6486 const Value *RHSOp0, const Value *RHSOp1, 6487 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6488 // Bail out when we hit the limit. 6489 if (Depth == MaxAnalysisRecursionDepth) 6490 return None; 6491 6492 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6493 // example. 6494 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6495 return None; 6496 6497 Type *OpTy = LHS->getType(); 6498 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6499 6500 // FIXME: Extending the code below to handle vectors. 6501 if (OpTy->isVectorTy()) 6502 return None; 6503 6504 assert(OpTy->isIntegerTy(1) && "implied by above"); 6505 6506 // Both LHS and RHS are icmps. 6507 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6508 if (LHSCmp) 6509 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6510 Depth); 6511 6512 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6513 /// the RHS to be an icmp. 6514 /// FIXME: Add support for and/or/select on the RHS. 6515 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6516 if ((LHSI->getOpcode() == Instruction::And || 6517 LHSI->getOpcode() == Instruction::Or || 6518 LHSI->getOpcode() == Instruction::Select)) 6519 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6520 Depth); 6521 } 6522 return None; 6523 } 6524 6525 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6526 const DataLayout &DL, bool LHSIsTrue, 6527 unsigned Depth) { 6528 // LHS ==> RHS by definition 6529 if (LHS == RHS) 6530 return LHSIsTrue; 6531 6532 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6533 if (RHSCmp) 6534 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6535 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6536 LHSIsTrue, Depth); 6537 return None; 6538 } 6539 6540 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6541 // condition dominating ContextI or nullptr, if no condition is found. 6542 static std::pair<Value *, bool> 6543 getDomPredecessorCondition(const Instruction *ContextI) { 6544 if (!ContextI || !ContextI->getParent()) 6545 return {nullptr, false}; 6546 6547 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6548 // dominator tree (eg, from a SimplifyQuery) instead? 6549 const BasicBlock *ContextBB = ContextI->getParent(); 6550 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6551 if (!PredBB) 6552 return {nullptr, false}; 6553 6554 // We need a conditional branch in the predecessor. 6555 Value *PredCond; 6556 BasicBlock *TrueBB, *FalseBB; 6557 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6558 return {nullptr, false}; 6559 6560 // The branch should get simplified. Don't bother simplifying this condition. 6561 if (TrueBB == FalseBB) 6562 return {nullptr, false}; 6563 6564 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6565 "Predecessor block does not point to successor?"); 6566 6567 // Is this condition implied by the predecessor condition? 6568 return {PredCond, TrueBB == ContextBB}; 6569 } 6570 6571 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6572 const Instruction *ContextI, 6573 const DataLayout &DL) { 6574 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6575 auto PredCond = getDomPredecessorCondition(ContextI); 6576 if (PredCond.first) 6577 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6578 return None; 6579 } 6580 6581 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6582 const Value *LHS, const Value *RHS, 6583 const Instruction *ContextI, 6584 const DataLayout &DL) { 6585 auto PredCond = getDomPredecessorCondition(ContextI); 6586 if (PredCond.first) 6587 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6588 PredCond.second); 6589 return None; 6590 } 6591 6592 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6593 APInt &Upper, const InstrInfoQuery &IIQ) { 6594 unsigned Width = Lower.getBitWidth(); 6595 const APInt *C; 6596 switch (BO.getOpcode()) { 6597 case Instruction::Add: 6598 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6599 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6600 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6601 // 'add nuw x, C' produces [C, UINT_MAX]. 6602 Lower = *C; 6603 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6604 if (C->isNegative()) { 6605 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6606 Lower = APInt::getSignedMinValue(Width); 6607 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6608 } else { 6609 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6610 Lower = APInt::getSignedMinValue(Width) + *C; 6611 Upper = APInt::getSignedMaxValue(Width) + 1; 6612 } 6613 } 6614 } 6615 break; 6616 6617 case Instruction::And: 6618 if (match(BO.getOperand(1), m_APInt(C))) 6619 // 'and x, C' produces [0, C]. 6620 Upper = *C + 1; 6621 break; 6622 6623 case Instruction::Or: 6624 if (match(BO.getOperand(1), m_APInt(C))) 6625 // 'or x, C' produces [C, UINT_MAX]. 6626 Lower = *C; 6627 break; 6628 6629 case Instruction::AShr: 6630 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6631 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6632 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6633 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6634 } else if (match(BO.getOperand(0), m_APInt(C))) { 6635 unsigned ShiftAmount = Width - 1; 6636 if (!C->isNullValue() && IIQ.isExact(&BO)) 6637 ShiftAmount = C->countTrailingZeros(); 6638 if (C->isNegative()) { 6639 // 'ashr C, x' produces [C, C >> (Width-1)] 6640 Lower = *C; 6641 Upper = C->ashr(ShiftAmount) + 1; 6642 } else { 6643 // 'ashr C, x' produces [C >> (Width-1), C] 6644 Lower = C->ashr(ShiftAmount); 6645 Upper = *C + 1; 6646 } 6647 } 6648 break; 6649 6650 case Instruction::LShr: 6651 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6652 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6653 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6654 } else if (match(BO.getOperand(0), m_APInt(C))) { 6655 // 'lshr C, x' produces [C >> (Width-1), C]. 6656 unsigned ShiftAmount = Width - 1; 6657 if (!C->isNullValue() && IIQ.isExact(&BO)) 6658 ShiftAmount = C->countTrailingZeros(); 6659 Lower = C->lshr(ShiftAmount); 6660 Upper = *C + 1; 6661 } 6662 break; 6663 6664 case Instruction::Shl: 6665 if (match(BO.getOperand(0), m_APInt(C))) { 6666 if (IIQ.hasNoUnsignedWrap(&BO)) { 6667 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6668 Lower = *C; 6669 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6670 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6671 if (C->isNegative()) { 6672 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6673 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6674 Lower = C->shl(ShiftAmount); 6675 Upper = *C + 1; 6676 } else { 6677 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6678 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6679 Lower = *C; 6680 Upper = C->shl(ShiftAmount) + 1; 6681 } 6682 } 6683 } 6684 break; 6685 6686 case Instruction::SDiv: 6687 if (match(BO.getOperand(1), m_APInt(C))) { 6688 APInt IntMin = APInt::getSignedMinValue(Width); 6689 APInt IntMax = APInt::getSignedMaxValue(Width); 6690 if (C->isAllOnesValue()) { 6691 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6692 // where C != -1 and C != 0 and C != 1 6693 Lower = IntMin + 1; 6694 Upper = IntMax + 1; 6695 } else if (C->countLeadingZeros() < Width - 1) { 6696 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6697 // where C != -1 and C != 0 and C != 1 6698 Lower = IntMin.sdiv(*C); 6699 Upper = IntMax.sdiv(*C); 6700 if (Lower.sgt(Upper)) 6701 std::swap(Lower, Upper); 6702 Upper = Upper + 1; 6703 assert(Upper != Lower && "Upper part of range has wrapped!"); 6704 } 6705 } else if (match(BO.getOperand(0), m_APInt(C))) { 6706 if (C->isMinSignedValue()) { 6707 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6708 Lower = *C; 6709 Upper = Lower.lshr(1) + 1; 6710 } else { 6711 // 'sdiv C, x' produces [-|C|, |C|]. 6712 Upper = C->abs() + 1; 6713 Lower = (-Upper) + 1; 6714 } 6715 } 6716 break; 6717 6718 case Instruction::UDiv: 6719 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6720 // 'udiv x, C' produces [0, UINT_MAX / C]. 6721 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6722 } else if (match(BO.getOperand(0), m_APInt(C))) { 6723 // 'udiv C, x' produces [0, C]. 6724 Upper = *C + 1; 6725 } 6726 break; 6727 6728 case Instruction::SRem: 6729 if (match(BO.getOperand(1), m_APInt(C))) { 6730 // 'srem x, C' produces (-|C|, |C|). 6731 Upper = C->abs(); 6732 Lower = (-Upper) + 1; 6733 } 6734 break; 6735 6736 case Instruction::URem: 6737 if (match(BO.getOperand(1), m_APInt(C))) 6738 // 'urem x, C' produces [0, C). 6739 Upper = *C; 6740 break; 6741 6742 default: 6743 break; 6744 } 6745 } 6746 6747 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6748 APInt &Upper) { 6749 unsigned Width = Lower.getBitWidth(); 6750 const APInt *C; 6751 switch (II.getIntrinsicID()) { 6752 case Intrinsic::ctpop: 6753 case Intrinsic::ctlz: 6754 case Intrinsic::cttz: 6755 // Maximum of set/clear bits is the bit width. 6756 assert(Lower == 0 && "Expected lower bound to be zero"); 6757 Upper = Width + 1; 6758 break; 6759 case Intrinsic::uadd_sat: 6760 // uadd.sat(x, C) produces [C, UINT_MAX]. 6761 if (match(II.getOperand(0), m_APInt(C)) || 6762 match(II.getOperand(1), m_APInt(C))) 6763 Lower = *C; 6764 break; 6765 case Intrinsic::sadd_sat: 6766 if (match(II.getOperand(0), m_APInt(C)) || 6767 match(II.getOperand(1), m_APInt(C))) { 6768 if (C->isNegative()) { 6769 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6770 Lower = APInt::getSignedMinValue(Width); 6771 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6772 } else { 6773 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6774 Lower = APInt::getSignedMinValue(Width) + *C; 6775 Upper = APInt::getSignedMaxValue(Width) + 1; 6776 } 6777 } 6778 break; 6779 case Intrinsic::usub_sat: 6780 // usub.sat(C, x) produces [0, C]. 6781 if (match(II.getOperand(0), m_APInt(C))) 6782 Upper = *C + 1; 6783 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6784 else if (match(II.getOperand(1), m_APInt(C))) 6785 Upper = APInt::getMaxValue(Width) - *C + 1; 6786 break; 6787 case Intrinsic::ssub_sat: 6788 if (match(II.getOperand(0), m_APInt(C))) { 6789 if (C->isNegative()) { 6790 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6791 Lower = APInt::getSignedMinValue(Width); 6792 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6793 } else { 6794 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6795 Lower = *C - APInt::getSignedMaxValue(Width); 6796 Upper = APInt::getSignedMaxValue(Width) + 1; 6797 } 6798 } else if (match(II.getOperand(1), m_APInt(C))) { 6799 if (C->isNegative()) { 6800 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6801 Lower = APInt::getSignedMinValue(Width) - *C; 6802 Upper = APInt::getSignedMaxValue(Width) + 1; 6803 } else { 6804 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6805 Lower = APInt::getSignedMinValue(Width); 6806 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6807 } 6808 } 6809 break; 6810 case Intrinsic::umin: 6811 case Intrinsic::umax: 6812 case Intrinsic::smin: 6813 case Intrinsic::smax: 6814 if (!match(II.getOperand(0), m_APInt(C)) && 6815 !match(II.getOperand(1), m_APInt(C))) 6816 break; 6817 6818 switch (II.getIntrinsicID()) { 6819 case Intrinsic::umin: 6820 Upper = *C + 1; 6821 break; 6822 case Intrinsic::umax: 6823 Lower = *C; 6824 break; 6825 case Intrinsic::smin: 6826 Lower = APInt::getSignedMinValue(Width); 6827 Upper = *C + 1; 6828 break; 6829 case Intrinsic::smax: 6830 Lower = *C; 6831 Upper = APInt::getSignedMaxValue(Width) + 1; 6832 break; 6833 default: 6834 llvm_unreachable("Must be min/max intrinsic"); 6835 } 6836 break; 6837 case Intrinsic::abs: 6838 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6839 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6840 if (match(II.getOperand(1), m_One())) 6841 Upper = APInt::getSignedMaxValue(Width) + 1; 6842 else 6843 Upper = APInt::getSignedMinValue(Width) + 1; 6844 break; 6845 default: 6846 break; 6847 } 6848 } 6849 6850 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6851 APInt &Upper, const InstrInfoQuery &IIQ) { 6852 const Value *LHS = nullptr, *RHS = nullptr; 6853 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6854 if (R.Flavor == SPF_UNKNOWN) 6855 return; 6856 6857 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6858 6859 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6860 // If the negation part of the abs (in RHS) has the NSW flag, 6861 // then the result of abs(X) is [0..SIGNED_MAX], 6862 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6863 Lower = APInt::getNullValue(BitWidth); 6864 if (match(RHS, m_Neg(m_Specific(LHS))) && 6865 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6866 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6867 else 6868 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6869 return; 6870 } 6871 6872 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6873 // The result of -abs(X) is <= 0. 6874 Lower = APInt::getSignedMinValue(BitWidth); 6875 Upper = APInt(BitWidth, 1); 6876 return; 6877 } 6878 6879 const APInt *C; 6880 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6881 return; 6882 6883 switch (R.Flavor) { 6884 case SPF_UMIN: 6885 Upper = *C + 1; 6886 break; 6887 case SPF_UMAX: 6888 Lower = *C; 6889 break; 6890 case SPF_SMIN: 6891 Lower = APInt::getSignedMinValue(BitWidth); 6892 Upper = *C + 1; 6893 break; 6894 case SPF_SMAX: 6895 Lower = *C; 6896 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6897 break; 6898 default: 6899 break; 6900 } 6901 } 6902 6903 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6904 AssumptionCache *AC, 6905 const Instruction *CtxI, 6906 unsigned Depth) { 6907 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6908 6909 if (Depth == MaxAnalysisRecursionDepth) 6910 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6911 6912 const APInt *C; 6913 if (match(V, m_APInt(C))) 6914 return ConstantRange(*C); 6915 6916 InstrInfoQuery IIQ(UseInstrInfo); 6917 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6918 APInt Lower = APInt(BitWidth, 0); 6919 APInt Upper = APInt(BitWidth, 0); 6920 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6921 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6922 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6923 setLimitsForIntrinsic(*II, Lower, Upper); 6924 else if (auto *SI = dyn_cast<SelectInst>(V)) 6925 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6926 6927 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6928 6929 if (auto *I = dyn_cast<Instruction>(V)) 6930 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6931 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6932 6933 if (CtxI && AC) { 6934 // Try to restrict the range based on information from assumptions. 6935 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6936 if (!AssumeVH) 6937 continue; 6938 CallInst *I = cast<CallInst>(AssumeVH); 6939 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6940 "Got assumption for the wrong function!"); 6941 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6942 "must be an assume intrinsic"); 6943 6944 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6945 continue; 6946 Value *Arg = I->getArgOperand(0); 6947 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6948 // Currently we just use information from comparisons. 6949 if (!Cmp || Cmp->getOperand(0) != V) 6950 continue; 6951 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6952 AC, I, Depth + 1); 6953 CR = CR.intersectWith( 6954 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6955 } 6956 } 6957 6958 return CR; 6959 } 6960 6961 static Optional<int64_t> 6962 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6963 // Skip over the first indices. 6964 gep_type_iterator GTI = gep_type_begin(GEP); 6965 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6966 /*skip along*/; 6967 6968 // Compute the offset implied by the rest of the indices. 6969 int64_t Offset = 0; 6970 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6971 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6972 if (!OpC) 6973 return None; 6974 if (OpC->isZero()) 6975 continue; // No offset. 6976 6977 // Handle struct indices, which add their field offset to the pointer. 6978 if (StructType *STy = GTI.getStructTypeOrNull()) { 6979 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6980 continue; 6981 } 6982 6983 // Otherwise, we have a sequential type like an array or fixed-length 6984 // vector. Multiply the index by the ElementSize. 6985 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6986 if (Size.isScalable()) 6987 return None; 6988 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6989 } 6990 6991 return Offset; 6992 } 6993 6994 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6995 const DataLayout &DL) { 6996 Ptr1 = Ptr1->stripPointerCasts(); 6997 Ptr2 = Ptr2->stripPointerCasts(); 6998 6999 // Handle the trivial case first. 7000 if (Ptr1 == Ptr2) { 7001 return 0; 7002 } 7003 7004 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7005 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7006 7007 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7008 // as in "P" and "gep P, 1". 7009 // Also do this iteratively to handle the the following case: 7010 // Ptr_t1 = GEP Ptr1, c1 7011 // Ptr_t2 = GEP Ptr_t1, c2 7012 // Ptr2 = GEP Ptr_t2, c3 7013 // where we will return c1+c2+c3. 7014 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7015 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7016 // are the same, and return the difference between offsets. 7017 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7018 const Value *Ptr) -> Optional<int64_t> { 7019 const GEPOperator *GEP_T = GEP; 7020 int64_t OffsetVal = 0; 7021 bool HasSameBase = false; 7022 while (GEP_T) { 7023 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7024 if (!Offset) 7025 return None; 7026 OffsetVal += *Offset; 7027 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7028 if (Op0 == Ptr) { 7029 HasSameBase = true; 7030 break; 7031 } 7032 GEP_T = dyn_cast<GEPOperator>(Op0); 7033 } 7034 if (!HasSameBase) 7035 return None; 7036 return OffsetVal; 7037 }; 7038 7039 if (GEP1) { 7040 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7041 if (Offset) 7042 return -*Offset; 7043 } 7044 if (GEP2) { 7045 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7046 if (Offset) 7047 return Offset; 7048 } 7049 7050 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7051 // base. After that base, they may have some number of common (and 7052 // potentially variable) indices. After that they handle some constant 7053 // offset, which determines their offset from each other. At this point, we 7054 // handle no other case. 7055 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7056 return None; 7057 7058 // Skip any common indices and track the GEP types. 7059 unsigned Idx = 1; 7060 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7061 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7062 break; 7063 7064 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7065 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7066 if (!Offset1 || !Offset2) 7067 return None; 7068 return *Offset2 - *Offset1; 7069 } 7070