1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 // This optimization is known to cause performance regressions is some cases,
55 // keep it under a temporary flag for now.
56 static cl::opt<bool>
57 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
58                               cl::Hidden, cl::init(true));
59 
60 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
61 /// 0). For vector types, returns the element type's bitwidth.
62 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
63   if (unsigned BitWidth = Ty->getScalarSizeInBits())
64     return BitWidth;
65 
66   return DL.getPointerTypeSizeInBits(Ty);
67 }
68 
69 namespace {
70 // Simplifying using an assume can only be done in a particular control-flow
71 // context (the context instruction provides that context). If an assume and
72 // the context instruction are not in the same block then the DT helps in
73 // figuring out if we can use it.
74 struct Query {
75   const DataLayout &DL;
76   AssumptionCache *AC;
77   const Instruction *CxtI;
78   const DominatorTree *DT;
79 
80   /// Set of assumptions that should be excluded from further queries.
81   /// This is because of the potential for mutual recursion to cause
82   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
83   /// classic case of this is assume(x = y), which will attempt to determine
84   /// bits in x from bits in y, which will attempt to determine bits in y from
85   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
86   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
87   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
88   /// on.
89   std::array<const Value *, MaxDepth> Excluded;
90   unsigned NumExcluded;
91 
92   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
93         const DominatorTree *DT)
94       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
95 
96   Query(const Query &Q, const Value *NewExcl)
97       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
98     Excluded = Q.Excluded;
99     Excluded[NumExcluded++] = NewExcl;
100     assert(NumExcluded <= Excluded.size());
101   }
102 
103   bool isExcluded(const Value *Value) const {
104     if (NumExcluded == 0)
105       return false;
106     auto End = Excluded.begin() + NumExcluded;
107     return std::find(Excluded.begin(), End, Value) != End;
108   }
109 };
110 } // end anonymous namespace
111 
112 // Given the provided Value and, potentially, a context instruction, return
113 // the preferred context instruction (if any).
114 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
115   // If we've been provided with a context instruction, then use that (provided
116   // it has been inserted).
117   if (CxtI && CxtI->getParent())
118     return CxtI;
119 
120   // If the value is really an already-inserted instruction, then use that.
121   CxtI = dyn_cast<Instruction>(V);
122   if (CxtI && CxtI->getParent())
123     return CxtI;
124 
125   return nullptr;
126 }
127 
128 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
129                              unsigned Depth, const Query &Q);
130 
131 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
132                             const DataLayout &DL, unsigned Depth,
133                             AssumptionCache *AC, const Instruction *CxtI,
134                             const DominatorTree *DT) {
135   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
136                      Query(DL, AC, safeCxtI(V, CxtI), DT));
137 }
138 
139 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
140                                const DataLayout &DL,
141                                AssumptionCache *AC, const Instruction *CxtI,
142                                const DominatorTree *DT) {
143   assert(LHS->getType() == RHS->getType() &&
144          "LHS and RHS should have the same type");
145   assert(LHS->getType()->isIntOrIntVectorTy() &&
146          "LHS and RHS should be integers");
147   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
148   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
149   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
150   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
151   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
152   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
153 }
154 
155 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
156                            unsigned Depth, const Query &Q);
157 
158 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
159                           const DataLayout &DL, unsigned Depth,
160                           AssumptionCache *AC, const Instruction *CxtI,
161                           const DominatorTree *DT) {
162   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
163                    Query(DL, AC, safeCxtI(V, CxtI), DT));
164 }
165 
166 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
167                                    const Query &Q);
168 
169 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
170                                   bool OrZero,
171                                   unsigned Depth, AssumptionCache *AC,
172                                   const Instruction *CxtI,
173                                   const DominatorTree *DT) {
174   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
175                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
176 }
177 
178 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
179 
180 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
181                           AssumptionCache *AC, const Instruction *CxtI,
182                           const DominatorTree *DT) {
183   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
184 }
185 
186 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
187                               unsigned Depth,
188                               AssumptionCache *AC, const Instruction *CxtI,
189                               const DominatorTree *DT) {
190   bool NonNegative, Negative;
191   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
192   return NonNegative;
193 }
194 
195 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
196                            AssumptionCache *AC, const Instruction *CxtI,
197                            const DominatorTree *DT) {
198   if (auto *CI = dyn_cast<ConstantInt>(V))
199     return CI->getValue().isStrictlyPositive();
200 
201   // TODO: We'd doing two recursive queries here.  We should factor this such
202   // that only a single query is needed.
203   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
204     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
205 }
206 
207 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
208                            AssumptionCache *AC, const Instruction *CxtI,
209                            const DominatorTree *DT) {
210   bool NonNegative, Negative;
211   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
212   return Negative;
213 }
214 
215 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
216 
217 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
218                            const DataLayout &DL,
219                            AssumptionCache *AC, const Instruction *CxtI,
220                            const DominatorTree *DT) {
221   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
222                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
223                                          DT));
224 }
225 
226 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
227                               const Query &Q);
228 
229 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
230                              const DataLayout &DL,
231                              unsigned Depth, AssumptionCache *AC,
232                              const Instruction *CxtI, const DominatorTree *DT) {
233   return ::MaskedValueIsZero(V, Mask, Depth,
234                              Query(DL, AC, safeCxtI(V, CxtI), DT));
235 }
236 
237 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
238                                    const Query &Q);
239 
240 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
241                                   unsigned Depth, AssumptionCache *AC,
242                                   const Instruction *CxtI,
243                                   const DominatorTree *DT) {
244   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
245 }
246 
247 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
248                                    bool NSW,
249                                    APInt &KnownZero, APInt &KnownOne,
250                                    APInt &KnownZero2, APInt &KnownOne2,
251                                    unsigned Depth, const Query &Q) {
252   if (!Add) {
253     if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
254       // We know that the top bits of C-X are clear if X contains less bits
255       // than C (i.e. no wrap-around can happen).  For example, 20-X is
256       // positive if we can prove that X is >= 0 and < 16.
257       if (!CLHS->getValue().isNegative()) {
258         unsigned BitWidth = KnownZero.getBitWidth();
259         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
260         // NLZ can't be BitWidth with no sign bit
261         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
262         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
263 
264         // If all of the MaskV bits are known to be zero, then we know the
265         // output top bits are zero, because we now know that the output is
266         // from [0-C].
267         if ((KnownZero2 & MaskV) == MaskV) {
268           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
269           // Top bits known zero.
270           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
271         }
272       }
273     }
274   }
275 
276   unsigned BitWidth = KnownZero.getBitWidth();
277 
278   // If an initial sequence of bits in the result is not needed, the
279   // corresponding bits in the operands are not needed.
280   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
281   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
282   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
283 
284   // Carry in a 1 for a subtract, rather than a 0.
285   APInt CarryIn(BitWidth, 0);
286   if (!Add) {
287     // Sum = LHS + ~RHS + 1
288     std::swap(KnownZero2, KnownOne2);
289     CarryIn.setBit(0);
290   }
291 
292   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
293   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
294 
295   // Compute known bits of the carry.
296   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
297   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
298 
299   // Compute set of known bits (where all three relevant bits are known).
300   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
301   APInt RHSKnown = KnownZero2 | KnownOne2;
302   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
303   APInt Known = LHSKnown & RHSKnown & CarryKnown;
304 
305   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
306          "known bits of sum differ");
307 
308   // Compute known bits of the result.
309   KnownZero = ~PossibleSumOne & Known;
310   KnownOne = PossibleSumOne & Known;
311 
312   // Are we still trying to solve for the sign bit?
313   if (!Known.isNegative()) {
314     if (NSW) {
315       // Adding two non-negative numbers, or subtracting a negative number from
316       // a non-negative one, can't wrap into negative.
317       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
318         KnownZero |= APInt::getSignBit(BitWidth);
319       // Adding two negative numbers, or subtracting a non-negative number from
320       // a negative one, can't wrap into non-negative.
321       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
322         KnownOne |= APInt::getSignBit(BitWidth);
323     }
324   }
325 }
326 
327 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
328                                 APInt &KnownZero, APInt &KnownOne,
329                                 APInt &KnownZero2, APInt &KnownOne2,
330                                 unsigned Depth, const Query &Q) {
331   unsigned BitWidth = KnownZero.getBitWidth();
332   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
333   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
334 
335   bool isKnownNegative = false;
336   bool isKnownNonNegative = false;
337   // If the multiplication is known not to overflow, compute the sign bit.
338   if (NSW) {
339     if (Op0 == Op1) {
340       // The product of a number with itself is non-negative.
341       isKnownNonNegative = true;
342     } else {
343       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
344       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
345       bool isKnownNegativeOp1 = KnownOne.isNegative();
346       bool isKnownNegativeOp0 = KnownOne2.isNegative();
347       // The product of two numbers with the same sign is non-negative.
348       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
349         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
350       // The product of a negative number and a non-negative number is either
351       // negative or zero.
352       if (!isKnownNonNegative)
353         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
354                            isKnownNonZero(Op0, Depth, Q)) ||
355                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
356                            isKnownNonZero(Op1, Depth, Q));
357     }
358   }
359 
360   // If low bits are zero in either operand, output low known-0 bits.
361   // Also compute a conservative estimate for high known-0 bits.
362   // More trickiness is possible, but this is sufficient for the
363   // interesting case of alignment computation.
364   KnownOne.clearAllBits();
365   unsigned TrailZ = KnownZero.countTrailingOnes() +
366                     KnownZero2.countTrailingOnes();
367   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
368                              KnownZero2.countLeadingOnes(),
369                              BitWidth) - BitWidth;
370 
371   TrailZ = std::min(TrailZ, BitWidth);
372   LeadZ = std::min(LeadZ, BitWidth);
373   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
374               APInt::getHighBitsSet(BitWidth, LeadZ);
375 
376   // Only make use of no-wrap flags if we failed to compute the sign bit
377   // directly.  This matters if the multiplication always overflows, in
378   // which case we prefer to follow the result of the direct computation,
379   // though as the program is invoking undefined behaviour we can choose
380   // whatever we like here.
381   if (isKnownNonNegative && !KnownOne.isNegative())
382     KnownZero.setBit(BitWidth - 1);
383   else if (isKnownNegative && !KnownZero.isNegative())
384     KnownOne.setBit(BitWidth - 1);
385 }
386 
387 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
388                                              APInt &KnownZero,
389                                              APInt &KnownOne) {
390   unsigned BitWidth = KnownZero.getBitWidth();
391   unsigned NumRanges = Ranges.getNumOperands() / 2;
392   assert(NumRanges >= 1);
393 
394   KnownZero.setAllBits();
395   KnownOne.setAllBits();
396 
397   for (unsigned i = 0; i < NumRanges; ++i) {
398     ConstantInt *Lower =
399         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
400     ConstantInt *Upper =
401         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
402     ConstantRange Range(Lower->getValue(), Upper->getValue());
403 
404     // The first CommonPrefixBits of all values in Range are equal.
405     unsigned CommonPrefixBits =
406         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
407 
408     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
409     KnownOne &= Range.getUnsignedMax() & Mask;
410     KnownZero &= ~Range.getUnsignedMax() & Mask;
411   }
412 }
413 
414 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
415   SmallVector<const Value *, 16> WorkSet(1, I);
416   SmallPtrSet<const Value *, 32> Visited;
417   SmallPtrSet<const Value *, 16> EphValues;
418 
419   // The instruction defining an assumption's condition itself is always
420   // considered ephemeral to that assumption (even if it has other
421   // non-ephemeral users). See r246696's test case for an example.
422   if (is_contained(I->operands(), E))
423     return true;
424 
425   while (!WorkSet.empty()) {
426     const Value *V = WorkSet.pop_back_val();
427     if (!Visited.insert(V).second)
428       continue;
429 
430     // If all uses of this value are ephemeral, then so is this value.
431     if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
432       if (V == E)
433         return true;
434 
435       EphValues.insert(V);
436       if (const User *U = dyn_cast<User>(V))
437         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
438              J != JE; ++J) {
439           if (isSafeToSpeculativelyExecute(*J))
440             WorkSet.push_back(*J);
441         }
442     }
443   }
444 
445   return false;
446 }
447 
448 // Is this an intrinsic that cannot be speculated but also cannot trap?
449 static bool isAssumeLikeIntrinsic(const Instruction *I) {
450   if (const CallInst *CI = dyn_cast<CallInst>(I))
451     if (Function *F = CI->getCalledFunction())
452       switch (F->getIntrinsicID()) {
453       default: break;
454       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
455       case Intrinsic::assume:
456       case Intrinsic::dbg_declare:
457       case Intrinsic::dbg_value:
458       case Intrinsic::invariant_start:
459       case Intrinsic::invariant_end:
460       case Intrinsic::lifetime_start:
461       case Intrinsic::lifetime_end:
462       case Intrinsic::objectsize:
463       case Intrinsic::ptr_annotation:
464       case Intrinsic::var_annotation:
465         return true;
466       }
467 
468   return false;
469 }
470 
471 bool llvm::isValidAssumeForContext(const Instruction *Inv,
472                                    const Instruction *CxtI,
473                                    const DominatorTree *DT) {
474 
475   // There are two restrictions on the use of an assume:
476   //  1. The assume must dominate the context (or the control flow must
477   //     reach the assume whenever it reaches the context).
478   //  2. The context must not be in the assume's set of ephemeral values
479   //     (otherwise we will use the assume to prove that the condition
480   //     feeding the assume is trivially true, thus causing the removal of
481   //     the assume).
482 
483   if (DT) {
484     if (DT->dominates(Inv, CxtI))
485       return true;
486   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
487     // We don't have a DT, but this trivially dominates.
488     return true;
489   }
490 
491   // With or without a DT, the only remaining case we will check is if the
492   // instructions are in the same BB.  Give up if that is not the case.
493   if (Inv->getParent() != CxtI->getParent())
494     return false;
495 
496   // If we have a dom tree, then we now know that the assume doens't dominate
497   // the other instruction.  If we don't have a dom tree then we can check if
498   // the assume is first in the BB.
499   if (!DT) {
500     // Search forward from the assume until we reach the context (or the end
501     // of the block); the common case is that the assume will come first.
502     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
503          IE = Inv->getParent()->end(); I != IE; ++I)
504       if (&*I == CxtI)
505         return true;
506   }
507 
508   // The context comes first, but they're both in the same block. Make sure
509   // there is nothing in between that might interrupt the control flow.
510   for (BasicBlock::const_iterator I =
511          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
512        I != IE; ++I)
513     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
514       return false;
515 
516   return !isEphemeralValueOf(Inv, CxtI);
517 }
518 
519 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
520                                        APInt &KnownOne, unsigned Depth,
521                                        const Query &Q) {
522   // Use of assumptions is context-sensitive. If we don't have a context, we
523   // cannot use them!
524   if (!Q.AC || !Q.CxtI)
525     return;
526 
527   unsigned BitWidth = KnownZero.getBitWidth();
528 
529   // Note that the patterns below need to be kept in sync with the code
530   // in AssumptionCache::updateAffectedValues.
531 
532   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
533     if (!AssumeVH)
534       continue;
535     CallInst *I = cast<CallInst>(AssumeVH);
536     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
537            "Got assumption for the wrong function!");
538     if (Q.isExcluded(I))
539       continue;
540 
541     // Warning: This loop can end up being somewhat performance sensetive.
542     // We're running this loop for once for each value queried resulting in a
543     // runtime of ~O(#assumes * #values).
544 
545     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
546            "must be an assume intrinsic");
547 
548     Value *Arg = I->getArgOperand(0);
549 
550     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
551       assert(BitWidth == 1 && "assume operand is not i1?");
552       KnownZero.clearAllBits();
553       KnownOne.setAllBits();
554       return;
555     }
556     if (match(Arg, m_Not(m_Specific(V))) &&
557         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
558       assert(BitWidth == 1 && "assume operand is not i1?");
559       KnownZero.setAllBits();
560       KnownOne.clearAllBits();
561       return;
562     }
563 
564     // The remaining tests are all recursive, so bail out if we hit the limit.
565     if (Depth == MaxDepth)
566       continue;
567 
568     Value *A, *B;
569     auto m_V = m_CombineOr(m_Specific(V),
570                            m_CombineOr(m_PtrToInt(m_Specific(V)),
571                            m_BitCast(m_Specific(V))));
572 
573     CmpInst::Predicate Pred;
574     ConstantInt *C;
575     // assume(v = a)
576     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
577         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
578       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
579       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
580       KnownZero |= RHSKnownZero;
581       KnownOne  |= RHSKnownOne;
582     // assume(v & b = a)
583     } else if (match(Arg,
584                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
585                Pred == ICmpInst::ICMP_EQ &&
586                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
587       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
588       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
589       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
590       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
591 
592       // For those bits in the mask that are known to be one, we can propagate
593       // known bits from the RHS to V.
594       KnownZero |= RHSKnownZero & MaskKnownOne;
595       KnownOne  |= RHSKnownOne  & MaskKnownOne;
596     // assume(~(v & b) = a)
597     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
598                                    m_Value(A))) &&
599                Pred == ICmpInst::ICMP_EQ &&
600                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
601       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
602       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
603       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
604       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
605 
606       // For those bits in the mask that are known to be one, we can propagate
607       // inverted known bits from the RHS to V.
608       KnownZero |= RHSKnownOne  & MaskKnownOne;
609       KnownOne  |= RHSKnownZero & MaskKnownOne;
610     // assume(v | b = a)
611     } else if (match(Arg,
612                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
613                Pred == ICmpInst::ICMP_EQ &&
614                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
615       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
616       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
617       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
618       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
619 
620       // For those bits in B that are known to be zero, we can propagate known
621       // bits from the RHS to V.
622       KnownZero |= RHSKnownZero & BKnownZero;
623       KnownOne  |= RHSKnownOne  & BKnownZero;
624     // assume(~(v | b) = a)
625     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
626                                    m_Value(A))) &&
627                Pred == ICmpInst::ICMP_EQ &&
628                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
629       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
630       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
631       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
632       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
633 
634       // For those bits in B that are known to be zero, we can propagate
635       // inverted known bits from the RHS to V.
636       KnownZero |= RHSKnownOne  & BKnownZero;
637       KnownOne  |= RHSKnownZero & BKnownZero;
638     // assume(v ^ b = a)
639     } else if (match(Arg,
640                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
641                Pred == ICmpInst::ICMP_EQ &&
642                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
643       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
644       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
645       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
646       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
647 
648       // For those bits in B that are known to be zero, we can propagate known
649       // bits from the RHS to V. For those bits in B that are known to be one,
650       // we can propagate inverted known bits from the RHS to V.
651       KnownZero |= RHSKnownZero & BKnownZero;
652       KnownOne  |= RHSKnownOne  & BKnownZero;
653       KnownZero |= RHSKnownOne  & BKnownOne;
654       KnownOne  |= RHSKnownZero & BKnownOne;
655     // assume(~(v ^ b) = a)
656     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
657                                    m_Value(A))) &&
658                Pred == ICmpInst::ICMP_EQ &&
659                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
660       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
661       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
662       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
663       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
664 
665       // For those bits in B that are known to be zero, we can propagate
666       // inverted known bits from the RHS to V. For those bits in B that are
667       // known to be one, we can propagate known bits from the RHS to V.
668       KnownZero |= RHSKnownOne  & BKnownZero;
669       KnownOne  |= RHSKnownZero & BKnownZero;
670       KnownZero |= RHSKnownZero & BKnownOne;
671       KnownOne  |= RHSKnownOne  & BKnownOne;
672     // assume(v << c = a)
673     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
674                                    m_Value(A))) &&
675                Pred == ICmpInst::ICMP_EQ &&
676                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
677       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
678       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
679       // For those bits in RHS that are known, we can propagate them to known
680       // bits in V shifted to the right by C.
681       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
682       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
683     // assume(~(v << c) = a)
684     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
685                                    m_Value(A))) &&
686                Pred == ICmpInst::ICMP_EQ &&
687                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
688       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
689       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
690       // For those bits in RHS that are known, we can propagate them inverted
691       // to known bits in V shifted to the right by C.
692       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
693       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
694     // assume(v >> c = a)
695     } else if (match(Arg,
696                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
697                                                 m_AShr(m_V, m_ConstantInt(C))),
698                               m_Value(A))) &&
699                Pred == ICmpInst::ICMP_EQ &&
700                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
701       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
702       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
703       // For those bits in RHS that are known, we can propagate them to known
704       // bits in V shifted to the right by C.
705       KnownZero |= RHSKnownZero << C->getZExtValue();
706       KnownOne  |= RHSKnownOne  << C->getZExtValue();
707     // assume(~(v >> c) = a)
708     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
709                                              m_LShr(m_V, m_ConstantInt(C)),
710                                              m_AShr(m_V, m_ConstantInt(C)))),
711                                    m_Value(A))) &&
712                Pred == ICmpInst::ICMP_EQ &&
713                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
714       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
715       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
716       // For those bits in RHS that are known, we can propagate them inverted
717       // to known bits in V shifted to the right by C.
718       KnownZero |= RHSKnownOne  << C->getZExtValue();
719       KnownOne  |= RHSKnownZero << C->getZExtValue();
720     // assume(v >=_s c) where c is non-negative
721     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
722                Pred == ICmpInst::ICMP_SGE &&
723                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
724       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
725       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
726 
727       if (RHSKnownZero.isNegative()) {
728         // We know that the sign bit is zero.
729         KnownZero |= APInt::getSignBit(BitWidth);
730       }
731     // assume(v >_s c) where c is at least -1.
732     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
733                Pred == ICmpInst::ICMP_SGT &&
734                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
735       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
736       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
737 
738       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
739         // We know that the sign bit is zero.
740         KnownZero |= APInt::getSignBit(BitWidth);
741       }
742     // assume(v <=_s c) where c is negative
743     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
744                Pred == ICmpInst::ICMP_SLE &&
745                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
746       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
747       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
748 
749       if (RHSKnownOne.isNegative()) {
750         // We know that the sign bit is one.
751         KnownOne |= APInt::getSignBit(BitWidth);
752       }
753     // assume(v <_s c) where c is non-positive
754     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
755                Pred == ICmpInst::ICMP_SLT &&
756                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
757       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
758       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
759 
760       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
761         // We know that the sign bit is one.
762         KnownOne |= APInt::getSignBit(BitWidth);
763       }
764     // assume(v <=_u c)
765     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
766                Pred == ICmpInst::ICMP_ULE &&
767                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
770 
771       // Whatever high bits in c are zero are known to be zero.
772       KnownZero |=
773         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
774     // assume(v <_u c)
775     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
776                Pred == ICmpInst::ICMP_ULT &&
777                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
778       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
779       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
780 
781       // Whatever high bits in c are zero are known to be zero (if c is a power
782       // of 2, then one more).
783       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
784         KnownZero |=
785           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
786       else
787         KnownZero |=
788           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
789     }
790   }
791 }
792 
793 // Compute known bits from a shift operator, including those with a
794 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
795 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
796 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
797 // functors that, given the known-zero or known-one bits respectively, and a
798 // shift amount, compute the implied known-zero or known-one bits of the shift
799 // operator's result respectively for that shift amount. The results from calling
800 // KZF and KOF are conservatively combined for all permitted shift amounts.
801 static void computeKnownBitsFromShiftOperator(
802     const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
803     APInt &KnownOne2, unsigned Depth, const Query &Q,
804     function_ref<APInt(const APInt &, unsigned)> KZF,
805     function_ref<APInt(const APInt &, unsigned)> KOF) {
806   unsigned BitWidth = KnownZero.getBitWidth();
807 
808   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
809     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
810 
811     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
812     KnownZero = KZF(KnownZero, ShiftAmt);
813     KnownOne  = KOF(KnownOne, ShiftAmt);
814     // If there is conflict between KnownZero and KnownOne, this must be an
815     // overflowing left shift, so the shift result is undefined. Clear KnownZero
816     // and KnownOne bits so that other code could propagate this undef.
817     if ((KnownZero & KnownOne) != 0) {
818       KnownZero.clearAllBits();
819       KnownOne.clearAllBits();
820     }
821 
822     return;
823   }
824 
825   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
826 
827   // Note: We cannot use KnownZero.getLimitedValue() here, because if
828   // BitWidth > 64 and any upper bits are known, we'll end up returning the
829   // limit value (which implies all bits are known).
830   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
831   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
832 
833   // It would be more-clearly correct to use the two temporaries for this
834   // calculation. Reusing the APInts here to prevent unnecessary allocations.
835   KnownZero.clearAllBits();
836   KnownOne.clearAllBits();
837 
838   // If we know the shifter operand is nonzero, we can sometimes infer more
839   // known bits. However this is expensive to compute, so be lazy about it and
840   // only compute it when absolutely necessary.
841   Optional<bool> ShifterOperandIsNonZero;
842 
843   // Early exit if we can't constrain any well-defined shift amount.
844   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
845     ShifterOperandIsNonZero =
846         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
847     if (!*ShifterOperandIsNonZero)
848       return;
849   }
850 
851   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
852 
853   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
854   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
855     // Combine the shifted known input bits only for those shift amounts
856     // compatible with its known constraints.
857     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
858       continue;
859     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
860       continue;
861     // If we know the shifter is nonzero, we may be able to infer more known
862     // bits. This check is sunk down as far as possible to avoid the expensive
863     // call to isKnownNonZero if the cheaper checks above fail.
864     if (ShiftAmt == 0) {
865       if (!ShifterOperandIsNonZero.hasValue())
866         ShifterOperandIsNonZero =
867             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
868       if (*ShifterOperandIsNonZero)
869         continue;
870     }
871 
872     KnownZero &= KZF(KnownZero2, ShiftAmt);
873     KnownOne  &= KOF(KnownOne2, ShiftAmt);
874   }
875 
876   // If there are no compatible shift amounts, then we've proven that the shift
877   // amount must be >= the BitWidth, and the result is undefined. We could
878   // return anything we'd like, but we need to make sure the sets of known bits
879   // stay disjoint (it should be better for some other code to actually
880   // propagate the undef than to pick a value here using known bits).
881   if ((KnownZero & KnownOne) != 0) {
882     KnownZero.clearAllBits();
883     KnownOne.clearAllBits();
884   }
885 }
886 
887 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
888                                          APInt &KnownOne, unsigned Depth,
889                                          const Query &Q) {
890   unsigned BitWidth = KnownZero.getBitWidth();
891 
892   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
893   switch (I->getOpcode()) {
894   default: break;
895   case Instruction::Load:
896     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
897       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
898     break;
899   case Instruction::And: {
900     // If either the LHS or the RHS are Zero, the result is zero.
901     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
902     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
903 
904     // Output known-1 bits are only known if set in both the LHS & RHS.
905     KnownOne &= KnownOne2;
906     // Output known-0 are known to be clear if zero in either the LHS | RHS.
907     KnownZero |= KnownZero2;
908 
909     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
910     // here we handle the more general case of adding any odd number by
911     // matching the form add(x, add(x, y)) where y is odd.
912     // TODO: This could be generalized to clearing any bit set in y where the
913     // following bit is known to be unset in y.
914     Value *Y = nullptr;
915     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
916                                       m_Value(Y))) ||
917         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
918                                       m_Value(Y)))) {
919       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
920       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
921       if (KnownOne3.countTrailingOnes() > 0)
922         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
923     }
924     break;
925   }
926   case Instruction::Or: {
927     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
928     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
929 
930     // Output known-0 bits are only known if clear in both the LHS & RHS.
931     KnownZero &= KnownZero2;
932     // Output known-1 are known to be set if set in either the LHS | RHS.
933     KnownOne |= KnownOne2;
934     break;
935   }
936   case Instruction::Xor: {
937     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
938     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
939 
940     // Output known-0 bits are known if clear or set in both the LHS & RHS.
941     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
942     // Output known-1 are known to be set if set in only one of the LHS, RHS.
943     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
944     KnownZero = KnownZeroOut;
945     break;
946   }
947   case Instruction::Mul: {
948     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
949     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
950                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
951     break;
952   }
953   case Instruction::UDiv: {
954     // For the purposes of computing leading zeros we can conservatively
955     // treat a udiv as a logical right shift by the power of 2 known to
956     // be less than the denominator.
957     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
958     unsigned LeadZ = KnownZero2.countLeadingOnes();
959 
960     KnownOne2.clearAllBits();
961     KnownZero2.clearAllBits();
962     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
963     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
964     if (RHSUnknownLeadingOnes != BitWidth)
965       LeadZ = std::min(BitWidth,
966                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
967 
968     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
969     break;
970   }
971   case Instruction::Select: {
972     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
973     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
974 
975     const Value *LHS;
976     const Value *RHS;
977     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
978     if (SelectPatternResult::isMinOrMax(SPF)) {
979       computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
980       computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
981     } else {
982       computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
983       computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
984     }
985 
986     unsigned MaxHighOnes = 0;
987     unsigned MaxHighZeros = 0;
988     if (SPF == SPF_SMAX) {
989       // If both sides are negative, the result is negative.
990       if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
991         // We can derive a lower bound on the result by taking the max of the
992         // leading one bits.
993         MaxHighOnes =
994             std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
995       // If either side is non-negative, the result is non-negative.
996       else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
997         MaxHighZeros = 1;
998     } else if (SPF == SPF_SMIN) {
999       // If both sides are non-negative, the result is non-negative.
1000       if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
1001         // We can derive an upper bound on the result by taking the max of the
1002         // leading zero bits.
1003         MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1004                                 KnownZero2.countLeadingOnes());
1005       // If either side is negative, the result is negative.
1006       else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
1007         MaxHighOnes = 1;
1008     } else if (SPF == SPF_UMAX) {
1009       // We can derive a lower bound on the result by taking the max of the
1010       // leading one bits.
1011       MaxHighOnes =
1012           std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1013     } else if (SPF == SPF_UMIN) {
1014       // We can derive an upper bound on the result by taking the max of the
1015       // leading zero bits.
1016       MaxHighZeros =
1017           std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1018     }
1019 
1020     // Only known if known in both the LHS and RHS.
1021     KnownOne &= KnownOne2;
1022     KnownZero &= KnownZero2;
1023     if (MaxHighOnes > 0)
1024       KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1025     if (MaxHighZeros > 0)
1026       KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
1027     break;
1028   }
1029   case Instruction::FPTrunc:
1030   case Instruction::FPExt:
1031   case Instruction::FPToUI:
1032   case Instruction::FPToSI:
1033   case Instruction::SIToFP:
1034   case Instruction::UIToFP:
1035     break; // Can't work with floating point.
1036   case Instruction::PtrToInt:
1037   case Instruction::IntToPtr:
1038     // Fall through and handle them the same as zext/trunc.
1039     LLVM_FALLTHROUGH;
1040   case Instruction::ZExt:
1041   case Instruction::Trunc: {
1042     Type *SrcTy = I->getOperand(0)->getType();
1043 
1044     unsigned SrcBitWidth;
1045     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1046     // which fall through here.
1047     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1048 
1049     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1050     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1051     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1052     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1053     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1054     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1055     // Any top bits are known to be zero.
1056     if (BitWidth > SrcBitWidth)
1057       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1058     break;
1059   }
1060   case Instruction::BitCast: {
1061     Type *SrcTy = I->getOperand(0)->getType();
1062     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
1063         // TODO: For now, not handling conversions like:
1064         // (bitcast i64 %x to <2 x i32>)
1065         !I->getType()->isVectorTy()) {
1066       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1067       break;
1068     }
1069     break;
1070   }
1071   case Instruction::SExt: {
1072     // Compute the bits in the result that are not present in the input.
1073     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1074 
1075     KnownZero = KnownZero.trunc(SrcBitWidth);
1076     KnownOne = KnownOne.trunc(SrcBitWidth);
1077     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1078     KnownZero = KnownZero.zext(BitWidth);
1079     KnownOne = KnownOne.zext(BitWidth);
1080 
1081     // If the sign bit of the input is known set or clear, then we know the
1082     // top bits of the result.
1083     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1084       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1085     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1086       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1087     break;
1088   }
1089   case Instruction::Shl: {
1090     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1091     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1092     auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1093       APInt KZResult =
1094           (KnownZero << ShiftAmt) |
1095           APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1096       // If this shift has "nsw" keyword, then the result is either a poison
1097       // value or has the same sign bit as the first operand.
1098       if (NSW && KnownZero.isNegative())
1099         KZResult.setBit(BitWidth - 1);
1100       return KZResult;
1101     };
1102 
1103     auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1104       APInt KOResult = KnownOne << ShiftAmt;
1105       if (NSW && KnownOne.isNegative())
1106         KOResult.setBit(BitWidth - 1);
1107       return KOResult;
1108     };
1109 
1110     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1111                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1112                                       KOF);
1113     break;
1114   }
1115   case Instruction::LShr: {
1116     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1117     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1118       return APIntOps::lshr(KnownZero, ShiftAmt) |
1119              // High bits known zero.
1120              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1121     };
1122 
1123     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1124       return APIntOps::lshr(KnownOne, ShiftAmt);
1125     };
1126 
1127     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1128                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1129                                       KOF);
1130     break;
1131   }
1132   case Instruction::AShr: {
1133     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1134     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1135       return APIntOps::ashr(KnownZero, ShiftAmt);
1136     };
1137 
1138     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1139       return APIntOps::ashr(KnownOne, ShiftAmt);
1140     };
1141 
1142     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1143                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1144                                       KOF);
1145     break;
1146   }
1147   case Instruction::Sub: {
1148     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1149     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1150                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1151                            Q);
1152     break;
1153   }
1154   case Instruction::Add: {
1155     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1156     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1157                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1158                            Q);
1159     break;
1160   }
1161   case Instruction::SRem:
1162     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1163       APInt RA = Rem->getValue().abs();
1164       if (RA.isPowerOf2()) {
1165         APInt LowBits = RA - 1;
1166         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1167                          Q);
1168 
1169         // The low bits of the first operand are unchanged by the srem.
1170         KnownZero = KnownZero2 & LowBits;
1171         KnownOne = KnownOne2 & LowBits;
1172 
1173         // If the first operand is non-negative or has all low bits zero, then
1174         // the upper bits are all zero.
1175         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1176           KnownZero |= ~LowBits;
1177 
1178         // If the first operand is negative and not all low bits are zero, then
1179         // the upper bits are all one.
1180         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1181           KnownOne |= ~LowBits;
1182 
1183         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1184       }
1185     }
1186 
1187     // The sign bit is the LHS's sign bit, except when the result of the
1188     // remainder is zero.
1189     if (KnownZero.isNonNegative()) {
1190       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1191       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1192                        Q);
1193       // If it's known zero, our sign bit is also zero.
1194       if (LHSKnownZero.isNegative())
1195         KnownZero.setBit(BitWidth - 1);
1196     }
1197 
1198     break;
1199   case Instruction::URem: {
1200     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1201       const APInt &RA = Rem->getValue();
1202       if (RA.isPowerOf2()) {
1203         APInt LowBits = (RA - 1);
1204         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1205         KnownZero |= ~LowBits;
1206         KnownOne &= LowBits;
1207         break;
1208       }
1209     }
1210 
1211     // Since the result is less than or equal to either operand, any leading
1212     // zero bits in either operand must also exist in the result.
1213     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1214     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1215 
1216     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1217                                 KnownZero2.countLeadingOnes());
1218     KnownOne.clearAllBits();
1219     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1220     break;
1221   }
1222 
1223   case Instruction::Alloca: {
1224     const AllocaInst *AI = cast<AllocaInst>(I);
1225     unsigned Align = AI->getAlignment();
1226     if (Align == 0)
1227       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1228 
1229     if (Align > 0)
1230       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1231     break;
1232   }
1233   case Instruction::GetElementPtr: {
1234     // Analyze all of the subscripts of this getelementptr instruction
1235     // to determine if we can prove known low zero bits.
1236     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1237     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1238                      Q);
1239     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1240 
1241     gep_type_iterator GTI = gep_type_begin(I);
1242     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1243       Value *Index = I->getOperand(i);
1244       if (StructType *STy = GTI.getStructTypeOrNull()) {
1245         // Handle struct member offset arithmetic.
1246 
1247         // Handle case when index is vector zeroinitializer
1248         Constant *CIndex = cast<Constant>(Index);
1249         if (CIndex->isZeroValue())
1250           continue;
1251 
1252         if (CIndex->getType()->isVectorTy())
1253           Index = CIndex->getSplatValue();
1254 
1255         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1256         const StructLayout *SL = Q.DL.getStructLayout(STy);
1257         uint64_t Offset = SL->getElementOffset(Idx);
1258         TrailZ = std::min<unsigned>(TrailZ,
1259                                     countTrailingZeros(Offset));
1260       } else {
1261         // Handle array index arithmetic.
1262         Type *IndexedTy = GTI.getIndexedType();
1263         if (!IndexedTy->isSized()) {
1264           TrailZ = 0;
1265           break;
1266         }
1267         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1268         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1269         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1270         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1271         TrailZ = std::min(TrailZ,
1272                           unsigned(countTrailingZeros(TypeSize) +
1273                                    LocalKnownZero.countTrailingOnes()));
1274       }
1275     }
1276 
1277     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1278     break;
1279   }
1280   case Instruction::PHI: {
1281     const PHINode *P = cast<PHINode>(I);
1282     // Handle the case of a simple two-predecessor recurrence PHI.
1283     // There's a lot more that could theoretically be done here, but
1284     // this is sufficient to catch some interesting cases.
1285     if (P->getNumIncomingValues() == 2) {
1286       for (unsigned i = 0; i != 2; ++i) {
1287         Value *L = P->getIncomingValue(i);
1288         Value *R = P->getIncomingValue(!i);
1289         Operator *LU = dyn_cast<Operator>(L);
1290         if (!LU)
1291           continue;
1292         unsigned Opcode = LU->getOpcode();
1293         // Check for operations that have the property that if
1294         // both their operands have low zero bits, the result
1295         // will have low zero bits.
1296         if (Opcode == Instruction::Add ||
1297             Opcode == Instruction::Sub ||
1298             Opcode == Instruction::And ||
1299             Opcode == Instruction::Or ||
1300             Opcode == Instruction::Mul) {
1301           Value *LL = LU->getOperand(0);
1302           Value *LR = LU->getOperand(1);
1303           // Find a recurrence.
1304           if (LL == I)
1305             L = LR;
1306           else if (LR == I)
1307             L = LL;
1308           else
1309             break;
1310           // Ok, we have a PHI of the form L op= R. Check for low
1311           // zero bits.
1312           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1313 
1314           // We need to take the minimum number of known bits
1315           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1316           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1317 
1318           KnownZero = APInt::getLowBitsSet(
1319               BitWidth, std::min(KnownZero2.countTrailingOnes(),
1320                                  KnownZero3.countTrailingOnes()));
1321 
1322           if (DontImproveNonNegativePhiBits)
1323             break;
1324 
1325           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1326           if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1327             // If initial value of recurrence is nonnegative, and we are adding
1328             // a nonnegative number with nsw, the result can only be nonnegative
1329             // or poison value regardless of the number of times we execute the
1330             // add in phi recurrence. If initial value is negative and we are
1331             // adding a negative number with nsw, the result can only be
1332             // negative or poison value. Similar arguments apply to sub and mul.
1333             //
1334             // (add non-negative, non-negative) --> non-negative
1335             // (add negative, negative) --> negative
1336             if (Opcode == Instruction::Add) {
1337               if (KnownZero2.isNegative() && KnownZero3.isNegative())
1338                 KnownZero.setBit(BitWidth - 1);
1339               else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1340                 KnownOne.setBit(BitWidth - 1);
1341             }
1342 
1343             // (sub nsw non-negative, negative) --> non-negative
1344             // (sub nsw negative, non-negative) --> negative
1345             else if (Opcode == Instruction::Sub && LL == I) {
1346               if (KnownZero2.isNegative() && KnownOne3.isNegative())
1347                 KnownZero.setBit(BitWidth - 1);
1348               else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1349                 KnownOne.setBit(BitWidth - 1);
1350             }
1351 
1352             // (mul nsw non-negative, non-negative) --> non-negative
1353             else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1354                      KnownZero3.isNegative())
1355               KnownZero.setBit(BitWidth - 1);
1356           }
1357 
1358           break;
1359         }
1360       }
1361     }
1362 
1363     // Unreachable blocks may have zero-operand PHI nodes.
1364     if (P->getNumIncomingValues() == 0)
1365       break;
1366 
1367     // Otherwise take the unions of the known bit sets of the operands,
1368     // taking conservative care to avoid excessive recursion.
1369     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1370       // Skip if every incoming value references to ourself.
1371       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1372         break;
1373 
1374       KnownZero = APInt::getAllOnesValue(BitWidth);
1375       KnownOne = APInt::getAllOnesValue(BitWidth);
1376       for (Value *IncValue : P->incoming_values()) {
1377         // Skip direct self references.
1378         if (IncValue == P) continue;
1379 
1380         KnownZero2 = APInt(BitWidth, 0);
1381         KnownOne2 = APInt(BitWidth, 0);
1382         // Recurse, but cap the recursion to one level, because we don't
1383         // want to waste time spinning around in loops.
1384         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1385         KnownZero &= KnownZero2;
1386         KnownOne &= KnownOne2;
1387         // If all bits have been ruled out, there's no need to check
1388         // more operands.
1389         if (!KnownZero && !KnownOne)
1390           break;
1391       }
1392     }
1393     break;
1394   }
1395   case Instruction::Call:
1396   case Instruction::Invoke:
1397     // If range metadata is attached to this call, set known bits from that,
1398     // and then intersect with known bits based on other properties of the
1399     // function.
1400     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1401       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1402     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1403       computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1404       KnownZero |= KnownZero2;
1405       KnownOne |= KnownOne2;
1406     }
1407     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1408       switch (II->getIntrinsicID()) {
1409       default: break;
1410       case Intrinsic::bitreverse:
1411         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1412         KnownZero = KnownZero2.reverseBits();
1413         KnownOne = KnownOne2.reverseBits();
1414         break;
1415       case Intrinsic::bswap:
1416         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1417         KnownZero |= KnownZero2.byteSwap();
1418         KnownOne |= KnownOne2.byteSwap();
1419         break;
1420       case Intrinsic::ctlz:
1421       case Intrinsic::cttz: {
1422         unsigned LowBits = Log2_32(BitWidth)+1;
1423         // If this call is undefined for 0, the result will be less than 2^n.
1424         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1425           LowBits -= 1;
1426         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1427         break;
1428       }
1429       case Intrinsic::ctpop: {
1430         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1431         // We can bound the space the count needs.  Also, bits known to be zero
1432         // can't contribute to the population.
1433         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1434         unsigned LeadingZeros =
1435           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1436         assert(LeadingZeros <= BitWidth);
1437         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1438         KnownOne &= ~KnownZero;
1439         // TODO: we could bound KnownOne using the lower bound on the number
1440         // of bits which might be set provided by popcnt KnownOne2.
1441         break;
1442       }
1443       case Intrinsic::x86_sse42_crc32_64_64:
1444         KnownZero |= APInt::getHighBitsSet(64, 32);
1445         break;
1446       }
1447     }
1448     break;
1449   case Instruction::ExtractElement:
1450     // Look through extract element. At the moment we keep this simple and skip
1451     // tracking the specific element. But at least we might find information
1452     // valid for all elements of the vector (for example if vector is sign
1453     // extended, shifted, etc).
1454     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1455     break;
1456   case Instruction::ExtractValue:
1457     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1458       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1459       if (EVI->getNumIndices() != 1) break;
1460       if (EVI->getIndices()[0] == 0) {
1461         switch (II->getIntrinsicID()) {
1462         default: break;
1463         case Intrinsic::uadd_with_overflow:
1464         case Intrinsic::sadd_with_overflow:
1465           computeKnownBitsAddSub(true, II->getArgOperand(0),
1466                                  II->getArgOperand(1), false, KnownZero,
1467                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1468           break;
1469         case Intrinsic::usub_with_overflow:
1470         case Intrinsic::ssub_with_overflow:
1471           computeKnownBitsAddSub(false, II->getArgOperand(0),
1472                                  II->getArgOperand(1), false, KnownZero,
1473                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1474           break;
1475         case Intrinsic::umul_with_overflow:
1476         case Intrinsic::smul_with_overflow:
1477           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1478                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1479                               Q);
1480           break;
1481         }
1482       }
1483     }
1484   }
1485 }
1486 
1487 /// Determine which bits of V are known to be either zero or one and return
1488 /// them in the KnownZero/KnownOne bit sets.
1489 ///
1490 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1491 /// we cannot optimize based on the assumption that it is zero without changing
1492 /// it to be an explicit zero.  If we don't change it to zero, other code could
1493 /// optimized based on the contradictory assumption that it is non-zero.
1494 /// Because instcombine aggressively folds operations with undef args anyway,
1495 /// this won't lose us code quality.
1496 ///
1497 /// This function is defined on values with integer type, values with pointer
1498 /// type, and vectors of integers.  In the case
1499 /// where V is a vector, known zero, and known one values are the
1500 /// same width as the vector element, and the bit is set only if it is true
1501 /// for all of the elements in the vector.
1502 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
1503                       unsigned Depth, const Query &Q) {
1504   assert(V && "No Value?");
1505   assert(Depth <= MaxDepth && "Limit Search Depth");
1506   unsigned BitWidth = KnownZero.getBitWidth();
1507 
1508   assert((V->getType()->isIntOrIntVectorTy() ||
1509           V->getType()->getScalarType()->isPointerTy()) &&
1510          "Not integer or pointer type!");
1511   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1512          (!V->getType()->isIntOrIntVectorTy() ||
1513           V->getType()->getScalarSizeInBits() == BitWidth) &&
1514          KnownZero.getBitWidth() == BitWidth &&
1515          KnownOne.getBitWidth() == BitWidth &&
1516          "V, KnownOne and KnownZero should have same BitWidth");
1517 
1518   const APInt *C;
1519   if (match(V, m_APInt(C))) {
1520     // We know all of the bits for a scalar constant or a splat vector constant!
1521     KnownOne = *C;
1522     KnownZero = ~KnownOne;
1523     return;
1524   }
1525   // Null and aggregate-zero are all-zeros.
1526   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1527     KnownOne.clearAllBits();
1528     KnownZero = APInt::getAllOnesValue(BitWidth);
1529     return;
1530   }
1531   // Handle a constant vector by taking the intersection of the known bits of
1532   // each element.
1533   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1534     // We know that CDS must be a vector of integers. Take the intersection of
1535     // each element.
1536     KnownZero.setAllBits(); KnownOne.setAllBits();
1537     APInt Elt(KnownZero.getBitWidth(), 0);
1538     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1539       Elt = CDS->getElementAsInteger(i);
1540       KnownZero &= ~Elt;
1541       KnownOne &= Elt;
1542     }
1543     return;
1544   }
1545 
1546   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1547     // We know that CV must be a vector of integers. Take the intersection of
1548     // each element.
1549     KnownZero.setAllBits(); KnownOne.setAllBits();
1550     APInt Elt(KnownZero.getBitWidth(), 0);
1551     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1552       Constant *Element = CV->getAggregateElement(i);
1553       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1554       if (!ElementCI) {
1555         KnownZero.clearAllBits();
1556         KnownOne.clearAllBits();
1557         return;
1558       }
1559       Elt = ElementCI->getValue();
1560       KnownZero &= ~Elt;
1561       KnownOne &= Elt;
1562     }
1563     return;
1564   }
1565 
1566   // Start out not knowing anything.
1567   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1568 
1569   // We can't imply anything about undefs.
1570   if (isa<UndefValue>(V))
1571     return;
1572 
1573   // There's no point in looking through other users of ConstantData for
1574   // assumptions.  Confirm that we've handled them all.
1575   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1576 
1577   // Limit search depth.
1578   // All recursive calls that increase depth must come after this.
1579   if (Depth == MaxDepth)
1580     return;
1581 
1582   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1583   // the bits of its aliasee.
1584   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1585     if (!GA->isInterposable())
1586       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1587     return;
1588   }
1589 
1590   if (const Operator *I = dyn_cast<Operator>(V))
1591     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1592 
1593   // Aligned pointers have trailing zeros - refine KnownZero set
1594   if (V->getType()->isPointerTy()) {
1595     unsigned Align = V->getPointerAlignment(Q.DL);
1596     if (Align)
1597       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1598   }
1599 
1600   // computeKnownBitsFromAssume strictly refines KnownZero and
1601   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1602 
1603   // Check whether a nearby assume intrinsic can determine some known bits.
1604   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1605 
1606   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1607 }
1608 
1609 /// Determine whether the sign bit is known to be zero or one.
1610 /// Convenience wrapper around computeKnownBits.
1611 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
1612                     unsigned Depth, const Query &Q) {
1613   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1614   if (!BitWidth) {
1615     KnownZero = false;
1616     KnownOne = false;
1617     return;
1618   }
1619   APInt ZeroBits(BitWidth, 0);
1620   APInt OneBits(BitWidth, 0);
1621   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1622   KnownOne = OneBits[BitWidth - 1];
1623   KnownZero = ZeroBits[BitWidth - 1];
1624 }
1625 
1626 /// Return true if the given value is known to have exactly one
1627 /// bit set when defined. For vectors return true if every element is known to
1628 /// be a power of two when defined. Supports values with integer or pointer
1629 /// types and vectors of integers.
1630 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1631                             const Query &Q) {
1632   if (const Constant *C = dyn_cast<Constant>(V)) {
1633     if (C->isNullValue())
1634       return OrZero;
1635 
1636     const APInt *ConstIntOrConstSplatInt;
1637     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1638       return ConstIntOrConstSplatInt->isPowerOf2();
1639   }
1640 
1641   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1642   // it is shifted off the end then the result is undefined.
1643   if (match(V, m_Shl(m_One(), m_Value())))
1644     return true;
1645 
1646   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1647   // bottom.  If it is shifted off the bottom then the result is undefined.
1648   if (match(V, m_LShr(m_SignBit(), m_Value())))
1649     return true;
1650 
1651   // The remaining tests are all recursive, so bail out if we hit the limit.
1652   if (Depth++ == MaxDepth)
1653     return false;
1654 
1655   Value *X = nullptr, *Y = nullptr;
1656   // A shift left or a logical shift right of a power of two is a power of two
1657   // or zero.
1658   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1659                  match(V, m_LShr(m_Value(X), m_Value()))))
1660     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1661 
1662   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1663     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1664 
1665   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1666     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1667            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1668 
1669   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1670     // A power of two and'd with anything is a power of two or zero.
1671     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1672         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1673       return true;
1674     // X & (-X) is always a power of two or zero.
1675     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1676       return true;
1677     return false;
1678   }
1679 
1680   // Adding a power-of-two or zero to the same power-of-two or zero yields
1681   // either the original power-of-two, a larger power-of-two or zero.
1682   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1683     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1684     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1685       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1686           match(X, m_And(m_Value(), m_Specific(Y))))
1687         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1688           return true;
1689       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1690           match(Y, m_And(m_Value(), m_Specific(X))))
1691         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1692           return true;
1693 
1694       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1695       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1696       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1697 
1698       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1699       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1700       // If i8 V is a power of two or zero:
1701       //  ZeroBits: 1 1 1 0 1 1 1 1
1702       // ~ZeroBits: 0 0 0 1 0 0 0 0
1703       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1704         // If OrZero isn't set, we cannot give back a zero result.
1705         // Make sure either the LHS or RHS has a bit set.
1706         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1707           return true;
1708     }
1709   }
1710 
1711   // An exact divide or right shift can only shift off zero bits, so the result
1712   // is a power of two only if the first operand is a power of two and not
1713   // copying a sign bit (sdiv int_min, 2).
1714   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1715       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1716     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1717                                   Depth, Q);
1718   }
1719 
1720   return false;
1721 }
1722 
1723 /// \brief Test whether a GEP's result is known to be non-null.
1724 ///
1725 /// Uses properties inherent in a GEP to try to determine whether it is known
1726 /// to be non-null.
1727 ///
1728 /// Currently this routine does not support vector GEPs.
1729 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1730                               const Query &Q) {
1731   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1732     return false;
1733 
1734   // FIXME: Support vector-GEPs.
1735   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1736 
1737   // If the base pointer is non-null, we cannot walk to a null address with an
1738   // inbounds GEP in address space zero.
1739   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1740     return true;
1741 
1742   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1743   // If so, then the GEP cannot produce a null pointer, as doing so would
1744   // inherently violate the inbounds contract within address space zero.
1745   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1746        GTI != GTE; ++GTI) {
1747     // Struct types are easy -- they must always be indexed by a constant.
1748     if (StructType *STy = GTI.getStructTypeOrNull()) {
1749       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1750       unsigned ElementIdx = OpC->getZExtValue();
1751       const StructLayout *SL = Q.DL.getStructLayout(STy);
1752       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1753       if (ElementOffset > 0)
1754         return true;
1755       continue;
1756     }
1757 
1758     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1759     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1760       continue;
1761 
1762     // Fast path the constant operand case both for efficiency and so we don't
1763     // increment Depth when just zipping down an all-constant GEP.
1764     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1765       if (!OpC->isZero())
1766         return true;
1767       continue;
1768     }
1769 
1770     // We post-increment Depth here because while isKnownNonZero increments it
1771     // as well, when we pop back up that increment won't persist. We don't want
1772     // to recurse 10k times just because we have 10k GEP operands. We don't
1773     // bail completely out because we want to handle constant GEPs regardless
1774     // of depth.
1775     if (Depth++ >= MaxDepth)
1776       continue;
1777 
1778     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1779       return true;
1780   }
1781 
1782   return false;
1783 }
1784 
1785 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1786 /// ensure that the value it's attached to is never Value?  'RangeType' is
1787 /// is the type of the value described by the range.
1788 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1789   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1790   assert(NumRanges >= 1);
1791   for (unsigned i = 0; i < NumRanges; ++i) {
1792     ConstantInt *Lower =
1793         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1794     ConstantInt *Upper =
1795         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1796     ConstantRange Range(Lower->getValue(), Upper->getValue());
1797     if (Range.contains(Value))
1798       return false;
1799   }
1800   return true;
1801 }
1802 
1803 /// Return true if the given value is known to be non-zero when defined.
1804 /// For vectors return true if every element is known to be non-zero when
1805 /// defined. Supports values with integer or pointer type and vectors of
1806 /// integers.
1807 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1808   if (auto *C = dyn_cast<Constant>(V)) {
1809     if (C->isNullValue())
1810       return false;
1811     if (isa<ConstantInt>(C))
1812       // Must be non-zero due to null test above.
1813       return true;
1814 
1815     // For constant vectors, check that all elements are undefined or known
1816     // non-zero to determine that the whole vector is known non-zero.
1817     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1818       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1819         Constant *Elt = C->getAggregateElement(i);
1820         if (!Elt || Elt->isNullValue())
1821           return false;
1822         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1823           return false;
1824       }
1825       return true;
1826     }
1827 
1828     return false;
1829   }
1830 
1831   if (auto *I = dyn_cast<Instruction>(V)) {
1832     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1833       // If the possible ranges don't contain zero, then the value is
1834       // definitely non-zero.
1835       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1836         const APInt ZeroValue(Ty->getBitWidth(), 0);
1837         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1838           return true;
1839       }
1840     }
1841   }
1842 
1843   // The remaining tests are all recursive, so bail out if we hit the limit.
1844   if (Depth++ >= MaxDepth)
1845     return false;
1846 
1847   // Check for pointer simplifications.
1848   if (V->getType()->isPointerTy()) {
1849     if (isKnownNonNull(V))
1850       return true;
1851     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1852       if (isGEPKnownNonNull(GEP, Depth, Q))
1853         return true;
1854   }
1855 
1856   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1857 
1858   // X | Y != 0 if X != 0 or Y != 0.
1859   Value *X = nullptr, *Y = nullptr;
1860   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1861     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1862 
1863   // ext X != 0 if X != 0.
1864   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1865     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1866 
1867   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1868   // if the lowest bit is shifted off the end.
1869   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1870     // shl nuw can't remove any non-zero bits.
1871     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1872     if (BO->hasNoUnsignedWrap())
1873       return isKnownNonZero(X, Depth, Q);
1874 
1875     APInt KnownZero(BitWidth, 0);
1876     APInt KnownOne(BitWidth, 0);
1877     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1878     if (KnownOne[0])
1879       return true;
1880   }
1881   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1882   // defined if the sign bit is shifted off the end.
1883   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1884     // shr exact can only shift out zero bits.
1885     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1886     if (BO->isExact())
1887       return isKnownNonZero(X, Depth, Q);
1888 
1889     bool XKnownNonNegative, XKnownNegative;
1890     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1891     if (XKnownNegative)
1892       return true;
1893 
1894     // If the shifter operand is a constant, and all of the bits shifted
1895     // out are known to be zero, and X is known non-zero then at least one
1896     // non-zero bit must remain.
1897     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1898       APInt KnownZero(BitWidth, 0);
1899       APInt KnownOne(BitWidth, 0);
1900       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1901 
1902       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1903       // Is there a known one in the portion not shifted out?
1904       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1905         return true;
1906       // Are all the bits to be shifted out known zero?
1907       if (KnownZero.countTrailingOnes() >= ShiftVal)
1908         return isKnownNonZero(X, Depth, Q);
1909     }
1910   }
1911   // div exact can only produce a zero if the dividend is zero.
1912   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1913     return isKnownNonZero(X, Depth, Q);
1914   }
1915   // X + Y.
1916   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1917     bool XKnownNonNegative, XKnownNegative;
1918     bool YKnownNonNegative, YKnownNegative;
1919     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1920     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1921 
1922     // If X and Y are both non-negative (as signed values) then their sum is not
1923     // zero unless both X and Y are zero.
1924     if (XKnownNonNegative && YKnownNonNegative)
1925       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1926         return true;
1927 
1928     // If X and Y are both negative (as signed values) then their sum is not
1929     // zero unless both X and Y equal INT_MIN.
1930     if (BitWidth && XKnownNegative && YKnownNegative) {
1931       APInt KnownZero(BitWidth, 0);
1932       APInt KnownOne(BitWidth, 0);
1933       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1934       // The sign bit of X is set.  If some other bit is set then X is not equal
1935       // to INT_MIN.
1936       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1937       if ((KnownOne & Mask) != 0)
1938         return true;
1939       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1940       // to INT_MIN.
1941       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1942       if ((KnownOne & Mask) != 0)
1943         return true;
1944     }
1945 
1946     // The sum of a non-negative number and a power of two is not zero.
1947     if (XKnownNonNegative &&
1948         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1949       return true;
1950     if (YKnownNonNegative &&
1951         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1952       return true;
1953   }
1954   // X * Y.
1955   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1956     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1957     // If X and Y are non-zero then so is X * Y as long as the multiplication
1958     // does not overflow.
1959     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1960         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1961       return true;
1962   }
1963   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1964   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
1965     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1966         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1967       return true;
1968   }
1969   // PHI
1970   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
1971     // Try and detect a recurrence that monotonically increases from a
1972     // starting value, as these are common as induction variables.
1973     if (PN->getNumIncomingValues() == 2) {
1974       Value *Start = PN->getIncomingValue(0);
1975       Value *Induction = PN->getIncomingValue(1);
1976       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1977         std::swap(Start, Induction);
1978       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1979         if (!C->isZero() && !C->isNegative()) {
1980           ConstantInt *X;
1981           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1982                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1983               !X->isNegative())
1984             return true;
1985         }
1986       }
1987     }
1988     // Check if all incoming values are non-zero constant.
1989     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1990       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1991     });
1992     if (AllNonZeroConstants)
1993       return true;
1994   }
1995 
1996   if (!BitWidth) return false;
1997   APInt KnownZero(BitWidth, 0);
1998   APInt KnownOne(BitWidth, 0);
1999   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2000   return KnownOne != 0;
2001 }
2002 
2003 /// Return true if V2 == V1 + X, where X is known non-zero.
2004 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2005   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2006   if (!BO || BO->getOpcode() != Instruction::Add)
2007     return false;
2008   Value *Op = nullptr;
2009   if (V2 == BO->getOperand(0))
2010     Op = BO->getOperand(1);
2011   else if (V2 == BO->getOperand(1))
2012     Op = BO->getOperand(0);
2013   else
2014     return false;
2015   return isKnownNonZero(Op, 0, Q);
2016 }
2017 
2018 /// Return true if it is known that V1 != V2.
2019 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2020   if (V1->getType()->isVectorTy() || V1 == V2)
2021     return false;
2022   if (V1->getType() != V2->getType())
2023     // We can't look through casts yet.
2024     return false;
2025   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2026     return true;
2027 
2028   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2029     // Are any known bits in V1 contradictory to known bits in V2? If V1
2030     // has a known zero where V2 has a known one, they must not be equal.
2031     auto BitWidth = Ty->getBitWidth();
2032     APInt KnownZero1(BitWidth, 0);
2033     APInt KnownOne1(BitWidth, 0);
2034     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
2035     APInt KnownZero2(BitWidth, 0);
2036     APInt KnownOne2(BitWidth, 0);
2037     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
2038 
2039     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2040     if (OppositeBits.getBoolValue())
2041       return true;
2042   }
2043   return false;
2044 }
2045 
2046 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2047 /// simplify operations downstream. Mask is known to be zero for bits that V
2048 /// cannot have.
2049 ///
2050 /// This function is defined on values with integer type, values with pointer
2051 /// type, and vectors of integers.  In the case
2052 /// where V is a vector, the mask, known zero, and known one values are the
2053 /// same width as the vector element, and the bit is set only if it is true
2054 /// for all of the elements in the vector.
2055 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2056                        const Query &Q) {
2057   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2058   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2059   return (KnownZero & Mask) == Mask;
2060 }
2061 
2062 /// For vector constants, loop over the elements and find the constant with the
2063 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2064 /// or if any element was not analyzed; otherwise, return the count for the
2065 /// element with the minimum number of sign bits.
2066 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2067                                                  unsigned TyBits) {
2068   const auto *CV = dyn_cast<Constant>(V);
2069   if (!CV || !CV->getType()->isVectorTy())
2070     return 0;
2071 
2072   unsigned MinSignBits = TyBits;
2073   unsigned NumElts = CV->getType()->getVectorNumElements();
2074   for (unsigned i = 0; i != NumElts; ++i) {
2075     // If we find a non-ConstantInt, bail out.
2076     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2077     if (!Elt)
2078       return 0;
2079 
2080     // If the sign bit is 1, flip the bits, so we always count leading zeros.
2081     APInt EltVal = Elt->getValue();
2082     if (EltVal.isNegative())
2083       EltVal = ~EltVal;
2084     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2085   }
2086 
2087   return MinSignBits;
2088 }
2089 
2090 /// Return the number of times the sign bit of the register is replicated into
2091 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2092 /// (itself), but other cases can give us information. For example, immediately
2093 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2094 /// other, so we return 3. For vectors, return the number of sign bits for the
2095 /// vector element with the mininum number of known sign bits.
2096 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
2097   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2098   unsigned Tmp, Tmp2;
2099   unsigned FirstAnswer = 1;
2100 
2101   // Note that ConstantInt is handled by the general computeKnownBits case
2102   // below.
2103 
2104   if (Depth == MaxDepth)
2105     return 1;  // Limit search depth.
2106 
2107   const Operator *U = dyn_cast<Operator>(V);
2108   switch (Operator::getOpcode(V)) {
2109   default: break;
2110   case Instruction::SExt:
2111     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2112     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2113 
2114   case Instruction::SDiv: {
2115     const APInt *Denominator;
2116     // sdiv X, C -> adds log(C) sign bits.
2117     if (match(U->getOperand(1), m_APInt(Denominator))) {
2118 
2119       // Ignore non-positive denominator.
2120       if (!Denominator->isStrictlyPositive())
2121         break;
2122 
2123       // Calculate the incoming numerator bits.
2124       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2125 
2126       // Add floor(log(C)) bits to the numerator bits.
2127       return std::min(TyBits, NumBits + Denominator->logBase2());
2128     }
2129     break;
2130   }
2131 
2132   case Instruction::SRem: {
2133     const APInt *Denominator;
2134     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2135     // positive constant.  This let us put a lower bound on the number of sign
2136     // bits.
2137     if (match(U->getOperand(1), m_APInt(Denominator))) {
2138 
2139       // Ignore non-positive denominator.
2140       if (!Denominator->isStrictlyPositive())
2141         break;
2142 
2143       // Calculate the incoming numerator bits. SRem by a positive constant
2144       // can't lower the number of sign bits.
2145       unsigned NumrBits =
2146           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2147 
2148       // Calculate the leading sign bit constraints by examining the
2149       // denominator.  Given that the denominator is positive, there are two
2150       // cases:
2151       //
2152       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2153       //     (1 << ceilLogBase2(C)).
2154       //
2155       //  2. the numerator is negative.  Then the result range is (-C,0] and
2156       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2157       //
2158       // Thus a lower bound on the number of sign bits is `TyBits -
2159       // ceilLogBase2(C)`.
2160 
2161       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2162       return std::max(NumrBits, ResBits);
2163     }
2164     break;
2165   }
2166 
2167   case Instruction::AShr: {
2168     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2169     // ashr X, C   -> adds C sign bits.  Vectors too.
2170     const APInt *ShAmt;
2171     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2172       Tmp += ShAmt->getZExtValue();
2173       if (Tmp > TyBits) Tmp = TyBits;
2174     }
2175     return Tmp;
2176   }
2177   case Instruction::Shl: {
2178     const APInt *ShAmt;
2179     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2180       // shl destroys sign bits.
2181       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2182       Tmp2 = ShAmt->getZExtValue();
2183       if (Tmp2 >= TyBits ||      // Bad shift.
2184           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2185       return Tmp - Tmp2;
2186     }
2187     break;
2188   }
2189   case Instruction::And:
2190   case Instruction::Or:
2191   case Instruction::Xor:    // NOT is handled here.
2192     // Logical binary ops preserve the number of sign bits at the worst.
2193     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2194     if (Tmp != 1) {
2195       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2196       FirstAnswer = std::min(Tmp, Tmp2);
2197       // We computed what we know about the sign bits as our first
2198       // answer. Now proceed to the generic code that uses
2199       // computeKnownBits, and pick whichever answer is better.
2200     }
2201     break;
2202 
2203   case Instruction::Select:
2204     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2205     if (Tmp == 1) return 1;  // Early out.
2206     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2207     return std::min(Tmp, Tmp2);
2208 
2209   case Instruction::Add:
2210     // Add can have at most one carry bit.  Thus we know that the output
2211     // is, at worst, one more bit than the inputs.
2212     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2213     if (Tmp == 1) return 1;  // Early out.
2214 
2215     // Special case decrementing a value (ADD X, -1):
2216     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2217       if (CRHS->isAllOnesValue()) {
2218         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2219         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2220 
2221         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2222         // sign bits set.
2223         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2224           return TyBits;
2225 
2226         // If we are subtracting one from a positive number, there is no carry
2227         // out of the result.
2228         if (KnownZero.isNegative())
2229           return Tmp;
2230       }
2231 
2232     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2233     if (Tmp2 == 1) return 1;
2234     return std::min(Tmp, Tmp2)-1;
2235 
2236   case Instruction::Sub:
2237     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2238     if (Tmp2 == 1) return 1;
2239 
2240     // Handle NEG.
2241     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2242       if (CLHS->isNullValue()) {
2243         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2244         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2245         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2246         // sign bits set.
2247         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2248           return TyBits;
2249 
2250         // If the input is known to be positive (the sign bit is known clear),
2251         // the output of the NEG has the same number of sign bits as the input.
2252         if (KnownZero.isNegative())
2253           return Tmp2;
2254 
2255         // Otherwise, we treat this like a SUB.
2256       }
2257 
2258     // Sub can have at most one carry bit.  Thus we know that the output
2259     // is, at worst, one more bit than the inputs.
2260     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2261     if (Tmp == 1) return 1;  // Early out.
2262     return std::min(Tmp, Tmp2)-1;
2263 
2264   case Instruction::PHI: {
2265     const PHINode *PN = cast<PHINode>(U);
2266     unsigned NumIncomingValues = PN->getNumIncomingValues();
2267     // Don't analyze large in-degree PHIs.
2268     if (NumIncomingValues > 4) break;
2269     // Unreachable blocks may have zero-operand PHI nodes.
2270     if (NumIncomingValues == 0) break;
2271 
2272     // Take the minimum of all incoming values.  This can't infinitely loop
2273     // because of our depth threshold.
2274     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2275     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2276       if (Tmp == 1) return Tmp;
2277       Tmp = std::min(
2278           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2279     }
2280     return Tmp;
2281   }
2282 
2283   case Instruction::Trunc:
2284     // FIXME: it's tricky to do anything useful for this, but it is an important
2285     // case for targets like X86.
2286     break;
2287 
2288   case Instruction::ExtractElement:
2289     // Look through extract element. At the moment we keep this simple and skip
2290     // tracking the specific element. But at least we might find information
2291     // valid for all elements of the vector (for example if vector is sign
2292     // extended, shifted, etc).
2293     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2294   }
2295 
2296   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2297   // use this information.
2298 
2299   // If we can examine all elements of a vector constant successfully, we're
2300   // done (we can't do any better than that). If not, keep trying.
2301   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2302     return VecSignBits;
2303 
2304   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2305   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2306 
2307   // If we know that the sign bit is either zero or one, determine the number of
2308   // identical bits in the top of the input value.
2309   if (KnownZero.isNegative())
2310     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2311 
2312   if (KnownOne.isNegative())
2313     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2314 
2315   // computeKnownBits gave us no extra information about the top bits.
2316   return FirstAnswer;
2317 }
2318 
2319 /// This function computes the integer multiple of Base that equals V.
2320 /// If successful, it returns true and returns the multiple in
2321 /// Multiple. If unsuccessful, it returns false. It looks
2322 /// through SExt instructions only if LookThroughSExt is true.
2323 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2324                            bool LookThroughSExt, unsigned Depth) {
2325   const unsigned MaxDepth = 6;
2326 
2327   assert(V && "No Value?");
2328   assert(Depth <= MaxDepth && "Limit Search Depth");
2329   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2330 
2331   Type *T = V->getType();
2332 
2333   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2334 
2335   if (Base == 0)
2336     return false;
2337 
2338   if (Base == 1) {
2339     Multiple = V;
2340     return true;
2341   }
2342 
2343   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2344   Constant *BaseVal = ConstantInt::get(T, Base);
2345   if (CO && CO == BaseVal) {
2346     // Multiple is 1.
2347     Multiple = ConstantInt::get(T, 1);
2348     return true;
2349   }
2350 
2351   if (CI && CI->getZExtValue() % Base == 0) {
2352     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2353     return true;
2354   }
2355 
2356   if (Depth == MaxDepth) return false;  // Limit search depth.
2357 
2358   Operator *I = dyn_cast<Operator>(V);
2359   if (!I) return false;
2360 
2361   switch (I->getOpcode()) {
2362   default: break;
2363   case Instruction::SExt:
2364     if (!LookThroughSExt) return false;
2365     // otherwise fall through to ZExt
2366   case Instruction::ZExt:
2367     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2368                            LookThroughSExt, Depth+1);
2369   case Instruction::Shl:
2370   case Instruction::Mul: {
2371     Value *Op0 = I->getOperand(0);
2372     Value *Op1 = I->getOperand(1);
2373 
2374     if (I->getOpcode() == Instruction::Shl) {
2375       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2376       if (!Op1CI) return false;
2377       // Turn Op0 << Op1 into Op0 * 2^Op1
2378       APInt Op1Int = Op1CI->getValue();
2379       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2380       APInt API(Op1Int.getBitWidth(), 0);
2381       API.setBit(BitToSet);
2382       Op1 = ConstantInt::get(V->getContext(), API);
2383     }
2384 
2385     Value *Mul0 = nullptr;
2386     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2387       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2388         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2389           if (Op1C->getType()->getPrimitiveSizeInBits() <
2390               MulC->getType()->getPrimitiveSizeInBits())
2391             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2392           if (Op1C->getType()->getPrimitiveSizeInBits() >
2393               MulC->getType()->getPrimitiveSizeInBits())
2394             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2395 
2396           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2397           Multiple = ConstantExpr::getMul(MulC, Op1C);
2398           return true;
2399         }
2400 
2401       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2402         if (Mul0CI->getValue() == 1) {
2403           // V == Base * Op1, so return Op1
2404           Multiple = Op1;
2405           return true;
2406         }
2407     }
2408 
2409     Value *Mul1 = nullptr;
2410     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2411       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2412         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2413           if (Op0C->getType()->getPrimitiveSizeInBits() <
2414               MulC->getType()->getPrimitiveSizeInBits())
2415             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2416           if (Op0C->getType()->getPrimitiveSizeInBits() >
2417               MulC->getType()->getPrimitiveSizeInBits())
2418             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2419 
2420           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2421           Multiple = ConstantExpr::getMul(MulC, Op0C);
2422           return true;
2423         }
2424 
2425       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2426         if (Mul1CI->getValue() == 1) {
2427           // V == Base * Op0, so return Op0
2428           Multiple = Op0;
2429           return true;
2430         }
2431     }
2432   }
2433   }
2434 
2435   // We could not determine if V is a multiple of Base.
2436   return false;
2437 }
2438 
2439 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2440                                             const TargetLibraryInfo *TLI) {
2441   const Function *F = ICS.getCalledFunction();
2442   if (!F)
2443     return Intrinsic::not_intrinsic;
2444 
2445   if (F->isIntrinsic())
2446     return F->getIntrinsicID();
2447 
2448   if (!TLI)
2449     return Intrinsic::not_intrinsic;
2450 
2451   LibFunc::Func Func;
2452   // We're going to make assumptions on the semantics of the functions, check
2453   // that the target knows that it's available in this environment and it does
2454   // not have local linkage.
2455   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2456     return Intrinsic::not_intrinsic;
2457 
2458   if (!ICS.onlyReadsMemory())
2459     return Intrinsic::not_intrinsic;
2460 
2461   // Otherwise check if we have a call to a function that can be turned into a
2462   // vector intrinsic.
2463   switch (Func) {
2464   default:
2465     break;
2466   case LibFunc::sin:
2467   case LibFunc::sinf:
2468   case LibFunc::sinl:
2469     return Intrinsic::sin;
2470   case LibFunc::cos:
2471   case LibFunc::cosf:
2472   case LibFunc::cosl:
2473     return Intrinsic::cos;
2474   case LibFunc::exp:
2475   case LibFunc::expf:
2476   case LibFunc::expl:
2477     return Intrinsic::exp;
2478   case LibFunc::exp2:
2479   case LibFunc::exp2f:
2480   case LibFunc::exp2l:
2481     return Intrinsic::exp2;
2482   case LibFunc::log:
2483   case LibFunc::logf:
2484   case LibFunc::logl:
2485     return Intrinsic::log;
2486   case LibFunc::log10:
2487   case LibFunc::log10f:
2488   case LibFunc::log10l:
2489     return Intrinsic::log10;
2490   case LibFunc::log2:
2491   case LibFunc::log2f:
2492   case LibFunc::log2l:
2493     return Intrinsic::log2;
2494   case LibFunc::fabs:
2495   case LibFunc::fabsf:
2496   case LibFunc::fabsl:
2497     return Intrinsic::fabs;
2498   case LibFunc::fmin:
2499   case LibFunc::fminf:
2500   case LibFunc::fminl:
2501     return Intrinsic::minnum;
2502   case LibFunc::fmax:
2503   case LibFunc::fmaxf:
2504   case LibFunc::fmaxl:
2505     return Intrinsic::maxnum;
2506   case LibFunc::copysign:
2507   case LibFunc::copysignf:
2508   case LibFunc::copysignl:
2509     return Intrinsic::copysign;
2510   case LibFunc::floor:
2511   case LibFunc::floorf:
2512   case LibFunc::floorl:
2513     return Intrinsic::floor;
2514   case LibFunc::ceil:
2515   case LibFunc::ceilf:
2516   case LibFunc::ceill:
2517     return Intrinsic::ceil;
2518   case LibFunc::trunc:
2519   case LibFunc::truncf:
2520   case LibFunc::truncl:
2521     return Intrinsic::trunc;
2522   case LibFunc::rint:
2523   case LibFunc::rintf:
2524   case LibFunc::rintl:
2525     return Intrinsic::rint;
2526   case LibFunc::nearbyint:
2527   case LibFunc::nearbyintf:
2528   case LibFunc::nearbyintl:
2529     return Intrinsic::nearbyint;
2530   case LibFunc::round:
2531   case LibFunc::roundf:
2532   case LibFunc::roundl:
2533     return Intrinsic::round;
2534   case LibFunc::pow:
2535   case LibFunc::powf:
2536   case LibFunc::powl:
2537     return Intrinsic::pow;
2538   case LibFunc::sqrt:
2539   case LibFunc::sqrtf:
2540   case LibFunc::sqrtl:
2541     if (ICS->hasNoNaNs())
2542       return Intrinsic::sqrt;
2543     return Intrinsic::not_intrinsic;
2544   }
2545 
2546   return Intrinsic::not_intrinsic;
2547 }
2548 
2549 /// Return true if we can prove that the specified FP value is never equal to
2550 /// -0.0.
2551 ///
2552 /// NOTE: this function will need to be revisited when we support non-default
2553 /// rounding modes!
2554 ///
2555 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2556                                 unsigned Depth) {
2557   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2558     return !CFP->getValueAPF().isNegZero();
2559 
2560   if (Depth == MaxDepth)
2561     return false;  // Limit search depth.
2562 
2563   const Operator *I = dyn_cast<Operator>(V);
2564   if (!I) return false;
2565 
2566   // Check if the nsz fast-math flag is set
2567   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2568     if (FPO->hasNoSignedZeros())
2569       return true;
2570 
2571   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2572   if (I->getOpcode() == Instruction::FAdd)
2573     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2574       if (CFP->isNullValue())
2575         return true;
2576 
2577   // sitofp and uitofp turn into +0.0 for zero.
2578   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2579     return true;
2580 
2581   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2582     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2583     switch (IID) {
2584     default:
2585       break;
2586     // sqrt(-0.0) = -0.0, no other negative results are possible.
2587     case Intrinsic::sqrt:
2588       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2589     // fabs(x) != -0.0
2590     case Intrinsic::fabs:
2591       return true;
2592     }
2593   }
2594 
2595   return false;
2596 }
2597 
2598 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2599 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2600 /// bit despite comparing equal.
2601 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2602                                             const TargetLibraryInfo *TLI,
2603                                             bool SignBitOnly,
2604                                             unsigned Depth) {
2605   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2606     return !CFP->getValueAPF().isNegative() ||
2607            (!SignBitOnly && CFP->getValueAPF().isZero());
2608   }
2609 
2610   if (Depth == MaxDepth)
2611     return false; // Limit search depth.
2612 
2613   const Operator *I = dyn_cast<Operator>(V);
2614   if (!I)
2615     return false;
2616 
2617   switch (I->getOpcode()) {
2618   default:
2619     break;
2620   // Unsigned integers are always nonnegative.
2621   case Instruction::UIToFP:
2622     return true;
2623   case Instruction::FMul:
2624     // x*x is always non-negative or a NaN.
2625     if (I->getOperand(0) == I->getOperand(1) &&
2626         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2627       return true;
2628 
2629     LLVM_FALLTHROUGH;
2630   case Instruction::FAdd:
2631   case Instruction::FDiv:
2632   case Instruction::FRem:
2633     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2634                                            Depth + 1) &&
2635            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2636                                            Depth + 1);
2637   case Instruction::Select:
2638     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2639                                            Depth + 1) &&
2640            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2641                                            Depth + 1);
2642   case Instruction::FPExt:
2643   case Instruction::FPTrunc:
2644     // Widening/narrowing never change sign.
2645     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2646                                            Depth + 1);
2647   case Instruction::Call:
2648     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2649     switch (IID) {
2650     default:
2651       break;
2652     case Intrinsic::maxnum:
2653       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2654                                              Depth + 1) ||
2655              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2656                                              Depth + 1);
2657     case Intrinsic::minnum:
2658       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2659                                              Depth + 1) &&
2660              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2661                                              Depth + 1);
2662     case Intrinsic::exp:
2663     case Intrinsic::exp2:
2664     case Intrinsic::fabs:
2665     case Intrinsic::sqrt:
2666       return true;
2667     case Intrinsic::powi:
2668       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2669         // powi(x,n) is non-negative if n is even.
2670         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2671           return true;
2672       }
2673       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2674                                              Depth + 1);
2675     case Intrinsic::fma:
2676     case Intrinsic::fmuladd:
2677       // x*x+y is non-negative if y is non-negative.
2678       return I->getOperand(0) == I->getOperand(1) &&
2679              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2680              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2681                                              Depth + 1);
2682     }
2683     break;
2684   }
2685   return false;
2686 }
2687 
2688 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2689                                        const TargetLibraryInfo *TLI) {
2690   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2691 }
2692 
2693 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2694   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2695 }
2696 
2697 /// If the specified value can be set by repeating the same byte in memory,
2698 /// return the i8 value that it is represented with.  This is
2699 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2700 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2701 /// byte store (e.g. i16 0x1234), return null.
2702 Value *llvm::isBytewiseValue(Value *V) {
2703   // All byte-wide stores are splatable, even of arbitrary variables.
2704   if (V->getType()->isIntegerTy(8)) return V;
2705 
2706   // Handle 'null' ConstantArrayZero etc.
2707   if (Constant *C = dyn_cast<Constant>(V))
2708     if (C->isNullValue())
2709       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2710 
2711   // Constant float and double values can be handled as integer values if the
2712   // corresponding integer value is "byteable".  An important case is 0.0.
2713   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2714     if (CFP->getType()->isFloatTy())
2715       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2716     if (CFP->getType()->isDoubleTy())
2717       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2718     // Don't handle long double formats, which have strange constraints.
2719   }
2720 
2721   // We can handle constant integers that are multiple of 8 bits.
2722   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2723     if (CI->getBitWidth() % 8 == 0) {
2724       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2725 
2726       if (!CI->getValue().isSplat(8))
2727         return nullptr;
2728       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2729     }
2730   }
2731 
2732   // A ConstantDataArray/Vector is splatable if all its members are equal and
2733   // also splatable.
2734   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2735     Value *Elt = CA->getElementAsConstant(0);
2736     Value *Val = isBytewiseValue(Elt);
2737     if (!Val)
2738       return nullptr;
2739 
2740     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2741       if (CA->getElementAsConstant(I) != Elt)
2742         return nullptr;
2743 
2744     return Val;
2745   }
2746 
2747   // Conceptually, we could handle things like:
2748   //   %a = zext i8 %X to i16
2749   //   %b = shl i16 %a, 8
2750   //   %c = or i16 %a, %b
2751   // but until there is an example that actually needs this, it doesn't seem
2752   // worth worrying about.
2753   return nullptr;
2754 }
2755 
2756 
2757 // This is the recursive version of BuildSubAggregate. It takes a few different
2758 // arguments. Idxs is the index within the nested struct From that we are
2759 // looking at now (which is of type IndexedType). IdxSkip is the number of
2760 // indices from Idxs that should be left out when inserting into the resulting
2761 // struct. To is the result struct built so far, new insertvalue instructions
2762 // build on that.
2763 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2764                                 SmallVectorImpl<unsigned> &Idxs,
2765                                 unsigned IdxSkip,
2766                                 Instruction *InsertBefore) {
2767   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2768   if (STy) {
2769     // Save the original To argument so we can modify it
2770     Value *OrigTo = To;
2771     // General case, the type indexed by Idxs is a struct
2772     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2773       // Process each struct element recursively
2774       Idxs.push_back(i);
2775       Value *PrevTo = To;
2776       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2777                              InsertBefore);
2778       Idxs.pop_back();
2779       if (!To) {
2780         // Couldn't find any inserted value for this index? Cleanup
2781         while (PrevTo != OrigTo) {
2782           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2783           PrevTo = Del->getAggregateOperand();
2784           Del->eraseFromParent();
2785         }
2786         // Stop processing elements
2787         break;
2788       }
2789     }
2790     // If we successfully found a value for each of our subaggregates
2791     if (To)
2792       return To;
2793   }
2794   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2795   // the struct's elements had a value that was inserted directly. In the latter
2796   // case, perhaps we can't determine each of the subelements individually, but
2797   // we might be able to find the complete struct somewhere.
2798 
2799   // Find the value that is at that particular spot
2800   Value *V = FindInsertedValue(From, Idxs);
2801 
2802   if (!V)
2803     return nullptr;
2804 
2805   // Insert the value in the new (sub) aggregrate
2806   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2807                                        "tmp", InsertBefore);
2808 }
2809 
2810 // This helper takes a nested struct and extracts a part of it (which is again a
2811 // struct) into a new value. For example, given the struct:
2812 // { a, { b, { c, d }, e } }
2813 // and the indices "1, 1" this returns
2814 // { c, d }.
2815 //
2816 // It does this by inserting an insertvalue for each element in the resulting
2817 // struct, as opposed to just inserting a single struct. This will only work if
2818 // each of the elements of the substruct are known (ie, inserted into From by an
2819 // insertvalue instruction somewhere).
2820 //
2821 // All inserted insertvalue instructions are inserted before InsertBefore
2822 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2823                                 Instruction *InsertBefore) {
2824   assert(InsertBefore && "Must have someplace to insert!");
2825   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2826                                                              idx_range);
2827   Value *To = UndefValue::get(IndexedType);
2828   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2829   unsigned IdxSkip = Idxs.size();
2830 
2831   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2832 }
2833 
2834 /// Given an aggregrate and an sequence of indices, see if
2835 /// the scalar value indexed is already around as a register, for example if it
2836 /// were inserted directly into the aggregrate.
2837 ///
2838 /// If InsertBefore is not null, this function will duplicate (modified)
2839 /// insertvalues when a part of a nested struct is extracted.
2840 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2841                                Instruction *InsertBefore) {
2842   // Nothing to index? Just return V then (this is useful at the end of our
2843   // recursion).
2844   if (idx_range.empty())
2845     return V;
2846   // We have indices, so V should have an indexable type.
2847   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2848          "Not looking at a struct or array?");
2849   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2850          "Invalid indices for type?");
2851 
2852   if (Constant *C = dyn_cast<Constant>(V)) {
2853     C = C->getAggregateElement(idx_range[0]);
2854     if (!C) return nullptr;
2855     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2856   }
2857 
2858   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2859     // Loop the indices for the insertvalue instruction in parallel with the
2860     // requested indices
2861     const unsigned *req_idx = idx_range.begin();
2862     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2863          i != e; ++i, ++req_idx) {
2864       if (req_idx == idx_range.end()) {
2865         // We can't handle this without inserting insertvalues
2866         if (!InsertBefore)
2867           return nullptr;
2868 
2869         // The requested index identifies a part of a nested aggregate. Handle
2870         // this specially. For example,
2871         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2872         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2873         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2874         // This can be changed into
2875         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2876         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2877         // which allows the unused 0,0 element from the nested struct to be
2878         // removed.
2879         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2880                                  InsertBefore);
2881       }
2882 
2883       // This insert value inserts something else than what we are looking for.
2884       // See if the (aggregate) value inserted into has the value we are
2885       // looking for, then.
2886       if (*req_idx != *i)
2887         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2888                                  InsertBefore);
2889     }
2890     // If we end up here, the indices of the insertvalue match with those
2891     // requested (though possibly only partially). Now we recursively look at
2892     // the inserted value, passing any remaining indices.
2893     return FindInsertedValue(I->getInsertedValueOperand(),
2894                              makeArrayRef(req_idx, idx_range.end()),
2895                              InsertBefore);
2896   }
2897 
2898   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2899     // If we're extracting a value from an aggregate that was extracted from
2900     // something else, we can extract from that something else directly instead.
2901     // However, we will need to chain I's indices with the requested indices.
2902 
2903     // Calculate the number of indices required
2904     unsigned size = I->getNumIndices() + idx_range.size();
2905     // Allocate some space to put the new indices in
2906     SmallVector<unsigned, 5> Idxs;
2907     Idxs.reserve(size);
2908     // Add indices from the extract value instruction
2909     Idxs.append(I->idx_begin(), I->idx_end());
2910 
2911     // Add requested indices
2912     Idxs.append(idx_range.begin(), idx_range.end());
2913 
2914     assert(Idxs.size() == size
2915            && "Number of indices added not correct?");
2916 
2917     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2918   }
2919   // Otherwise, we don't know (such as, extracting from a function return value
2920   // or load instruction)
2921   return nullptr;
2922 }
2923 
2924 /// Analyze the specified pointer to see if it can be expressed as a base
2925 /// pointer plus a constant offset. Return the base and offset to the caller.
2926 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2927                                               const DataLayout &DL) {
2928   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2929   APInt ByteOffset(BitWidth, 0);
2930 
2931   // We walk up the defs but use a visited set to handle unreachable code. In
2932   // that case, we stop after accumulating the cycle once (not that it
2933   // matters).
2934   SmallPtrSet<Value *, 16> Visited;
2935   while (Visited.insert(Ptr).second) {
2936     if (Ptr->getType()->isVectorTy())
2937       break;
2938 
2939     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2940       // If one of the values we have visited is an addrspacecast, then
2941       // the pointer type of this GEP may be different from the type
2942       // of the Ptr parameter which was passed to this function.  This
2943       // means when we construct GEPOffset, we need to use the size
2944       // of GEP's pointer type rather than the size of the original
2945       // pointer type.
2946       APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
2947       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2948         break;
2949 
2950       ByteOffset += GEPOffset.getSExtValue();
2951 
2952       Ptr = GEP->getPointerOperand();
2953     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2954                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2955       Ptr = cast<Operator>(Ptr)->getOperand(0);
2956     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2957       if (GA->isInterposable())
2958         break;
2959       Ptr = GA->getAliasee();
2960     } else {
2961       break;
2962     }
2963   }
2964   Offset = ByteOffset.getSExtValue();
2965   return Ptr;
2966 }
2967 
2968 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2969   // Make sure the GEP has exactly three arguments.
2970   if (GEP->getNumOperands() != 3)
2971     return false;
2972 
2973   // Make sure the index-ee is a pointer to array of i8.
2974   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2975   if (!AT || !AT->getElementType()->isIntegerTy(8))
2976     return false;
2977 
2978   // Check to make sure that the first operand of the GEP is an integer and
2979   // has value 0 so that we are sure we're indexing into the initializer.
2980   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2981   if (!FirstIdx || !FirstIdx->isZero())
2982     return false;
2983 
2984   return true;
2985 }
2986 
2987 /// This function computes the length of a null-terminated C string pointed to
2988 /// by V. If successful, it returns true and returns the string in Str.
2989 /// If unsuccessful, it returns false.
2990 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2991                                  uint64_t Offset, bool TrimAtNul) {
2992   assert(V);
2993 
2994   // Look through bitcast instructions and geps.
2995   V = V->stripPointerCasts();
2996 
2997   // If the value is a GEP instruction or constant expression, treat it as an
2998   // offset.
2999   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3000     // The GEP operator should be based on a pointer to string constant, and is
3001     // indexing into the string constant.
3002     if (!isGEPBasedOnPointerToString(GEP))
3003       return false;
3004 
3005     // If the second index isn't a ConstantInt, then this is a variable index
3006     // into the array.  If this occurs, we can't say anything meaningful about
3007     // the string.
3008     uint64_t StartIdx = 0;
3009     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3010       StartIdx = CI->getZExtValue();
3011     else
3012       return false;
3013     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3014                                  TrimAtNul);
3015   }
3016 
3017   // The GEP instruction, constant or instruction, must reference a global
3018   // variable that is a constant and is initialized. The referenced constant
3019   // initializer is the array that we'll use for optimization.
3020   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3021   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3022     return false;
3023 
3024   // Handle the all-zeros case.
3025   if (GV->getInitializer()->isNullValue()) {
3026     // This is a degenerate case. The initializer is constant zero so the
3027     // length of the string must be zero.
3028     Str = "";
3029     return true;
3030   }
3031 
3032   // This must be a ConstantDataArray.
3033   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3034   if (!Array || !Array->isString())
3035     return false;
3036 
3037   // Get the number of elements in the array.
3038   uint64_t NumElts = Array->getType()->getArrayNumElements();
3039 
3040   // Start out with the entire array in the StringRef.
3041   Str = Array->getAsString();
3042 
3043   if (Offset > NumElts)
3044     return false;
3045 
3046   // Skip over 'offset' bytes.
3047   Str = Str.substr(Offset);
3048 
3049   if (TrimAtNul) {
3050     // Trim off the \0 and anything after it.  If the array is not nul
3051     // terminated, we just return the whole end of string.  The client may know
3052     // some other way that the string is length-bound.
3053     Str = Str.substr(0, Str.find('\0'));
3054   }
3055   return true;
3056 }
3057 
3058 // These next two are very similar to the above, but also look through PHI
3059 // nodes.
3060 // TODO: See if we can integrate these two together.
3061 
3062 /// If we can compute the length of the string pointed to by
3063 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3064 static uint64_t GetStringLengthH(const Value *V,
3065                                  SmallPtrSetImpl<const PHINode*> &PHIs) {
3066   // Look through noop bitcast instructions.
3067   V = V->stripPointerCasts();
3068 
3069   // If this is a PHI node, there are two cases: either we have already seen it
3070   // or we haven't.
3071   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3072     if (!PHIs.insert(PN).second)
3073       return ~0ULL;  // already in the set.
3074 
3075     // If it was new, see if all the input strings are the same length.
3076     uint64_t LenSoFar = ~0ULL;
3077     for (Value *IncValue : PN->incoming_values()) {
3078       uint64_t Len = GetStringLengthH(IncValue, PHIs);
3079       if (Len == 0) return 0; // Unknown length -> unknown.
3080 
3081       if (Len == ~0ULL) continue;
3082 
3083       if (Len != LenSoFar && LenSoFar != ~0ULL)
3084         return 0;    // Disagree -> unknown.
3085       LenSoFar = Len;
3086     }
3087 
3088     // Success, all agree.
3089     return LenSoFar;
3090   }
3091 
3092   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3093   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3094     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3095     if (Len1 == 0) return 0;
3096     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3097     if (Len2 == 0) return 0;
3098     if (Len1 == ~0ULL) return Len2;
3099     if (Len2 == ~0ULL) return Len1;
3100     if (Len1 != Len2) return 0;
3101     return Len1;
3102   }
3103 
3104   // Otherwise, see if we can read the string.
3105   StringRef StrData;
3106   if (!getConstantStringInfo(V, StrData))
3107     return 0;
3108 
3109   return StrData.size()+1;
3110 }
3111 
3112 /// If we can compute the length of the string pointed to by
3113 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3114 uint64_t llvm::GetStringLength(const Value *V) {
3115   if (!V->getType()->isPointerTy()) return 0;
3116 
3117   SmallPtrSet<const PHINode*, 32> PHIs;
3118   uint64_t Len = GetStringLengthH(V, PHIs);
3119   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3120   // an empty string as a length.
3121   return Len == ~0ULL ? 1 : Len;
3122 }
3123 
3124 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3125 /// previous iteration of the loop was referring to the same object as \p PN.
3126 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3127                                          const LoopInfo *LI) {
3128   // Find the loop-defined value.
3129   Loop *L = LI->getLoopFor(PN->getParent());
3130   if (PN->getNumIncomingValues() != 2)
3131     return true;
3132 
3133   // Find the value from previous iteration.
3134   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3135   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3136     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3137   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3138     return true;
3139 
3140   // If a new pointer is loaded in the loop, the pointer references a different
3141   // object in every iteration.  E.g.:
3142   //    for (i)
3143   //       int *p = a[i];
3144   //       ...
3145   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3146     if (!L->isLoopInvariant(Load->getPointerOperand()))
3147       return false;
3148   return true;
3149 }
3150 
3151 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3152                                  unsigned MaxLookup) {
3153   if (!V->getType()->isPointerTy())
3154     return V;
3155   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3156     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3157       V = GEP->getPointerOperand();
3158     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3159                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3160       V = cast<Operator>(V)->getOperand(0);
3161     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3162       if (GA->isInterposable())
3163         return V;
3164       V = GA->getAliasee();
3165     } else {
3166       if (auto CS = CallSite(V))
3167         if (Value *RV = CS.getReturnedArgOperand()) {
3168           V = RV;
3169           continue;
3170         }
3171 
3172       // See if InstructionSimplify knows any relevant tricks.
3173       if (Instruction *I = dyn_cast<Instruction>(V))
3174         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3175         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3176           V = Simplified;
3177           continue;
3178         }
3179 
3180       return V;
3181     }
3182     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3183   }
3184   return V;
3185 }
3186 
3187 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3188                                 const DataLayout &DL, LoopInfo *LI,
3189                                 unsigned MaxLookup) {
3190   SmallPtrSet<Value *, 4> Visited;
3191   SmallVector<Value *, 4> Worklist;
3192   Worklist.push_back(V);
3193   do {
3194     Value *P = Worklist.pop_back_val();
3195     P = GetUnderlyingObject(P, DL, MaxLookup);
3196 
3197     if (!Visited.insert(P).second)
3198       continue;
3199 
3200     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3201       Worklist.push_back(SI->getTrueValue());
3202       Worklist.push_back(SI->getFalseValue());
3203       continue;
3204     }
3205 
3206     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3207       // If this PHI changes the underlying object in every iteration of the
3208       // loop, don't look through it.  Consider:
3209       //   int **A;
3210       //   for (i) {
3211       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3212       //     Curr = A[i];
3213       //     *Prev, *Curr;
3214       //
3215       // Prev is tracking Curr one iteration behind so they refer to different
3216       // underlying objects.
3217       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3218           isSameUnderlyingObjectInLoop(PN, LI))
3219         for (Value *IncValue : PN->incoming_values())
3220           Worklist.push_back(IncValue);
3221       continue;
3222     }
3223 
3224     Objects.push_back(P);
3225   } while (!Worklist.empty());
3226 }
3227 
3228 /// Return true if the only users of this pointer are lifetime markers.
3229 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3230   for (const User *U : V->users()) {
3231     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3232     if (!II) return false;
3233 
3234     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3235         II->getIntrinsicID() != Intrinsic::lifetime_end)
3236       return false;
3237   }
3238   return true;
3239 }
3240 
3241 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3242                                         const Instruction *CtxI,
3243                                         const DominatorTree *DT) {
3244   const Operator *Inst = dyn_cast<Operator>(V);
3245   if (!Inst)
3246     return false;
3247 
3248   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3249     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3250       if (C->canTrap())
3251         return false;
3252 
3253   switch (Inst->getOpcode()) {
3254   default:
3255     return true;
3256   case Instruction::UDiv:
3257   case Instruction::URem: {
3258     // x / y is undefined if y == 0.
3259     const APInt *V;
3260     if (match(Inst->getOperand(1), m_APInt(V)))
3261       return *V != 0;
3262     return false;
3263   }
3264   case Instruction::SDiv:
3265   case Instruction::SRem: {
3266     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3267     const APInt *Numerator, *Denominator;
3268     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3269       return false;
3270     // We cannot hoist this division if the denominator is 0.
3271     if (*Denominator == 0)
3272       return false;
3273     // It's safe to hoist if the denominator is not 0 or -1.
3274     if (*Denominator != -1)
3275       return true;
3276     // At this point we know that the denominator is -1.  It is safe to hoist as
3277     // long we know that the numerator is not INT_MIN.
3278     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3279       return !Numerator->isMinSignedValue();
3280     // The numerator *might* be MinSignedValue.
3281     return false;
3282   }
3283   case Instruction::Load: {
3284     const LoadInst *LI = cast<LoadInst>(Inst);
3285     if (!LI->isUnordered() ||
3286         // Speculative load may create a race that did not exist in the source.
3287         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3288         // Speculative load may load data from dirty regions.
3289         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3290       return false;
3291     const DataLayout &DL = LI->getModule()->getDataLayout();
3292     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3293                                               LI->getAlignment(), DL, CtxI, DT);
3294   }
3295   case Instruction::Call: {
3296     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3297       switch (II->getIntrinsicID()) {
3298       // These synthetic intrinsics have no side-effects and just mark
3299       // information about their operands.
3300       // FIXME: There are other no-op synthetic instructions that potentially
3301       // should be considered at least *safe* to speculate...
3302       case Intrinsic::dbg_declare:
3303       case Intrinsic::dbg_value:
3304         return true;
3305 
3306       case Intrinsic::bitreverse:
3307       case Intrinsic::bswap:
3308       case Intrinsic::ctlz:
3309       case Intrinsic::ctpop:
3310       case Intrinsic::cttz:
3311       case Intrinsic::objectsize:
3312       case Intrinsic::sadd_with_overflow:
3313       case Intrinsic::smul_with_overflow:
3314       case Intrinsic::ssub_with_overflow:
3315       case Intrinsic::uadd_with_overflow:
3316       case Intrinsic::umul_with_overflow:
3317       case Intrinsic::usub_with_overflow:
3318         return true;
3319       // These intrinsics are defined to have the same behavior as libm
3320       // functions except for setting errno.
3321       case Intrinsic::sqrt:
3322       case Intrinsic::fma:
3323       case Intrinsic::fmuladd:
3324         return true;
3325       // These intrinsics are defined to have the same behavior as libm
3326       // functions, and the corresponding libm functions never set errno.
3327       case Intrinsic::trunc:
3328       case Intrinsic::copysign:
3329       case Intrinsic::fabs:
3330       case Intrinsic::minnum:
3331       case Intrinsic::maxnum:
3332         return true;
3333       // These intrinsics are defined to have the same behavior as libm
3334       // functions, which never overflow when operating on the IEEE754 types
3335       // that we support, and never set errno otherwise.
3336       case Intrinsic::ceil:
3337       case Intrinsic::floor:
3338       case Intrinsic::nearbyint:
3339       case Intrinsic::rint:
3340       case Intrinsic::round:
3341         return true;
3342       // TODO: are convert_{from,to}_fp16 safe?
3343       // TODO: can we list target-specific intrinsics here?
3344       default: break;
3345       }
3346     }
3347     return false; // The called function could have undefined behavior or
3348                   // side-effects, even if marked readnone nounwind.
3349   }
3350   case Instruction::VAArg:
3351   case Instruction::Alloca:
3352   case Instruction::Invoke:
3353   case Instruction::PHI:
3354   case Instruction::Store:
3355   case Instruction::Ret:
3356   case Instruction::Br:
3357   case Instruction::IndirectBr:
3358   case Instruction::Switch:
3359   case Instruction::Unreachable:
3360   case Instruction::Fence:
3361   case Instruction::AtomicRMW:
3362   case Instruction::AtomicCmpXchg:
3363   case Instruction::LandingPad:
3364   case Instruction::Resume:
3365   case Instruction::CatchSwitch:
3366   case Instruction::CatchPad:
3367   case Instruction::CatchRet:
3368   case Instruction::CleanupPad:
3369   case Instruction::CleanupRet:
3370     return false; // Misc instructions which have effects
3371   }
3372 }
3373 
3374 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3375   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3376 }
3377 
3378 /// Return true if we know that the specified value is never null.
3379 bool llvm::isKnownNonNull(const Value *V) {
3380   assert(V->getType()->isPointerTy() && "V must be pointer type");
3381 
3382   // Alloca never returns null, malloc might.
3383   if (isa<AllocaInst>(V)) return true;
3384 
3385   // A byval, inalloca, or nonnull argument is never null.
3386   if (const Argument *A = dyn_cast<Argument>(V))
3387     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3388 
3389   // A global variable in address space 0 is non null unless extern weak
3390   // or an absolute symbol reference. Other address spaces may have null as a
3391   // valid address for a global, so we can't assume anything.
3392   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3393     return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3394            GV->getType()->getAddressSpace() == 0;
3395 
3396   // A Load tagged with nonnull metadata is never null.
3397   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3398     return LI->getMetadata(LLVMContext::MD_nonnull);
3399 
3400   if (auto CS = ImmutableCallSite(V))
3401     if (CS.isReturnNonNull())
3402       return true;
3403 
3404   return false;
3405 }
3406 
3407 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3408                                                   const Instruction *CtxI,
3409                                                   const DominatorTree *DT) {
3410   assert(V->getType()->isPointerTy() && "V must be pointer type");
3411   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
3412   assert(CtxI && "Context instruction required for analysis");
3413   assert(DT && "Dominator tree required for analysis");
3414 
3415   unsigned NumUsesExplored = 0;
3416   for (auto *U : V->users()) {
3417     // Avoid massive lists
3418     if (NumUsesExplored >= DomConditionsMaxUses)
3419       break;
3420     NumUsesExplored++;
3421     // Consider only compare instructions uniquely controlling a branch
3422     CmpInst::Predicate Pred;
3423     if (!match(const_cast<User *>(U),
3424                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3425         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3426       continue;
3427 
3428     for (auto *CmpU : U->users()) {
3429       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3430         assert(BI->isConditional() && "uses a comparison!");
3431 
3432         BasicBlock *NonNullSuccessor =
3433             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3434         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3435         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3436           return true;
3437       } else if (Pred == ICmpInst::ICMP_NE &&
3438                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3439                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3440         return true;
3441       }
3442     }
3443   }
3444 
3445   return false;
3446 }
3447 
3448 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3449                             const DominatorTree *DT) {
3450   if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3451     return false;
3452 
3453   if (isKnownNonNull(V))
3454     return true;
3455 
3456   if (!CtxI || !DT)
3457     return false;
3458 
3459   return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
3460 }
3461 
3462 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3463                                                    const Value *RHS,
3464                                                    const DataLayout &DL,
3465                                                    AssumptionCache *AC,
3466                                                    const Instruction *CxtI,
3467                                                    const DominatorTree *DT) {
3468   // Multiplying n * m significant bits yields a result of n + m significant
3469   // bits. If the total number of significant bits does not exceed the
3470   // result bit width (minus 1), there is no overflow.
3471   // This means if we have enough leading zero bits in the operands
3472   // we can guarantee that the result does not overflow.
3473   // Ref: "Hacker's Delight" by Henry Warren
3474   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3475   APInt LHSKnownZero(BitWidth, 0);
3476   APInt LHSKnownOne(BitWidth, 0);
3477   APInt RHSKnownZero(BitWidth, 0);
3478   APInt RHSKnownOne(BitWidth, 0);
3479   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3480                    DT);
3481   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3482                    DT);
3483   // Note that underestimating the number of zero bits gives a more
3484   // conservative answer.
3485   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3486                       RHSKnownZero.countLeadingOnes();
3487   // First handle the easy case: if we have enough zero bits there's
3488   // definitely no overflow.
3489   if (ZeroBits >= BitWidth)
3490     return OverflowResult::NeverOverflows;
3491 
3492   // Get the largest possible values for each operand.
3493   APInt LHSMax = ~LHSKnownZero;
3494   APInt RHSMax = ~RHSKnownZero;
3495 
3496   // We know the multiply operation doesn't overflow if the maximum values for
3497   // each operand will not overflow after we multiply them together.
3498   bool MaxOverflow;
3499   LHSMax.umul_ov(RHSMax, MaxOverflow);
3500   if (!MaxOverflow)
3501     return OverflowResult::NeverOverflows;
3502 
3503   // We know it always overflows if multiplying the smallest possible values for
3504   // the operands also results in overflow.
3505   bool MinOverflow;
3506   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3507   if (MinOverflow)
3508     return OverflowResult::AlwaysOverflows;
3509 
3510   return OverflowResult::MayOverflow;
3511 }
3512 
3513 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3514                                                    const Value *RHS,
3515                                                    const DataLayout &DL,
3516                                                    AssumptionCache *AC,
3517                                                    const Instruction *CxtI,
3518                                                    const DominatorTree *DT) {
3519   bool LHSKnownNonNegative, LHSKnownNegative;
3520   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3521                  AC, CxtI, DT);
3522   if (LHSKnownNonNegative || LHSKnownNegative) {
3523     bool RHSKnownNonNegative, RHSKnownNegative;
3524     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3525                    AC, CxtI, DT);
3526 
3527     if (LHSKnownNegative && RHSKnownNegative) {
3528       // The sign bit is set in both cases: this MUST overflow.
3529       // Create a simple add instruction, and insert it into the struct.
3530       return OverflowResult::AlwaysOverflows;
3531     }
3532 
3533     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3534       // The sign bit is clear in both cases: this CANNOT overflow.
3535       // Create a simple add instruction, and insert it into the struct.
3536       return OverflowResult::NeverOverflows;
3537     }
3538   }
3539 
3540   return OverflowResult::MayOverflow;
3541 }
3542 
3543 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3544                                                   const Value *RHS,
3545                                                   const AddOperator *Add,
3546                                                   const DataLayout &DL,
3547                                                   AssumptionCache *AC,
3548                                                   const Instruction *CxtI,
3549                                                   const DominatorTree *DT) {
3550   if (Add && Add->hasNoSignedWrap()) {
3551     return OverflowResult::NeverOverflows;
3552   }
3553 
3554   bool LHSKnownNonNegative, LHSKnownNegative;
3555   bool RHSKnownNonNegative, RHSKnownNegative;
3556   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3557                  AC, CxtI, DT);
3558   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3559                  AC, CxtI, DT);
3560 
3561   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3562       (LHSKnownNegative && RHSKnownNonNegative)) {
3563     // The sign bits are opposite: this CANNOT overflow.
3564     return OverflowResult::NeverOverflows;
3565   }
3566 
3567   // The remaining code needs Add to be available. Early returns if not so.
3568   if (!Add)
3569     return OverflowResult::MayOverflow;
3570 
3571   // If the sign of Add is the same as at least one of the operands, this add
3572   // CANNOT overflow. This is particularly useful when the sum is
3573   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3574   // operands.
3575   bool LHSOrRHSKnownNonNegative =
3576       (LHSKnownNonNegative || RHSKnownNonNegative);
3577   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3578   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3579     bool AddKnownNonNegative, AddKnownNegative;
3580     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3581                    /*Depth=*/0, AC, CxtI, DT);
3582     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3583         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3584       return OverflowResult::NeverOverflows;
3585     }
3586   }
3587 
3588   return OverflowResult::MayOverflow;
3589 }
3590 
3591 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3592                                      const DominatorTree &DT) {
3593 #ifndef NDEBUG
3594   auto IID = II->getIntrinsicID();
3595   assert((IID == Intrinsic::sadd_with_overflow ||
3596           IID == Intrinsic::uadd_with_overflow ||
3597           IID == Intrinsic::ssub_with_overflow ||
3598           IID == Intrinsic::usub_with_overflow ||
3599           IID == Intrinsic::smul_with_overflow ||
3600           IID == Intrinsic::umul_with_overflow) &&
3601          "Not an overflow intrinsic!");
3602 #endif
3603 
3604   SmallVector<const BranchInst *, 2> GuardingBranches;
3605   SmallVector<const ExtractValueInst *, 2> Results;
3606 
3607   for (const User *U : II->users()) {
3608     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3609       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3610 
3611       if (EVI->getIndices()[0] == 0)
3612         Results.push_back(EVI);
3613       else {
3614         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3615 
3616         for (const auto *U : EVI->users())
3617           if (const auto *B = dyn_cast<BranchInst>(U)) {
3618             assert(B->isConditional() && "How else is it using an i1?");
3619             GuardingBranches.push_back(B);
3620           }
3621       }
3622     } else {
3623       // We are using the aggregate directly in a way we don't want to analyze
3624       // here (storing it to a global, say).
3625       return false;
3626     }
3627   }
3628 
3629   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
3630     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3631     if (!NoWrapEdge.isSingleEdge())
3632       return false;
3633 
3634     // Check if all users of the add are provably no-wrap.
3635     for (const auto *Result : Results) {
3636       // If the extractvalue itself is not executed on overflow, the we don't
3637       // need to check each use separately, since domination is transitive.
3638       if (DT.dominates(NoWrapEdge, Result->getParent()))
3639         continue;
3640 
3641       for (auto &RU : Result->uses())
3642         if (!DT.dominates(NoWrapEdge, RU))
3643           return false;
3644     }
3645 
3646     return true;
3647   };
3648 
3649   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3650 }
3651 
3652 
3653 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
3654                                                  const DataLayout &DL,
3655                                                  AssumptionCache *AC,
3656                                                  const Instruction *CxtI,
3657                                                  const DominatorTree *DT) {
3658   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3659                                        Add, DL, AC, CxtI, DT);
3660 }
3661 
3662 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3663                                                  const Value *RHS,
3664                                                  const DataLayout &DL,
3665                                                  AssumptionCache *AC,
3666                                                  const Instruction *CxtI,
3667                                                  const DominatorTree *DT) {
3668   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3669 }
3670 
3671 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3672   // A memory operation returns normally if it isn't volatile. A volatile
3673   // operation is allowed to trap.
3674   //
3675   // An atomic operation isn't guaranteed to return in a reasonable amount of
3676   // time because it's possible for another thread to interfere with it for an
3677   // arbitrary length of time, but programs aren't allowed to rely on that.
3678   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3679     return !LI->isVolatile();
3680   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3681     return !SI->isVolatile();
3682   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3683     return !CXI->isVolatile();
3684   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3685     return !RMWI->isVolatile();
3686   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3687     return !MII->isVolatile();
3688 
3689   // If there is no successor, then execution can't transfer to it.
3690   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3691     return !CRI->unwindsToCaller();
3692   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3693     return !CatchSwitch->unwindsToCaller();
3694   if (isa<ResumeInst>(I))
3695     return false;
3696   if (isa<ReturnInst>(I))
3697     return false;
3698 
3699   // Calls can throw, or contain an infinite loop, or kill the process.
3700   if (auto CS = ImmutableCallSite(I)) {
3701     // Call sites that throw have implicit non-local control flow.
3702     if (!CS.doesNotThrow())
3703       return false;
3704 
3705     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3706     // etc. and thus not return.  However, LLVM already assumes that
3707     //
3708     //  - Thread exiting actions are modeled as writes to memory invisible to
3709     //    the program.
3710     //
3711     //  - Loops that don't have side effects (side effects are volatile/atomic
3712     //    stores and IO) always terminate (see http://llvm.org/PR965).
3713     //    Furthermore IO itself is also modeled as writes to memory invisible to
3714     //    the program.
3715     //
3716     // We rely on those assumptions here, and use the memory effects of the call
3717     // target as a proxy for checking that it always returns.
3718 
3719     // FIXME: This isn't aggressive enough; a call which only writes to a global
3720     // is guaranteed to return.
3721     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3722            match(I, m_Intrinsic<Intrinsic::assume>());
3723   }
3724 
3725   // Other instructions return normally.
3726   return true;
3727 }
3728 
3729 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3730                                                   const Loop *L) {
3731   // The loop header is guaranteed to be executed for every iteration.
3732   //
3733   // FIXME: Relax this constraint to cover all basic blocks that are
3734   // guaranteed to be executed at every iteration.
3735   if (I->getParent() != L->getHeader()) return false;
3736 
3737   for (const Instruction &LI : *L->getHeader()) {
3738     if (&LI == I) return true;
3739     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3740   }
3741   llvm_unreachable("Instruction not contained in its own parent basic block.");
3742 }
3743 
3744 bool llvm::propagatesFullPoison(const Instruction *I) {
3745   switch (I->getOpcode()) {
3746     case Instruction::Add:
3747     case Instruction::Sub:
3748     case Instruction::Xor:
3749     case Instruction::Trunc:
3750     case Instruction::BitCast:
3751     case Instruction::AddrSpaceCast:
3752       // These operations all propagate poison unconditionally. Note that poison
3753       // is not any particular value, so xor or subtraction of poison with
3754       // itself still yields poison, not zero.
3755       return true;
3756 
3757     case Instruction::AShr:
3758     case Instruction::SExt:
3759       // For these operations, one bit of the input is replicated across
3760       // multiple output bits. A replicated poison bit is still poison.
3761       return true;
3762 
3763     case Instruction::Shl: {
3764       // Left shift *by* a poison value is poison. The number of
3765       // positions to shift is unsigned, so no negative values are
3766       // possible there. Left shift by zero places preserves poison. So
3767       // it only remains to consider left shift of poison by a positive
3768       // number of places.
3769       //
3770       // A left shift by a positive number of places leaves the lowest order bit
3771       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3772       // make the poison operand violate that flag, yielding a fresh full-poison
3773       // value.
3774       auto *OBO = cast<OverflowingBinaryOperator>(I);
3775       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3776     }
3777 
3778     case Instruction::Mul: {
3779       // A multiplication by zero yields a non-poison zero result, so we need to
3780       // rule out zero as an operand. Conservatively, multiplication by a
3781       // non-zero constant is not multiplication by zero.
3782       //
3783       // Multiplication by a non-zero constant can leave some bits
3784       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3785       // order bit unpoisoned. So we need to consider that.
3786       //
3787       // Multiplication by 1 preserves poison. If the multiplication has a
3788       // no-wrap flag, then we can make the poison operand violate that flag
3789       // when multiplied by any integer other than 0 and 1.
3790       auto *OBO = cast<OverflowingBinaryOperator>(I);
3791       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3792         for (Value *V : OBO->operands()) {
3793           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3794             // A ConstantInt cannot yield poison, so we can assume that it is
3795             // the other operand that is poison.
3796             return !CI->isZero();
3797           }
3798         }
3799       }
3800       return false;
3801     }
3802 
3803     case Instruction::ICmp:
3804       // Comparing poison with any value yields poison.  This is why, for
3805       // instance, x s< (x +nsw 1) can be folded to true.
3806       return true;
3807 
3808     case Instruction::GetElementPtr:
3809       // A GEP implicitly represents a sequence of additions, subtractions,
3810       // truncations, sign extensions and multiplications. The multiplications
3811       // are by the non-zero sizes of some set of types, so we do not have to be
3812       // concerned with multiplication by zero. If the GEP is in-bounds, then
3813       // these operations are implicitly no-signed-wrap so poison is propagated
3814       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3815       return cast<GEPOperator>(I)->isInBounds();
3816 
3817     default:
3818       return false;
3819   }
3820 }
3821 
3822 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3823   switch (I->getOpcode()) {
3824     case Instruction::Store:
3825       return cast<StoreInst>(I)->getPointerOperand();
3826 
3827     case Instruction::Load:
3828       return cast<LoadInst>(I)->getPointerOperand();
3829 
3830     case Instruction::AtomicCmpXchg:
3831       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3832 
3833     case Instruction::AtomicRMW:
3834       return cast<AtomicRMWInst>(I)->getPointerOperand();
3835 
3836     case Instruction::UDiv:
3837     case Instruction::SDiv:
3838     case Instruction::URem:
3839     case Instruction::SRem:
3840       return I->getOperand(1);
3841 
3842     default:
3843       return nullptr;
3844   }
3845 }
3846 
3847 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3848   // We currently only look for uses of poison values within the same basic
3849   // block, as that makes it easier to guarantee that the uses will be
3850   // executed given that PoisonI is executed.
3851   //
3852   // FIXME: Expand this to consider uses beyond the same basic block. To do
3853   // this, look out for the distinction between post-dominance and strong
3854   // post-dominance.
3855   const BasicBlock *BB = PoisonI->getParent();
3856 
3857   // Set of instructions that we have proved will yield poison if PoisonI
3858   // does.
3859   SmallSet<const Value *, 16> YieldsPoison;
3860   SmallSet<const BasicBlock *, 4> Visited;
3861   YieldsPoison.insert(PoisonI);
3862   Visited.insert(PoisonI->getParent());
3863 
3864   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3865 
3866   unsigned Iter = 0;
3867   while (Iter++ < MaxDepth) {
3868     for (auto &I : make_range(Begin, End)) {
3869       if (&I != PoisonI) {
3870         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3871         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3872           return true;
3873         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3874           return false;
3875       }
3876 
3877       // Mark poison that propagates from I through uses of I.
3878       if (YieldsPoison.count(&I)) {
3879         for (const User *User : I.users()) {
3880           const Instruction *UserI = cast<Instruction>(User);
3881           if (propagatesFullPoison(UserI))
3882             YieldsPoison.insert(User);
3883         }
3884       }
3885     }
3886 
3887     if (auto *NextBB = BB->getSingleSuccessor()) {
3888       if (Visited.insert(NextBB).second) {
3889         BB = NextBB;
3890         Begin = BB->getFirstNonPHI()->getIterator();
3891         End = BB->end();
3892         continue;
3893       }
3894     }
3895 
3896     break;
3897   };
3898   return false;
3899 }
3900 
3901 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
3902   if (FMF.noNaNs())
3903     return true;
3904 
3905   if (auto *C = dyn_cast<ConstantFP>(V))
3906     return !C->isNaN();
3907   return false;
3908 }
3909 
3910 static bool isKnownNonZero(const Value *V) {
3911   if (auto *C = dyn_cast<ConstantFP>(V))
3912     return !C->isZero();
3913   return false;
3914 }
3915 
3916 /// Match non-obvious integer minimum and maximum sequences.
3917 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3918                                        Value *CmpLHS, Value *CmpRHS,
3919                                        Value *TrueVal, Value *FalseVal,
3920                                        Value *&LHS, Value *&RHS) {
3921   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3922     return {SPF_UNKNOWN, SPNB_NA, false};
3923 
3924   // Z = X -nsw Y
3925   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3926   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3927   if (match(TrueVal, m_Zero()) &&
3928       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3929     LHS = TrueVal;
3930     RHS = FalseVal;
3931     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3932   }
3933 
3934   // Z = X -nsw Y
3935   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3936   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3937   if (match(FalseVal, m_Zero()) &&
3938       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3939     LHS = TrueVal;
3940     RHS = FalseVal;
3941     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3942   }
3943 
3944   const APInt *C1;
3945   if (!match(CmpRHS, m_APInt(C1)))
3946     return {SPF_UNKNOWN, SPNB_NA, false};
3947 
3948   // An unsigned min/max can be written with a signed compare.
3949   const APInt *C2;
3950   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3951       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3952     // Is the sign bit set?
3953     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3954     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
3955     if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) {
3956       LHS = TrueVal;
3957       RHS = FalseVal;
3958       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3959     }
3960 
3961     // Is the sign bit clear?
3962     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
3963     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
3964     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
3965         C2->isMinSignedValue()) {
3966       LHS = TrueVal;
3967       RHS = FalseVal;
3968       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3969     }
3970   }
3971 
3972   // Look through 'not' ops to find disguised signed min/max.
3973   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
3974   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
3975   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
3976       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) {
3977     LHS = TrueVal;
3978     RHS = FalseVal;
3979     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3980   }
3981 
3982   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
3983   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
3984   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
3985       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) {
3986     LHS = TrueVal;
3987     RHS = FalseVal;
3988     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3989   }
3990 
3991   return {SPF_UNKNOWN, SPNB_NA, false};
3992 }
3993 
3994 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3995                                               FastMathFlags FMF,
3996                                               Value *CmpLHS, Value *CmpRHS,
3997                                               Value *TrueVal, Value *FalseVal,
3998                                               Value *&LHS, Value *&RHS) {
3999   LHS = CmpLHS;
4000   RHS = CmpRHS;
4001 
4002   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
4003   // return inconsistent results between implementations.
4004   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4005   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4006   // Therefore we behave conservatively and only proceed if at least one of the
4007   // operands is known to not be zero, or if we don't care about signed zeroes.
4008   switch (Pred) {
4009   default: break;
4010   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4011   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4012     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4013         !isKnownNonZero(CmpRHS))
4014       return {SPF_UNKNOWN, SPNB_NA, false};
4015   }
4016 
4017   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4018   bool Ordered = false;
4019 
4020   // When given one NaN and one non-NaN input:
4021   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4022   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4023   //     ordered comparison fails), which could be NaN or non-NaN.
4024   // so here we discover exactly what NaN behavior is required/accepted.
4025   if (CmpInst::isFPPredicate(Pred)) {
4026     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4027     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4028 
4029     if (LHSSafe && RHSSafe) {
4030       // Both operands are known non-NaN.
4031       NaNBehavior = SPNB_RETURNS_ANY;
4032     } else if (CmpInst::isOrdered(Pred)) {
4033       // An ordered comparison will return false when given a NaN, so it
4034       // returns the RHS.
4035       Ordered = true;
4036       if (LHSSafe)
4037         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4038         NaNBehavior = SPNB_RETURNS_NAN;
4039       else if (RHSSafe)
4040         NaNBehavior = SPNB_RETURNS_OTHER;
4041       else
4042         // Completely unsafe.
4043         return {SPF_UNKNOWN, SPNB_NA, false};
4044     } else {
4045       Ordered = false;
4046       // An unordered comparison will return true when given a NaN, so it
4047       // returns the LHS.
4048       if (LHSSafe)
4049         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4050         NaNBehavior = SPNB_RETURNS_OTHER;
4051       else if (RHSSafe)
4052         NaNBehavior = SPNB_RETURNS_NAN;
4053       else
4054         // Completely unsafe.
4055         return {SPF_UNKNOWN, SPNB_NA, false};
4056     }
4057   }
4058 
4059   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4060     std::swap(CmpLHS, CmpRHS);
4061     Pred = CmpInst::getSwappedPredicate(Pred);
4062     if (NaNBehavior == SPNB_RETURNS_NAN)
4063       NaNBehavior = SPNB_RETURNS_OTHER;
4064     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4065       NaNBehavior = SPNB_RETURNS_NAN;
4066     Ordered = !Ordered;
4067   }
4068 
4069   // ([if]cmp X, Y) ? X : Y
4070   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4071     switch (Pred) {
4072     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4073     case ICmpInst::ICMP_UGT:
4074     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4075     case ICmpInst::ICMP_SGT:
4076     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4077     case ICmpInst::ICMP_ULT:
4078     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4079     case ICmpInst::ICMP_SLT:
4080     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4081     case FCmpInst::FCMP_UGT:
4082     case FCmpInst::FCMP_UGE:
4083     case FCmpInst::FCMP_OGT:
4084     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4085     case FCmpInst::FCMP_ULT:
4086     case FCmpInst::FCMP_ULE:
4087     case FCmpInst::FCMP_OLT:
4088     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4089     }
4090   }
4091 
4092   const APInt *C1;
4093   if (match(CmpRHS, m_APInt(C1))) {
4094     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4095         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4096 
4097       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4098       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
4099       if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
4100         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
4101       }
4102 
4103       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4104       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
4105       if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
4106         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
4107       }
4108     }
4109   }
4110 
4111   return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4112 }
4113 
4114 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4115                               Instruction::CastOps *CastOp) {
4116   CastInst *CI = dyn_cast<CastInst>(V1);
4117   Constant *C = dyn_cast<Constant>(V2);
4118   if (!CI)
4119     return nullptr;
4120   *CastOp = CI->getOpcode();
4121 
4122   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
4123     // If V1 and V2 are both the same cast from the same type, we can look
4124     // through V1.
4125     if (CI2->getOpcode() == CI->getOpcode() &&
4126         CI2->getSrcTy() == CI->getSrcTy())
4127       return CI2->getOperand(0);
4128     return nullptr;
4129   } else if (!C) {
4130     return nullptr;
4131   }
4132 
4133   Constant *CastedTo = nullptr;
4134 
4135   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4136     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
4137 
4138   if (isa<SExtInst>(CI) && CmpI->isSigned())
4139     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
4140 
4141   if (isa<TruncInst>(CI))
4142     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4143 
4144   if (isa<FPTruncInst>(CI))
4145     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4146 
4147   if (isa<FPExtInst>(CI))
4148     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4149 
4150   if (isa<FPToUIInst>(CI))
4151     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4152 
4153   if (isa<FPToSIInst>(CI))
4154     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4155 
4156   if (isa<UIToFPInst>(CI))
4157     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4158 
4159   if (isa<SIToFPInst>(CI))
4160     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4161 
4162   if (!CastedTo)
4163     return nullptr;
4164 
4165   Constant *CastedBack =
4166       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
4167   // Make sure the cast doesn't lose any information.
4168   if (CastedBack != C)
4169     return nullptr;
4170 
4171   return CastedTo;
4172 }
4173 
4174 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4175                                              Instruction::CastOps *CastOp) {
4176   SelectInst *SI = dyn_cast<SelectInst>(V);
4177   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4178 
4179   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4180   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4181 
4182   CmpInst::Predicate Pred = CmpI->getPredicate();
4183   Value *CmpLHS = CmpI->getOperand(0);
4184   Value *CmpRHS = CmpI->getOperand(1);
4185   Value *TrueVal = SI->getTrueValue();
4186   Value *FalseVal = SI->getFalseValue();
4187   FastMathFlags FMF;
4188   if (isa<FPMathOperator>(CmpI))
4189     FMF = CmpI->getFastMathFlags();
4190 
4191   // Bail out early.
4192   if (CmpI->isEquality())
4193     return {SPF_UNKNOWN, SPNB_NA, false};
4194 
4195   // Deal with type mismatches.
4196   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4197     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4198       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4199                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4200                                   LHS, RHS);
4201     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4202       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4203                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4204                                   LHS, RHS);
4205   }
4206   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4207                               LHS, RHS);
4208 }
4209 
4210 /// Return true if "icmp Pred LHS RHS" is always true.
4211 static bool isTruePredicate(CmpInst::Predicate Pred,
4212                             const Value *LHS, const Value *RHS,
4213                             const DataLayout &DL, unsigned Depth,
4214                             AssumptionCache *AC, const Instruction *CxtI,
4215                             const DominatorTree *DT) {
4216   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4217   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4218     return true;
4219 
4220   switch (Pred) {
4221   default:
4222     return false;
4223 
4224   case CmpInst::ICMP_SLE: {
4225     const APInt *C;
4226 
4227     // LHS s<= LHS +_{nsw} C   if C >= 0
4228     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4229       return !C->isNegative();
4230     return false;
4231   }
4232 
4233   case CmpInst::ICMP_ULE: {
4234     const APInt *C;
4235 
4236     // LHS u<= LHS +_{nuw} C   for any C
4237     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4238       return true;
4239 
4240     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4241     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4242                                        const Value *&X,
4243                                        const APInt *&CA, const APInt *&CB) {
4244       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4245           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4246         return true;
4247 
4248       // If X & C == 0 then (X | C) == X +_{nuw} C
4249       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4250           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4251         unsigned BitWidth = CA->getBitWidth();
4252         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4253         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4254 
4255         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4256           return true;
4257       }
4258 
4259       return false;
4260     };
4261 
4262     const Value *X;
4263     const APInt *CLHS, *CRHS;
4264     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4265       return CLHS->ule(*CRHS);
4266 
4267     return false;
4268   }
4269   }
4270 }
4271 
4272 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4273 /// ALHS ARHS" is true.  Otherwise, return None.
4274 static Optional<bool>
4275 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4276                       const Value *ARHS, const Value *BLHS,
4277                       const Value *BRHS, const DataLayout &DL,
4278                       unsigned Depth, AssumptionCache *AC,
4279                       const Instruction *CxtI, const DominatorTree *DT) {
4280   switch (Pred) {
4281   default:
4282     return None;
4283 
4284   case CmpInst::ICMP_SLT:
4285   case CmpInst::ICMP_SLE:
4286     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4287                         DT) &&
4288         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4289       return true;
4290     return None;
4291 
4292   case CmpInst::ICMP_ULT:
4293   case CmpInst::ICMP_ULE:
4294     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4295                         DT) &&
4296         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4297       return true;
4298     return None;
4299   }
4300 }
4301 
4302 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4303 /// when the operands match, but are swapped.
4304 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4305                           const Value *BLHS, const Value *BRHS,
4306                           bool &IsSwappedOps) {
4307 
4308   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4309   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4310   return IsMatchingOps || IsSwappedOps;
4311 }
4312 
4313 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4314 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4315 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4316 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4317                                                     const Value *ALHS,
4318                                                     const Value *ARHS,
4319                                                     CmpInst::Predicate BPred,
4320                                                     const Value *BLHS,
4321                                                     const Value *BRHS,
4322                                                     bool IsSwappedOps) {
4323   // Canonicalize the operands so they're matching.
4324   if (IsSwappedOps) {
4325     std::swap(BLHS, BRHS);
4326     BPred = ICmpInst::getSwappedPredicate(BPred);
4327   }
4328   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4329     return true;
4330   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4331     return false;
4332 
4333   return None;
4334 }
4335 
4336 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4337 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4338 /// C2" is false.  Otherwise, return None if we can't infer anything.
4339 static Optional<bool>
4340 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4341                                  const ConstantInt *C1,
4342                                  CmpInst::Predicate BPred,
4343                                  const Value *BLHS, const ConstantInt *C2) {
4344   assert(ALHS == BLHS && "LHS operands must match.");
4345   ConstantRange DomCR =
4346       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4347   ConstantRange CR =
4348       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4349   ConstantRange Intersection = DomCR.intersectWith(CR);
4350   ConstantRange Difference = DomCR.difference(CR);
4351   if (Intersection.isEmptySet())
4352     return false;
4353   if (Difference.isEmptySet())
4354     return true;
4355   return None;
4356 }
4357 
4358 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
4359                                         const DataLayout &DL, bool InvertAPred,
4360                                         unsigned Depth, AssumptionCache *AC,
4361                                         const Instruction *CxtI,
4362                                         const DominatorTree *DT) {
4363   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4364   if (LHS->getType() != RHS->getType())
4365     return None;
4366 
4367   Type *OpTy = LHS->getType();
4368   assert(OpTy->getScalarType()->isIntegerTy(1));
4369 
4370   // LHS ==> RHS by definition
4371   if (!InvertAPred && LHS == RHS)
4372     return true;
4373 
4374   if (OpTy->isVectorTy())
4375     // TODO: extending the code below to handle vectors
4376     return None;
4377   assert(OpTy->isIntegerTy(1) && "implied by above");
4378 
4379   ICmpInst::Predicate APred, BPred;
4380   Value *ALHS, *ARHS;
4381   Value *BLHS, *BRHS;
4382 
4383   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4384       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4385     return None;
4386 
4387   if (InvertAPred)
4388     APred = CmpInst::getInversePredicate(APred);
4389 
4390   // Can we infer anything when the two compares have matching operands?
4391   bool IsSwappedOps;
4392   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4393     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4394             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4395       return Implication;
4396     // No amount of additional analysis will infer the second condition, so
4397     // early exit.
4398     return None;
4399   }
4400 
4401   // Can we infer anything when the LHS operands match and the RHS operands are
4402   // constants (not necessarily matching)?
4403   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4404     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4405             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4406             cast<ConstantInt>(BRHS)))
4407       return Implication;
4408     // No amount of additional analysis will infer the second condition, so
4409     // early exit.
4410     return None;
4411   }
4412 
4413   if (APred == BPred)
4414     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4415                                  CxtI, DT);
4416 
4417   return None;
4418 }
4419