1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 // This optimization is known to cause performance regressions is some cases, 55 // keep it under a temporary flag for now. 56 static cl::opt<bool> 57 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 58 cl::Hidden, cl::init(true)); 59 60 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 61 /// 0). For vector types, returns the element type's bitwidth. 62 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 63 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 64 return BitWidth; 65 66 return DL.getPointerTypeSizeInBits(Ty); 67 } 68 69 namespace { 70 // Simplifying using an assume can only be done in a particular control-flow 71 // context (the context instruction provides that context). If an assume and 72 // the context instruction are not in the same block then the DT helps in 73 // figuring out if we can use it. 74 struct Query { 75 const DataLayout &DL; 76 AssumptionCache *AC; 77 const Instruction *CxtI; 78 const DominatorTree *DT; 79 80 /// Set of assumptions that should be excluded from further queries. 81 /// This is because of the potential for mutual recursion to cause 82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 83 /// classic case of this is assume(x = y), which will attempt to determine 84 /// bits in x from bits in y, which will attempt to determine bits in y from 85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 88 /// on. 89 std::array<const Value *, MaxDepth> Excluded; 90 unsigned NumExcluded; 91 92 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 93 const DominatorTree *DT) 94 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 95 96 Query(const Query &Q, const Value *NewExcl) 97 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 98 Excluded = Q.Excluded; 99 Excluded[NumExcluded++] = NewExcl; 100 assert(NumExcluded <= Excluded.size()); 101 } 102 103 bool isExcluded(const Value *Value) const { 104 if (NumExcluded == 0) 105 return false; 106 auto End = Excluded.begin() + NumExcluded; 107 return std::find(Excluded.begin(), End, Value) != End; 108 } 109 }; 110 } // end anonymous namespace 111 112 // Given the provided Value and, potentially, a context instruction, return 113 // the preferred context instruction (if any). 114 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 115 // If we've been provided with a context instruction, then use that (provided 116 // it has been inserted). 117 if (CxtI && CxtI->getParent()) 118 return CxtI; 119 120 // If the value is really an already-inserted instruction, then use that. 121 CxtI = dyn_cast<Instruction>(V); 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 return nullptr; 126 } 127 128 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 129 unsigned Depth, const Query &Q); 130 131 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 132 const DataLayout &DL, unsigned Depth, 133 AssumptionCache *AC, const Instruction *CxtI, 134 const DominatorTree *DT) { 135 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 136 Query(DL, AC, safeCxtI(V, CxtI), DT)); 137 } 138 139 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 140 const DataLayout &DL, 141 AssumptionCache *AC, const Instruction *CxtI, 142 const DominatorTree *DT) { 143 assert(LHS->getType() == RHS->getType() && 144 "LHS and RHS should have the same type"); 145 assert(LHS->getType()->isIntOrIntVectorTy() && 146 "LHS and RHS should be integers"); 147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 153 } 154 155 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 156 unsigned Depth, const Query &Q); 157 158 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 159 const DataLayout &DL, unsigned Depth, 160 AssumptionCache *AC, const Instruction *CxtI, 161 const DominatorTree *DT) { 162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 163 Query(DL, AC, safeCxtI(V, CxtI), DT)); 164 } 165 166 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 167 const Query &Q); 168 169 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 170 bool OrZero, 171 unsigned Depth, AssumptionCache *AC, 172 const Instruction *CxtI, 173 const DominatorTree *DT) { 174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 175 Query(DL, AC, safeCxtI(V, CxtI), DT)); 176 } 177 178 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 179 180 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 181 AssumptionCache *AC, const Instruction *CxtI, 182 const DominatorTree *DT) { 183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 184 } 185 186 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 187 unsigned Depth, 188 AssumptionCache *AC, const Instruction *CxtI, 189 const DominatorTree *DT) { 190 bool NonNegative, Negative; 191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 192 return NonNegative; 193 } 194 195 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 196 AssumptionCache *AC, const Instruction *CxtI, 197 const DominatorTree *DT) { 198 if (auto *CI = dyn_cast<ConstantInt>(V)) 199 return CI->getValue().isStrictlyPositive(); 200 201 // TODO: We'd doing two recursive queries here. We should factor this such 202 // that only a single query is needed. 203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 205 } 206 207 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 208 AssumptionCache *AC, const Instruction *CxtI, 209 const DominatorTree *DT) { 210 bool NonNegative, Negative; 211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 212 return Negative; 213 } 214 215 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 216 217 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 218 const DataLayout &DL, 219 AssumptionCache *AC, const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 222 safeCxtI(V1, safeCxtI(V2, CxtI)), 223 DT)); 224 } 225 226 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 227 const Query &Q); 228 229 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 230 const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT) { 233 return ::MaskedValueIsZero(V, Mask, Depth, 234 Query(DL, AC, safeCxtI(V, CxtI), DT)); 235 } 236 237 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 238 const Query &Q); 239 240 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 241 unsigned Depth, AssumptionCache *AC, 242 const Instruction *CxtI, 243 const DominatorTree *DT) { 244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 245 } 246 247 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 248 bool NSW, 249 APInt &KnownZero, APInt &KnownOne, 250 APInt &KnownZero2, APInt &KnownOne2, 251 unsigned Depth, const Query &Q) { 252 if (!Add) { 253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 254 // We know that the top bits of C-X are clear if X contains less bits 255 // than C (i.e. no wrap-around can happen). For example, 20-X is 256 // positive if we can prove that X is >= 0 and < 16. 257 if (!CLHS->getValue().isNegative()) { 258 unsigned BitWidth = KnownZero.getBitWidth(); 259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 260 // NLZ can't be BitWidth with no sign bit 261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 263 264 // If all of the MaskV bits are known to be zero, then we know the 265 // output top bits are zero, because we now know that the output is 266 // from [0-C]. 267 if ((KnownZero2 & MaskV) == MaskV) { 268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 269 // Top bits known zero. 270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 271 } 272 } 273 } 274 } 275 276 unsigned BitWidth = KnownZero.getBitWidth(); 277 278 // If an initial sequence of bits in the result is not needed, the 279 // corresponding bits in the operands are not needed. 280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 283 284 // Carry in a 1 for a subtract, rather than a 0. 285 APInt CarryIn(BitWidth, 0); 286 if (!Add) { 287 // Sum = LHS + ~RHS + 1 288 std::swap(KnownZero2, KnownOne2); 289 CarryIn.setBit(0); 290 } 291 292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 294 295 // Compute known bits of the carry. 296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 298 299 // Compute set of known bits (where all three relevant bits are known). 300 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 301 APInt RHSKnown = KnownZero2 | KnownOne2; 302 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 303 APInt Known = LHSKnown & RHSKnown & CarryKnown; 304 305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 306 "known bits of sum differ"); 307 308 // Compute known bits of the result. 309 KnownZero = ~PossibleSumOne & Known; 310 KnownOne = PossibleSumOne & Known; 311 312 // Are we still trying to solve for the sign bit? 313 if (!Known.isNegative()) { 314 if (NSW) { 315 // Adding two non-negative numbers, or subtracting a negative number from 316 // a non-negative one, can't wrap into negative. 317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 318 KnownZero |= APInt::getSignBit(BitWidth); 319 // Adding two negative numbers, or subtracting a non-negative number from 320 // a negative one, can't wrap into non-negative. 321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 322 KnownOne |= APInt::getSignBit(BitWidth); 323 } 324 } 325 } 326 327 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 328 APInt &KnownZero, APInt &KnownOne, 329 APInt &KnownZero2, APInt &KnownOne2, 330 unsigned Depth, const Query &Q) { 331 unsigned BitWidth = KnownZero.getBitWidth(); 332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 334 335 bool isKnownNegative = false; 336 bool isKnownNonNegative = false; 337 // If the multiplication is known not to overflow, compute the sign bit. 338 if (NSW) { 339 if (Op0 == Op1) { 340 // The product of a number with itself is non-negative. 341 isKnownNonNegative = true; 342 } else { 343 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 345 bool isKnownNegativeOp1 = KnownOne.isNegative(); 346 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 347 // The product of two numbers with the same sign is non-negative. 348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 350 // The product of a negative number and a non-negative number is either 351 // negative or zero. 352 if (!isKnownNonNegative) 353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 354 isKnownNonZero(Op0, Depth, Q)) || 355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 356 isKnownNonZero(Op1, Depth, Q)); 357 } 358 } 359 360 // If low bits are zero in either operand, output low known-0 bits. 361 // Also compute a conservative estimate for high known-0 bits. 362 // More trickiness is possible, but this is sufficient for the 363 // interesting case of alignment computation. 364 KnownOne.clearAllBits(); 365 unsigned TrailZ = KnownZero.countTrailingOnes() + 366 KnownZero2.countTrailingOnes(); 367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 368 KnownZero2.countLeadingOnes(), 369 BitWidth) - BitWidth; 370 371 TrailZ = std::min(TrailZ, BitWidth); 372 LeadZ = std::min(LeadZ, BitWidth); 373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 374 APInt::getHighBitsSet(BitWidth, LeadZ); 375 376 // Only make use of no-wrap flags if we failed to compute the sign bit 377 // directly. This matters if the multiplication always overflows, in 378 // which case we prefer to follow the result of the direct computation, 379 // though as the program is invoking undefined behaviour we can choose 380 // whatever we like here. 381 if (isKnownNonNegative && !KnownOne.isNegative()) 382 KnownZero.setBit(BitWidth - 1); 383 else if (isKnownNegative && !KnownZero.isNegative()) 384 KnownOne.setBit(BitWidth - 1); 385 } 386 387 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 388 APInt &KnownZero, 389 APInt &KnownOne) { 390 unsigned BitWidth = KnownZero.getBitWidth(); 391 unsigned NumRanges = Ranges.getNumOperands() / 2; 392 assert(NumRanges >= 1); 393 394 KnownZero.setAllBits(); 395 KnownOne.setAllBits(); 396 397 for (unsigned i = 0; i < NumRanges; ++i) { 398 ConstantInt *Lower = 399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 400 ConstantInt *Upper = 401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 402 ConstantRange Range(Lower->getValue(), Upper->getValue()); 403 404 // The first CommonPrefixBits of all values in Range are equal. 405 unsigned CommonPrefixBits = 406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 407 408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 409 KnownOne &= Range.getUnsignedMax() & Mask; 410 KnownZero &= ~Range.getUnsignedMax() & Mask; 411 } 412 } 413 414 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 415 SmallVector<const Value *, 16> WorkSet(1, I); 416 SmallPtrSet<const Value *, 32> Visited; 417 SmallPtrSet<const Value *, 16> EphValues; 418 419 // The instruction defining an assumption's condition itself is always 420 // considered ephemeral to that assumption (even if it has other 421 // non-ephemeral users). See r246696's test case for an example. 422 if (is_contained(I->operands(), E)) 423 return true; 424 425 while (!WorkSet.empty()) { 426 const Value *V = WorkSet.pop_back_val(); 427 if (!Visited.insert(V).second) 428 continue; 429 430 // If all uses of this value are ephemeral, then so is this value. 431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 432 if (V == E) 433 return true; 434 435 EphValues.insert(V); 436 if (const User *U = dyn_cast<User>(V)) 437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 438 J != JE; ++J) { 439 if (isSafeToSpeculativelyExecute(*J)) 440 WorkSet.push_back(*J); 441 } 442 } 443 } 444 445 return false; 446 } 447 448 // Is this an intrinsic that cannot be speculated but also cannot trap? 449 static bool isAssumeLikeIntrinsic(const Instruction *I) { 450 if (const CallInst *CI = dyn_cast<CallInst>(I)) 451 if (Function *F = CI->getCalledFunction()) 452 switch (F->getIntrinsicID()) { 453 default: break; 454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 455 case Intrinsic::assume: 456 case Intrinsic::dbg_declare: 457 case Intrinsic::dbg_value: 458 case Intrinsic::invariant_start: 459 case Intrinsic::invariant_end: 460 case Intrinsic::lifetime_start: 461 case Intrinsic::lifetime_end: 462 case Intrinsic::objectsize: 463 case Intrinsic::ptr_annotation: 464 case Intrinsic::var_annotation: 465 return true; 466 } 467 468 return false; 469 } 470 471 bool llvm::isValidAssumeForContext(const Instruction *Inv, 472 const Instruction *CxtI, 473 const DominatorTree *DT) { 474 475 // There are two restrictions on the use of an assume: 476 // 1. The assume must dominate the context (or the control flow must 477 // reach the assume whenever it reaches the context). 478 // 2. The context must not be in the assume's set of ephemeral values 479 // (otherwise we will use the assume to prove that the condition 480 // feeding the assume is trivially true, thus causing the removal of 481 // the assume). 482 483 if (DT) { 484 if (DT->dominates(Inv, CxtI)) 485 return true; 486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 487 // We don't have a DT, but this trivially dominates. 488 return true; 489 } 490 491 // With or without a DT, the only remaining case we will check is if the 492 // instructions are in the same BB. Give up if that is not the case. 493 if (Inv->getParent() != CxtI->getParent()) 494 return false; 495 496 // If we have a dom tree, then we now know that the assume doens't dominate 497 // the other instruction. If we don't have a dom tree then we can check if 498 // the assume is first in the BB. 499 if (!DT) { 500 // Search forward from the assume until we reach the context (or the end 501 // of the block); the common case is that the assume will come first. 502 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 503 IE = Inv->getParent()->end(); I != IE; ++I) 504 if (&*I == CxtI) 505 return true; 506 } 507 508 // The context comes first, but they're both in the same block. Make sure 509 // there is nothing in between that might interrupt the control flow. 510 for (BasicBlock::const_iterator I = 511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 512 I != IE; ++I) 513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 514 return false; 515 516 return !isEphemeralValueOf(Inv, CxtI); 517 } 518 519 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 520 APInt &KnownOne, unsigned Depth, 521 const Query &Q) { 522 // Use of assumptions is context-sensitive. If we don't have a context, we 523 // cannot use them! 524 if (!Q.AC || !Q.CxtI) 525 return; 526 527 unsigned BitWidth = KnownZero.getBitWidth(); 528 529 // Note that the patterns below need to be kept in sync with the code 530 // in AssumptionCache::updateAffectedValues. 531 532 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 533 if (!AssumeVH) 534 continue; 535 CallInst *I = cast<CallInst>(AssumeVH); 536 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 537 "Got assumption for the wrong function!"); 538 if (Q.isExcluded(I)) 539 continue; 540 541 // Warning: This loop can end up being somewhat performance sensetive. 542 // We're running this loop for once for each value queried resulting in a 543 // runtime of ~O(#assumes * #values). 544 545 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 546 "must be an assume intrinsic"); 547 548 Value *Arg = I->getArgOperand(0); 549 550 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 551 assert(BitWidth == 1 && "assume operand is not i1?"); 552 KnownZero.clearAllBits(); 553 KnownOne.setAllBits(); 554 return; 555 } 556 if (match(Arg, m_Not(m_Specific(V))) && 557 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 558 assert(BitWidth == 1 && "assume operand is not i1?"); 559 KnownZero.setAllBits(); 560 KnownOne.clearAllBits(); 561 return; 562 } 563 564 // The remaining tests are all recursive, so bail out if we hit the limit. 565 if (Depth == MaxDepth) 566 continue; 567 568 Value *A, *B; 569 auto m_V = m_CombineOr(m_Specific(V), 570 m_CombineOr(m_PtrToInt(m_Specific(V)), 571 m_BitCast(m_Specific(V)))); 572 573 CmpInst::Predicate Pred; 574 ConstantInt *C; 575 // assume(v = a) 576 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 577 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 578 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 579 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 580 KnownZero |= RHSKnownZero; 581 KnownOne |= RHSKnownOne; 582 // assume(v & b = a) 583 } else if (match(Arg, 584 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 585 Pred == ICmpInst::ICMP_EQ && 586 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 587 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 588 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 589 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 590 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 591 592 // For those bits in the mask that are known to be one, we can propagate 593 // known bits from the RHS to V. 594 KnownZero |= RHSKnownZero & MaskKnownOne; 595 KnownOne |= RHSKnownOne & MaskKnownOne; 596 // assume(~(v & b) = a) 597 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 598 m_Value(A))) && 599 Pred == ICmpInst::ICMP_EQ && 600 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 601 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 602 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 603 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 604 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 605 606 // For those bits in the mask that are known to be one, we can propagate 607 // inverted known bits from the RHS to V. 608 KnownZero |= RHSKnownOne & MaskKnownOne; 609 KnownOne |= RHSKnownZero & MaskKnownOne; 610 // assume(v | b = a) 611 } else if (match(Arg, 612 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 613 Pred == ICmpInst::ICMP_EQ && 614 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 615 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 616 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 617 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 618 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 619 620 // For those bits in B that are known to be zero, we can propagate known 621 // bits from the RHS to V. 622 KnownZero |= RHSKnownZero & BKnownZero; 623 KnownOne |= RHSKnownOne & BKnownZero; 624 // assume(~(v | b) = a) 625 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 626 m_Value(A))) && 627 Pred == ICmpInst::ICMP_EQ && 628 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 629 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 630 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 631 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 632 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 633 634 // For those bits in B that are known to be zero, we can propagate 635 // inverted known bits from the RHS to V. 636 KnownZero |= RHSKnownOne & BKnownZero; 637 KnownOne |= RHSKnownZero & BKnownZero; 638 // assume(v ^ b = a) 639 } else if (match(Arg, 640 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 641 Pred == ICmpInst::ICMP_EQ && 642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 645 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 646 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 647 648 // For those bits in B that are known to be zero, we can propagate known 649 // bits from the RHS to V. For those bits in B that are known to be one, 650 // we can propagate inverted known bits from the RHS to V. 651 KnownZero |= RHSKnownZero & BKnownZero; 652 KnownOne |= RHSKnownOne & BKnownZero; 653 KnownZero |= RHSKnownOne & BKnownOne; 654 KnownOne |= RHSKnownZero & BKnownOne; 655 // assume(~(v ^ b) = a) 656 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 657 m_Value(A))) && 658 Pred == ICmpInst::ICMP_EQ && 659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 660 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 661 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 662 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 663 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 664 665 // For those bits in B that are known to be zero, we can propagate 666 // inverted known bits from the RHS to V. For those bits in B that are 667 // known to be one, we can propagate known bits from the RHS to V. 668 KnownZero |= RHSKnownOne & BKnownZero; 669 KnownOne |= RHSKnownZero & BKnownZero; 670 KnownZero |= RHSKnownZero & BKnownOne; 671 KnownOne |= RHSKnownOne & BKnownOne; 672 // assume(v << c = a) 673 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 674 m_Value(A))) && 675 Pred == ICmpInst::ICMP_EQ && 676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 677 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 678 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 679 // For those bits in RHS that are known, we can propagate them to known 680 // bits in V shifted to the right by C. 681 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 682 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 683 // assume(~(v << c) = a) 684 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 685 m_Value(A))) && 686 Pred == ICmpInst::ICMP_EQ && 687 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 688 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 689 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 690 // For those bits in RHS that are known, we can propagate them inverted 691 // to known bits in V shifted to the right by C. 692 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 693 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 694 // assume(v >> c = a) 695 } else if (match(Arg, 696 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 697 m_AShr(m_V, m_ConstantInt(C))), 698 m_Value(A))) && 699 Pred == ICmpInst::ICMP_EQ && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 702 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 703 // For those bits in RHS that are known, we can propagate them to known 704 // bits in V shifted to the right by C. 705 KnownZero |= RHSKnownZero << C->getZExtValue(); 706 KnownOne |= RHSKnownOne << C->getZExtValue(); 707 // assume(~(v >> c) = a) 708 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 709 m_LShr(m_V, m_ConstantInt(C)), 710 m_AShr(m_V, m_ConstantInt(C)))), 711 m_Value(A))) && 712 Pred == ICmpInst::ICMP_EQ && 713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 716 // For those bits in RHS that are known, we can propagate them inverted 717 // to known bits in V shifted to the right by C. 718 KnownZero |= RHSKnownOne << C->getZExtValue(); 719 KnownOne |= RHSKnownZero << C->getZExtValue(); 720 // assume(v >=_s c) where c is non-negative 721 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 722 Pred == ICmpInst::ICMP_SGE && 723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 724 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 725 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 726 727 if (RHSKnownZero.isNegative()) { 728 // We know that the sign bit is zero. 729 KnownZero |= APInt::getSignBit(BitWidth); 730 } 731 // assume(v >_s c) where c is at least -1. 732 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 733 Pred == ICmpInst::ICMP_SGT && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 736 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 737 738 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 739 // We know that the sign bit is zero. 740 KnownZero |= APInt::getSignBit(BitWidth); 741 } 742 // assume(v <=_s c) where c is negative 743 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 744 Pred == ICmpInst::ICMP_SLE && 745 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 746 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 747 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 748 749 if (RHSKnownOne.isNegative()) { 750 // We know that the sign bit is one. 751 KnownOne |= APInt::getSignBit(BitWidth); 752 } 753 // assume(v <_s c) where c is non-positive 754 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 755 Pred == ICmpInst::ICMP_SLT && 756 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 757 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 758 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 759 760 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 761 // We know that the sign bit is one. 762 KnownOne |= APInt::getSignBit(BitWidth); 763 } 764 // assume(v <=_u c) 765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 766 Pred == ICmpInst::ICMP_ULE && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 770 771 // Whatever high bits in c are zero are known to be zero. 772 KnownZero |= 773 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 774 // assume(v <_u c) 775 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 776 Pred == ICmpInst::ICMP_ULT && 777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 780 781 // Whatever high bits in c are zero are known to be zero (if c is a power 782 // of 2, then one more). 783 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 784 KnownZero |= 785 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 786 else 787 KnownZero |= 788 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 789 } 790 } 791 } 792 793 // Compute known bits from a shift operator, including those with a 794 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 795 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 796 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 797 // functors that, given the known-zero or known-one bits respectively, and a 798 // shift amount, compute the implied known-zero or known-one bits of the shift 799 // operator's result respectively for that shift amount. The results from calling 800 // KZF and KOF are conservatively combined for all permitted shift amounts. 801 static void computeKnownBitsFromShiftOperator( 802 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 803 APInt &KnownOne2, unsigned Depth, const Query &Q, 804 function_ref<APInt(const APInt &, unsigned)> KZF, 805 function_ref<APInt(const APInt &, unsigned)> KOF) { 806 unsigned BitWidth = KnownZero.getBitWidth(); 807 808 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 809 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 810 811 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 812 KnownZero = KZF(KnownZero, ShiftAmt); 813 KnownOne = KOF(KnownOne, ShiftAmt); 814 // If there is conflict between KnownZero and KnownOne, this must be an 815 // overflowing left shift, so the shift result is undefined. Clear KnownZero 816 // and KnownOne bits so that other code could propagate this undef. 817 if ((KnownZero & KnownOne) != 0) { 818 KnownZero.clearAllBits(); 819 KnownOne.clearAllBits(); 820 } 821 822 return; 823 } 824 825 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 826 827 // Note: We cannot use KnownZero.getLimitedValue() here, because if 828 // BitWidth > 64 and any upper bits are known, we'll end up returning the 829 // limit value (which implies all bits are known). 830 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 831 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 832 833 // It would be more-clearly correct to use the two temporaries for this 834 // calculation. Reusing the APInts here to prevent unnecessary allocations. 835 KnownZero.clearAllBits(); 836 KnownOne.clearAllBits(); 837 838 // If we know the shifter operand is nonzero, we can sometimes infer more 839 // known bits. However this is expensive to compute, so be lazy about it and 840 // only compute it when absolutely necessary. 841 Optional<bool> ShifterOperandIsNonZero; 842 843 // Early exit if we can't constrain any well-defined shift amount. 844 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 845 ShifterOperandIsNonZero = 846 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 847 if (!*ShifterOperandIsNonZero) 848 return; 849 } 850 851 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 852 853 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 854 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 855 // Combine the shifted known input bits only for those shift amounts 856 // compatible with its known constraints. 857 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 858 continue; 859 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 860 continue; 861 // If we know the shifter is nonzero, we may be able to infer more known 862 // bits. This check is sunk down as far as possible to avoid the expensive 863 // call to isKnownNonZero if the cheaper checks above fail. 864 if (ShiftAmt == 0) { 865 if (!ShifterOperandIsNonZero.hasValue()) 866 ShifterOperandIsNonZero = 867 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 868 if (*ShifterOperandIsNonZero) 869 continue; 870 } 871 872 KnownZero &= KZF(KnownZero2, ShiftAmt); 873 KnownOne &= KOF(KnownOne2, ShiftAmt); 874 } 875 876 // If there are no compatible shift amounts, then we've proven that the shift 877 // amount must be >= the BitWidth, and the result is undefined. We could 878 // return anything we'd like, but we need to make sure the sets of known bits 879 // stay disjoint (it should be better for some other code to actually 880 // propagate the undef than to pick a value here using known bits). 881 if ((KnownZero & KnownOne) != 0) { 882 KnownZero.clearAllBits(); 883 KnownOne.clearAllBits(); 884 } 885 } 886 887 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 888 APInt &KnownOne, unsigned Depth, 889 const Query &Q) { 890 unsigned BitWidth = KnownZero.getBitWidth(); 891 892 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 893 switch (I->getOpcode()) { 894 default: break; 895 case Instruction::Load: 896 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 897 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 898 break; 899 case Instruction::And: { 900 // If either the LHS or the RHS are Zero, the result is zero. 901 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 902 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 903 904 // Output known-1 bits are only known if set in both the LHS & RHS. 905 KnownOne &= KnownOne2; 906 // Output known-0 are known to be clear if zero in either the LHS | RHS. 907 KnownZero |= KnownZero2; 908 909 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 910 // here we handle the more general case of adding any odd number by 911 // matching the form add(x, add(x, y)) where y is odd. 912 // TODO: This could be generalized to clearing any bit set in y where the 913 // following bit is known to be unset in y. 914 Value *Y = nullptr; 915 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 916 m_Value(Y))) || 917 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 918 m_Value(Y)))) { 919 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 920 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 921 if (KnownOne3.countTrailingOnes() > 0) 922 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 923 } 924 break; 925 } 926 case Instruction::Or: { 927 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 928 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 929 930 // Output known-0 bits are only known if clear in both the LHS & RHS. 931 KnownZero &= KnownZero2; 932 // Output known-1 are known to be set if set in either the LHS | RHS. 933 KnownOne |= KnownOne2; 934 break; 935 } 936 case Instruction::Xor: { 937 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 938 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 939 940 // Output known-0 bits are known if clear or set in both the LHS & RHS. 941 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 942 // Output known-1 are known to be set if set in only one of the LHS, RHS. 943 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 944 KnownZero = KnownZeroOut; 945 break; 946 } 947 case Instruction::Mul: { 948 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 949 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 950 KnownOne, KnownZero2, KnownOne2, Depth, Q); 951 break; 952 } 953 case Instruction::UDiv: { 954 // For the purposes of computing leading zeros we can conservatively 955 // treat a udiv as a logical right shift by the power of 2 known to 956 // be less than the denominator. 957 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 958 unsigned LeadZ = KnownZero2.countLeadingOnes(); 959 960 KnownOne2.clearAllBits(); 961 KnownZero2.clearAllBits(); 962 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 963 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 964 if (RHSUnknownLeadingOnes != BitWidth) 965 LeadZ = std::min(BitWidth, 966 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 967 968 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 969 break; 970 } 971 case Instruction::Select: { 972 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 973 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 974 975 const Value *LHS; 976 const Value *RHS; 977 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 978 if (SelectPatternResult::isMinOrMax(SPF)) { 979 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 980 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 981 } else { 982 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 983 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 984 } 985 986 unsigned MaxHighOnes = 0; 987 unsigned MaxHighZeros = 0; 988 if (SPF == SPF_SMAX) { 989 // If both sides are negative, the result is negative. 990 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 991 // We can derive a lower bound on the result by taking the max of the 992 // leading one bits. 993 MaxHighOnes = 994 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 995 // If either side is non-negative, the result is non-negative. 996 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 997 MaxHighZeros = 1; 998 } else if (SPF == SPF_SMIN) { 999 // If both sides are non-negative, the result is non-negative. 1000 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 1001 // We can derive an upper bound on the result by taking the max of the 1002 // leading zero bits. 1003 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1004 KnownZero2.countLeadingOnes()); 1005 // If either side is negative, the result is negative. 1006 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 1007 MaxHighOnes = 1; 1008 } else if (SPF == SPF_UMAX) { 1009 // We can derive a lower bound on the result by taking the max of the 1010 // leading one bits. 1011 MaxHighOnes = 1012 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1013 } else if (SPF == SPF_UMIN) { 1014 // We can derive an upper bound on the result by taking the max of the 1015 // leading zero bits. 1016 MaxHighZeros = 1017 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1018 } 1019 1020 // Only known if known in both the LHS and RHS. 1021 KnownOne &= KnownOne2; 1022 KnownZero &= KnownZero2; 1023 if (MaxHighOnes > 0) 1024 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1025 if (MaxHighZeros > 0) 1026 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1027 break; 1028 } 1029 case Instruction::FPTrunc: 1030 case Instruction::FPExt: 1031 case Instruction::FPToUI: 1032 case Instruction::FPToSI: 1033 case Instruction::SIToFP: 1034 case Instruction::UIToFP: 1035 break; // Can't work with floating point. 1036 case Instruction::PtrToInt: 1037 case Instruction::IntToPtr: 1038 // Fall through and handle them the same as zext/trunc. 1039 LLVM_FALLTHROUGH; 1040 case Instruction::ZExt: 1041 case Instruction::Trunc: { 1042 Type *SrcTy = I->getOperand(0)->getType(); 1043 1044 unsigned SrcBitWidth; 1045 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1046 // which fall through here. 1047 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1048 1049 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1050 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1051 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1052 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1053 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1054 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1055 // Any top bits are known to be zero. 1056 if (BitWidth > SrcBitWidth) 1057 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1058 break; 1059 } 1060 case Instruction::BitCast: { 1061 Type *SrcTy = I->getOperand(0)->getType(); 1062 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1063 // TODO: For now, not handling conversions like: 1064 // (bitcast i64 %x to <2 x i32>) 1065 !I->getType()->isVectorTy()) { 1066 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1067 break; 1068 } 1069 break; 1070 } 1071 case Instruction::SExt: { 1072 // Compute the bits in the result that are not present in the input. 1073 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1074 1075 KnownZero = KnownZero.trunc(SrcBitWidth); 1076 KnownOne = KnownOne.trunc(SrcBitWidth); 1077 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1078 KnownZero = KnownZero.zext(BitWidth); 1079 KnownOne = KnownOne.zext(BitWidth); 1080 1081 // If the sign bit of the input is known set or clear, then we know the 1082 // top bits of the result. 1083 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1084 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1085 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1086 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1087 break; 1088 } 1089 case Instruction::Shl: { 1090 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1091 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1092 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1093 APInt KZResult = 1094 (KnownZero << ShiftAmt) | 1095 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1096 // If this shift has "nsw" keyword, then the result is either a poison 1097 // value or has the same sign bit as the first operand. 1098 if (NSW && KnownZero.isNegative()) 1099 KZResult.setBit(BitWidth - 1); 1100 return KZResult; 1101 }; 1102 1103 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1104 APInt KOResult = KnownOne << ShiftAmt; 1105 if (NSW && KnownOne.isNegative()) 1106 KOResult.setBit(BitWidth - 1); 1107 return KOResult; 1108 }; 1109 1110 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1111 KnownZero2, KnownOne2, Depth, Q, KZF, 1112 KOF); 1113 break; 1114 } 1115 case Instruction::LShr: { 1116 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1117 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1118 return APIntOps::lshr(KnownZero, ShiftAmt) | 1119 // High bits known zero. 1120 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1121 }; 1122 1123 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1124 return APIntOps::lshr(KnownOne, ShiftAmt); 1125 }; 1126 1127 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1128 KnownZero2, KnownOne2, Depth, Q, KZF, 1129 KOF); 1130 break; 1131 } 1132 case Instruction::AShr: { 1133 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1134 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1135 return APIntOps::ashr(KnownZero, ShiftAmt); 1136 }; 1137 1138 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1139 return APIntOps::ashr(KnownOne, ShiftAmt); 1140 }; 1141 1142 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1143 KnownZero2, KnownOne2, Depth, Q, KZF, 1144 KOF); 1145 break; 1146 } 1147 case Instruction::Sub: { 1148 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1149 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1150 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1151 Q); 1152 break; 1153 } 1154 case Instruction::Add: { 1155 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1156 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1157 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1158 Q); 1159 break; 1160 } 1161 case Instruction::SRem: 1162 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1163 APInt RA = Rem->getValue().abs(); 1164 if (RA.isPowerOf2()) { 1165 APInt LowBits = RA - 1; 1166 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1167 Q); 1168 1169 // The low bits of the first operand are unchanged by the srem. 1170 KnownZero = KnownZero2 & LowBits; 1171 KnownOne = KnownOne2 & LowBits; 1172 1173 // If the first operand is non-negative or has all low bits zero, then 1174 // the upper bits are all zero. 1175 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1176 KnownZero |= ~LowBits; 1177 1178 // If the first operand is negative and not all low bits are zero, then 1179 // the upper bits are all one. 1180 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1181 KnownOne |= ~LowBits; 1182 1183 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1184 } 1185 } 1186 1187 // The sign bit is the LHS's sign bit, except when the result of the 1188 // remainder is zero. 1189 if (KnownZero.isNonNegative()) { 1190 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1191 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1192 Q); 1193 // If it's known zero, our sign bit is also zero. 1194 if (LHSKnownZero.isNegative()) 1195 KnownZero.setBit(BitWidth - 1); 1196 } 1197 1198 break; 1199 case Instruction::URem: { 1200 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1201 const APInt &RA = Rem->getValue(); 1202 if (RA.isPowerOf2()) { 1203 APInt LowBits = (RA - 1); 1204 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1205 KnownZero |= ~LowBits; 1206 KnownOne &= LowBits; 1207 break; 1208 } 1209 } 1210 1211 // Since the result is less than or equal to either operand, any leading 1212 // zero bits in either operand must also exist in the result. 1213 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1214 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1215 1216 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1217 KnownZero2.countLeadingOnes()); 1218 KnownOne.clearAllBits(); 1219 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1220 break; 1221 } 1222 1223 case Instruction::Alloca: { 1224 const AllocaInst *AI = cast<AllocaInst>(I); 1225 unsigned Align = AI->getAlignment(); 1226 if (Align == 0) 1227 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1228 1229 if (Align > 0) 1230 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1231 break; 1232 } 1233 case Instruction::GetElementPtr: { 1234 // Analyze all of the subscripts of this getelementptr instruction 1235 // to determine if we can prove known low zero bits. 1236 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1237 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1238 Q); 1239 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1240 1241 gep_type_iterator GTI = gep_type_begin(I); 1242 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1243 Value *Index = I->getOperand(i); 1244 if (StructType *STy = GTI.getStructTypeOrNull()) { 1245 // Handle struct member offset arithmetic. 1246 1247 // Handle case when index is vector zeroinitializer 1248 Constant *CIndex = cast<Constant>(Index); 1249 if (CIndex->isZeroValue()) 1250 continue; 1251 1252 if (CIndex->getType()->isVectorTy()) 1253 Index = CIndex->getSplatValue(); 1254 1255 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1256 const StructLayout *SL = Q.DL.getStructLayout(STy); 1257 uint64_t Offset = SL->getElementOffset(Idx); 1258 TrailZ = std::min<unsigned>(TrailZ, 1259 countTrailingZeros(Offset)); 1260 } else { 1261 // Handle array index arithmetic. 1262 Type *IndexedTy = GTI.getIndexedType(); 1263 if (!IndexedTy->isSized()) { 1264 TrailZ = 0; 1265 break; 1266 } 1267 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1268 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1269 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1270 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1271 TrailZ = std::min(TrailZ, 1272 unsigned(countTrailingZeros(TypeSize) + 1273 LocalKnownZero.countTrailingOnes())); 1274 } 1275 } 1276 1277 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1278 break; 1279 } 1280 case Instruction::PHI: { 1281 const PHINode *P = cast<PHINode>(I); 1282 // Handle the case of a simple two-predecessor recurrence PHI. 1283 // There's a lot more that could theoretically be done here, but 1284 // this is sufficient to catch some interesting cases. 1285 if (P->getNumIncomingValues() == 2) { 1286 for (unsigned i = 0; i != 2; ++i) { 1287 Value *L = P->getIncomingValue(i); 1288 Value *R = P->getIncomingValue(!i); 1289 Operator *LU = dyn_cast<Operator>(L); 1290 if (!LU) 1291 continue; 1292 unsigned Opcode = LU->getOpcode(); 1293 // Check for operations that have the property that if 1294 // both their operands have low zero bits, the result 1295 // will have low zero bits. 1296 if (Opcode == Instruction::Add || 1297 Opcode == Instruction::Sub || 1298 Opcode == Instruction::And || 1299 Opcode == Instruction::Or || 1300 Opcode == Instruction::Mul) { 1301 Value *LL = LU->getOperand(0); 1302 Value *LR = LU->getOperand(1); 1303 // Find a recurrence. 1304 if (LL == I) 1305 L = LR; 1306 else if (LR == I) 1307 L = LL; 1308 else 1309 break; 1310 // Ok, we have a PHI of the form L op= R. Check for low 1311 // zero bits. 1312 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1313 1314 // We need to take the minimum number of known bits 1315 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1316 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1317 1318 KnownZero = APInt::getLowBitsSet( 1319 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1320 KnownZero3.countTrailingOnes())); 1321 1322 if (DontImproveNonNegativePhiBits) 1323 break; 1324 1325 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1326 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1327 // If initial value of recurrence is nonnegative, and we are adding 1328 // a nonnegative number with nsw, the result can only be nonnegative 1329 // or poison value regardless of the number of times we execute the 1330 // add in phi recurrence. If initial value is negative and we are 1331 // adding a negative number with nsw, the result can only be 1332 // negative or poison value. Similar arguments apply to sub and mul. 1333 // 1334 // (add non-negative, non-negative) --> non-negative 1335 // (add negative, negative) --> negative 1336 if (Opcode == Instruction::Add) { 1337 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1338 KnownZero.setBit(BitWidth - 1); 1339 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1340 KnownOne.setBit(BitWidth - 1); 1341 } 1342 1343 // (sub nsw non-negative, negative) --> non-negative 1344 // (sub nsw negative, non-negative) --> negative 1345 else if (Opcode == Instruction::Sub && LL == I) { 1346 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1347 KnownZero.setBit(BitWidth - 1); 1348 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1349 KnownOne.setBit(BitWidth - 1); 1350 } 1351 1352 // (mul nsw non-negative, non-negative) --> non-negative 1353 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1354 KnownZero3.isNegative()) 1355 KnownZero.setBit(BitWidth - 1); 1356 } 1357 1358 break; 1359 } 1360 } 1361 } 1362 1363 // Unreachable blocks may have zero-operand PHI nodes. 1364 if (P->getNumIncomingValues() == 0) 1365 break; 1366 1367 // Otherwise take the unions of the known bit sets of the operands, 1368 // taking conservative care to avoid excessive recursion. 1369 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1370 // Skip if every incoming value references to ourself. 1371 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1372 break; 1373 1374 KnownZero = APInt::getAllOnesValue(BitWidth); 1375 KnownOne = APInt::getAllOnesValue(BitWidth); 1376 for (Value *IncValue : P->incoming_values()) { 1377 // Skip direct self references. 1378 if (IncValue == P) continue; 1379 1380 KnownZero2 = APInt(BitWidth, 0); 1381 KnownOne2 = APInt(BitWidth, 0); 1382 // Recurse, but cap the recursion to one level, because we don't 1383 // want to waste time spinning around in loops. 1384 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1385 KnownZero &= KnownZero2; 1386 KnownOne &= KnownOne2; 1387 // If all bits have been ruled out, there's no need to check 1388 // more operands. 1389 if (!KnownZero && !KnownOne) 1390 break; 1391 } 1392 } 1393 break; 1394 } 1395 case Instruction::Call: 1396 case Instruction::Invoke: 1397 // If range metadata is attached to this call, set known bits from that, 1398 // and then intersect with known bits based on other properties of the 1399 // function. 1400 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1401 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1402 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1403 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1404 KnownZero |= KnownZero2; 1405 KnownOne |= KnownOne2; 1406 } 1407 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1408 switch (II->getIntrinsicID()) { 1409 default: break; 1410 case Intrinsic::bitreverse: 1411 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1412 KnownZero = KnownZero2.reverseBits(); 1413 KnownOne = KnownOne2.reverseBits(); 1414 break; 1415 case Intrinsic::bswap: 1416 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1417 KnownZero |= KnownZero2.byteSwap(); 1418 KnownOne |= KnownOne2.byteSwap(); 1419 break; 1420 case Intrinsic::ctlz: 1421 case Intrinsic::cttz: { 1422 unsigned LowBits = Log2_32(BitWidth)+1; 1423 // If this call is undefined for 0, the result will be less than 2^n. 1424 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1425 LowBits -= 1; 1426 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1427 break; 1428 } 1429 case Intrinsic::ctpop: { 1430 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1431 // We can bound the space the count needs. Also, bits known to be zero 1432 // can't contribute to the population. 1433 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1434 unsigned LeadingZeros = 1435 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1436 assert(LeadingZeros <= BitWidth); 1437 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1438 KnownOne &= ~KnownZero; 1439 // TODO: we could bound KnownOne using the lower bound on the number 1440 // of bits which might be set provided by popcnt KnownOne2. 1441 break; 1442 } 1443 case Intrinsic::x86_sse42_crc32_64_64: 1444 KnownZero |= APInt::getHighBitsSet(64, 32); 1445 break; 1446 } 1447 } 1448 break; 1449 case Instruction::ExtractElement: 1450 // Look through extract element. At the moment we keep this simple and skip 1451 // tracking the specific element. But at least we might find information 1452 // valid for all elements of the vector (for example if vector is sign 1453 // extended, shifted, etc). 1454 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1455 break; 1456 case Instruction::ExtractValue: 1457 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1458 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1459 if (EVI->getNumIndices() != 1) break; 1460 if (EVI->getIndices()[0] == 0) { 1461 switch (II->getIntrinsicID()) { 1462 default: break; 1463 case Intrinsic::uadd_with_overflow: 1464 case Intrinsic::sadd_with_overflow: 1465 computeKnownBitsAddSub(true, II->getArgOperand(0), 1466 II->getArgOperand(1), false, KnownZero, 1467 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1468 break; 1469 case Intrinsic::usub_with_overflow: 1470 case Intrinsic::ssub_with_overflow: 1471 computeKnownBitsAddSub(false, II->getArgOperand(0), 1472 II->getArgOperand(1), false, KnownZero, 1473 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1474 break; 1475 case Intrinsic::umul_with_overflow: 1476 case Intrinsic::smul_with_overflow: 1477 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1478 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1479 Q); 1480 break; 1481 } 1482 } 1483 } 1484 } 1485 } 1486 1487 /// Determine which bits of V are known to be either zero or one and return 1488 /// them in the KnownZero/KnownOne bit sets. 1489 /// 1490 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1491 /// we cannot optimize based on the assumption that it is zero without changing 1492 /// it to be an explicit zero. If we don't change it to zero, other code could 1493 /// optimized based on the contradictory assumption that it is non-zero. 1494 /// Because instcombine aggressively folds operations with undef args anyway, 1495 /// this won't lose us code quality. 1496 /// 1497 /// This function is defined on values with integer type, values with pointer 1498 /// type, and vectors of integers. In the case 1499 /// where V is a vector, known zero, and known one values are the 1500 /// same width as the vector element, and the bit is set only if it is true 1501 /// for all of the elements in the vector. 1502 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1503 unsigned Depth, const Query &Q) { 1504 assert(V && "No Value?"); 1505 assert(Depth <= MaxDepth && "Limit Search Depth"); 1506 unsigned BitWidth = KnownZero.getBitWidth(); 1507 1508 assert((V->getType()->isIntOrIntVectorTy() || 1509 V->getType()->getScalarType()->isPointerTy()) && 1510 "Not integer or pointer type!"); 1511 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1512 (!V->getType()->isIntOrIntVectorTy() || 1513 V->getType()->getScalarSizeInBits() == BitWidth) && 1514 KnownZero.getBitWidth() == BitWidth && 1515 KnownOne.getBitWidth() == BitWidth && 1516 "V, KnownOne and KnownZero should have same BitWidth"); 1517 1518 const APInt *C; 1519 if (match(V, m_APInt(C))) { 1520 // We know all of the bits for a scalar constant or a splat vector constant! 1521 KnownOne = *C; 1522 KnownZero = ~KnownOne; 1523 return; 1524 } 1525 // Null and aggregate-zero are all-zeros. 1526 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1527 KnownOne.clearAllBits(); 1528 KnownZero = APInt::getAllOnesValue(BitWidth); 1529 return; 1530 } 1531 // Handle a constant vector by taking the intersection of the known bits of 1532 // each element. 1533 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1534 // We know that CDS must be a vector of integers. Take the intersection of 1535 // each element. 1536 KnownZero.setAllBits(); KnownOne.setAllBits(); 1537 APInt Elt(KnownZero.getBitWidth(), 0); 1538 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1539 Elt = CDS->getElementAsInteger(i); 1540 KnownZero &= ~Elt; 1541 KnownOne &= Elt; 1542 } 1543 return; 1544 } 1545 1546 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1547 // We know that CV must be a vector of integers. Take the intersection of 1548 // each element. 1549 KnownZero.setAllBits(); KnownOne.setAllBits(); 1550 APInt Elt(KnownZero.getBitWidth(), 0); 1551 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1552 Constant *Element = CV->getAggregateElement(i); 1553 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1554 if (!ElementCI) { 1555 KnownZero.clearAllBits(); 1556 KnownOne.clearAllBits(); 1557 return; 1558 } 1559 Elt = ElementCI->getValue(); 1560 KnownZero &= ~Elt; 1561 KnownOne &= Elt; 1562 } 1563 return; 1564 } 1565 1566 // Start out not knowing anything. 1567 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1568 1569 // We can't imply anything about undefs. 1570 if (isa<UndefValue>(V)) 1571 return; 1572 1573 // There's no point in looking through other users of ConstantData for 1574 // assumptions. Confirm that we've handled them all. 1575 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1576 1577 // Limit search depth. 1578 // All recursive calls that increase depth must come after this. 1579 if (Depth == MaxDepth) 1580 return; 1581 1582 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1583 // the bits of its aliasee. 1584 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1585 if (!GA->isInterposable()) 1586 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1587 return; 1588 } 1589 1590 if (const Operator *I = dyn_cast<Operator>(V)) 1591 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1592 1593 // Aligned pointers have trailing zeros - refine KnownZero set 1594 if (V->getType()->isPointerTy()) { 1595 unsigned Align = V->getPointerAlignment(Q.DL); 1596 if (Align) 1597 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1598 } 1599 1600 // computeKnownBitsFromAssume strictly refines KnownZero and 1601 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1602 1603 // Check whether a nearby assume intrinsic can determine some known bits. 1604 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1605 1606 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1607 } 1608 1609 /// Determine whether the sign bit is known to be zero or one. 1610 /// Convenience wrapper around computeKnownBits. 1611 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1612 unsigned Depth, const Query &Q) { 1613 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1614 if (!BitWidth) { 1615 KnownZero = false; 1616 KnownOne = false; 1617 return; 1618 } 1619 APInt ZeroBits(BitWidth, 0); 1620 APInt OneBits(BitWidth, 0); 1621 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1622 KnownOne = OneBits[BitWidth - 1]; 1623 KnownZero = ZeroBits[BitWidth - 1]; 1624 } 1625 1626 /// Return true if the given value is known to have exactly one 1627 /// bit set when defined. For vectors return true if every element is known to 1628 /// be a power of two when defined. Supports values with integer or pointer 1629 /// types and vectors of integers. 1630 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1631 const Query &Q) { 1632 if (const Constant *C = dyn_cast<Constant>(V)) { 1633 if (C->isNullValue()) 1634 return OrZero; 1635 1636 const APInt *ConstIntOrConstSplatInt; 1637 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1638 return ConstIntOrConstSplatInt->isPowerOf2(); 1639 } 1640 1641 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1642 // it is shifted off the end then the result is undefined. 1643 if (match(V, m_Shl(m_One(), m_Value()))) 1644 return true; 1645 1646 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1647 // bottom. If it is shifted off the bottom then the result is undefined. 1648 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1649 return true; 1650 1651 // The remaining tests are all recursive, so bail out if we hit the limit. 1652 if (Depth++ == MaxDepth) 1653 return false; 1654 1655 Value *X = nullptr, *Y = nullptr; 1656 // A shift left or a logical shift right of a power of two is a power of two 1657 // or zero. 1658 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1659 match(V, m_LShr(m_Value(X), m_Value())))) 1660 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1661 1662 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1663 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1664 1665 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1666 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1667 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1668 1669 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1670 // A power of two and'd with anything is a power of two or zero. 1671 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1672 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1673 return true; 1674 // X & (-X) is always a power of two or zero. 1675 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1676 return true; 1677 return false; 1678 } 1679 1680 // Adding a power-of-two or zero to the same power-of-two or zero yields 1681 // either the original power-of-two, a larger power-of-two or zero. 1682 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1683 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1684 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1685 if (match(X, m_And(m_Specific(Y), m_Value())) || 1686 match(X, m_And(m_Value(), m_Specific(Y)))) 1687 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1688 return true; 1689 if (match(Y, m_And(m_Specific(X), m_Value())) || 1690 match(Y, m_And(m_Value(), m_Specific(X)))) 1691 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1692 return true; 1693 1694 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1695 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1696 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1697 1698 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1699 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1700 // If i8 V is a power of two or zero: 1701 // ZeroBits: 1 1 1 0 1 1 1 1 1702 // ~ZeroBits: 0 0 0 1 0 0 0 0 1703 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1704 // If OrZero isn't set, we cannot give back a zero result. 1705 // Make sure either the LHS or RHS has a bit set. 1706 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1707 return true; 1708 } 1709 } 1710 1711 // An exact divide or right shift can only shift off zero bits, so the result 1712 // is a power of two only if the first operand is a power of two and not 1713 // copying a sign bit (sdiv int_min, 2). 1714 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1715 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1716 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1717 Depth, Q); 1718 } 1719 1720 return false; 1721 } 1722 1723 /// \brief Test whether a GEP's result is known to be non-null. 1724 /// 1725 /// Uses properties inherent in a GEP to try to determine whether it is known 1726 /// to be non-null. 1727 /// 1728 /// Currently this routine does not support vector GEPs. 1729 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1730 const Query &Q) { 1731 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1732 return false; 1733 1734 // FIXME: Support vector-GEPs. 1735 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1736 1737 // If the base pointer is non-null, we cannot walk to a null address with an 1738 // inbounds GEP in address space zero. 1739 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1740 return true; 1741 1742 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1743 // If so, then the GEP cannot produce a null pointer, as doing so would 1744 // inherently violate the inbounds contract within address space zero. 1745 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1746 GTI != GTE; ++GTI) { 1747 // Struct types are easy -- they must always be indexed by a constant. 1748 if (StructType *STy = GTI.getStructTypeOrNull()) { 1749 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1750 unsigned ElementIdx = OpC->getZExtValue(); 1751 const StructLayout *SL = Q.DL.getStructLayout(STy); 1752 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1753 if (ElementOffset > 0) 1754 return true; 1755 continue; 1756 } 1757 1758 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1759 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1760 continue; 1761 1762 // Fast path the constant operand case both for efficiency and so we don't 1763 // increment Depth when just zipping down an all-constant GEP. 1764 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1765 if (!OpC->isZero()) 1766 return true; 1767 continue; 1768 } 1769 1770 // We post-increment Depth here because while isKnownNonZero increments it 1771 // as well, when we pop back up that increment won't persist. We don't want 1772 // to recurse 10k times just because we have 10k GEP operands. We don't 1773 // bail completely out because we want to handle constant GEPs regardless 1774 // of depth. 1775 if (Depth++ >= MaxDepth) 1776 continue; 1777 1778 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1779 return true; 1780 } 1781 1782 return false; 1783 } 1784 1785 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1786 /// ensure that the value it's attached to is never Value? 'RangeType' is 1787 /// is the type of the value described by the range. 1788 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1789 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1790 assert(NumRanges >= 1); 1791 for (unsigned i = 0; i < NumRanges; ++i) { 1792 ConstantInt *Lower = 1793 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1794 ConstantInt *Upper = 1795 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1796 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1797 if (Range.contains(Value)) 1798 return false; 1799 } 1800 return true; 1801 } 1802 1803 /// Return true if the given value is known to be non-zero when defined. 1804 /// For vectors return true if every element is known to be non-zero when 1805 /// defined. Supports values with integer or pointer type and vectors of 1806 /// integers. 1807 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1808 if (auto *C = dyn_cast<Constant>(V)) { 1809 if (C->isNullValue()) 1810 return false; 1811 if (isa<ConstantInt>(C)) 1812 // Must be non-zero due to null test above. 1813 return true; 1814 1815 // For constant vectors, check that all elements are undefined or known 1816 // non-zero to determine that the whole vector is known non-zero. 1817 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1818 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1819 Constant *Elt = C->getAggregateElement(i); 1820 if (!Elt || Elt->isNullValue()) 1821 return false; 1822 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1823 return false; 1824 } 1825 return true; 1826 } 1827 1828 return false; 1829 } 1830 1831 if (auto *I = dyn_cast<Instruction>(V)) { 1832 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1833 // If the possible ranges don't contain zero, then the value is 1834 // definitely non-zero. 1835 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1836 const APInt ZeroValue(Ty->getBitWidth(), 0); 1837 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1838 return true; 1839 } 1840 } 1841 } 1842 1843 // The remaining tests are all recursive, so bail out if we hit the limit. 1844 if (Depth++ >= MaxDepth) 1845 return false; 1846 1847 // Check for pointer simplifications. 1848 if (V->getType()->isPointerTy()) { 1849 if (isKnownNonNull(V)) 1850 return true; 1851 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1852 if (isGEPKnownNonNull(GEP, Depth, Q)) 1853 return true; 1854 } 1855 1856 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1857 1858 // X | Y != 0 if X != 0 or Y != 0. 1859 Value *X = nullptr, *Y = nullptr; 1860 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1861 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1862 1863 // ext X != 0 if X != 0. 1864 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1865 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1866 1867 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1868 // if the lowest bit is shifted off the end. 1869 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1870 // shl nuw can't remove any non-zero bits. 1871 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1872 if (BO->hasNoUnsignedWrap()) 1873 return isKnownNonZero(X, Depth, Q); 1874 1875 APInt KnownZero(BitWidth, 0); 1876 APInt KnownOne(BitWidth, 0); 1877 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1878 if (KnownOne[0]) 1879 return true; 1880 } 1881 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1882 // defined if the sign bit is shifted off the end. 1883 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1884 // shr exact can only shift out zero bits. 1885 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1886 if (BO->isExact()) 1887 return isKnownNonZero(X, Depth, Q); 1888 1889 bool XKnownNonNegative, XKnownNegative; 1890 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1891 if (XKnownNegative) 1892 return true; 1893 1894 // If the shifter operand is a constant, and all of the bits shifted 1895 // out are known to be zero, and X is known non-zero then at least one 1896 // non-zero bit must remain. 1897 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1898 APInt KnownZero(BitWidth, 0); 1899 APInt KnownOne(BitWidth, 0); 1900 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1901 1902 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1903 // Is there a known one in the portion not shifted out? 1904 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1905 return true; 1906 // Are all the bits to be shifted out known zero? 1907 if (KnownZero.countTrailingOnes() >= ShiftVal) 1908 return isKnownNonZero(X, Depth, Q); 1909 } 1910 } 1911 // div exact can only produce a zero if the dividend is zero. 1912 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1913 return isKnownNonZero(X, Depth, Q); 1914 } 1915 // X + Y. 1916 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1917 bool XKnownNonNegative, XKnownNegative; 1918 bool YKnownNonNegative, YKnownNegative; 1919 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1920 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1921 1922 // If X and Y are both non-negative (as signed values) then their sum is not 1923 // zero unless both X and Y are zero. 1924 if (XKnownNonNegative && YKnownNonNegative) 1925 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1926 return true; 1927 1928 // If X and Y are both negative (as signed values) then their sum is not 1929 // zero unless both X and Y equal INT_MIN. 1930 if (BitWidth && XKnownNegative && YKnownNegative) { 1931 APInt KnownZero(BitWidth, 0); 1932 APInt KnownOne(BitWidth, 0); 1933 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1934 // The sign bit of X is set. If some other bit is set then X is not equal 1935 // to INT_MIN. 1936 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1937 if ((KnownOne & Mask) != 0) 1938 return true; 1939 // The sign bit of Y is set. If some other bit is set then Y is not equal 1940 // to INT_MIN. 1941 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1942 if ((KnownOne & Mask) != 0) 1943 return true; 1944 } 1945 1946 // The sum of a non-negative number and a power of two is not zero. 1947 if (XKnownNonNegative && 1948 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1949 return true; 1950 if (YKnownNonNegative && 1951 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1952 return true; 1953 } 1954 // X * Y. 1955 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1956 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1957 // If X and Y are non-zero then so is X * Y as long as the multiplication 1958 // does not overflow. 1959 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1960 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1961 return true; 1962 } 1963 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1964 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1965 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1966 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1967 return true; 1968 } 1969 // PHI 1970 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1971 // Try and detect a recurrence that monotonically increases from a 1972 // starting value, as these are common as induction variables. 1973 if (PN->getNumIncomingValues() == 2) { 1974 Value *Start = PN->getIncomingValue(0); 1975 Value *Induction = PN->getIncomingValue(1); 1976 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1977 std::swap(Start, Induction); 1978 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1979 if (!C->isZero() && !C->isNegative()) { 1980 ConstantInt *X; 1981 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1982 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1983 !X->isNegative()) 1984 return true; 1985 } 1986 } 1987 } 1988 // Check if all incoming values are non-zero constant. 1989 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1990 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1991 }); 1992 if (AllNonZeroConstants) 1993 return true; 1994 } 1995 1996 if (!BitWidth) return false; 1997 APInt KnownZero(BitWidth, 0); 1998 APInt KnownOne(BitWidth, 0); 1999 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2000 return KnownOne != 0; 2001 } 2002 2003 /// Return true if V2 == V1 + X, where X is known non-zero. 2004 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2005 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2006 if (!BO || BO->getOpcode() != Instruction::Add) 2007 return false; 2008 Value *Op = nullptr; 2009 if (V2 == BO->getOperand(0)) 2010 Op = BO->getOperand(1); 2011 else if (V2 == BO->getOperand(1)) 2012 Op = BO->getOperand(0); 2013 else 2014 return false; 2015 return isKnownNonZero(Op, 0, Q); 2016 } 2017 2018 /// Return true if it is known that V1 != V2. 2019 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2020 if (V1->getType()->isVectorTy() || V1 == V2) 2021 return false; 2022 if (V1->getType() != V2->getType()) 2023 // We can't look through casts yet. 2024 return false; 2025 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2026 return true; 2027 2028 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2029 // Are any known bits in V1 contradictory to known bits in V2? If V1 2030 // has a known zero where V2 has a known one, they must not be equal. 2031 auto BitWidth = Ty->getBitWidth(); 2032 APInt KnownZero1(BitWidth, 0); 2033 APInt KnownOne1(BitWidth, 0); 2034 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2035 APInt KnownZero2(BitWidth, 0); 2036 APInt KnownOne2(BitWidth, 0); 2037 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2038 2039 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2040 if (OppositeBits.getBoolValue()) 2041 return true; 2042 } 2043 return false; 2044 } 2045 2046 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2047 /// simplify operations downstream. Mask is known to be zero for bits that V 2048 /// cannot have. 2049 /// 2050 /// This function is defined on values with integer type, values with pointer 2051 /// type, and vectors of integers. In the case 2052 /// where V is a vector, the mask, known zero, and known one values are the 2053 /// same width as the vector element, and the bit is set only if it is true 2054 /// for all of the elements in the vector. 2055 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2056 const Query &Q) { 2057 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2058 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2059 return (KnownZero & Mask) == Mask; 2060 } 2061 2062 /// For vector constants, loop over the elements and find the constant with the 2063 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2064 /// or if any element was not analyzed; otherwise, return the count for the 2065 /// element with the minimum number of sign bits. 2066 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2067 unsigned TyBits) { 2068 const auto *CV = dyn_cast<Constant>(V); 2069 if (!CV || !CV->getType()->isVectorTy()) 2070 return 0; 2071 2072 unsigned MinSignBits = TyBits; 2073 unsigned NumElts = CV->getType()->getVectorNumElements(); 2074 for (unsigned i = 0; i != NumElts; ++i) { 2075 // If we find a non-ConstantInt, bail out. 2076 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2077 if (!Elt) 2078 return 0; 2079 2080 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2081 APInt EltVal = Elt->getValue(); 2082 if (EltVal.isNegative()) 2083 EltVal = ~EltVal; 2084 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2085 } 2086 2087 return MinSignBits; 2088 } 2089 2090 /// Return the number of times the sign bit of the register is replicated into 2091 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2092 /// (itself), but other cases can give us information. For example, immediately 2093 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2094 /// other, so we return 3. For vectors, return the number of sign bits for the 2095 /// vector element with the mininum number of known sign bits. 2096 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2097 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2098 unsigned Tmp, Tmp2; 2099 unsigned FirstAnswer = 1; 2100 2101 // Note that ConstantInt is handled by the general computeKnownBits case 2102 // below. 2103 2104 if (Depth == MaxDepth) 2105 return 1; // Limit search depth. 2106 2107 const Operator *U = dyn_cast<Operator>(V); 2108 switch (Operator::getOpcode(V)) { 2109 default: break; 2110 case Instruction::SExt: 2111 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2112 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2113 2114 case Instruction::SDiv: { 2115 const APInt *Denominator; 2116 // sdiv X, C -> adds log(C) sign bits. 2117 if (match(U->getOperand(1), m_APInt(Denominator))) { 2118 2119 // Ignore non-positive denominator. 2120 if (!Denominator->isStrictlyPositive()) 2121 break; 2122 2123 // Calculate the incoming numerator bits. 2124 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2125 2126 // Add floor(log(C)) bits to the numerator bits. 2127 return std::min(TyBits, NumBits + Denominator->logBase2()); 2128 } 2129 break; 2130 } 2131 2132 case Instruction::SRem: { 2133 const APInt *Denominator; 2134 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2135 // positive constant. This let us put a lower bound on the number of sign 2136 // bits. 2137 if (match(U->getOperand(1), m_APInt(Denominator))) { 2138 2139 // Ignore non-positive denominator. 2140 if (!Denominator->isStrictlyPositive()) 2141 break; 2142 2143 // Calculate the incoming numerator bits. SRem by a positive constant 2144 // can't lower the number of sign bits. 2145 unsigned NumrBits = 2146 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2147 2148 // Calculate the leading sign bit constraints by examining the 2149 // denominator. Given that the denominator is positive, there are two 2150 // cases: 2151 // 2152 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2153 // (1 << ceilLogBase2(C)). 2154 // 2155 // 2. the numerator is negative. Then the result range is (-C,0] and 2156 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2157 // 2158 // Thus a lower bound on the number of sign bits is `TyBits - 2159 // ceilLogBase2(C)`. 2160 2161 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2162 return std::max(NumrBits, ResBits); 2163 } 2164 break; 2165 } 2166 2167 case Instruction::AShr: { 2168 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2169 // ashr X, C -> adds C sign bits. Vectors too. 2170 const APInt *ShAmt; 2171 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2172 Tmp += ShAmt->getZExtValue(); 2173 if (Tmp > TyBits) Tmp = TyBits; 2174 } 2175 return Tmp; 2176 } 2177 case Instruction::Shl: { 2178 const APInt *ShAmt; 2179 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2180 // shl destroys sign bits. 2181 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2182 Tmp2 = ShAmt->getZExtValue(); 2183 if (Tmp2 >= TyBits || // Bad shift. 2184 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2185 return Tmp - Tmp2; 2186 } 2187 break; 2188 } 2189 case Instruction::And: 2190 case Instruction::Or: 2191 case Instruction::Xor: // NOT is handled here. 2192 // Logical binary ops preserve the number of sign bits at the worst. 2193 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2194 if (Tmp != 1) { 2195 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2196 FirstAnswer = std::min(Tmp, Tmp2); 2197 // We computed what we know about the sign bits as our first 2198 // answer. Now proceed to the generic code that uses 2199 // computeKnownBits, and pick whichever answer is better. 2200 } 2201 break; 2202 2203 case Instruction::Select: 2204 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2205 if (Tmp == 1) return 1; // Early out. 2206 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2207 return std::min(Tmp, Tmp2); 2208 2209 case Instruction::Add: 2210 // Add can have at most one carry bit. Thus we know that the output 2211 // is, at worst, one more bit than the inputs. 2212 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2213 if (Tmp == 1) return 1; // Early out. 2214 2215 // Special case decrementing a value (ADD X, -1): 2216 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2217 if (CRHS->isAllOnesValue()) { 2218 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2219 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2220 2221 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2222 // sign bits set. 2223 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2224 return TyBits; 2225 2226 // If we are subtracting one from a positive number, there is no carry 2227 // out of the result. 2228 if (KnownZero.isNegative()) 2229 return Tmp; 2230 } 2231 2232 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2233 if (Tmp2 == 1) return 1; 2234 return std::min(Tmp, Tmp2)-1; 2235 2236 case Instruction::Sub: 2237 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2238 if (Tmp2 == 1) return 1; 2239 2240 // Handle NEG. 2241 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2242 if (CLHS->isNullValue()) { 2243 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2244 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2245 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2246 // sign bits set. 2247 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2248 return TyBits; 2249 2250 // If the input is known to be positive (the sign bit is known clear), 2251 // the output of the NEG has the same number of sign bits as the input. 2252 if (KnownZero.isNegative()) 2253 return Tmp2; 2254 2255 // Otherwise, we treat this like a SUB. 2256 } 2257 2258 // Sub can have at most one carry bit. Thus we know that the output 2259 // is, at worst, one more bit than the inputs. 2260 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2261 if (Tmp == 1) return 1; // Early out. 2262 return std::min(Tmp, Tmp2)-1; 2263 2264 case Instruction::PHI: { 2265 const PHINode *PN = cast<PHINode>(U); 2266 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2267 // Don't analyze large in-degree PHIs. 2268 if (NumIncomingValues > 4) break; 2269 // Unreachable blocks may have zero-operand PHI nodes. 2270 if (NumIncomingValues == 0) break; 2271 2272 // Take the minimum of all incoming values. This can't infinitely loop 2273 // because of our depth threshold. 2274 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2275 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2276 if (Tmp == 1) return Tmp; 2277 Tmp = std::min( 2278 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2279 } 2280 return Tmp; 2281 } 2282 2283 case Instruction::Trunc: 2284 // FIXME: it's tricky to do anything useful for this, but it is an important 2285 // case for targets like X86. 2286 break; 2287 2288 case Instruction::ExtractElement: 2289 // Look through extract element. At the moment we keep this simple and skip 2290 // tracking the specific element. But at least we might find information 2291 // valid for all elements of the vector (for example if vector is sign 2292 // extended, shifted, etc). 2293 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2294 } 2295 2296 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2297 // use this information. 2298 2299 // If we can examine all elements of a vector constant successfully, we're 2300 // done (we can't do any better than that). If not, keep trying. 2301 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2302 return VecSignBits; 2303 2304 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2305 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2306 2307 // If we know that the sign bit is either zero or one, determine the number of 2308 // identical bits in the top of the input value. 2309 if (KnownZero.isNegative()) 2310 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2311 2312 if (KnownOne.isNegative()) 2313 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2314 2315 // computeKnownBits gave us no extra information about the top bits. 2316 return FirstAnswer; 2317 } 2318 2319 /// This function computes the integer multiple of Base that equals V. 2320 /// If successful, it returns true and returns the multiple in 2321 /// Multiple. If unsuccessful, it returns false. It looks 2322 /// through SExt instructions only if LookThroughSExt is true. 2323 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2324 bool LookThroughSExt, unsigned Depth) { 2325 const unsigned MaxDepth = 6; 2326 2327 assert(V && "No Value?"); 2328 assert(Depth <= MaxDepth && "Limit Search Depth"); 2329 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2330 2331 Type *T = V->getType(); 2332 2333 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2334 2335 if (Base == 0) 2336 return false; 2337 2338 if (Base == 1) { 2339 Multiple = V; 2340 return true; 2341 } 2342 2343 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2344 Constant *BaseVal = ConstantInt::get(T, Base); 2345 if (CO && CO == BaseVal) { 2346 // Multiple is 1. 2347 Multiple = ConstantInt::get(T, 1); 2348 return true; 2349 } 2350 2351 if (CI && CI->getZExtValue() % Base == 0) { 2352 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2353 return true; 2354 } 2355 2356 if (Depth == MaxDepth) return false; // Limit search depth. 2357 2358 Operator *I = dyn_cast<Operator>(V); 2359 if (!I) return false; 2360 2361 switch (I->getOpcode()) { 2362 default: break; 2363 case Instruction::SExt: 2364 if (!LookThroughSExt) return false; 2365 // otherwise fall through to ZExt 2366 case Instruction::ZExt: 2367 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2368 LookThroughSExt, Depth+1); 2369 case Instruction::Shl: 2370 case Instruction::Mul: { 2371 Value *Op0 = I->getOperand(0); 2372 Value *Op1 = I->getOperand(1); 2373 2374 if (I->getOpcode() == Instruction::Shl) { 2375 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2376 if (!Op1CI) return false; 2377 // Turn Op0 << Op1 into Op0 * 2^Op1 2378 APInt Op1Int = Op1CI->getValue(); 2379 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2380 APInt API(Op1Int.getBitWidth(), 0); 2381 API.setBit(BitToSet); 2382 Op1 = ConstantInt::get(V->getContext(), API); 2383 } 2384 2385 Value *Mul0 = nullptr; 2386 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2387 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2388 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2389 if (Op1C->getType()->getPrimitiveSizeInBits() < 2390 MulC->getType()->getPrimitiveSizeInBits()) 2391 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2392 if (Op1C->getType()->getPrimitiveSizeInBits() > 2393 MulC->getType()->getPrimitiveSizeInBits()) 2394 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2395 2396 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2397 Multiple = ConstantExpr::getMul(MulC, Op1C); 2398 return true; 2399 } 2400 2401 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2402 if (Mul0CI->getValue() == 1) { 2403 // V == Base * Op1, so return Op1 2404 Multiple = Op1; 2405 return true; 2406 } 2407 } 2408 2409 Value *Mul1 = nullptr; 2410 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2411 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2412 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2413 if (Op0C->getType()->getPrimitiveSizeInBits() < 2414 MulC->getType()->getPrimitiveSizeInBits()) 2415 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2416 if (Op0C->getType()->getPrimitiveSizeInBits() > 2417 MulC->getType()->getPrimitiveSizeInBits()) 2418 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2419 2420 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2421 Multiple = ConstantExpr::getMul(MulC, Op0C); 2422 return true; 2423 } 2424 2425 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2426 if (Mul1CI->getValue() == 1) { 2427 // V == Base * Op0, so return Op0 2428 Multiple = Op0; 2429 return true; 2430 } 2431 } 2432 } 2433 } 2434 2435 // We could not determine if V is a multiple of Base. 2436 return false; 2437 } 2438 2439 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2440 const TargetLibraryInfo *TLI) { 2441 const Function *F = ICS.getCalledFunction(); 2442 if (!F) 2443 return Intrinsic::not_intrinsic; 2444 2445 if (F->isIntrinsic()) 2446 return F->getIntrinsicID(); 2447 2448 if (!TLI) 2449 return Intrinsic::not_intrinsic; 2450 2451 LibFunc::Func Func; 2452 // We're going to make assumptions on the semantics of the functions, check 2453 // that the target knows that it's available in this environment and it does 2454 // not have local linkage. 2455 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2456 return Intrinsic::not_intrinsic; 2457 2458 if (!ICS.onlyReadsMemory()) 2459 return Intrinsic::not_intrinsic; 2460 2461 // Otherwise check if we have a call to a function that can be turned into a 2462 // vector intrinsic. 2463 switch (Func) { 2464 default: 2465 break; 2466 case LibFunc::sin: 2467 case LibFunc::sinf: 2468 case LibFunc::sinl: 2469 return Intrinsic::sin; 2470 case LibFunc::cos: 2471 case LibFunc::cosf: 2472 case LibFunc::cosl: 2473 return Intrinsic::cos; 2474 case LibFunc::exp: 2475 case LibFunc::expf: 2476 case LibFunc::expl: 2477 return Intrinsic::exp; 2478 case LibFunc::exp2: 2479 case LibFunc::exp2f: 2480 case LibFunc::exp2l: 2481 return Intrinsic::exp2; 2482 case LibFunc::log: 2483 case LibFunc::logf: 2484 case LibFunc::logl: 2485 return Intrinsic::log; 2486 case LibFunc::log10: 2487 case LibFunc::log10f: 2488 case LibFunc::log10l: 2489 return Intrinsic::log10; 2490 case LibFunc::log2: 2491 case LibFunc::log2f: 2492 case LibFunc::log2l: 2493 return Intrinsic::log2; 2494 case LibFunc::fabs: 2495 case LibFunc::fabsf: 2496 case LibFunc::fabsl: 2497 return Intrinsic::fabs; 2498 case LibFunc::fmin: 2499 case LibFunc::fminf: 2500 case LibFunc::fminl: 2501 return Intrinsic::minnum; 2502 case LibFunc::fmax: 2503 case LibFunc::fmaxf: 2504 case LibFunc::fmaxl: 2505 return Intrinsic::maxnum; 2506 case LibFunc::copysign: 2507 case LibFunc::copysignf: 2508 case LibFunc::copysignl: 2509 return Intrinsic::copysign; 2510 case LibFunc::floor: 2511 case LibFunc::floorf: 2512 case LibFunc::floorl: 2513 return Intrinsic::floor; 2514 case LibFunc::ceil: 2515 case LibFunc::ceilf: 2516 case LibFunc::ceill: 2517 return Intrinsic::ceil; 2518 case LibFunc::trunc: 2519 case LibFunc::truncf: 2520 case LibFunc::truncl: 2521 return Intrinsic::trunc; 2522 case LibFunc::rint: 2523 case LibFunc::rintf: 2524 case LibFunc::rintl: 2525 return Intrinsic::rint; 2526 case LibFunc::nearbyint: 2527 case LibFunc::nearbyintf: 2528 case LibFunc::nearbyintl: 2529 return Intrinsic::nearbyint; 2530 case LibFunc::round: 2531 case LibFunc::roundf: 2532 case LibFunc::roundl: 2533 return Intrinsic::round; 2534 case LibFunc::pow: 2535 case LibFunc::powf: 2536 case LibFunc::powl: 2537 return Intrinsic::pow; 2538 case LibFunc::sqrt: 2539 case LibFunc::sqrtf: 2540 case LibFunc::sqrtl: 2541 if (ICS->hasNoNaNs()) 2542 return Intrinsic::sqrt; 2543 return Intrinsic::not_intrinsic; 2544 } 2545 2546 return Intrinsic::not_intrinsic; 2547 } 2548 2549 /// Return true if we can prove that the specified FP value is never equal to 2550 /// -0.0. 2551 /// 2552 /// NOTE: this function will need to be revisited when we support non-default 2553 /// rounding modes! 2554 /// 2555 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2556 unsigned Depth) { 2557 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2558 return !CFP->getValueAPF().isNegZero(); 2559 2560 if (Depth == MaxDepth) 2561 return false; // Limit search depth. 2562 2563 const Operator *I = dyn_cast<Operator>(V); 2564 if (!I) return false; 2565 2566 // Check if the nsz fast-math flag is set 2567 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2568 if (FPO->hasNoSignedZeros()) 2569 return true; 2570 2571 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2572 if (I->getOpcode() == Instruction::FAdd) 2573 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2574 if (CFP->isNullValue()) 2575 return true; 2576 2577 // sitofp and uitofp turn into +0.0 for zero. 2578 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2579 return true; 2580 2581 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2582 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2583 switch (IID) { 2584 default: 2585 break; 2586 // sqrt(-0.0) = -0.0, no other negative results are possible. 2587 case Intrinsic::sqrt: 2588 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2589 // fabs(x) != -0.0 2590 case Intrinsic::fabs: 2591 return true; 2592 } 2593 } 2594 2595 return false; 2596 } 2597 2598 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2599 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2600 /// bit despite comparing equal. 2601 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2602 const TargetLibraryInfo *TLI, 2603 bool SignBitOnly, 2604 unsigned Depth) { 2605 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2606 return !CFP->getValueAPF().isNegative() || 2607 (!SignBitOnly && CFP->getValueAPF().isZero()); 2608 } 2609 2610 if (Depth == MaxDepth) 2611 return false; // Limit search depth. 2612 2613 const Operator *I = dyn_cast<Operator>(V); 2614 if (!I) 2615 return false; 2616 2617 switch (I->getOpcode()) { 2618 default: 2619 break; 2620 // Unsigned integers are always nonnegative. 2621 case Instruction::UIToFP: 2622 return true; 2623 case Instruction::FMul: 2624 // x*x is always non-negative or a NaN. 2625 if (I->getOperand(0) == I->getOperand(1) && 2626 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2627 return true; 2628 2629 LLVM_FALLTHROUGH; 2630 case Instruction::FAdd: 2631 case Instruction::FDiv: 2632 case Instruction::FRem: 2633 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2634 Depth + 1) && 2635 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2636 Depth + 1); 2637 case Instruction::Select: 2638 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2639 Depth + 1) && 2640 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2641 Depth + 1); 2642 case Instruction::FPExt: 2643 case Instruction::FPTrunc: 2644 // Widening/narrowing never change sign. 2645 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2646 Depth + 1); 2647 case Instruction::Call: 2648 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2649 switch (IID) { 2650 default: 2651 break; 2652 case Intrinsic::maxnum: 2653 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2654 Depth + 1) || 2655 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2656 Depth + 1); 2657 case Intrinsic::minnum: 2658 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2659 Depth + 1) && 2660 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2661 Depth + 1); 2662 case Intrinsic::exp: 2663 case Intrinsic::exp2: 2664 case Intrinsic::fabs: 2665 case Intrinsic::sqrt: 2666 return true; 2667 case Intrinsic::powi: 2668 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2669 // powi(x,n) is non-negative if n is even. 2670 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2671 return true; 2672 } 2673 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2674 Depth + 1); 2675 case Intrinsic::fma: 2676 case Intrinsic::fmuladd: 2677 // x*x+y is non-negative if y is non-negative. 2678 return I->getOperand(0) == I->getOperand(1) && 2679 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2680 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2681 Depth + 1); 2682 } 2683 break; 2684 } 2685 return false; 2686 } 2687 2688 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2689 const TargetLibraryInfo *TLI) { 2690 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2691 } 2692 2693 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2694 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2695 } 2696 2697 /// If the specified value can be set by repeating the same byte in memory, 2698 /// return the i8 value that it is represented with. This is 2699 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2700 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2701 /// byte store (e.g. i16 0x1234), return null. 2702 Value *llvm::isBytewiseValue(Value *V) { 2703 // All byte-wide stores are splatable, even of arbitrary variables. 2704 if (V->getType()->isIntegerTy(8)) return V; 2705 2706 // Handle 'null' ConstantArrayZero etc. 2707 if (Constant *C = dyn_cast<Constant>(V)) 2708 if (C->isNullValue()) 2709 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2710 2711 // Constant float and double values can be handled as integer values if the 2712 // corresponding integer value is "byteable". An important case is 0.0. 2713 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2714 if (CFP->getType()->isFloatTy()) 2715 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2716 if (CFP->getType()->isDoubleTy()) 2717 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2718 // Don't handle long double formats, which have strange constraints. 2719 } 2720 2721 // We can handle constant integers that are multiple of 8 bits. 2722 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2723 if (CI->getBitWidth() % 8 == 0) { 2724 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2725 2726 if (!CI->getValue().isSplat(8)) 2727 return nullptr; 2728 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2729 } 2730 } 2731 2732 // A ConstantDataArray/Vector is splatable if all its members are equal and 2733 // also splatable. 2734 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2735 Value *Elt = CA->getElementAsConstant(0); 2736 Value *Val = isBytewiseValue(Elt); 2737 if (!Val) 2738 return nullptr; 2739 2740 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2741 if (CA->getElementAsConstant(I) != Elt) 2742 return nullptr; 2743 2744 return Val; 2745 } 2746 2747 // Conceptually, we could handle things like: 2748 // %a = zext i8 %X to i16 2749 // %b = shl i16 %a, 8 2750 // %c = or i16 %a, %b 2751 // but until there is an example that actually needs this, it doesn't seem 2752 // worth worrying about. 2753 return nullptr; 2754 } 2755 2756 2757 // This is the recursive version of BuildSubAggregate. It takes a few different 2758 // arguments. Idxs is the index within the nested struct From that we are 2759 // looking at now (which is of type IndexedType). IdxSkip is the number of 2760 // indices from Idxs that should be left out when inserting into the resulting 2761 // struct. To is the result struct built so far, new insertvalue instructions 2762 // build on that. 2763 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2764 SmallVectorImpl<unsigned> &Idxs, 2765 unsigned IdxSkip, 2766 Instruction *InsertBefore) { 2767 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2768 if (STy) { 2769 // Save the original To argument so we can modify it 2770 Value *OrigTo = To; 2771 // General case, the type indexed by Idxs is a struct 2772 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2773 // Process each struct element recursively 2774 Idxs.push_back(i); 2775 Value *PrevTo = To; 2776 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2777 InsertBefore); 2778 Idxs.pop_back(); 2779 if (!To) { 2780 // Couldn't find any inserted value for this index? Cleanup 2781 while (PrevTo != OrigTo) { 2782 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2783 PrevTo = Del->getAggregateOperand(); 2784 Del->eraseFromParent(); 2785 } 2786 // Stop processing elements 2787 break; 2788 } 2789 } 2790 // If we successfully found a value for each of our subaggregates 2791 if (To) 2792 return To; 2793 } 2794 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2795 // the struct's elements had a value that was inserted directly. In the latter 2796 // case, perhaps we can't determine each of the subelements individually, but 2797 // we might be able to find the complete struct somewhere. 2798 2799 // Find the value that is at that particular spot 2800 Value *V = FindInsertedValue(From, Idxs); 2801 2802 if (!V) 2803 return nullptr; 2804 2805 // Insert the value in the new (sub) aggregrate 2806 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2807 "tmp", InsertBefore); 2808 } 2809 2810 // This helper takes a nested struct and extracts a part of it (which is again a 2811 // struct) into a new value. For example, given the struct: 2812 // { a, { b, { c, d }, e } } 2813 // and the indices "1, 1" this returns 2814 // { c, d }. 2815 // 2816 // It does this by inserting an insertvalue for each element in the resulting 2817 // struct, as opposed to just inserting a single struct. This will only work if 2818 // each of the elements of the substruct are known (ie, inserted into From by an 2819 // insertvalue instruction somewhere). 2820 // 2821 // All inserted insertvalue instructions are inserted before InsertBefore 2822 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2823 Instruction *InsertBefore) { 2824 assert(InsertBefore && "Must have someplace to insert!"); 2825 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2826 idx_range); 2827 Value *To = UndefValue::get(IndexedType); 2828 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2829 unsigned IdxSkip = Idxs.size(); 2830 2831 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2832 } 2833 2834 /// Given an aggregrate and an sequence of indices, see if 2835 /// the scalar value indexed is already around as a register, for example if it 2836 /// were inserted directly into the aggregrate. 2837 /// 2838 /// If InsertBefore is not null, this function will duplicate (modified) 2839 /// insertvalues when a part of a nested struct is extracted. 2840 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2841 Instruction *InsertBefore) { 2842 // Nothing to index? Just return V then (this is useful at the end of our 2843 // recursion). 2844 if (idx_range.empty()) 2845 return V; 2846 // We have indices, so V should have an indexable type. 2847 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2848 "Not looking at a struct or array?"); 2849 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2850 "Invalid indices for type?"); 2851 2852 if (Constant *C = dyn_cast<Constant>(V)) { 2853 C = C->getAggregateElement(idx_range[0]); 2854 if (!C) return nullptr; 2855 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2856 } 2857 2858 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2859 // Loop the indices for the insertvalue instruction in parallel with the 2860 // requested indices 2861 const unsigned *req_idx = idx_range.begin(); 2862 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2863 i != e; ++i, ++req_idx) { 2864 if (req_idx == idx_range.end()) { 2865 // We can't handle this without inserting insertvalues 2866 if (!InsertBefore) 2867 return nullptr; 2868 2869 // The requested index identifies a part of a nested aggregate. Handle 2870 // this specially. For example, 2871 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2872 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2873 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2874 // This can be changed into 2875 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2876 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2877 // which allows the unused 0,0 element from the nested struct to be 2878 // removed. 2879 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2880 InsertBefore); 2881 } 2882 2883 // This insert value inserts something else than what we are looking for. 2884 // See if the (aggregate) value inserted into has the value we are 2885 // looking for, then. 2886 if (*req_idx != *i) 2887 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2888 InsertBefore); 2889 } 2890 // If we end up here, the indices of the insertvalue match with those 2891 // requested (though possibly only partially). Now we recursively look at 2892 // the inserted value, passing any remaining indices. 2893 return FindInsertedValue(I->getInsertedValueOperand(), 2894 makeArrayRef(req_idx, idx_range.end()), 2895 InsertBefore); 2896 } 2897 2898 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2899 // If we're extracting a value from an aggregate that was extracted from 2900 // something else, we can extract from that something else directly instead. 2901 // However, we will need to chain I's indices with the requested indices. 2902 2903 // Calculate the number of indices required 2904 unsigned size = I->getNumIndices() + idx_range.size(); 2905 // Allocate some space to put the new indices in 2906 SmallVector<unsigned, 5> Idxs; 2907 Idxs.reserve(size); 2908 // Add indices from the extract value instruction 2909 Idxs.append(I->idx_begin(), I->idx_end()); 2910 2911 // Add requested indices 2912 Idxs.append(idx_range.begin(), idx_range.end()); 2913 2914 assert(Idxs.size() == size 2915 && "Number of indices added not correct?"); 2916 2917 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2918 } 2919 // Otherwise, we don't know (such as, extracting from a function return value 2920 // or load instruction) 2921 return nullptr; 2922 } 2923 2924 /// Analyze the specified pointer to see if it can be expressed as a base 2925 /// pointer plus a constant offset. Return the base and offset to the caller. 2926 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2927 const DataLayout &DL) { 2928 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2929 APInt ByteOffset(BitWidth, 0); 2930 2931 // We walk up the defs but use a visited set to handle unreachable code. In 2932 // that case, we stop after accumulating the cycle once (not that it 2933 // matters). 2934 SmallPtrSet<Value *, 16> Visited; 2935 while (Visited.insert(Ptr).second) { 2936 if (Ptr->getType()->isVectorTy()) 2937 break; 2938 2939 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2940 // If one of the values we have visited is an addrspacecast, then 2941 // the pointer type of this GEP may be different from the type 2942 // of the Ptr parameter which was passed to this function. This 2943 // means when we construct GEPOffset, we need to use the size 2944 // of GEP's pointer type rather than the size of the original 2945 // pointer type. 2946 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2947 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2948 break; 2949 2950 ByteOffset += GEPOffset.getSExtValue(); 2951 2952 Ptr = GEP->getPointerOperand(); 2953 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2954 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2955 Ptr = cast<Operator>(Ptr)->getOperand(0); 2956 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2957 if (GA->isInterposable()) 2958 break; 2959 Ptr = GA->getAliasee(); 2960 } else { 2961 break; 2962 } 2963 } 2964 Offset = ByteOffset.getSExtValue(); 2965 return Ptr; 2966 } 2967 2968 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2969 // Make sure the GEP has exactly three arguments. 2970 if (GEP->getNumOperands() != 3) 2971 return false; 2972 2973 // Make sure the index-ee is a pointer to array of i8. 2974 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2975 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2976 return false; 2977 2978 // Check to make sure that the first operand of the GEP is an integer and 2979 // has value 0 so that we are sure we're indexing into the initializer. 2980 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2981 if (!FirstIdx || !FirstIdx->isZero()) 2982 return false; 2983 2984 return true; 2985 } 2986 2987 /// This function computes the length of a null-terminated C string pointed to 2988 /// by V. If successful, it returns true and returns the string in Str. 2989 /// If unsuccessful, it returns false. 2990 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2991 uint64_t Offset, bool TrimAtNul) { 2992 assert(V); 2993 2994 // Look through bitcast instructions and geps. 2995 V = V->stripPointerCasts(); 2996 2997 // If the value is a GEP instruction or constant expression, treat it as an 2998 // offset. 2999 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3000 // The GEP operator should be based on a pointer to string constant, and is 3001 // indexing into the string constant. 3002 if (!isGEPBasedOnPointerToString(GEP)) 3003 return false; 3004 3005 // If the second index isn't a ConstantInt, then this is a variable index 3006 // into the array. If this occurs, we can't say anything meaningful about 3007 // the string. 3008 uint64_t StartIdx = 0; 3009 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3010 StartIdx = CI->getZExtValue(); 3011 else 3012 return false; 3013 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3014 TrimAtNul); 3015 } 3016 3017 // The GEP instruction, constant or instruction, must reference a global 3018 // variable that is a constant and is initialized. The referenced constant 3019 // initializer is the array that we'll use for optimization. 3020 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3021 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3022 return false; 3023 3024 // Handle the all-zeros case. 3025 if (GV->getInitializer()->isNullValue()) { 3026 // This is a degenerate case. The initializer is constant zero so the 3027 // length of the string must be zero. 3028 Str = ""; 3029 return true; 3030 } 3031 3032 // This must be a ConstantDataArray. 3033 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3034 if (!Array || !Array->isString()) 3035 return false; 3036 3037 // Get the number of elements in the array. 3038 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3039 3040 // Start out with the entire array in the StringRef. 3041 Str = Array->getAsString(); 3042 3043 if (Offset > NumElts) 3044 return false; 3045 3046 // Skip over 'offset' bytes. 3047 Str = Str.substr(Offset); 3048 3049 if (TrimAtNul) { 3050 // Trim off the \0 and anything after it. If the array is not nul 3051 // terminated, we just return the whole end of string. The client may know 3052 // some other way that the string is length-bound. 3053 Str = Str.substr(0, Str.find('\0')); 3054 } 3055 return true; 3056 } 3057 3058 // These next two are very similar to the above, but also look through PHI 3059 // nodes. 3060 // TODO: See if we can integrate these two together. 3061 3062 /// If we can compute the length of the string pointed to by 3063 /// the specified pointer, return 'len+1'. If we can't, return 0. 3064 static uint64_t GetStringLengthH(const Value *V, 3065 SmallPtrSetImpl<const PHINode*> &PHIs) { 3066 // Look through noop bitcast instructions. 3067 V = V->stripPointerCasts(); 3068 3069 // If this is a PHI node, there are two cases: either we have already seen it 3070 // or we haven't. 3071 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3072 if (!PHIs.insert(PN).second) 3073 return ~0ULL; // already in the set. 3074 3075 // If it was new, see if all the input strings are the same length. 3076 uint64_t LenSoFar = ~0ULL; 3077 for (Value *IncValue : PN->incoming_values()) { 3078 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3079 if (Len == 0) return 0; // Unknown length -> unknown. 3080 3081 if (Len == ~0ULL) continue; 3082 3083 if (Len != LenSoFar && LenSoFar != ~0ULL) 3084 return 0; // Disagree -> unknown. 3085 LenSoFar = Len; 3086 } 3087 3088 // Success, all agree. 3089 return LenSoFar; 3090 } 3091 3092 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3093 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3094 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3095 if (Len1 == 0) return 0; 3096 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3097 if (Len2 == 0) return 0; 3098 if (Len1 == ~0ULL) return Len2; 3099 if (Len2 == ~0ULL) return Len1; 3100 if (Len1 != Len2) return 0; 3101 return Len1; 3102 } 3103 3104 // Otherwise, see if we can read the string. 3105 StringRef StrData; 3106 if (!getConstantStringInfo(V, StrData)) 3107 return 0; 3108 3109 return StrData.size()+1; 3110 } 3111 3112 /// If we can compute the length of the string pointed to by 3113 /// the specified pointer, return 'len+1'. If we can't, return 0. 3114 uint64_t llvm::GetStringLength(const Value *V) { 3115 if (!V->getType()->isPointerTy()) return 0; 3116 3117 SmallPtrSet<const PHINode*, 32> PHIs; 3118 uint64_t Len = GetStringLengthH(V, PHIs); 3119 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3120 // an empty string as a length. 3121 return Len == ~0ULL ? 1 : Len; 3122 } 3123 3124 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3125 /// previous iteration of the loop was referring to the same object as \p PN. 3126 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3127 const LoopInfo *LI) { 3128 // Find the loop-defined value. 3129 Loop *L = LI->getLoopFor(PN->getParent()); 3130 if (PN->getNumIncomingValues() != 2) 3131 return true; 3132 3133 // Find the value from previous iteration. 3134 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3135 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3136 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3137 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3138 return true; 3139 3140 // If a new pointer is loaded in the loop, the pointer references a different 3141 // object in every iteration. E.g.: 3142 // for (i) 3143 // int *p = a[i]; 3144 // ... 3145 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3146 if (!L->isLoopInvariant(Load->getPointerOperand())) 3147 return false; 3148 return true; 3149 } 3150 3151 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3152 unsigned MaxLookup) { 3153 if (!V->getType()->isPointerTy()) 3154 return V; 3155 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3156 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3157 V = GEP->getPointerOperand(); 3158 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3159 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3160 V = cast<Operator>(V)->getOperand(0); 3161 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3162 if (GA->isInterposable()) 3163 return V; 3164 V = GA->getAliasee(); 3165 } else { 3166 if (auto CS = CallSite(V)) 3167 if (Value *RV = CS.getReturnedArgOperand()) { 3168 V = RV; 3169 continue; 3170 } 3171 3172 // See if InstructionSimplify knows any relevant tricks. 3173 if (Instruction *I = dyn_cast<Instruction>(V)) 3174 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3175 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3176 V = Simplified; 3177 continue; 3178 } 3179 3180 return V; 3181 } 3182 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3183 } 3184 return V; 3185 } 3186 3187 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3188 const DataLayout &DL, LoopInfo *LI, 3189 unsigned MaxLookup) { 3190 SmallPtrSet<Value *, 4> Visited; 3191 SmallVector<Value *, 4> Worklist; 3192 Worklist.push_back(V); 3193 do { 3194 Value *P = Worklist.pop_back_val(); 3195 P = GetUnderlyingObject(P, DL, MaxLookup); 3196 3197 if (!Visited.insert(P).second) 3198 continue; 3199 3200 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3201 Worklist.push_back(SI->getTrueValue()); 3202 Worklist.push_back(SI->getFalseValue()); 3203 continue; 3204 } 3205 3206 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3207 // If this PHI changes the underlying object in every iteration of the 3208 // loop, don't look through it. Consider: 3209 // int **A; 3210 // for (i) { 3211 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3212 // Curr = A[i]; 3213 // *Prev, *Curr; 3214 // 3215 // Prev is tracking Curr one iteration behind so they refer to different 3216 // underlying objects. 3217 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3218 isSameUnderlyingObjectInLoop(PN, LI)) 3219 for (Value *IncValue : PN->incoming_values()) 3220 Worklist.push_back(IncValue); 3221 continue; 3222 } 3223 3224 Objects.push_back(P); 3225 } while (!Worklist.empty()); 3226 } 3227 3228 /// Return true if the only users of this pointer are lifetime markers. 3229 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3230 for (const User *U : V->users()) { 3231 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3232 if (!II) return false; 3233 3234 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3235 II->getIntrinsicID() != Intrinsic::lifetime_end) 3236 return false; 3237 } 3238 return true; 3239 } 3240 3241 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3242 const Instruction *CtxI, 3243 const DominatorTree *DT) { 3244 const Operator *Inst = dyn_cast<Operator>(V); 3245 if (!Inst) 3246 return false; 3247 3248 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3249 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3250 if (C->canTrap()) 3251 return false; 3252 3253 switch (Inst->getOpcode()) { 3254 default: 3255 return true; 3256 case Instruction::UDiv: 3257 case Instruction::URem: { 3258 // x / y is undefined if y == 0. 3259 const APInt *V; 3260 if (match(Inst->getOperand(1), m_APInt(V))) 3261 return *V != 0; 3262 return false; 3263 } 3264 case Instruction::SDiv: 3265 case Instruction::SRem: { 3266 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3267 const APInt *Numerator, *Denominator; 3268 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3269 return false; 3270 // We cannot hoist this division if the denominator is 0. 3271 if (*Denominator == 0) 3272 return false; 3273 // It's safe to hoist if the denominator is not 0 or -1. 3274 if (*Denominator != -1) 3275 return true; 3276 // At this point we know that the denominator is -1. It is safe to hoist as 3277 // long we know that the numerator is not INT_MIN. 3278 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3279 return !Numerator->isMinSignedValue(); 3280 // The numerator *might* be MinSignedValue. 3281 return false; 3282 } 3283 case Instruction::Load: { 3284 const LoadInst *LI = cast<LoadInst>(Inst); 3285 if (!LI->isUnordered() || 3286 // Speculative load may create a race that did not exist in the source. 3287 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3288 // Speculative load may load data from dirty regions. 3289 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3290 return false; 3291 const DataLayout &DL = LI->getModule()->getDataLayout(); 3292 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3293 LI->getAlignment(), DL, CtxI, DT); 3294 } 3295 case Instruction::Call: { 3296 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3297 switch (II->getIntrinsicID()) { 3298 // These synthetic intrinsics have no side-effects and just mark 3299 // information about their operands. 3300 // FIXME: There are other no-op synthetic instructions that potentially 3301 // should be considered at least *safe* to speculate... 3302 case Intrinsic::dbg_declare: 3303 case Intrinsic::dbg_value: 3304 return true; 3305 3306 case Intrinsic::bitreverse: 3307 case Intrinsic::bswap: 3308 case Intrinsic::ctlz: 3309 case Intrinsic::ctpop: 3310 case Intrinsic::cttz: 3311 case Intrinsic::objectsize: 3312 case Intrinsic::sadd_with_overflow: 3313 case Intrinsic::smul_with_overflow: 3314 case Intrinsic::ssub_with_overflow: 3315 case Intrinsic::uadd_with_overflow: 3316 case Intrinsic::umul_with_overflow: 3317 case Intrinsic::usub_with_overflow: 3318 return true; 3319 // These intrinsics are defined to have the same behavior as libm 3320 // functions except for setting errno. 3321 case Intrinsic::sqrt: 3322 case Intrinsic::fma: 3323 case Intrinsic::fmuladd: 3324 return true; 3325 // These intrinsics are defined to have the same behavior as libm 3326 // functions, and the corresponding libm functions never set errno. 3327 case Intrinsic::trunc: 3328 case Intrinsic::copysign: 3329 case Intrinsic::fabs: 3330 case Intrinsic::minnum: 3331 case Intrinsic::maxnum: 3332 return true; 3333 // These intrinsics are defined to have the same behavior as libm 3334 // functions, which never overflow when operating on the IEEE754 types 3335 // that we support, and never set errno otherwise. 3336 case Intrinsic::ceil: 3337 case Intrinsic::floor: 3338 case Intrinsic::nearbyint: 3339 case Intrinsic::rint: 3340 case Intrinsic::round: 3341 return true; 3342 // TODO: are convert_{from,to}_fp16 safe? 3343 // TODO: can we list target-specific intrinsics here? 3344 default: break; 3345 } 3346 } 3347 return false; // The called function could have undefined behavior or 3348 // side-effects, even if marked readnone nounwind. 3349 } 3350 case Instruction::VAArg: 3351 case Instruction::Alloca: 3352 case Instruction::Invoke: 3353 case Instruction::PHI: 3354 case Instruction::Store: 3355 case Instruction::Ret: 3356 case Instruction::Br: 3357 case Instruction::IndirectBr: 3358 case Instruction::Switch: 3359 case Instruction::Unreachable: 3360 case Instruction::Fence: 3361 case Instruction::AtomicRMW: 3362 case Instruction::AtomicCmpXchg: 3363 case Instruction::LandingPad: 3364 case Instruction::Resume: 3365 case Instruction::CatchSwitch: 3366 case Instruction::CatchPad: 3367 case Instruction::CatchRet: 3368 case Instruction::CleanupPad: 3369 case Instruction::CleanupRet: 3370 return false; // Misc instructions which have effects 3371 } 3372 } 3373 3374 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3375 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3376 } 3377 3378 /// Return true if we know that the specified value is never null. 3379 bool llvm::isKnownNonNull(const Value *V) { 3380 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3381 3382 // Alloca never returns null, malloc might. 3383 if (isa<AllocaInst>(V)) return true; 3384 3385 // A byval, inalloca, or nonnull argument is never null. 3386 if (const Argument *A = dyn_cast<Argument>(V)) 3387 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3388 3389 // A global variable in address space 0 is non null unless extern weak 3390 // or an absolute symbol reference. Other address spaces may have null as a 3391 // valid address for a global, so we can't assume anything. 3392 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3393 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3394 GV->getType()->getAddressSpace() == 0; 3395 3396 // A Load tagged with nonnull metadata is never null. 3397 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3398 return LI->getMetadata(LLVMContext::MD_nonnull); 3399 3400 if (auto CS = ImmutableCallSite(V)) 3401 if (CS.isReturnNonNull()) 3402 return true; 3403 3404 return false; 3405 } 3406 3407 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3408 const Instruction *CtxI, 3409 const DominatorTree *DT) { 3410 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3411 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3412 assert(CtxI && "Context instruction required for analysis"); 3413 assert(DT && "Dominator tree required for analysis"); 3414 3415 unsigned NumUsesExplored = 0; 3416 for (auto *U : V->users()) { 3417 // Avoid massive lists 3418 if (NumUsesExplored >= DomConditionsMaxUses) 3419 break; 3420 NumUsesExplored++; 3421 // Consider only compare instructions uniquely controlling a branch 3422 CmpInst::Predicate Pred; 3423 if (!match(const_cast<User *>(U), 3424 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3425 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3426 continue; 3427 3428 for (auto *CmpU : U->users()) { 3429 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3430 assert(BI->isConditional() && "uses a comparison!"); 3431 3432 BasicBlock *NonNullSuccessor = 3433 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3434 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3435 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3436 return true; 3437 } else if (Pred == ICmpInst::ICMP_NE && 3438 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3439 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3440 return true; 3441 } 3442 } 3443 } 3444 3445 return false; 3446 } 3447 3448 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3449 const DominatorTree *DT) { 3450 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3451 return false; 3452 3453 if (isKnownNonNull(V)) 3454 return true; 3455 3456 if (!CtxI || !DT) 3457 return false; 3458 3459 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3460 } 3461 3462 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3463 const Value *RHS, 3464 const DataLayout &DL, 3465 AssumptionCache *AC, 3466 const Instruction *CxtI, 3467 const DominatorTree *DT) { 3468 // Multiplying n * m significant bits yields a result of n + m significant 3469 // bits. If the total number of significant bits does not exceed the 3470 // result bit width (minus 1), there is no overflow. 3471 // This means if we have enough leading zero bits in the operands 3472 // we can guarantee that the result does not overflow. 3473 // Ref: "Hacker's Delight" by Henry Warren 3474 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3475 APInt LHSKnownZero(BitWidth, 0); 3476 APInt LHSKnownOne(BitWidth, 0); 3477 APInt RHSKnownZero(BitWidth, 0); 3478 APInt RHSKnownOne(BitWidth, 0); 3479 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3480 DT); 3481 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3482 DT); 3483 // Note that underestimating the number of zero bits gives a more 3484 // conservative answer. 3485 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3486 RHSKnownZero.countLeadingOnes(); 3487 // First handle the easy case: if we have enough zero bits there's 3488 // definitely no overflow. 3489 if (ZeroBits >= BitWidth) 3490 return OverflowResult::NeverOverflows; 3491 3492 // Get the largest possible values for each operand. 3493 APInt LHSMax = ~LHSKnownZero; 3494 APInt RHSMax = ~RHSKnownZero; 3495 3496 // We know the multiply operation doesn't overflow if the maximum values for 3497 // each operand will not overflow after we multiply them together. 3498 bool MaxOverflow; 3499 LHSMax.umul_ov(RHSMax, MaxOverflow); 3500 if (!MaxOverflow) 3501 return OverflowResult::NeverOverflows; 3502 3503 // We know it always overflows if multiplying the smallest possible values for 3504 // the operands also results in overflow. 3505 bool MinOverflow; 3506 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3507 if (MinOverflow) 3508 return OverflowResult::AlwaysOverflows; 3509 3510 return OverflowResult::MayOverflow; 3511 } 3512 3513 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3514 const Value *RHS, 3515 const DataLayout &DL, 3516 AssumptionCache *AC, 3517 const Instruction *CxtI, 3518 const DominatorTree *DT) { 3519 bool LHSKnownNonNegative, LHSKnownNegative; 3520 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3521 AC, CxtI, DT); 3522 if (LHSKnownNonNegative || LHSKnownNegative) { 3523 bool RHSKnownNonNegative, RHSKnownNegative; 3524 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3525 AC, CxtI, DT); 3526 3527 if (LHSKnownNegative && RHSKnownNegative) { 3528 // The sign bit is set in both cases: this MUST overflow. 3529 // Create a simple add instruction, and insert it into the struct. 3530 return OverflowResult::AlwaysOverflows; 3531 } 3532 3533 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3534 // The sign bit is clear in both cases: this CANNOT overflow. 3535 // Create a simple add instruction, and insert it into the struct. 3536 return OverflowResult::NeverOverflows; 3537 } 3538 } 3539 3540 return OverflowResult::MayOverflow; 3541 } 3542 3543 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3544 const Value *RHS, 3545 const AddOperator *Add, 3546 const DataLayout &DL, 3547 AssumptionCache *AC, 3548 const Instruction *CxtI, 3549 const DominatorTree *DT) { 3550 if (Add && Add->hasNoSignedWrap()) { 3551 return OverflowResult::NeverOverflows; 3552 } 3553 3554 bool LHSKnownNonNegative, LHSKnownNegative; 3555 bool RHSKnownNonNegative, RHSKnownNegative; 3556 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3557 AC, CxtI, DT); 3558 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3559 AC, CxtI, DT); 3560 3561 if ((LHSKnownNonNegative && RHSKnownNegative) || 3562 (LHSKnownNegative && RHSKnownNonNegative)) { 3563 // The sign bits are opposite: this CANNOT overflow. 3564 return OverflowResult::NeverOverflows; 3565 } 3566 3567 // The remaining code needs Add to be available. Early returns if not so. 3568 if (!Add) 3569 return OverflowResult::MayOverflow; 3570 3571 // If the sign of Add is the same as at least one of the operands, this add 3572 // CANNOT overflow. This is particularly useful when the sum is 3573 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3574 // operands. 3575 bool LHSOrRHSKnownNonNegative = 3576 (LHSKnownNonNegative || RHSKnownNonNegative); 3577 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3578 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3579 bool AddKnownNonNegative, AddKnownNegative; 3580 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3581 /*Depth=*/0, AC, CxtI, DT); 3582 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3583 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3584 return OverflowResult::NeverOverflows; 3585 } 3586 } 3587 3588 return OverflowResult::MayOverflow; 3589 } 3590 3591 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3592 const DominatorTree &DT) { 3593 #ifndef NDEBUG 3594 auto IID = II->getIntrinsicID(); 3595 assert((IID == Intrinsic::sadd_with_overflow || 3596 IID == Intrinsic::uadd_with_overflow || 3597 IID == Intrinsic::ssub_with_overflow || 3598 IID == Intrinsic::usub_with_overflow || 3599 IID == Intrinsic::smul_with_overflow || 3600 IID == Intrinsic::umul_with_overflow) && 3601 "Not an overflow intrinsic!"); 3602 #endif 3603 3604 SmallVector<const BranchInst *, 2> GuardingBranches; 3605 SmallVector<const ExtractValueInst *, 2> Results; 3606 3607 for (const User *U : II->users()) { 3608 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3609 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3610 3611 if (EVI->getIndices()[0] == 0) 3612 Results.push_back(EVI); 3613 else { 3614 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3615 3616 for (const auto *U : EVI->users()) 3617 if (const auto *B = dyn_cast<BranchInst>(U)) { 3618 assert(B->isConditional() && "How else is it using an i1?"); 3619 GuardingBranches.push_back(B); 3620 } 3621 } 3622 } else { 3623 // We are using the aggregate directly in a way we don't want to analyze 3624 // here (storing it to a global, say). 3625 return false; 3626 } 3627 } 3628 3629 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3630 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3631 if (!NoWrapEdge.isSingleEdge()) 3632 return false; 3633 3634 // Check if all users of the add are provably no-wrap. 3635 for (const auto *Result : Results) { 3636 // If the extractvalue itself is not executed on overflow, the we don't 3637 // need to check each use separately, since domination is transitive. 3638 if (DT.dominates(NoWrapEdge, Result->getParent())) 3639 continue; 3640 3641 for (auto &RU : Result->uses()) 3642 if (!DT.dominates(NoWrapEdge, RU)) 3643 return false; 3644 } 3645 3646 return true; 3647 }; 3648 3649 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3650 } 3651 3652 3653 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3654 const DataLayout &DL, 3655 AssumptionCache *AC, 3656 const Instruction *CxtI, 3657 const DominatorTree *DT) { 3658 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3659 Add, DL, AC, CxtI, DT); 3660 } 3661 3662 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3663 const Value *RHS, 3664 const DataLayout &DL, 3665 AssumptionCache *AC, 3666 const Instruction *CxtI, 3667 const DominatorTree *DT) { 3668 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3669 } 3670 3671 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3672 // A memory operation returns normally if it isn't volatile. A volatile 3673 // operation is allowed to trap. 3674 // 3675 // An atomic operation isn't guaranteed to return in a reasonable amount of 3676 // time because it's possible for another thread to interfere with it for an 3677 // arbitrary length of time, but programs aren't allowed to rely on that. 3678 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3679 return !LI->isVolatile(); 3680 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3681 return !SI->isVolatile(); 3682 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3683 return !CXI->isVolatile(); 3684 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3685 return !RMWI->isVolatile(); 3686 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3687 return !MII->isVolatile(); 3688 3689 // If there is no successor, then execution can't transfer to it. 3690 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3691 return !CRI->unwindsToCaller(); 3692 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3693 return !CatchSwitch->unwindsToCaller(); 3694 if (isa<ResumeInst>(I)) 3695 return false; 3696 if (isa<ReturnInst>(I)) 3697 return false; 3698 3699 // Calls can throw, or contain an infinite loop, or kill the process. 3700 if (auto CS = ImmutableCallSite(I)) { 3701 // Call sites that throw have implicit non-local control flow. 3702 if (!CS.doesNotThrow()) 3703 return false; 3704 3705 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3706 // etc. and thus not return. However, LLVM already assumes that 3707 // 3708 // - Thread exiting actions are modeled as writes to memory invisible to 3709 // the program. 3710 // 3711 // - Loops that don't have side effects (side effects are volatile/atomic 3712 // stores and IO) always terminate (see http://llvm.org/PR965). 3713 // Furthermore IO itself is also modeled as writes to memory invisible to 3714 // the program. 3715 // 3716 // We rely on those assumptions here, and use the memory effects of the call 3717 // target as a proxy for checking that it always returns. 3718 3719 // FIXME: This isn't aggressive enough; a call which only writes to a global 3720 // is guaranteed to return. 3721 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3722 match(I, m_Intrinsic<Intrinsic::assume>()); 3723 } 3724 3725 // Other instructions return normally. 3726 return true; 3727 } 3728 3729 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3730 const Loop *L) { 3731 // The loop header is guaranteed to be executed for every iteration. 3732 // 3733 // FIXME: Relax this constraint to cover all basic blocks that are 3734 // guaranteed to be executed at every iteration. 3735 if (I->getParent() != L->getHeader()) return false; 3736 3737 for (const Instruction &LI : *L->getHeader()) { 3738 if (&LI == I) return true; 3739 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3740 } 3741 llvm_unreachable("Instruction not contained in its own parent basic block."); 3742 } 3743 3744 bool llvm::propagatesFullPoison(const Instruction *I) { 3745 switch (I->getOpcode()) { 3746 case Instruction::Add: 3747 case Instruction::Sub: 3748 case Instruction::Xor: 3749 case Instruction::Trunc: 3750 case Instruction::BitCast: 3751 case Instruction::AddrSpaceCast: 3752 // These operations all propagate poison unconditionally. Note that poison 3753 // is not any particular value, so xor or subtraction of poison with 3754 // itself still yields poison, not zero. 3755 return true; 3756 3757 case Instruction::AShr: 3758 case Instruction::SExt: 3759 // For these operations, one bit of the input is replicated across 3760 // multiple output bits. A replicated poison bit is still poison. 3761 return true; 3762 3763 case Instruction::Shl: { 3764 // Left shift *by* a poison value is poison. The number of 3765 // positions to shift is unsigned, so no negative values are 3766 // possible there. Left shift by zero places preserves poison. So 3767 // it only remains to consider left shift of poison by a positive 3768 // number of places. 3769 // 3770 // A left shift by a positive number of places leaves the lowest order bit 3771 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3772 // make the poison operand violate that flag, yielding a fresh full-poison 3773 // value. 3774 auto *OBO = cast<OverflowingBinaryOperator>(I); 3775 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3776 } 3777 3778 case Instruction::Mul: { 3779 // A multiplication by zero yields a non-poison zero result, so we need to 3780 // rule out zero as an operand. Conservatively, multiplication by a 3781 // non-zero constant is not multiplication by zero. 3782 // 3783 // Multiplication by a non-zero constant can leave some bits 3784 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3785 // order bit unpoisoned. So we need to consider that. 3786 // 3787 // Multiplication by 1 preserves poison. If the multiplication has a 3788 // no-wrap flag, then we can make the poison operand violate that flag 3789 // when multiplied by any integer other than 0 and 1. 3790 auto *OBO = cast<OverflowingBinaryOperator>(I); 3791 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3792 for (Value *V : OBO->operands()) { 3793 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3794 // A ConstantInt cannot yield poison, so we can assume that it is 3795 // the other operand that is poison. 3796 return !CI->isZero(); 3797 } 3798 } 3799 } 3800 return false; 3801 } 3802 3803 case Instruction::ICmp: 3804 // Comparing poison with any value yields poison. This is why, for 3805 // instance, x s< (x +nsw 1) can be folded to true. 3806 return true; 3807 3808 case Instruction::GetElementPtr: 3809 // A GEP implicitly represents a sequence of additions, subtractions, 3810 // truncations, sign extensions and multiplications. The multiplications 3811 // are by the non-zero sizes of some set of types, so we do not have to be 3812 // concerned with multiplication by zero. If the GEP is in-bounds, then 3813 // these operations are implicitly no-signed-wrap so poison is propagated 3814 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3815 return cast<GEPOperator>(I)->isInBounds(); 3816 3817 default: 3818 return false; 3819 } 3820 } 3821 3822 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3823 switch (I->getOpcode()) { 3824 case Instruction::Store: 3825 return cast<StoreInst>(I)->getPointerOperand(); 3826 3827 case Instruction::Load: 3828 return cast<LoadInst>(I)->getPointerOperand(); 3829 3830 case Instruction::AtomicCmpXchg: 3831 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3832 3833 case Instruction::AtomicRMW: 3834 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3835 3836 case Instruction::UDiv: 3837 case Instruction::SDiv: 3838 case Instruction::URem: 3839 case Instruction::SRem: 3840 return I->getOperand(1); 3841 3842 default: 3843 return nullptr; 3844 } 3845 } 3846 3847 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3848 // We currently only look for uses of poison values within the same basic 3849 // block, as that makes it easier to guarantee that the uses will be 3850 // executed given that PoisonI is executed. 3851 // 3852 // FIXME: Expand this to consider uses beyond the same basic block. To do 3853 // this, look out for the distinction between post-dominance and strong 3854 // post-dominance. 3855 const BasicBlock *BB = PoisonI->getParent(); 3856 3857 // Set of instructions that we have proved will yield poison if PoisonI 3858 // does. 3859 SmallSet<const Value *, 16> YieldsPoison; 3860 SmallSet<const BasicBlock *, 4> Visited; 3861 YieldsPoison.insert(PoisonI); 3862 Visited.insert(PoisonI->getParent()); 3863 3864 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3865 3866 unsigned Iter = 0; 3867 while (Iter++ < MaxDepth) { 3868 for (auto &I : make_range(Begin, End)) { 3869 if (&I != PoisonI) { 3870 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3871 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3872 return true; 3873 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3874 return false; 3875 } 3876 3877 // Mark poison that propagates from I through uses of I. 3878 if (YieldsPoison.count(&I)) { 3879 for (const User *User : I.users()) { 3880 const Instruction *UserI = cast<Instruction>(User); 3881 if (propagatesFullPoison(UserI)) 3882 YieldsPoison.insert(User); 3883 } 3884 } 3885 } 3886 3887 if (auto *NextBB = BB->getSingleSuccessor()) { 3888 if (Visited.insert(NextBB).second) { 3889 BB = NextBB; 3890 Begin = BB->getFirstNonPHI()->getIterator(); 3891 End = BB->end(); 3892 continue; 3893 } 3894 } 3895 3896 break; 3897 }; 3898 return false; 3899 } 3900 3901 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3902 if (FMF.noNaNs()) 3903 return true; 3904 3905 if (auto *C = dyn_cast<ConstantFP>(V)) 3906 return !C->isNaN(); 3907 return false; 3908 } 3909 3910 static bool isKnownNonZero(const Value *V) { 3911 if (auto *C = dyn_cast<ConstantFP>(V)) 3912 return !C->isZero(); 3913 return false; 3914 } 3915 3916 /// Match non-obvious integer minimum and maximum sequences. 3917 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3918 Value *CmpLHS, Value *CmpRHS, 3919 Value *TrueVal, Value *FalseVal, 3920 Value *&LHS, Value *&RHS) { 3921 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3922 return {SPF_UNKNOWN, SPNB_NA, false}; 3923 3924 // Z = X -nsw Y 3925 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3926 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3927 if (match(TrueVal, m_Zero()) && 3928 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) { 3929 LHS = TrueVal; 3930 RHS = FalseVal; 3931 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3932 } 3933 3934 // Z = X -nsw Y 3935 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3936 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3937 if (match(FalseVal, m_Zero()) && 3938 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) { 3939 LHS = TrueVal; 3940 RHS = FalseVal; 3941 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3942 } 3943 3944 const APInt *C1; 3945 if (!match(CmpRHS, m_APInt(C1))) 3946 return {SPF_UNKNOWN, SPNB_NA, false}; 3947 3948 // An unsigned min/max can be written with a signed compare. 3949 const APInt *C2; 3950 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 3951 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 3952 // Is the sign bit set? 3953 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 3954 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 3955 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) { 3956 LHS = TrueVal; 3957 RHS = FalseVal; 3958 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3959 } 3960 3961 // Is the sign bit clear? 3962 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 3963 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 3964 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 3965 C2->isMinSignedValue()) { 3966 LHS = TrueVal; 3967 RHS = FalseVal; 3968 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3969 } 3970 } 3971 3972 // Look through 'not' ops to find disguised signed min/max. 3973 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 3974 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 3975 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 3976 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) { 3977 LHS = TrueVal; 3978 RHS = FalseVal; 3979 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3980 } 3981 3982 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 3983 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 3984 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 3985 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) { 3986 LHS = TrueVal; 3987 RHS = FalseVal; 3988 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3989 } 3990 3991 return {SPF_UNKNOWN, SPNB_NA, false}; 3992 } 3993 3994 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3995 FastMathFlags FMF, 3996 Value *CmpLHS, Value *CmpRHS, 3997 Value *TrueVal, Value *FalseVal, 3998 Value *&LHS, Value *&RHS) { 3999 LHS = CmpLHS; 4000 RHS = CmpRHS; 4001 4002 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4003 // return inconsistent results between implementations. 4004 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4005 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4006 // Therefore we behave conservatively and only proceed if at least one of the 4007 // operands is known to not be zero, or if we don't care about signed zeroes. 4008 switch (Pred) { 4009 default: break; 4010 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4011 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4012 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4013 !isKnownNonZero(CmpRHS)) 4014 return {SPF_UNKNOWN, SPNB_NA, false}; 4015 } 4016 4017 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4018 bool Ordered = false; 4019 4020 // When given one NaN and one non-NaN input: 4021 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4022 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4023 // ordered comparison fails), which could be NaN or non-NaN. 4024 // so here we discover exactly what NaN behavior is required/accepted. 4025 if (CmpInst::isFPPredicate(Pred)) { 4026 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4027 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4028 4029 if (LHSSafe && RHSSafe) { 4030 // Both operands are known non-NaN. 4031 NaNBehavior = SPNB_RETURNS_ANY; 4032 } else if (CmpInst::isOrdered(Pred)) { 4033 // An ordered comparison will return false when given a NaN, so it 4034 // returns the RHS. 4035 Ordered = true; 4036 if (LHSSafe) 4037 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4038 NaNBehavior = SPNB_RETURNS_NAN; 4039 else if (RHSSafe) 4040 NaNBehavior = SPNB_RETURNS_OTHER; 4041 else 4042 // Completely unsafe. 4043 return {SPF_UNKNOWN, SPNB_NA, false}; 4044 } else { 4045 Ordered = false; 4046 // An unordered comparison will return true when given a NaN, so it 4047 // returns the LHS. 4048 if (LHSSafe) 4049 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4050 NaNBehavior = SPNB_RETURNS_OTHER; 4051 else if (RHSSafe) 4052 NaNBehavior = SPNB_RETURNS_NAN; 4053 else 4054 // Completely unsafe. 4055 return {SPF_UNKNOWN, SPNB_NA, false}; 4056 } 4057 } 4058 4059 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4060 std::swap(CmpLHS, CmpRHS); 4061 Pred = CmpInst::getSwappedPredicate(Pred); 4062 if (NaNBehavior == SPNB_RETURNS_NAN) 4063 NaNBehavior = SPNB_RETURNS_OTHER; 4064 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4065 NaNBehavior = SPNB_RETURNS_NAN; 4066 Ordered = !Ordered; 4067 } 4068 4069 // ([if]cmp X, Y) ? X : Y 4070 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4071 switch (Pred) { 4072 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4073 case ICmpInst::ICMP_UGT: 4074 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4075 case ICmpInst::ICMP_SGT: 4076 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4077 case ICmpInst::ICMP_ULT: 4078 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4079 case ICmpInst::ICMP_SLT: 4080 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4081 case FCmpInst::FCMP_UGT: 4082 case FCmpInst::FCMP_UGE: 4083 case FCmpInst::FCMP_OGT: 4084 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4085 case FCmpInst::FCMP_ULT: 4086 case FCmpInst::FCMP_ULE: 4087 case FCmpInst::FCMP_OLT: 4088 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4089 } 4090 } 4091 4092 const APInt *C1; 4093 if (match(CmpRHS, m_APInt(C1))) { 4094 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4095 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4096 4097 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4098 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4099 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4100 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4101 } 4102 4103 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4104 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4105 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4106 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4107 } 4108 } 4109 } 4110 4111 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4112 } 4113 4114 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4115 Instruction::CastOps *CastOp) { 4116 CastInst *CI = dyn_cast<CastInst>(V1); 4117 Constant *C = dyn_cast<Constant>(V2); 4118 if (!CI) 4119 return nullptr; 4120 *CastOp = CI->getOpcode(); 4121 4122 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 4123 // If V1 and V2 are both the same cast from the same type, we can look 4124 // through V1. 4125 if (CI2->getOpcode() == CI->getOpcode() && 4126 CI2->getSrcTy() == CI->getSrcTy()) 4127 return CI2->getOperand(0); 4128 return nullptr; 4129 } else if (!C) { 4130 return nullptr; 4131 } 4132 4133 Constant *CastedTo = nullptr; 4134 4135 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 4136 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 4137 4138 if (isa<SExtInst>(CI) && CmpI->isSigned()) 4139 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 4140 4141 if (isa<TruncInst>(CI)) 4142 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 4143 4144 if (isa<FPTruncInst>(CI)) 4145 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4146 4147 if (isa<FPExtInst>(CI)) 4148 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4149 4150 if (isa<FPToUIInst>(CI)) 4151 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4152 4153 if (isa<FPToSIInst>(CI)) 4154 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4155 4156 if (isa<UIToFPInst>(CI)) 4157 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4158 4159 if (isa<SIToFPInst>(CI)) 4160 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4161 4162 if (!CastedTo) 4163 return nullptr; 4164 4165 Constant *CastedBack = 4166 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 4167 // Make sure the cast doesn't lose any information. 4168 if (CastedBack != C) 4169 return nullptr; 4170 4171 return CastedTo; 4172 } 4173 4174 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4175 Instruction::CastOps *CastOp) { 4176 SelectInst *SI = dyn_cast<SelectInst>(V); 4177 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4178 4179 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4180 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4181 4182 CmpInst::Predicate Pred = CmpI->getPredicate(); 4183 Value *CmpLHS = CmpI->getOperand(0); 4184 Value *CmpRHS = CmpI->getOperand(1); 4185 Value *TrueVal = SI->getTrueValue(); 4186 Value *FalseVal = SI->getFalseValue(); 4187 FastMathFlags FMF; 4188 if (isa<FPMathOperator>(CmpI)) 4189 FMF = CmpI->getFastMathFlags(); 4190 4191 // Bail out early. 4192 if (CmpI->isEquality()) 4193 return {SPF_UNKNOWN, SPNB_NA, false}; 4194 4195 // Deal with type mismatches. 4196 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4197 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4198 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4199 cast<CastInst>(TrueVal)->getOperand(0), C, 4200 LHS, RHS); 4201 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4202 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4203 C, cast<CastInst>(FalseVal)->getOperand(0), 4204 LHS, RHS); 4205 } 4206 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4207 LHS, RHS); 4208 } 4209 4210 /// Return true if "icmp Pred LHS RHS" is always true. 4211 static bool isTruePredicate(CmpInst::Predicate Pred, 4212 const Value *LHS, const Value *RHS, 4213 const DataLayout &DL, unsigned Depth, 4214 AssumptionCache *AC, const Instruction *CxtI, 4215 const DominatorTree *DT) { 4216 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4217 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4218 return true; 4219 4220 switch (Pred) { 4221 default: 4222 return false; 4223 4224 case CmpInst::ICMP_SLE: { 4225 const APInt *C; 4226 4227 // LHS s<= LHS +_{nsw} C if C >= 0 4228 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4229 return !C->isNegative(); 4230 return false; 4231 } 4232 4233 case CmpInst::ICMP_ULE: { 4234 const APInt *C; 4235 4236 // LHS u<= LHS +_{nuw} C for any C 4237 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4238 return true; 4239 4240 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4241 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4242 const Value *&X, 4243 const APInt *&CA, const APInt *&CB) { 4244 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4245 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4246 return true; 4247 4248 // If X & C == 0 then (X | C) == X +_{nuw} C 4249 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4250 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4251 unsigned BitWidth = CA->getBitWidth(); 4252 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4253 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4254 4255 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4256 return true; 4257 } 4258 4259 return false; 4260 }; 4261 4262 const Value *X; 4263 const APInt *CLHS, *CRHS; 4264 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4265 return CLHS->ule(*CRHS); 4266 4267 return false; 4268 } 4269 } 4270 } 4271 4272 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4273 /// ALHS ARHS" is true. Otherwise, return None. 4274 static Optional<bool> 4275 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4276 const Value *ARHS, const Value *BLHS, 4277 const Value *BRHS, const DataLayout &DL, 4278 unsigned Depth, AssumptionCache *AC, 4279 const Instruction *CxtI, const DominatorTree *DT) { 4280 switch (Pred) { 4281 default: 4282 return None; 4283 4284 case CmpInst::ICMP_SLT: 4285 case CmpInst::ICMP_SLE: 4286 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4287 DT) && 4288 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4289 return true; 4290 return None; 4291 4292 case CmpInst::ICMP_ULT: 4293 case CmpInst::ICMP_ULE: 4294 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4295 DT) && 4296 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4297 return true; 4298 return None; 4299 } 4300 } 4301 4302 /// Return true if the operands of the two compares match. IsSwappedOps is true 4303 /// when the operands match, but are swapped. 4304 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4305 const Value *BLHS, const Value *BRHS, 4306 bool &IsSwappedOps) { 4307 4308 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4309 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4310 return IsMatchingOps || IsSwappedOps; 4311 } 4312 4313 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4314 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4315 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4316 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4317 const Value *ALHS, 4318 const Value *ARHS, 4319 CmpInst::Predicate BPred, 4320 const Value *BLHS, 4321 const Value *BRHS, 4322 bool IsSwappedOps) { 4323 // Canonicalize the operands so they're matching. 4324 if (IsSwappedOps) { 4325 std::swap(BLHS, BRHS); 4326 BPred = ICmpInst::getSwappedPredicate(BPred); 4327 } 4328 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4329 return true; 4330 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4331 return false; 4332 4333 return None; 4334 } 4335 4336 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4337 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4338 /// C2" is false. Otherwise, return None if we can't infer anything. 4339 static Optional<bool> 4340 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4341 const ConstantInt *C1, 4342 CmpInst::Predicate BPred, 4343 const Value *BLHS, const ConstantInt *C2) { 4344 assert(ALHS == BLHS && "LHS operands must match."); 4345 ConstantRange DomCR = 4346 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4347 ConstantRange CR = 4348 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4349 ConstantRange Intersection = DomCR.intersectWith(CR); 4350 ConstantRange Difference = DomCR.difference(CR); 4351 if (Intersection.isEmptySet()) 4352 return false; 4353 if (Difference.isEmptySet()) 4354 return true; 4355 return None; 4356 } 4357 4358 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4359 const DataLayout &DL, bool InvertAPred, 4360 unsigned Depth, AssumptionCache *AC, 4361 const Instruction *CxtI, 4362 const DominatorTree *DT) { 4363 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4364 if (LHS->getType() != RHS->getType()) 4365 return None; 4366 4367 Type *OpTy = LHS->getType(); 4368 assert(OpTy->getScalarType()->isIntegerTy(1)); 4369 4370 // LHS ==> RHS by definition 4371 if (!InvertAPred && LHS == RHS) 4372 return true; 4373 4374 if (OpTy->isVectorTy()) 4375 // TODO: extending the code below to handle vectors 4376 return None; 4377 assert(OpTy->isIntegerTy(1) && "implied by above"); 4378 4379 ICmpInst::Predicate APred, BPred; 4380 Value *ALHS, *ARHS; 4381 Value *BLHS, *BRHS; 4382 4383 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4384 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4385 return None; 4386 4387 if (InvertAPred) 4388 APred = CmpInst::getInversePredicate(APred); 4389 4390 // Can we infer anything when the two compares have matching operands? 4391 bool IsSwappedOps; 4392 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4393 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4394 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4395 return Implication; 4396 // No amount of additional analysis will infer the second condition, so 4397 // early exit. 4398 return None; 4399 } 4400 4401 // Can we infer anything when the LHS operands match and the RHS operands are 4402 // constants (not necessarily matching)? 4403 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4404 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4405 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4406 cast<ConstantInt>(BRHS))) 4407 return Implication; 4408 // No amount of additional analysis will infer the second condition, so 4409 // early exit. 4410 return None; 4411 } 4412 4413 if (APred == BPred) 4414 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4415 CxtI, DT); 4416 4417 return None; 4418 } 4419