1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 const unsigned MaxDepth = 6;
81 
82 // Controls the number of uses of the value searched for possible
83 // dominating comparisons.
84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
85                                               cl::Hidden, cl::init(20));
86 
87 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
88 /// returns the element type's bitwidth.
89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
90   if (unsigned BitWidth = Ty->getScalarSizeInBits())
91     return BitWidth;
92 
93   return DL.getPointerTypeSizeInBits(Ty);
94 }
95 
96 namespace {
97 
98 // Simplifying using an assume can only be done in a particular control-flow
99 // context (the context instruction provides that context). If an assume and
100 // the context instruction are not in the same block then the DT helps in
101 // figuring out if we can use it.
102 struct Query {
103   const DataLayout &DL;
104   AssumptionCache *AC;
105   const Instruction *CxtI;
106   const DominatorTree *DT;
107 
108   // Unlike the other analyses, this may be a nullptr because not all clients
109   // provide it currently.
110   OptimizationRemarkEmitter *ORE;
111 
112   /// Set of assumptions that should be excluded from further queries.
113   /// This is because of the potential for mutual recursion to cause
114   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
115   /// classic case of this is assume(x = y), which will attempt to determine
116   /// bits in x from bits in y, which will attempt to determine bits in y from
117   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
118   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
119   /// (all of which can call computeKnownBits), and so on.
120   std::array<const Value *, MaxDepth> Excluded;
121 
122   /// If true, it is safe to use metadata during simplification.
123   InstrInfoQuery IIQ;
124 
125   unsigned NumExcluded = 0;
126 
127   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
128         const DominatorTree *DT, bool UseInstrInfo,
129         OptimizationRemarkEmitter *ORE = nullptr)
130       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
131 
132   Query(const Query &Q, const Value *NewExcl)
133       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
134         NumExcluded(Q.NumExcluded) {
135     Excluded = Q.Excluded;
136     Excluded[NumExcluded++] = NewExcl;
137     assert(NumExcluded <= Excluded.size());
138   }
139 
140   bool isExcluded(const Value *Value) const {
141     if (NumExcluded == 0)
142       return false;
143     auto End = Excluded.begin() + NumExcluded;
144     return std::find(Excluded.begin(), End, Value) != End;
145   }
146 };
147 
148 } // end anonymous namespace
149 
150 // Given the provided Value and, potentially, a context instruction, return
151 // the preferred context instruction (if any).
152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
153   // If we've been provided with a context instruction, then use that (provided
154   // it has been inserted).
155   if (CxtI && CxtI->getParent())
156     return CxtI;
157 
158   // If the value is really an already-inserted instruction, then use that.
159   CxtI = dyn_cast<Instruction>(V);
160   if (CxtI && CxtI->getParent())
161     return CxtI;
162 
163   return nullptr;
164 }
165 
166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
167                                    const APInt &DemandedElts,
168                                    APInt &DemandedLHS, APInt &DemandedRHS) {
169   // The length of scalable vectors is unknown at compile time, thus we
170   // cannot check their values
171   if (isa<ScalableVectorType>(Shuf->getType()))
172     return false;
173 
174   int NumElts =
175       cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements();
176   int NumMaskElts = Shuf->getType()->getNumElements();
177   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
178   if (DemandedElts.isNullValue())
179     return true;
180   // Simple case of a shuffle with zeroinitializer.
181   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
182     DemandedLHS.setBit(0);
183     return true;
184   }
185   for (int i = 0; i != NumMaskElts; ++i) {
186     if (!DemandedElts[i])
187       continue;
188     int M = Shuf->getMaskValue(i);
189     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
190 
191     // For undef elements, we don't know anything about the common state of
192     // the shuffle result.
193     if (M == -1)
194       return false;
195     if (M < NumElts)
196       DemandedLHS.setBit(M % NumElts);
197     else
198       DemandedRHS.setBit(M % NumElts);
199   }
200 
201   return true;
202 }
203 
204 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
205                              KnownBits &Known, unsigned Depth, const Query &Q);
206 
207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
208                              const Query &Q) {
209   // FIXME: We currently have no way to represent the DemandedElts of a scalable
210   // vector
211   if (isa<ScalableVectorType>(V->getType())) {
212     Known.resetAll();
213     return;
214   }
215 
216   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
217   APInt DemandedElts =
218       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
219   computeKnownBits(V, DemandedElts, Known, Depth, Q);
220 }
221 
222 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
223                             const DataLayout &DL, unsigned Depth,
224                             AssumptionCache *AC, const Instruction *CxtI,
225                             const DominatorTree *DT,
226                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
227   ::computeKnownBits(V, Known, Depth,
228                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229 }
230 
231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
232                             KnownBits &Known, const DataLayout &DL,
233                             unsigned Depth, AssumptionCache *AC,
234                             const Instruction *CxtI, const DominatorTree *DT,
235                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
236   ::computeKnownBits(V, DemandedElts, Known, Depth,
237                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
238 }
239 
240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
241                                   unsigned Depth, const Query &Q);
242 
243 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
244                                   const Query &Q);
245 
246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
247                                  unsigned Depth, AssumptionCache *AC,
248                                  const Instruction *CxtI,
249                                  const DominatorTree *DT,
250                                  OptimizationRemarkEmitter *ORE,
251                                  bool UseInstrInfo) {
252   return ::computeKnownBits(
253       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
257                                  const DataLayout &DL, unsigned Depth,
258                                  AssumptionCache *AC, const Instruction *CxtI,
259                                  const DominatorTree *DT,
260                                  OptimizationRemarkEmitter *ORE,
261                                  bool UseInstrInfo) {
262   return ::computeKnownBits(
263       V, DemandedElts, Depth,
264       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
265 }
266 
267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
268                                const DataLayout &DL, AssumptionCache *AC,
269                                const Instruction *CxtI, const DominatorTree *DT,
270                                bool UseInstrInfo) {
271   assert(LHS->getType() == RHS->getType() &&
272          "LHS and RHS should have the same type");
273   assert(LHS->getType()->isIntOrIntVectorTy() &&
274          "LHS and RHS should be integers");
275   // Look for an inverted mask: (X & ~M) op (Y & M).
276   Value *M;
277   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
278       match(RHS, m_c_And(m_Specific(M), m_Value())))
279     return true;
280   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
281       match(LHS, m_c_And(m_Specific(M), m_Value())))
282     return true;
283   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
284   KnownBits LHSKnown(IT->getBitWidth());
285   KnownBits RHSKnown(IT->getBitWidth());
286   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
287   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
288   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
289 }
290 
291 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
292   for (const User *U : CxtI->users()) {
293     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
294       if (IC->isEquality())
295         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
296           if (C->isNullValue())
297             continue;
298     return false;
299   }
300   return true;
301 }
302 
303 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
304                                    const Query &Q);
305 
306 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
307                                   bool OrZero, unsigned Depth,
308                                   AssumptionCache *AC, const Instruction *CxtI,
309                                   const DominatorTree *DT, bool UseInstrInfo) {
310   return ::isKnownToBeAPowerOfTwo(
311       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
312 }
313 
314 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
315                            unsigned Depth, const Query &Q);
316 
317 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
318 
319 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
320                           AssumptionCache *AC, const Instruction *CxtI,
321                           const DominatorTree *DT, bool UseInstrInfo) {
322   return ::isKnownNonZero(V, Depth,
323                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
324 }
325 
326 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
327                               unsigned Depth, AssumptionCache *AC,
328                               const Instruction *CxtI, const DominatorTree *DT,
329                               bool UseInstrInfo) {
330   KnownBits Known =
331       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
332   return Known.isNonNegative();
333 }
334 
335 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
336                            AssumptionCache *AC, const Instruction *CxtI,
337                            const DominatorTree *DT, bool UseInstrInfo) {
338   if (auto *CI = dyn_cast<ConstantInt>(V))
339     return CI->getValue().isStrictlyPositive();
340 
341   // TODO: We'd doing two recursive queries here.  We should factor this such
342   // that only a single query is needed.
343   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
344          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
345 }
346 
347 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
348                            AssumptionCache *AC, const Instruction *CxtI,
349                            const DominatorTree *DT, bool UseInstrInfo) {
350   KnownBits Known =
351       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
352   return Known.isNegative();
353 }
354 
355 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
356 
357 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
358                            const DataLayout &DL, AssumptionCache *AC,
359                            const Instruction *CxtI, const DominatorTree *DT,
360                            bool UseInstrInfo) {
361   return ::isKnownNonEqual(V1, V2,
362                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
363                                  UseInstrInfo, /*ORE=*/nullptr));
364 }
365 
366 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
367                               const Query &Q);
368 
369 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
370                              const DataLayout &DL, unsigned Depth,
371                              AssumptionCache *AC, const Instruction *CxtI,
372                              const DominatorTree *DT, bool UseInstrInfo) {
373   return ::MaskedValueIsZero(
374       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
375 }
376 
377 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
378                                    unsigned Depth, const Query &Q);
379 
380 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
381                                    const Query &Q) {
382   // FIXME: We currently have no way to represent the DemandedElts of a scalable
383   // vector
384   if (isa<ScalableVectorType>(V->getType()))
385     return 1;
386 
387   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
388   APInt DemandedElts =
389       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
390   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
391 }
392 
393 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
394                                   unsigned Depth, AssumptionCache *AC,
395                                   const Instruction *CxtI,
396                                   const DominatorTree *DT, bool UseInstrInfo) {
397   return ::ComputeNumSignBits(
398       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
399 }
400 
401 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
402                                    bool NSW, const APInt &DemandedElts,
403                                    KnownBits &KnownOut, KnownBits &Known2,
404                                    unsigned Depth, const Query &Q) {
405   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
406 
407   // If one operand is unknown and we have no nowrap information,
408   // the result will be unknown independently of the second operand.
409   if (KnownOut.isUnknown() && !NSW)
410     return;
411 
412   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
413   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
414 }
415 
416 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
417                                 const APInt &DemandedElts, KnownBits &Known,
418                                 KnownBits &Known2, unsigned Depth,
419                                 const Query &Q) {
420   unsigned BitWidth = Known.getBitWidth();
421   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
422   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
423 
424   bool isKnownNegative = false;
425   bool isKnownNonNegative = false;
426   // If the multiplication is known not to overflow, compute the sign bit.
427   if (NSW) {
428     if (Op0 == Op1) {
429       // The product of a number with itself is non-negative.
430       isKnownNonNegative = true;
431     } else {
432       bool isKnownNonNegativeOp1 = Known.isNonNegative();
433       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
434       bool isKnownNegativeOp1 = Known.isNegative();
435       bool isKnownNegativeOp0 = Known2.isNegative();
436       // The product of two numbers with the same sign is non-negative.
437       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
438         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
439       // The product of a negative number and a non-negative number is either
440       // negative or zero.
441       if (!isKnownNonNegative)
442         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
443                            isKnownNonZero(Op0, Depth, Q)) ||
444                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
445                            isKnownNonZero(Op1, Depth, Q));
446     }
447   }
448 
449   assert(!Known.hasConflict() && !Known2.hasConflict());
450   // Compute a conservative estimate for high known-0 bits.
451   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
452                              Known2.countMinLeadingZeros(),
453                              BitWidth) - BitWidth;
454   LeadZ = std::min(LeadZ, BitWidth);
455 
456   // The result of the bottom bits of an integer multiply can be
457   // inferred by looking at the bottom bits of both operands and
458   // multiplying them together.
459   // We can infer at least the minimum number of known trailing bits
460   // of both operands. Depending on number of trailing zeros, we can
461   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
462   // a and b are divisible by m and n respectively.
463   // We then calculate how many of those bits are inferrable and set
464   // the output. For example, the i8 mul:
465   //  a = XXXX1100 (12)
466   //  b = XXXX1110 (14)
467   // We know the bottom 3 bits are zero since the first can be divided by
468   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
469   // Applying the multiplication to the trimmed arguments gets:
470   //    XX11 (3)
471   //    X111 (7)
472   // -------
473   //    XX11
474   //   XX11
475   //  XX11
476   // XX11
477   // -------
478   // XXXXX01
479   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
480   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
481   // The proof for this can be described as:
482   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
483   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
484   //                    umin(countTrailingZeros(C2), C6) +
485   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
486   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
487   // %aa = shl i8 %a, C5
488   // %bb = shl i8 %b, C6
489   // %aaa = or i8 %aa, C1
490   // %bbb = or i8 %bb, C2
491   // %mul = mul i8 %aaa, %bbb
492   // %mask = and i8 %mul, C7
493   //   =>
494   // %mask = i8 ((C1*C2)&C7)
495   // Where C5, C6 describe the known bits of %a, %b
496   // C1, C2 describe the known bottom bits of %a, %b.
497   // C7 describes the mask of the known bits of the result.
498   APInt Bottom0 = Known.One;
499   APInt Bottom1 = Known2.One;
500 
501   // How many times we'd be able to divide each argument by 2 (shr by 1).
502   // This gives us the number of trailing zeros on the multiplication result.
503   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
504   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
505   unsigned TrailZero0 = Known.countMinTrailingZeros();
506   unsigned TrailZero1 = Known2.countMinTrailingZeros();
507   unsigned TrailZ = TrailZero0 + TrailZero1;
508 
509   // Figure out the fewest known-bits operand.
510   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
511                                       TrailBitsKnown1 - TrailZero1);
512   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
513 
514   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
515                       Bottom1.getLoBits(TrailBitsKnown1);
516 
517   Known.resetAll();
518   Known.Zero.setHighBits(LeadZ);
519   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
520   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
521 
522   // Only make use of no-wrap flags if we failed to compute the sign bit
523   // directly.  This matters if the multiplication always overflows, in
524   // which case we prefer to follow the result of the direct computation,
525   // though as the program is invoking undefined behaviour we can choose
526   // whatever we like here.
527   if (isKnownNonNegative && !Known.isNegative())
528     Known.makeNonNegative();
529   else if (isKnownNegative && !Known.isNonNegative())
530     Known.makeNegative();
531 }
532 
533 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
534                                              KnownBits &Known) {
535   unsigned BitWidth = Known.getBitWidth();
536   unsigned NumRanges = Ranges.getNumOperands() / 2;
537   assert(NumRanges >= 1);
538 
539   Known.Zero.setAllBits();
540   Known.One.setAllBits();
541 
542   for (unsigned i = 0; i < NumRanges; ++i) {
543     ConstantInt *Lower =
544         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
545     ConstantInt *Upper =
546         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
547     ConstantRange Range(Lower->getValue(), Upper->getValue());
548 
549     // The first CommonPrefixBits of all values in Range are equal.
550     unsigned CommonPrefixBits =
551         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
552 
553     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
554     Known.One &= Range.getUnsignedMax() & Mask;
555     Known.Zero &= ~Range.getUnsignedMax() & Mask;
556   }
557 }
558 
559 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
560   SmallVector<const Value *, 16> WorkSet(1, I);
561   SmallPtrSet<const Value *, 32> Visited;
562   SmallPtrSet<const Value *, 16> EphValues;
563 
564   // The instruction defining an assumption's condition itself is always
565   // considered ephemeral to that assumption (even if it has other
566   // non-ephemeral users). See r246696's test case for an example.
567   if (is_contained(I->operands(), E))
568     return true;
569 
570   while (!WorkSet.empty()) {
571     const Value *V = WorkSet.pop_back_val();
572     if (!Visited.insert(V).second)
573       continue;
574 
575     // If all uses of this value are ephemeral, then so is this value.
576     if (llvm::all_of(V->users(), [&](const User *U) {
577                                    return EphValues.count(U);
578                                  })) {
579       if (V == E)
580         return true;
581 
582       if (V == I || isSafeToSpeculativelyExecute(V)) {
583        EphValues.insert(V);
584        if (const User *U = dyn_cast<User>(V))
585          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
586               J != JE; ++J)
587            WorkSet.push_back(*J);
588       }
589     }
590   }
591 
592   return false;
593 }
594 
595 // Is this an intrinsic that cannot be speculated but also cannot trap?
596 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
597   if (const CallInst *CI = dyn_cast<CallInst>(I))
598     if (Function *F = CI->getCalledFunction())
599       switch (F->getIntrinsicID()) {
600       default: break;
601       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
602       case Intrinsic::assume:
603       case Intrinsic::sideeffect:
604       case Intrinsic::dbg_declare:
605       case Intrinsic::dbg_value:
606       case Intrinsic::dbg_label:
607       case Intrinsic::invariant_start:
608       case Intrinsic::invariant_end:
609       case Intrinsic::lifetime_start:
610       case Intrinsic::lifetime_end:
611       case Intrinsic::objectsize:
612       case Intrinsic::ptr_annotation:
613       case Intrinsic::var_annotation:
614         return true;
615       }
616 
617   return false;
618 }
619 
620 bool llvm::isValidAssumeForContext(const Instruction *Inv,
621                                    const Instruction *CxtI,
622                                    const DominatorTree *DT) {
623   // There are two restrictions on the use of an assume:
624   //  1. The assume must dominate the context (or the control flow must
625   //     reach the assume whenever it reaches the context).
626   //  2. The context must not be in the assume's set of ephemeral values
627   //     (otherwise we will use the assume to prove that the condition
628   //     feeding the assume is trivially true, thus causing the removal of
629   //     the assume).
630 
631   if (Inv->getParent() == CxtI->getParent()) {
632     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
633     // in the BB.
634     if (Inv->comesBefore(CxtI))
635       return true;
636 
637     // Don't let an assume affect itself - this would cause the problems
638     // `isEphemeralValueOf` is trying to prevent, and it would also make
639     // the loop below go out of bounds.
640     if (Inv == CxtI)
641       return false;
642 
643     // The context comes first, but they're both in the same block.
644     // Make sure there is nothing in between that might interrupt
645     // the control flow, not even CxtI itself.
646     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
647       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
648         return false;
649 
650     return !isEphemeralValueOf(Inv, CxtI);
651   }
652 
653   // Inv and CxtI are in different blocks.
654   if (DT) {
655     if (DT->dominates(Inv, CxtI))
656       return true;
657   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
658     // We don't have a DT, but this trivially dominates.
659     return true;
660   }
661 
662   return false;
663 }
664 
665 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
666   // Use of assumptions is context-sensitive. If we don't have a context, we
667   // cannot use them!
668   if (!Q.AC || !Q.CxtI)
669     return false;
670 
671   // Note that the patterns below need to be kept in sync with the code
672   // in AssumptionCache::updateAffectedValues.
673 
674   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
675     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
676 
677     Value *RHS;
678     CmpInst::Predicate Pred;
679     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
680       return false;
681     // assume(v u> y) -> assume(v != 0)
682     if (Pred == ICmpInst::ICMP_UGT)
683       return true;
684 
685     // assume(v != 0)
686     // We special-case this one to ensure that we handle `assume(v != null)`.
687     if (Pred == ICmpInst::ICMP_NE)
688       return match(RHS, m_Zero());
689 
690     // All other predicates - rely on generic ConstantRange handling.
691     ConstantInt *CI;
692     if (!match(RHS, m_ConstantInt(CI)))
693       return false;
694     ConstantRange RHSRange(CI->getValue());
695     ConstantRange TrueValues =
696         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
697     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
698   };
699 
700   if (Q.CxtI && V->getType()->isPointerTy()) {
701     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
702     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
703                               V->getType()->getPointerAddressSpace()))
704       AttrKinds.push_back(Attribute::Dereferenceable);
705 
706     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
707       return true;
708   }
709 
710   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
711     if (!AssumeVH)
712       continue;
713     CallInst *I = cast<CallInst>(AssumeVH);
714     assert(I->getFunction() == Q.CxtI->getFunction() &&
715            "Got assumption for the wrong function!");
716     if (Q.isExcluded(I))
717       continue;
718 
719     // Warning: This loop can end up being somewhat performance sensitive.
720     // We're running this loop for once for each value queried resulting in a
721     // runtime of ~O(#assumes * #values).
722 
723     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
724            "must be an assume intrinsic");
725 
726     Value *Arg = I->getArgOperand(0);
727     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
728     if (!Cmp)
729       continue;
730 
731     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
732       return true;
733   }
734 
735   return false;
736 }
737 
738 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
739                                        unsigned Depth, const Query &Q) {
740   // Use of assumptions is context-sensitive. If we don't have a context, we
741   // cannot use them!
742   if (!Q.AC || !Q.CxtI)
743     return;
744 
745   unsigned BitWidth = Known.getBitWidth();
746 
747   // Note that the patterns below need to be kept in sync with the code
748   // in AssumptionCache::updateAffectedValues.
749 
750   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
751     if (!AssumeVH)
752       continue;
753     CallInst *I = cast<CallInst>(AssumeVH);
754     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
755            "Got assumption for the wrong function!");
756     if (Q.isExcluded(I))
757       continue;
758 
759     // Warning: This loop can end up being somewhat performance sensitive.
760     // We're running this loop for once for each value queried resulting in a
761     // runtime of ~O(#assumes * #values).
762 
763     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
764            "must be an assume intrinsic");
765 
766     Value *Arg = I->getArgOperand(0);
767 
768     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
769       assert(BitWidth == 1 && "assume operand is not i1?");
770       Known.setAllOnes();
771       return;
772     }
773     if (match(Arg, m_Not(m_Specific(V))) &&
774         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
775       assert(BitWidth == 1 && "assume operand is not i1?");
776       Known.setAllZero();
777       return;
778     }
779 
780     // The remaining tests are all recursive, so bail out if we hit the limit.
781     if (Depth == MaxDepth)
782       continue;
783 
784     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
785     if (!Cmp)
786       continue;
787 
788     // Note that ptrtoint may change the bitwidth.
789     Value *A, *B;
790     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
791 
792     CmpInst::Predicate Pred;
793     uint64_t C;
794     switch (Cmp->getPredicate()) {
795     default:
796       break;
797     case ICmpInst::ICMP_EQ:
798       // assume(v = a)
799       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
800           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
801         KnownBits RHSKnown =
802             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
803         Known.Zero |= RHSKnown.Zero;
804         Known.One  |= RHSKnown.One;
805       // assume(v & b = a)
806       } else if (match(Cmp,
807                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
808                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
809         KnownBits RHSKnown =
810             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
811         KnownBits MaskKnown =
812             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
813 
814         // For those bits in the mask that are known to be one, we can propagate
815         // known bits from the RHS to V.
816         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
817         Known.One  |= RHSKnown.One  & MaskKnown.One;
818       // assume(~(v & b) = a)
819       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
820                                      m_Value(A))) &&
821                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
822         KnownBits RHSKnown =
823             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
824         KnownBits MaskKnown =
825             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
826 
827         // For those bits in the mask that are known to be one, we can propagate
828         // inverted known bits from the RHS to V.
829         Known.Zero |= RHSKnown.One  & MaskKnown.One;
830         Known.One  |= RHSKnown.Zero & MaskKnown.One;
831       // assume(v | b = a)
832       } else if (match(Cmp,
833                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
834                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
835         KnownBits RHSKnown =
836             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
837         KnownBits BKnown =
838             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
839 
840         // For those bits in B that are known to be zero, we can propagate known
841         // bits from the RHS to V.
842         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
843         Known.One  |= RHSKnown.One  & BKnown.Zero;
844       // assume(~(v | b) = a)
845       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
846                                      m_Value(A))) &&
847                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
848         KnownBits RHSKnown =
849             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
850         KnownBits BKnown =
851             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
852 
853         // For those bits in B that are known to be zero, we can propagate
854         // inverted known bits from the RHS to V.
855         Known.Zero |= RHSKnown.One  & BKnown.Zero;
856         Known.One  |= RHSKnown.Zero & BKnown.Zero;
857       // assume(v ^ b = a)
858       } else if (match(Cmp,
859                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
860                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
861         KnownBits RHSKnown =
862             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
863         KnownBits BKnown =
864             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
865 
866         // For those bits in B that are known to be zero, we can propagate known
867         // bits from the RHS to V. For those bits in B that are known to be one,
868         // we can propagate inverted known bits from the RHS to V.
869         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
870         Known.One  |= RHSKnown.One  & BKnown.Zero;
871         Known.Zero |= RHSKnown.One  & BKnown.One;
872         Known.One  |= RHSKnown.Zero & BKnown.One;
873       // assume(~(v ^ b) = a)
874       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
875                                      m_Value(A))) &&
876                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
877         KnownBits RHSKnown =
878             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
879         KnownBits BKnown =
880             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
881 
882         // For those bits in B that are known to be zero, we can propagate
883         // inverted known bits from the RHS to V. For those bits in B that are
884         // known to be one, we can propagate known bits from the RHS to V.
885         Known.Zero |= RHSKnown.One  & BKnown.Zero;
886         Known.One  |= RHSKnown.Zero & BKnown.Zero;
887         Known.Zero |= RHSKnown.Zero & BKnown.One;
888         Known.One  |= RHSKnown.One  & BKnown.One;
889       // assume(v << c = a)
890       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
891                                      m_Value(A))) &&
892                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
893         KnownBits RHSKnown =
894             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
895 
896         // For those bits in RHS that are known, we can propagate them to known
897         // bits in V shifted to the right by C.
898         RHSKnown.Zero.lshrInPlace(C);
899         Known.Zero |= RHSKnown.Zero;
900         RHSKnown.One.lshrInPlace(C);
901         Known.One  |= RHSKnown.One;
902       // assume(~(v << c) = a)
903       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
904                                      m_Value(A))) &&
905                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
906         KnownBits RHSKnown =
907             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
908         // For those bits in RHS that are known, we can propagate them inverted
909         // to known bits in V shifted to the right by C.
910         RHSKnown.One.lshrInPlace(C);
911         Known.Zero |= RHSKnown.One;
912         RHSKnown.Zero.lshrInPlace(C);
913         Known.One  |= RHSKnown.Zero;
914       // assume(v >> c = a)
915       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
916                                      m_Value(A))) &&
917                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
918         KnownBits RHSKnown =
919             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
920         // For those bits in RHS that are known, we can propagate them to known
921         // bits in V shifted to the right by C.
922         Known.Zero |= RHSKnown.Zero << C;
923         Known.One  |= RHSKnown.One  << C;
924       // assume(~(v >> c) = a)
925       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
926                                      m_Value(A))) &&
927                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
928         KnownBits RHSKnown =
929             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
930         // For those bits in RHS that are known, we can propagate them inverted
931         // to known bits in V shifted to the right by C.
932         Known.Zero |= RHSKnown.One  << C;
933         Known.One  |= RHSKnown.Zero << C;
934       }
935       break;
936     case ICmpInst::ICMP_SGE:
937       // assume(v >=_s c) where c is non-negative
938       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
939           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
940         KnownBits RHSKnown =
941             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
942 
943         if (RHSKnown.isNonNegative()) {
944           // We know that the sign bit is zero.
945           Known.makeNonNegative();
946         }
947       }
948       break;
949     case ICmpInst::ICMP_SGT:
950       // assume(v >_s c) where c is at least -1.
951       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
952           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
953         KnownBits RHSKnown =
954             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
955 
956         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
957           // We know that the sign bit is zero.
958           Known.makeNonNegative();
959         }
960       }
961       break;
962     case ICmpInst::ICMP_SLE:
963       // assume(v <=_s c) where c is negative
964       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
965           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
966         KnownBits RHSKnown =
967             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
968 
969         if (RHSKnown.isNegative()) {
970           // We know that the sign bit is one.
971           Known.makeNegative();
972         }
973       }
974       break;
975     case ICmpInst::ICMP_SLT:
976       // assume(v <_s c) where c is non-positive
977       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
978           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
979         KnownBits RHSKnown =
980             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
981 
982         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
983           // We know that the sign bit is one.
984           Known.makeNegative();
985         }
986       }
987       break;
988     case ICmpInst::ICMP_ULE:
989       // assume(v <=_u c)
990       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
991           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
992         KnownBits RHSKnown =
993             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
994 
995         // Whatever high bits in c are zero are known to be zero.
996         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
997       }
998       break;
999     case ICmpInst::ICMP_ULT:
1000       // assume(v <_u c)
1001       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1002           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1003         KnownBits RHSKnown =
1004             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1005 
1006         // If the RHS is known zero, then this assumption must be wrong (nothing
1007         // is unsigned less than zero). Signal a conflict and get out of here.
1008         if (RHSKnown.isZero()) {
1009           Known.Zero.setAllBits();
1010           Known.One.setAllBits();
1011           break;
1012         }
1013 
1014         // Whatever high bits in c are zero are known to be zero (if c is a power
1015         // of 2, then one more).
1016         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
1017           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
1018         else
1019           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
1020       }
1021       break;
1022     }
1023   }
1024 
1025   // If assumptions conflict with each other or previous known bits, then we
1026   // have a logical fallacy. It's possible that the assumption is not reachable,
1027   // so this isn't a real bug. On the other hand, the program may have undefined
1028   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
1029   // clear out the known bits, try to warn the user, and hope for the best.
1030   if (Known.Zero.intersects(Known.One)) {
1031     Known.resetAll();
1032 
1033     if (Q.ORE)
1034       Q.ORE->emit([&]() {
1035         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
1036         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
1037                                           CxtI)
1038                << "Detected conflicting code assumptions. Program may "
1039                   "have undefined behavior, or compiler may have "
1040                   "internal error.";
1041       });
1042   }
1043 }
1044 
1045 /// Compute known bits from a shift operator, including those with a
1046 /// non-constant shift amount. Known is the output of this function. Known2 is a
1047 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
1048 /// operator-specific functions that, given the known-zero or known-one bits
1049 /// respectively, and a shift amount, compute the implied known-zero or
1050 /// known-one bits of the shift operator's result respectively for that shift
1051 /// amount. The results from calling KZF and KOF are conservatively combined for
1052 /// all permitted shift amounts.
1053 static void computeKnownBitsFromShiftOperator(
1054     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1055     KnownBits &Known2, unsigned Depth, const Query &Q,
1056     function_ref<APInt(const APInt &, unsigned)> KZF,
1057     function_ref<APInt(const APInt &, unsigned)> KOF) {
1058   unsigned BitWidth = Known.getBitWidth();
1059 
1060   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1061   if (Known.isConstant()) {
1062     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
1063 
1064     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1065     Known.Zero = KZF(Known.Zero, ShiftAmt);
1066     Known.One  = KOF(Known.One, ShiftAmt);
1067     // If the known bits conflict, this must be an overflowing left shift, so
1068     // the shift result is poison. We can return anything we want. Choose 0 for
1069     // the best folding opportunity.
1070     if (Known.hasConflict())
1071       Known.setAllZero();
1072 
1073     return;
1074   }
1075 
1076   // If the shift amount could be greater than or equal to the bit-width of the
1077   // LHS, the value could be poison, but bail out because the check below is
1078   // expensive.
1079   // TODO: Should we just carry on?
1080   if (Known.getMaxValue().uge(BitWidth)) {
1081     Known.resetAll();
1082     return;
1083   }
1084 
1085   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1086   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1087   // limit value (which implies all bits are known).
1088   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1089   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1090 
1091   // It would be more-clearly correct to use the two temporaries for this
1092   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1093   Known.resetAll();
1094 
1095   // If we know the shifter operand is nonzero, we can sometimes infer more
1096   // known bits. However this is expensive to compute, so be lazy about it and
1097   // only compute it when absolutely necessary.
1098   Optional<bool> ShifterOperandIsNonZero;
1099 
1100   // Early exit if we can't constrain any well-defined shift amount.
1101   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1102       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1103     ShifterOperandIsNonZero =
1104         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1105     if (!*ShifterOperandIsNonZero)
1106       return;
1107   }
1108 
1109   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1110 
1111   Known.Zero.setAllBits();
1112   Known.One.setAllBits();
1113   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1114     // Combine the shifted known input bits only for those shift amounts
1115     // compatible with its known constraints.
1116     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1117       continue;
1118     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1119       continue;
1120     // If we know the shifter is nonzero, we may be able to infer more known
1121     // bits. This check is sunk down as far as possible to avoid the expensive
1122     // call to isKnownNonZero if the cheaper checks above fail.
1123     if (ShiftAmt == 0) {
1124       if (!ShifterOperandIsNonZero.hasValue())
1125         ShifterOperandIsNonZero =
1126             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1127       if (*ShifterOperandIsNonZero)
1128         continue;
1129     }
1130 
1131     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1132     Known.One  &= KOF(Known2.One, ShiftAmt);
1133   }
1134 
1135   // If the known bits conflict, the result is poison. Return a 0 and hope the
1136   // caller can further optimize that.
1137   if (Known.hasConflict())
1138     Known.setAllZero();
1139 }
1140 
1141 static void computeKnownBitsFromOperator(const Operator *I,
1142                                          const APInt &DemandedElts,
1143                                          KnownBits &Known, unsigned Depth,
1144                                          const Query &Q) {
1145   unsigned BitWidth = Known.getBitWidth();
1146 
1147   KnownBits Known2(BitWidth);
1148   switch (I->getOpcode()) {
1149   default: break;
1150   case Instruction::Load:
1151     if (MDNode *MD =
1152             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1153       computeKnownBitsFromRangeMetadata(*MD, Known);
1154     break;
1155   case Instruction::And: {
1156     // If either the LHS or the RHS are Zero, the result is zero.
1157     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1158     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1159 
1160     Known &= Known2;
1161 
1162     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1163     // here we handle the more general case of adding any odd number by
1164     // matching the form add(x, add(x, y)) where y is odd.
1165     // TODO: This could be generalized to clearing any bit set in y where the
1166     // following bit is known to be unset in y.
1167     Value *X = nullptr, *Y = nullptr;
1168     if (!Known.Zero[0] && !Known.One[0] &&
1169         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1170       Known2.resetAll();
1171       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1172       if (Known2.countMinTrailingOnes() > 0)
1173         Known.Zero.setBit(0);
1174     }
1175     break;
1176   }
1177   case Instruction::Or:
1178     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1179     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1180 
1181     Known |= Known2;
1182     break;
1183   case Instruction::Xor:
1184     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1185     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1186 
1187     Known ^= Known2;
1188     break;
1189   case Instruction::Mul: {
1190     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1191     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1192                         Known, Known2, Depth, Q);
1193     break;
1194   }
1195   case Instruction::UDiv: {
1196     // For the purposes of computing leading zeros we can conservatively
1197     // treat a udiv as a logical right shift by the power of 2 known to
1198     // be less than the denominator.
1199     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1200     unsigned LeadZ = Known2.countMinLeadingZeros();
1201 
1202     Known2.resetAll();
1203     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1204     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1205     if (RHSMaxLeadingZeros != BitWidth)
1206       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1207 
1208     Known.Zero.setHighBits(LeadZ);
1209     break;
1210   }
1211   case Instruction::Select: {
1212     const Value *LHS = nullptr, *RHS = nullptr;
1213     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1214     if (SelectPatternResult::isMinOrMax(SPF)) {
1215       computeKnownBits(RHS, Known, Depth + 1, Q);
1216       computeKnownBits(LHS, Known2, Depth + 1, Q);
1217     } else {
1218       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1219       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1220     }
1221 
1222     unsigned MaxHighOnes = 0;
1223     unsigned MaxHighZeros = 0;
1224     if (SPF == SPF_SMAX) {
1225       // If both sides are negative, the result is negative.
1226       if (Known.isNegative() && Known2.isNegative())
1227         // We can derive a lower bound on the result by taking the max of the
1228         // leading one bits.
1229         MaxHighOnes =
1230             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1231       // If either side is non-negative, the result is non-negative.
1232       else if (Known.isNonNegative() || Known2.isNonNegative())
1233         MaxHighZeros = 1;
1234     } else if (SPF == SPF_SMIN) {
1235       // If both sides are non-negative, the result is non-negative.
1236       if (Known.isNonNegative() && Known2.isNonNegative())
1237         // We can derive an upper bound on the result by taking the max of the
1238         // leading zero bits.
1239         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1240                                 Known2.countMinLeadingZeros());
1241       // If either side is negative, the result is negative.
1242       else if (Known.isNegative() || Known2.isNegative())
1243         MaxHighOnes = 1;
1244     } else if (SPF == SPF_UMAX) {
1245       // We can derive a lower bound on the result by taking the max of the
1246       // leading one bits.
1247       MaxHighOnes =
1248           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1249     } else if (SPF == SPF_UMIN) {
1250       // We can derive an upper bound on the result by taking the max of the
1251       // leading zero bits.
1252       MaxHighZeros =
1253           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1254     } else if (SPF == SPF_ABS) {
1255       // RHS from matchSelectPattern returns the negation part of abs pattern.
1256       // If the negate has an NSW flag we can assume the sign bit of the result
1257       // will be 0 because that makes abs(INT_MIN) undefined.
1258       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1259           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1260         MaxHighZeros = 1;
1261     }
1262 
1263     // Only known if known in both the LHS and RHS.
1264     Known.One &= Known2.One;
1265     Known.Zero &= Known2.Zero;
1266     if (MaxHighOnes > 0)
1267       Known.One.setHighBits(MaxHighOnes);
1268     if (MaxHighZeros > 0)
1269       Known.Zero.setHighBits(MaxHighZeros);
1270     break;
1271   }
1272   case Instruction::FPTrunc:
1273   case Instruction::FPExt:
1274   case Instruction::FPToUI:
1275   case Instruction::FPToSI:
1276   case Instruction::SIToFP:
1277   case Instruction::UIToFP:
1278     break; // Can't work with floating point.
1279   case Instruction::PtrToInt:
1280   case Instruction::IntToPtr:
1281     // Fall through and handle them the same as zext/trunc.
1282     LLVM_FALLTHROUGH;
1283   case Instruction::ZExt:
1284   case Instruction::Trunc: {
1285     Type *SrcTy = I->getOperand(0)->getType();
1286 
1287     unsigned SrcBitWidth;
1288     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1289     // which fall through here.
1290     Type *ScalarTy = SrcTy->getScalarType();
1291     SrcBitWidth = ScalarTy->isPointerTy() ?
1292       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1293       Q.DL.getTypeSizeInBits(ScalarTy);
1294 
1295     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1296     Known = Known.anyextOrTrunc(SrcBitWidth);
1297     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1298     Known = Known.zextOrTrunc(BitWidth);
1299     break;
1300   }
1301   case Instruction::BitCast: {
1302     Type *SrcTy = I->getOperand(0)->getType();
1303     if (SrcTy->isIntOrPtrTy() &&
1304         // TODO: For now, not handling conversions like:
1305         // (bitcast i64 %x to <2 x i32>)
1306         !I->getType()->isVectorTy()) {
1307       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1308       break;
1309     }
1310     break;
1311   }
1312   case Instruction::SExt: {
1313     // Compute the bits in the result that are not present in the input.
1314     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1315 
1316     Known = Known.trunc(SrcBitWidth);
1317     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1318     // If the sign bit of the input is known set or clear, then we know the
1319     // top bits of the result.
1320     Known = Known.sext(BitWidth);
1321     break;
1322   }
1323   case Instruction::Shl: {
1324     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1325     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1326     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1327       APInt KZResult = KnownZero << ShiftAmt;
1328       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1329       // If this shift has "nsw" keyword, then the result is either a poison
1330       // value or has the same sign bit as the first operand.
1331       if (NSW && KnownZero.isSignBitSet())
1332         KZResult.setSignBit();
1333       return KZResult;
1334     };
1335 
1336     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1337       APInt KOResult = KnownOne << ShiftAmt;
1338       if (NSW && KnownOne.isSignBitSet())
1339         KOResult.setSignBit();
1340       return KOResult;
1341     };
1342 
1343     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1344                                       KZF, KOF);
1345     break;
1346   }
1347   case Instruction::LShr: {
1348     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1349     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1350       APInt KZResult = KnownZero.lshr(ShiftAmt);
1351       // High bits known zero.
1352       KZResult.setHighBits(ShiftAmt);
1353       return KZResult;
1354     };
1355 
1356     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1357       return KnownOne.lshr(ShiftAmt);
1358     };
1359 
1360     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1361                                       KZF, KOF);
1362     break;
1363   }
1364   case Instruction::AShr: {
1365     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1366     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1367       return KnownZero.ashr(ShiftAmt);
1368     };
1369 
1370     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1371       return KnownOne.ashr(ShiftAmt);
1372     };
1373 
1374     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1375                                       KZF, KOF);
1376     break;
1377   }
1378   case Instruction::Sub: {
1379     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1380     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1381                            DemandedElts, Known, Known2, Depth, Q);
1382     break;
1383   }
1384   case Instruction::Add: {
1385     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1386     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1387                            DemandedElts, Known, Known2, Depth, Q);
1388     break;
1389   }
1390   case Instruction::SRem:
1391     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1392       APInt RA = Rem->getValue().abs();
1393       if (RA.isPowerOf2()) {
1394         APInt LowBits = RA - 1;
1395         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1396 
1397         // The low bits of the first operand are unchanged by the srem.
1398         Known.Zero = Known2.Zero & LowBits;
1399         Known.One = Known2.One & LowBits;
1400 
1401         // If the first operand is non-negative or has all low bits zero, then
1402         // the upper bits are all zero.
1403         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1404           Known.Zero |= ~LowBits;
1405 
1406         // If the first operand is negative and not all low bits are zero, then
1407         // the upper bits are all one.
1408         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1409           Known.One |= ~LowBits;
1410 
1411         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1412         break;
1413       }
1414     }
1415 
1416     // The sign bit is the LHS's sign bit, except when the result of the
1417     // remainder is zero.
1418     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1419     // If it's known zero, our sign bit is also zero.
1420     if (Known2.isNonNegative())
1421       Known.makeNonNegative();
1422 
1423     break;
1424   case Instruction::URem: {
1425     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1426       const APInt &RA = Rem->getValue();
1427       if (RA.isPowerOf2()) {
1428         APInt LowBits = (RA - 1);
1429         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1430         Known.Zero |= ~LowBits;
1431         Known.One &= LowBits;
1432         break;
1433       }
1434     }
1435 
1436     // Since the result is less than or equal to either operand, any leading
1437     // zero bits in either operand must also exist in the result.
1438     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1439     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1440 
1441     unsigned Leaders =
1442         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1443     Known.resetAll();
1444     Known.Zero.setHighBits(Leaders);
1445     break;
1446   }
1447 
1448   case Instruction::Alloca: {
1449     const AllocaInst *AI = cast<AllocaInst>(I);
1450     unsigned Align = AI->getAlignment();
1451     if (Align == 0)
1452       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1453 
1454     if (Align > 0)
1455       Known.Zero.setLowBits(countTrailingZeros(Align));
1456     break;
1457   }
1458   case Instruction::GetElementPtr: {
1459     // Analyze all of the subscripts of this getelementptr instruction
1460     // to determine if we can prove known low zero bits.
1461     KnownBits LocalKnown(BitWidth);
1462     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1463     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1464 
1465     gep_type_iterator GTI = gep_type_begin(I);
1466     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1467       // TrailZ can only become smaller, short-circuit if we hit zero.
1468       if (TrailZ == 0)
1469         break;
1470 
1471       Value *Index = I->getOperand(i);
1472       if (StructType *STy = GTI.getStructTypeOrNull()) {
1473         // Handle struct member offset arithmetic.
1474 
1475         // Handle case when index is vector zeroinitializer
1476         Constant *CIndex = cast<Constant>(Index);
1477         if (CIndex->isZeroValue())
1478           continue;
1479 
1480         if (CIndex->getType()->isVectorTy())
1481           Index = CIndex->getSplatValue();
1482 
1483         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1484         const StructLayout *SL = Q.DL.getStructLayout(STy);
1485         uint64_t Offset = SL->getElementOffset(Idx);
1486         TrailZ = std::min<unsigned>(TrailZ,
1487                                     countTrailingZeros(Offset));
1488       } else {
1489         // Handle array index arithmetic.
1490         Type *IndexedTy = GTI.getIndexedType();
1491         if (!IndexedTy->isSized()) {
1492           TrailZ = 0;
1493           break;
1494         }
1495         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1496         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1497         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1498         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1499         TrailZ = std::min(TrailZ,
1500                           unsigned(countTrailingZeros(TypeSize) +
1501                                    LocalKnown.countMinTrailingZeros()));
1502       }
1503     }
1504 
1505     Known.Zero.setLowBits(TrailZ);
1506     break;
1507   }
1508   case Instruction::PHI: {
1509     const PHINode *P = cast<PHINode>(I);
1510     // Handle the case of a simple two-predecessor recurrence PHI.
1511     // There's a lot more that could theoretically be done here, but
1512     // this is sufficient to catch some interesting cases.
1513     if (P->getNumIncomingValues() == 2) {
1514       for (unsigned i = 0; i != 2; ++i) {
1515         Value *L = P->getIncomingValue(i);
1516         Value *R = P->getIncomingValue(!i);
1517         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1518         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1519         Operator *LU = dyn_cast<Operator>(L);
1520         if (!LU)
1521           continue;
1522         unsigned Opcode = LU->getOpcode();
1523         // Check for operations that have the property that if
1524         // both their operands have low zero bits, the result
1525         // will have low zero bits.
1526         if (Opcode == Instruction::Add ||
1527             Opcode == Instruction::Sub ||
1528             Opcode == Instruction::And ||
1529             Opcode == Instruction::Or ||
1530             Opcode == Instruction::Mul) {
1531           Value *LL = LU->getOperand(0);
1532           Value *LR = LU->getOperand(1);
1533           // Find a recurrence.
1534           if (LL == I)
1535             L = LR;
1536           else if (LR == I)
1537             L = LL;
1538           else
1539             continue; // Check for recurrence with L and R flipped.
1540 
1541           // Change the context instruction to the "edge" that flows into the
1542           // phi. This is important because that is where the value is actually
1543           // "evaluated" even though it is used later somewhere else. (see also
1544           // D69571).
1545           Query RecQ = Q;
1546 
1547           // Ok, we have a PHI of the form L op= R. Check for low
1548           // zero bits.
1549           RecQ.CxtI = RInst;
1550           computeKnownBits(R, Known2, Depth + 1, RecQ);
1551 
1552           // We need to take the minimum number of known bits
1553           KnownBits Known3(BitWidth);
1554           RecQ.CxtI = LInst;
1555           computeKnownBits(L, Known3, Depth + 1, RecQ);
1556 
1557           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1558                                          Known3.countMinTrailingZeros()));
1559 
1560           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1561           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1562             // If initial value of recurrence is nonnegative, and we are adding
1563             // a nonnegative number with nsw, the result can only be nonnegative
1564             // or poison value regardless of the number of times we execute the
1565             // add in phi recurrence. If initial value is negative and we are
1566             // adding a negative number with nsw, the result can only be
1567             // negative or poison value. Similar arguments apply to sub and mul.
1568             //
1569             // (add non-negative, non-negative) --> non-negative
1570             // (add negative, negative) --> negative
1571             if (Opcode == Instruction::Add) {
1572               if (Known2.isNonNegative() && Known3.isNonNegative())
1573                 Known.makeNonNegative();
1574               else if (Known2.isNegative() && Known3.isNegative())
1575                 Known.makeNegative();
1576             }
1577 
1578             // (sub nsw non-negative, negative) --> non-negative
1579             // (sub nsw negative, non-negative) --> negative
1580             else if (Opcode == Instruction::Sub && LL == I) {
1581               if (Known2.isNonNegative() && Known3.isNegative())
1582                 Known.makeNonNegative();
1583               else if (Known2.isNegative() && Known3.isNonNegative())
1584                 Known.makeNegative();
1585             }
1586 
1587             // (mul nsw non-negative, non-negative) --> non-negative
1588             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1589                      Known3.isNonNegative())
1590               Known.makeNonNegative();
1591           }
1592 
1593           break;
1594         }
1595       }
1596     }
1597 
1598     // Unreachable blocks may have zero-operand PHI nodes.
1599     if (P->getNumIncomingValues() == 0)
1600       break;
1601 
1602     // Otherwise take the unions of the known bit sets of the operands,
1603     // taking conservative care to avoid excessive recursion.
1604     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1605       // Skip if every incoming value references to ourself.
1606       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1607         break;
1608 
1609       Known.Zero.setAllBits();
1610       Known.One.setAllBits();
1611       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1612         Value *IncValue = P->getIncomingValue(u);
1613         // Skip direct self references.
1614         if (IncValue == P) continue;
1615 
1616         // Change the context instruction to the "edge" that flows into the
1617         // phi. This is important because that is where the value is actually
1618         // "evaluated" even though it is used later somewhere else. (see also
1619         // D69571).
1620         Query RecQ = Q;
1621         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1622 
1623         Known2 = KnownBits(BitWidth);
1624         // Recurse, but cap the recursion to one level, because we don't
1625         // want to waste time spinning around in loops.
1626         computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ);
1627         Known.Zero &= Known2.Zero;
1628         Known.One &= Known2.One;
1629         // If all bits have been ruled out, there's no need to check
1630         // more operands.
1631         if (!Known.Zero && !Known.One)
1632           break;
1633       }
1634     }
1635     break;
1636   }
1637   case Instruction::Call:
1638   case Instruction::Invoke:
1639     // If range metadata is attached to this call, set known bits from that,
1640     // and then intersect with known bits based on other properties of the
1641     // function.
1642     if (MDNode *MD =
1643             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1644       computeKnownBitsFromRangeMetadata(*MD, Known);
1645     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1646       computeKnownBits(RV, Known2, Depth + 1, Q);
1647       Known.Zero |= Known2.Zero;
1648       Known.One |= Known2.One;
1649     }
1650     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1651       switch (II->getIntrinsicID()) {
1652       default: break;
1653       case Intrinsic::bitreverse:
1654         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1655         Known.Zero |= Known2.Zero.reverseBits();
1656         Known.One |= Known2.One.reverseBits();
1657         break;
1658       case Intrinsic::bswap:
1659         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1660         Known.Zero |= Known2.Zero.byteSwap();
1661         Known.One |= Known2.One.byteSwap();
1662         break;
1663       case Intrinsic::ctlz: {
1664         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1665         // If we have a known 1, its position is our upper bound.
1666         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1667         // If this call is undefined for 0, the result will be less than 2^n.
1668         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1669           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1670         unsigned LowBits = Log2_32(PossibleLZ)+1;
1671         Known.Zero.setBitsFrom(LowBits);
1672         break;
1673       }
1674       case Intrinsic::cttz: {
1675         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1676         // If we have a known 1, its position is our upper bound.
1677         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1678         // If this call is undefined for 0, the result will be less than 2^n.
1679         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1680           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1681         unsigned LowBits = Log2_32(PossibleTZ)+1;
1682         Known.Zero.setBitsFrom(LowBits);
1683         break;
1684       }
1685       case Intrinsic::ctpop: {
1686         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1687         // We can bound the space the count needs.  Also, bits known to be zero
1688         // can't contribute to the population.
1689         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1690         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1691         Known.Zero.setBitsFrom(LowBits);
1692         // TODO: we could bound KnownOne using the lower bound on the number
1693         // of bits which might be set provided by popcnt KnownOne2.
1694         break;
1695       }
1696       case Intrinsic::fshr:
1697       case Intrinsic::fshl: {
1698         const APInt *SA;
1699         if (!match(I->getOperand(2), m_APInt(SA)))
1700           break;
1701 
1702         // Normalize to funnel shift left.
1703         uint64_t ShiftAmt = SA->urem(BitWidth);
1704         if (II->getIntrinsicID() == Intrinsic::fshr)
1705           ShiftAmt = BitWidth - ShiftAmt;
1706 
1707         KnownBits Known3(BitWidth);
1708         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1709         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1710 
1711         Known.Zero =
1712             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1713         Known.One =
1714             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1715         break;
1716       }
1717       case Intrinsic::uadd_sat:
1718       case Intrinsic::usub_sat: {
1719         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1720         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1721         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1722 
1723         // Add: Leading ones of either operand are preserved.
1724         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1725         // as leading zeros in the result.
1726         unsigned LeadingKnown;
1727         if (IsAdd)
1728           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1729                                   Known2.countMinLeadingOnes());
1730         else
1731           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1732                                   Known2.countMinLeadingOnes());
1733 
1734         Known = KnownBits::computeForAddSub(
1735             IsAdd, /* NSW */ false, Known, Known2);
1736 
1737         // We select between the operation result and all-ones/zero
1738         // respectively, so we can preserve known ones/zeros.
1739         if (IsAdd) {
1740           Known.One.setHighBits(LeadingKnown);
1741           Known.Zero.clearAllBits();
1742         } else {
1743           Known.Zero.setHighBits(LeadingKnown);
1744           Known.One.clearAllBits();
1745         }
1746         break;
1747       }
1748       case Intrinsic::x86_sse42_crc32_64_64:
1749         Known.Zero.setBitsFrom(32);
1750         break;
1751       }
1752     }
1753     break;
1754   case Instruction::ShuffleVector: {
1755     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1756     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1757     if (!Shuf) {
1758       Known.resetAll();
1759       return;
1760     }
1761     // For undef elements, we don't know anything about the common state of
1762     // the shuffle result.
1763     APInt DemandedLHS, DemandedRHS;
1764     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1765       Known.resetAll();
1766       return;
1767     }
1768     Known.One.setAllBits();
1769     Known.Zero.setAllBits();
1770     if (!!DemandedLHS) {
1771       const Value *LHS = Shuf->getOperand(0);
1772       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1773       // If we don't know any bits, early out.
1774       if (Known.isUnknown())
1775         break;
1776     }
1777     if (!!DemandedRHS) {
1778       const Value *RHS = Shuf->getOperand(1);
1779       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1780       Known.One &= Known2.One;
1781       Known.Zero &= Known2.Zero;
1782     }
1783     break;
1784   }
1785   case Instruction::InsertElement: {
1786     const Value *Vec = I->getOperand(0);
1787     const Value *Elt = I->getOperand(1);
1788     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1789     // Early out if the index is non-constant or out-of-range.
1790     unsigned NumElts = DemandedElts.getBitWidth();
1791     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1792       Known.resetAll();
1793       return;
1794     }
1795     Known.One.setAllBits();
1796     Known.Zero.setAllBits();
1797     unsigned EltIdx = CIdx->getZExtValue();
1798     // Do we demand the inserted element?
1799     if (DemandedElts[EltIdx]) {
1800       computeKnownBits(Elt, Known, Depth + 1, Q);
1801       // If we don't know any bits, early out.
1802       if (Known.isUnknown())
1803         break;
1804     }
1805     // We don't need the base vector element that has been inserted.
1806     APInt DemandedVecElts = DemandedElts;
1807     DemandedVecElts.clearBit(EltIdx);
1808     if (!!DemandedVecElts) {
1809       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1810       Known.One &= Known2.One;
1811       Known.Zero &= Known2.Zero;
1812     }
1813     break;
1814   }
1815   case Instruction::ExtractElement: {
1816     // Look through extract element. If the index is non-constant or
1817     // out-of-range demand all elements, otherwise just the extracted element.
1818     const Value *Vec = I->getOperand(0);
1819     const Value *Idx = I->getOperand(1);
1820     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1821     if (isa<ScalableVectorType>(Vec->getType())) {
1822       // FIXME: there's probably *something* we can do with scalable vectors
1823       Known.resetAll();
1824       break;
1825     }
1826     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1827     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1828     if (CIdx && CIdx->getValue().ult(NumElts))
1829       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1830     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1831     break;
1832   }
1833   case Instruction::ExtractValue:
1834     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1835       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1836       if (EVI->getNumIndices() != 1) break;
1837       if (EVI->getIndices()[0] == 0) {
1838         switch (II->getIntrinsicID()) {
1839         default: break;
1840         case Intrinsic::uadd_with_overflow:
1841         case Intrinsic::sadd_with_overflow:
1842           computeKnownBitsAddSub(true, II->getArgOperand(0),
1843                                  II->getArgOperand(1), false, DemandedElts,
1844                                  Known, Known2, Depth, Q);
1845           break;
1846         case Intrinsic::usub_with_overflow:
1847         case Intrinsic::ssub_with_overflow:
1848           computeKnownBitsAddSub(false, II->getArgOperand(0),
1849                                  II->getArgOperand(1), false, DemandedElts,
1850                                  Known, Known2, Depth, Q);
1851           break;
1852         case Intrinsic::umul_with_overflow:
1853         case Intrinsic::smul_with_overflow:
1854           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1855                               DemandedElts, Known, Known2, Depth, Q);
1856           break;
1857         }
1858       }
1859     }
1860     break;
1861   }
1862 }
1863 
1864 /// Determine which bits of V are known to be either zero or one and return
1865 /// them.
1866 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1867                            unsigned Depth, const Query &Q) {
1868   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1869   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1870   return Known;
1871 }
1872 
1873 /// Determine which bits of V are known to be either zero or one and return
1874 /// them.
1875 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1876   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1877   computeKnownBits(V, Known, Depth, Q);
1878   return Known;
1879 }
1880 
1881 /// Determine which bits of V are known to be either zero or one and return
1882 /// them in the Known bit set.
1883 ///
1884 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1885 /// we cannot optimize based on the assumption that it is zero without changing
1886 /// it to be an explicit zero.  If we don't change it to zero, other code could
1887 /// optimized based on the contradictory assumption that it is non-zero.
1888 /// Because instcombine aggressively folds operations with undef args anyway,
1889 /// this won't lose us code quality.
1890 ///
1891 /// This function is defined on values with integer type, values with pointer
1892 /// type, and vectors of integers.  In the case
1893 /// where V is a vector, known zero, and known one values are the
1894 /// same width as the vector element, and the bit is set only if it is true
1895 /// for all of the demanded elements in the vector specified by DemandedElts.
1896 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1897                       KnownBits &Known, unsigned Depth, const Query &Q) {
1898   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1899     // No demanded elts or V is a scalable vector, better to assume we don't
1900     // know anything.
1901     Known.resetAll();
1902     return;
1903   }
1904 
1905   assert(V && "No Value?");
1906   assert(Depth <= MaxDepth && "Limit Search Depth");
1907 
1908 #ifndef NDEBUG
1909   Type *Ty = V->getType();
1910   unsigned BitWidth = Known.getBitWidth();
1911 
1912   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1913          "Not integer or pointer type!");
1914 
1915   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1916     assert(
1917         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1918         "DemandedElt width should equal the fixed vector number of elements");
1919   } else {
1920     assert(DemandedElts == APInt(1, 1) &&
1921            "DemandedElt width should be 1 for scalars");
1922   }
1923 
1924   Type *ScalarTy = Ty->getScalarType();
1925   if (ScalarTy->isPointerTy()) {
1926     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1927            "V and Known should have same BitWidth");
1928   } else {
1929     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1930            "V and Known should have same BitWidth");
1931   }
1932 #endif
1933 
1934   const APInt *C;
1935   if (match(V, m_APInt(C))) {
1936     // We know all of the bits for a scalar constant or a splat vector constant!
1937     Known.One = *C;
1938     Known.Zero = ~Known.One;
1939     return;
1940   }
1941   // Null and aggregate-zero are all-zeros.
1942   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1943     Known.setAllZero();
1944     return;
1945   }
1946   // Handle a constant vector by taking the intersection of the known bits of
1947   // each element.
1948   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1949     // We know that CDV must be a vector of integers. Take the intersection of
1950     // each element.
1951     Known.Zero.setAllBits(); Known.One.setAllBits();
1952     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1953       if (!DemandedElts[i])
1954         continue;
1955       APInt Elt = CDV->getElementAsAPInt(i);
1956       Known.Zero &= ~Elt;
1957       Known.One &= Elt;
1958     }
1959     return;
1960   }
1961 
1962   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1963     // We know that CV must be a vector of integers. Take the intersection of
1964     // each element.
1965     Known.Zero.setAllBits(); Known.One.setAllBits();
1966     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1967       if (!DemandedElts[i])
1968         continue;
1969       Constant *Element = CV->getAggregateElement(i);
1970       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1971       if (!ElementCI) {
1972         Known.resetAll();
1973         return;
1974       }
1975       const APInt &Elt = ElementCI->getValue();
1976       Known.Zero &= ~Elt;
1977       Known.One &= Elt;
1978     }
1979     return;
1980   }
1981 
1982   // Start out not knowing anything.
1983   Known.resetAll();
1984 
1985   // We can't imply anything about undefs.
1986   if (isa<UndefValue>(V))
1987     return;
1988 
1989   // There's no point in looking through other users of ConstantData for
1990   // assumptions.  Confirm that we've handled them all.
1991   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1992 
1993   // Limit search depth.
1994   // All recursive calls that increase depth must come after this.
1995   if (Depth == MaxDepth)
1996     return;
1997 
1998   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1999   // the bits of its aliasee.
2000   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2001     if (!GA->isInterposable())
2002       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2003     return;
2004   }
2005 
2006   if (const Operator *I = dyn_cast<Operator>(V))
2007     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2008 
2009   // Aligned pointers have trailing zeros - refine Known.Zero set
2010   if (isa<PointerType>(V->getType())) {
2011     Align Alignment = V->getPointerAlignment(Q.DL);
2012     Known.Zero.setLowBits(countTrailingZeros(Alignment.value()));
2013   }
2014 
2015   // computeKnownBitsFromAssume strictly refines Known.
2016   // Therefore, we run them after computeKnownBitsFromOperator.
2017 
2018   // Check whether a nearby assume intrinsic can determine some known bits.
2019   computeKnownBitsFromAssume(V, Known, Depth, Q);
2020 
2021   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2022 }
2023 
2024 /// Return true if the given value is known to have exactly one
2025 /// bit set when defined. For vectors return true if every element is known to
2026 /// be a power of two when defined. Supports values with integer or pointer
2027 /// types and vectors of integers.
2028 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2029                             const Query &Q) {
2030   assert(Depth <= MaxDepth && "Limit Search Depth");
2031 
2032   // Attempt to match against constants.
2033   if (OrZero && match(V, m_Power2OrZero()))
2034       return true;
2035   if (match(V, m_Power2()))
2036       return true;
2037 
2038   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2039   // it is shifted off the end then the result is undefined.
2040   if (match(V, m_Shl(m_One(), m_Value())))
2041     return true;
2042 
2043   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2044   // the bottom.  If it is shifted off the bottom then the result is undefined.
2045   if (match(V, m_LShr(m_SignMask(), m_Value())))
2046     return true;
2047 
2048   // The remaining tests are all recursive, so bail out if we hit the limit.
2049   if (Depth++ == MaxDepth)
2050     return false;
2051 
2052   Value *X = nullptr, *Y = nullptr;
2053   // A shift left or a logical shift right of a power of two is a power of two
2054   // or zero.
2055   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2056                  match(V, m_LShr(m_Value(X), m_Value()))))
2057     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2058 
2059   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2060     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2061 
2062   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2063     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2064            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2065 
2066   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2067     // A power of two and'd with anything is a power of two or zero.
2068     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2069         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2070       return true;
2071     // X & (-X) is always a power of two or zero.
2072     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2073       return true;
2074     return false;
2075   }
2076 
2077   // Adding a power-of-two or zero to the same power-of-two or zero yields
2078   // either the original power-of-two, a larger power-of-two or zero.
2079   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2080     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2081     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2082         Q.IIQ.hasNoSignedWrap(VOBO)) {
2083       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2084           match(X, m_And(m_Value(), m_Specific(Y))))
2085         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2086           return true;
2087       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2088           match(Y, m_And(m_Value(), m_Specific(X))))
2089         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2090           return true;
2091 
2092       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2093       KnownBits LHSBits(BitWidth);
2094       computeKnownBits(X, LHSBits, Depth, Q);
2095 
2096       KnownBits RHSBits(BitWidth);
2097       computeKnownBits(Y, RHSBits, Depth, Q);
2098       // If i8 V is a power of two or zero:
2099       //  ZeroBits: 1 1 1 0 1 1 1 1
2100       // ~ZeroBits: 0 0 0 1 0 0 0 0
2101       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2102         // If OrZero isn't set, we cannot give back a zero result.
2103         // Make sure either the LHS or RHS has a bit set.
2104         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2105           return true;
2106     }
2107   }
2108 
2109   // An exact divide or right shift can only shift off zero bits, so the result
2110   // is a power of two only if the first operand is a power of two and not
2111   // copying a sign bit (sdiv int_min, 2).
2112   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2113       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2114     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2115                                   Depth, Q);
2116   }
2117 
2118   return false;
2119 }
2120 
2121 /// Test whether a GEP's result is known to be non-null.
2122 ///
2123 /// Uses properties inherent in a GEP to try to determine whether it is known
2124 /// to be non-null.
2125 ///
2126 /// Currently this routine does not support vector GEPs.
2127 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2128                               const Query &Q) {
2129   const Function *F = nullptr;
2130   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2131     F = I->getFunction();
2132 
2133   if (!GEP->isInBounds() ||
2134       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2135     return false;
2136 
2137   // FIXME: Support vector-GEPs.
2138   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2139 
2140   // If the base pointer is non-null, we cannot walk to a null address with an
2141   // inbounds GEP in address space zero.
2142   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2143     return true;
2144 
2145   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2146   // If so, then the GEP cannot produce a null pointer, as doing so would
2147   // inherently violate the inbounds contract within address space zero.
2148   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2149        GTI != GTE; ++GTI) {
2150     // Struct types are easy -- they must always be indexed by a constant.
2151     if (StructType *STy = GTI.getStructTypeOrNull()) {
2152       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2153       unsigned ElementIdx = OpC->getZExtValue();
2154       const StructLayout *SL = Q.DL.getStructLayout(STy);
2155       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2156       if (ElementOffset > 0)
2157         return true;
2158       continue;
2159     }
2160 
2161     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2162     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2163       continue;
2164 
2165     // Fast path the constant operand case both for efficiency and so we don't
2166     // increment Depth when just zipping down an all-constant GEP.
2167     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2168       if (!OpC->isZero())
2169         return true;
2170       continue;
2171     }
2172 
2173     // We post-increment Depth here because while isKnownNonZero increments it
2174     // as well, when we pop back up that increment won't persist. We don't want
2175     // to recurse 10k times just because we have 10k GEP operands. We don't
2176     // bail completely out because we want to handle constant GEPs regardless
2177     // of depth.
2178     if (Depth++ >= MaxDepth)
2179       continue;
2180 
2181     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2182       return true;
2183   }
2184 
2185   return false;
2186 }
2187 
2188 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2189                                                   const Instruction *CtxI,
2190                                                   const DominatorTree *DT) {
2191   if (isa<Constant>(V))
2192     return false;
2193 
2194   if (!CtxI || !DT)
2195     return false;
2196 
2197   unsigned NumUsesExplored = 0;
2198   for (auto *U : V->users()) {
2199     // Avoid massive lists
2200     if (NumUsesExplored >= DomConditionsMaxUses)
2201       break;
2202     NumUsesExplored++;
2203 
2204     // If the value is used as an argument to a call or invoke, then argument
2205     // attributes may provide an answer about null-ness.
2206     if (const auto *CB = dyn_cast<CallBase>(U))
2207       if (auto *CalledFunc = CB->getCalledFunction())
2208         for (const Argument &Arg : CalledFunc->args())
2209           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2210               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2211             return true;
2212 
2213     // If the value is used as a load/store, then the pointer must be non null.
2214     if (V == getLoadStorePointerOperand(U)) {
2215       const Instruction *I = cast<Instruction>(U);
2216       if (!NullPointerIsDefined(I->getFunction(),
2217                                 V->getType()->getPointerAddressSpace()) &&
2218           DT->dominates(I, CtxI))
2219         return true;
2220     }
2221 
2222     // Consider only compare instructions uniquely controlling a branch
2223     CmpInst::Predicate Pred;
2224     if (!match(const_cast<User *>(U),
2225                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2226         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2227       continue;
2228 
2229     SmallVector<const User *, 4> WorkList;
2230     SmallPtrSet<const User *, 4> Visited;
2231     for (auto *CmpU : U->users()) {
2232       assert(WorkList.empty() && "Should be!");
2233       if (Visited.insert(CmpU).second)
2234         WorkList.push_back(CmpU);
2235 
2236       while (!WorkList.empty()) {
2237         auto *Curr = WorkList.pop_back_val();
2238 
2239         // If a user is an AND, add all its users to the work list. We only
2240         // propagate "pred != null" condition through AND because it is only
2241         // correct to assume that all conditions of AND are met in true branch.
2242         // TODO: Support similar logic of OR and EQ predicate?
2243         if (Pred == ICmpInst::ICMP_NE)
2244           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2245             if (BO->getOpcode() == Instruction::And) {
2246               for (auto *BOU : BO->users())
2247                 if (Visited.insert(BOU).second)
2248                   WorkList.push_back(BOU);
2249               continue;
2250             }
2251 
2252         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2253           assert(BI->isConditional() && "uses a comparison!");
2254 
2255           BasicBlock *NonNullSuccessor =
2256               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2257           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2258           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2259             return true;
2260         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2261                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2262           return true;
2263         }
2264       }
2265     }
2266   }
2267 
2268   return false;
2269 }
2270 
2271 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2272 /// ensure that the value it's attached to is never Value?  'RangeType' is
2273 /// is the type of the value described by the range.
2274 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2275   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2276   assert(NumRanges >= 1);
2277   for (unsigned i = 0; i < NumRanges; ++i) {
2278     ConstantInt *Lower =
2279         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2280     ConstantInt *Upper =
2281         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2282     ConstantRange Range(Lower->getValue(), Upper->getValue());
2283     if (Range.contains(Value))
2284       return false;
2285   }
2286   return true;
2287 }
2288 
2289 /// Return true if the given value is known to be non-zero when defined. For
2290 /// vectors, return true if every demanded element is known to be non-zero when
2291 /// defined. For pointers, if the context instruction and dominator tree are
2292 /// specified, perform context-sensitive analysis and return true if the
2293 /// pointer couldn't possibly be null at the specified instruction.
2294 /// Supports values with integer or pointer type and vectors of integers.
2295 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2296                     const Query &Q) {
2297   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2298   // vector
2299   if (isa<ScalableVectorType>(V->getType()))
2300     return false;
2301 
2302   if (auto *C = dyn_cast<Constant>(V)) {
2303     if (C->isNullValue())
2304       return false;
2305     if (isa<ConstantInt>(C))
2306       // Must be non-zero due to null test above.
2307       return true;
2308 
2309     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2310       // See the comment for IntToPtr/PtrToInt instructions below.
2311       if (CE->getOpcode() == Instruction::IntToPtr ||
2312           CE->getOpcode() == Instruction::PtrToInt)
2313         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2314             Q.DL.getTypeSizeInBits(CE->getType()))
2315           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2316     }
2317 
2318     // For constant vectors, check that all elements are undefined or known
2319     // non-zero to determine that the whole vector is known non-zero.
2320     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2321       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2322         if (!DemandedElts[i])
2323           continue;
2324         Constant *Elt = C->getAggregateElement(i);
2325         if (!Elt || Elt->isNullValue())
2326           return false;
2327         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2328           return false;
2329       }
2330       return true;
2331     }
2332 
2333     // A global variable in address space 0 is non null unless extern weak
2334     // or an absolute symbol reference. Other address spaces may have null as a
2335     // valid address for a global, so we can't assume anything.
2336     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2337       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2338           GV->getType()->getAddressSpace() == 0)
2339         return true;
2340     } else
2341       return false;
2342   }
2343 
2344   if (auto *I = dyn_cast<Instruction>(V)) {
2345     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2346       // If the possible ranges don't contain zero, then the value is
2347       // definitely non-zero.
2348       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2349         const APInt ZeroValue(Ty->getBitWidth(), 0);
2350         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2351           return true;
2352       }
2353     }
2354   }
2355 
2356   if (isKnownNonZeroFromAssume(V, Q))
2357     return true;
2358 
2359   // Some of the tests below are recursive, so bail out if we hit the limit.
2360   if (Depth++ >= MaxDepth)
2361     return false;
2362 
2363   // Check for pointer simplifications.
2364   if (V->getType()->isPointerTy()) {
2365     // Alloca never returns null, malloc might.
2366     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2367       return true;
2368 
2369     // A byval, inalloca, or nonnull argument is never null.
2370     if (const Argument *A = dyn_cast<Argument>(V))
2371       if (A->hasPassPointeeByValueAttr() || A->hasNonNullAttr())
2372         return true;
2373 
2374     // A Load tagged with nonnull metadata is never null.
2375     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2376       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2377         return true;
2378 
2379     if (const auto *Call = dyn_cast<CallBase>(V)) {
2380       if (Call->isReturnNonNull())
2381         return true;
2382       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2383         return isKnownNonZero(RP, Depth, Q);
2384     }
2385   }
2386 
2387   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2388     return true;
2389 
2390   // Check for recursive pointer simplifications.
2391   if (V->getType()->isPointerTy()) {
2392     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2393     // do not alter the value, or at least not the nullness property of the
2394     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2395     //
2396     // Note that we have to take special care to avoid looking through
2397     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2398     // as casts that can alter the value, e.g., AddrSpaceCasts.
2399     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2400       if (isGEPKnownNonNull(GEP, Depth, Q))
2401         return true;
2402 
2403     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2404       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2405 
2406     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2407       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2408           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2409         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2410   }
2411 
2412   // Similar to int2ptr above, we can look through ptr2int here if the cast
2413   // is a no-op or an extend and not a truncate.
2414   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2415     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2416         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2417       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2418 
2419   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2420 
2421   // X | Y != 0 if X != 0 or Y != 0.
2422   Value *X = nullptr, *Y = nullptr;
2423   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2424     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2425            isKnownNonZero(Y, DemandedElts, Depth, Q);
2426 
2427   // ext X != 0 if X != 0.
2428   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2429     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2430 
2431   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2432   // if the lowest bit is shifted off the end.
2433   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2434     // shl nuw can't remove any non-zero bits.
2435     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2436     if (Q.IIQ.hasNoUnsignedWrap(BO))
2437       return isKnownNonZero(X, Depth, Q);
2438 
2439     KnownBits Known(BitWidth);
2440     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2441     if (Known.One[0])
2442       return true;
2443   }
2444   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2445   // defined if the sign bit is shifted off the end.
2446   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2447     // shr exact can only shift out zero bits.
2448     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2449     if (BO->isExact())
2450       return isKnownNonZero(X, Depth, Q);
2451 
2452     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2453     if (Known.isNegative())
2454       return true;
2455 
2456     // If the shifter operand is a constant, and all of the bits shifted
2457     // out are known to be zero, and X is known non-zero then at least one
2458     // non-zero bit must remain.
2459     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2460       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2461       // Is there a known one in the portion not shifted out?
2462       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2463         return true;
2464       // Are all the bits to be shifted out known zero?
2465       if (Known.countMinTrailingZeros() >= ShiftVal)
2466         return isKnownNonZero(X, DemandedElts, Depth, Q);
2467     }
2468   }
2469   // div exact can only produce a zero if the dividend is zero.
2470   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2471     return isKnownNonZero(X, DemandedElts, Depth, Q);
2472   }
2473   // X + Y.
2474   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2475     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2476     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2477 
2478     // If X and Y are both non-negative (as signed values) then their sum is not
2479     // zero unless both X and Y are zero.
2480     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2481       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2482           isKnownNonZero(Y, DemandedElts, Depth, Q))
2483         return true;
2484 
2485     // If X and Y are both negative (as signed values) then their sum is not
2486     // zero unless both X and Y equal INT_MIN.
2487     if (XKnown.isNegative() && YKnown.isNegative()) {
2488       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2489       // The sign bit of X is set.  If some other bit is set then X is not equal
2490       // to INT_MIN.
2491       if (XKnown.One.intersects(Mask))
2492         return true;
2493       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2494       // to INT_MIN.
2495       if (YKnown.One.intersects(Mask))
2496         return true;
2497     }
2498 
2499     // The sum of a non-negative number and a power of two is not zero.
2500     if (XKnown.isNonNegative() &&
2501         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2502       return true;
2503     if (YKnown.isNonNegative() &&
2504         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2505       return true;
2506   }
2507   // X * Y.
2508   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2509     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2510     // If X and Y are non-zero then so is X * Y as long as the multiplication
2511     // does not overflow.
2512     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2513         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2514         isKnownNonZero(Y, DemandedElts, Depth, Q))
2515       return true;
2516   }
2517   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2518   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2519     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2520         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2521       return true;
2522   }
2523   // PHI
2524   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2525     // Try and detect a recurrence that monotonically increases from a
2526     // starting value, as these are common as induction variables.
2527     if (PN->getNumIncomingValues() == 2) {
2528       Value *Start = PN->getIncomingValue(0);
2529       Value *Induction = PN->getIncomingValue(1);
2530       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2531         std::swap(Start, Induction);
2532       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2533         if (!C->isZero() && !C->isNegative()) {
2534           ConstantInt *X;
2535           if (Q.IIQ.UseInstrInfo &&
2536               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2537                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2538               !X->isNegative())
2539             return true;
2540         }
2541       }
2542     }
2543     // Check if all incoming values are non-zero constant.
2544     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2545       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2546     });
2547     if (AllNonZeroConstants)
2548       return true;
2549   }
2550   // ExtractElement
2551   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2552     const Value *Vec = EEI->getVectorOperand();
2553     const Value *Idx = EEI->getIndexOperand();
2554     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2555     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
2556     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2557     if (CIdx && CIdx->getValue().ult(NumElts))
2558       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2559     return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2560   }
2561 
2562   KnownBits Known(BitWidth);
2563   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2564   return Known.One != 0;
2565 }
2566 
2567 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2568   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2569   // vector
2570   if (isa<ScalableVectorType>(V->getType()))
2571     return false;
2572 
2573   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2574   APInt DemandedElts =
2575       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2576   return isKnownNonZero(V, DemandedElts, Depth, Q);
2577 }
2578 
2579 /// Return true if V2 == V1 + X, where X is known non-zero.
2580 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2581   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2582   if (!BO || BO->getOpcode() != Instruction::Add)
2583     return false;
2584   Value *Op = nullptr;
2585   if (V2 == BO->getOperand(0))
2586     Op = BO->getOperand(1);
2587   else if (V2 == BO->getOperand(1))
2588     Op = BO->getOperand(0);
2589   else
2590     return false;
2591   return isKnownNonZero(Op, 0, Q);
2592 }
2593 
2594 /// Return true if it is known that V1 != V2.
2595 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2596   if (V1 == V2)
2597     return false;
2598   if (V1->getType() != V2->getType())
2599     // We can't look through casts yet.
2600     return false;
2601   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2602     return true;
2603 
2604   if (V1->getType()->isIntOrIntVectorTy()) {
2605     // Are any known bits in V1 contradictory to known bits in V2? If V1
2606     // has a known zero where V2 has a known one, they must not be equal.
2607     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2608     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2609 
2610     if (Known1.Zero.intersects(Known2.One) ||
2611         Known2.Zero.intersects(Known1.One))
2612       return true;
2613   }
2614   return false;
2615 }
2616 
2617 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2618 /// simplify operations downstream. Mask is known to be zero for bits that V
2619 /// cannot have.
2620 ///
2621 /// This function is defined on values with integer type, values with pointer
2622 /// type, and vectors of integers.  In the case
2623 /// where V is a vector, the mask, known zero, and known one values are the
2624 /// same width as the vector element, and the bit is set only if it is true
2625 /// for all of the elements in the vector.
2626 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2627                        const Query &Q) {
2628   KnownBits Known(Mask.getBitWidth());
2629   computeKnownBits(V, Known, Depth, Q);
2630   return Mask.isSubsetOf(Known.Zero);
2631 }
2632 
2633 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2634 // Returns the input and lower/upper bounds.
2635 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2636                                 const APInt *&CLow, const APInt *&CHigh) {
2637   assert(isa<Operator>(Select) &&
2638          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2639          "Input should be a Select!");
2640 
2641   const Value *LHS = nullptr, *RHS = nullptr;
2642   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2643   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2644     return false;
2645 
2646   if (!match(RHS, m_APInt(CLow)))
2647     return false;
2648 
2649   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2650   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2651   if (getInverseMinMaxFlavor(SPF) != SPF2)
2652     return false;
2653 
2654   if (!match(RHS2, m_APInt(CHigh)))
2655     return false;
2656 
2657   if (SPF == SPF_SMIN)
2658     std::swap(CLow, CHigh);
2659 
2660   In = LHS2;
2661   return CLow->sle(*CHigh);
2662 }
2663 
2664 /// For vector constants, loop over the elements and find the constant with the
2665 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2666 /// or if any element was not analyzed; otherwise, return the count for the
2667 /// element with the minimum number of sign bits.
2668 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2669                                                  const APInt &DemandedElts,
2670                                                  unsigned TyBits) {
2671   const auto *CV = dyn_cast<Constant>(V);
2672   if (!CV || !isa<FixedVectorType>(CV->getType()))
2673     return 0;
2674 
2675   unsigned MinSignBits = TyBits;
2676   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2677   for (unsigned i = 0; i != NumElts; ++i) {
2678     if (!DemandedElts[i])
2679       continue;
2680     // If we find a non-ConstantInt, bail out.
2681     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2682     if (!Elt)
2683       return 0;
2684 
2685     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2686   }
2687 
2688   return MinSignBits;
2689 }
2690 
2691 static unsigned ComputeNumSignBitsImpl(const Value *V,
2692                                        const APInt &DemandedElts,
2693                                        unsigned Depth, const Query &Q);
2694 
2695 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2696                                    unsigned Depth, const Query &Q) {
2697   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2698   assert(Result > 0 && "At least one sign bit needs to be present!");
2699   return Result;
2700 }
2701 
2702 /// Return the number of times the sign bit of the register is replicated into
2703 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2704 /// (itself), but other cases can give us information. For example, immediately
2705 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2706 /// other, so we return 3. For vectors, return the number of sign bits for the
2707 /// vector element with the minimum number of known sign bits of the demanded
2708 /// elements in the vector specified by DemandedElts.
2709 static unsigned ComputeNumSignBitsImpl(const Value *V,
2710                                        const APInt &DemandedElts,
2711                                        unsigned Depth, const Query &Q) {
2712   Type *Ty = V->getType();
2713 
2714   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2715   // vector
2716   if (isa<ScalableVectorType>(Ty))
2717     return 1;
2718 
2719 #ifndef NDEBUG
2720   assert(Depth <= MaxDepth && "Limit Search Depth");
2721 
2722   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2723     assert(
2724         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2725         "DemandedElt width should equal the fixed vector number of elements");
2726   } else {
2727     assert(DemandedElts == APInt(1, 1) &&
2728            "DemandedElt width should be 1 for scalars");
2729   }
2730 #endif
2731 
2732   // We return the minimum number of sign bits that are guaranteed to be present
2733   // in V, so for undef we have to conservatively return 1.  We don't have the
2734   // same behavior for poison though -- that's a FIXME today.
2735 
2736   Type *ScalarTy = Ty->getScalarType();
2737   unsigned TyBits = ScalarTy->isPointerTy() ?
2738     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2739     Q.DL.getTypeSizeInBits(ScalarTy);
2740 
2741   unsigned Tmp, Tmp2;
2742   unsigned FirstAnswer = 1;
2743 
2744   // Note that ConstantInt is handled by the general computeKnownBits case
2745   // below.
2746 
2747   if (Depth == MaxDepth)
2748     return 1;  // Limit search depth.
2749 
2750   if (auto *U = dyn_cast<Operator>(V)) {
2751     switch (Operator::getOpcode(V)) {
2752     default: break;
2753     case Instruction::SExt:
2754       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2755       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2756 
2757     case Instruction::SDiv: {
2758       const APInt *Denominator;
2759       // sdiv X, C -> adds log(C) sign bits.
2760       if (match(U->getOperand(1), m_APInt(Denominator))) {
2761 
2762         // Ignore non-positive denominator.
2763         if (!Denominator->isStrictlyPositive())
2764           break;
2765 
2766         // Calculate the incoming numerator bits.
2767         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2768 
2769         // Add floor(log(C)) bits to the numerator bits.
2770         return std::min(TyBits, NumBits + Denominator->logBase2());
2771       }
2772       break;
2773     }
2774 
2775     case Instruction::SRem: {
2776       const APInt *Denominator;
2777       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2778       // positive constant.  This let us put a lower bound on the number of sign
2779       // bits.
2780       if (match(U->getOperand(1), m_APInt(Denominator))) {
2781 
2782         // Ignore non-positive denominator.
2783         if (!Denominator->isStrictlyPositive())
2784           break;
2785 
2786         // Calculate the incoming numerator bits. SRem by a positive constant
2787         // can't lower the number of sign bits.
2788         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2789 
2790         // Calculate the leading sign bit constraints by examining the
2791         // denominator.  Given that the denominator is positive, there are two
2792         // cases:
2793         //
2794         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2795         //     (1 << ceilLogBase2(C)).
2796         //
2797         //  2. the numerator is negative. Then the result range is (-C,0] and
2798         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2799         //
2800         // Thus a lower bound on the number of sign bits is `TyBits -
2801         // ceilLogBase2(C)`.
2802 
2803         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2804         return std::max(NumrBits, ResBits);
2805       }
2806       break;
2807     }
2808 
2809     case Instruction::AShr: {
2810       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2811       // ashr X, C   -> adds C sign bits.  Vectors too.
2812       const APInt *ShAmt;
2813       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2814         if (ShAmt->uge(TyBits))
2815           break; // Bad shift.
2816         unsigned ShAmtLimited = ShAmt->getZExtValue();
2817         Tmp += ShAmtLimited;
2818         if (Tmp > TyBits) Tmp = TyBits;
2819       }
2820       return Tmp;
2821     }
2822     case Instruction::Shl: {
2823       const APInt *ShAmt;
2824       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2825         // shl destroys sign bits.
2826         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2827         if (ShAmt->uge(TyBits) ||   // Bad shift.
2828             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2829         Tmp2 = ShAmt->getZExtValue();
2830         return Tmp - Tmp2;
2831       }
2832       break;
2833     }
2834     case Instruction::And:
2835     case Instruction::Or:
2836     case Instruction::Xor: // NOT is handled here.
2837       // Logical binary ops preserve the number of sign bits at the worst.
2838       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2839       if (Tmp != 1) {
2840         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2841         FirstAnswer = std::min(Tmp, Tmp2);
2842         // We computed what we know about the sign bits as our first
2843         // answer. Now proceed to the generic code that uses
2844         // computeKnownBits, and pick whichever answer is better.
2845       }
2846       break;
2847 
2848     case Instruction::Select: {
2849       // If we have a clamp pattern, we know that the number of sign bits will
2850       // be the minimum of the clamp min/max range.
2851       const Value *X;
2852       const APInt *CLow, *CHigh;
2853       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2854         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2855 
2856       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2857       if (Tmp == 1) break;
2858       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2859       return std::min(Tmp, Tmp2);
2860     }
2861 
2862     case Instruction::Add:
2863       // Add can have at most one carry bit.  Thus we know that the output
2864       // is, at worst, one more bit than the inputs.
2865       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2866       if (Tmp == 1) break;
2867 
2868       // Special case decrementing a value (ADD X, -1):
2869       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2870         if (CRHS->isAllOnesValue()) {
2871           KnownBits Known(TyBits);
2872           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2873 
2874           // If the input is known to be 0 or 1, the output is 0/-1, which is
2875           // all sign bits set.
2876           if ((Known.Zero | 1).isAllOnesValue())
2877             return TyBits;
2878 
2879           // If we are subtracting one from a positive number, there is no carry
2880           // out of the result.
2881           if (Known.isNonNegative())
2882             return Tmp;
2883         }
2884 
2885       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2886       if (Tmp2 == 1) break;
2887       return std::min(Tmp, Tmp2) - 1;
2888 
2889     case Instruction::Sub:
2890       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2891       if (Tmp2 == 1) break;
2892 
2893       // Handle NEG.
2894       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2895         if (CLHS->isNullValue()) {
2896           KnownBits Known(TyBits);
2897           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2898           // If the input is known to be 0 or 1, the output is 0/-1, which is
2899           // all sign bits set.
2900           if ((Known.Zero | 1).isAllOnesValue())
2901             return TyBits;
2902 
2903           // If the input is known to be positive (the sign bit is known clear),
2904           // the output of the NEG has the same number of sign bits as the
2905           // input.
2906           if (Known.isNonNegative())
2907             return Tmp2;
2908 
2909           // Otherwise, we treat this like a SUB.
2910         }
2911 
2912       // Sub can have at most one carry bit.  Thus we know that the output
2913       // is, at worst, one more bit than the inputs.
2914       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2915       if (Tmp == 1) break;
2916       return std::min(Tmp, Tmp2) - 1;
2917 
2918     case Instruction::Mul: {
2919       // The output of the Mul can be at most twice the valid bits in the
2920       // inputs.
2921       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2922       if (SignBitsOp0 == 1) break;
2923       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2924       if (SignBitsOp1 == 1) break;
2925       unsigned OutValidBits =
2926           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2927       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2928     }
2929 
2930     case Instruction::PHI: {
2931       const PHINode *PN = cast<PHINode>(U);
2932       unsigned NumIncomingValues = PN->getNumIncomingValues();
2933       // Don't analyze large in-degree PHIs.
2934       if (NumIncomingValues > 4) break;
2935       // Unreachable blocks may have zero-operand PHI nodes.
2936       if (NumIncomingValues == 0) break;
2937 
2938       // Take the minimum of all incoming values.  This can't infinitely loop
2939       // because of our depth threshold.
2940       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2941       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2942         if (Tmp == 1) return Tmp;
2943         Tmp = std::min(
2944             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2945       }
2946       return Tmp;
2947     }
2948 
2949     case Instruction::Trunc:
2950       // FIXME: it's tricky to do anything useful for this, but it is an
2951       // important case for targets like X86.
2952       break;
2953 
2954     case Instruction::ExtractElement:
2955       // Look through extract element. At the moment we keep this simple and
2956       // skip tracking the specific element. But at least we might find
2957       // information valid for all elements of the vector (for example if vector
2958       // is sign extended, shifted, etc).
2959       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2960 
2961     case Instruction::ShuffleVector: {
2962       // Collect the minimum number of sign bits that are shared by every vector
2963       // element referenced by the shuffle.
2964       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2965       if (!Shuf) {
2966         // FIXME: Add support for shufflevector constant expressions.
2967         return 1;
2968       }
2969       APInt DemandedLHS, DemandedRHS;
2970       // For undef elements, we don't know anything about the common state of
2971       // the shuffle result.
2972       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
2973         return 1;
2974       Tmp = std::numeric_limits<unsigned>::max();
2975       if (!!DemandedLHS) {
2976         const Value *LHS = Shuf->getOperand(0);
2977         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
2978       }
2979       // If we don't know anything, early out and try computeKnownBits
2980       // fall-back.
2981       if (Tmp == 1)
2982         break;
2983       if (!!DemandedRHS) {
2984         const Value *RHS = Shuf->getOperand(1);
2985         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
2986         Tmp = std::min(Tmp, Tmp2);
2987       }
2988       // If we don't know anything, early out and try computeKnownBits
2989       // fall-back.
2990       if (Tmp == 1)
2991         break;
2992       assert(Tmp <= Ty->getScalarSizeInBits() &&
2993              "Failed to determine minimum sign bits");
2994       return Tmp;
2995     }
2996     }
2997   }
2998 
2999   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3000   // use this information.
3001 
3002   // If we can examine all elements of a vector constant successfully, we're
3003   // done (we can't do any better than that). If not, keep trying.
3004   if (unsigned VecSignBits =
3005           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3006     return VecSignBits;
3007 
3008   KnownBits Known(TyBits);
3009   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3010 
3011   // If we know that the sign bit is either zero or one, determine the number of
3012   // identical bits in the top of the input value.
3013   return std::max(FirstAnswer, Known.countMinSignBits());
3014 }
3015 
3016 /// This function computes the integer multiple of Base that equals V.
3017 /// If successful, it returns true and returns the multiple in
3018 /// Multiple. If unsuccessful, it returns false. It looks
3019 /// through SExt instructions only if LookThroughSExt is true.
3020 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3021                            bool LookThroughSExt, unsigned Depth) {
3022   assert(V && "No Value?");
3023   assert(Depth <= MaxDepth && "Limit Search Depth");
3024   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3025 
3026   Type *T = V->getType();
3027 
3028   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3029 
3030   if (Base == 0)
3031     return false;
3032 
3033   if (Base == 1) {
3034     Multiple = V;
3035     return true;
3036   }
3037 
3038   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3039   Constant *BaseVal = ConstantInt::get(T, Base);
3040   if (CO && CO == BaseVal) {
3041     // Multiple is 1.
3042     Multiple = ConstantInt::get(T, 1);
3043     return true;
3044   }
3045 
3046   if (CI && CI->getZExtValue() % Base == 0) {
3047     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3048     return true;
3049   }
3050 
3051   if (Depth == MaxDepth) return false;  // Limit search depth.
3052 
3053   Operator *I = dyn_cast<Operator>(V);
3054   if (!I) return false;
3055 
3056   switch (I->getOpcode()) {
3057   default: break;
3058   case Instruction::SExt:
3059     if (!LookThroughSExt) return false;
3060     // otherwise fall through to ZExt
3061     LLVM_FALLTHROUGH;
3062   case Instruction::ZExt:
3063     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3064                            LookThroughSExt, Depth+1);
3065   case Instruction::Shl:
3066   case Instruction::Mul: {
3067     Value *Op0 = I->getOperand(0);
3068     Value *Op1 = I->getOperand(1);
3069 
3070     if (I->getOpcode() == Instruction::Shl) {
3071       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3072       if (!Op1CI) return false;
3073       // Turn Op0 << Op1 into Op0 * 2^Op1
3074       APInt Op1Int = Op1CI->getValue();
3075       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3076       APInt API(Op1Int.getBitWidth(), 0);
3077       API.setBit(BitToSet);
3078       Op1 = ConstantInt::get(V->getContext(), API);
3079     }
3080 
3081     Value *Mul0 = nullptr;
3082     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3083       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3084         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3085           if (Op1C->getType()->getPrimitiveSizeInBits() <
3086               MulC->getType()->getPrimitiveSizeInBits())
3087             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3088           if (Op1C->getType()->getPrimitiveSizeInBits() >
3089               MulC->getType()->getPrimitiveSizeInBits())
3090             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3091 
3092           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3093           Multiple = ConstantExpr::getMul(MulC, Op1C);
3094           return true;
3095         }
3096 
3097       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3098         if (Mul0CI->getValue() == 1) {
3099           // V == Base * Op1, so return Op1
3100           Multiple = Op1;
3101           return true;
3102         }
3103     }
3104 
3105     Value *Mul1 = nullptr;
3106     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3107       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3108         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3109           if (Op0C->getType()->getPrimitiveSizeInBits() <
3110               MulC->getType()->getPrimitiveSizeInBits())
3111             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3112           if (Op0C->getType()->getPrimitiveSizeInBits() >
3113               MulC->getType()->getPrimitiveSizeInBits())
3114             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3115 
3116           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3117           Multiple = ConstantExpr::getMul(MulC, Op0C);
3118           return true;
3119         }
3120 
3121       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3122         if (Mul1CI->getValue() == 1) {
3123           // V == Base * Op0, so return Op0
3124           Multiple = Op0;
3125           return true;
3126         }
3127     }
3128   }
3129   }
3130 
3131   // We could not determine if V is a multiple of Base.
3132   return false;
3133 }
3134 
3135 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3136                                             const TargetLibraryInfo *TLI) {
3137   const Function *F = CB.getCalledFunction();
3138   if (!F)
3139     return Intrinsic::not_intrinsic;
3140 
3141   if (F->isIntrinsic())
3142     return F->getIntrinsicID();
3143 
3144   if (!TLI)
3145     return Intrinsic::not_intrinsic;
3146 
3147   LibFunc Func;
3148   // We're going to make assumptions on the semantics of the functions, check
3149   // that the target knows that it's available in this environment and it does
3150   // not have local linkage.
3151   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
3152     return Intrinsic::not_intrinsic;
3153 
3154   if (!CB.onlyReadsMemory())
3155     return Intrinsic::not_intrinsic;
3156 
3157   // Otherwise check if we have a call to a function that can be turned into a
3158   // vector intrinsic.
3159   switch (Func) {
3160   default:
3161     break;
3162   case LibFunc_sin:
3163   case LibFunc_sinf:
3164   case LibFunc_sinl:
3165     return Intrinsic::sin;
3166   case LibFunc_cos:
3167   case LibFunc_cosf:
3168   case LibFunc_cosl:
3169     return Intrinsic::cos;
3170   case LibFunc_exp:
3171   case LibFunc_expf:
3172   case LibFunc_expl:
3173     return Intrinsic::exp;
3174   case LibFunc_exp2:
3175   case LibFunc_exp2f:
3176   case LibFunc_exp2l:
3177     return Intrinsic::exp2;
3178   case LibFunc_log:
3179   case LibFunc_logf:
3180   case LibFunc_logl:
3181     return Intrinsic::log;
3182   case LibFunc_log10:
3183   case LibFunc_log10f:
3184   case LibFunc_log10l:
3185     return Intrinsic::log10;
3186   case LibFunc_log2:
3187   case LibFunc_log2f:
3188   case LibFunc_log2l:
3189     return Intrinsic::log2;
3190   case LibFunc_fabs:
3191   case LibFunc_fabsf:
3192   case LibFunc_fabsl:
3193     return Intrinsic::fabs;
3194   case LibFunc_fmin:
3195   case LibFunc_fminf:
3196   case LibFunc_fminl:
3197     return Intrinsic::minnum;
3198   case LibFunc_fmax:
3199   case LibFunc_fmaxf:
3200   case LibFunc_fmaxl:
3201     return Intrinsic::maxnum;
3202   case LibFunc_copysign:
3203   case LibFunc_copysignf:
3204   case LibFunc_copysignl:
3205     return Intrinsic::copysign;
3206   case LibFunc_floor:
3207   case LibFunc_floorf:
3208   case LibFunc_floorl:
3209     return Intrinsic::floor;
3210   case LibFunc_ceil:
3211   case LibFunc_ceilf:
3212   case LibFunc_ceill:
3213     return Intrinsic::ceil;
3214   case LibFunc_trunc:
3215   case LibFunc_truncf:
3216   case LibFunc_truncl:
3217     return Intrinsic::trunc;
3218   case LibFunc_rint:
3219   case LibFunc_rintf:
3220   case LibFunc_rintl:
3221     return Intrinsic::rint;
3222   case LibFunc_nearbyint:
3223   case LibFunc_nearbyintf:
3224   case LibFunc_nearbyintl:
3225     return Intrinsic::nearbyint;
3226   case LibFunc_round:
3227   case LibFunc_roundf:
3228   case LibFunc_roundl:
3229     return Intrinsic::round;
3230   case LibFunc_roundeven:
3231   case LibFunc_roundevenf:
3232   case LibFunc_roundevenl:
3233     return Intrinsic::roundeven;
3234   case LibFunc_pow:
3235   case LibFunc_powf:
3236   case LibFunc_powl:
3237     return Intrinsic::pow;
3238   case LibFunc_sqrt:
3239   case LibFunc_sqrtf:
3240   case LibFunc_sqrtl:
3241     return Intrinsic::sqrt;
3242   }
3243 
3244   return Intrinsic::not_intrinsic;
3245 }
3246 
3247 /// Return true if we can prove that the specified FP value is never equal to
3248 /// -0.0.
3249 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3250 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3251 ///       the same as +0.0 in floating-point ops.
3252 ///
3253 /// NOTE: this function will need to be revisited when we support non-default
3254 /// rounding modes!
3255 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3256                                 unsigned Depth) {
3257   if (auto *CFP = dyn_cast<ConstantFP>(V))
3258     return !CFP->getValueAPF().isNegZero();
3259 
3260   // Limit search depth.
3261   if (Depth == MaxDepth)
3262     return false;
3263 
3264   auto *Op = dyn_cast<Operator>(V);
3265   if (!Op)
3266     return false;
3267 
3268   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3269   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3270     return true;
3271 
3272   // sitofp and uitofp turn into +0.0 for zero.
3273   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3274     return true;
3275 
3276   if (auto *Call = dyn_cast<CallInst>(Op)) {
3277     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3278     switch (IID) {
3279     default:
3280       break;
3281     // sqrt(-0.0) = -0.0, no other negative results are possible.
3282     case Intrinsic::sqrt:
3283     case Intrinsic::canonicalize:
3284       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3285     // fabs(x) != -0.0
3286     case Intrinsic::fabs:
3287       return true;
3288     }
3289   }
3290 
3291   return false;
3292 }
3293 
3294 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3295 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3296 /// bit despite comparing equal.
3297 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3298                                             const TargetLibraryInfo *TLI,
3299                                             bool SignBitOnly,
3300                                             unsigned Depth) {
3301   // TODO: This function does not do the right thing when SignBitOnly is true
3302   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3303   // which flips the sign bits of NaNs.  See
3304   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3305 
3306   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3307     return !CFP->getValueAPF().isNegative() ||
3308            (!SignBitOnly && CFP->getValueAPF().isZero());
3309   }
3310 
3311   // Handle vector of constants.
3312   if (auto *CV = dyn_cast<Constant>(V)) {
3313     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3314       unsigned NumElts = CVFVTy->getNumElements();
3315       for (unsigned i = 0; i != NumElts; ++i) {
3316         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3317         if (!CFP)
3318           return false;
3319         if (CFP->getValueAPF().isNegative() &&
3320             (SignBitOnly || !CFP->getValueAPF().isZero()))
3321           return false;
3322       }
3323 
3324       // All non-negative ConstantFPs.
3325       return true;
3326     }
3327   }
3328 
3329   if (Depth == MaxDepth)
3330     return false; // Limit search depth.
3331 
3332   const Operator *I = dyn_cast<Operator>(V);
3333   if (!I)
3334     return false;
3335 
3336   switch (I->getOpcode()) {
3337   default:
3338     break;
3339   // Unsigned integers are always nonnegative.
3340   case Instruction::UIToFP:
3341     return true;
3342   case Instruction::FMul:
3343     // x*x is always non-negative or a NaN.
3344     if (I->getOperand(0) == I->getOperand(1) &&
3345         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3346       return true;
3347 
3348     LLVM_FALLTHROUGH;
3349   case Instruction::FAdd:
3350   case Instruction::FDiv:
3351   case Instruction::FRem:
3352     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3353                                            Depth + 1) &&
3354            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3355                                            Depth + 1);
3356   case Instruction::Select:
3357     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3358                                            Depth + 1) &&
3359            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3360                                            Depth + 1);
3361   case Instruction::FPExt:
3362   case Instruction::FPTrunc:
3363     // Widening/narrowing never change sign.
3364     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3365                                            Depth + 1);
3366   case Instruction::ExtractElement:
3367     // Look through extract element. At the moment we keep this simple and skip
3368     // tracking the specific element. But at least we might find information
3369     // valid for all elements of the vector.
3370     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3371                                            Depth + 1);
3372   case Instruction::Call:
3373     const auto *CI = cast<CallInst>(I);
3374     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3375     switch (IID) {
3376     default:
3377       break;
3378     case Intrinsic::maxnum:
3379       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
3380               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
3381                                               SignBitOnly, Depth + 1)) ||
3382             (isKnownNeverNaN(I->getOperand(1), TLI) &&
3383               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3384                                               SignBitOnly, Depth + 1));
3385 
3386     case Intrinsic::maximum:
3387       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3388                                              Depth + 1) ||
3389              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3390                                              Depth + 1);
3391     case Intrinsic::minnum:
3392     case Intrinsic::minimum:
3393       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3394                                              Depth + 1) &&
3395              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3396                                              Depth + 1);
3397     case Intrinsic::exp:
3398     case Intrinsic::exp2:
3399     case Intrinsic::fabs:
3400       return true;
3401 
3402     case Intrinsic::sqrt:
3403       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3404       if (!SignBitOnly)
3405         return true;
3406       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3407                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3408 
3409     case Intrinsic::powi:
3410       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3411         // powi(x,n) is non-negative if n is even.
3412         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3413           return true;
3414       }
3415       // TODO: This is not correct.  Given that exp is an integer, here are the
3416       // ways that pow can return a negative value:
3417       //
3418       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3419       //   pow(-0, exp)   --> -inf if exp is negative odd.
3420       //   pow(-0, exp)   --> -0 if exp is positive odd.
3421       //   pow(-inf, exp) --> -0 if exp is negative odd.
3422       //   pow(-inf, exp) --> -inf if exp is positive odd.
3423       //
3424       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3425       // but we must return false if x == -0.  Unfortunately we do not currently
3426       // have a way of expressing this constraint.  See details in
3427       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3428       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3429                                              Depth + 1);
3430 
3431     case Intrinsic::fma:
3432     case Intrinsic::fmuladd:
3433       // x*x+y is non-negative if y is non-negative.
3434       return I->getOperand(0) == I->getOperand(1) &&
3435              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3436              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3437                                              Depth + 1);
3438     }
3439     break;
3440   }
3441   return false;
3442 }
3443 
3444 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3445                                        const TargetLibraryInfo *TLI) {
3446   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3447 }
3448 
3449 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3450   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3451 }
3452 
3453 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3454                                 unsigned Depth) {
3455   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3456 
3457   // If we're told that infinities won't happen, assume they won't.
3458   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3459     if (FPMathOp->hasNoInfs())
3460       return true;
3461 
3462   // Handle scalar constants.
3463   if (auto *CFP = dyn_cast<ConstantFP>(V))
3464     return !CFP->isInfinity();
3465 
3466   if (Depth == MaxDepth)
3467     return false;
3468 
3469   if (auto *Inst = dyn_cast<Instruction>(V)) {
3470     switch (Inst->getOpcode()) {
3471     case Instruction::Select: {
3472       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3473              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3474     }
3475     case Instruction::UIToFP:
3476       // If the input type fits into the floating type the result is finite.
3477       return ilogb(APFloat::getLargest(
3478                  Inst->getType()->getScalarType()->getFltSemantics())) >=
3479              (int)Inst->getOperand(0)->getType()->getScalarSizeInBits();
3480     default:
3481       break;
3482     }
3483   }
3484 
3485   // try to handle fixed width vector constants
3486   if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) {
3487     // For vectors, verify that each element is not infinity.
3488     unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
3489     for (unsigned i = 0; i != NumElts; ++i) {
3490       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3491       if (!Elt)
3492         return false;
3493       if (isa<UndefValue>(Elt))
3494         continue;
3495       auto *CElt = dyn_cast<ConstantFP>(Elt);
3496       if (!CElt || CElt->isInfinity())
3497         return false;
3498     }
3499     // All elements were confirmed non-infinity or undefined.
3500     return true;
3501   }
3502 
3503   // was not able to prove that V never contains infinity
3504   return false;
3505 }
3506 
3507 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3508                            unsigned Depth) {
3509   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3510 
3511   // If we're told that NaNs won't happen, assume they won't.
3512   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3513     if (FPMathOp->hasNoNaNs())
3514       return true;
3515 
3516   // Handle scalar constants.
3517   if (auto *CFP = dyn_cast<ConstantFP>(V))
3518     return !CFP->isNaN();
3519 
3520   if (Depth == MaxDepth)
3521     return false;
3522 
3523   if (auto *Inst = dyn_cast<Instruction>(V)) {
3524     switch (Inst->getOpcode()) {
3525     case Instruction::FAdd:
3526     case Instruction::FSub:
3527       // Adding positive and negative infinity produces NaN.
3528       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3529              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3530              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3531               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3532 
3533     case Instruction::FMul:
3534       // Zero multiplied with infinity produces NaN.
3535       // FIXME: If neither side can be zero fmul never produces NaN.
3536       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3537              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3538              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3539              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3540 
3541     case Instruction::FDiv:
3542     case Instruction::FRem:
3543       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3544       return false;
3545 
3546     case Instruction::Select: {
3547       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3548              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3549     }
3550     case Instruction::SIToFP:
3551     case Instruction::UIToFP:
3552       return true;
3553     case Instruction::FPTrunc:
3554     case Instruction::FPExt:
3555       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3556     default:
3557       break;
3558     }
3559   }
3560 
3561   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3562     switch (II->getIntrinsicID()) {
3563     case Intrinsic::canonicalize:
3564     case Intrinsic::fabs:
3565     case Intrinsic::copysign:
3566     case Intrinsic::exp:
3567     case Intrinsic::exp2:
3568     case Intrinsic::floor:
3569     case Intrinsic::ceil:
3570     case Intrinsic::trunc:
3571     case Intrinsic::rint:
3572     case Intrinsic::nearbyint:
3573     case Intrinsic::round:
3574     case Intrinsic::roundeven:
3575       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3576     case Intrinsic::sqrt:
3577       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3578              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3579     case Intrinsic::minnum:
3580     case Intrinsic::maxnum:
3581       // If either operand is not NaN, the result is not NaN.
3582       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3583              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3584     default:
3585       return false;
3586     }
3587   }
3588 
3589   // Try to handle fixed width vector constants
3590   if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) {
3591     // For vectors, verify that each element is not NaN.
3592     unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
3593     for (unsigned i = 0; i != NumElts; ++i) {
3594       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3595       if (!Elt)
3596         return false;
3597       if (isa<UndefValue>(Elt))
3598         continue;
3599       auto *CElt = dyn_cast<ConstantFP>(Elt);
3600       if (!CElt || CElt->isNaN())
3601         return false;
3602     }
3603     // All elements were confirmed not-NaN or undefined.
3604     return true;
3605   }
3606 
3607   // Was not able to prove that V never contains NaN
3608   return false;
3609 }
3610 
3611 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3612 
3613   // All byte-wide stores are splatable, even of arbitrary variables.
3614   if (V->getType()->isIntegerTy(8))
3615     return V;
3616 
3617   LLVMContext &Ctx = V->getContext();
3618 
3619   // Undef don't care.
3620   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3621   if (isa<UndefValue>(V))
3622     return UndefInt8;
3623 
3624   // Return Undef for zero-sized type.
3625   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3626     return UndefInt8;
3627 
3628   Constant *C = dyn_cast<Constant>(V);
3629   if (!C) {
3630     // Conceptually, we could handle things like:
3631     //   %a = zext i8 %X to i16
3632     //   %b = shl i16 %a, 8
3633     //   %c = or i16 %a, %b
3634     // but until there is an example that actually needs this, it doesn't seem
3635     // worth worrying about.
3636     return nullptr;
3637   }
3638 
3639   // Handle 'null' ConstantArrayZero etc.
3640   if (C->isNullValue())
3641     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3642 
3643   // Constant floating-point values can be handled as integer values if the
3644   // corresponding integer value is "byteable".  An important case is 0.0.
3645   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3646     Type *Ty = nullptr;
3647     if (CFP->getType()->isHalfTy())
3648       Ty = Type::getInt16Ty(Ctx);
3649     else if (CFP->getType()->isFloatTy())
3650       Ty = Type::getInt32Ty(Ctx);
3651     else if (CFP->getType()->isDoubleTy())
3652       Ty = Type::getInt64Ty(Ctx);
3653     // Don't handle long double formats, which have strange constraints.
3654     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3655               : nullptr;
3656   }
3657 
3658   // We can handle constant integers that are multiple of 8 bits.
3659   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3660     if (CI->getBitWidth() % 8 == 0) {
3661       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3662       if (!CI->getValue().isSplat(8))
3663         return nullptr;
3664       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3665     }
3666   }
3667 
3668   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3669     if (CE->getOpcode() == Instruction::IntToPtr) {
3670       auto PS = DL.getPointerSizeInBits(
3671           cast<PointerType>(CE->getType())->getAddressSpace());
3672       return isBytewiseValue(
3673           ConstantExpr::getIntegerCast(CE->getOperand(0),
3674                                        Type::getIntNTy(Ctx, PS), false),
3675           DL);
3676     }
3677   }
3678 
3679   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3680     if (LHS == RHS)
3681       return LHS;
3682     if (!LHS || !RHS)
3683       return nullptr;
3684     if (LHS == UndefInt8)
3685       return RHS;
3686     if (RHS == UndefInt8)
3687       return LHS;
3688     return nullptr;
3689   };
3690 
3691   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3692     Value *Val = UndefInt8;
3693     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3694       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3695         return nullptr;
3696     return Val;
3697   }
3698 
3699   if (isa<ConstantAggregate>(C)) {
3700     Value *Val = UndefInt8;
3701     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3702       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3703         return nullptr;
3704     return Val;
3705   }
3706 
3707   // Don't try to handle the handful of other constants.
3708   return nullptr;
3709 }
3710 
3711 // This is the recursive version of BuildSubAggregate. It takes a few different
3712 // arguments. Idxs is the index within the nested struct From that we are
3713 // looking at now (which is of type IndexedType). IdxSkip is the number of
3714 // indices from Idxs that should be left out when inserting into the resulting
3715 // struct. To is the result struct built so far, new insertvalue instructions
3716 // build on that.
3717 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3718                                 SmallVectorImpl<unsigned> &Idxs,
3719                                 unsigned IdxSkip,
3720                                 Instruction *InsertBefore) {
3721   StructType *STy = dyn_cast<StructType>(IndexedType);
3722   if (STy) {
3723     // Save the original To argument so we can modify it
3724     Value *OrigTo = To;
3725     // General case, the type indexed by Idxs is a struct
3726     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3727       // Process each struct element recursively
3728       Idxs.push_back(i);
3729       Value *PrevTo = To;
3730       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3731                              InsertBefore);
3732       Idxs.pop_back();
3733       if (!To) {
3734         // Couldn't find any inserted value for this index? Cleanup
3735         while (PrevTo != OrigTo) {
3736           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3737           PrevTo = Del->getAggregateOperand();
3738           Del->eraseFromParent();
3739         }
3740         // Stop processing elements
3741         break;
3742       }
3743     }
3744     // If we successfully found a value for each of our subaggregates
3745     if (To)
3746       return To;
3747   }
3748   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3749   // the struct's elements had a value that was inserted directly. In the latter
3750   // case, perhaps we can't determine each of the subelements individually, but
3751   // we might be able to find the complete struct somewhere.
3752 
3753   // Find the value that is at that particular spot
3754   Value *V = FindInsertedValue(From, Idxs);
3755 
3756   if (!V)
3757     return nullptr;
3758 
3759   // Insert the value in the new (sub) aggregate
3760   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3761                                  "tmp", InsertBefore);
3762 }
3763 
3764 // This helper takes a nested struct and extracts a part of it (which is again a
3765 // struct) into a new value. For example, given the struct:
3766 // { a, { b, { c, d }, e } }
3767 // and the indices "1, 1" this returns
3768 // { c, d }.
3769 //
3770 // It does this by inserting an insertvalue for each element in the resulting
3771 // struct, as opposed to just inserting a single struct. This will only work if
3772 // each of the elements of the substruct are known (ie, inserted into From by an
3773 // insertvalue instruction somewhere).
3774 //
3775 // All inserted insertvalue instructions are inserted before InsertBefore
3776 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3777                                 Instruction *InsertBefore) {
3778   assert(InsertBefore && "Must have someplace to insert!");
3779   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3780                                                              idx_range);
3781   Value *To = UndefValue::get(IndexedType);
3782   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3783   unsigned IdxSkip = Idxs.size();
3784 
3785   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3786 }
3787 
3788 /// Given an aggregate and a sequence of indices, see if the scalar value
3789 /// indexed is already around as a register, for example if it was inserted
3790 /// directly into the aggregate.
3791 ///
3792 /// If InsertBefore is not null, this function will duplicate (modified)
3793 /// insertvalues when a part of a nested struct is extracted.
3794 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3795                                Instruction *InsertBefore) {
3796   // Nothing to index? Just return V then (this is useful at the end of our
3797   // recursion).
3798   if (idx_range.empty())
3799     return V;
3800   // We have indices, so V should have an indexable type.
3801   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3802          "Not looking at a struct or array?");
3803   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3804          "Invalid indices for type?");
3805 
3806   if (Constant *C = dyn_cast<Constant>(V)) {
3807     C = C->getAggregateElement(idx_range[0]);
3808     if (!C) return nullptr;
3809     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3810   }
3811 
3812   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3813     // Loop the indices for the insertvalue instruction in parallel with the
3814     // requested indices
3815     const unsigned *req_idx = idx_range.begin();
3816     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3817          i != e; ++i, ++req_idx) {
3818       if (req_idx == idx_range.end()) {
3819         // We can't handle this without inserting insertvalues
3820         if (!InsertBefore)
3821           return nullptr;
3822 
3823         // The requested index identifies a part of a nested aggregate. Handle
3824         // this specially. For example,
3825         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3826         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3827         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3828         // This can be changed into
3829         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3830         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3831         // which allows the unused 0,0 element from the nested struct to be
3832         // removed.
3833         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3834                                  InsertBefore);
3835       }
3836 
3837       // This insert value inserts something else than what we are looking for.
3838       // See if the (aggregate) value inserted into has the value we are
3839       // looking for, then.
3840       if (*req_idx != *i)
3841         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3842                                  InsertBefore);
3843     }
3844     // If we end up here, the indices of the insertvalue match with those
3845     // requested (though possibly only partially). Now we recursively look at
3846     // the inserted value, passing any remaining indices.
3847     return FindInsertedValue(I->getInsertedValueOperand(),
3848                              makeArrayRef(req_idx, idx_range.end()),
3849                              InsertBefore);
3850   }
3851 
3852   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3853     // If we're extracting a value from an aggregate that was extracted from
3854     // something else, we can extract from that something else directly instead.
3855     // However, we will need to chain I's indices with the requested indices.
3856 
3857     // Calculate the number of indices required
3858     unsigned size = I->getNumIndices() + idx_range.size();
3859     // Allocate some space to put the new indices in
3860     SmallVector<unsigned, 5> Idxs;
3861     Idxs.reserve(size);
3862     // Add indices from the extract value instruction
3863     Idxs.append(I->idx_begin(), I->idx_end());
3864 
3865     // Add requested indices
3866     Idxs.append(idx_range.begin(), idx_range.end());
3867 
3868     assert(Idxs.size() == size
3869            && "Number of indices added not correct?");
3870 
3871     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3872   }
3873   // Otherwise, we don't know (such as, extracting from a function return value
3874   // or load instruction)
3875   return nullptr;
3876 }
3877 
3878 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3879                                        unsigned CharSize) {
3880   // Make sure the GEP has exactly three arguments.
3881   if (GEP->getNumOperands() != 3)
3882     return false;
3883 
3884   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3885   // CharSize.
3886   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3887   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3888     return false;
3889 
3890   // Check to make sure that the first operand of the GEP is an integer and
3891   // has value 0 so that we are sure we're indexing into the initializer.
3892   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3893   if (!FirstIdx || !FirstIdx->isZero())
3894     return false;
3895 
3896   return true;
3897 }
3898 
3899 bool llvm::getConstantDataArrayInfo(const Value *V,
3900                                     ConstantDataArraySlice &Slice,
3901                                     unsigned ElementSize, uint64_t Offset) {
3902   assert(V);
3903 
3904   // Look through bitcast instructions and geps.
3905   V = V->stripPointerCasts();
3906 
3907   // If the value is a GEP instruction or constant expression, treat it as an
3908   // offset.
3909   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3910     // The GEP operator should be based on a pointer to string constant, and is
3911     // indexing into the string constant.
3912     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3913       return false;
3914 
3915     // If the second index isn't a ConstantInt, then this is a variable index
3916     // into the array.  If this occurs, we can't say anything meaningful about
3917     // the string.
3918     uint64_t StartIdx = 0;
3919     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3920       StartIdx = CI->getZExtValue();
3921     else
3922       return false;
3923     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3924                                     StartIdx + Offset);
3925   }
3926 
3927   // The GEP instruction, constant or instruction, must reference a global
3928   // variable that is a constant and is initialized. The referenced constant
3929   // initializer is the array that we'll use for optimization.
3930   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3931   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3932     return false;
3933 
3934   const ConstantDataArray *Array;
3935   ArrayType *ArrayTy;
3936   if (GV->getInitializer()->isNullValue()) {
3937     Type *GVTy = GV->getValueType();
3938     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3939       // A zeroinitializer for the array; there is no ConstantDataArray.
3940       Array = nullptr;
3941     } else {
3942       const DataLayout &DL = GV->getParent()->getDataLayout();
3943       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3944       uint64_t Length = SizeInBytes / (ElementSize / 8);
3945       if (Length <= Offset)
3946         return false;
3947 
3948       Slice.Array = nullptr;
3949       Slice.Offset = 0;
3950       Slice.Length = Length - Offset;
3951       return true;
3952     }
3953   } else {
3954     // This must be a ConstantDataArray.
3955     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3956     if (!Array)
3957       return false;
3958     ArrayTy = Array->getType();
3959   }
3960   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3961     return false;
3962 
3963   uint64_t NumElts = ArrayTy->getArrayNumElements();
3964   if (Offset > NumElts)
3965     return false;
3966 
3967   Slice.Array = Array;
3968   Slice.Offset = Offset;
3969   Slice.Length = NumElts - Offset;
3970   return true;
3971 }
3972 
3973 /// This function computes the length of a null-terminated C string pointed to
3974 /// by V. If successful, it returns true and returns the string in Str.
3975 /// If unsuccessful, it returns false.
3976 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3977                                  uint64_t Offset, bool TrimAtNul) {
3978   ConstantDataArraySlice Slice;
3979   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3980     return false;
3981 
3982   if (Slice.Array == nullptr) {
3983     if (TrimAtNul) {
3984       Str = StringRef();
3985       return true;
3986     }
3987     if (Slice.Length == 1) {
3988       Str = StringRef("", 1);
3989       return true;
3990     }
3991     // We cannot instantiate a StringRef as we do not have an appropriate string
3992     // of 0s at hand.
3993     return false;
3994   }
3995 
3996   // Start out with the entire array in the StringRef.
3997   Str = Slice.Array->getAsString();
3998   // Skip over 'offset' bytes.
3999   Str = Str.substr(Slice.Offset);
4000 
4001   if (TrimAtNul) {
4002     // Trim off the \0 and anything after it.  If the array is not nul
4003     // terminated, we just return the whole end of string.  The client may know
4004     // some other way that the string is length-bound.
4005     Str = Str.substr(0, Str.find('\0'));
4006   }
4007   return true;
4008 }
4009 
4010 // These next two are very similar to the above, but also look through PHI
4011 // nodes.
4012 // TODO: See if we can integrate these two together.
4013 
4014 /// If we can compute the length of the string pointed to by
4015 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4016 static uint64_t GetStringLengthH(const Value *V,
4017                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4018                                  unsigned CharSize) {
4019   // Look through noop bitcast instructions.
4020   V = V->stripPointerCasts();
4021 
4022   // If this is a PHI node, there are two cases: either we have already seen it
4023   // or we haven't.
4024   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4025     if (!PHIs.insert(PN).second)
4026       return ~0ULL;  // already in the set.
4027 
4028     // If it was new, see if all the input strings are the same length.
4029     uint64_t LenSoFar = ~0ULL;
4030     for (Value *IncValue : PN->incoming_values()) {
4031       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4032       if (Len == 0) return 0; // Unknown length -> unknown.
4033 
4034       if (Len == ~0ULL) continue;
4035 
4036       if (Len != LenSoFar && LenSoFar != ~0ULL)
4037         return 0;    // Disagree -> unknown.
4038       LenSoFar = Len;
4039     }
4040 
4041     // Success, all agree.
4042     return LenSoFar;
4043   }
4044 
4045   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4046   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4047     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4048     if (Len1 == 0) return 0;
4049     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4050     if (Len2 == 0) return 0;
4051     if (Len1 == ~0ULL) return Len2;
4052     if (Len2 == ~0ULL) return Len1;
4053     if (Len1 != Len2) return 0;
4054     return Len1;
4055   }
4056 
4057   // Otherwise, see if we can read the string.
4058   ConstantDataArraySlice Slice;
4059   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4060     return 0;
4061 
4062   if (Slice.Array == nullptr)
4063     return 1;
4064 
4065   // Search for nul characters
4066   unsigned NullIndex = 0;
4067   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4068     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4069       break;
4070   }
4071 
4072   return NullIndex + 1;
4073 }
4074 
4075 /// If we can compute the length of the string pointed to by
4076 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4077 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4078   if (!V->getType()->isPointerTy())
4079     return 0;
4080 
4081   SmallPtrSet<const PHINode*, 32> PHIs;
4082   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4083   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4084   // an empty string as a length.
4085   return Len == ~0ULL ? 1 : Len;
4086 }
4087 
4088 const Value *
4089 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4090                                            bool MustPreserveNullness) {
4091   assert(Call &&
4092          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4093   if (const Value *RV = Call->getReturnedArgOperand())
4094     return RV;
4095   // This can be used only as a aliasing property.
4096   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4097           Call, MustPreserveNullness))
4098     return Call->getArgOperand(0);
4099   return nullptr;
4100 }
4101 
4102 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4103     const CallBase *Call, bool MustPreserveNullness) {
4104   return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
4105          Call->getIntrinsicID() == Intrinsic::strip_invariant_group ||
4106          Call->getIntrinsicID() == Intrinsic::aarch64_irg ||
4107          Call->getIntrinsicID() == Intrinsic::aarch64_tagp ||
4108          (!MustPreserveNullness &&
4109           Call->getIntrinsicID() == Intrinsic::ptrmask);
4110 }
4111 
4112 /// \p PN defines a loop-variant pointer to an object.  Check if the
4113 /// previous iteration of the loop was referring to the same object as \p PN.
4114 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4115                                          const LoopInfo *LI) {
4116   // Find the loop-defined value.
4117   Loop *L = LI->getLoopFor(PN->getParent());
4118   if (PN->getNumIncomingValues() != 2)
4119     return true;
4120 
4121   // Find the value from previous iteration.
4122   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4123   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4124     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4125   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4126     return true;
4127 
4128   // If a new pointer is loaded in the loop, the pointer references a different
4129   // object in every iteration.  E.g.:
4130   //    for (i)
4131   //       int *p = a[i];
4132   //       ...
4133   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4134     if (!L->isLoopInvariant(Load->getPointerOperand()))
4135       return false;
4136   return true;
4137 }
4138 
4139 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
4140                                  unsigned MaxLookup) {
4141   if (!V->getType()->isPointerTy())
4142     return V;
4143   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4144     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4145       V = GEP->getPointerOperand();
4146     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4147                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4148       V = cast<Operator>(V)->getOperand(0);
4149     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4150       if (GA->isInterposable())
4151         return V;
4152       V = GA->getAliasee();
4153     } else if (isa<AllocaInst>(V)) {
4154       // An alloca can't be further simplified.
4155       return V;
4156     } else {
4157       if (auto *Call = dyn_cast<CallBase>(V)) {
4158         // CaptureTracking can know about special capturing properties of some
4159         // intrinsics like launder.invariant.group, that can't be expressed with
4160         // the attributes, but have properties like returning aliasing pointer.
4161         // Because some analysis may assume that nocaptured pointer is not
4162         // returned from some special intrinsic (because function would have to
4163         // be marked with returns attribute), it is crucial to use this function
4164         // because it should be in sync with CaptureTracking. Not using it may
4165         // cause weird miscompilations where 2 aliasing pointers are assumed to
4166         // noalias.
4167         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4168           V = RP;
4169           continue;
4170         }
4171       }
4172 
4173       // See if InstructionSimplify knows any relevant tricks.
4174       if (Instruction *I = dyn_cast<Instruction>(V))
4175         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
4176         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
4177           V = Simplified;
4178           continue;
4179         }
4180 
4181       return V;
4182     }
4183     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4184   }
4185   return V;
4186 }
4187 
4188 void llvm::GetUnderlyingObjects(const Value *V,
4189                                 SmallVectorImpl<const Value *> &Objects,
4190                                 const DataLayout &DL, LoopInfo *LI,
4191                                 unsigned MaxLookup) {
4192   SmallPtrSet<const Value *, 4> Visited;
4193   SmallVector<const Value *, 4> Worklist;
4194   Worklist.push_back(V);
4195   do {
4196     const Value *P = Worklist.pop_back_val();
4197     P = GetUnderlyingObject(P, DL, MaxLookup);
4198 
4199     if (!Visited.insert(P).second)
4200       continue;
4201 
4202     if (auto *SI = dyn_cast<SelectInst>(P)) {
4203       Worklist.push_back(SI->getTrueValue());
4204       Worklist.push_back(SI->getFalseValue());
4205       continue;
4206     }
4207 
4208     if (auto *PN = dyn_cast<PHINode>(P)) {
4209       // If this PHI changes the underlying object in every iteration of the
4210       // loop, don't look through it.  Consider:
4211       //   int **A;
4212       //   for (i) {
4213       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4214       //     Curr = A[i];
4215       //     *Prev, *Curr;
4216       //
4217       // Prev is tracking Curr one iteration behind so they refer to different
4218       // underlying objects.
4219       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4220           isSameUnderlyingObjectInLoop(PN, LI))
4221         for (Value *IncValue : PN->incoming_values())
4222           Worklist.push_back(IncValue);
4223       continue;
4224     }
4225 
4226     Objects.push_back(P);
4227   } while (!Worklist.empty());
4228 }
4229 
4230 /// This is the function that does the work of looking through basic
4231 /// ptrtoint+arithmetic+inttoptr sequences.
4232 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4233   do {
4234     if (const Operator *U = dyn_cast<Operator>(V)) {
4235       // If we find a ptrtoint, we can transfer control back to the
4236       // regular getUnderlyingObjectFromInt.
4237       if (U->getOpcode() == Instruction::PtrToInt)
4238         return U->getOperand(0);
4239       // If we find an add of a constant, a multiplied value, or a phi, it's
4240       // likely that the other operand will lead us to the base
4241       // object. We don't have to worry about the case where the
4242       // object address is somehow being computed by the multiply,
4243       // because our callers only care when the result is an
4244       // identifiable object.
4245       if (U->getOpcode() != Instruction::Add ||
4246           (!isa<ConstantInt>(U->getOperand(1)) &&
4247            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4248            !isa<PHINode>(U->getOperand(1))))
4249         return V;
4250       V = U->getOperand(0);
4251     } else {
4252       return V;
4253     }
4254     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4255   } while (true);
4256 }
4257 
4258 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
4259 /// ptrtoint+arithmetic+inttoptr sequences.
4260 /// It returns false if unidentified object is found in GetUnderlyingObjects.
4261 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4262                           SmallVectorImpl<Value *> &Objects,
4263                           const DataLayout &DL) {
4264   SmallPtrSet<const Value *, 16> Visited;
4265   SmallVector<const Value *, 4> Working(1, V);
4266   do {
4267     V = Working.pop_back_val();
4268 
4269     SmallVector<const Value *, 4> Objs;
4270     GetUnderlyingObjects(V, Objs, DL);
4271 
4272     for (const Value *V : Objs) {
4273       if (!Visited.insert(V).second)
4274         continue;
4275       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4276         const Value *O =
4277           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4278         if (O->getType()->isPointerTy()) {
4279           Working.push_back(O);
4280           continue;
4281         }
4282       }
4283       // If GetUnderlyingObjects fails to find an identifiable object,
4284       // getUnderlyingObjectsForCodeGen also fails for safety.
4285       if (!isIdentifiedObject(V)) {
4286         Objects.clear();
4287         return false;
4288       }
4289       Objects.push_back(const_cast<Value *>(V));
4290     }
4291   } while (!Working.empty());
4292   return true;
4293 }
4294 
4295 /// Return true if the only users of this pointer are lifetime markers.
4296 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4297   for (const User *U : V->users()) {
4298     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4299     if (!II) return false;
4300 
4301     if (!II->isLifetimeStartOrEnd())
4302       return false;
4303   }
4304   return true;
4305 }
4306 
4307 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4308   if (!LI.isUnordered())
4309     return true;
4310   const Function &F = *LI.getFunction();
4311   // Speculative load may create a race that did not exist in the source.
4312   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4313     // Speculative load may load data from dirty regions.
4314     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4315     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4316 }
4317 
4318 
4319 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4320                                         const Instruction *CtxI,
4321                                         const DominatorTree *DT) {
4322   const Operator *Inst = dyn_cast<Operator>(V);
4323   if (!Inst)
4324     return false;
4325 
4326   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4327     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4328       if (C->canTrap())
4329         return false;
4330 
4331   switch (Inst->getOpcode()) {
4332   default:
4333     return true;
4334   case Instruction::UDiv:
4335   case Instruction::URem: {
4336     // x / y is undefined if y == 0.
4337     const APInt *V;
4338     if (match(Inst->getOperand(1), m_APInt(V)))
4339       return *V != 0;
4340     return false;
4341   }
4342   case Instruction::SDiv:
4343   case Instruction::SRem: {
4344     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4345     const APInt *Numerator, *Denominator;
4346     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4347       return false;
4348     // We cannot hoist this division if the denominator is 0.
4349     if (*Denominator == 0)
4350       return false;
4351     // It's safe to hoist if the denominator is not 0 or -1.
4352     if (*Denominator != -1)
4353       return true;
4354     // At this point we know that the denominator is -1.  It is safe to hoist as
4355     // long we know that the numerator is not INT_MIN.
4356     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4357       return !Numerator->isMinSignedValue();
4358     // The numerator *might* be MinSignedValue.
4359     return false;
4360   }
4361   case Instruction::Load: {
4362     const LoadInst *LI = cast<LoadInst>(Inst);
4363     if (mustSuppressSpeculation(*LI))
4364       return false;
4365     const DataLayout &DL = LI->getModule()->getDataLayout();
4366     return isDereferenceableAndAlignedPointer(
4367         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4368         DL, CtxI, DT);
4369   }
4370   case Instruction::Call: {
4371     auto *CI = cast<const CallInst>(Inst);
4372     const Function *Callee = CI->getCalledFunction();
4373 
4374     // The called function could have undefined behavior or side-effects, even
4375     // if marked readnone nounwind.
4376     return Callee && Callee->isSpeculatable();
4377   }
4378   case Instruction::VAArg:
4379   case Instruction::Alloca:
4380   case Instruction::Invoke:
4381   case Instruction::CallBr:
4382   case Instruction::PHI:
4383   case Instruction::Store:
4384   case Instruction::Ret:
4385   case Instruction::Br:
4386   case Instruction::IndirectBr:
4387   case Instruction::Switch:
4388   case Instruction::Unreachable:
4389   case Instruction::Fence:
4390   case Instruction::AtomicRMW:
4391   case Instruction::AtomicCmpXchg:
4392   case Instruction::LandingPad:
4393   case Instruction::Resume:
4394   case Instruction::CatchSwitch:
4395   case Instruction::CatchPad:
4396   case Instruction::CatchRet:
4397   case Instruction::CleanupPad:
4398   case Instruction::CleanupRet:
4399     return false; // Misc instructions which have effects
4400   }
4401 }
4402 
4403 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4404   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4405 }
4406 
4407 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4408 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4409   switch (OR) {
4410     case ConstantRange::OverflowResult::MayOverflow:
4411       return OverflowResult::MayOverflow;
4412     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4413       return OverflowResult::AlwaysOverflowsLow;
4414     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4415       return OverflowResult::AlwaysOverflowsHigh;
4416     case ConstantRange::OverflowResult::NeverOverflows:
4417       return OverflowResult::NeverOverflows;
4418   }
4419   llvm_unreachable("Unknown OverflowResult");
4420 }
4421 
4422 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4423 static ConstantRange computeConstantRangeIncludingKnownBits(
4424     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4425     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4426     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4427   KnownBits Known = computeKnownBits(
4428       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4429   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4430   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4431   ConstantRange::PreferredRangeType RangeType =
4432       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4433   return CR1.intersectWith(CR2, RangeType);
4434 }
4435 
4436 OverflowResult llvm::computeOverflowForUnsignedMul(
4437     const Value *LHS, const Value *RHS, const DataLayout &DL,
4438     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4439     bool UseInstrInfo) {
4440   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4441                                         nullptr, UseInstrInfo);
4442   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4443                                         nullptr, UseInstrInfo);
4444   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4445   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4446   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4447 }
4448 
4449 OverflowResult
4450 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4451                                   const DataLayout &DL, AssumptionCache *AC,
4452                                   const Instruction *CxtI,
4453                                   const DominatorTree *DT, bool UseInstrInfo) {
4454   // Multiplying n * m significant bits yields a result of n + m significant
4455   // bits. If the total number of significant bits does not exceed the
4456   // result bit width (minus 1), there is no overflow.
4457   // This means if we have enough leading sign bits in the operands
4458   // we can guarantee that the result does not overflow.
4459   // Ref: "Hacker's Delight" by Henry Warren
4460   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4461 
4462   // Note that underestimating the number of sign bits gives a more
4463   // conservative answer.
4464   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4465                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4466 
4467   // First handle the easy case: if we have enough sign bits there's
4468   // definitely no overflow.
4469   if (SignBits > BitWidth + 1)
4470     return OverflowResult::NeverOverflows;
4471 
4472   // There are two ambiguous cases where there can be no overflow:
4473   //   SignBits == BitWidth + 1    and
4474   //   SignBits == BitWidth
4475   // The second case is difficult to check, therefore we only handle the
4476   // first case.
4477   if (SignBits == BitWidth + 1) {
4478     // It overflows only when both arguments are negative and the true
4479     // product is exactly the minimum negative number.
4480     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4481     // For simplicity we just check if at least one side is not negative.
4482     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4483                                           nullptr, UseInstrInfo);
4484     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4485                                           nullptr, UseInstrInfo);
4486     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4487       return OverflowResult::NeverOverflows;
4488   }
4489   return OverflowResult::MayOverflow;
4490 }
4491 
4492 OverflowResult llvm::computeOverflowForUnsignedAdd(
4493     const Value *LHS, const Value *RHS, const DataLayout &DL,
4494     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4495     bool UseInstrInfo) {
4496   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4497       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4498       nullptr, UseInstrInfo);
4499   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4500       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4501       nullptr, UseInstrInfo);
4502   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4503 }
4504 
4505 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4506                                                   const Value *RHS,
4507                                                   const AddOperator *Add,
4508                                                   const DataLayout &DL,
4509                                                   AssumptionCache *AC,
4510                                                   const Instruction *CxtI,
4511                                                   const DominatorTree *DT) {
4512   if (Add && Add->hasNoSignedWrap()) {
4513     return OverflowResult::NeverOverflows;
4514   }
4515 
4516   // If LHS and RHS each have at least two sign bits, the addition will look
4517   // like
4518   //
4519   // XX..... +
4520   // YY.....
4521   //
4522   // If the carry into the most significant position is 0, X and Y can't both
4523   // be 1 and therefore the carry out of the addition is also 0.
4524   //
4525   // If the carry into the most significant position is 1, X and Y can't both
4526   // be 0 and therefore the carry out of the addition is also 1.
4527   //
4528   // Since the carry into the most significant position is always equal to
4529   // the carry out of the addition, there is no signed overflow.
4530   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4531       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4532     return OverflowResult::NeverOverflows;
4533 
4534   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4535       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4536   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4537       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4538   OverflowResult OR =
4539       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4540   if (OR != OverflowResult::MayOverflow)
4541     return OR;
4542 
4543   // The remaining code needs Add to be available. Early returns if not so.
4544   if (!Add)
4545     return OverflowResult::MayOverflow;
4546 
4547   // If the sign of Add is the same as at least one of the operands, this add
4548   // CANNOT overflow. If this can be determined from the known bits of the
4549   // operands the above signedAddMayOverflow() check will have already done so.
4550   // The only other way to improve on the known bits is from an assumption, so
4551   // call computeKnownBitsFromAssume() directly.
4552   bool LHSOrRHSKnownNonNegative =
4553       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4554   bool LHSOrRHSKnownNegative =
4555       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4556   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4557     KnownBits AddKnown(LHSRange.getBitWidth());
4558     computeKnownBitsFromAssume(
4559         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4560     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4561         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4562       return OverflowResult::NeverOverflows;
4563   }
4564 
4565   return OverflowResult::MayOverflow;
4566 }
4567 
4568 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4569                                                    const Value *RHS,
4570                                                    const DataLayout &DL,
4571                                                    AssumptionCache *AC,
4572                                                    const Instruction *CxtI,
4573                                                    const DominatorTree *DT) {
4574   // Checking for conditions implied by dominating conditions may be expensive.
4575   // Limit it to usub_with_overflow calls for now.
4576   if (match(CxtI,
4577             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4578     if (auto C =
4579             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4580       if (*C)
4581         return OverflowResult::NeverOverflows;
4582       return OverflowResult::AlwaysOverflowsLow;
4583     }
4584   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4585       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4586   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4587       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4588   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4589 }
4590 
4591 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4592                                                  const Value *RHS,
4593                                                  const DataLayout &DL,
4594                                                  AssumptionCache *AC,
4595                                                  const Instruction *CxtI,
4596                                                  const DominatorTree *DT) {
4597   // If LHS and RHS each have at least two sign bits, the subtraction
4598   // cannot overflow.
4599   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4600       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4601     return OverflowResult::NeverOverflows;
4602 
4603   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4604       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4605   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4606       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4607   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4608 }
4609 
4610 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4611                                      const DominatorTree &DT) {
4612   SmallVector<const BranchInst *, 2> GuardingBranches;
4613   SmallVector<const ExtractValueInst *, 2> Results;
4614 
4615   for (const User *U : WO->users()) {
4616     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4617       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4618 
4619       if (EVI->getIndices()[0] == 0)
4620         Results.push_back(EVI);
4621       else {
4622         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4623 
4624         for (const auto *U : EVI->users())
4625           if (const auto *B = dyn_cast<BranchInst>(U)) {
4626             assert(B->isConditional() && "How else is it using an i1?");
4627             GuardingBranches.push_back(B);
4628           }
4629       }
4630     } else {
4631       // We are using the aggregate directly in a way we don't want to analyze
4632       // here (storing it to a global, say).
4633       return false;
4634     }
4635   }
4636 
4637   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4638     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4639     if (!NoWrapEdge.isSingleEdge())
4640       return false;
4641 
4642     // Check if all users of the add are provably no-wrap.
4643     for (const auto *Result : Results) {
4644       // If the extractvalue itself is not executed on overflow, the we don't
4645       // need to check each use separately, since domination is transitive.
4646       if (DT.dominates(NoWrapEdge, Result->getParent()))
4647         continue;
4648 
4649       for (auto &RU : Result->uses())
4650         if (!DT.dominates(NoWrapEdge, RU))
4651           return false;
4652     }
4653 
4654     return true;
4655   };
4656 
4657   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4658 }
4659 
4660 bool llvm::canCreatePoison(const Instruction *I) {
4661   // See whether I has flags that may create poison
4662   if (isa<OverflowingBinaryOperator>(I) &&
4663       (I->hasNoSignedWrap() || I->hasNoUnsignedWrap()))
4664     return true;
4665   if (isa<PossiblyExactOperator>(I) && I->isExact())
4666     return true;
4667   if (auto *FP = dyn_cast<FPMathOperator>(I)) {
4668     auto FMF = FP->getFastMathFlags();
4669     if (FMF.noNaNs() || FMF.noInfs())
4670       return true;
4671   }
4672   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
4673     if (GEP->isInBounds())
4674       return true;
4675 
4676   unsigned Opcode = I->getOpcode();
4677 
4678   // Check whether opcode is a poison-generating operation
4679   switch (Opcode) {
4680   case Instruction::Shl:
4681   case Instruction::AShr:
4682   case Instruction::LShr: {
4683     // Shifts return poison if shiftwidth is larger than the bitwidth.
4684     if (auto *C = dyn_cast<Constant>(I->getOperand(1))) {
4685       SmallVector<Constant *, 4> ShiftAmounts;
4686       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4687         unsigned NumElts = FVTy->getNumElements();
4688         for (unsigned i = 0; i < NumElts; ++i)
4689           ShiftAmounts.push_back(C->getAggregateElement(i));
4690       } else if (isa<ScalableVectorType>(C->getType()))
4691         return true; // Can't tell, just return true to be safe
4692       else
4693         ShiftAmounts.push_back(C);
4694 
4695       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4696         auto *CI = dyn_cast<ConstantInt>(C);
4697         return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth();
4698       });
4699       return !Safe;
4700     }
4701     return true;
4702   }
4703   case Instruction::FPToSI:
4704   case Instruction::FPToUI:
4705     // fptosi/ui yields poison if the resulting value does not fit in the
4706     // destination type.
4707     return true;
4708   case Instruction::Call:
4709   case Instruction::CallBr:
4710   case Instruction::Invoke:
4711     // Function calls can return a poison value even if args are non-poison
4712     // values.
4713     return true;
4714   case Instruction::InsertElement:
4715   case Instruction::ExtractElement: {
4716     // If index exceeds the length of the vector, it returns poison
4717     auto *VTy = cast<VectorType>(I->getOperand(0)->getType());
4718     unsigned IdxOp = I->getOpcode() == Instruction::InsertElement ? 2 : 1;
4719     auto *Idx = dyn_cast<ConstantInt>(I->getOperand(IdxOp));
4720     if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min)
4721       return true;
4722     return false;
4723   }
4724   case Instruction::FNeg:
4725   case Instruction::PHI:
4726   case Instruction::Select:
4727   case Instruction::URem:
4728   case Instruction::SRem:
4729   case Instruction::ShuffleVector:
4730   case Instruction::ExtractValue:
4731   case Instruction::InsertValue:
4732   case Instruction::Freeze:
4733   case Instruction::ICmp:
4734   case Instruction::FCmp:
4735   case Instruction::GetElementPtr:
4736     return false;
4737   default:
4738     if (isa<CastInst>(I))
4739       return false;
4740     else if (isa<BinaryOperator>(I))
4741       return false;
4742     // Be conservative and return true.
4743     return true;
4744   }
4745 }
4746 
4747 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V,
4748                                             const Instruction *CtxI,
4749                                             const DominatorTree *DT,
4750                                             unsigned Depth) {
4751   if (Depth >= MaxDepth)
4752     return false;
4753 
4754   // If the value is a freeze instruction, then it can never
4755   // be undef or poison.
4756   if (isa<FreezeInst>(V))
4757     return true;
4758   // TODO: Some instructions are guaranteed to return neither undef
4759   // nor poison if their arguments are not poison/undef.
4760 
4761   if (auto *C = dyn_cast<Constant>(V)) {
4762     // TODO: We can analyze ConstExpr by opcode to determine if there is any
4763     //       possibility of poison.
4764     if (isa<UndefValue>(C) || isa<ConstantExpr>(C))
4765       return false;
4766 
4767     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4768         isa<ConstantPointerNull>(C) || isa<Function>(C))
4769       return true;
4770 
4771     if (C->getType()->isVectorTy())
4772       return !C->containsUndefElement() && !C->containsConstantExpression();
4773 
4774     // TODO: Recursively analyze aggregates or other constants.
4775     return false;
4776   }
4777 
4778   // Strip cast operations from a pointer value.
4779   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4780   // inbounds with zero offset. To guarantee that the result isn't poison, the
4781   // stripped pointer is checked as it has to be pointing into an allocated
4782   // object or be null `null` to ensure `inbounds` getelement pointers with a
4783   // zero offset could not produce poison.
4784   // It can strip off addrspacecast that do not change bit representation as
4785   // well. We believe that such addrspacecast is equivalent to no-op.
4786   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4787   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4788       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4789     return true;
4790 
4791   auto OpCheck = [&](const Value *V) {
4792     return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1);
4793   };
4794 
4795   if (auto *I = dyn_cast<Instruction>(V)) {
4796     switch (I->getOpcode()) {
4797     case Instruction::GetElementPtr: {
4798       auto *GEPI = dyn_cast<GetElementPtrInst>(I);
4799       if (!GEPI->isInBounds() && llvm::all_of(GEPI->operands(), OpCheck))
4800         return true;
4801       break;
4802     }
4803     case Instruction::FCmp: {
4804       auto *FI = dyn_cast<FCmpInst>(I);
4805       if (FI->getFastMathFlags().none() &&
4806           llvm::all_of(FI->operands(), OpCheck))
4807         return true;
4808       break;
4809     }
4810     case Instruction::BitCast:
4811     case Instruction::PHI:
4812     case Instruction::ICmp:
4813       if (llvm::all_of(I->operands(), OpCheck))
4814         return true;
4815       break;
4816     default:
4817       break;
4818     }
4819 
4820     if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1))
4821       // Note: once we have an agreement that poison is a value-wise concept,
4822       // we can remove the isIntegerTy(1) constraint.
4823       return true;
4824   }
4825 
4826   // CxtI may be null or a cloned instruction.
4827   if (!CtxI || !CtxI->getParent() || !DT)
4828     return false;
4829 
4830   auto *DNode = DT->getNode(CtxI->getParent());
4831   if (!DNode)
4832     // Unreachable block
4833     return false;
4834 
4835   // If V is used as a branch condition before reaching CtxI, V cannot be
4836   // undef or poison.
4837   //   br V, BB1, BB2
4838   // BB1:
4839   //   CtxI ; V cannot be undef or poison here
4840   auto *Dominator = DNode->getIDom();
4841   while (Dominator) {
4842     auto *TI = Dominator->getBlock()->getTerminator();
4843 
4844     if (auto BI = dyn_cast<BranchInst>(TI)) {
4845       if (BI->isConditional() && BI->getCondition() == V)
4846         return true;
4847     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4848       if (SI->getCondition() == V)
4849         return true;
4850     }
4851 
4852     Dominator = Dominator->getIDom();
4853   }
4854 
4855   return false;
4856 }
4857 
4858 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4859                                                  const DataLayout &DL,
4860                                                  AssumptionCache *AC,
4861                                                  const Instruction *CxtI,
4862                                                  const DominatorTree *DT) {
4863   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4864                                        Add, DL, AC, CxtI, DT);
4865 }
4866 
4867 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4868                                                  const Value *RHS,
4869                                                  const DataLayout &DL,
4870                                                  AssumptionCache *AC,
4871                                                  const Instruction *CxtI,
4872                                                  const DominatorTree *DT) {
4873   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4874 }
4875 
4876 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4877   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4878   // of time because it's possible for another thread to interfere with it for an
4879   // arbitrary length of time, but programs aren't allowed to rely on that.
4880 
4881   // If there is no successor, then execution can't transfer to it.
4882   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4883     return !CRI->unwindsToCaller();
4884   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4885     return !CatchSwitch->unwindsToCaller();
4886   if (isa<ResumeInst>(I))
4887     return false;
4888   if (isa<ReturnInst>(I))
4889     return false;
4890   if (isa<UnreachableInst>(I))
4891     return false;
4892 
4893   // Calls can throw, or contain an infinite loop, or kill the process.
4894   if (const auto *CB = dyn_cast<CallBase>(I)) {
4895     // Call sites that throw have implicit non-local control flow.
4896     if (!CB->doesNotThrow())
4897       return false;
4898 
4899     // A function which doens't throw and has "willreturn" attribute will
4900     // always return.
4901     if (CB->hasFnAttr(Attribute::WillReturn))
4902       return true;
4903 
4904     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4905     // etc. and thus not return.  However, LLVM already assumes that
4906     //
4907     //  - Thread exiting actions are modeled as writes to memory invisible to
4908     //    the program.
4909     //
4910     //  - Loops that don't have side effects (side effects are volatile/atomic
4911     //    stores and IO) always terminate (see http://llvm.org/PR965).
4912     //    Furthermore IO itself is also modeled as writes to memory invisible to
4913     //    the program.
4914     //
4915     // We rely on those assumptions here, and use the memory effects of the call
4916     // target as a proxy for checking that it always returns.
4917 
4918     // FIXME: This isn't aggressive enough; a call which only writes to a global
4919     // is guaranteed to return.
4920     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
4921   }
4922 
4923   // Other instructions return normally.
4924   return true;
4925 }
4926 
4927 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4928   // TODO: This is slightly conservative for invoke instruction since exiting
4929   // via an exception *is* normal control for them.
4930   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4931     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4932       return false;
4933   return true;
4934 }
4935 
4936 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4937                                                   const Loop *L) {
4938   // The loop header is guaranteed to be executed for every iteration.
4939   //
4940   // FIXME: Relax this constraint to cover all basic blocks that are
4941   // guaranteed to be executed at every iteration.
4942   if (I->getParent() != L->getHeader()) return false;
4943 
4944   for (const Instruction &LI : *L->getHeader()) {
4945     if (&LI == I) return true;
4946     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4947   }
4948   llvm_unreachable("Instruction not contained in its own parent basic block.");
4949 }
4950 
4951 bool llvm::propagatesPoison(const Instruction *I) {
4952   switch (I->getOpcode()) {
4953   case Instruction::Freeze:
4954   case Instruction::Select:
4955   case Instruction::PHI:
4956   case Instruction::Call:
4957   case Instruction::Invoke:
4958     return false;
4959   case Instruction::ICmp:
4960   case Instruction::FCmp:
4961   case Instruction::GetElementPtr:
4962     return true;
4963   default:
4964     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
4965       return true;
4966 
4967     // Be conservative and return false.
4968     return false;
4969   }
4970 }
4971 
4972 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) {
4973   switch (I->getOpcode()) {
4974     case Instruction::Store:
4975       return cast<StoreInst>(I)->getPointerOperand();
4976 
4977     case Instruction::Load:
4978       return cast<LoadInst>(I)->getPointerOperand();
4979 
4980     case Instruction::AtomicCmpXchg:
4981       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4982 
4983     case Instruction::AtomicRMW:
4984       return cast<AtomicRMWInst>(I)->getPointerOperand();
4985 
4986     case Instruction::UDiv:
4987     case Instruction::SDiv:
4988     case Instruction::URem:
4989     case Instruction::SRem:
4990       return I->getOperand(1);
4991 
4992     case Instruction::Call:
4993       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
4994         switch (II->getIntrinsicID()) {
4995         case Intrinsic::assume:
4996           return II->getArgOperand(0);
4997         default:
4998           return nullptr;
4999         }
5000       }
5001       return nullptr;
5002 
5003     default:
5004       return nullptr;
5005   }
5006 }
5007 
5008 bool llvm::mustTriggerUB(const Instruction *I,
5009                          const SmallSet<const Value *, 16>& KnownPoison) {
5010   auto *NotPoison = getGuaranteedNonPoisonOp(I);
5011   return (NotPoison && KnownPoison.count(NotPoison));
5012 }
5013 
5014 
5015 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) {
5016   // We currently only look for uses of poison values within the same basic
5017   // block, as that makes it easier to guarantee that the uses will be
5018   // executed given that PoisonI is executed.
5019   //
5020   // FIXME: Expand this to consider uses beyond the same basic block. To do
5021   // this, look out for the distinction between post-dominance and strong
5022   // post-dominance.
5023   const BasicBlock *BB = PoisonI->getParent();
5024 
5025   // Set of instructions that we have proved will yield poison if PoisonI
5026   // does.
5027   SmallSet<const Value *, 16> YieldsPoison;
5028   SmallSet<const BasicBlock *, 4> Visited;
5029   YieldsPoison.insert(PoisonI);
5030   Visited.insert(PoisonI->getParent());
5031 
5032   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
5033 
5034   unsigned Iter = 0;
5035   while (Iter++ < MaxDepth) {
5036     for (auto &I : make_range(Begin, End)) {
5037       if (&I != PoisonI) {
5038         if (mustTriggerUB(&I, YieldsPoison))
5039           return true;
5040         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5041           return false;
5042       }
5043 
5044       // Mark poison that propagates from I through uses of I.
5045       if (YieldsPoison.count(&I)) {
5046         for (const User *User : I.users()) {
5047           const Instruction *UserI = cast<Instruction>(User);
5048           if (propagatesPoison(UserI))
5049             YieldsPoison.insert(User);
5050         }
5051       }
5052     }
5053 
5054     if (auto *NextBB = BB->getSingleSuccessor()) {
5055       if (Visited.insert(NextBB).second) {
5056         BB = NextBB;
5057         Begin = BB->getFirstNonPHI()->getIterator();
5058         End = BB->end();
5059         continue;
5060       }
5061     }
5062 
5063     break;
5064   }
5065   return false;
5066 }
5067 
5068 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5069   if (FMF.noNaNs())
5070     return true;
5071 
5072   if (auto *C = dyn_cast<ConstantFP>(V))
5073     return !C->isNaN();
5074 
5075   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5076     if (!C->getElementType()->isFloatingPointTy())
5077       return false;
5078     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5079       if (C->getElementAsAPFloat(I).isNaN())
5080         return false;
5081     }
5082     return true;
5083   }
5084 
5085   if (isa<ConstantAggregateZero>(V))
5086     return true;
5087 
5088   return false;
5089 }
5090 
5091 static bool isKnownNonZero(const Value *V) {
5092   if (auto *C = dyn_cast<ConstantFP>(V))
5093     return !C->isZero();
5094 
5095   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5096     if (!C->getElementType()->isFloatingPointTy())
5097       return false;
5098     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5099       if (C->getElementAsAPFloat(I).isZero())
5100         return false;
5101     }
5102     return true;
5103   }
5104 
5105   return false;
5106 }
5107 
5108 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5109 /// Given non-min/max outer cmp/select from the clamp pattern this
5110 /// function recognizes if it can be substitued by a "canonical" min/max
5111 /// pattern.
5112 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5113                                                Value *CmpLHS, Value *CmpRHS,
5114                                                Value *TrueVal, Value *FalseVal,
5115                                                Value *&LHS, Value *&RHS) {
5116   // Try to match
5117   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5118   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5119   // and return description of the outer Max/Min.
5120 
5121   // First, check if select has inverse order:
5122   if (CmpRHS == FalseVal) {
5123     std::swap(TrueVal, FalseVal);
5124     Pred = CmpInst::getInversePredicate(Pred);
5125   }
5126 
5127   // Assume success now. If there's no match, callers should not use these anyway.
5128   LHS = TrueVal;
5129   RHS = FalseVal;
5130 
5131   const APFloat *FC1;
5132   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5133     return {SPF_UNKNOWN, SPNB_NA, false};
5134 
5135   const APFloat *FC2;
5136   switch (Pred) {
5137   case CmpInst::FCMP_OLT:
5138   case CmpInst::FCMP_OLE:
5139   case CmpInst::FCMP_ULT:
5140   case CmpInst::FCMP_ULE:
5141     if (match(FalseVal,
5142               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5143                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5144         *FC1 < *FC2)
5145       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5146     break;
5147   case CmpInst::FCMP_OGT:
5148   case CmpInst::FCMP_OGE:
5149   case CmpInst::FCMP_UGT:
5150   case CmpInst::FCMP_UGE:
5151     if (match(FalseVal,
5152               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5153                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5154         *FC1 > *FC2)
5155       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5156     break;
5157   default:
5158     break;
5159   }
5160 
5161   return {SPF_UNKNOWN, SPNB_NA, false};
5162 }
5163 
5164 /// Recognize variations of:
5165 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5166 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5167                                       Value *CmpLHS, Value *CmpRHS,
5168                                       Value *TrueVal, Value *FalseVal) {
5169   // Swap the select operands and predicate to match the patterns below.
5170   if (CmpRHS != TrueVal) {
5171     Pred = ICmpInst::getSwappedPredicate(Pred);
5172     std::swap(TrueVal, FalseVal);
5173   }
5174   const APInt *C1;
5175   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5176     const APInt *C2;
5177     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5178     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5179         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5180       return {SPF_SMAX, SPNB_NA, false};
5181 
5182     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5183     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5184         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5185       return {SPF_SMIN, SPNB_NA, false};
5186 
5187     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5188     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5189         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5190       return {SPF_UMAX, SPNB_NA, false};
5191 
5192     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5193     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5194         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5195       return {SPF_UMIN, SPNB_NA, false};
5196   }
5197   return {SPF_UNKNOWN, SPNB_NA, false};
5198 }
5199 
5200 /// Recognize variations of:
5201 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5202 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5203                                                Value *CmpLHS, Value *CmpRHS,
5204                                                Value *TVal, Value *FVal,
5205                                                unsigned Depth) {
5206   // TODO: Allow FP min/max with nnan/nsz.
5207   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5208 
5209   Value *A = nullptr, *B = nullptr;
5210   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5211   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5212     return {SPF_UNKNOWN, SPNB_NA, false};
5213 
5214   Value *C = nullptr, *D = nullptr;
5215   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5216   if (L.Flavor != R.Flavor)
5217     return {SPF_UNKNOWN, SPNB_NA, false};
5218 
5219   // We have something like: x Pred y ? min(a, b) : min(c, d).
5220   // Try to match the compare to the min/max operations of the select operands.
5221   // First, make sure we have the right compare predicate.
5222   switch (L.Flavor) {
5223   case SPF_SMIN:
5224     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5225       Pred = ICmpInst::getSwappedPredicate(Pred);
5226       std::swap(CmpLHS, CmpRHS);
5227     }
5228     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5229       break;
5230     return {SPF_UNKNOWN, SPNB_NA, false};
5231   case SPF_SMAX:
5232     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5233       Pred = ICmpInst::getSwappedPredicate(Pred);
5234       std::swap(CmpLHS, CmpRHS);
5235     }
5236     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5237       break;
5238     return {SPF_UNKNOWN, SPNB_NA, false};
5239   case SPF_UMIN:
5240     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5241       Pred = ICmpInst::getSwappedPredicate(Pred);
5242       std::swap(CmpLHS, CmpRHS);
5243     }
5244     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5245       break;
5246     return {SPF_UNKNOWN, SPNB_NA, false};
5247   case SPF_UMAX:
5248     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5249       Pred = ICmpInst::getSwappedPredicate(Pred);
5250       std::swap(CmpLHS, CmpRHS);
5251     }
5252     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5253       break;
5254     return {SPF_UNKNOWN, SPNB_NA, false};
5255   default:
5256     return {SPF_UNKNOWN, SPNB_NA, false};
5257   }
5258 
5259   // If there is a common operand in the already matched min/max and the other
5260   // min/max operands match the compare operands (either directly or inverted),
5261   // then this is min/max of the same flavor.
5262 
5263   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5264   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5265   if (D == B) {
5266     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5267                                          match(A, m_Not(m_Specific(CmpRHS)))))
5268       return {L.Flavor, SPNB_NA, false};
5269   }
5270   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5271   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5272   if (C == B) {
5273     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5274                                          match(A, m_Not(m_Specific(CmpRHS)))))
5275       return {L.Flavor, SPNB_NA, false};
5276   }
5277   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5278   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5279   if (D == A) {
5280     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5281                                          match(B, m_Not(m_Specific(CmpRHS)))))
5282       return {L.Flavor, SPNB_NA, false};
5283   }
5284   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5285   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5286   if (C == A) {
5287     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5288                                          match(B, m_Not(m_Specific(CmpRHS)))))
5289       return {L.Flavor, SPNB_NA, false};
5290   }
5291 
5292   return {SPF_UNKNOWN, SPNB_NA, false};
5293 }
5294 
5295 /// If the input value is the result of a 'not' op, constant integer, or vector
5296 /// splat of a constant integer, return the bitwise-not source value.
5297 /// TODO: This could be extended to handle non-splat vector integer constants.
5298 static Value *getNotValue(Value *V) {
5299   Value *NotV;
5300   if (match(V, m_Not(m_Value(NotV))))
5301     return NotV;
5302 
5303   const APInt *C;
5304   if (match(V, m_APInt(C)))
5305     return ConstantInt::get(V->getType(), ~(*C));
5306 
5307   return nullptr;
5308 }
5309 
5310 /// Match non-obvious integer minimum and maximum sequences.
5311 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5312                                        Value *CmpLHS, Value *CmpRHS,
5313                                        Value *TrueVal, Value *FalseVal,
5314                                        Value *&LHS, Value *&RHS,
5315                                        unsigned Depth) {
5316   // Assume success. If there's no match, callers should not use these anyway.
5317   LHS = TrueVal;
5318   RHS = FalseVal;
5319 
5320   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5321   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5322     return SPR;
5323 
5324   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5325   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5326     return SPR;
5327 
5328   // Look through 'not' ops to find disguised min/max.
5329   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5330   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5331   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5332     switch (Pred) {
5333     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5334     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5335     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5336     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5337     default: break;
5338     }
5339   }
5340 
5341   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5342   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5343   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5344     switch (Pred) {
5345     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5346     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5347     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5348     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5349     default: break;
5350     }
5351   }
5352 
5353   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5354     return {SPF_UNKNOWN, SPNB_NA, false};
5355 
5356   // Z = X -nsw Y
5357   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5358   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5359   if (match(TrueVal, m_Zero()) &&
5360       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5361     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5362 
5363   // Z = X -nsw Y
5364   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5365   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5366   if (match(FalseVal, m_Zero()) &&
5367       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5368     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5369 
5370   const APInt *C1;
5371   if (!match(CmpRHS, m_APInt(C1)))
5372     return {SPF_UNKNOWN, SPNB_NA, false};
5373 
5374   // An unsigned min/max can be written with a signed compare.
5375   const APInt *C2;
5376   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5377       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5378     // Is the sign bit set?
5379     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5380     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5381     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5382         C2->isMaxSignedValue())
5383       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5384 
5385     // Is the sign bit clear?
5386     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5387     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5388     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5389         C2->isMinSignedValue())
5390       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5391   }
5392 
5393   return {SPF_UNKNOWN, SPNB_NA, false};
5394 }
5395 
5396 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5397   assert(X && Y && "Invalid operand");
5398 
5399   // X = sub (0, Y) || X = sub nsw (0, Y)
5400   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5401       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5402     return true;
5403 
5404   // Y = sub (0, X) || Y = sub nsw (0, X)
5405   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5406       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5407     return true;
5408 
5409   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5410   Value *A, *B;
5411   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5412                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5413          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5414                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5415 }
5416 
5417 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5418                                               FastMathFlags FMF,
5419                                               Value *CmpLHS, Value *CmpRHS,
5420                                               Value *TrueVal, Value *FalseVal,
5421                                               Value *&LHS, Value *&RHS,
5422                                               unsigned Depth) {
5423   if (CmpInst::isFPPredicate(Pred)) {
5424     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5425     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5426     // purpose of identifying min/max. Disregard vector constants with undefined
5427     // elements because those can not be back-propagated for analysis.
5428     Value *OutputZeroVal = nullptr;
5429     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5430         !cast<Constant>(TrueVal)->containsUndefElement())
5431       OutputZeroVal = TrueVal;
5432     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5433              !cast<Constant>(FalseVal)->containsUndefElement())
5434       OutputZeroVal = FalseVal;
5435 
5436     if (OutputZeroVal) {
5437       if (match(CmpLHS, m_AnyZeroFP()))
5438         CmpLHS = OutputZeroVal;
5439       if (match(CmpRHS, m_AnyZeroFP()))
5440         CmpRHS = OutputZeroVal;
5441     }
5442   }
5443 
5444   LHS = CmpLHS;
5445   RHS = CmpRHS;
5446 
5447   // Signed zero may return inconsistent results between implementations.
5448   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5449   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5450   // Therefore, we behave conservatively and only proceed if at least one of the
5451   // operands is known to not be zero or if we don't care about signed zero.
5452   switch (Pred) {
5453   default: break;
5454   // FIXME: Include OGT/OLT/UGT/ULT.
5455   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5456   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5457     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5458         !isKnownNonZero(CmpRHS))
5459       return {SPF_UNKNOWN, SPNB_NA, false};
5460   }
5461 
5462   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5463   bool Ordered = false;
5464 
5465   // When given one NaN and one non-NaN input:
5466   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5467   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5468   //     ordered comparison fails), which could be NaN or non-NaN.
5469   // so here we discover exactly what NaN behavior is required/accepted.
5470   if (CmpInst::isFPPredicate(Pred)) {
5471     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5472     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5473 
5474     if (LHSSafe && RHSSafe) {
5475       // Both operands are known non-NaN.
5476       NaNBehavior = SPNB_RETURNS_ANY;
5477     } else if (CmpInst::isOrdered(Pred)) {
5478       // An ordered comparison will return false when given a NaN, so it
5479       // returns the RHS.
5480       Ordered = true;
5481       if (LHSSafe)
5482         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5483         NaNBehavior = SPNB_RETURNS_NAN;
5484       else if (RHSSafe)
5485         NaNBehavior = SPNB_RETURNS_OTHER;
5486       else
5487         // Completely unsafe.
5488         return {SPF_UNKNOWN, SPNB_NA, false};
5489     } else {
5490       Ordered = false;
5491       // An unordered comparison will return true when given a NaN, so it
5492       // returns the LHS.
5493       if (LHSSafe)
5494         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5495         NaNBehavior = SPNB_RETURNS_OTHER;
5496       else if (RHSSafe)
5497         NaNBehavior = SPNB_RETURNS_NAN;
5498       else
5499         // Completely unsafe.
5500         return {SPF_UNKNOWN, SPNB_NA, false};
5501     }
5502   }
5503 
5504   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5505     std::swap(CmpLHS, CmpRHS);
5506     Pred = CmpInst::getSwappedPredicate(Pred);
5507     if (NaNBehavior == SPNB_RETURNS_NAN)
5508       NaNBehavior = SPNB_RETURNS_OTHER;
5509     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5510       NaNBehavior = SPNB_RETURNS_NAN;
5511     Ordered = !Ordered;
5512   }
5513 
5514   // ([if]cmp X, Y) ? X : Y
5515   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5516     switch (Pred) {
5517     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5518     case ICmpInst::ICMP_UGT:
5519     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5520     case ICmpInst::ICMP_SGT:
5521     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5522     case ICmpInst::ICMP_ULT:
5523     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5524     case ICmpInst::ICMP_SLT:
5525     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5526     case FCmpInst::FCMP_UGT:
5527     case FCmpInst::FCMP_UGE:
5528     case FCmpInst::FCMP_OGT:
5529     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5530     case FCmpInst::FCMP_ULT:
5531     case FCmpInst::FCMP_ULE:
5532     case FCmpInst::FCMP_OLT:
5533     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5534     }
5535   }
5536 
5537   if (isKnownNegation(TrueVal, FalseVal)) {
5538     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5539     // match against either LHS or sext(LHS).
5540     auto MaybeSExtCmpLHS =
5541         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5542     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5543     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5544     if (match(TrueVal, MaybeSExtCmpLHS)) {
5545       // Set the return values. If the compare uses the negated value (-X >s 0),
5546       // swap the return values because the negated value is always 'RHS'.
5547       LHS = TrueVal;
5548       RHS = FalseVal;
5549       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5550         std::swap(LHS, RHS);
5551 
5552       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5553       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5554       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5555         return {SPF_ABS, SPNB_NA, false};
5556 
5557       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5558       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5559         return {SPF_ABS, SPNB_NA, false};
5560 
5561       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5562       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5563       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5564         return {SPF_NABS, SPNB_NA, false};
5565     }
5566     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5567       // Set the return values. If the compare uses the negated value (-X >s 0),
5568       // swap the return values because the negated value is always 'RHS'.
5569       LHS = FalseVal;
5570       RHS = TrueVal;
5571       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5572         std::swap(LHS, RHS);
5573 
5574       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5575       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5576       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5577         return {SPF_NABS, SPNB_NA, false};
5578 
5579       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5580       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5581       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5582         return {SPF_ABS, SPNB_NA, false};
5583     }
5584   }
5585 
5586   if (CmpInst::isIntPredicate(Pred))
5587     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5588 
5589   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5590   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5591   // semantics than minNum. Be conservative in such case.
5592   if (NaNBehavior != SPNB_RETURNS_ANY ||
5593       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5594        !isKnownNonZero(CmpRHS)))
5595     return {SPF_UNKNOWN, SPNB_NA, false};
5596 
5597   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5598 }
5599 
5600 /// Helps to match a select pattern in case of a type mismatch.
5601 ///
5602 /// The function processes the case when type of true and false values of a
5603 /// select instruction differs from type of the cmp instruction operands because
5604 /// of a cast instruction. The function checks if it is legal to move the cast
5605 /// operation after "select". If yes, it returns the new second value of
5606 /// "select" (with the assumption that cast is moved):
5607 /// 1. As operand of cast instruction when both values of "select" are same cast
5608 /// instructions.
5609 /// 2. As restored constant (by applying reverse cast operation) when the first
5610 /// value of the "select" is a cast operation and the second value is a
5611 /// constant.
5612 /// NOTE: We return only the new second value because the first value could be
5613 /// accessed as operand of cast instruction.
5614 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5615                               Instruction::CastOps *CastOp) {
5616   auto *Cast1 = dyn_cast<CastInst>(V1);
5617   if (!Cast1)
5618     return nullptr;
5619 
5620   *CastOp = Cast1->getOpcode();
5621   Type *SrcTy = Cast1->getSrcTy();
5622   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5623     // If V1 and V2 are both the same cast from the same type, look through V1.
5624     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5625       return Cast2->getOperand(0);
5626     return nullptr;
5627   }
5628 
5629   auto *C = dyn_cast<Constant>(V2);
5630   if (!C)
5631     return nullptr;
5632 
5633   Constant *CastedTo = nullptr;
5634   switch (*CastOp) {
5635   case Instruction::ZExt:
5636     if (CmpI->isUnsigned())
5637       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5638     break;
5639   case Instruction::SExt:
5640     if (CmpI->isSigned())
5641       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5642     break;
5643   case Instruction::Trunc:
5644     Constant *CmpConst;
5645     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5646         CmpConst->getType() == SrcTy) {
5647       // Here we have the following case:
5648       //
5649       //   %cond = cmp iN %x, CmpConst
5650       //   %tr = trunc iN %x to iK
5651       //   %narrowsel = select i1 %cond, iK %t, iK C
5652       //
5653       // We can always move trunc after select operation:
5654       //
5655       //   %cond = cmp iN %x, CmpConst
5656       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5657       //   %tr = trunc iN %widesel to iK
5658       //
5659       // Note that C could be extended in any way because we don't care about
5660       // upper bits after truncation. It can't be abs pattern, because it would
5661       // look like:
5662       //
5663       //   select i1 %cond, x, -x.
5664       //
5665       // So only min/max pattern could be matched. Such match requires widened C
5666       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5667       // CmpConst == C is checked below.
5668       CastedTo = CmpConst;
5669     } else {
5670       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5671     }
5672     break;
5673   case Instruction::FPTrunc:
5674     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5675     break;
5676   case Instruction::FPExt:
5677     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5678     break;
5679   case Instruction::FPToUI:
5680     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5681     break;
5682   case Instruction::FPToSI:
5683     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5684     break;
5685   case Instruction::UIToFP:
5686     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5687     break;
5688   case Instruction::SIToFP:
5689     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5690     break;
5691   default:
5692     break;
5693   }
5694 
5695   if (!CastedTo)
5696     return nullptr;
5697 
5698   // Make sure the cast doesn't lose any information.
5699   Constant *CastedBack =
5700       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5701   if (CastedBack != C)
5702     return nullptr;
5703 
5704   return CastedTo;
5705 }
5706 
5707 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5708                                              Instruction::CastOps *CastOp,
5709                                              unsigned Depth) {
5710   if (Depth >= MaxDepth)
5711     return {SPF_UNKNOWN, SPNB_NA, false};
5712 
5713   SelectInst *SI = dyn_cast<SelectInst>(V);
5714   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5715 
5716   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5717   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5718 
5719   Value *TrueVal = SI->getTrueValue();
5720   Value *FalseVal = SI->getFalseValue();
5721 
5722   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5723                                             CastOp, Depth);
5724 }
5725 
5726 SelectPatternResult llvm::matchDecomposedSelectPattern(
5727     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5728     Instruction::CastOps *CastOp, unsigned Depth) {
5729   CmpInst::Predicate Pred = CmpI->getPredicate();
5730   Value *CmpLHS = CmpI->getOperand(0);
5731   Value *CmpRHS = CmpI->getOperand(1);
5732   FastMathFlags FMF;
5733   if (isa<FPMathOperator>(CmpI))
5734     FMF = CmpI->getFastMathFlags();
5735 
5736   // Bail out early.
5737   if (CmpI->isEquality())
5738     return {SPF_UNKNOWN, SPNB_NA, false};
5739 
5740   // Deal with type mismatches.
5741   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5742     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5743       // If this is a potential fmin/fmax with a cast to integer, then ignore
5744       // -0.0 because there is no corresponding integer value.
5745       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5746         FMF.setNoSignedZeros();
5747       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5748                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5749                                   LHS, RHS, Depth);
5750     }
5751     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5752       // If this is a potential fmin/fmax with a cast to integer, then ignore
5753       // -0.0 because there is no corresponding integer value.
5754       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5755         FMF.setNoSignedZeros();
5756       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5757                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5758                                   LHS, RHS, Depth);
5759     }
5760   }
5761   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5762                               LHS, RHS, Depth);
5763 }
5764 
5765 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5766   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5767   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5768   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5769   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5770   if (SPF == SPF_FMINNUM)
5771     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5772   if (SPF == SPF_FMAXNUM)
5773     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5774   llvm_unreachable("unhandled!");
5775 }
5776 
5777 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5778   if (SPF == SPF_SMIN) return SPF_SMAX;
5779   if (SPF == SPF_UMIN) return SPF_UMAX;
5780   if (SPF == SPF_SMAX) return SPF_SMIN;
5781   if (SPF == SPF_UMAX) return SPF_UMIN;
5782   llvm_unreachable("unhandled!");
5783 }
5784 
5785 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5786   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5787 }
5788 
5789 /// Return true if "icmp Pred LHS RHS" is always true.
5790 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5791                             const Value *RHS, const DataLayout &DL,
5792                             unsigned Depth) {
5793   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5794   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5795     return true;
5796 
5797   switch (Pred) {
5798   default:
5799     return false;
5800 
5801   case CmpInst::ICMP_SLE: {
5802     const APInt *C;
5803 
5804     // LHS s<= LHS +_{nsw} C   if C >= 0
5805     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5806       return !C->isNegative();
5807     return false;
5808   }
5809 
5810   case CmpInst::ICMP_ULE: {
5811     const APInt *C;
5812 
5813     // LHS u<= LHS +_{nuw} C   for any C
5814     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5815       return true;
5816 
5817     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5818     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5819                                        const Value *&X,
5820                                        const APInt *&CA, const APInt *&CB) {
5821       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5822           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5823         return true;
5824 
5825       // If X & C == 0 then (X | C) == X +_{nuw} C
5826       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5827           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5828         KnownBits Known(CA->getBitWidth());
5829         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5830                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5831         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5832           return true;
5833       }
5834 
5835       return false;
5836     };
5837 
5838     const Value *X;
5839     const APInt *CLHS, *CRHS;
5840     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5841       return CLHS->ule(*CRHS);
5842 
5843     return false;
5844   }
5845   }
5846 }
5847 
5848 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5849 /// ALHS ARHS" is true.  Otherwise, return None.
5850 static Optional<bool>
5851 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5852                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5853                       const DataLayout &DL, unsigned Depth) {
5854   switch (Pred) {
5855   default:
5856     return None;
5857 
5858   case CmpInst::ICMP_SLT:
5859   case CmpInst::ICMP_SLE:
5860     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5861         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5862       return true;
5863     return None;
5864 
5865   case CmpInst::ICMP_ULT:
5866   case CmpInst::ICMP_ULE:
5867     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5868         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5869       return true;
5870     return None;
5871   }
5872 }
5873 
5874 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5875 /// when the operands match, but are swapped.
5876 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5877                           const Value *BLHS, const Value *BRHS,
5878                           bool &IsSwappedOps) {
5879 
5880   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5881   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5882   return IsMatchingOps || IsSwappedOps;
5883 }
5884 
5885 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5886 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5887 /// Otherwise, return None if we can't infer anything.
5888 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5889                                                     CmpInst::Predicate BPred,
5890                                                     bool AreSwappedOps) {
5891   // Canonicalize the predicate as if the operands were not commuted.
5892   if (AreSwappedOps)
5893     BPred = ICmpInst::getSwappedPredicate(BPred);
5894 
5895   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5896     return true;
5897   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5898     return false;
5899 
5900   return None;
5901 }
5902 
5903 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5904 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5905 /// Otherwise, return None if we can't infer anything.
5906 static Optional<bool>
5907 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
5908                                  const ConstantInt *C1,
5909                                  CmpInst::Predicate BPred,
5910                                  const ConstantInt *C2) {
5911   ConstantRange DomCR =
5912       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5913   ConstantRange CR =
5914       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5915   ConstantRange Intersection = DomCR.intersectWith(CR);
5916   ConstantRange Difference = DomCR.difference(CR);
5917   if (Intersection.isEmptySet())
5918     return false;
5919   if (Difference.isEmptySet())
5920     return true;
5921   return None;
5922 }
5923 
5924 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5925 /// false.  Otherwise, return None if we can't infer anything.
5926 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5927                                          CmpInst::Predicate BPred,
5928                                          const Value *BLHS, const Value *BRHS,
5929                                          const DataLayout &DL, bool LHSIsTrue,
5930                                          unsigned Depth) {
5931   Value *ALHS = LHS->getOperand(0);
5932   Value *ARHS = LHS->getOperand(1);
5933 
5934   // The rest of the logic assumes the LHS condition is true.  If that's not the
5935   // case, invert the predicate to make it so.
5936   CmpInst::Predicate APred =
5937       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5938 
5939   // Can we infer anything when the two compares have matching operands?
5940   bool AreSwappedOps;
5941   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
5942     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5943             APred, BPred, AreSwappedOps))
5944       return Implication;
5945     // No amount of additional analysis will infer the second condition, so
5946     // early exit.
5947     return None;
5948   }
5949 
5950   // Can we infer anything when the LHS operands match and the RHS operands are
5951   // constants (not necessarily matching)?
5952   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5953     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5954             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
5955       return Implication;
5956     // No amount of additional analysis will infer the second condition, so
5957     // early exit.
5958     return None;
5959   }
5960 
5961   if (APred == BPred)
5962     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5963   return None;
5964 }
5965 
5966 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5967 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5968 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5969 static Optional<bool>
5970 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
5971                    const Value *RHSOp0, const Value *RHSOp1,
5972 
5973                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
5974   // The LHS must be an 'or' or an 'and' instruction.
5975   assert((LHS->getOpcode() == Instruction::And ||
5976           LHS->getOpcode() == Instruction::Or) &&
5977          "Expected LHS to be 'and' or 'or'.");
5978 
5979   assert(Depth <= MaxDepth && "Hit recursion limit");
5980 
5981   // If the result of an 'or' is false, then we know both legs of the 'or' are
5982   // false.  Similarly, if the result of an 'and' is true, then we know both
5983   // legs of the 'and' are true.
5984   Value *ALHS, *ARHS;
5985   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5986       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5987     // FIXME: Make this non-recursion.
5988     if (Optional<bool> Implication = isImpliedCondition(
5989             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
5990       return Implication;
5991     if (Optional<bool> Implication = isImpliedCondition(
5992             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
5993       return Implication;
5994     return None;
5995   }
5996   return None;
5997 }
5998 
5999 Optional<bool>
6000 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6001                          const Value *RHSOp0, const Value *RHSOp1,
6002                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6003   // Bail out when we hit the limit.
6004   if (Depth == MaxDepth)
6005     return None;
6006 
6007   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6008   // example.
6009   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6010     return None;
6011 
6012   Type *OpTy = LHS->getType();
6013   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6014 
6015   // FIXME: Extending the code below to handle vectors.
6016   if (OpTy->isVectorTy())
6017     return None;
6018 
6019   assert(OpTy->isIntegerTy(1) && "implied by above");
6020 
6021   // Both LHS and RHS are icmps.
6022   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6023   if (LHSCmp)
6024     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6025                               Depth);
6026 
6027   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6028   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6029   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6030   if (LHSBO) {
6031     if ((LHSBO->getOpcode() == Instruction::And ||
6032          LHSBO->getOpcode() == Instruction::Or))
6033       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6034                                 Depth);
6035   }
6036   return None;
6037 }
6038 
6039 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6040                                         const DataLayout &DL, bool LHSIsTrue,
6041                                         unsigned Depth) {
6042   // LHS ==> RHS by definition
6043   if (LHS == RHS)
6044     return LHSIsTrue;
6045 
6046   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6047   if (RHSCmp)
6048     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6049                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6050                               LHSIsTrue, Depth);
6051   return None;
6052 }
6053 
6054 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6055 // condition dominating ContextI or nullptr, if no condition is found.
6056 static std::pair<Value *, bool>
6057 getDomPredecessorCondition(const Instruction *ContextI) {
6058   if (!ContextI || !ContextI->getParent())
6059     return {nullptr, false};
6060 
6061   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6062   // dominator tree (eg, from a SimplifyQuery) instead?
6063   const BasicBlock *ContextBB = ContextI->getParent();
6064   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6065   if (!PredBB)
6066     return {nullptr, false};
6067 
6068   // We need a conditional branch in the predecessor.
6069   Value *PredCond;
6070   BasicBlock *TrueBB, *FalseBB;
6071   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6072     return {nullptr, false};
6073 
6074   // The branch should get simplified. Don't bother simplifying this condition.
6075   if (TrueBB == FalseBB)
6076     return {nullptr, false};
6077 
6078   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6079          "Predecessor block does not point to successor?");
6080 
6081   // Is this condition implied by the predecessor condition?
6082   return {PredCond, TrueBB == ContextBB};
6083 }
6084 
6085 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6086                                              const Instruction *ContextI,
6087                                              const DataLayout &DL) {
6088   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6089   auto PredCond = getDomPredecessorCondition(ContextI);
6090   if (PredCond.first)
6091     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6092   return None;
6093 }
6094 
6095 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6096                                              const Value *LHS, const Value *RHS,
6097                                              const Instruction *ContextI,
6098                                              const DataLayout &DL) {
6099   auto PredCond = getDomPredecessorCondition(ContextI);
6100   if (PredCond.first)
6101     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6102                               PredCond.second);
6103   return None;
6104 }
6105 
6106 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6107                               APInt &Upper, const InstrInfoQuery &IIQ) {
6108   unsigned Width = Lower.getBitWidth();
6109   const APInt *C;
6110   switch (BO.getOpcode()) {
6111   case Instruction::Add:
6112     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6113       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6114       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6115         // 'add nuw x, C' produces [C, UINT_MAX].
6116         Lower = *C;
6117       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6118         if (C->isNegative()) {
6119           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6120           Lower = APInt::getSignedMinValue(Width);
6121           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6122         } else {
6123           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6124           Lower = APInt::getSignedMinValue(Width) + *C;
6125           Upper = APInt::getSignedMaxValue(Width) + 1;
6126         }
6127       }
6128     }
6129     break;
6130 
6131   case Instruction::And:
6132     if (match(BO.getOperand(1), m_APInt(C)))
6133       // 'and x, C' produces [0, C].
6134       Upper = *C + 1;
6135     break;
6136 
6137   case Instruction::Or:
6138     if (match(BO.getOperand(1), m_APInt(C)))
6139       // 'or x, C' produces [C, UINT_MAX].
6140       Lower = *C;
6141     break;
6142 
6143   case Instruction::AShr:
6144     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6145       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6146       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6147       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6148     } else if (match(BO.getOperand(0), m_APInt(C))) {
6149       unsigned ShiftAmount = Width - 1;
6150       if (!C->isNullValue() && IIQ.isExact(&BO))
6151         ShiftAmount = C->countTrailingZeros();
6152       if (C->isNegative()) {
6153         // 'ashr C, x' produces [C, C >> (Width-1)]
6154         Lower = *C;
6155         Upper = C->ashr(ShiftAmount) + 1;
6156       } else {
6157         // 'ashr C, x' produces [C >> (Width-1), C]
6158         Lower = C->ashr(ShiftAmount);
6159         Upper = *C + 1;
6160       }
6161     }
6162     break;
6163 
6164   case Instruction::LShr:
6165     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6166       // 'lshr x, C' produces [0, UINT_MAX >> C].
6167       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6168     } else if (match(BO.getOperand(0), m_APInt(C))) {
6169       // 'lshr C, x' produces [C >> (Width-1), C].
6170       unsigned ShiftAmount = Width - 1;
6171       if (!C->isNullValue() && IIQ.isExact(&BO))
6172         ShiftAmount = C->countTrailingZeros();
6173       Lower = C->lshr(ShiftAmount);
6174       Upper = *C + 1;
6175     }
6176     break;
6177 
6178   case Instruction::Shl:
6179     if (match(BO.getOperand(0), m_APInt(C))) {
6180       if (IIQ.hasNoUnsignedWrap(&BO)) {
6181         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6182         Lower = *C;
6183         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6184       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6185         if (C->isNegative()) {
6186           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6187           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6188           Lower = C->shl(ShiftAmount);
6189           Upper = *C + 1;
6190         } else {
6191           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6192           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6193           Lower = *C;
6194           Upper = C->shl(ShiftAmount) + 1;
6195         }
6196       }
6197     }
6198     break;
6199 
6200   case Instruction::SDiv:
6201     if (match(BO.getOperand(1), m_APInt(C))) {
6202       APInt IntMin = APInt::getSignedMinValue(Width);
6203       APInt IntMax = APInt::getSignedMaxValue(Width);
6204       if (C->isAllOnesValue()) {
6205         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6206         //    where C != -1 and C != 0 and C != 1
6207         Lower = IntMin + 1;
6208         Upper = IntMax + 1;
6209       } else if (C->countLeadingZeros() < Width - 1) {
6210         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6211         //    where C != -1 and C != 0 and C != 1
6212         Lower = IntMin.sdiv(*C);
6213         Upper = IntMax.sdiv(*C);
6214         if (Lower.sgt(Upper))
6215           std::swap(Lower, Upper);
6216         Upper = Upper + 1;
6217         assert(Upper != Lower && "Upper part of range has wrapped!");
6218       }
6219     } else if (match(BO.getOperand(0), m_APInt(C))) {
6220       if (C->isMinSignedValue()) {
6221         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6222         Lower = *C;
6223         Upper = Lower.lshr(1) + 1;
6224       } else {
6225         // 'sdiv C, x' produces [-|C|, |C|].
6226         Upper = C->abs() + 1;
6227         Lower = (-Upper) + 1;
6228       }
6229     }
6230     break;
6231 
6232   case Instruction::UDiv:
6233     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6234       // 'udiv x, C' produces [0, UINT_MAX / C].
6235       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6236     } else if (match(BO.getOperand(0), m_APInt(C))) {
6237       // 'udiv C, x' produces [0, C].
6238       Upper = *C + 1;
6239     }
6240     break;
6241 
6242   case Instruction::SRem:
6243     if (match(BO.getOperand(1), m_APInt(C))) {
6244       // 'srem x, C' produces (-|C|, |C|).
6245       Upper = C->abs();
6246       Lower = (-Upper) + 1;
6247     }
6248     break;
6249 
6250   case Instruction::URem:
6251     if (match(BO.getOperand(1), m_APInt(C)))
6252       // 'urem x, C' produces [0, C).
6253       Upper = *C;
6254     break;
6255 
6256   default:
6257     break;
6258   }
6259 }
6260 
6261 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6262                                   APInt &Upper) {
6263   unsigned Width = Lower.getBitWidth();
6264   const APInt *C;
6265   switch (II.getIntrinsicID()) {
6266   case Intrinsic::uadd_sat:
6267     // uadd.sat(x, C) produces [C, UINT_MAX].
6268     if (match(II.getOperand(0), m_APInt(C)) ||
6269         match(II.getOperand(1), m_APInt(C)))
6270       Lower = *C;
6271     break;
6272   case Intrinsic::sadd_sat:
6273     if (match(II.getOperand(0), m_APInt(C)) ||
6274         match(II.getOperand(1), m_APInt(C))) {
6275       if (C->isNegative()) {
6276         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6277         Lower = APInt::getSignedMinValue(Width);
6278         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6279       } else {
6280         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6281         Lower = APInt::getSignedMinValue(Width) + *C;
6282         Upper = APInt::getSignedMaxValue(Width) + 1;
6283       }
6284     }
6285     break;
6286   case Intrinsic::usub_sat:
6287     // usub.sat(C, x) produces [0, C].
6288     if (match(II.getOperand(0), m_APInt(C)))
6289       Upper = *C + 1;
6290     // usub.sat(x, C) produces [0, UINT_MAX - C].
6291     else if (match(II.getOperand(1), m_APInt(C)))
6292       Upper = APInt::getMaxValue(Width) - *C + 1;
6293     break;
6294   case Intrinsic::ssub_sat:
6295     if (match(II.getOperand(0), m_APInt(C))) {
6296       if (C->isNegative()) {
6297         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6298         Lower = APInt::getSignedMinValue(Width);
6299         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6300       } else {
6301         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6302         Lower = *C - APInt::getSignedMaxValue(Width);
6303         Upper = APInt::getSignedMaxValue(Width) + 1;
6304       }
6305     } else if (match(II.getOperand(1), m_APInt(C))) {
6306       if (C->isNegative()) {
6307         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6308         Lower = APInt::getSignedMinValue(Width) - *C;
6309         Upper = APInt::getSignedMaxValue(Width) + 1;
6310       } else {
6311         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6312         Lower = APInt::getSignedMinValue(Width);
6313         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6314       }
6315     }
6316     break;
6317   default:
6318     break;
6319   }
6320 }
6321 
6322 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6323                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6324   const Value *LHS = nullptr, *RHS = nullptr;
6325   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6326   if (R.Flavor == SPF_UNKNOWN)
6327     return;
6328 
6329   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6330 
6331   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6332     // If the negation part of the abs (in RHS) has the NSW flag,
6333     // then the result of abs(X) is [0..SIGNED_MAX],
6334     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6335     Lower = APInt::getNullValue(BitWidth);
6336     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6337         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6338       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6339     else
6340       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6341     return;
6342   }
6343 
6344   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6345     // The result of -abs(X) is <= 0.
6346     Lower = APInt::getSignedMinValue(BitWidth);
6347     Upper = APInt(BitWidth, 1);
6348     return;
6349   }
6350 
6351   const APInt *C;
6352   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6353     return;
6354 
6355   switch (R.Flavor) {
6356     case SPF_UMIN:
6357       Upper = *C + 1;
6358       break;
6359     case SPF_UMAX:
6360       Lower = *C;
6361       break;
6362     case SPF_SMIN:
6363       Lower = APInt::getSignedMinValue(BitWidth);
6364       Upper = *C + 1;
6365       break;
6366     case SPF_SMAX:
6367       Lower = *C;
6368       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6369       break;
6370     default:
6371       break;
6372   }
6373 }
6374 
6375 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6376                                          AssumptionCache *AC,
6377                                          const Instruction *CtxI,
6378                                          unsigned Depth) {
6379   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6380 
6381   if (Depth == MaxDepth)
6382     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6383 
6384   const APInt *C;
6385   if (match(V, m_APInt(C)))
6386     return ConstantRange(*C);
6387 
6388   InstrInfoQuery IIQ(UseInstrInfo);
6389   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6390   APInt Lower = APInt(BitWidth, 0);
6391   APInt Upper = APInt(BitWidth, 0);
6392   if (auto *BO = dyn_cast<BinaryOperator>(V))
6393     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6394   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6395     setLimitsForIntrinsic(*II, Lower, Upper);
6396   else if (auto *SI = dyn_cast<SelectInst>(V))
6397     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6398 
6399   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6400 
6401   if (auto *I = dyn_cast<Instruction>(V))
6402     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6403       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6404 
6405   if (CtxI && AC) {
6406     // Try to restrict the range based on information from assumptions.
6407     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6408       if (!AssumeVH)
6409         continue;
6410       CallInst *I = cast<CallInst>(AssumeVH);
6411       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6412              "Got assumption for the wrong function!");
6413       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6414              "must be an assume intrinsic");
6415 
6416       if (!isValidAssumeForContext(I, CtxI, nullptr))
6417         continue;
6418       Value *Arg = I->getArgOperand(0);
6419       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6420       // Currently we just use information from comparisons.
6421       if (!Cmp || Cmp->getOperand(0) != V)
6422         continue;
6423       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6424                                                AC, I, Depth + 1);
6425       CR = CR.intersectWith(
6426           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6427     }
6428   }
6429 
6430   return CR;
6431 }
6432 
6433 static Optional<int64_t>
6434 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6435   // Skip over the first indices.
6436   gep_type_iterator GTI = gep_type_begin(GEP);
6437   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6438     /*skip along*/;
6439 
6440   // Compute the offset implied by the rest of the indices.
6441   int64_t Offset = 0;
6442   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6443     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6444     if (!OpC)
6445       return None;
6446     if (OpC->isZero())
6447       continue; // No offset.
6448 
6449     // Handle struct indices, which add their field offset to the pointer.
6450     if (StructType *STy = GTI.getStructTypeOrNull()) {
6451       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6452       continue;
6453     }
6454 
6455     // Otherwise, we have a sequential type like an array or fixed-length
6456     // vector. Multiply the index by the ElementSize.
6457     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6458     if (Size.isScalable())
6459       return None;
6460     Offset += Size.getFixedSize() * OpC->getSExtValue();
6461   }
6462 
6463   return Offset;
6464 }
6465 
6466 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6467                                         const DataLayout &DL) {
6468   Ptr1 = Ptr1->stripPointerCasts();
6469   Ptr2 = Ptr2->stripPointerCasts();
6470 
6471   // Handle the trivial case first.
6472   if (Ptr1 == Ptr2) {
6473     return 0;
6474   }
6475 
6476   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6477   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6478 
6479   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6480   // as in "P" and "gep P, 1".
6481   // Also do this iteratively to handle the the following case:
6482   //   Ptr_t1 = GEP Ptr1, c1
6483   //   Ptr_t2 = GEP Ptr_t1, c2
6484   //   Ptr2 = GEP Ptr_t2, c3
6485   // where we will return c1+c2+c3.
6486   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6487   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6488   // are the same, and return the difference between offsets.
6489   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6490                                  const Value *Ptr) -> Optional<int64_t> {
6491     const GEPOperator *GEP_T = GEP;
6492     int64_t OffsetVal = 0;
6493     bool HasSameBase = false;
6494     while (GEP_T) {
6495       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6496       if (!Offset)
6497         return None;
6498       OffsetVal += *Offset;
6499       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6500       if (Op0 == Ptr) {
6501         HasSameBase = true;
6502         break;
6503       }
6504       GEP_T = dyn_cast<GEPOperator>(Op0);
6505     }
6506     if (!HasSameBase)
6507       return None;
6508     return OffsetVal;
6509   };
6510 
6511   if (GEP1) {
6512     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6513     if (Offset)
6514       return -*Offset;
6515   }
6516   if (GEP2) {
6517     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6518     if (Offset)
6519       return Offset;
6520   }
6521 
6522   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6523   // base.  After that base, they may have some number of common (and
6524   // potentially variable) indices.  After that they handle some constant
6525   // offset, which determines their offset from each other.  At this point, we
6526   // handle no other case.
6527   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6528     return None;
6529 
6530   // Skip any common indices and track the GEP types.
6531   unsigned Idx = 1;
6532   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6533     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6534       break;
6535 
6536   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6537   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6538   if (!Offset1 || !Offset2)
6539     return None;
6540   return *Offset2 - *Offset1;
6541 }
6542