1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2,
360                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                    bool NSW, const APInt &DemandedElts,
401                                    KnownBits &KnownOut, KnownBits &Known2,
402                                    unsigned Depth, const Query &Q) {
403   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404 
405   // If one operand is unknown and we have no nowrap information,
406   // the result will be unknown independently of the second operand.
407   if (KnownOut.isUnknown() && !NSW)
408     return;
409 
410   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412 }
413 
414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                 const APInt &DemandedElts, KnownBits &Known,
416                                 KnownBits &Known2, unsigned Depth,
417                                 const Query &Q) {
418   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
419   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
420 
421   bool isKnownNegative = false;
422   bool isKnownNonNegative = false;
423   // If the multiplication is known not to overflow, compute the sign bit.
424   if (NSW) {
425     if (Op0 == Op1) {
426       // The product of a number with itself is non-negative.
427       isKnownNonNegative = true;
428     } else {
429       bool isKnownNonNegativeOp1 = Known.isNonNegative();
430       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
431       bool isKnownNegativeOp1 = Known.isNegative();
432       bool isKnownNegativeOp0 = Known2.isNegative();
433       // The product of two numbers with the same sign is non-negative.
434       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
435                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
436       // The product of a negative number and a non-negative number is either
437       // negative or zero.
438       if (!isKnownNonNegative)
439         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
440                            isKnownNonZero(Op0, Depth, Q)) ||
441                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
442                            isKnownNonZero(Op1, Depth, Q));
443     }
444   }
445 
446   Known = KnownBits::computeForMul(Known, Known2);
447 
448   // Only make use of no-wrap flags if we failed to compute the sign bit
449   // directly.  This matters if the multiplication always overflows, in
450   // which case we prefer to follow the result of the direct computation,
451   // though as the program is invoking undefined behaviour we can choose
452   // whatever we like here.
453   if (isKnownNonNegative && !Known.isNegative())
454     Known.makeNonNegative();
455   else if (isKnownNegative && !Known.isNonNegative())
456     Known.makeNegative();
457 }
458 
459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
460                                              KnownBits &Known) {
461   unsigned BitWidth = Known.getBitWidth();
462   unsigned NumRanges = Ranges.getNumOperands() / 2;
463   assert(NumRanges >= 1);
464 
465   Known.Zero.setAllBits();
466   Known.One.setAllBits();
467 
468   for (unsigned i = 0; i < NumRanges; ++i) {
469     ConstantInt *Lower =
470         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
471     ConstantInt *Upper =
472         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
473     ConstantRange Range(Lower->getValue(), Upper->getValue());
474 
475     // The first CommonPrefixBits of all values in Range are equal.
476     unsigned CommonPrefixBits =
477         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
478     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
479     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
480     Known.One &= UnsignedMax & Mask;
481     Known.Zero &= ~UnsignedMax & Mask;
482   }
483 }
484 
485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
486   SmallVector<const Value *, 16> WorkSet(1, I);
487   SmallPtrSet<const Value *, 32> Visited;
488   SmallPtrSet<const Value *, 16> EphValues;
489 
490   // The instruction defining an assumption's condition itself is always
491   // considered ephemeral to that assumption (even if it has other
492   // non-ephemeral users). See r246696's test case for an example.
493   if (is_contained(I->operands(), E))
494     return true;
495 
496   while (!WorkSet.empty()) {
497     const Value *V = WorkSet.pop_back_val();
498     if (!Visited.insert(V).second)
499       continue;
500 
501     // If all uses of this value are ephemeral, then so is this value.
502     if (llvm::all_of(V->users(), [&](const User *U) {
503                                    return EphValues.count(U);
504                                  })) {
505       if (V == E)
506         return true;
507 
508       if (V == I || isSafeToSpeculativelyExecute(V)) {
509        EphValues.insert(V);
510        if (const User *U = dyn_cast<User>(V))
511          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
512               J != JE; ++J)
513            WorkSet.push_back(*J);
514       }
515     }
516   }
517 
518   return false;
519 }
520 
521 // Is this an intrinsic that cannot be speculated but also cannot trap?
522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
523   if (const CallInst *CI = dyn_cast<CallInst>(I))
524     if (Function *F = CI->getCalledFunction())
525       switch (F->getIntrinsicID()) {
526       default: break;
527       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
528       case Intrinsic::assume:
529       case Intrinsic::sideeffect:
530       case Intrinsic::dbg_declare:
531       case Intrinsic::dbg_value:
532       case Intrinsic::dbg_label:
533       case Intrinsic::invariant_start:
534       case Intrinsic::invariant_end:
535       case Intrinsic::lifetime_start:
536       case Intrinsic::lifetime_end:
537       case Intrinsic::objectsize:
538       case Intrinsic::ptr_annotation:
539       case Intrinsic::var_annotation:
540         return true;
541       }
542 
543   return false;
544 }
545 
546 bool llvm::isValidAssumeForContext(const Instruction *Inv,
547                                    const Instruction *CxtI,
548                                    const DominatorTree *DT) {
549   // There are two restrictions on the use of an assume:
550   //  1. The assume must dominate the context (or the control flow must
551   //     reach the assume whenever it reaches the context).
552   //  2. The context must not be in the assume's set of ephemeral values
553   //     (otherwise we will use the assume to prove that the condition
554   //     feeding the assume is trivially true, thus causing the removal of
555   //     the assume).
556 
557   if (Inv->getParent() == CxtI->getParent()) {
558     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
559     // in the BB.
560     if (Inv->comesBefore(CxtI))
561       return true;
562 
563     // Don't let an assume affect itself - this would cause the problems
564     // `isEphemeralValueOf` is trying to prevent, and it would also make
565     // the loop below go out of bounds.
566     if (Inv == CxtI)
567       return false;
568 
569     // The context comes first, but they're both in the same block.
570     // Make sure there is nothing in between that might interrupt
571     // the control flow, not even CxtI itself.
572     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
573       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
574         return false;
575 
576     return !isEphemeralValueOf(Inv, CxtI);
577   }
578 
579   // Inv and CxtI are in different blocks.
580   if (DT) {
581     if (DT->dominates(Inv, CxtI))
582       return true;
583   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
584     // We don't have a DT, but this trivially dominates.
585     return true;
586   }
587 
588   return false;
589 }
590 
591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
592   // Use of assumptions is context-sensitive. If we don't have a context, we
593   // cannot use them!
594   if (!Q.AC || !Q.CxtI)
595     return false;
596 
597   // Note that the patterns below need to be kept in sync with the code
598   // in AssumptionCache::updateAffectedValues.
599 
600   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
601     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
602 
603     Value *RHS;
604     CmpInst::Predicate Pred;
605     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
606       return false;
607     // assume(v u> y) -> assume(v != 0)
608     if (Pred == ICmpInst::ICMP_UGT)
609       return true;
610 
611     // assume(v != 0)
612     // We special-case this one to ensure that we handle `assume(v != null)`.
613     if (Pred == ICmpInst::ICMP_NE)
614       return match(RHS, m_Zero());
615 
616     // All other predicates - rely on generic ConstantRange handling.
617     ConstantInt *CI;
618     if (!match(RHS, m_ConstantInt(CI)))
619       return false;
620     ConstantRange RHSRange(CI->getValue());
621     ConstantRange TrueValues =
622         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
623     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
624   };
625 
626   if (Q.CxtI && V->getType()->isPointerTy()) {
627     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
628     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
629                               V->getType()->getPointerAddressSpace()))
630       AttrKinds.push_back(Attribute::Dereferenceable);
631 
632     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
633       return true;
634   }
635 
636   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
637     if (!AssumeVH)
638       continue;
639     CallInst *I = cast<CallInst>(AssumeVH);
640     assert(I->getFunction() == Q.CxtI->getFunction() &&
641            "Got assumption for the wrong function!");
642     if (Q.isExcluded(I))
643       continue;
644 
645     // Warning: This loop can end up being somewhat performance sensitive.
646     // We're running this loop for once for each value queried resulting in a
647     // runtime of ~O(#assumes * #values).
648 
649     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
650            "must be an assume intrinsic");
651 
652     Value *Arg = I->getArgOperand(0);
653     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
654     if (!Cmp)
655       continue;
656 
657     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
658       return true;
659   }
660 
661   return false;
662 }
663 
664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
665                                        unsigned Depth, const Query &Q) {
666   // Use of assumptions is context-sensitive. If we don't have a context, we
667   // cannot use them!
668   if (!Q.AC || !Q.CxtI)
669     return;
670 
671   unsigned BitWidth = Known.getBitWidth();
672 
673   // Note that the patterns below need to be kept in sync with the code
674   // in AssumptionCache::updateAffectedValues.
675 
676   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
677     if (!AssumeVH)
678       continue;
679     CallInst *I = cast<CallInst>(AssumeVH);
680     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
681            "Got assumption for the wrong function!");
682     if (Q.isExcluded(I))
683       continue;
684 
685     // Warning: This loop can end up being somewhat performance sensitive.
686     // We're running this loop for once for each value queried resulting in a
687     // runtime of ~O(#assumes * #values).
688 
689     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
690            "must be an assume intrinsic");
691 
692     Value *Arg = I->getArgOperand(0);
693 
694     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
695       assert(BitWidth == 1 && "assume operand is not i1?");
696       Known.setAllOnes();
697       return;
698     }
699     if (match(Arg, m_Not(m_Specific(V))) &&
700         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
701       assert(BitWidth == 1 && "assume operand is not i1?");
702       Known.setAllZero();
703       return;
704     }
705 
706     // The remaining tests are all recursive, so bail out if we hit the limit.
707     if (Depth == MaxAnalysisRecursionDepth)
708       continue;
709 
710     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
711     if (!Cmp)
712       continue;
713 
714     // Note that ptrtoint may change the bitwidth.
715     Value *A, *B;
716     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
717 
718     CmpInst::Predicate Pred;
719     uint64_t C;
720     switch (Cmp->getPredicate()) {
721     default:
722       break;
723     case ICmpInst::ICMP_EQ:
724       // assume(v = a)
725       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
726           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
727         KnownBits RHSKnown =
728             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
729         Known.Zero |= RHSKnown.Zero;
730         Known.One  |= RHSKnown.One;
731       // assume(v & b = a)
732       } else if (match(Cmp,
733                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
734                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
735         KnownBits RHSKnown =
736             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
737         KnownBits MaskKnown =
738             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
739 
740         // For those bits in the mask that are known to be one, we can propagate
741         // known bits from the RHS to V.
742         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
743         Known.One  |= RHSKnown.One  & MaskKnown.One;
744       // assume(~(v & b) = a)
745       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
746                                      m_Value(A))) &&
747                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
748         KnownBits RHSKnown =
749             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
750         KnownBits MaskKnown =
751             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
752 
753         // For those bits in the mask that are known to be one, we can propagate
754         // inverted known bits from the RHS to V.
755         Known.Zero |= RHSKnown.One  & MaskKnown.One;
756         Known.One  |= RHSKnown.Zero & MaskKnown.One;
757       // assume(v | b = a)
758       } else if (match(Cmp,
759                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
760                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
761         KnownBits RHSKnown =
762             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
763         KnownBits BKnown =
764             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
765 
766         // For those bits in B that are known to be zero, we can propagate known
767         // bits from the RHS to V.
768         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
769         Known.One  |= RHSKnown.One  & BKnown.Zero;
770       // assume(~(v | b) = a)
771       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
772                                      m_Value(A))) &&
773                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
774         KnownBits RHSKnown =
775             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
776         KnownBits BKnown =
777             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
778 
779         // For those bits in B that are known to be zero, we can propagate
780         // inverted known bits from the RHS to V.
781         Known.Zero |= RHSKnown.One  & BKnown.Zero;
782         Known.One  |= RHSKnown.Zero & BKnown.Zero;
783       // assume(v ^ b = a)
784       } else if (match(Cmp,
785                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
786                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
787         KnownBits RHSKnown =
788             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
789         KnownBits BKnown =
790             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
791 
792         // For those bits in B that are known to be zero, we can propagate known
793         // bits from the RHS to V. For those bits in B that are known to be one,
794         // we can propagate inverted known bits from the RHS to V.
795         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
796         Known.One  |= RHSKnown.One  & BKnown.Zero;
797         Known.Zero |= RHSKnown.One  & BKnown.One;
798         Known.One  |= RHSKnown.Zero & BKnown.One;
799       // assume(~(v ^ b) = a)
800       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
801                                      m_Value(A))) &&
802                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
803         KnownBits RHSKnown =
804             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
805         KnownBits BKnown =
806             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
807 
808         // For those bits in B that are known to be zero, we can propagate
809         // inverted known bits from the RHS to V. For those bits in B that are
810         // known to be one, we can propagate known bits from the RHS to V.
811         Known.Zero |= RHSKnown.One  & BKnown.Zero;
812         Known.One  |= RHSKnown.Zero & BKnown.Zero;
813         Known.Zero |= RHSKnown.Zero & BKnown.One;
814         Known.One  |= RHSKnown.One  & BKnown.One;
815       // assume(v << c = a)
816       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
817                                      m_Value(A))) &&
818                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
819         KnownBits RHSKnown =
820             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
821 
822         // For those bits in RHS that are known, we can propagate them to known
823         // bits in V shifted to the right by C.
824         RHSKnown.Zero.lshrInPlace(C);
825         Known.Zero |= RHSKnown.Zero;
826         RHSKnown.One.lshrInPlace(C);
827         Known.One  |= RHSKnown.One;
828       // assume(~(v << c) = a)
829       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
830                                      m_Value(A))) &&
831                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
832         KnownBits RHSKnown =
833             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
834         // For those bits in RHS that are known, we can propagate them inverted
835         // to known bits in V shifted to the right by C.
836         RHSKnown.One.lshrInPlace(C);
837         Known.Zero |= RHSKnown.One;
838         RHSKnown.Zero.lshrInPlace(C);
839         Known.One  |= RHSKnown.Zero;
840       // assume(v >> c = a)
841       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
842                                      m_Value(A))) &&
843                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
844         KnownBits RHSKnown =
845             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
846         // For those bits in RHS that are known, we can propagate them to known
847         // bits in V shifted to the right by C.
848         Known.Zero |= RHSKnown.Zero << C;
849         Known.One  |= RHSKnown.One  << C;
850       // assume(~(v >> c) = a)
851       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
852                                      m_Value(A))) &&
853                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
854         KnownBits RHSKnown =
855             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
856         // For those bits in RHS that are known, we can propagate them inverted
857         // to known bits in V shifted to the right by C.
858         Known.Zero |= RHSKnown.One  << C;
859         Known.One  |= RHSKnown.Zero << C;
860       }
861       break;
862     case ICmpInst::ICMP_SGE:
863       // assume(v >=_s c) where c is non-negative
864       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
865           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
866         KnownBits RHSKnown =
867             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
868 
869         if (RHSKnown.isNonNegative()) {
870           // We know that the sign bit is zero.
871           Known.makeNonNegative();
872         }
873       }
874       break;
875     case ICmpInst::ICMP_SGT:
876       // assume(v >_s c) where c is at least -1.
877       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
878           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
879         KnownBits RHSKnown =
880             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
881 
882         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
883           // We know that the sign bit is zero.
884           Known.makeNonNegative();
885         }
886       }
887       break;
888     case ICmpInst::ICMP_SLE:
889       // assume(v <=_s c) where c is negative
890       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
891           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
892         KnownBits RHSKnown =
893             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
894 
895         if (RHSKnown.isNegative()) {
896           // We know that the sign bit is one.
897           Known.makeNegative();
898         }
899       }
900       break;
901     case ICmpInst::ICMP_SLT:
902       // assume(v <_s c) where c is non-positive
903       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
904           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
905         KnownBits RHSKnown =
906             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
907 
908         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
909           // We know that the sign bit is one.
910           Known.makeNegative();
911         }
912       }
913       break;
914     case ICmpInst::ICMP_ULE:
915       // assume(v <=_u c)
916       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
917           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
918         KnownBits RHSKnown =
919             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
920 
921         // Whatever high bits in c are zero are known to be zero.
922         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
923       }
924       break;
925     case ICmpInst::ICMP_ULT:
926       // assume(v <_u c)
927       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
928           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
929         KnownBits RHSKnown =
930             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
931 
932         // If the RHS is known zero, then this assumption must be wrong (nothing
933         // is unsigned less than zero). Signal a conflict and get out of here.
934         if (RHSKnown.isZero()) {
935           Known.Zero.setAllBits();
936           Known.One.setAllBits();
937           break;
938         }
939 
940         // Whatever high bits in c are zero are known to be zero (if c is a power
941         // of 2, then one more).
942         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
943           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
944         else
945           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
946       }
947       break;
948     }
949   }
950 
951   // If assumptions conflict with each other or previous known bits, then we
952   // have a logical fallacy. It's possible that the assumption is not reachable,
953   // so this isn't a real bug. On the other hand, the program may have undefined
954   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
955   // clear out the known bits, try to warn the user, and hope for the best.
956   if (Known.Zero.intersects(Known.One)) {
957     Known.resetAll();
958 
959     if (Q.ORE)
960       Q.ORE->emit([&]() {
961         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
962         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
963                                           CxtI)
964                << "Detected conflicting code assumptions. Program may "
965                   "have undefined behavior, or compiler may have "
966                   "internal error.";
967       });
968   }
969 }
970 
971 /// Compute known bits from a shift operator, including those with a
972 /// non-constant shift amount. Known is the output of this function. Known2 is a
973 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
974 /// operator-specific functions that, given the known-zero or known-one bits
975 /// respectively, and a shift amount, compute the implied known-zero or
976 /// known-one bits of the shift operator's result respectively for that shift
977 /// amount. The results from calling KZF and KOF are conservatively combined for
978 /// all permitted shift amounts.
979 static void computeKnownBitsFromShiftOperator(
980     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
981     KnownBits &Known2, unsigned Depth, const Query &Q,
982     function_ref<APInt(const APInt &, unsigned)> KZF,
983     function_ref<APInt(const APInt &, unsigned)> KOF) {
984   unsigned BitWidth = Known.getBitWidth();
985 
986   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
987   if (Known.isConstant()) {
988     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
989 
990     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
991     Known.Zero = KZF(Known.Zero, ShiftAmt);
992     Known.One  = KOF(Known.One, ShiftAmt);
993     // If the known bits conflict, this must be an overflowing left shift, so
994     // the shift result is poison. We can return anything we want. Choose 0 for
995     // the best folding opportunity.
996     if (Known.hasConflict())
997       Known.setAllZero();
998 
999     return;
1000   }
1001 
1002   // If the shift amount could be greater than or equal to the bit-width of the
1003   // LHS, the value could be poison, but bail out because the check below is
1004   // expensive.
1005   // TODO: Should we just carry on?
1006   if (Known.getMaxValue().uge(BitWidth)) {
1007     Known.resetAll();
1008     return;
1009   }
1010 
1011   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1012   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1013   // limit value (which implies all bits are known).
1014   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1015   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1016 
1017   // It would be more-clearly correct to use the two temporaries for this
1018   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1019   Known.resetAll();
1020 
1021   // If we know the shifter operand is nonzero, we can sometimes infer more
1022   // known bits. However this is expensive to compute, so be lazy about it and
1023   // only compute it when absolutely necessary.
1024   Optional<bool> ShifterOperandIsNonZero;
1025 
1026   // Early exit if we can't constrain any well-defined shift amount.
1027   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1028       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1029     ShifterOperandIsNonZero =
1030         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1031     if (!*ShifterOperandIsNonZero)
1032       return;
1033   }
1034 
1035   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1036 
1037   Known.Zero.setAllBits();
1038   Known.One.setAllBits();
1039   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1040     // Combine the shifted known input bits only for those shift amounts
1041     // compatible with its known constraints.
1042     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1043       continue;
1044     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1045       continue;
1046     // If we know the shifter is nonzero, we may be able to infer more known
1047     // bits. This check is sunk down as far as possible to avoid the expensive
1048     // call to isKnownNonZero if the cheaper checks above fail.
1049     if (ShiftAmt == 0) {
1050       if (!ShifterOperandIsNonZero.hasValue())
1051         ShifterOperandIsNonZero =
1052             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1053       if (*ShifterOperandIsNonZero)
1054         continue;
1055     }
1056 
1057     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1058     Known.One  &= KOF(Known2.One, ShiftAmt);
1059   }
1060 
1061   // If the known bits conflict, the result is poison. Return a 0 and hope the
1062   // caller can further optimize that.
1063   if (Known.hasConflict())
1064     Known.setAllZero();
1065 }
1066 
1067 static void computeKnownBitsFromOperator(const Operator *I,
1068                                          const APInt &DemandedElts,
1069                                          KnownBits &Known, unsigned Depth,
1070                                          const Query &Q) {
1071   unsigned BitWidth = Known.getBitWidth();
1072 
1073   KnownBits Known2(BitWidth);
1074   switch (I->getOpcode()) {
1075   default: break;
1076   case Instruction::Load:
1077     if (MDNode *MD =
1078             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1079       computeKnownBitsFromRangeMetadata(*MD, Known);
1080     break;
1081   case Instruction::And: {
1082     // If either the LHS or the RHS are Zero, the result is zero.
1083     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1084     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1085 
1086     Known &= Known2;
1087 
1088     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1089     // here we handle the more general case of adding any odd number by
1090     // matching the form add(x, add(x, y)) where y is odd.
1091     // TODO: This could be generalized to clearing any bit set in y where the
1092     // following bit is known to be unset in y.
1093     Value *X = nullptr, *Y = nullptr;
1094     if (!Known.Zero[0] && !Known.One[0] &&
1095         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1096       Known2.resetAll();
1097       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1098       if (Known2.countMinTrailingOnes() > 0)
1099         Known.Zero.setBit(0);
1100     }
1101     break;
1102   }
1103   case Instruction::Or:
1104     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1105     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1106 
1107     Known |= Known2;
1108     break;
1109   case Instruction::Xor:
1110     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1111     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1112 
1113     Known ^= Known2;
1114     break;
1115   case Instruction::Mul: {
1116     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1117     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1118                         Known, Known2, Depth, Q);
1119     break;
1120   }
1121   case Instruction::UDiv: {
1122     // For the purposes of computing leading zeros we can conservatively
1123     // treat a udiv as a logical right shift by the power of 2 known to
1124     // be less than the denominator.
1125     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1126     unsigned LeadZ = Known2.countMinLeadingZeros();
1127 
1128     Known2.resetAll();
1129     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1130     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1131     if (RHSMaxLeadingZeros != BitWidth)
1132       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1133 
1134     Known.Zero.setHighBits(LeadZ);
1135     break;
1136   }
1137   case Instruction::Select: {
1138     const Value *LHS = nullptr, *RHS = nullptr;
1139     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1140     if (SelectPatternResult::isMinOrMax(SPF)) {
1141       computeKnownBits(RHS, Known, Depth + 1, Q);
1142       computeKnownBits(LHS, Known2, Depth + 1, Q);
1143       switch (SPF) {
1144       default:
1145         llvm_unreachable("Unhandled select pattern flavor!");
1146       case SPF_SMAX:
1147         Known = KnownBits::smax(Known, Known2);
1148         break;
1149       case SPF_SMIN:
1150         Known = KnownBits::smin(Known, Known2);
1151         break;
1152       case SPF_UMAX:
1153         Known = KnownBits::umax(Known, Known2);
1154         break;
1155       case SPF_UMIN:
1156         Known = KnownBits::umin(Known, Known2);
1157         break;
1158       }
1159       break;
1160     }
1161 
1162     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1163     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1164 
1165     // Only known if known in both the LHS and RHS.
1166     Known.One &= Known2.One;
1167     Known.Zero &= Known2.Zero;
1168 
1169     if (SPF == SPF_ABS) {
1170       // RHS from matchSelectPattern returns the negation part of abs pattern.
1171       // If the negate has an NSW flag we can assume the sign bit of the result
1172       // will be 0 because that makes abs(INT_MIN) undefined.
1173       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1174           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1175         Known.Zero.setSignBit();
1176     }
1177 
1178     break;
1179   }
1180   case Instruction::FPTrunc:
1181   case Instruction::FPExt:
1182   case Instruction::FPToUI:
1183   case Instruction::FPToSI:
1184   case Instruction::SIToFP:
1185   case Instruction::UIToFP:
1186     break; // Can't work with floating point.
1187   case Instruction::PtrToInt:
1188   case Instruction::IntToPtr:
1189     // Fall through and handle them the same as zext/trunc.
1190     LLVM_FALLTHROUGH;
1191   case Instruction::ZExt:
1192   case Instruction::Trunc: {
1193     Type *SrcTy = I->getOperand(0)->getType();
1194 
1195     unsigned SrcBitWidth;
1196     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1197     // which fall through here.
1198     Type *ScalarTy = SrcTy->getScalarType();
1199     SrcBitWidth = ScalarTy->isPointerTy() ?
1200       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1201       Q.DL.getTypeSizeInBits(ScalarTy);
1202 
1203     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1204     Known = Known.anyextOrTrunc(SrcBitWidth);
1205     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1206     Known = Known.zextOrTrunc(BitWidth);
1207     break;
1208   }
1209   case Instruction::BitCast: {
1210     Type *SrcTy = I->getOperand(0)->getType();
1211     if (SrcTy->isIntOrPtrTy() &&
1212         // TODO: For now, not handling conversions like:
1213         // (bitcast i64 %x to <2 x i32>)
1214         !I->getType()->isVectorTy()) {
1215       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1216       break;
1217     }
1218     break;
1219   }
1220   case Instruction::SExt: {
1221     // Compute the bits in the result that are not present in the input.
1222     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1223 
1224     Known = Known.trunc(SrcBitWidth);
1225     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1226     // If the sign bit of the input is known set or clear, then we know the
1227     // top bits of the result.
1228     Known = Known.sext(BitWidth);
1229     break;
1230   }
1231   case Instruction::Shl: {
1232     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1233     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1234     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1235       APInt KZResult = KnownZero << ShiftAmt;
1236       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1237       // If this shift has "nsw" keyword, then the result is either a poison
1238       // value or has the same sign bit as the first operand.
1239       if (NSW && KnownZero.isSignBitSet())
1240         KZResult.setSignBit();
1241       return KZResult;
1242     };
1243 
1244     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1245       APInt KOResult = KnownOne << ShiftAmt;
1246       if (NSW && KnownOne.isSignBitSet())
1247         KOResult.setSignBit();
1248       return KOResult;
1249     };
1250 
1251     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1252                                       KZF, KOF);
1253     break;
1254   }
1255   case Instruction::LShr: {
1256     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1257     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1258       APInt KZResult = KnownZero.lshr(ShiftAmt);
1259       // High bits known zero.
1260       KZResult.setHighBits(ShiftAmt);
1261       return KZResult;
1262     };
1263 
1264     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1265       return KnownOne.lshr(ShiftAmt);
1266     };
1267 
1268     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1269                                       KZF, KOF);
1270     break;
1271   }
1272   case Instruction::AShr: {
1273     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1274     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1275       return KnownZero.ashr(ShiftAmt);
1276     };
1277 
1278     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1279       return KnownOne.ashr(ShiftAmt);
1280     };
1281 
1282     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1283                                       KZF, KOF);
1284     break;
1285   }
1286   case Instruction::Sub: {
1287     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1288     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1289                            DemandedElts, Known, Known2, Depth, Q);
1290     break;
1291   }
1292   case Instruction::Add: {
1293     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1294     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1295                            DemandedElts, Known, Known2, Depth, Q);
1296     break;
1297   }
1298   case Instruction::SRem:
1299     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1300       APInt RA = Rem->getValue().abs();
1301       if (RA.isPowerOf2()) {
1302         APInt LowBits = RA - 1;
1303         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1304 
1305         // The low bits of the first operand are unchanged by the srem.
1306         Known.Zero = Known2.Zero & LowBits;
1307         Known.One = Known2.One & LowBits;
1308 
1309         // If the first operand is non-negative or has all low bits zero, then
1310         // the upper bits are all zero.
1311         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1312           Known.Zero |= ~LowBits;
1313 
1314         // If the first operand is negative and not all low bits are zero, then
1315         // the upper bits are all one.
1316         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1317           Known.One |= ~LowBits;
1318 
1319         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1320         break;
1321       }
1322     }
1323 
1324     // The sign bit is the LHS's sign bit, except when the result of the
1325     // remainder is zero.
1326     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1327     // If it's known zero, our sign bit is also zero.
1328     if (Known2.isNonNegative())
1329       Known.makeNonNegative();
1330 
1331     break;
1332   case Instruction::URem: {
1333     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1334       const APInt &RA = Rem->getValue();
1335       if (RA.isPowerOf2()) {
1336         APInt LowBits = (RA - 1);
1337         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1338         Known.Zero |= ~LowBits;
1339         Known.One &= LowBits;
1340         break;
1341       }
1342     }
1343 
1344     // Since the result is less than or equal to either operand, any leading
1345     // zero bits in either operand must also exist in the result.
1346     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1347     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1348 
1349     unsigned Leaders =
1350         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1351     Known.resetAll();
1352     Known.Zero.setHighBits(Leaders);
1353     break;
1354   }
1355   case Instruction::Alloca:
1356     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1357     break;
1358   case Instruction::GetElementPtr: {
1359     // Analyze all of the subscripts of this getelementptr instruction
1360     // to determine if we can prove known low zero bits.
1361     KnownBits LocalKnown(BitWidth);
1362     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1363     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1364 
1365     gep_type_iterator GTI = gep_type_begin(I);
1366     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1367       // TrailZ can only become smaller, short-circuit if we hit zero.
1368       if (TrailZ == 0)
1369         break;
1370 
1371       Value *Index = I->getOperand(i);
1372       if (StructType *STy = GTI.getStructTypeOrNull()) {
1373         // Handle struct member offset arithmetic.
1374 
1375         // Handle case when index is vector zeroinitializer
1376         Constant *CIndex = cast<Constant>(Index);
1377         if (CIndex->isZeroValue())
1378           continue;
1379 
1380         if (CIndex->getType()->isVectorTy())
1381           Index = CIndex->getSplatValue();
1382 
1383         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1384         const StructLayout *SL = Q.DL.getStructLayout(STy);
1385         uint64_t Offset = SL->getElementOffset(Idx);
1386         TrailZ = std::min<unsigned>(TrailZ,
1387                                     countTrailingZeros(Offset));
1388       } else {
1389         // Handle array index arithmetic.
1390         Type *IndexedTy = GTI.getIndexedType();
1391         if (!IndexedTy->isSized()) {
1392           TrailZ = 0;
1393           break;
1394         }
1395         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1396         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1397         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1398         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1399         TrailZ = std::min(TrailZ,
1400                           unsigned(countTrailingZeros(TypeSize) +
1401                                    LocalKnown.countMinTrailingZeros()));
1402       }
1403     }
1404 
1405     Known.Zero.setLowBits(TrailZ);
1406     break;
1407   }
1408   case Instruction::PHI: {
1409     const PHINode *P = cast<PHINode>(I);
1410     // Handle the case of a simple two-predecessor recurrence PHI.
1411     // There's a lot more that could theoretically be done here, but
1412     // this is sufficient to catch some interesting cases.
1413     if (P->getNumIncomingValues() == 2) {
1414       for (unsigned i = 0; i != 2; ++i) {
1415         Value *L = P->getIncomingValue(i);
1416         Value *R = P->getIncomingValue(!i);
1417         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1418         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1419         Operator *LU = dyn_cast<Operator>(L);
1420         if (!LU)
1421           continue;
1422         unsigned Opcode = LU->getOpcode();
1423         // Check for operations that have the property that if
1424         // both their operands have low zero bits, the result
1425         // will have low zero bits.
1426         if (Opcode == Instruction::Add ||
1427             Opcode == Instruction::Sub ||
1428             Opcode == Instruction::And ||
1429             Opcode == Instruction::Or ||
1430             Opcode == Instruction::Mul) {
1431           Value *LL = LU->getOperand(0);
1432           Value *LR = LU->getOperand(1);
1433           // Find a recurrence.
1434           if (LL == I)
1435             L = LR;
1436           else if (LR == I)
1437             L = LL;
1438           else
1439             continue; // Check for recurrence with L and R flipped.
1440 
1441           // Change the context instruction to the "edge" that flows into the
1442           // phi. This is important because that is where the value is actually
1443           // "evaluated" even though it is used later somewhere else. (see also
1444           // D69571).
1445           Query RecQ = Q;
1446 
1447           // Ok, we have a PHI of the form L op= R. Check for low
1448           // zero bits.
1449           RecQ.CxtI = RInst;
1450           computeKnownBits(R, Known2, Depth + 1, RecQ);
1451 
1452           // We need to take the minimum number of known bits
1453           KnownBits Known3(BitWidth);
1454           RecQ.CxtI = LInst;
1455           computeKnownBits(L, Known3, Depth + 1, RecQ);
1456 
1457           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1458                                          Known3.countMinTrailingZeros()));
1459 
1460           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1461           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1462             // If initial value of recurrence is nonnegative, and we are adding
1463             // a nonnegative number with nsw, the result can only be nonnegative
1464             // or poison value regardless of the number of times we execute the
1465             // add in phi recurrence. If initial value is negative and we are
1466             // adding a negative number with nsw, the result can only be
1467             // negative or poison value. Similar arguments apply to sub and mul.
1468             //
1469             // (add non-negative, non-negative) --> non-negative
1470             // (add negative, negative) --> negative
1471             if (Opcode == Instruction::Add) {
1472               if (Known2.isNonNegative() && Known3.isNonNegative())
1473                 Known.makeNonNegative();
1474               else if (Known2.isNegative() && Known3.isNegative())
1475                 Known.makeNegative();
1476             }
1477 
1478             // (sub nsw non-negative, negative) --> non-negative
1479             // (sub nsw negative, non-negative) --> negative
1480             else if (Opcode == Instruction::Sub && LL == I) {
1481               if (Known2.isNonNegative() && Known3.isNegative())
1482                 Known.makeNonNegative();
1483               else if (Known2.isNegative() && Known3.isNonNegative())
1484                 Known.makeNegative();
1485             }
1486 
1487             // (mul nsw non-negative, non-negative) --> non-negative
1488             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1489                      Known3.isNonNegative())
1490               Known.makeNonNegative();
1491           }
1492 
1493           break;
1494         }
1495       }
1496     }
1497 
1498     // Unreachable blocks may have zero-operand PHI nodes.
1499     if (P->getNumIncomingValues() == 0)
1500       break;
1501 
1502     // Otherwise take the unions of the known bit sets of the operands,
1503     // taking conservative care to avoid excessive recursion.
1504     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1505       // Skip if every incoming value references to ourself.
1506       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1507         break;
1508 
1509       Known.Zero.setAllBits();
1510       Known.One.setAllBits();
1511       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1512         Value *IncValue = P->getIncomingValue(u);
1513         // Skip direct self references.
1514         if (IncValue == P) continue;
1515 
1516         // Change the context instruction to the "edge" that flows into the
1517         // phi. This is important because that is where the value is actually
1518         // "evaluated" even though it is used later somewhere else. (see also
1519         // D69571).
1520         Query RecQ = Q;
1521         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1522 
1523         Known2 = KnownBits(BitWidth);
1524         // Recurse, but cap the recursion to one level, because we don't
1525         // want to waste time spinning around in loops.
1526         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1527         Known.Zero &= Known2.Zero;
1528         Known.One &= Known2.One;
1529         // If all bits have been ruled out, there's no need to check
1530         // more operands.
1531         if (!Known.Zero && !Known.One)
1532           break;
1533       }
1534     }
1535     break;
1536   }
1537   case Instruction::Call:
1538   case Instruction::Invoke:
1539     // If range metadata is attached to this call, set known bits from that,
1540     // and then intersect with known bits based on other properties of the
1541     // function.
1542     if (MDNode *MD =
1543             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1544       computeKnownBitsFromRangeMetadata(*MD, Known);
1545     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1546       computeKnownBits(RV, Known2, Depth + 1, Q);
1547       Known.Zero |= Known2.Zero;
1548       Known.One |= Known2.One;
1549     }
1550     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1551       switch (II->getIntrinsicID()) {
1552       default: break;
1553       case Intrinsic::abs:
1554         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1555 
1556         // If the source's MSB is zero then we know the rest of the bits.
1557         if (Known2.isNonNegative()) {
1558           Known.Zero |= Known2.Zero;
1559           Known.One |= Known2.One;
1560           break;
1561         }
1562 
1563         // Absolute value preserves trailing zero count.
1564         Known.Zero.setLowBits(Known2.Zero.countTrailingOnes());
1565 
1566         // If this call is undefined for INT_MIN, the result is positive. We
1567         // also know it can't be INT_MIN if there is a set bit that isn't the
1568         // sign bit.
1569         Known2.One.clearSignBit();
1570         if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue())
1571           Known.Zero.setSignBit();
1572         // FIXME: Handle known negative input?
1573         // FIXME: Calculate the negated Known bits and combine them?
1574         break;
1575       case Intrinsic::bitreverse:
1576         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1577         Known.Zero |= Known2.Zero.reverseBits();
1578         Known.One |= Known2.One.reverseBits();
1579         break;
1580       case Intrinsic::bswap:
1581         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1582         Known.Zero |= Known2.Zero.byteSwap();
1583         Known.One |= Known2.One.byteSwap();
1584         break;
1585       case Intrinsic::ctlz: {
1586         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1587         // If we have a known 1, its position is our upper bound.
1588         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1589         // If this call is undefined for 0, the result will be less than 2^n.
1590         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1591           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1592         unsigned LowBits = Log2_32(PossibleLZ)+1;
1593         Known.Zero.setBitsFrom(LowBits);
1594         break;
1595       }
1596       case Intrinsic::cttz: {
1597         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1598         // If we have a known 1, its position is our upper bound.
1599         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1600         // If this call is undefined for 0, the result will be less than 2^n.
1601         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1602           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1603         unsigned LowBits = Log2_32(PossibleTZ)+1;
1604         Known.Zero.setBitsFrom(LowBits);
1605         break;
1606       }
1607       case Intrinsic::ctpop: {
1608         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1609         // We can bound the space the count needs.  Also, bits known to be zero
1610         // can't contribute to the population.
1611         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1612         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1613         Known.Zero.setBitsFrom(LowBits);
1614         // TODO: we could bound KnownOne using the lower bound on the number
1615         // of bits which might be set provided by popcnt KnownOne2.
1616         break;
1617       }
1618       case Intrinsic::fshr:
1619       case Intrinsic::fshl: {
1620         const APInt *SA;
1621         if (!match(I->getOperand(2), m_APInt(SA)))
1622           break;
1623 
1624         // Normalize to funnel shift left.
1625         uint64_t ShiftAmt = SA->urem(BitWidth);
1626         if (II->getIntrinsicID() == Intrinsic::fshr)
1627           ShiftAmt = BitWidth - ShiftAmt;
1628 
1629         KnownBits Known3(BitWidth);
1630         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1631         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1632 
1633         Known.Zero =
1634             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1635         Known.One =
1636             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1637         break;
1638       }
1639       case Intrinsic::uadd_sat:
1640       case Intrinsic::usub_sat: {
1641         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1642         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1643         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1644 
1645         // Add: Leading ones of either operand are preserved.
1646         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1647         // as leading zeros in the result.
1648         unsigned LeadingKnown;
1649         if (IsAdd)
1650           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1651                                   Known2.countMinLeadingOnes());
1652         else
1653           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1654                                   Known2.countMinLeadingOnes());
1655 
1656         Known = KnownBits::computeForAddSub(
1657             IsAdd, /* NSW */ false, Known, Known2);
1658 
1659         // We select between the operation result and all-ones/zero
1660         // respectively, so we can preserve known ones/zeros.
1661         if (IsAdd) {
1662           Known.One.setHighBits(LeadingKnown);
1663           Known.Zero.clearAllBits();
1664         } else {
1665           Known.Zero.setHighBits(LeadingKnown);
1666           Known.One.clearAllBits();
1667         }
1668         break;
1669       }
1670       case Intrinsic::umin:
1671         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1672         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1673         Known = KnownBits::umin(Known, Known2);
1674         break;
1675       case Intrinsic::umax:
1676         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1677         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1678         Known = KnownBits::umax(Known, Known2);
1679         break;
1680       case Intrinsic::smin:
1681         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1682         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1683         Known = KnownBits::smin(Known, Known2);
1684         break;
1685       case Intrinsic::smax:
1686         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1687         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1688         Known = KnownBits::smax(Known, Known2);
1689         break;
1690       case Intrinsic::x86_sse42_crc32_64_64:
1691         Known.Zero.setBitsFrom(32);
1692         break;
1693       }
1694     }
1695     break;
1696   case Instruction::ShuffleVector: {
1697     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1698     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1699     if (!Shuf) {
1700       Known.resetAll();
1701       return;
1702     }
1703     // For undef elements, we don't know anything about the common state of
1704     // the shuffle result.
1705     APInt DemandedLHS, DemandedRHS;
1706     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1707       Known.resetAll();
1708       return;
1709     }
1710     Known.One.setAllBits();
1711     Known.Zero.setAllBits();
1712     if (!!DemandedLHS) {
1713       const Value *LHS = Shuf->getOperand(0);
1714       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1715       // If we don't know any bits, early out.
1716       if (Known.isUnknown())
1717         break;
1718     }
1719     if (!!DemandedRHS) {
1720       const Value *RHS = Shuf->getOperand(1);
1721       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1722       Known.One &= Known2.One;
1723       Known.Zero &= Known2.Zero;
1724     }
1725     break;
1726   }
1727   case Instruction::InsertElement: {
1728     const Value *Vec = I->getOperand(0);
1729     const Value *Elt = I->getOperand(1);
1730     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1731     // Early out if the index is non-constant or out-of-range.
1732     unsigned NumElts = DemandedElts.getBitWidth();
1733     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1734       Known.resetAll();
1735       return;
1736     }
1737     Known.One.setAllBits();
1738     Known.Zero.setAllBits();
1739     unsigned EltIdx = CIdx->getZExtValue();
1740     // Do we demand the inserted element?
1741     if (DemandedElts[EltIdx]) {
1742       computeKnownBits(Elt, Known, Depth + 1, Q);
1743       // If we don't know any bits, early out.
1744       if (Known.isUnknown())
1745         break;
1746     }
1747     // We don't need the base vector element that has been inserted.
1748     APInt DemandedVecElts = DemandedElts;
1749     DemandedVecElts.clearBit(EltIdx);
1750     if (!!DemandedVecElts) {
1751       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1752       Known.One &= Known2.One;
1753       Known.Zero &= Known2.Zero;
1754     }
1755     break;
1756   }
1757   case Instruction::ExtractElement: {
1758     // Look through extract element. If the index is non-constant or
1759     // out-of-range demand all elements, otherwise just the extracted element.
1760     const Value *Vec = I->getOperand(0);
1761     const Value *Idx = I->getOperand(1);
1762     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1763     if (isa<ScalableVectorType>(Vec->getType())) {
1764       // FIXME: there's probably *something* we can do with scalable vectors
1765       Known.resetAll();
1766       break;
1767     }
1768     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1769     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1770     if (CIdx && CIdx->getValue().ult(NumElts))
1771       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1772     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1773     break;
1774   }
1775   case Instruction::ExtractValue:
1776     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1777       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1778       if (EVI->getNumIndices() != 1) break;
1779       if (EVI->getIndices()[0] == 0) {
1780         switch (II->getIntrinsicID()) {
1781         default: break;
1782         case Intrinsic::uadd_with_overflow:
1783         case Intrinsic::sadd_with_overflow:
1784           computeKnownBitsAddSub(true, II->getArgOperand(0),
1785                                  II->getArgOperand(1), false, DemandedElts,
1786                                  Known, Known2, Depth, Q);
1787           break;
1788         case Intrinsic::usub_with_overflow:
1789         case Intrinsic::ssub_with_overflow:
1790           computeKnownBitsAddSub(false, II->getArgOperand(0),
1791                                  II->getArgOperand(1), false, DemandedElts,
1792                                  Known, Known2, Depth, Q);
1793           break;
1794         case Intrinsic::umul_with_overflow:
1795         case Intrinsic::smul_with_overflow:
1796           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1797                               DemandedElts, Known, Known2, Depth, Q);
1798           break;
1799         }
1800       }
1801     }
1802     break;
1803   case Instruction::Freeze:
1804     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.CxtI, Q.DT, Depth + 1))
1805       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1806     break;
1807   }
1808 }
1809 
1810 /// Determine which bits of V are known to be either zero or one and return
1811 /// them.
1812 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1813                            unsigned Depth, const Query &Q) {
1814   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1815   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1816   return Known;
1817 }
1818 
1819 /// Determine which bits of V are known to be either zero or one and return
1820 /// them.
1821 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1822   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1823   computeKnownBits(V, Known, Depth, Q);
1824   return Known;
1825 }
1826 
1827 /// Determine which bits of V are known to be either zero or one and return
1828 /// them in the Known bit set.
1829 ///
1830 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1831 /// we cannot optimize based on the assumption that it is zero without changing
1832 /// it to be an explicit zero.  If we don't change it to zero, other code could
1833 /// optimized based on the contradictory assumption that it is non-zero.
1834 /// Because instcombine aggressively folds operations with undef args anyway,
1835 /// this won't lose us code quality.
1836 ///
1837 /// This function is defined on values with integer type, values with pointer
1838 /// type, and vectors of integers.  In the case
1839 /// where V is a vector, known zero, and known one values are the
1840 /// same width as the vector element, and the bit is set only if it is true
1841 /// for all of the demanded elements in the vector specified by DemandedElts.
1842 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1843                       KnownBits &Known, unsigned Depth, const Query &Q) {
1844   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1845     // No demanded elts or V is a scalable vector, better to assume we don't
1846     // know anything.
1847     Known.resetAll();
1848     return;
1849   }
1850 
1851   assert(V && "No Value?");
1852   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1853 
1854 #ifndef NDEBUG
1855   Type *Ty = V->getType();
1856   unsigned BitWidth = Known.getBitWidth();
1857 
1858   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1859          "Not integer or pointer type!");
1860 
1861   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1862     assert(
1863         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1864         "DemandedElt width should equal the fixed vector number of elements");
1865   } else {
1866     assert(DemandedElts == APInt(1, 1) &&
1867            "DemandedElt width should be 1 for scalars");
1868   }
1869 
1870   Type *ScalarTy = Ty->getScalarType();
1871   if (ScalarTy->isPointerTy()) {
1872     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1873            "V and Known should have same BitWidth");
1874   } else {
1875     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1876            "V and Known should have same BitWidth");
1877   }
1878 #endif
1879 
1880   const APInt *C;
1881   if (match(V, m_APInt(C))) {
1882     // We know all of the bits for a scalar constant or a splat vector constant!
1883     Known.One = *C;
1884     Known.Zero = ~Known.One;
1885     return;
1886   }
1887   // Null and aggregate-zero are all-zeros.
1888   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1889     Known.setAllZero();
1890     return;
1891   }
1892   // Handle a constant vector by taking the intersection of the known bits of
1893   // each element.
1894   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1895     // We know that CDV must be a vector of integers. Take the intersection of
1896     // each element.
1897     Known.Zero.setAllBits(); Known.One.setAllBits();
1898     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1899       if (!DemandedElts[i])
1900         continue;
1901       APInt Elt = CDV->getElementAsAPInt(i);
1902       Known.Zero &= ~Elt;
1903       Known.One &= Elt;
1904     }
1905     return;
1906   }
1907 
1908   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1909     // We know that CV must be a vector of integers. Take the intersection of
1910     // each element.
1911     Known.Zero.setAllBits(); Known.One.setAllBits();
1912     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1913       if (!DemandedElts[i])
1914         continue;
1915       Constant *Element = CV->getAggregateElement(i);
1916       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1917       if (!ElementCI) {
1918         Known.resetAll();
1919         return;
1920       }
1921       const APInt &Elt = ElementCI->getValue();
1922       Known.Zero &= ~Elt;
1923       Known.One &= Elt;
1924     }
1925     return;
1926   }
1927 
1928   // Start out not knowing anything.
1929   Known.resetAll();
1930 
1931   // We can't imply anything about undefs.
1932   if (isa<UndefValue>(V))
1933     return;
1934 
1935   // There's no point in looking through other users of ConstantData for
1936   // assumptions.  Confirm that we've handled them all.
1937   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1938 
1939   // All recursive calls that increase depth must come after this.
1940   if (Depth == MaxAnalysisRecursionDepth)
1941     return;
1942 
1943   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1944   // the bits of its aliasee.
1945   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1946     if (!GA->isInterposable())
1947       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1948     return;
1949   }
1950 
1951   if (const Operator *I = dyn_cast<Operator>(V))
1952     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1953 
1954   // Aligned pointers have trailing zeros - refine Known.Zero set
1955   if (isa<PointerType>(V->getType())) {
1956     Align Alignment = V->getPointerAlignment(Q.DL);
1957     Known.Zero.setLowBits(countTrailingZeros(Alignment.value()));
1958   }
1959 
1960   // computeKnownBitsFromAssume strictly refines Known.
1961   // Therefore, we run them after computeKnownBitsFromOperator.
1962 
1963   // Check whether a nearby assume intrinsic can determine some known bits.
1964   computeKnownBitsFromAssume(V, Known, Depth, Q);
1965 
1966   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1967 }
1968 
1969 /// Return true if the given value is known to have exactly one
1970 /// bit set when defined. For vectors return true if every element is known to
1971 /// be a power of two when defined. Supports values with integer or pointer
1972 /// types and vectors of integers.
1973 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1974                             const Query &Q) {
1975   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1976 
1977   // Attempt to match against constants.
1978   if (OrZero && match(V, m_Power2OrZero()))
1979       return true;
1980   if (match(V, m_Power2()))
1981       return true;
1982 
1983   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1984   // it is shifted off the end then the result is undefined.
1985   if (match(V, m_Shl(m_One(), m_Value())))
1986     return true;
1987 
1988   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1989   // the bottom.  If it is shifted off the bottom then the result is undefined.
1990   if (match(V, m_LShr(m_SignMask(), m_Value())))
1991     return true;
1992 
1993   // The remaining tests are all recursive, so bail out if we hit the limit.
1994   if (Depth++ == MaxAnalysisRecursionDepth)
1995     return false;
1996 
1997   Value *X = nullptr, *Y = nullptr;
1998   // A shift left or a logical shift right of a power of two is a power of two
1999   // or zero.
2000   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2001                  match(V, m_LShr(m_Value(X), m_Value()))))
2002     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2003 
2004   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2005     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2006 
2007   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2008     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2009            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2010 
2011   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2012     // A power of two and'd with anything is a power of two or zero.
2013     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2014         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2015       return true;
2016     // X & (-X) is always a power of two or zero.
2017     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2018       return true;
2019     return false;
2020   }
2021 
2022   // Adding a power-of-two or zero to the same power-of-two or zero yields
2023   // either the original power-of-two, a larger power-of-two or zero.
2024   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2025     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2026     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2027         Q.IIQ.hasNoSignedWrap(VOBO)) {
2028       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2029           match(X, m_And(m_Value(), m_Specific(Y))))
2030         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2031           return true;
2032       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2033           match(Y, m_And(m_Value(), m_Specific(X))))
2034         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2035           return true;
2036 
2037       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2038       KnownBits LHSBits(BitWidth);
2039       computeKnownBits(X, LHSBits, Depth, Q);
2040 
2041       KnownBits RHSBits(BitWidth);
2042       computeKnownBits(Y, RHSBits, Depth, Q);
2043       // If i8 V is a power of two or zero:
2044       //  ZeroBits: 1 1 1 0 1 1 1 1
2045       // ~ZeroBits: 0 0 0 1 0 0 0 0
2046       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2047         // If OrZero isn't set, we cannot give back a zero result.
2048         // Make sure either the LHS or RHS has a bit set.
2049         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2050           return true;
2051     }
2052   }
2053 
2054   // An exact divide or right shift can only shift off zero bits, so the result
2055   // is a power of two only if the first operand is a power of two and not
2056   // copying a sign bit (sdiv int_min, 2).
2057   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2058       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2059     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2060                                   Depth, Q);
2061   }
2062 
2063   return false;
2064 }
2065 
2066 /// Test whether a GEP's result is known to be non-null.
2067 ///
2068 /// Uses properties inherent in a GEP to try to determine whether it is known
2069 /// to be non-null.
2070 ///
2071 /// Currently this routine does not support vector GEPs.
2072 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2073                               const Query &Q) {
2074   const Function *F = nullptr;
2075   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2076     F = I->getFunction();
2077 
2078   if (!GEP->isInBounds() ||
2079       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2080     return false;
2081 
2082   // FIXME: Support vector-GEPs.
2083   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2084 
2085   // If the base pointer is non-null, we cannot walk to a null address with an
2086   // inbounds GEP in address space zero.
2087   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2088     return true;
2089 
2090   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2091   // If so, then the GEP cannot produce a null pointer, as doing so would
2092   // inherently violate the inbounds contract within address space zero.
2093   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2094        GTI != GTE; ++GTI) {
2095     // Struct types are easy -- they must always be indexed by a constant.
2096     if (StructType *STy = GTI.getStructTypeOrNull()) {
2097       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2098       unsigned ElementIdx = OpC->getZExtValue();
2099       const StructLayout *SL = Q.DL.getStructLayout(STy);
2100       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2101       if (ElementOffset > 0)
2102         return true;
2103       continue;
2104     }
2105 
2106     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2107     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2108       continue;
2109 
2110     // Fast path the constant operand case both for efficiency and so we don't
2111     // increment Depth when just zipping down an all-constant GEP.
2112     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2113       if (!OpC->isZero())
2114         return true;
2115       continue;
2116     }
2117 
2118     // We post-increment Depth here because while isKnownNonZero increments it
2119     // as well, when we pop back up that increment won't persist. We don't want
2120     // to recurse 10k times just because we have 10k GEP operands. We don't
2121     // bail completely out because we want to handle constant GEPs regardless
2122     // of depth.
2123     if (Depth++ >= MaxAnalysisRecursionDepth)
2124       continue;
2125 
2126     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2127       return true;
2128   }
2129 
2130   return false;
2131 }
2132 
2133 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2134                                                   const Instruction *CtxI,
2135                                                   const DominatorTree *DT) {
2136   if (isa<Constant>(V))
2137     return false;
2138 
2139   if (!CtxI || !DT)
2140     return false;
2141 
2142   unsigned NumUsesExplored = 0;
2143   for (auto *U : V->users()) {
2144     // Avoid massive lists
2145     if (NumUsesExplored >= DomConditionsMaxUses)
2146       break;
2147     NumUsesExplored++;
2148 
2149     // If the value is used as an argument to a call or invoke, then argument
2150     // attributes may provide an answer about null-ness.
2151     if (const auto *CB = dyn_cast<CallBase>(U))
2152       if (auto *CalledFunc = CB->getCalledFunction())
2153         for (const Argument &Arg : CalledFunc->args())
2154           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2155               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2156             return true;
2157 
2158     // If the value is used as a load/store, then the pointer must be non null.
2159     if (V == getLoadStorePointerOperand(U)) {
2160       const Instruction *I = cast<Instruction>(U);
2161       if (!NullPointerIsDefined(I->getFunction(),
2162                                 V->getType()->getPointerAddressSpace()) &&
2163           DT->dominates(I, CtxI))
2164         return true;
2165     }
2166 
2167     // Consider only compare instructions uniquely controlling a branch
2168     CmpInst::Predicate Pred;
2169     if (!match(const_cast<User *>(U),
2170                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2171         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2172       continue;
2173 
2174     SmallVector<const User *, 4> WorkList;
2175     SmallPtrSet<const User *, 4> Visited;
2176     for (auto *CmpU : U->users()) {
2177       assert(WorkList.empty() && "Should be!");
2178       if (Visited.insert(CmpU).second)
2179         WorkList.push_back(CmpU);
2180 
2181       while (!WorkList.empty()) {
2182         auto *Curr = WorkList.pop_back_val();
2183 
2184         // If a user is an AND, add all its users to the work list. We only
2185         // propagate "pred != null" condition through AND because it is only
2186         // correct to assume that all conditions of AND are met in true branch.
2187         // TODO: Support similar logic of OR and EQ predicate?
2188         if (Pred == ICmpInst::ICMP_NE)
2189           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2190             if (BO->getOpcode() == Instruction::And) {
2191               for (auto *BOU : BO->users())
2192                 if (Visited.insert(BOU).second)
2193                   WorkList.push_back(BOU);
2194               continue;
2195             }
2196 
2197         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2198           assert(BI->isConditional() && "uses a comparison!");
2199 
2200           BasicBlock *NonNullSuccessor =
2201               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2202           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2203           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2204             return true;
2205         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2206                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2207           return true;
2208         }
2209       }
2210     }
2211   }
2212 
2213   return false;
2214 }
2215 
2216 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2217 /// ensure that the value it's attached to is never Value?  'RangeType' is
2218 /// is the type of the value described by the range.
2219 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2220   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2221   assert(NumRanges >= 1);
2222   for (unsigned i = 0; i < NumRanges; ++i) {
2223     ConstantInt *Lower =
2224         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2225     ConstantInt *Upper =
2226         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2227     ConstantRange Range(Lower->getValue(), Upper->getValue());
2228     if (Range.contains(Value))
2229       return false;
2230   }
2231   return true;
2232 }
2233 
2234 /// Return true if the given value is known to be non-zero when defined. For
2235 /// vectors, return true if every demanded element is known to be non-zero when
2236 /// defined. For pointers, if the context instruction and dominator tree are
2237 /// specified, perform context-sensitive analysis and return true if the
2238 /// pointer couldn't possibly be null at the specified instruction.
2239 /// Supports values with integer or pointer type and vectors of integers.
2240 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2241                     const Query &Q) {
2242   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2243   // vector
2244   if (isa<ScalableVectorType>(V->getType()))
2245     return false;
2246 
2247   if (auto *C = dyn_cast<Constant>(V)) {
2248     if (C->isNullValue())
2249       return false;
2250     if (isa<ConstantInt>(C))
2251       // Must be non-zero due to null test above.
2252       return true;
2253 
2254     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2255       // See the comment for IntToPtr/PtrToInt instructions below.
2256       if (CE->getOpcode() == Instruction::IntToPtr ||
2257           CE->getOpcode() == Instruction::PtrToInt)
2258         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2259             Q.DL.getTypeSizeInBits(CE->getType()))
2260           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2261     }
2262 
2263     // For constant vectors, check that all elements are undefined or known
2264     // non-zero to determine that the whole vector is known non-zero.
2265     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2266       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2267         if (!DemandedElts[i])
2268           continue;
2269         Constant *Elt = C->getAggregateElement(i);
2270         if (!Elt || Elt->isNullValue())
2271           return false;
2272         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2273           return false;
2274       }
2275       return true;
2276     }
2277 
2278     // A global variable in address space 0 is non null unless extern weak
2279     // or an absolute symbol reference. Other address spaces may have null as a
2280     // valid address for a global, so we can't assume anything.
2281     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2282       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2283           GV->getType()->getAddressSpace() == 0)
2284         return true;
2285     } else
2286       return false;
2287   }
2288 
2289   if (auto *I = dyn_cast<Instruction>(V)) {
2290     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2291       // If the possible ranges don't contain zero, then the value is
2292       // definitely non-zero.
2293       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2294         const APInt ZeroValue(Ty->getBitWidth(), 0);
2295         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2296           return true;
2297       }
2298     }
2299   }
2300 
2301   if (isKnownNonZeroFromAssume(V, Q))
2302     return true;
2303 
2304   // Some of the tests below are recursive, so bail out if we hit the limit.
2305   if (Depth++ >= MaxAnalysisRecursionDepth)
2306     return false;
2307 
2308   // Check for pointer simplifications.
2309 
2310   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2311     // Alloca never returns null, malloc might.
2312     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2313       return true;
2314 
2315     // A byval, inalloca may not be null in a non-default addres space. A
2316     // nonnull argument is assumed never 0.
2317     if (const Argument *A = dyn_cast<Argument>(V)) {
2318       if (((A->hasPassPointeeByValueCopyAttr() &&
2319             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2320            A->hasNonNullAttr()))
2321         return true;
2322     }
2323 
2324     // A Load tagged with nonnull metadata is never null.
2325     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2326       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2327         return true;
2328 
2329     if (const auto *Call = dyn_cast<CallBase>(V)) {
2330       if (Call->isReturnNonNull())
2331         return true;
2332       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2333         return isKnownNonZero(RP, Depth, Q);
2334     }
2335   }
2336 
2337   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2338     return true;
2339 
2340   // Check for recursive pointer simplifications.
2341   if (V->getType()->isPointerTy()) {
2342     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2343     // do not alter the value, or at least not the nullness property of the
2344     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2345     //
2346     // Note that we have to take special care to avoid looking through
2347     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2348     // as casts that can alter the value, e.g., AddrSpaceCasts.
2349     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2350       return isGEPKnownNonNull(GEP, Depth, Q);
2351 
2352     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2353       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2354 
2355     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2356       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2357           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2358         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2359   }
2360 
2361   // Similar to int2ptr above, we can look through ptr2int here if the cast
2362   // is a no-op or an extend and not a truncate.
2363   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2364     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2365         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2366       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2367 
2368   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2369 
2370   // X | Y != 0 if X != 0 or Y != 0.
2371   Value *X = nullptr, *Y = nullptr;
2372   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2373     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2374            isKnownNonZero(Y, DemandedElts, Depth, Q);
2375 
2376   // ext X != 0 if X != 0.
2377   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2378     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2379 
2380   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2381   // if the lowest bit is shifted off the end.
2382   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2383     // shl nuw can't remove any non-zero bits.
2384     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2385     if (Q.IIQ.hasNoUnsignedWrap(BO))
2386       return isKnownNonZero(X, Depth, Q);
2387 
2388     KnownBits Known(BitWidth);
2389     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2390     if (Known.One[0])
2391       return true;
2392   }
2393   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2394   // defined if the sign bit is shifted off the end.
2395   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2396     // shr exact can only shift out zero bits.
2397     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2398     if (BO->isExact())
2399       return isKnownNonZero(X, Depth, Q);
2400 
2401     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2402     if (Known.isNegative())
2403       return true;
2404 
2405     // If the shifter operand is a constant, and all of the bits shifted
2406     // out are known to be zero, and X is known non-zero then at least one
2407     // non-zero bit must remain.
2408     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2409       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2410       // Is there a known one in the portion not shifted out?
2411       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2412         return true;
2413       // Are all the bits to be shifted out known zero?
2414       if (Known.countMinTrailingZeros() >= ShiftVal)
2415         return isKnownNonZero(X, DemandedElts, Depth, Q);
2416     }
2417   }
2418   // div exact can only produce a zero if the dividend is zero.
2419   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2420     return isKnownNonZero(X, DemandedElts, Depth, Q);
2421   }
2422   // X + Y.
2423   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2424     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2425     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2426 
2427     // If X and Y are both non-negative (as signed values) then their sum is not
2428     // zero unless both X and Y are zero.
2429     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2430       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2431           isKnownNonZero(Y, DemandedElts, Depth, Q))
2432         return true;
2433 
2434     // If X and Y are both negative (as signed values) then their sum is not
2435     // zero unless both X and Y equal INT_MIN.
2436     if (XKnown.isNegative() && YKnown.isNegative()) {
2437       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2438       // The sign bit of X is set.  If some other bit is set then X is not equal
2439       // to INT_MIN.
2440       if (XKnown.One.intersects(Mask))
2441         return true;
2442       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2443       // to INT_MIN.
2444       if (YKnown.One.intersects(Mask))
2445         return true;
2446     }
2447 
2448     // The sum of a non-negative number and a power of two is not zero.
2449     if (XKnown.isNonNegative() &&
2450         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2451       return true;
2452     if (YKnown.isNonNegative() &&
2453         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2454       return true;
2455   }
2456   // X * Y.
2457   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2458     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2459     // If X and Y are non-zero then so is X * Y as long as the multiplication
2460     // does not overflow.
2461     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2462         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2463         isKnownNonZero(Y, DemandedElts, Depth, Q))
2464       return true;
2465   }
2466   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2467   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2468     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2469         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2470       return true;
2471   }
2472   // PHI
2473   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2474     // Try and detect a recurrence that monotonically increases from a
2475     // starting value, as these are common as induction variables.
2476     if (PN->getNumIncomingValues() == 2) {
2477       Value *Start = PN->getIncomingValue(0);
2478       Value *Induction = PN->getIncomingValue(1);
2479       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2480         std::swap(Start, Induction);
2481       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2482         if (!C->isZero() && !C->isNegative()) {
2483           ConstantInt *X;
2484           if (Q.IIQ.UseInstrInfo &&
2485               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2486                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2487               !X->isNegative())
2488             return true;
2489         }
2490       }
2491     }
2492     // Check if all incoming values are non-zero using recursion.
2493     Query RecQ = Q;
2494     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2495     return llvm::all_of(PN->operands(), [&](const Use &U) {
2496       if (U.get() == PN)
2497         return true;
2498       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2499       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2500     });
2501   }
2502   // ExtractElement
2503   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2504     const Value *Vec = EEI->getVectorOperand();
2505     const Value *Idx = EEI->getIndexOperand();
2506     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2507     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2508       unsigned NumElts = VecTy->getNumElements();
2509       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2510       if (CIdx && CIdx->getValue().ult(NumElts))
2511         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2512       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2513     }
2514   }
2515   // Freeze
2516   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2517     auto *Op = FI->getOperand(0);
2518     if (isKnownNonZero(Op, Depth, Q) &&
2519         isGuaranteedNotToBePoison(Op, Q.CxtI, Q.DT, Depth))
2520       return true;
2521   }
2522 
2523   KnownBits Known(BitWidth);
2524   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2525   return Known.One != 0;
2526 }
2527 
2528 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2529   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2530   // vector
2531   if (isa<ScalableVectorType>(V->getType()))
2532     return false;
2533 
2534   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2535   APInt DemandedElts =
2536       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2537   return isKnownNonZero(V, DemandedElts, Depth, Q);
2538 }
2539 
2540 /// Return true if V2 == V1 + X, where X is known non-zero.
2541 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2542   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2543   if (!BO || BO->getOpcode() != Instruction::Add)
2544     return false;
2545   Value *Op = nullptr;
2546   if (V2 == BO->getOperand(0))
2547     Op = BO->getOperand(1);
2548   else if (V2 == BO->getOperand(1))
2549     Op = BO->getOperand(0);
2550   else
2551     return false;
2552   return isKnownNonZero(Op, 0, Q);
2553 }
2554 
2555 /// Return true if it is known that V1 != V2.
2556 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2557   if (V1 == V2)
2558     return false;
2559   if (V1->getType() != V2->getType())
2560     // We can't look through casts yet.
2561     return false;
2562   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2563     return true;
2564 
2565   if (V1->getType()->isIntOrIntVectorTy()) {
2566     // Are any known bits in V1 contradictory to known bits in V2? If V1
2567     // has a known zero where V2 has a known one, they must not be equal.
2568     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2569     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2570 
2571     if (Known1.Zero.intersects(Known2.One) ||
2572         Known2.Zero.intersects(Known1.One))
2573       return true;
2574   }
2575   return false;
2576 }
2577 
2578 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2579 /// simplify operations downstream. Mask is known to be zero for bits that V
2580 /// cannot have.
2581 ///
2582 /// This function is defined on values with integer type, values with pointer
2583 /// type, and vectors of integers.  In the case
2584 /// where V is a vector, the mask, known zero, and known one values are the
2585 /// same width as the vector element, and the bit is set only if it is true
2586 /// for all of the elements in the vector.
2587 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2588                        const Query &Q) {
2589   KnownBits Known(Mask.getBitWidth());
2590   computeKnownBits(V, Known, Depth, Q);
2591   return Mask.isSubsetOf(Known.Zero);
2592 }
2593 
2594 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2595 // Returns the input and lower/upper bounds.
2596 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2597                                 const APInt *&CLow, const APInt *&CHigh) {
2598   assert(isa<Operator>(Select) &&
2599          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2600          "Input should be a Select!");
2601 
2602   const Value *LHS = nullptr, *RHS = nullptr;
2603   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2604   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2605     return false;
2606 
2607   if (!match(RHS, m_APInt(CLow)))
2608     return false;
2609 
2610   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2611   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2612   if (getInverseMinMaxFlavor(SPF) != SPF2)
2613     return false;
2614 
2615   if (!match(RHS2, m_APInt(CHigh)))
2616     return false;
2617 
2618   if (SPF == SPF_SMIN)
2619     std::swap(CLow, CHigh);
2620 
2621   In = LHS2;
2622   return CLow->sle(*CHigh);
2623 }
2624 
2625 /// For vector constants, loop over the elements and find the constant with the
2626 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2627 /// or if any element was not analyzed; otherwise, return the count for the
2628 /// element with the minimum number of sign bits.
2629 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2630                                                  const APInt &DemandedElts,
2631                                                  unsigned TyBits) {
2632   const auto *CV = dyn_cast<Constant>(V);
2633   if (!CV || !isa<FixedVectorType>(CV->getType()))
2634     return 0;
2635 
2636   unsigned MinSignBits = TyBits;
2637   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2638   for (unsigned i = 0; i != NumElts; ++i) {
2639     if (!DemandedElts[i])
2640       continue;
2641     // If we find a non-ConstantInt, bail out.
2642     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2643     if (!Elt)
2644       return 0;
2645 
2646     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2647   }
2648 
2649   return MinSignBits;
2650 }
2651 
2652 static unsigned ComputeNumSignBitsImpl(const Value *V,
2653                                        const APInt &DemandedElts,
2654                                        unsigned Depth, const Query &Q);
2655 
2656 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2657                                    unsigned Depth, const Query &Q) {
2658   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2659   assert(Result > 0 && "At least one sign bit needs to be present!");
2660   return Result;
2661 }
2662 
2663 /// Return the number of times the sign bit of the register is replicated into
2664 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2665 /// (itself), but other cases can give us information. For example, immediately
2666 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2667 /// other, so we return 3. For vectors, return the number of sign bits for the
2668 /// vector element with the minimum number of known sign bits of the demanded
2669 /// elements in the vector specified by DemandedElts.
2670 static unsigned ComputeNumSignBitsImpl(const Value *V,
2671                                        const APInt &DemandedElts,
2672                                        unsigned Depth, const Query &Q) {
2673   Type *Ty = V->getType();
2674 
2675   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2676   // vector
2677   if (isa<ScalableVectorType>(Ty))
2678     return 1;
2679 
2680 #ifndef NDEBUG
2681   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2682 
2683   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2684     assert(
2685         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2686         "DemandedElt width should equal the fixed vector number of elements");
2687   } else {
2688     assert(DemandedElts == APInt(1, 1) &&
2689            "DemandedElt width should be 1 for scalars");
2690   }
2691 #endif
2692 
2693   // We return the minimum number of sign bits that are guaranteed to be present
2694   // in V, so for undef we have to conservatively return 1.  We don't have the
2695   // same behavior for poison though -- that's a FIXME today.
2696 
2697   Type *ScalarTy = Ty->getScalarType();
2698   unsigned TyBits = ScalarTy->isPointerTy() ?
2699     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2700     Q.DL.getTypeSizeInBits(ScalarTy);
2701 
2702   unsigned Tmp, Tmp2;
2703   unsigned FirstAnswer = 1;
2704 
2705   // Note that ConstantInt is handled by the general computeKnownBits case
2706   // below.
2707 
2708   if (Depth == MaxAnalysisRecursionDepth)
2709     return 1;
2710 
2711   if (auto *U = dyn_cast<Operator>(V)) {
2712     switch (Operator::getOpcode(V)) {
2713     default: break;
2714     case Instruction::SExt:
2715       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2716       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2717 
2718     case Instruction::SDiv: {
2719       const APInt *Denominator;
2720       // sdiv X, C -> adds log(C) sign bits.
2721       if (match(U->getOperand(1), m_APInt(Denominator))) {
2722 
2723         // Ignore non-positive denominator.
2724         if (!Denominator->isStrictlyPositive())
2725           break;
2726 
2727         // Calculate the incoming numerator bits.
2728         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2729 
2730         // Add floor(log(C)) bits to the numerator bits.
2731         return std::min(TyBits, NumBits + Denominator->logBase2());
2732       }
2733       break;
2734     }
2735 
2736     case Instruction::SRem: {
2737       const APInt *Denominator;
2738       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2739       // positive constant.  This let us put a lower bound on the number of sign
2740       // bits.
2741       if (match(U->getOperand(1), m_APInt(Denominator))) {
2742 
2743         // Ignore non-positive denominator.
2744         if (!Denominator->isStrictlyPositive())
2745           break;
2746 
2747         // Calculate the incoming numerator bits. SRem by a positive constant
2748         // can't lower the number of sign bits.
2749         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2750 
2751         // Calculate the leading sign bit constraints by examining the
2752         // denominator.  Given that the denominator is positive, there are two
2753         // cases:
2754         //
2755         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2756         //     (1 << ceilLogBase2(C)).
2757         //
2758         //  2. the numerator is negative. Then the result range is (-C,0] and
2759         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2760         //
2761         // Thus a lower bound on the number of sign bits is `TyBits -
2762         // ceilLogBase2(C)`.
2763 
2764         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2765         return std::max(NumrBits, ResBits);
2766       }
2767       break;
2768     }
2769 
2770     case Instruction::AShr: {
2771       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2772       // ashr X, C   -> adds C sign bits.  Vectors too.
2773       const APInt *ShAmt;
2774       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2775         if (ShAmt->uge(TyBits))
2776           break; // Bad shift.
2777         unsigned ShAmtLimited = ShAmt->getZExtValue();
2778         Tmp += ShAmtLimited;
2779         if (Tmp > TyBits) Tmp = TyBits;
2780       }
2781       return Tmp;
2782     }
2783     case Instruction::Shl: {
2784       const APInt *ShAmt;
2785       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2786         // shl destroys sign bits.
2787         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2788         if (ShAmt->uge(TyBits) ||   // Bad shift.
2789             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2790         Tmp2 = ShAmt->getZExtValue();
2791         return Tmp - Tmp2;
2792       }
2793       break;
2794     }
2795     case Instruction::And:
2796     case Instruction::Or:
2797     case Instruction::Xor: // NOT is handled here.
2798       // Logical binary ops preserve the number of sign bits at the worst.
2799       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2800       if (Tmp != 1) {
2801         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2802         FirstAnswer = std::min(Tmp, Tmp2);
2803         // We computed what we know about the sign bits as our first
2804         // answer. Now proceed to the generic code that uses
2805         // computeKnownBits, and pick whichever answer is better.
2806       }
2807       break;
2808 
2809     case Instruction::Select: {
2810       // If we have a clamp pattern, we know that the number of sign bits will
2811       // be the minimum of the clamp min/max range.
2812       const Value *X;
2813       const APInt *CLow, *CHigh;
2814       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2815         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2816 
2817       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2818       if (Tmp == 1) break;
2819       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2820       return std::min(Tmp, Tmp2);
2821     }
2822 
2823     case Instruction::Add:
2824       // Add can have at most one carry bit.  Thus we know that the output
2825       // is, at worst, one more bit than the inputs.
2826       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2827       if (Tmp == 1) break;
2828 
2829       // Special case decrementing a value (ADD X, -1):
2830       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2831         if (CRHS->isAllOnesValue()) {
2832           KnownBits Known(TyBits);
2833           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2834 
2835           // If the input is known to be 0 or 1, the output is 0/-1, which is
2836           // all sign bits set.
2837           if ((Known.Zero | 1).isAllOnesValue())
2838             return TyBits;
2839 
2840           // If we are subtracting one from a positive number, there is no carry
2841           // out of the result.
2842           if (Known.isNonNegative())
2843             return Tmp;
2844         }
2845 
2846       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2847       if (Tmp2 == 1) break;
2848       return std::min(Tmp, Tmp2) - 1;
2849 
2850     case Instruction::Sub:
2851       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2852       if (Tmp2 == 1) break;
2853 
2854       // Handle NEG.
2855       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2856         if (CLHS->isNullValue()) {
2857           KnownBits Known(TyBits);
2858           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2859           // If the input is known to be 0 or 1, the output is 0/-1, which is
2860           // all sign bits set.
2861           if ((Known.Zero | 1).isAllOnesValue())
2862             return TyBits;
2863 
2864           // If the input is known to be positive (the sign bit is known clear),
2865           // the output of the NEG has the same number of sign bits as the
2866           // input.
2867           if (Known.isNonNegative())
2868             return Tmp2;
2869 
2870           // Otherwise, we treat this like a SUB.
2871         }
2872 
2873       // Sub can have at most one carry bit.  Thus we know that the output
2874       // is, at worst, one more bit than the inputs.
2875       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2876       if (Tmp == 1) break;
2877       return std::min(Tmp, Tmp2) - 1;
2878 
2879     case Instruction::Mul: {
2880       // The output of the Mul can be at most twice the valid bits in the
2881       // inputs.
2882       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2883       if (SignBitsOp0 == 1) break;
2884       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2885       if (SignBitsOp1 == 1) break;
2886       unsigned OutValidBits =
2887           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2888       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2889     }
2890 
2891     case Instruction::PHI: {
2892       const PHINode *PN = cast<PHINode>(U);
2893       unsigned NumIncomingValues = PN->getNumIncomingValues();
2894       // Don't analyze large in-degree PHIs.
2895       if (NumIncomingValues > 4) break;
2896       // Unreachable blocks may have zero-operand PHI nodes.
2897       if (NumIncomingValues == 0) break;
2898 
2899       // Take the minimum of all incoming values.  This can't infinitely loop
2900       // because of our depth threshold.
2901       Query RecQ = Q;
2902       Tmp = TyBits;
2903       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
2904         if (Tmp == 1) return Tmp;
2905         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
2906         Tmp = std::min(
2907             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
2908       }
2909       return Tmp;
2910     }
2911 
2912     case Instruction::Trunc:
2913       // FIXME: it's tricky to do anything useful for this, but it is an
2914       // important case for targets like X86.
2915       break;
2916 
2917     case Instruction::ExtractElement:
2918       // Look through extract element. At the moment we keep this simple and
2919       // skip tracking the specific element. But at least we might find
2920       // information valid for all elements of the vector (for example if vector
2921       // is sign extended, shifted, etc).
2922       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2923 
2924     case Instruction::ShuffleVector: {
2925       // Collect the minimum number of sign bits that are shared by every vector
2926       // element referenced by the shuffle.
2927       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2928       if (!Shuf) {
2929         // FIXME: Add support for shufflevector constant expressions.
2930         return 1;
2931       }
2932       APInt DemandedLHS, DemandedRHS;
2933       // For undef elements, we don't know anything about the common state of
2934       // the shuffle result.
2935       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
2936         return 1;
2937       Tmp = std::numeric_limits<unsigned>::max();
2938       if (!!DemandedLHS) {
2939         const Value *LHS = Shuf->getOperand(0);
2940         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
2941       }
2942       // If we don't know anything, early out and try computeKnownBits
2943       // fall-back.
2944       if (Tmp == 1)
2945         break;
2946       if (!!DemandedRHS) {
2947         const Value *RHS = Shuf->getOperand(1);
2948         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
2949         Tmp = std::min(Tmp, Tmp2);
2950       }
2951       // If we don't know anything, early out and try computeKnownBits
2952       // fall-back.
2953       if (Tmp == 1)
2954         break;
2955       assert(Tmp <= Ty->getScalarSizeInBits() &&
2956              "Failed to determine minimum sign bits");
2957       return Tmp;
2958     }
2959     case Instruction::Call: {
2960       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
2961         switch (II->getIntrinsicID()) {
2962         default: break;
2963         case Intrinsic::abs:
2964           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2965           if (Tmp == 1) break;
2966 
2967           // Absolute value reduces number of sign bits by at most 1.
2968           return Tmp - 1;
2969         }
2970       }
2971     }
2972     }
2973   }
2974 
2975   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2976   // use this information.
2977 
2978   // If we can examine all elements of a vector constant successfully, we're
2979   // done (we can't do any better than that). If not, keep trying.
2980   if (unsigned VecSignBits =
2981           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
2982     return VecSignBits;
2983 
2984   KnownBits Known(TyBits);
2985   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2986 
2987   // If we know that the sign bit is either zero or one, determine the number of
2988   // identical bits in the top of the input value.
2989   return std::max(FirstAnswer, Known.countMinSignBits());
2990 }
2991 
2992 /// This function computes the integer multiple of Base that equals V.
2993 /// If successful, it returns true and returns the multiple in
2994 /// Multiple. If unsuccessful, it returns false. It looks
2995 /// through SExt instructions only if LookThroughSExt is true.
2996 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2997                            bool LookThroughSExt, unsigned Depth) {
2998   assert(V && "No Value?");
2999   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3000   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3001 
3002   Type *T = V->getType();
3003 
3004   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3005 
3006   if (Base == 0)
3007     return false;
3008 
3009   if (Base == 1) {
3010     Multiple = V;
3011     return true;
3012   }
3013 
3014   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3015   Constant *BaseVal = ConstantInt::get(T, Base);
3016   if (CO && CO == BaseVal) {
3017     // Multiple is 1.
3018     Multiple = ConstantInt::get(T, 1);
3019     return true;
3020   }
3021 
3022   if (CI && CI->getZExtValue() % Base == 0) {
3023     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3024     return true;
3025   }
3026 
3027   if (Depth == MaxAnalysisRecursionDepth) return false;
3028 
3029   Operator *I = dyn_cast<Operator>(V);
3030   if (!I) return false;
3031 
3032   switch (I->getOpcode()) {
3033   default: break;
3034   case Instruction::SExt:
3035     if (!LookThroughSExt) return false;
3036     // otherwise fall through to ZExt
3037     LLVM_FALLTHROUGH;
3038   case Instruction::ZExt:
3039     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3040                            LookThroughSExt, Depth+1);
3041   case Instruction::Shl:
3042   case Instruction::Mul: {
3043     Value *Op0 = I->getOperand(0);
3044     Value *Op1 = I->getOperand(1);
3045 
3046     if (I->getOpcode() == Instruction::Shl) {
3047       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3048       if (!Op1CI) return false;
3049       // Turn Op0 << Op1 into Op0 * 2^Op1
3050       APInt Op1Int = Op1CI->getValue();
3051       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3052       APInt API(Op1Int.getBitWidth(), 0);
3053       API.setBit(BitToSet);
3054       Op1 = ConstantInt::get(V->getContext(), API);
3055     }
3056 
3057     Value *Mul0 = nullptr;
3058     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3059       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3060         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3061           if (Op1C->getType()->getPrimitiveSizeInBits() <
3062               MulC->getType()->getPrimitiveSizeInBits())
3063             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3064           if (Op1C->getType()->getPrimitiveSizeInBits() >
3065               MulC->getType()->getPrimitiveSizeInBits())
3066             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3067 
3068           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3069           Multiple = ConstantExpr::getMul(MulC, Op1C);
3070           return true;
3071         }
3072 
3073       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3074         if (Mul0CI->getValue() == 1) {
3075           // V == Base * Op1, so return Op1
3076           Multiple = Op1;
3077           return true;
3078         }
3079     }
3080 
3081     Value *Mul1 = nullptr;
3082     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3083       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3084         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3085           if (Op0C->getType()->getPrimitiveSizeInBits() <
3086               MulC->getType()->getPrimitiveSizeInBits())
3087             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3088           if (Op0C->getType()->getPrimitiveSizeInBits() >
3089               MulC->getType()->getPrimitiveSizeInBits())
3090             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3091 
3092           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3093           Multiple = ConstantExpr::getMul(MulC, Op0C);
3094           return true;
3095         }
3096 
3097       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3098         if (Mul1CI->getValue() == 1) {
3099           // V == Base * Op0, so return Op0
3100           Multiple = Op0;
3101           return true;
3102         }
3103     }
3104   }
3105   }
3106 
3107   // We could not determine if V is a multiple of Base.
3108   return false;
3109 }
3110 
3111 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3112                                             const TargetLibraryInfo *TLI) {
3113   const Function *F = CB.getCalledFunction();
3114   if (!F)
3115     return Intrinsic::not_intrinsic;
3116 
3117   if (F->isIntrinsic())
3118     return F->getIntrinsicID();
3119 
3120   // We are going to infer semantics of a library function based on mapping it
3121   // to an LLVM intrinsic. Check that the library function is available from
3122   // this callbase and in this environment.
3123   LibFunc Func;
3124   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3125       !CB.onlyReadsMemory())
3126     return Intrinsic::not_intrinsic;
3127 
3128   switch (Func) {
3129   default:
3130     break;
3131   case LibFunc_sin:
3132   case LibFunc_sinf:
3133   case LibFunc_sinl:
3134     return Intrinsic::sin;
3135   case LibFunc_cos:
3136   case LibFunc_cosf:
3137   case LibFunc_cosl:
3138     return Intrinsic::cos;
3139   case LibFunc_exp:
3140   case LibFunc_expf:
3141   case LibFunc_expl:
3142     return Intrinsic::exp;
3143   case LibFunc_exp2:
3144   case LibFunc_exp2f:
3145   case LibFunc_exp2l:
3146     return Intrinsic::exp2;
3147   case LibFunc_log:
3148   case LibFunc_logf:
3149   case LibFunc_logl:
3150     return Intrinsic::log;
3151   case LibFunc_log10:
3152   case LibFunc_log10f:
3153   case LibFunc_log10l:
3154     return Intrinsic::log10;
3155   case LibFunc_log2:
3156   case LibFunc_log2f:
3157   case LibFunc_log2l:
3158     return Intrinsic::log2;
3159   case LibFunc_fabs:
3160   case LibFunc_fabsf:
3161   case LibFunc_fabsl:
3162     return Intrinsic::fabs;
3163   case LibFunc_fmin:
3164   case LibFunc_fminf:
3165   case LibFunc_fminl:
3166     return Intrinsic::minnum;
3167   case LibFunc_fmax:
3168   case LibFunc_fmaxf:
3169   case LibFunc_fmaxl:
3170     return Intrinsic::maxnum;
3171   case LibFunc_copysign:
3172   case LibFunc_copysignf:
3173   case LibFunc_copysignl:
3174     return Intrinsic::copysign;
3175   case LibFunc_floor:
3176   case LibFunc_floorf:
3177   case LibFunc_floorl:
3178     return Intrinsic::floor;
3179   case LibFunc_ceil:
3180   case LibFunc_ceilf:
3181   case LibFunc_ceill:
3182     return Intrinsic::ceil;
3183   case LibFunc_trunc:
3184   case LibFunc_truncf:
3185   case LibFunc_truncl:
3186     return Intrinsic::trunc;
3187   case LibFunc_rint:
3188   case LibFunc_rintf:
3189   case LibFunc_rintl:
3190     return Intrinsic::rint;
3191   case LibFunc_nearbyint:
3192   case LibFunc_nearbyintf:
3193   case LibFunc_nearbyintl:
3194     return Intrinsic::nearbyint;
3195   case LibFunc_round:
3196   case LibFunc_roundf:
3197   case LibFunc_roundl:
3198     return Intrinsic::round;
3199   case LibFunc_roundeven:
3200   case LibFunc_roundevenf:
3201   case LibFunc_roundevenl:
3202     return Intrinsic::roundeven;
3203   case LibFunc_pow:
3204   case LibFunc_powf:
3205   case LibFunc_powl:
3206     return Intrinsic::pow;
3207   case LibFunc_sqrt:
3208   case LibFunc_sqrtf:
3209   case LibFunc_sqrtl:
3210     return Intrinsic::sqrt;
3211   }
3212 
3213   return Intrinsic::not_intrinsic;
3214 }
3215 
3216 /// Return true if we can prove that the specified FP value is never equal to
3217 /// -0.0.
3218 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3219 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3220 ///       the same as +0.0 in floating-point ops.
3221 ///
3222 /// NOTE: this function will need to be revisited when we support non-default
3223 /// rounding modes!
3224 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3225                                 unsigned Depth) {
3226   if (auto *CFP = dyn_cast<ConstantFP>(V))
3227     return !CFP->getValueAPF().isNegZero();
3228 
3229   if (Depth == MaxAnalysisRecursionDepth)
3230     return false;
3231 
3232   auto *Op = dyn_cast<Operator>(V);
3233   if (!Op)
3234     return false;
3235 
3236   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3237   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3238     return true;
3239 
3240   // sitofp and uitofp turn into +0.0 for zero.
3241   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3242     return true;
3243 
3244   if (auto *Call = dyn_cast<CallInst>(Op)) {
3245     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3246     switch (IID) {
3247     default:
3248       break;
3249     // sqrt(-0.0) = -0.0, no other negative results are possible.
3250     case Intrinsic::sqrt:
3251     case Intrinsic::canonicalize:
3252       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3253     // fabs(x) != -0.0
3254     case Intrinsic::fabs:
3255       return true;
3256     }
3257   }
3258 
3259   return false;
3260 }
3261 
3262 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3263 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3264 /// bit despite comparing equal.
3265 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3266                                             const TargetLibraryInfo *TLI,
3267                                             bool SignBitOnly,
3268                                             unsigned Depth) {
3269   // TODO: This function does not do the right thing when SignBitOnly is true
3270   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3271   // which flips the sign bits of NaNs.  See
3272   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3273 
3274   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3275     return !CFP->getValueAPF().isNegative() ||
3276            (!SignBitOnly && CFP->getValueAPF().isZero());
3277   }
3278 
3279   // Handle vector of constants.
3280   if (auto *CV = dyn_cast<Constant>(V)) {
3281     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3282       unsigned NumElts = CVFVTy->getNumElements();
3283       for (unsigned i = 0; i != NumElts; ++i) {
3284         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3285         if (!CFP)
3286           return false;
3287         if (CFP->getValueAPF().isNegative() &&
3288             (SignBitOnly || !CFP->getValueAPF().isZero()))
3289           return false;
3290       }
3291 
3292       // All non-negative ConstantFPs.
3293       return true;
3294     }
3295   }
3296 
3297   if (Depth == MaxAnalysisRecursionDepth)
3298     return false;
3299 
3300   const Operator *I = dyn_cast<Operator>(V);
3301   if (!I)
3302     return false;
3303 
3304   switch (I->getOpcode()) {
3305   default:
3306     break;
3307   // Unsigned integers are always nonnegative.
3308   case Instruction::UIToFP:
3309     return true;
3310   case Instruction::FMul:
3311   case Instruction::FDiv:
3312     // X * X is always non-negative or a NaN.
3313     // X / X is always exactly 1.0 or a NaN.
3314     if (I->getOperand(0) == I->getOperand(1) &&
3315         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3316       return true;
3317 
3318     LLVM_FALLTHROUGH;
3319   case Instruction::FAdd:
3320   case Instruction::FRem:
3321     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3322                                            Depth + 1) &&
3323            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3324                                            Depth + 1);
3325   case Instruction::Select:
3326     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3327                                            Depth + 1) &&
3328            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3329                                            Depth + 1);
3330   case Instruction::FPExt:
3331   case Instruction::FPTrunc:
3332     // Widening/narrowing never change sign.
3333     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3334                                            Depth + 1);
3335   case Instruction::ExtractElement:
3336     // Look through extract element. At the moment we keep this simple and skip
3337     // tracking the specific element. But at least we might find information
3338     // valid for all elements of the vector.
3339     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3340                                            Depth + 1);
3341   case Instruction::Call:
3342     const auto *CI = cast<CallInst>(I);
3343     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3344     switch (IID) {
3345     default:
3346       break;
3347     case Intrinsic::maxnum: {
3348       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3349       auto isPositiveNum = [&](Value *V) {
3350         if (SignBitOnly) {
3351           // With SignBitOnly, this is tricky because the result of
3352           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3353           // a constant strictly greater than 0.0.
3354           const APFloat *C;
3355           return match(V, m_APFloat(C)) &&
3356                  *C > APFloat::getZero(C->getSemantics());
3357         }
3358 
3359         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3360         // maxnum can't be ordered-less-than-zero.
3361         return isKnownNeverNaN(V, TLI) &&
3362                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3363       };
3364 
3365       // TODO: This could be improved. We could also check that neither operand
3366       //       has its sign bit set (and at least 1 is not-NAN?).
3367       return isPositiveNum(V0) || isPositiveNum(V1);
3368     }
3369 
3370     case Intrinsic::maximum:
3371       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3372                                              Depth + 1) ||
3373              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3374                                              Depth + 1);
3375     case Intrinsic::minnum:
3376     case Intrinsic::minimum:
3377       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3378                                              Depth + 1) &&
3379              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3380                                              Depth + 1);
3381     case Intrinsic::exp:
3382     case Intrinsic::exp2:
3383     case Intrinsic::fabs:
3384       return true;
3385 
3386     case Intrinsic::sqrt:
3387       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3388       if (!SignBitOnly)
3389         return true;
3390       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3391                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3392 
3393     case Intrinsic::powi:
3394       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3395         // powi(x,n) is non-negative if n is even.
3396         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3397           return true;
3398       }
3399       // TODO: This is not correct.  Given that exp is an integer, here are the
3400       // ways that pow can return a negative value:
3401       //
3402       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3403       //   pow(-0, exp)   --> -inf if exp is negative odd.
3404       //   pow(-0, exp)   --> -0 if exp is positive odd.
3405       //   pow(-inf, exp) --> -0 if exp is negative odd.
3406       //   pow(-inf, exp) --> -inf if exp is positive odd.
3407       //
3408       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3409       // but we must return false if x == -0.  Unfortunately we do not currently
3410       // have a way of expressing this constraint.  See details in
3411       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3412       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3413                                              Depth + 1);
3414 
3415     case Intrinsic::fma:
3416     case Intrinsic::fmuladd:
3417       // x*x+y is non-negative if y is non-negative.
3418       return I->getOperand(0) == I->getOperand(1) &&
3419              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3420              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3421                                              Depth + 1);
3422     }
3423     break;
3424   }
3425   return false;
3426 }
3427 
3428 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3429                                        const TargetLibraryInfo *TLI) {
3430   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3431 }
3432 
3433 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3434   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3435 }
3436 
3437 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3438                                 unsigned Depth) {
3439   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3440 
3441   // If we're told that infinities won't happen, assume they won't.
3442   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3443     if (FPMathOp->hasNoInfs())
3444       return true;
3445 
3446   // Handle scalar constants.
3447   if (auto *CFP = dyn_cast<ConstantFP>(V))
3448     return !CFP->isInfinity();
3449 
3450   if (Depth == MaxAnalysisRecursionDepth)
3451     return false;
3452 
3453   if (auto *Inst = dyn_cast<Instruction>(V)) {
3454     switch (Inst->getOpcode()) {
3455     case Instruction::Select: {
3456       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3457              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3458     }
3459     case Instruction::SIToFP:
3460     case Instruction::UIToFP: {
3461       // Get width of largest magnitude integer (remove a bit if signed).
3462       // This still works for a signed minimum value because the largest FP
3463       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3464       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3465       if (Inst->getOpcode() == Instruction::SIToFP)
3466         --IntSize;
3467 
3468       // If the exponent of the largest finite FP value can hold the largest
3469       // integer, the result of the cast must be finite.
3470       Type *FPTy = Inst->getType()->getScalarType();
3471       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3472     }
3473     default:
3474       break;
3475     }
3476   }
3477 
3478   // try to handle fixed width vector constants
3479   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3480   if (VFVTy && isa<Constant>(V)) {
3481     // For vectors, verify that each element is not infinity.
3482     unsigned NumElts = VFVTy->getNumElements();
3483     for (unsigned i = 0; i != NumElts; ++i) {
3484       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3485       if (!Elt)
3486         return false;
3487       if (isa<UndefValue>(Elt))
3488         continue;
3489       auto *CElt = dyn_cast<ConstantFP>(Elt);
3490       if (!CElt || CElt->isInfinity())
3491         return false;
3492     }
3493     // All elements were confirmed non-infinity or undefined.
3494     return true;
3495   }
3496 
3497   // was not able to prove that V never contains infinity
3498   return false;
3499 }
3500 
3501 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3502                            unsigned Depth) {
3503   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3504 
3505   // If we're told that NaNs won't happen, assume they won't.
3506   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3507     if (FPMathOp->hasNoNaNs())
3508       return true;
3509 
3510   // Handle scalar constants.
3511   if (auto *CFP = dyn_cast<ConstantFP>(V))
3512     return !CFP->isNaN();
3513 
3514   if (Depth == MaxAnalysisRecursionDepth)
3515     return false;
3516 
3517   if (auto *Inst = dyn_cast<Instruction>(V)) {
3518     switch (Inst->getOpcode()) {
3519     case Instruction::FAdd:
3520     case Instruction::FSub:
3521       // Adding positive and negative infinity produces NaN.
3522       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3523              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3524              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3525               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3526 
3527     case Instruction::FMul:
3528       // Zero multiplied with infinity produces NaN.
3529       // FIXME: If neither side can be zero fmul never produces NaN.
3530       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3531              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3532              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3533              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3534 
3535     case Instruction::FDiv:
3536     case Instruction::FRem:
3537       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3538       return false;
3539 
3540     case Instruction::Select: {
3541       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3542              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3543     }
3544     case Instruction::SIToFP:
3545     case Instruction::UIToFP:
3546       return true;
3547     case Instruction::FPTrunc:
3548     case Instruction::FPExt:
3549       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3550     default:
3551       break;
3552     }
3553   }
3554 
3555   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3556     switch (II->getIntrinsicID()) {
3557     case Intrinsic::canonicalize:
3558     case Intrinsic::fabs:
3559     case Intrinsic::copysign:
3560     case Intrinsic::exp:
3561     case Intrinsic::exp2:
3562     case Intrinsic::floor:
3563     case Intrinsic::ceil:
3564     case Intrinsic::trunc:
3565     case Intrinsic::rint:
3566     case Intrinsic::nearbyint:
3567     case Intrinsic::round:
3568     case Intrinsic::roundeven:
3569       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3570     case Intrinsic::sqrt:
3571       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3572              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3573     case Intrinsic::minnum:
3574     case Intrinsic::maxnum:
3575       // If either operand is not NaN, the result is not NaN.
3576       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3577              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3578     default:
3579       return false;
3580     }
3581   }
3582 
3583   // Try to handle fixed width vector constants
3584   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3585   if (VFVTy && isa<Constant>(V)) {
3586     // For vectors, verify that each element is not NaN.
3587     unsigned NumElts = VFVTy->getNumElements();
3588     for (unsigned i = 0; i != NumElts; ++i) {
3589       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3590       if (!Elt)
3591         return false;
3592       if (isa<UndefValue>(Elt))
3593         continue;
3594       auto *CElt = dyn_cast<ConstantFP>(Elt);
3595       if (!CElt || CElt->isNaN())
3596         return false;
3597     }
3598     // All elements were confirmed not-NaN or undefined.
3599     return true;
3600   }
3601 
3602   // Was not able to prove that V never contains NaN
3603   return false;
3604 }
3605 
3606 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3607 
3608   // All byte-wide stores are splatable, even of arbitrary variables.
3609   if (V->getType()->isIntegerTy(8))
3610     return V;
3611 
3612   LLVMContext &Ctx = V->getContext();
3613 
3614   // Undef don't care.
3615   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3616   if (isa<UndefValue>(V))
3617     return UndefInt8;
3618 
3619   // Return Undef for zero-sized type.
3620   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3621     return UndefInt8;
3622 
3623   Constant *C = dyn_cast<Constant>(V);
3624   if (!C) {
3625     // Conceptually, we could handle things like:
3626     //   %a = zext i8 %X to i16
3627     //   %b = shl i16 %a, 8
3628     //   %c = or i16 %a, %b
3629     // but until there is an example that actually needs this, it doesn't seem
3630     // worth worrying about.
3631     return nullptr;
3632   }
3633 
3634   // Handle 'null' ConstantArrayZero etc.
3635   if (C->isNullValue())
3636     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3637 
3638   // Constant floating-point values can be handled as integer values if the
3639   // corresponding integer value is "byteable".  An important case is 0.0.
3640   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3641     Type *Ty = nullptr;
3642     if (CFP->getType()->isHalfTy())
3643       Ty = Type::getInt16Ty(Ctx);
3644     else if (CFP->getType()->isFloatTy())
3645       Ty = Type::getInt32Ty(Ctx);
3646     else if (CFP->getType()->isDoubleTy())
3647       Ty = Type::getInt64Ty(Ctx);
3648     // Don't handle long double formats, which have strange constraints.
3649     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3650               : nullptr;
3651   }
3652 
3653   // We can handle constant integers that are multiple of 8 bits.
3654   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3655     if (CI->getBitWidth() % 8 == 0) {
3656       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3657       if (!CI->getValue().isSplat(8))
3658         return nullptr;
3659       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3660     }
3661   }
3662 
3663   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3664     if (CE->getOpcode() == Instruction::IntToPtr) {
3665       auto PS = DL.getPointerSizeInBits(
3666           cast<PointerType>(CE->getType())->getAddressSpace());
3667       return isBytewiseValue(
3668           ConstantExpr::getIntegerCast(CE->getOperand(0),
3669                                        Type::getIntNTy(Ctx, PS), false),
3670           DL);
3671     }
3672   }
3673 
3674   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3675     if (LHS == RHS)
3676       return LHS;
3677     if (!LHS || !RHS)
3678       return nullptr;
3679     if (LHS == UndefInt8)
3680       return RHS;
3681     if (RHS == UndefInt8)
3682       return LHS;
3683     return nullptr;
3684   };
3685 
3686   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3687     Value *Val = UndefInt8;
3688     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3689       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3690         return nullptr;
3691     return Val;
3692   }
3693 
3694   if (isa<ConstantAggregate>(C)) {
3695     Value *Val = UndefInt8;
3696     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3697       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3698         return nullptr;
3699     return Val;
3700   }
3701 
3702   // Don't try to handle the handful of other constants.
3703   return nullptr;
3704 }
3705 
3706 // This is the recursive version of BuildSubAggregate. It takes a few different
3707 // arguments. Idxs is the index within the nested struct From that we are
3708 // looking at now (which is of type IndexedType). IdxSkip is the number of
3709 // indices from Idxs that should be left out when inserting into the resulting
3710 // struct. To is the result struct built so far, new insertvalue instructions
3711 // build on that.
3712 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3713                                 SmallVectorImpl<unsigned> &Idxs,
3714                                 unsigned IdxSkip,
3715                                 Instruction *InsertBefore) {
3716   StructType *STy = dyn_cast<StructType>(IndexedType);
3717   if (STy) {
3718     // Save the original To argument so we can modify it
3719     Value *OrigTo = To;
3720     // General case, the type indexed by Idxs is a struct
3721     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3722       // Process each struct element recursively
3723       Idxs.push_back(i);
3724       Value *PrevTo = To;
3725       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3726                              InsertBefore);
3727       Idxs.pop_back();
3728       if (!To) {
3729         // Couldn't find any inserted value for this index? Cleanup
3730         while (PrevTo != OrigTo) {
3731           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3732           PrevTo = Del->getAggregateOperand();
3733           Del->eraseFromParent();
3734         }
3735         // Stop processing elements
3736         break;
3737       }
3738     }
3739     // If we successfully found a value for each of our subaggregates
3740     if (To)
3741       return To;
3742   }
3743   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3744   // the struct's elements had a value that was inserted directly. In the latter
3745   // case, perhaps we can't determine each of the subelements individually, but
3746   // we might be able to find the complete struct somewhere.
3747 
3748   // Find the value that is at that particular spot
3749   Value *V = FindInsertedValue(From, Idxs);
3750 
3751   if (!V)
3752     return nullptr;
3753 
3754   // Insert the value in the new (sub) aggregate
3755   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3756                                  "tmp", InsertBefore);
3757 }
3758 
3759 // This helper takes a nested struct and extracts a part of it (which is again a
3760 // struct) into a new value. For example, given the struct:
3761 // { a, { b, { c, d }, e } }
3762 // and the indices "1, 1" this returns
3763 // { c, d }.
3764 //
3765 // It does this by inserting an insertvalue for each element in the resulting
3766 // struct, as opposed to just inserting a single struct. This will only work if
3767 // each of the elements of the substruct are known (ie, inserted into From by an
3768 // insertvalue instruction somewhere).
3769 //
3770 // All inserted insertvalue instructions are inserted before InsertBefore
3771 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3772                                 Instruction *InsertBefore) {
3773   assert(InsertBefore && "Must have someplace to insert!");
3774   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3775                                                              idx_range);
3776   Value *To = UndefValue::get(IndexedType);
3777   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3778   unsigned IdxSkip = Idxs.size();
3779 
3780   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3781 }
3782 
3783 /// Given an aggregate and a sequence of indices, see if the scalar value
3784 /// indexed is already around as a register, for example if it was inserted
3785 /// directly into the aggregate.
3786 ///
3787 /// If InsertBefore is not null, this function will duplicate (modified)
3788 /// insertvalues when a part of a nested struct is extracted.
3789 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3790                                Instruction *InsertBefore) {
3791   // Nothing to index? Just return V then (this is useful at the end of our
3792   // recursion).
3793   if (idx_range.empty())
3794     return V;
3795   // We have indices, so V should have an indexable type.
3796   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3797          "Not looking at a struct or array?");
3798   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3799          "Invalid indices for type?");
3800 
3801   if (Constant *C = dyn_cast<Constant>(V)) {
3802     C = C->getAggregateElement(idx_range[0]);
3803     if (!C) return nullptr;
3804     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3805   }
3806 
3807   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3808     // Loop the indices for the insertvalue instruction in parallel with the
3809     // requested indices
3810     const unsigned *req_idx = idx_range.begin();
3811     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3812          i != e; ++i, ++req_idx) {
3813       if (req_idx == idx_range.end()) {
3814         // We can't handle this without inserting insertvalues
3815         if (!InsertBefore)
3816           return nullptr;
3817 
3818         // The requested index identifies a part of a nested aggregate. Handle
3819         // this specially. For example,
3820         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3821         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3822         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3823         // This can be changed into
3824         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3825         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3826         // which allows the unused 0,0 element from the nested struct to be
3827         // removed.
3828         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3829                                  InsertBefore);
3830       }
3831 
3832       // This insert value inserts something else than what we are looking for.
3833       // See if the (aggregate) value inserted into has the value we are
3834       // looking for, then.
3835       if (*req_idx != *i)
3836         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3837                                  InsertBefore);
3838     }
3839     // If we end up here, the indices of the insertvalue match with those
3840     // requested (though possibly only partially). Now we recursively look at
3841     // the inserted value, passing any remaining indices.
3842     return FindInsertedValue(I->getInsertedValueOperand(),
3843                              makeArrayRef(req_idx, idx_range.end()),
3844                              InsertBefore);
3845   }
3846 
3847   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3848     // If we're extracting a value from an aggregate that was extracted from
3849     // something else, we can extract from that something else directly instead.
3850     // However, we will need to chain I's indices with the requested indices.
3851 
3852     // Calculate the number of indices required
3853     unsigned size = I->getNumIndices() + idx_range.size();
3854     // Allocate some space to put the new indices in
3855     SmallVector<unsigned, 5> Idxs;
3856     Idxs.reserve(size);
3857     // Add indices from the extract value instruction
3858     Idxs.append(I->idx_begin(), I->idx_end());
3859 
3860     // Add requested indices
3861     Idxs.append(idx_range.begin(), idx_range.end());
3862 
3863     assert(Idxs.size() == size
3864            && "Number of indices added not correct?");
3865 
3866     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3867   }
3868   // Otherwise, we don't know (such as, extracting from a function return value
3869   // or load instruction)
3870   return nullptr;
3871 }
3872 
3873 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3874                                        unsigned CharSize) {
3875   // Make sure the GEP has exactly three arguments.
3876   if (GEP->getNumOperands() != 3)
3877     return false;
3878 
3879   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3880   // CharSize.
3881   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3882   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3883     return false;
3884 
3885   // Check to make sure that the first operand of the GEP is an integer and
3886   // has value 0 so that we are sure we're indexing into the initializer.
3887   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3888   if (!FirstIdx || !FirstIdx->isZero())
3889     return false;
3890 
3891   return true;
3892 }
3893 
3894 bool llvm::getConstantDataArrayInfo(const Value *V,
3895                                     ConstantDataArraySlice &Slice,
3896                                     unsigned ElementSize, uint64_t Offset) {
3897   assert(V);
3898 
3899   // Look through bitcast instructions and geps.
3900   V = V->stripPointerCasts();
3901 
3902   // If the value is a GEP instruction or constant expression, treat it as an
3903   // offset.
3904   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3905     // The GEP operator should be based on a pointer to string constant, and is
3906     // indexing into the string constant.
3907     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3908       return false;
3909 
3910     // If the second index isn't a ConstantInt, then this is a variable index
3911     // into the array.  If this occurs, we can't say anything meaningful about
3912     // the string.
3913     uint64_t StartIdx = 0;
3914     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3915       StartIdx = CI->getZExtValue();
3916     else
3917       return false;
3918     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3919                                     StartIdx + Offset);
3920   }
3921 
3922   // The GEP instruction, constant or instruction, must reference a global
3923   // variable that is a constant and is initialized. The referenced constant
3924   // initializer is the array that we'll use for optimization.
3925   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3926   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3927     return false;
3928 
3929   const ConstantDataArray *Array;
3930   ArrayType *ArrayTy;
3931   if (GV->getInitializer()->isNullValue()) {
3932     Type *GVTy = GV->getValueType();
3933     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3934       // A zeroinitializer for the array; there is no ConstantDataArray.
3935       Array = nullptr;
3936     } else {
3937       const DataLayout &DL = GV->getParent()->getDataLayout();
3938       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3939       uint64_t Length = SizeInBytes / (ElementSize / 8);
3940       if (Length <= Offset)
3941         return false;
3942 
3943       Slice.Array = nullptr;
3944       Slice.Offset = 0;
3945       Slice.Length = Length - Offset;
3946       return true;
3947     }
3948   } else {
3949     // This must be a ConstantDataArray.
3950     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3951     if (!Array)
3952       return false;
3953     ArrayTy = Array->getType();
3954   }
3955   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3956     return false;
3957 
3958   uint64_t NumElts = ArrayTy->getArrayNumElements();
3959   if (Offset > NumElts)
3960     return false;
3961 
3962   Slice.Array = Array;
3963   Slice.Offset = Offset;
3964   Slice.Length = NumElts - Offset;
3965   return true;
3966 }
3967 
3968 /// This function computes the length of a null-terminated C string pointed to
3969 /// by V. If successful, it returns true and returns the string in Str.
3970 /// If unsuccessful, it returns false.
3971 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3972                                  uint64_t Offset, bool TrimAtNul) {
3973   ConstantDataArraySlice Slice;
3974   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3975     return false;
3976 
3977   if (Slice.Array == nullptr) {
3978     if (TrimAtNul) {
3979       Str = StringRef();
3980       return true;
3981     }
3982     if (Slice.Length == 1) {
3983       Str = StringRef("", 1);
3984       return true;
3985     }
3986     // We cannot instantiate a StringRef as we do not have an appropriate string
3987     // of 0s at hand.
3988     return false;
3989   }
3990 
3991   // Start out with the entire array in the StringRef.
3992   Str = Slice.Array->getAsString();
3993   // Skip over 'offset' bytes.
3994   Str = Str.substr(Slice.Offset);
3995 
3996   if (TrimAtNul) {
3997     // Trim off the \0 and anything after it.  If the array is not nul
3998     // terminated, we just return the whole end of string.  The client may know
3999     // some other way that the string is length-bound.
4000     Str = Str.substr(0, Str.find('\0'));
4001   }
4002   return true;
4003 }
4004 
4005 // These next two are very similar to the above, but also look through PHI
4006 // nodes.
4007 // TODO: See if we can integrate these two together.
4008 
4009 /// If we can compute the length of the string pointed to by
4010 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4011 static uint64_t GetStringLengthH(const Value *V,
4012                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4013                                  unsigned CharSize) {
4014   // Look through noop bitcast instructions.
4015   V = V->stripPointerCasts();
4016 
4017   // If this is a PHI node, there are two cases: either we have already seen it
4018   // or we haven't.
4019   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4020     if (!PHIs.insert(PN).second)
4021       return ~0ULL;  // already in the set.
4022 
4023     // If it was new, see if all the input strings are the same length.
4024     uint64_t LenSoFar = ~0ULL;
4025     for (Value *IncValue : PN->incoming_values()) {
4026       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4027       if (Len == 0) return 0; // Unknown length -> unknown.
4028 
4029       if (Len == ~0ULL) continue;
4030 
4031       if (Len != LenSoFar && LenSoFar != ~0ULL)
4032         return 0;    // Disagree -> unknown.
4033       LenSoFar = Len;
4034     }
4035 
4036     // Success, all agree.
4037     return LenSoFar;
4038   }
4039 
4040   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4041   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4042     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4043     if (Len1 == 0) return 0;
4044     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4045     if (Len2 == 0) return 0;
4046     if (Len1 == ~0ULL) return Len2;
4047     if (Len2 == ~0ULL) return Len1;
4048     if (Len1 != Len2) return 0;
4049     return Len1;
4050   }
4051 
4052   // Otherwise, see if we can read the string.
4053   ConstantDataArraySlice Slice;
4054   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4055     return 0;
4056 
4057   if (Slice.Array == nullptr)
4058     return 1;
4059 
4060   // Search for nul characters
4061   unsigned NullIndex = 0;
4062   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4063     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4064       break;
4065   }
4066 
4067   return NullIndex + 1;
4068 }
4069 
4070 /// If we can compute the length of the string pointed to by
4071 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4072 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4073   if (!V->getType()->isPointerTy())
4074     return 0;
4075 
4076   SmallPtrSet<const PHINode*, 32> PHIs;
4077   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4078   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4079   // an empty string as a length.
4080   return Len == ~0ULL ? 1 : Len;
4081 }
4082 
4083 const Value *
4084 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4085                                            bool MustPreserveNullness) {
4086   assert(Call &&
4087          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4088   if (const Value *RV = Call->getReturnedArgOperand())
4089     return RV;
4090   // This can be used only as a aliasing property.
4091   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4092           Call, MustPreserveNullness))
4093     return Call->getArgOperand(0);
4094   return nullptr;
4095 }
4096 
4097 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4098     const CallBase *Call, bool MustPreserveNullness) {
4099   switch (Call->getIntrinsicID()) {
4100   case Intrinsic::launder_invariant_group:
4101   case Intrinsic::strip_invariant_group:
4102   case Intrinsic::aarch64_irg:
4103   case Intrinsic::aarch64_tagp:
4104     return true;
4105   case Intrinsic::ptrmask:
4106     return !MustPreserveNullness;
4107   default:
4108     return false;
4109   }
4110 }
4111 
4112 /// \p PN defines a loop-variant pointer to an object.  Check if the
4113 /// previous iteration of the loop was referring to the same object as \p PN.
4114 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4115                                          const LoopInfo *LI) {
4116   // Find the loop-defined value.
4117   Loop *L = LI->getLoopFor(PN->getParent());
4118   if (PN->getNumIncomingValues() != 2)
4119     return true;
4120 
4121   // Find the value from previous iteration.
4122   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4123   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4124     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4125   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4126     return true;
4127 
4128   // If a new pointer is loaded in the loop, the pointer references a different
4129   // object in every iteration.  E.g.:
4130   //    for (i)
4131   //       int *p = a[i];
4132   //       ...
4133   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4134     if (!L->isLoopInvariant(Load->getPointerOperand()))
4135       return false;
4136   return true;
4137 }
4138 
4139 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4140   if (!V->getType()->isPointerTy())
4141     return V;
4142   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4143     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4144       V = GEP->getPointerOperand();
4145     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4146                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4147       V = cast<Operator>(V)->getOperand(0);
4148       if (!V->getType()->isPointerTy())
4149         return V;
4150     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4151       if (GA->isInterposable())
4152         return V;
4153       V = GA->getAliasee();
4154     } else {
4155       if (auto *PHI = dyn_cast<PHINode>(V)) {
4156         // Look through single-arg phi nodes created by LCSSA.
4157         if (PHI->getNumIncomingValues() == 1) {
4158           V = PHI->getIncomingValue(0);
4159           continue;
4160         }
4161       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4162         // CaptureTracking can know about special capturing properties of some
4163         // intrinsics like launder.invariant.group, that can't be expressed with
4164         // the attributes, but have properties like returning aliasing pointer.
4165         // Because some analysis may assume that nocaptured pointer is not
4166         // returned from some special intrinsic (because function would have to
4167         // be marked with returns attribute), it is crucial to use this function
4168         // because it should be in sync with CaptureTracking. Not using it may
4169         // cause weird miscompilations where 2 aliasing pointers are assumed to
4170         // noalias.
4171         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4172           V = RP;
4173           continue;
4174         }
4175       }
4176 
4177       return V;
4178     }
4179     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4180   }
4181   return V;
4182 }
4183 
4184 void llvm::getUnderlyingObjects(const Value *V,
4185                                 SmallVectorImpl<const Value *> &Objects,
4186                                 LoopInfo *LI, unsigned MaxLookup) {
4187   SmallPtrSet<const Value *, 4> Visited;
4188   SmallVector<const Value *, 4> Worklist;
4189   Worklist.push_back(V);
4190   do {
4191     const Value *P = Worklist.pop_back_val();
4192     P = getUnderlyingObject(P, MaxLookup);
4193 
4194     if (!Visited.insert(P).second)
4195       continue;
4196 
4197     if (auto *SI = dyn_cast<SelectInst>(P)) {
4198       Worklist.push_back(SI->getTrueValue());
4199       Worklist.push_back(SI->getFalseValue());
4200       continue;
4201     }
4202 
4203     if (auto *PN = dyn_cast<PHINode>(P)) {
4204       // If this PHI changes the underlying object in every iteration of the
4205       // loop, don't look through it.  Consider:
4206       //   int **A;
4207       //   for (i) {
4208       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4209       //     Curr = A[i];
4210       //     *Prev, *Curr;
4211       //
4212       // Prev is tracking Curr one iteration behind so they refer to different
4213       // underlying objects.
4214       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4215           isSameUnderlyingObjectInLoop(PN, LI))
4216         for (Value *IncValue : PN->incoming_values())
4217           Worklist.push_back(IncValue);
4218       continue;
4219     }
4220 
4221     Objects.push_back(P);
4222   } while (!Worklist.empty());
4223 }
4224 
4225 /// This is the function that does the work of looking through basic
4226 /// ptrtoint+arithmetic+inttoptr sequences.
4227 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4228   do {
4229     if (const Operator *U = dyn_cast<Operator>(V)) {
4230       // If we find a ptrtoint, we can transfer control back to the
4231       // regular getUnderlyingObjectFromInt.
4232       if (U->getOpcode() == Instruction::PtrToInt)
4233         return U->getOperand(0);
4234       // If we find an add of a constant, a multiplied value, or a phi, it's
4235       // likely that the other operand will lead us to the base
4236       // object. We don't have to worry about the case where the
4237       // object address is somehow being computed by the multiply,
4238       // because our callers only care when the result is an
4239       // identifiable object.
4240       if (U->getOpcode() != Instruction::Add ||
4241           (!isa<ConstantInt>(U->getOperand(1)) &&
4242            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4243            !isa<PHINode>(U->getOperand(1))))
4244         return V;
4245       V = U->getOperand(0);
4246     } else {
4247       return V;
4248     }
4249     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4250   } while (true);
4251 }
4252 
4253 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4254 /// ptrtoint+arithmetic+inttoptr sequences.
4255 /// It returns false if unidentified object is found in getUnderlyingObjects.
4256 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4257                                           SmallVectorImpl<Value *> &Objects) {
4258   SmallPtrSet<const Value *, 16> Visited;
4259   SmallVector<const Value *, 4> Working(1, V);
4260   do {
4261     V = Working.pop_back_val();
4262 
4263     SmallVector<const Value *, 4> Objs;
4264     getUnderlyingObjects(V, Objs);
4265 
4266     for (const Value *V : Objs) {
4267       if (!Visited.insert(V).second)
4268         continue;
4269       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4270         const Value *O =
4271           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4272         if (O->getType()->isPointerTy()) {
4273           Working.push_back(O);
4274           continue;
4275         }
4276       }
4277       // If getUnderlyingObjects fails to find an identifiable object,
4278       // getUnderlyingObjectsForCodeGen also fails for safety.
4279       if (!isIdentifiedObject(V)) {
4280         Objects.clear();
4281         return false;
4282       }
4283       Objects.push_back(const_cast<Value *>(V));
4284     }
4285   } while (!Working.empty());
4286   return true;
4287 }
4288 
4289 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4290   AllocaInst *Result = nullptr;
4291   SmallPtrSet<Value *, 4> Visited;
4292   SmallVector<Value *, 4> Worklist;
4293 
4294   auto AddWork = [&](Value *V) {
4295     if (Visited.insert(V).second)
4296       Worklist.push_back(V);
4297   };
4298 
4299   AddWork(V);
4300   do {
4301     V = Worklist.pop_back_val();
4302     assert(Visited.count(V));
4303 
4304     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4305       if (Result && Result != AI)
4306         return nullptr;
4307       Result = AI;
4308     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4309       AddWork(CI->getOperand(0));
4310     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4311       for (Value *IncValue : PN->incoming_values())
4312         AddWork(IncValue);
4313     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4314       AddWork(SI->getTrueValue());
4315       AddWork(SI->getFalseValue());
4316     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4317       if (OffsetZero && !GEP->hasAllZeroIndices())
4318         return nullptr;
4319       AddWork(GEP->getPointerOperand());
4320     } else {
4321       return nullptr;
4322     }
4323   } while (!Worklist.empty());
4324 
4325   return Result;
4326 }
4327 
4328 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4329     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4330   for (const User *U : V->users()) {
4331     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4332     if (!II)
4333       return false;
4334 
4335     if (AllowLifetime && II->isLifetimeStartOrEnd())
4336       continue;
4337 
4338     if (AllowDroppable && II->isDroppable())
4339       continue;
4340 
4341     return false;
4342   }
4343   return true;
4344 }
4345 
4346 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4347   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4348       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4349 }
4350 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4351   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4352       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4353 }
4354 
4355 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4356   if (!LI.isUnordered())
4357     return true;
4358   const Function &F = *LI.getFunction();
4359   // Speculative load may create a race that did not exist in the source.
4360   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4361     // Speculative load may load data from dirty regions.
4362     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4363     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4364 }
4365 
4366 
4367 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4368                                         const Instruction *CtxI,
4369                                         const DominatorTree *DT) {
4370   const Operator *Inst = dyn_cast<Operator>(V);
4371   if (!Inst)
4372     return false;
4373 
4374   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4375     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4376       if (C->canTrap())
4377         return false;
4378 
4379   switch (Inst->getOpcode()) {
4380   default:
4381     return true;
4382   case Instruction::UDiv:
4383   case Instruction::URem: {
4384     // x / y is undefined if y == 0.
4385     const APInt *V;
4386     if (match(Inst->getOperand(1), m_APInt(V)))
4387       return *V != 0;
4388     return false;
4389   }
4390   case Instruction::SDiv:
4391   case Instruction::SRem: {
4392     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4393     const APInt *Numerator, *Denominator;
4394     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4395       return false;
4396     // We cannot hoist this division if the denominator is 0.
4397     if (*Denominator == 0)
4398       return false;
4399     // It's safe to hoist if the denominator is not 0 or -1.
4400     if (*Denominator != -1)
4401       return true;
4402     // At this point we know that the denominator is -1.  It is safe to hoist as
4403     // long we know that the numerator is not INT_MIN.
4404     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4405       return !Numerator->isMinSignedValue();
4406     // The numerator *might* be MinSignedValue.
4407     return false;
4408   }
4409   case Instruction::Load: {
4410     const LoadInst *LI = cast<LoadInst>(Inst);
4411     if (mustSuppressSpeculation(*LI))
4412       return false;
4413     const DataLayout &DL = LI->getModule()->getDataLayout();
4414     return isDereferenceableAndAlignedPointer(
4415         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4416         DL, CtxI, DT);
4417   }
4418   case Instruction::Call: {
4419     auto *CI = cast<const CallInst>(Inst);
4420     const Function *Callee = CI->getCalledFunction();
4421 
4422     // The called function could have undefined behavior or side-effects, even
4423     // if marked readnone nounwind.
4424     return Callee && Callee->isSpeculatable();
4425   }
4426   case Instruction::VAArg:
4427   case Instruction::Alloca:
4428   case Instruction::Invoke:
4429   case Instruction::CallBr:
4430   case Instruction::PHI:
4431   case Instruction::Store:
4432   case Instruction::Ret:
4433   case Instruction::Br:
4434   case Instruction::IndirectBr:
4435   case Instruction::Switch:
4436   case Instruction::Unreachable:
4437   case Instruction::Fence:
4438   case Instruction::AtomicRMW:
4439   case Instruction::AtomicCmpXchg:
4440   case Instruction::LandingPad:
4441   case Instruction::Resume:
4442   case Instruction::CatchSwitch:
4443   case Instruction::CatchPad:
4444   case Instruction::CatchRet:
4445   case Instruction::CleanupPad:
4446   case Instruction::CleanupRet:
4447     return false; // Misc instructions which have effects
4448   }
4449 }
4450 
4451 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4452   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4453 }
4454 
4455 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4456 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4457   switch (OR) {
4458     case ConstantRange::OverflowResult::MayOverflow:
4459       return OverflowResult::MayOverflow;
4460     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4461       return OverflowResult::AlwaysOverflowsLow;
4462     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4463       return OverflowResult::AlwaysOverflowsHigh;
4464     case ConstantRange::OverflowResult::NeverOverflows:
4465       return OverflowResult::NeverOverflows;
4466   }
4467   llvm_unreachable("Unknown OverflowResult");
4468 }
4469 
4470 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4471 static ConstantRange computeConstantRangeIncludingKnownBits(
4472     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4473     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4474     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4475   KnownBits Known = computeKnownBits(
4476       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4477   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4478   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4479   ConstantRange::PreferredRangeType RangeType =
4480       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4481   return CR1.intersectWith(CR2, RangeType);
4482 }
4483 
4484 OverflowResult llvm::computeOverflowForUnsignedMul(
4485     const Value *LHS, const Value *RHS, const DataLayout &DL,
4486     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4487     bool UseInstrInfo) {
4488   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4489                                         nullptr, UseInstrInfo);
4490   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4491                                         nullptr, UseInstrInfo);
4492   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4493   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4494   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4495 }
4496 
4497 OverflowResult
4498 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4499                                   const DataLayout &DL, AssumptionCache *AC,
4500                                   const Instruction *CxtI,
4501                                   const DominatorTree *DT, bool UseInstrInfo) {
4502   // Multiplying n * m significant bits yields a result of n + m significant
4503   // bits. If the total number of significant bits does not exceed the
4504   // result bit width (minus 1), there is no overflow.
4505   // This means if we have enough leading sign bits in the operands
4506   // we can guarantee that the result does not overflow.
4507   // Ref: "Hacker's Delight" by Henry Warren
4508   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4509 
4510   // Note that underestimating the number of sign bits gives a more
4511   // conservative answer.
4512   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4513                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4514 
4515   // First handle the easy case: if we have enough sign bits there's
4516   // definitely no overflow.
4517   if (SignBits > BitWidth + 1)
4518     return OverflowResult::NeverOverflows;
4519 
4520   // There are two ambiguous cases where there can be no overflow:
4521   //   SignBits == BitWidth + 1    and
4522   //   SignBits == BitWidth
4523   // The second case is difficult to check, therefore we only handle the
4524   // first case.
4525   if (SignBits == BitWidth + 1) {
4526     // It overflows only when both arguments are negative and the true
4527     // product is exactly the minimum negative number.
4528     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4529     // For simplicity we just check if at least one side is not negative.
4530     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4531                                           nullptr, UseInstrInfo);
4532     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4533                                           nullptr, UseInstrInfo);
4534     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4535       return OverflowResult::NeverOverflows;
4536   }
4537   return OverflowResult::MayOverflow;
4538 }
4539 
4540 OverflowResult llvm::computeOverflowForUnsignedAdd(
4541     const Value *LHS, const Value *RHS, const DataLayout &DL,
4542     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4543     bool UseInstrInfo) {
4544   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4545       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4546       nullptr, UseInstrInfo);
4547   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4548       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4549       nullptr, UseInstrInfo);
4550   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4551 }
4552 
4553 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4554                                                   const Value *RHS,
4555                                                   const AddOperator *Add,
4556                                                   const DataLayout &DL,
4557                                                   AssumptionCache *AC,
4558                                                   const Instruction *CxtI,
4559                                                   const DominatorTree *DT) {
4560   if (Add && Add->hasNoSignedWrap()) {
4561     return OverflowResult::NeverOverflows;
4562   }
4563 
4564   // If LHS and RHS each have at least two sign bits, the addition will look
4565   // like
4566   //
4567   // XX..... +
4568   // YY.....
4569   //
4570   // If the carry into the most significant position is 0, X and Y can't both
4571   // be 1 and therefore the carry out of the addition is also 0.
4572   //
4573   // If the carry into the most significant position is 1, X and Y can't both
4574   // be 0 and therefore the carry out of the addition is also 1.
4575   //
4576   // Since the carry into the most significant position is always equal to
4577   // the carry out of the addition, there is no signed overflow.
4578   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4579       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4580     return OverflowResult::NeverOverflows;
4581 
4582   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4583       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4584   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4585       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4586   OverflowResult OR =
4587       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4588   if (OR != OverflowResult::MayOverflow)
4589     return OR;
4590 
4591   // The remaining code needs Add to be available. Early returns if not so.
4592   if (!Add)
4593     return OverflowResult::MayOverflow;
4594 
4595   // If the sign of Add is the same as at least one of the operands, this add
4596   // CANNOT overflow. If this can be determined from the known bits of the
4597   // operands the above signedAddMayOverflow() check will have already done so.
4598   // The only other way to improve on the known bits is from an assumption, so
4599   // call computeKnownBitsFromAssume() directly.
4600   bool LHSOrRHSKnownNonNegative =
4601       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4602   bool LHSOrRHSKnownNegative =
4603       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4604   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4605     KnownBits AddKnown(LHSRange.getBitWidth());
4606     computeKnownBitsFromAssume(
4607         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4608     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4609         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4610       return OverflowResult::NeverOverflows;
4611   }
4612 
4613   return OverflowResult::MayOverflow;
4614 }
4615 
4616 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4617                                                    const Value *RHS,
4618                                                    const DataLayout &DL,
4619                                                    AssumptionCache *AC,
4620                                                    const Instruction *CxtI,
4621                                                    const DominatorTree *DT) {
4622   // Checking for conditions implied by dominating conditions may be expensive.
4623   // Limit it to usub_with_overflow calls for now.
4624   if (match(CxtI,
4625             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4626     if (auto C =
4627             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4628       if (*C)
4629         return OverflowResult::NeverOverflows;
4630       return OverflowResult::AlwaysOverflowsLow;
4631     }
4632   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4633       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4634   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4635       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4636   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4637 }
4638 
4639 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4640                                                  const Value *RHS,
4641                                                  const DataLayout &DL,
4642                                                  AssumptionCache *AC,
4643                                                  const Instruction *CxtI,
4644                                                  const DominatorTree *DT) {
4645   // If LHS and RHS each have at least two sign bits, the subtraction
4646   // cannot overflow.
4647   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4648       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4649     return OverflowResult::NeverOverflows;
4650 
4651   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4652       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4653   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4654       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4655   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4656 }
4657 
4658 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4659                                      const DominatorTree &DT) {
4660   SmallVector<const BranchInst *, 2> GuardingBranches;
4661   SmallVector<const ExtractValueInst *, 2> Results;
4662 
4663   for (const User *U : WO->users()) {
4664     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4665       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4666 
4667       if (EVI->getIndices()[0] == 0)
4668         Results.push_back(EVI);
4669       else {
4670         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4671 
4672         for (const auto *U : EVI->users())
4673           if (const auto *B = dyn_cast<BranchInst>(U)) {
4674             assert(B->isConditional() && "How else is it using an i1?");
4675             GuardingBranches.push_back(B);
4676           }
4677       }
4678     } else {
4679       // We are using the aggregate directly in a way we don't want to analyze
4680       // here (storing it to a global, say).
4681       return false;
4682     }
4683   }
4684 
4685   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4686     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4687     if (!NoWrapEdge.isSingleEdge())
4688       return false;
4689 
4690     // Check if all users of the add are provably no-wrap.
4691     for (const auto *Result : Results) {
4692       // If the extractvalue itself is not executed on overflow, the we don't
4693       // need to check each use separately, since domination is transitive.
4694       if (DT.dominates(NoWrapEdge, Result->getParent()))
4695         continue;
4696 
4697       for (auto &RU : Result->uses())
4698         if (!DT.dominates(NoWrapEdge, RU))
4699           return false;
4700     }
4701 
4702     return true;
4703   };
4704 
4705   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4706 }
4707 
4708 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4709   // See whether I has flags that may create poison
4710   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4711     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4712       return true;
4713   }
4714   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4715     if (ExactOp->isExact())
4716       return true;
4717   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4718     auto FMF = FP->getFastMathFlags();
4719     if (FMF.noNaNs() || FMF.noInfs())
4720       return true;
4721   }
4722 
4723   unsigned Opcode = Op->getOpcode();
4724 
4725   // Check whether opcode is a poison/undef-generating operation
4726   switch (Opcode) {
4727   case Instruction::Shl:
4728   case Instruction::AShr:
4729   case Instruction::LShr: {
4730     // Shifts return poison if shiftwidth is larger than the bitwidth.
4731     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4732       SmallVector<Constant *, 4> ShiftAmounts;
4733       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4734         unsigned NumElts = FVTy->getNumElements();
4735         for (unsigned i = 0; i < NumElts; ++i)
4736           ShiftAmounts.push_back(C->getAggregateElement(i));
4737       } else if (isa<ScalableVectorType>(C->getType()))
4738         return true; // Can't tell, just return true to be safe
4739       else
4740         ShiftAmounts.push_back(C);
4741 
4742       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4743         auto *CI = dyn_cast<ConstantInt>(C);
4744         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4745       });
4746       return !Safe;
4747     }
4748     return true;
4749   }
4750   case Instruction::FPToSI:
4751   case Instruction::FPToUI:
4752     // fptosi/ui yields poison if the resulting value does not fit in the
4753     // destination type.
4754     return true;
4755   case Instruction::Call:
4756   case Instruction::CallBr:
4757   case Instruction::Invoke: {
4758     const auto *CB = cast<CallBase>(Op);
4759     return !CB->hasRetAttr(Attribute::NoUndef);
4760   }
4761   case Instruction::InsertElement:
4762   case Instruction::ExtractElement: {
4763     // If index exceeds the length of the vector, it returns poison
4764     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4765     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4766     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4767     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4768       return true;
4769     return false;
4770   }
4771   case Instruction::ShuffleVector: {
4772     // shufflevector may return undef.
4773     if (PoisonOnly)
4774       return false;
4775     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4776                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4777                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4778     return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; });
4779   }
4780   case Instruction::FNeg:
4781   case Instruction::PHI:
4782   case Instruction::Select:
4783   case Instruction::URem:
4784   case Instruction::SRem:
4785   case Instruction::ExtractValue:
4786   case Instruction::InsertValue:
4787   case Instruction::Freeze:
4788   case Instruction::ICmp:
4789   case Instruction::FCmp:
4790     return false;
4791   case Instruction::GetElementPtr: {
4792     const auto *GEP = cast<GEPOperator>(Op);
4793     return GEP->isInBounds();
4794   }
4795   default: {
4796     const auto *CE = dyn_cast<ConstantExpr>(Op);
4797     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4798       return false;
4799     else if (Instruction::isBinaryOp(Opcode))
4800       return false;
4801     // Be conservative and return true.
4802     return true;
4803   }
4804   }
4805 }
4806 
4807 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4808   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4809 }
4810 
4811 bool llvm::canCreatePoison(const Operator *Op) {
4812   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4813 }
4814 
4815 static bool programUndefinedIfUndefOrPoison(const Value *V,
4816                                             bool PoisonOnly);
4817 
4818 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
4819                                              const Instruction *CtxI,
4820                                              const DominatorTree *DT,
4821                                              unsigned Depth, bool PoisonOnly) {
4822   if (Depth >= MaxAnalysisRecursionDepth)
4823     return false;
4824 
4825   if (isa<MetadataAsValue>(V))
4826     return false;
4827 
4828   if (const auto *A = dyn_cast<Argument>(V)) {
4829     if (A->hasAttribute(Attribute::NoUndef))
4830       return true;
4831   }
4832 
4833   if (auto *C = dyn_cast<Constant>(V)) {
4834     if (isa<UndefValue>(C))
4835       return PoisonOnly;
4836 
4837     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4838         isa<ConstantPointerNull>(C) || isa<Function>(C))
4839       return true;
4840 
4841     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4842       return (PoisonOnly || !C->containsUndefElement()) &&
4843              !C->containsConstantExpression();
4844   }
4845 
4846   // Strip cast operations from a pointer value.
4847   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4848   // inbounds with zero offset. To guarantee that the result isn't poison, the
4849   // stripped pointer is checked as it has to be pointing into an allocated
4850   // object or be null `null` to ensure `inbounds` getelement pointers with a
4851   // zero offset could not produce poison.
4852   // It can strip off addrspacecast that do not change bit representation as
4853   // well. We believe that such addrspacecast is equivalent to no-op.
4854   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4855   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4856       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4857     return true;
4858 
4859   auto OpCheck = [&](const Value *V) {
4860     return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1, PoisonOnly);
4861   };
4862 
4863   if (auto *Opr = dyn_cast<Operator>(V)) {
4864     // If the value is a freeze instruction, then it can never
4865     // be undef or poison.
4866     if (isa<FreezeInst>(V))
4867       return true;
4868 
4869     if (const auto *CB = dyn_cast<CallBase>(V)) {
4870       if (CB->hasRetAttr(Attribute::NoUndef))
4871         return true;
4872     }
4873 
4874     if (const auto *PN = dyn_cast<PHINode>(V)) {
4875       unsigned Num = PN->getNumIncomingValues();
4876       bool IsWellDefined = true;
4877       for (unsigned i = 0; i < Num; ++i) {
4878         auto *TI = PN->getIncomingBlock(i)->getTerminator();
4879         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), TI, DT,
4880                                               Depth + 1, PoisonOnly)) {
4881           IsWellDefined = false;
4882           break;
4883         }
4884       }
4885       if (IsWellDefined)
4886         return true;
4887     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4888       return true;
4889   }
4890 
4891   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
4892     return true;
4893 
4894   // CxtI may be null or a cloned instruction.
4895   if (!CtxI || !CtxI->getParent() || !DT)
4896     return false;
4897 
4898   auto *DNode = DT->getNode(CtxI->getParent());
4899   if (!DNode)
4900     // Unreachable block
4901     return false;
4902 
4903   // If V is used as a branch condition before reaching CtxI, V cannot be
4904   // undef or poison.
4905   //   br V, BB1, BB2
4906   // BB1:
4907   //   CtxI ; V cannot be undef or poison here
4908   auto *Dominator = DNode->getIDom();
4909   while (Dominator) {
4910     auto *TI = Dominator->getBlock()->getTerminator();
4911 
4912     Value *Cond = nullptr;
4913     if (auto BI = dyn_cast<BranchInst>(TI)) {
4914       if (BI->isConditional())
4915         Cond = BI->getCondition();
4916     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4917       Cond = SI->getCondition();
4918     }
4919 
4920     if (Cond) {
4921       if (Cond == V)
4922         return true;
4923       else if (PoisonOnly && isa<Operator>(Cond)) {
4924         // For poison, we can analyze further
4925         auto *Opr = cast<Operator>(Cond);
4926         if (propagatesPoison(Opr) &&
4927             any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; }))
4928           return true;
4929       }
4930     }
4931 
4932     Dominator = Dominator->getIDom();
4933   }
4934 
4935   return false;
4936 }
4937 
4938 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V,
4939                                             const Instruction *CtxI,
4940                                             const DominatorTree *DT,
4941                                             unsigned Depth) {
4942   return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, false);
4943 }
4944 
4945 bool llvm::isGuaranteedNotToBePoison(const Value *V, const Instruction *CtxI,
4946                                      const DominatorTree *DT, unsigned Depth) {
4947   return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, true);
4948 }
4949 
4950 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4951                                                  const DataLayout &DL,
4952                                                  AssumptionCache *AC,
4953                                                  const Instruction *CxtI,
4954                                                  const DominatorTree *DT) {
4955   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4956                                        Add, DL, AC, CxtI, DT);
4957 }
4958 
4959 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4960                                                  const Value *RHS,
4961                                                  const DataLayout &DL,
4962                                                  AssumptionCache *AC,
4963                                                  const Instruction *CxtI,
4964                                                  const DominatorTree *DT) {
4965   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4966 }
4967 
4968 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4969   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4970   // of time because it's possible for another thread to interfere with it for an
4971   // arbitrary length of time, but programs aren't allowed to rely on that.
4972 
4973   // If there is no successor, then execution can't transfer to it.
4974   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4975     return !CRI->unwindsToCaller();
4976   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4977     return !CatchSwitch->unwindsToCaller();
4978   if (isa<ResumeInst>(I))
4979     return false;
4980   if (isa<ReturnInst>(I))
4981     return false;
4982   if (isa<UnreachableInst>(I))
4983     return false;
4984 
4985   // Calls can throw, or contain an infinite loop, or kill the process.
4986   if (const auto *CB = dyn_cast<CallBase>(I)) {
4987     // Call sites that throw have implicit non-local control flow.
4988     if (!CB->doesNotThrow())
4989       return false;
4990 
4991     // A function which doens't throw and has "willreturn" attribute will
4992     // always return.
4993     if (CB->hasFnAttr(Attribute::WillReturn))
4994       return true;
4995 
4996     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4997     // etc. and thus not return.  However, LLVM already assumes that
4998     //
4999     //  - Thread exiting actions are modeled as writes to memory invisible to
5000     //    the program.
5001     //
5002     //  - Loops that don't have side effects (side effects are volatile/atomic
5003     //    stores and IO) always terminate (see http://llvm.org/PR965).
5004     //    Furthermore IO itself is also modeled as writes to memory invisible to
5005     //    the program.
5006     //
5007     // We rely on those assumptions here, and use the memory effects of the call
5008     // target as a proxy for checking that it always returns.
5009 
5010     // FIXME: This isn't aggressive enough; a call which only writes to a global
5011     // is guaranteed to return.
5012     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5013   }
5014 
5015   // Other instructions return normally.
5016   return true;
5017 }
5018 
5019 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5020   // TODO: This is slightly conservative for invoke instruction since exiting
5021   // via an exception *is* normal control for them.
5022   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5023     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5024       return false;
5025   return true;
5026 }
5027 
5028 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5029                                                   const Loop *L) {
5030   // The loop header is guaranteed to be executed for every iteration.
5031   //
5032   // FIXME: Relax this constraint to cover all basic blocks that are
5033   // guaranteed to be executed at every iteration.
5034   if (I->getParent() != L->getHeader()) return false;
5035 
5036   for (const Instruction &LI : *L->getHeader()) {
5037     if (&LI == I) return true;
5038     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5039   }
5040   llvm_unreachable("Instruction not contained in its own parent basic block.");
5041 }
5042 
5043 bool llvm::propagatesPoison(const Operator *I) {
5044   switch (I->getOpcode()) {
5045   case Instruction::Freeze:
5046   case Instruction::Select:
5047   case Instruction::PHI:
5048   case Instruction::Call:
5049   case Instruction::Invoke:
5050     return false;
5051   case Instruction::ICmp:
5052   case Instruction::FCmp:
5053   case Instruction::GetElementPtr:
5054     return true;
5055   default:
5056     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5057       return true;
5058 
5059     // Be conservative and return false.
5060     return false;
5061   }
5062 }
5063 
5064 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5065                                      SmallPtrSetImpl<const Value *> &Operands) {
5066   switch (I->getOpcode()) {
5067     case Instruction::Store:
5068       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5069       break;
5070 
5071     case Instruction::Load:
5072       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5073       break;
5074 
5075     case Instruction::AtomicCmpXchg:
5076       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5077       break;
5078 
5079     case Instruction::AtomicRMW:
5080       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5081       break;
5082 
5083     case Instruction::UDiv:
5084     case Instruction::SDiv:
5085     case Instruction::URem:
5086     case Instruction::SRem:
5087       Operands.insert(I->getOperand(1));
5088       break;
5089 
5090     case Instruction::Call:
5091     case Instruction::Invoke: {
5092       const CallBase *CB = cast<CallBase>(I);
5093       if (CB->isIndirectCall())
5094         Operands.insert(CB->getCalledOperand());
5095       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5096         if (CB->paramHasAttr(i, Attribute::NoUndef))
5097           Operands.insert(CB->getArgOperand(i));
5098       }
5099       break;
5100     }
5101 
5102     default:
5103       break;
5104   }
5105 }
5106 
5107 bool llvm::mustTriggerUB(const Instruction *I,
5108                          const SmallSet<const Value *, 16>& KnownPoison) {
5109   SmallPtrSet<const Value *, 4> NonPoisonOps;
5110   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5111 
5112   for (const auto *V : NonPoisonOps)
5113     if (KnownPoison.count(V))
5114       return true;
5115 
5116   return false;
5117 }
5118 
5119 static bool programUndefinedIfUndefOrPoison(const Value *V,
5120                                             bool PoisonOnly) {
5121   // We currently only look for uses of values within the same basic
5122   // block, as that makes it easier to guarantee that the uses will be
5123   // executed given that Inst is executed.
5124   //
5125   // FIXME: Expand this to consider uses beyond the same basic block. To do
5126   // this, look out for the distinction between post-dominance and strong
5127   // post-dominance.
5128   const BasicBlock *BB = nullptr;
5129   BasicBlock::const_iterator Begin;
5130   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5131     BB = Inst->getParent();
5132     Begin = Inst->getIterator();
5133     Begin++;
5134   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5135     BB = &Arg->getParent()->getEntryBlock();
5136     Begin = BB->begin();
5137   } else {
5138     return false;
5139   }
5140 
5141   BasicBlock::const_iterator End = BB->end();
5142 
5143   if (!PoisonOnly) {
5144     // Be conservative & just check whether a value is passed to a noundef
5145     // argument.
5146     // Instructions that raise UB with a poison operand are well-defined
5147     // or have unclear semantics when the input is partially undef.
5148     // For example, 'udiv x, (undef | 1)' isn't UB.
5149 
5150     for (auto &I : make_range(Begin, End)) {
5151       if (const auto *CB = dyn_cast<CallBase>(&I)) {
5152         for (unsigned i = 0; i < CB->arg_size(); ++i) {
5153           if (CB->paramHasAttr(i, Attribute::NoUndef) &&
5154               CB->getArgOperand(i) == V)
5155             return true;
5156         }
5157       }
5158       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5159         break;
5160     }
5161     return false;
5162   }
5163 
5164   // Set of instructions that we have proved will yield poison if Inst
5165   // does.
5166   SmallSet<const Value *, 16> YieldsPoison;
5167   SmallSet<const BasicBlock *, 4> Visited;
5168 
5169   YieldsPoison.insert(V);
5170   auto Propagate = [&](const User *User) {
5171     if (propagatesPoison(cast<Operator>(User)))
5172       YieldsPoison.insert(User);
5173   };
5174   for_each(V->users(), Propagate);
5175   Visited.insert(BB);
5176 
5177   unsigned Iter = 0;
5178   while (Iter++ < MaxAnalysisRecursionDepth) {
5179     for (auto &I : make_range(Begin, End)) {
5180       if (mustTriggerUB(&I, YieldsPoison))
5181         return true;
5182       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5183         return false;
5184 
5185       // Mark poison that propagates from I through uses of I.
5186       if (YieldsPoison.count(&I))
5187         for_each(I.users(), Propagate);
5188     }
5189 
5190     if (auto *NextBB = BB->getSingleSuccessor()) {
5191       if (Visited.insert(NextBB).second) {
5192         BB = NextBB;
5193         Begin = BB->getFirstNonPHI()->getIterator();
5194         End = BB->end();
5195         continue;
5196       }
5197     }
5198 
5199     break;
5200   }
5201   return false;
5202 }
5203 
5204 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5205   return ::programUndefinedIfUndefOrPoison(Inst, false);
5206 }
5207 
5208 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5209   return ::programUndefinedIfUndefOrPoison(Inst, true);
5210 }
5211 
5212 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5213   if (FMF.noNaNs())
5214     return true;
5215 
5216   if (auto *C = dyn_cast<ConstantFP>(V))
5217     return !C->isNaN();
5218 
5219   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5220     if (!C->getElementType()->isFloatingPointTy())
5221       return false;
5222     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5223       if (C->getElementAsAPFloat(I).isNaN())
5224         return false;
5225     }
5226     return true;
5227   }
5228 
5229   if (isa<ConstantAggregateZero>(V))
5230     return true;
5231 
5232   return false;
5233 }
5234 
5235 static bool isKnownNonZero(const Value *V) {
5236   if (auto *C = dyn_cast<ConstantFP>(V))
5237     return !C->isZero();
5238 
5239   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5240     if (!C->getElementType()->isFloatingPointTy())
5241       return false;
5242     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5243       if (C->getElementAsAPFloat(I).isZero())
5244         return false;
5245     }
5246     return true;
5247   }
5248 
5249   return false;
5250 }
5251 
5252 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5253 /// Given non-min/max outer cmp/select from the clamp pattern this
5254 /// function recognizes if it can be substitued by a "canonical" min/max
5255 /// pattern.
5256 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5257                                                Value *CmpLHS, Value *CmpRHS,
5258                                                Value *TrueVal, Value *FalseVal,
5259                                                Value *&LHS, Value *&RHS) {
5260   // Try to match
5261   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5262   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5263   // and return description of the outer Max/Min.
5264 
5265   // First, check if select has inverse order:
5266   if (CmpRHS == FalseVal) {
5267     std::swap(TrueVal, FalseVal);
5268     Pred = CmpInst::getInversePredicate(Pred);
5269   }
5270 
5271   // Assume success now. If there's no match, callers should not use these anyway.
5272   LHS = TrueVal;
5273   RHS = FalseVal;
5274 
5275   const APFloat *FC1;
5276   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5277     return {SPF_UNKNOWN, SPNB_NA, false};
5278 
5279   const APFloat *FC2;
5280   switch (Pred) {
5281   case CmpInst::FCMP_OLT:
5282   case CmpInst::FCMP_OLE:
5283   case CmpInst::FCMP_ULT:
5284   case CmpInst::FCMP_ULE:
5285     if (match(FalseVal,
5286               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5287                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5288         *FC1 < *FC2)
5289       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5290     break;
5291   case CmpInst::FCMP_OGT:
5292   case CmpInst::FCMP_OGE:
5293   case CmpInst::FCMP_UGT:
5294   case CmpInst::FCMP_UGE:
5295     if (match(FalseVal,
5296               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5297                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5298         *FC1 > *FC2)
5299       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5300     break;
5301   default:
5302     break;
5303   }
5304 
5305   return {SPF_UNKNOWN, SPNB_NA, false};
5306 }
5307 
5308 /// Recognize variations of:
5309 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5310 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5311                                       Value *CmpLHS, Value *CmpRHS,
5312                                       Value *TrueVal, Value *FalseVal) {
5313   // Swap the select operands and predicate to match the patterns below.
5314   if (CmpRHS != TrueVal) {
5315     Pred = ICmpInst::getSwappedPredicate(Pred);
5316     std::swap(TrueVal, FalseVal);
5317   }
5318   const APInt *C1;
5319   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5320     const APInt *C2;
5321     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5322     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5323         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5324       return {SPF_SMAX, SPNB_NA, false};
5325 
5326     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5327     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5328         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5329       return {SPF_SMIN, SPNB_NA, false};
5330 
5331     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5332     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5333         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5334       return {SPF_UMAX, SPNB_NA, false};
5335 
5336     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5337     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5338         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5339       return {SPF_UMIN, SPNB_NA, false};
5340   }
5341   return {SPF_UNKNOWN, SPNB_NA, false};
5342 }
5343 
5344 /// Recognize variations of:
5345 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5346 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5347                                                Value *CmpLHS, Value *CmpRHS,
5348                                                Value *TVal, Value *FVal,
5349                                                unsigned Depth) {
5350   // TODO: Allow FP min/max with nnan/nsz.
5351   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5352 
5353   Value *A = nullptr, *B = nullptr;
5354   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5355   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5356     return {SPF_UNKNOWN, SPNB_NA, false};
5357 
5358   Value *C = nullptr, *D = nullptr;
5359   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5360   if (L.Flavor != R.Flavor)
5361     return {SPF_UNKNOWN, SPNB_NA, false};
5362 
5363   // We have something like: x Pred y ? min(a, b) : min(c, d).
5364   // Try to match the compare to the min/max operations of the select operands.
5365   // First, make sure we have the right compare predicate.
5366   switch (L.Flavor) {
5367   case SPF_SMIN:
5368     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5369       Pred = ICmpInst::getSwappedPredicate(Pred);
5370       std::swap(CmpLHS, CmpRHS);
5371     }
5372     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5373       break;
5374     return {SPF_UNKNOWN, SPNB_NA, false};
5375   case SPF_SMAX:
5376     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5377       Pred = ICmpInst::getSwappedPredicate(Pred);
5378       std::swap(CmpLHS, CmpRHS);
5379     }
5380     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5381       break;
5382     return {SPF_UNKNOWN, SPNB_NA, false};
5383   case SPF_UMIN:
5384     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5385       Pred = ICmpInst::getSwappedPredicate(Pred);
5386       std::swap(CmpLHS, CmpRHS);
5387     }
5388     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5389       break;
5390     return {SPF_UNKNOWN, SPNB_NA, false};
5391   case SPF_UMAX:
5392     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5393       Pred = ICmpInst::getSwappedPredicate(Pred);
5394       std::swap(CmpLHS, CmpRHS);
5395     }
5396     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5397       break;
5398     return {SPF_UNKNOWN, SPNB_NA, false};
5399   default:
5400     return {SPF_UNKNOWN, SPNB_NA, false};
5401   }
5402 
5403   // If there is a common operand in the already matched min/max and the other
5404   // min/max operands match the compare operands (either directly or inverted),
5405   // then this is min/max of the same flavor.
5406 
5407   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5408   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5409   if (D == B) {
5410     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5411                                          match(A, m_Not(m_Specific(CmpRHS)))))
5412       return {L.Flavor, SPNB_NA, false};
5413   }
5414   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5415   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5416   if (C == B) {
5417     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5418                                          match(A, m_Not(m_Specific(CmpRHS)))))
5419       return {L.Flavor, SPNB_NA, false};
5420   }
5421   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5422   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5423   if (D == A) {
5424     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5425                                          match(B, m_Not(m_Specific(CmpRHS)))))
5426       return {L.Flavor, SPNB_NA, false};
5427   }
5428   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5429   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5430   if (C == A) {
5431     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5432                                          match(B, m_Not(m_Specific(CmpRHS)))))
5433       return {L.Flavor, SPNB_NA, false};
5434   }
5435 
5436   return {SPF_UNKNOWN, SPNB_NA, false};
5437 }
5438 
5439 /// If the input value is the result of a 'not' op, constant integer, or vector
5440 /// splat of a constant integer, return the bitwise-not source value.
5441 /// TODO: This could be extended to handle non-splat vector integer constants.
5442 static Value *getNotValue(Value *V) {
5443   Value *NotV;
5444   if (match(V, m_Not(m_Value(NotV))))
5445     return NotV;
5446 
5447   const APInt *C;
5448   if (match(V, m_APInt(C)))
5449     return ConstantInt::get(V->getType(), ~(*C));
5450 
5451   return nullptr;
5452 }
5453 
5454 /// Match non-obvious integer minimum and maximum sequences.
5455 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5456                                        Value *CmpLHS, Value *CmpRHS,
5457                                        Value *TrueVal, Value *FalseVal,
5458                                        Value *&LHS, Value *&RHS,
5459                                        unsigned Depth) {
5460   // Assume success. If there's no match, callers should not use these anyway.
5461   LHS = TrueVal;
5462   RHS = FalseVal;
5463 
5464   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5465   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5466     return SPR;
5467 
5468   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5469   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5470     return SPR;
5471 
5472   // Look through 'not' ops to find disguised min/max.
5473   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5474   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5475   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5476     switch (Pred) {
5477     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5478     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5479     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5480     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5481     default: break;
5482     }
5483   }
5484 
5485   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5486   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5487   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5488     switch (Pred) {
5489     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5490     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5491     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5492     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5493     default: break;
5494     }
5495   }
5496 
5497   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5498     return {SPF_UNKNOWN, SPNB_NA, false};
5499 
5500   // Z = X -nsw Y
5501   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5502   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5503   if (match(TrueVal, m_Zero()) &&
5504       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5505     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5506 
5507   // Z = X -nsw Y
5508   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5509   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5510   if (match(FalseVal, m_Zero()) &&
5511       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5512     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5513 
5514   const APInt *C1;
5515   if (!match(CmpRHS, m_APInt(C1)))
5516     return {SPF_UNKNOWN, SPNB_NA, false};
5517 
5518   // An unsigned min/max can be written with a signed compare.
5519   const APInt *C2;
5520   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5521       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5522     // Is the sign bit set?
5523     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5524     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5525     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5526         C2->isMaxSignedValue())
5527       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5528 
5529     // Is the sign bit clear?
5530     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5531     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5532     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5533         C2->isMinSignedValue())
5534       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5535   }
5536 
5537   return {SPF_UNKNOWN, SPNB_NA, false};
5538 }
5539 
5540 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5541   assert(X && Y && "Invalid operand");
5542 
5543   // X = sub (0, Y) || X = sub nsw (0, Y)
5544   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5545       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5546     return true;
5547 
5548   // Y = sub (0, X) || Y = sub nsw (0, X)
5549   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5550       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5551     return true;
5552 
5553   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5554   Value *A, *B;
5555   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5556                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5557          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5558                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5559 }
5560 
5561 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5562                                               FastMathFlags FMF,
5563                                               Value *CmpLHS, Value *CmpRHS,
5564                                               Value *TrueVal, Value *FalseVal,
5565                                               Value *&LHS, Value *&RHS,
5566                                               unsigned Depth) {
5567   if (CmpInst::isFPPredicate(Pred)) {
5568     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5569     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5570     // purpose of identifying min/max. Disregard vector constants with undefined
5571     // elements because those can not be back-propagated for analysis.
5572     Value *OutputZeroVal = nullptr;
5573     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5574         !cast<Constant>(TrueVal)->containsUndefElement())
5575       OutputZeroVal = TrueVal;
5576     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5577              !cast<Constant>(FalseVal)->containsUndefElement())
5578       OutputZeroVal = FalseVal;
5579 
5580     if (OutputZeroVal) {
5581       if (match(CmpLHS, m_AnyZeroFP()))
5582         CmpLHS = OutputZeroVal;
5583       if (match(CmpRHS, m_AnyZeroFP()))
5584         CmpRHS = OutputZeroVal;
5585     }
5586   }
5587 
5588   LHS = CmpLHS;
5589   RHS = CmpRHS;
5590 
5591   // Signed zero may return inconsistent results between implementations.
5592   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5593   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5594   // Therefore, we behave conservatively and only proceed if at least one of the
5595   // operands is known to not be zero or if we don't care about signed zero.
5596   switch (Pred) {
5597   default: break;
5598   // FIXME: Include OGT/OLT/UGT/ULT.
5599   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5600   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5601     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5602         !isKnownNonZero(CmpRHS))
5603       return {SPF_UNKNOWN, SPNB_NA, false};
5604   }
5605 
5606   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5607   bool Ordered = false;
5608 
5609   // When given one NaN and one non-NaN input:
5610   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5611   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5612   //     ordered comparison fails), which could be NaN or non-NaN.
5613   // so here we discover exactly what NaN behavior is required/accepted.
5614   if (CmpInst::isFPPredicate(Pred)) {
5615     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5616     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5617 
5618     if (LHSSafe && RHSSafe) {
5619       // Both operands are known non-NaN.
5620       NaNBehavior = SPNB_RETURNS_ANY;
5621     } else if (CmpInst::isOrdered(Pred)) {
5622       // An ordered comparison will return false when given a NaN, so it
5623       // returns the RHS.
5624       Ordered = true;
5625       if (LHSSafe)
5626         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5627         NaNBehavior = SPNB_RETURNS_NAN;
5628       else if (RHSSafe)
5629         NaNBehavior = SPNB_RETURNS_OTHER;
5630       else
5631         // Completely unsafe.
5632         return {SPF_UNKNOWN, SPNB_NA, false};
5633     } else {
5634       Ordered = false;
5635       // An unordered comparison will return true when given a NaN, so it
5636       // returns the LHS.
5637       if (LHSSafe)
5638         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5639         NaNBehavior = SPNB_RETURNS_OTHER;
5640       else if (RHSSafe)
5641         NaNBehavior = SPNB_RETURNS_NAN;
5642       else
5643         // Completely unsafe.
5644         return {SPF_UNKNOWN, SPNB_NA, false};
5645     }
5646   }
5647 
5648   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5649     std::swap(CmpLHS, CmpRHS);
5650     Pred = CmpInst::getSwappedPredicate(Pred);
5651     if (NaNBehavior == SPNB_RETURNS_NAN)
5652       NaNBehavior = SPNB_RETURNS_OTHER;
5653     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5654       NaNBehavior = SPNB_RETURNS_NAN;
5655     Ordered = !Ordered;
5656   }
5657 
5658   // ([if]cmp X, Y) ? X : Y
5659   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5660     switch (Pred) {
5661     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5662     case ICmpInst::ICMP_UGT:
5663     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5664     case ICmpInst::ICMP_SGT:
5665     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5666     case ICmpInst::ICMP_ULT:
5667     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5668     case ICmpInst::ICMP_SLT:
5669     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5670     case FCmpInst::FCMP_UGT:
5671     case FCmpInst::FCMP_UGE:
5672     case FCmpInst::FCMP_OGT:
5673     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5674     case FCmpInst::FCMP_ULT:
5675     case FCmpInst::FCMP_ULE:
5676     case FCmpInst::FCMP_OLT:
5677     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5678     }
5679   }
5680 
5681   if (isKnownNegation(TrueVal, FalseVal)) {
5682     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5683     // match against either LHS or sext(LHS).
5684     auto MaybeSExtCmpLHS =
5685         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5686     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5687     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5688     if (match(TrueVal, MaybeSExtCmpLHS)) {
5689       // Set the return values. If the compare uses the negated value (-X >s 0),
5690       // swap the return values because the negated value is always 'RHS'.
5691       LHS = TrueVal;
5692       RHS = FalseVal;
5693       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5694         std::swap(LHS, RHS);
5695 
5696       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5697       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5698       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5699         return {SPF_ABS, SPNB_NA, false};
5700 
5701       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5702       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5703         return {SPF_ABS, SPNB_NA, false};
5704 
5705       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5706       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5707       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5708         return {SPF_NABS, SPNB_NA, false};
5709     }
5710     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5711       // Set the return values. If the compare uses the negated value (-X >s 0),
5712       // swap the return values because the negated value is always 'RHS'.
5713       LHS = FalseVal;
5714       RHS = TrueVal;
5715       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5716         std::swap(LHS, RHS);
5717 
5718       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5719       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5720       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5721         return {SPF_NABS, SPNB_NA, false};
5722 
5723       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5724       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5725       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5726         return {SPF_ABS, SPNB_NA, false};
5727     }
5728   }
5729 
5730   if (CmpInst::isIntPredicate(Pred))
5731     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5732 
5733   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5734   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5735   // semantics than minNum. Be conservative in such case.
5736   if (NaNBehavior != SPNB_RETURNS_ANY ||
5737       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5738        !isKnownNonZero(CmpRHS)))
5739     return {SPF_UNKNOWN, SPNB_NA, false};
5740 
5741   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5742 }
5743 
5744 /// Helps to match a select pattern in case of a type mismatch.
5745 ///
5746 /// The function processes the case when type of true and false values of a
5747 /// select instruction differs from type of the cmp instruction operands because
5748 /// of a cast instruction. The function checks if it is legal to move the cast
5749 /// operation after "select". If yes, it returns the new second value of
5750 /// "select" (with the assumption that cast is moved):
5751 /// 1. As operand of cast instruction when both values of "select" are same cast
5752 /// instructions.
5753 /// 2. As restored constant (by applying reverse cast operation) when the first
5754 /// value of the "select" is a cast operation and the second value is a
5755 /// constant.
5756 /// NOTE: We return only the new second value because the first value could be
5757 /// accessed as operand of cast instruction.
5758 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5759                               Instruction::CastOps *CastOp) {
5760   auto *Cast1 = dyn_cast<CastInst>(V1);
5761   if (!Cast1)
5762     return nullptr;
5763 
5764   *CastOp = Cast1->getOpcode();
5765   Type *SrcTy = Cast1->getSrcTy();
5766   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5767     // If V1 and V2 are both the same cast from the same type, look through V1.
5768     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5769       return Cast2->getOperand(0);
5770     return nullptr;
5771   }
5772 
5773   auto *C = dyn_cast<Constant>(V2);
5774   if (!C)
5775     return nullptr;
5776 
5777   Constant *CastedTo = nullptr;
5778   switch (*CastOp) {
5779   case Instruction::ZExt:
5780     if (CmpI->isUnsigned())
5781       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5782     break;
5783   case Instruction::SExt:
5784     if (CmpI->isSigned())
5785       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5786     break;
5787   case Instruction::Trunc:
5788     Constant *CmpConst;
5789     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5790         CmpConst->getType() == SrcTy) {
5791       // Here we have the following case:
5792       //
5793       //   %cond = cmp iN %x, CmpConst
5794       //   %tr = trunc iN %x to iK
5795       //   %narrowsel = select i1 %cond, iK %t, iK C
5796       //
5797       // We can always move trunc after select operation:
5798       //
5799       //   %cond = cmp iN %x, CmpConst
5800       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5801       //   %tr = trunc iN %widesel to iK
5802       //
5803       // Note that C could be extended in any way because we don't care about
5804       // upper bits after truncation. It can't be abs pattern, because it would
5805       // look like:
5806       //
5807       //   select i1 %cond, x, -x.
5808       //
5809       // So only min/max pattern could be matched. Such match requires widened C
5810       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5811       // CmpConst == C is checked below.
5812       CastedTo = CmpConst;
5813     } else {
5814       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5815     }
5816     break;
5817   case Instruction::FPTrunc:
5818     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5819     break;
5820   case Instruction::FPExt:
5821     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5822     break;
5823   case Instruction::FPToUI:
5824     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5825     break;
5826   case Instruction::FPToSI:
5827     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5828     break;
5829   case Instruction::UIToFP:
5830     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5831     break;
5832   case Instruction::SIToFP:
5833     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5834     break;
5835   default:
5836     break;
5837   }
5838 
5839   if (!CastedTo)
5840     return nullptr;
5841 
5842   // Make sure the cast doesn't lose any information.
5843   Constant *CastedBack =
5844       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5845   if (CastedBack != C)
5846     return nullptr;
5847 
5848   return CastedTo;
5849 }
5850 
5851 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5852                                              Instruction::CastOps *CastOp,
5853                                              unsigned Depth) {
5854   if (Depth >= MaxAnalysisRecursionDepth)
5855     return {SPF_UNKNOWN, SPNB_NA, false};
5856 
5857   SelectInst *SI = dyn_cast<SelectInst>(V);
5858   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5859 
5860   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5861   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5862 
5863   Value *TrueVal = SI->getTrueValue();
5864   Value *FalseVal = SI->getFalseValue();
5865 
5866   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5867                                             CastOp, Depth);
5868 }
5869 
5870 SelectPatternResult llvm::matchDecomposedSelectPattern(
5871     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5872     Instruction::CastOps *CastOp, unsigned Depth) {
5873   CmpInst::Predicate Pred = CmpI->getPredicate();
5874   Value *CmpLHS = CmpI->getOperand(0);
5875   Value *CmpRHS = CmpI->getOperand(1);
5876   FastMathFlags FMF;
5877   if (isa<FPMathOperator>(CmpI))
5878     FMF = CmpI->getFastMathFlags();
5879 
5880   // Bail out early.
5881   if (CmpI->isEquality())
5882     return {SPF_UNKNOWN, SPNB_NA, false};
5883 
5884   // Deal with type mismatches.
5885   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5886     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5887       // If this is a potential fmin/fmax with a cast to integer, then ignore
5888       // -0.0 because there is no corresponding integer value.
5889       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5890         FMF.setNoSignedZeros();
5891       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5892                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5893                                   LHS, RHS, Depth);
5894     }
5895     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5896       // If this is a potential fmin/fmax with a cast to integer, then ignore
5897       // -0.0 because there is no corresponding integer value.
5898       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5899         FMF.setNoSignedZeros();
5900       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5901                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5902                                   LHS, RHS, Depth);
5903     }
5904   }
5905   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5906                               LHS, RHS, Depth);
5907 }
5908 
5909 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5910   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5911   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5912   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5913   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5914   if (SPF == SPF_FMINNUM)
5915     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5916   if (SPF == SPF_FMAXNUM)
5917     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5918   llvm_unreachable("unhandled!");
5919 }
5920 
5921 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5922   if (SPF == SPF_SMIN) return SPF_SMAX;
5923   if (SPF == SPF_UMIN) return SPF_UMAX;
5924   if (SPF == SPF_SMAX) return SPF_SMIN;
5925   if (SPF == SPF_UMAX) return SPF_UMIN;
5926   llvm_unreachable("unhandled!");
5927 }
5928 
5929 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5930   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5931 }
5932 
5933 /// Return true if "icmp Pred LHS RHS" is always true.
5934 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5935                             const Value *RHS, const DataLayout &DL,
5936                             unsigned Depth) {
5937   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5938   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5939     return true;
5940 
5941   switch (Pred) {
5942   default:
5943     return false;
5944 
5945   case CmpInst::ICMP_SLE: {
5946     const APInt *C;
5947 
5948     // LHS s<= LHS +_{nsw} C   if C >= 0
5949     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5950       return !C->isNegative();
5951     return false;
5952   }
5953 
5954   case CmpInst::ICMP_ULE: {
5955     const APInt *C;
5956 
5957     // LHS u<= LHS +_{nuw} C   for any C
5958     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5959       return true;
5960 
5961     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5962     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5963                                        const Value *&X,
5964                                        const APInt *&CA, const APInt *&CB) {
5965       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5966           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5967         return true;
5968 
5969       // If X & C == 0 then (X | C) == X +_{nuw} C
5970       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5971           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5972         KnownBits Known(CA->getBitWidth());
5973         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5974                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5975         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5976           return true;
5977       }
5978 
5979       return false;
5980     };
5981 
5982     const Value *X;
5983     const APInt *CLHS, *CRHS;
5984     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5985       return CLHS->ule(*CRHS);
5986 
5987     return false;
5988   }
5989   }
5990 }
5991 
5992 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5993 /// ALHS ARHS" is true.  Otherwise, return None.
5994 static Optional<bool>
5995 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5996                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5997                       const DataLayout &DL, unsigned Depth) {
5998   switch (Pred) {
5999   default:
6000     return None;
6001 
6002   case CmpInst::ICMP_SLT:
6003   case CmpInst::ICMP_SLE:
6004     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6005         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6006       return true;
6007     return None;
6008 
6009   case CmpInst::ICMP_ULT:
6010   case CmpInst::ICMP_ULE:
6011     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6012         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6013       return true;
6014     return None;
6015   }
6016 }
6017 
6018 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6019 /// when the operands match, but are swapped.
6020 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6021                           const Value *BLHS, const Value *BRHS,
6022                           bool &IsSwappedOps) {
6023 
6024   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6025   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6026   return IsMatchingOps || IsSwappedOps;
6027 }
6028 
6029 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6030 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6031 /// Otherwise, return None if we can't infer anything.
6032 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6033                                                     CmpInst::Predicate BPred,
6034                                                     bool AreSwappedOps) {
6035   // Canonicalize the predicate as if the operands were not commuted.
6036   if (AreSwappedOps)
6037     BPred = ICmpInst::getSwappedPredicate(BPred);
6038 
6039   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6040     return true;
6041   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6042     return false;
6043 
6044   return None;
6045 }
6046 
6047 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6048 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6049 /// Otherwise, return None if we can't infer anything.
6050 static Optional<bool>
6051 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6052                                  const ConstantInt *C1,
6053                                  CmpInst::Predicate BPred,
6054                                  const ConstantInt *C2) {
6055   ConstantRange DomCR =
6056       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6057   ConstantRange CR =
6058       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6059   ConstantRange Intersection = DomCR.intersectWith(CR);
6060   ConstantRange Difference = DomCR.difference(CR);
6061   if (Intersection.isEmptySet())
6062     return false;
6063   if (Difference.isEmptySet())
6064     return true;
6065   return None;
6066 }
6067 
6068 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6069 /// false.  Otherwise, return None if we can't infer anything.
6070 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6071                                          CmpInst::Predicate BPred,
6072                                          const Value *BLHS, const Value *BRHS,
6073                                          const DataLayout &DL, bool LHSIsTrue,
6074                                          unsigned Depth) {
6075   Value *ALHS = LHS->getOperand(0);
6076   Value *ARHS = LHS->getOperand(1);
6077 
6078   // The rest of the logic assumes the LHS condition is true.  If that's not the
6079   // case, invert the predicate to make it so.
6080   CmpInst::Predicate APred =
6081       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6082 
6083   // Can we infer anything when the two compares have matching operands?
6084   bool AreSwappedOps;
6085   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6086     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6087             APred, BPred, AreSwappedOps))
6088       return Implication;
6089     // No amount of additional analysis will infer the second condition, so
6090     // early exit.
6091     return None;
6092   }
6093 
6094   // Can we infer anything when the LHS operands match and the RHS operands are
6095   // constants (not necessarily matching)?
6096   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6097     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6098             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6099       return Implication;
6100     // No amount of additional analysis will infer the second condition, so
6101     // early exit.
6102     return None;
6103   }
6104 
6105   if (APred == BPred)
6106     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6107   return None;
6108 }
6109 
6110 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6111 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6112 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6113 static Optional<bool>
6114 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6115                    const Value *RHSOp0, const Value *RHSOp1,
6116 
6117                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6118   // The LHS must be an 'or' or an 'and' instruction.
6119   assert((LHS->getOpcode() == Instruction::And ||
6120           LHS->getOpcode() == Instruction::Or) &&
6121          "Expected LHS to be 'and' or 'or'.");
6122 
6123   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6124 
6125   // If the result of an 'or' is false, then we know both legs of the 'or' are
6126   // false.  Similarly, if the result of an 'and' is true, then we know both
6127   // legs of the 'and' are true.
6128   Value *ALHS, *ARHS;
6129   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6130       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6131     // FIXME: Make this non-recursion.
6132     if (Optional<bool> Implication = isImpliedCondition(
6133             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6134       return Implication;
6135     if (Optional<bool> Implication = isImpliedCondition(
6136             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6137       return Implication;
6138     return None;
6139   }
6140   return None;
6141 }
6142 
6143 Optional<bool>
6144 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6145                          const Value *RHSOp0, const Value *RHSOp1,
6146                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6147   // Bail out when we hit the limit.
6148   if (Depth == MaxAnalysisRecursionDepth)
6149     return None;
6150 
6151   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6152   // example.
6153   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6154     return None;
6155 
6156   Type *OpTy = LHS->getType();
6157   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6158 
6159   // FIXME: Extending the code below to handle vectors.
6160   if (OpTy->isVectorTy())
6161     return None;
6162 
6163   assert(OpTy->isIntegerTy(1) && "implied by above");
6164 
6165   // Both LHS and RHS are icmps.
6166   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6167   if (LHSCmp)
6168     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6169                               Depth);
6170 
6171   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6172   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6173   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6174   if (LHSBO) {
6175     if ((LHSBO->getOpcode() == Instruction::And ||
6176          LHSBO->getOpcode() == Instruction::Or))
6177       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6178                                 Depth);
6179   }
6180   return None;
6181 }
6182 
6183 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6184                                         const DataLayout &DL, bool LHSIsTrue,
6185                                         unsigned Depth) {
6186   // LHS ==> RHS by definition
6187   if (LHS == RHS)
6188     return LHSIsTrue;
6189 
6190   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6191   if (RHSCmp)
6192     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6193                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6194                               LHSIsTrue, Depth);
6195   return None;
6196 }
6197 
6198 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6199 // condition dominating ContextI or nullptr, if no condition is found.
6200 static std::pair<Value *, bool>
6201 getDomPredecessorCondition(const Instruction *ContextI) {
6202   if (!ContextI || !ContextI->getParent())
6203     return {nullptr, false};
6204 
6205   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6206   // dominator tree (eg, from a SimplifyQuery) instead?
6207   const BasicBlock *ContextBB = ContextI->getParent();
6208   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6209   if (!PredBB)
6210     return {nullptr, false};
6211 
6212   // We need a conditional branch in the predecessor.
6213   Value *PredCond;
6214   BasicBlock *TrueBB, *FalseBB;
6215   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6216     return {nullptr, false};
6217 
6218   // The branch should get simplified. Don't bother simplifying this condition.
6219   if (TrueBB == FalseBB)
6220     return {nullptr, false};
6221 
6222   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6223          "Predecessor block does not point to successor?");
6224 
6225   // Is this condition implied by the predecessor condition?
6226   return {PredCond, TrueBB == ContextBB};
6227 }
6228 
6229 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6230                                              const Instruction *ContextI,
6231                                              const DataLayout &DL) {
6232   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6233   auto PredCond = getDomPredecessorCondition(ContextI);
6234   if (PredCond.first)
6235     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6236   return None;
6237 }
6238 
6239 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6240                                              const Value *LHS, const Value *RHS,
6241                                              const Instruction *ContextI,
6242                                              const DataLayout &DL) {
6243   auto PredCond = getDomPredecessorCondition(ContextI);
6244   if (PredCond.first)
6245     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6246                               PredCond.second);
6247   return None;
6248 }
6249 
6250 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6251                               APInt &Upper, const InstrInfoQuery &IIQ) {
6252   unsigned Width = Lower.getBitWidth();
6253   const APInt *C;
6254   switch (BO.getOpcode()) {
6255   case Instruction::Add:
6256     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6257       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6258       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6259         // 'add nuw x, C' produces [C, UINT_MAX].
6260         Lower = *C;
6261       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6262         if (C->isNegative()) {
6263           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6264           Lower = APInt::getSignedMinValue(Width);
6265           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6266         } else {
6267           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6268           Lower = APInt::getSignedMinValue(Width) + *C;
6269           Upper = APInt::getSignedMaxValue(Width) + 1;
6270         }
6271       }
6272     }
6273     break;
6274 
6275   case Instruction::And:
6276     if (match(BO.getOperand(1), m_APInt(C)))
6277       // 'and x, C' produces [0, C].
6278       Upper = *C + 1;
6279     break;
6280 
6281   case Instruction::Or:
6282     if (match(BO.getOperand(1), m_APInt(C)))
6283       // 'or x, C' produces [C, UINT_MAX].
6284       Lower = *C;
6285     break;
6286 
6287   case Instruction::AShr:
6288     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6289       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6290       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6291       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6292     } else if (match(BO.getOperand(0), m_APInt(C))) {
6293       unsigned ShiftAmount = Width - 1;
6294       if (!C->isNullValue() && IIQ.isExact(&BO))
6295         ShiftAmount = C->countTrailingZeros();
6296       if (C->isNegative()) {
6297         // 'ashr C, x' produces [C, C >> (Width-1)]
6298         Lower = *C;
6299         Upper = C->ashr(ShiftAmount) + 1;
6300       } else {
6301         // 'ashr C, x' produces [C >> (Width-1), C]
6302         Lower = C->ashr(ShiftAmount);
6303         Upper = *C + 1;
6304       }
6305     }
6306     break;
6307 
6308   case Instruction::LShr:
6309     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6310       // 'lshr x, C' produces [0, UINT_MAX >> C].
6311       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6312     } else if (match(BO.getOperand(0), m_APInt(C))) {
6313       // 'lshr C, x' produces [C >> (Width-1), C].
6314       unsigned ShiftAmount = Width - 1;
6315       if (!C->isNullValue() && IIQ.isExact(&BO))
6316         ShiftAmount = C->countTrailingZeros();
6317       Lower = C->lshr(ShiftAmount);
6318       Upper = *C + 1;
6319     }
6320     break;
6321 
6322   case Instruction::Shl:
6323     if (match(BO.getOperand(0), m_APInt(C))) {
6324       if (IIQ.hasNoUnsignedWrap(&BO)) {
6325         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6326         Lower = *C;
6327         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6328       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6329         if (C->isNegative()) {
6330           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6331           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6332           Lower = C->shl(ShiftAmount);
6333           Upper = *C + 1;
6334         } else {
6335           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6336           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6337           Lower = *C;
6338           Upper = C->shl(ShiftAmount) + 1;
6339         }
6340       }
6341     }
6342     break;
6343 
6344   case Instruction::SDiv:
6345     if (match(BO.getOperand(1), m_APInt(C))) {
6346       APInt IntMin = APInt::getSignedMinValue(Width);
6347       APInt IntMax = APInt::getSignedMaxValue(Width);
6348       if (C->isAllOnesValue()) {
6349         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6350         //    where C != -1 and C != 0 and C != 1
6351         Lower = IntMin + 1;
6352         Upper = IntMax + 1;
6353       } else if (C->countLeadingZeros() < Width - 1) {
6354         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6355         //    where C != -1 and C != 0 and C != 1
6356         Lower = IntMin.sdiv(*C);
6357         Upper = IntMax.sdiv(*C);
6358         if (Lower.sgt(Upper))
6359           std::swap(Lower, Upper);
6360         Upper = Upper + 1;
6361         assert(Upper != Lower && "Upper part of range has wrapped!");
6362       }
6363     } else if (match(BO.getOperand(0), m_APInt(C))) {
6364       if (C->isMinSignedValue()) {
6365         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6366         Lower = *C;
6367         Upper = Lower.lshr(1) + 1;
6368       } else {
6369         // 'sdiv C, x' produces [-|C|, |C|].
6370         Upper = C->abs() + 1;
6371         Lower = (-Upper) + 1;
6372       }
6373     }
6374     break;
6375 
6376   case Instruction::UDiv:
6377     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6378       // 'udiv x, C' produces [0, UINT_MAX / C].
6379       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6380     } else if (match(BO.getOperand(0), m_APInt(C))) {
6381       // 'udiv C, x' produces [0, C].
6382       Upper = *C + 1;
6383     }
6384     break;
6385 
6386   case Instruction::SRem:
6387     if (match(BO.getOperand(1), m_APInt(C))) {
6388       // 'srem x, C' produces (-|C|, |C|).
6389       Upper = C->abs();
6390       Lower = (-Upper) + 1;
6391     }
6392     break;
6393 
6394   case Instruction::URem:
6395     if (match(BO.getOperand(1), m_APInt(C)))
6396       // 'urem x, C' produces [0, C).
6397       Upper = *C;
6398     break;
6399 
6400   default:
6401     break;
6402   }
6403 }
6404 
6405 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6406                                   APInt &Upper) {
6407   unsigned Width = Lower.getBitWidth();
6408   const APInt *C;
6409   switch (II.getIntrinsicID()) {
6410   case Intrinsic::uadd_sat:
6411     // uadd.sat(x, C) produces [C, UINT_MAX].
6412     if (match(II.getOperand(0), m_APInt(C)) ||
6413         match(II.getOperand(1), m_APInt(C)))
6414       Lower = *C;
6415     break;
6416   case Intrinsic::sadd_sat:
6417     if (match(II.getOperand(0), m_APInt(C)) ||
6418         match(II.getOperand(1), m_APInt(C))) {
6419       if (C->isNegative()) {
6420         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6421         Lower = APInt::getSignedMinValue(Width);
6422         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6423       } else {
6424         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6425         Lower = APInt::getSignedMinValue(Width) + *C;
6426         Upper = APInt::getSignedMaxValue(Width) + 1;
6427       }
6428     }
6429     break;
6430   case Intrinsic::usub_sat:
6431     // usub.sat(C, x) produces [0, C].
6432     if (match(II.getOperand(0), m_APInt(C)))
6433       Upper = *C + 1;
6434     // usub.sat(x, C) produces [0, UINT_MAX - C].
6435     else if (match(II.getOperand(1), m_APInt(C)))
6436       Upper = APInt::getMaxValue(Width) - *C + 1;
6437     break;
6438   case Intrinsic::ssub_sat:
6439     if (match(II.getOperand(0), m_APInt(C))) {
6440       if (C->isNegative()) {
6441         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6442         Lower = APInt::getSignedMinValue(Width);
6443         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6444       } else {
6445         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6446         Lower = *C - APInt::getSignedMaxValue(Width);
6447         Upper = APInt::getSignedMaxValue(Width) + 1;
6448       }
6449     } else if (match(II.getOperand(1), m_APInt(C))) {
6450       if (C->isNegative()) {
6451         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6452         Lower = APInt::getSignedMinValue(Width) - *C;
6453         Upper = APInt::getSignedMaxValue(Width) + 1;
6454       } else {
6455         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6456         Lower = APInt::getSignedMinValue(Width);
6457         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6458       }
6459     }
6460     break;
6461   case Intrinsic::umin:
6462   case Intrinsic::umax:
6463   case Intrinsic::smin:
6464   case Intrinsic::smax:
6465     if (!match(II.getOperand(0), m_APInt(C)) &&
6466         !match(II.getOperand(1), m_APInt(C)))
6467       break;
6468 
6469     switch (II.getIntrinsicID()) {
6470     case Intrinsic::umin:
6471       Upper = *C + 1;
6472       break;
6473     case Intrinsic::umax:
6474       Lower = *C;
6475       break;
6476     case Intrinsic::smin:
6477       Lower = APInt::getSignedMinValue(Width);
6478       Upper = *C + 1;
6479       break;
6480     case Intrinsic::smax:
6481       Lower = *C;
6482       Upper = APInt::getSignedMaxValue(Width) + 1;
6483       break;
6484     default:
6485       llvm_unreachable("Must be min/max intrinsic");
6486     }
6487     break;
6488   case Intrinsic::abs:
6489     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6490     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6491     if (match(II.getOperand(1), m_One()))
6492       Upper = APInt::getSignedMaxValue(Width) + 1;
6493     else
6494       Upper = APInt::getSignedMinValue(Width) + 1;
6495     break;
6496   default:
6497     break;
6498   }
6499 }
6500 
6501 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6502                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6503   const Value *LHS = nullptr, *RHS = nullptr;
6504   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6505   if (R.Flavor == SPF_UNKNOWN)
6506     return;
6507 
6508   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6509 
6510   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6511     // If the negation part of the abs (in RHS) has the NSW flag,
6512     // then the result of abs(X) is [0..SIGNED_MAX],
6513     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6514     Lower = APInt::getNullValue(BitWidth);
6515     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6516         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6517       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6518     else
6519       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6520     return;
6521   }
6522 
6523   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6524     // The result of -abs(X) is <= 0.
6525     Lower = APInt::getSignedMinValue(BitWidth);
6526     Upper = APInt(BitWidth, 1);
6527     return;
6528   }
6529 
6530   const APInt *C;
6531   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6532     return;
6533 
6534   switch (R.Flavor) {
6535     case SPF_UMIN:
6536       Upper = *C + 1;
6537       break;
6538     case SPF_UMAX:
6539       Lower = *C;
6540       break;
6541     case SPF_SMIN:
6542       Lower = APInt::getSignedMinValue(BitWidth);
6543       Upper = *C + 1;
6544       break;
6545     case SPF_SMAX:
6546       Lower = *C;
6547       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6548       break;
6549     default:
6550       break;
6551   }
6552 }
6553 
6554 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6555                                          AssumptionCache *AC,
6556                                          const Instruction *CtxI,
6557                                          unsigned Depth) {
6558   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6559 
6560   if (Depth == MaxAnalysisRecursionDepth)
6561     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6562 
6563   const APInt *C;
6564   if (match(V, m_APInt(C)))
6565     return ConstantRange(*C);
6566 
6567   InstrInfoQuery IIQ(UseInstrInfo);
6568   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6569   APInt Lower = APInt(BitWidth, 0);
6570   APInt Upper = APInt(BitWidth, 0);
6571   if (auto *BO = dyn_cast<BinaryOperator>(V))
6572     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6573   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6574     setLimitsForIntrinsic(*II, Lower, Upper);
6575   else if (auto *SI = dyn_cast<SelectInst>(V))
6576     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6577 
6578   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6579 
6580   if (auto *I = dyn_cast<Instruction>(V))
6581     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6582       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6583 
6584   if (CtxI && AC) {
6585     // Try to restrict the range based on information from assumptions.
6586     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6587       if (!AssumeVH)
6588         continue;
6589       CallInst *I = cast<CallInst>(AssumeVH);
6590       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6591              "Got assumption for the wrong function!");
6592       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6593              "must be an assume intrinsic");
6594 
6595       if (!isValidAssumeForContext(I, CtxI, nullptr))
6596         continue;
6597       Value *Arg = I->getArgOperand(0);
6598       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6599       // Currently we just use information from comparisons.
6600       if (!Cmp || Cmp->getOperand(0) != V)
6601         continue;
6602       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6603                                                AC, I, Depth + 1);
6604       CR = CR.intersectWith(
6605           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6606     }
6607   }
6608 
6609   return CR;
6610 }
6611 
6612 static Optional<int64_t>
6613 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6614   // Skip over the first indices.
6615   gep_type_iterator GTI = gep_type_begin(GEP);
6616   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6617     /*skip along*/;
6618 
6619   // Compute the offset implied by the rest of the indices.
6620   int64_t Offset = 0;
6621   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6622     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6623     if (!OpC)
6624       return None;
6625     if (OpC->isZero())
6626       continue; // No offset.
6627 
6628     // Handle struct indices, which add their field offset to the pointer.
6629     if (StructType *STy = GTI.getStructTypeOrNull()) {
6630       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6631       continue;
6632     }
6633 
6634     // Otherwise, we have a sequential type like an array or fixed-length
6635     // vector. Multiply the index by the ElementSize.
6636     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6637     if (Size.isScalable())
6638       return None;
6639     Offset += Size.getFixedSize() * OpC->getSExtValue();
6640   }
6641 
6642   return Offset;
6643 }
6644 
6645 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6646                                         const DataLayout &DL) {
6647   Ptr1 = Ptr1->stripPointerCasts();
6648   Ptr2 = Ptr2->stripPointerCasts();
6649 
6650   // Handle the trivial case first.
6651   if (Ptr1 == Ptr2) {
6652     return 0;
6653   }
6654 
6655   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6656   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6657 
6658   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6659   // as in "P" and "gep P, 1".
6660   // Also do this iteratively to handle the the following case:
6661   //   Ptr_t1 = GEP Ptr1, c1
6662   //   Ptr_t2 = GEP Ptr_t1, c2
6663   //   Ptr2 = GEP Ptr_t2, c3
6664   // where we will return c1+c2+c3.
6665   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6666   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6667   // are the same, and return the difference between offsets.
6668   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6669                                  const Value *Ptr) -> Optional<int64_t> {
6670     const GEPOperator *GEP_T = GEP;
6671     int64_t OffsetVal = 0;
6672     bool HasSameBase = false;
6673     while (GEP_T) {
6674       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6675       if (!Offset)
6676         return None;
6677       OffsetVal += *Offset;
6678       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6679       if (Op0 == Ptr) {
6680         HasSameBase = true;
6681         break;
6682       }
6683       GEP_T = dyn_cast<GEPOperator>(Op0);
6684     }
6685     if (!HasSameBase)
6686       return None;
6687     return OffsetVal;
6688   };
6689 
6690   if (GEP1) {
6691     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6692     if (Offset)
6693       return -*Offset;
6694   }
6695   if (GEP2) {
6696     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6697     if (Offset)
6698       return Offset;
6699   }
6700 
6701   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6702   // base.  After that base, they may have some number of common (and
6703   // potentially variable) indices.  After that they handle some constant
6704   // offset, which determines their offset from each other.  At this point, we
6705   // handle no other case.
6706   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6707     return None;
6708 
6709   // Skip any common indices and track the GEP types.
6710   unsigned Idx = 1;
6711   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6712     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6713       break;
6714 
6715   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6716   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6717   if (!Offset1 || !Offset2)
6718     return None;
6719   return *Offset2 - *Offset1;
6720 }
6721