1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 440 isKnownNonZero(Op0, Depth, Q)) || 441 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 442 isKnownNonZero(Op1, Depth, Q)); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Note that the patterns below need to be kept in sync with the code 674 // in AssumptionCache::updateAffectedValues. 675 676 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 677 if (!AssumeVH) 678 continue; 679 CallInst *I = cast<CallInst>(AssumeVH); 680 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 681 "Got assumption for the wrong function!"); 682 if (Q.isExcluded(I)) 683 continue; 684 685 // Warning: This loop can end up being somewhat performance sensitive. 686 // We're running this loop for once for each value queried resulting in a 687 // runtime of ~O(#assumes * #values). 688 689 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 690 "must be an assume intrinsic"); 691 692 Value *Arg = I->getArgOperand(0); 693 694 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 695 assert(BitWidth == 1 && "assume operand is not i1?"); 696 Known.setAllOnes(); 697 return; 698 } 699 if (match(Arg, m_Not(m_Specific(V))) && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 assert(BitWidth == 1 && "assume operand is not i1?"); 702 Known.setAllZero(); 703 return; 704 } 705 706 // The remaining tests are all recursive, so bail out if we hit the limit. 707 if (Depth == MaxAnalysisRecursionDepth) 708 continue; 709 710 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 711 if (!Cmp) 712 continue; 713 714 // Note that ptrtoint may change the bitwidth. 715 Value *A, *B; 716 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 717 718 CmpInst::Predicate Pred; 719 uint64_t C; 720 switch (Cmp->getPredicate()) { 721 default: 722 break; 723 case ICmpInst::ICMP_EQ: 724 // assume(v = a) 725 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 726 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 727 KnownBits RHSKnown = 728 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 729 Known.Zero |= RHSKnown.Zero; 730 Known.One |= RHSKnown.One; 731 // assume(v & b = a) 732 } else if (match(Cmp, 733 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 KnownBits MaskKnown = 738 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 740 // For those bits in the mask that are known to be one, we can propagate 741 // known bits from the RHS to V. 742 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 743 Known.One |= RHSKnown.One & MaskKnown.One; 744 // assume(~(v & b) = a) 745 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 746 m_Value(A))) && 747 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 748 KnownBits RHSKnown = 749 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 750 KnownBits MaskKnown = 751 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 753 // For those bits in the mask that are known to be one, we can propagate 754 // inverted known bits from the RHS to V. 755 Known.Zero |= RHSKnown.One & MaskKnown.One; 756 Known.One |= RHSKnown.Zero & MaskKnown.One; 757 // assume(v | b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 763 KnownBits BKnown = 764 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 766 // For those bits in B that are known to be zero, we can propagate known 767 // bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 769 Known.One |= RHSKnown.One & BKnown.Zero; 770 // assume(~(v | b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 776 KnownBits BKnown = 777 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 779 // For those bits in B that are known to be zero, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & BKnown.Zero; 782 Known.One |= RHSKnown.Zero & BKnown.Zero; 783 // assume(v ^ b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. For those bits in B that are known to be one, 794 // we can propagate inverted known bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 796 Known.One |= RHSKnown.One & BKnown.Zero; 797 Known.Zero |= RHSKnown.One & BKnown.One; 798 Known.One |= RHSKnown.Zero & BKnown.One; 799 // assume(~(v ^ b) = a) 800 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 801 m_Value(A))) && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 803 KnownBits RHSKnown = 804 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 805 KnownBits BKnown = 806 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 808 // For those bits in B that are known to be zero, we can propagate 809 // inverted known bits from the RHS to V. For those bits in B that are 810 // known to be one, we can propagate known bits from the RHS to V. 811 Known.Zero |= RHSKnown.One & BKnown.Zero; 812 Known.One |= RHSKnown.Zero & BKnown.Zero; 813 Known.Zero |= RHSKnown.Zero & BKnown.One; 814 Known.One |= RHSKnown.One & BKnown.One; 815 // assume(v << c = a) 816 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 817 m_Value(A))) && 818 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 819 KnownBits RHSKnown = 820 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 821 822 // For those bits in RHS that are known, we can propagate them to known 823 // bits in V shifted to the right by C. 824 RHSKnown.Zero.lshrInPlace(C); 825 Known.Zero |= RHSKnown.Zero; 826 RHSKnown.One.lshrInPlace(C); 827 Known.One |= RHSKnown.One; 828 // assume(~(v << c) = a) 829 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 830 m_Value(A))) && 831 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 832 KnownBits RHSKnown = 833 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 834 // For those bits in RHS that are known, we can propagate them inverted 835 // to known bits in V shifted to the right by C. 836 RHSKnown.One.lshrInPlace(C); 837 Known.Zero |= RHSKnown.One; 838 RHSKnown.Zero.lshrInPlace(C); 839 Known.One |= RHSKnown.Zero; 840 // assume(v >> c = a) 841 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 842 m_Value(A))) && 843 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 844 KnownBits RHSKnown = 845 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 846 // For those bits in RHS that are known, we can propagate them to known 847 // bits in V shifted to the right by C. 848 Known.Zero |= RHSKnown.Zero << C; 849 Known.One |= RHSKnown.One << C; 850 // assume(~(v >> c) = a) 851 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 852 m_Value(A))) && 853 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 854 KnownBits RHSKnown = 855 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 856 // For those bits in RHS that are known, we can propagate them inverted 857 // to known bits in V shifted to the right by C. 858 Known.Zero |= RHSKnown.One << C; 859 Known.One |= RHSKnown.Zero << C; 860 } 861 break; 862 case ICmpInst::ICMP_SGE: 863 // assume(v >=_s c) where c is non-negative 864 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 865 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 866 KnownBits RHSKnown = 867 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 868 869 if (RHSKnown.isNonNegative()) { 870 // We know that the sign bit is zero. 871 Known.makeNonNegative(); 872 } 873 } 874 break; 875 case ICmpInst::ICMP_SGT: 876 // assume(v >_s c) where c is at least -1. 877 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 878 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 879 KnownBits RHSKnown = 880 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 881 882 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 883 // We know that the sign bit is zero. 884 Known.makeNonNegative(); 885 } 886 } 887 break; 888 case ICmpInst::ICMP_SLE: 889 // assume(v <=_s c) where c is negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isNegative()) { 896 // We know that the sign bit is one. 897 Known.makeNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SLT: 902 // assume(v <_s c) where c is non-positive 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 909 // We know that the sign bit is one. 910 Known.makeNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_ULE: 915 // assume(v <=_u c) 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 920 921 // Whatever high bits in c are zero are known to be zero. 922 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 923 } 924 break; 925 case ICmpInst::ICMP_ULT: 926 // assume(v <_u c) 927 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 928 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 929 KnownBits RHSKnown = 930 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 931 932 // If the RHS is known zero, then this assumption must be wrong (nothing 933 // is unsigned less than zero). Signal a conflict and get out of here. 934 if (RHSKnown.isZero()) { 935 Known.Zero.setAllBits(); 936 Known.One.setAllBits(); 937 break; 938 } 939 940 // Whatever high bits in c are zero are known to be zero (if c is a power 941 // of 2, then one more). 942 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 943 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 944 else 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 946 } 947 break; 948 } 949 } 950 951 // If assumptions conflict with each other or previous known bits, then we 952 // have a logical fallacy. It's possible that the assumption is not reachable, 953 // so this isn't a real bug. On the other hand, the program may have undefined 954 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 955 // clear out the known bits, try to warn the user, and hope for the best. 956 if (Known.Zero.intersects(Known.One)) { 957 Known.resetAll(); 958 959 if (Q.ORE) 960 Q.ORE->emit([&]() { 961 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 962 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 963 CxtI) 964 << "Detected conflicting code assumptions. Program may " 965 "have undefined behavior, or compiler may have " 966 "internal error."; 967 }); 968 } 969 } 970 971 /// Compute known bits from a shift operator, including those with a 972 /// non-constant shift amount. Known is the output of this function. Known2 is a 973 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 974 /// operator-specific functions that, given the known-zero or known-one bits 975 /// respectively, and a shift amount, compute the implied known-zero or 976 /// known-one bits of the shift operator's result respectively for that shift 977 /// amount. The results from calling KZF and KOF are conservatively combined for 978 /// all permitted shift amounts. 979 static void computeKnownBitsFromShiftOperator( 980 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 981 KnownBits &Known2, unsigned Depth, const Query &Q, 982 function_ref<APInt(const APInt &, unsigned)> KZF, 983 function_ref<APInt(const APInt &, unsigned)> KOF) { 984 unsigned BitWidth = Known.getBitWidth(); 985 986 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 987 if (Known.isConstant()) { 988 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 989 990 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 991 Known.Zero = KZF(Known.Zero, ShiftAmt); 992 Known.One = KOF(Known.One, ShiftAmt); 993 // If the known bits conflict, this must be an overflowing left shift, so 994 // the shift result is poison. We can return anything we want. Choose 0 for 995 // the best folding opportunity. 996 if (Known.hasConflict()) 997 Known.setAllZero(); 998 999 return; 1000 } 1001 1002 // If the shift amount could be greater than or equal to the bit-width of the 1003 // LHS, the value could be poison, but bail out because the check below is 1004 // expensive. 1005 // TODO: Should we just carry on? 1006 if (Known.getMaxValue().uge(BitWidth)) { 1007 Known.resetAll(); 1008 return; 1009 } 1010 1011 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1012 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1013 // limit value (which implies all bits are known). 1014 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1015 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1016 1017 // It would be more-clearly correct to use the two temporaries for this 1018 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1019 Known.resetAll(); 1020 1021 // If we know the shifter operand is nonzero, we can sometimes infer more 1022 // known bits. However this is expensive to compute, so be lazy about it and 1023 // only compute it when absolutely necessary. 1024 Optional<bool> ShifterOperandIsNonZero; 1025 1026 // Early exit if we can't constrain any well-defined shift amount. 1027 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1028 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (!*ShifterOperandIsNonZero) 1032 return; 1033 } 1034 1035 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1036 1037 Known.Zero.setAllBits(); 1038 Known.One.setAllBits(); 1039 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1040 // Combine the shifted known input bits only for those shift amounts 1041 // compatible with its known constraints. 1042 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1043 continue; 1044 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1045 continue; 1046 // If we know the shifter is nonzero, we may be able to infer more known 1047 // bits. This check is sunk down as far as possible to avoid the expensive 1048 // call to isKnownNonZero if the cheaper checks above fail. 1049 if (ShiftAmt == 0) { 1050 if (!ShifterOperandIsNonZero.hasValue()) 1051 ShifterOperandIsNonZero = 1052 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1053 if (*ShifterOperandIsNonZero) 1054 continue; 1055 } 1056 1057 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1058 Known.One &= KOF(Known2.One, ShiftAmt); 1059 } 1060 1061 // If the known bits conflict, the result is poison. Return a 0 and hope the 1062 // caller can further optimize that. 1063 if (Known.hasConflict()) 1064 Known.setAllZero(); 1065 } 1066 1067 static void computeKnownBitsFromOperator(const Operator *I, 1068 const APInt &DemandedElts, 1069 KnownBits &Known, unsigned Depth, 1070 const Query &Q) { 1071 unsigned BitWidth = Known.getBitWidth(); 1072 1073 KnownBits Known2(BitWidth); 1074 switch (I->getOpcode()) { 1075 default: break; 1076 case Instruction::Load: 1077 if (MDNode *MD = 1078 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1079 computeKnownBitsFromRangeMetadata(*MD, Known); 1080 break; 1081 case Instruction::And: { 1082 // If either the LHS or the RHS are Zero, the result is zero. 1083 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1084 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1085 1086 Known &= Known2; 1087 1088 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1089 // here we handle the more general case of adding any odd number by 1090 // matching the form add(x, add(x, y)) where y is odd. 1091 // TODO: This could be generalized to clearing any bit set in y where the 1092 // following bit is known to be unset in y. 1093 Value *X = nullptr, *Y = nullptr; 1094 if (!Known.Zero[0] && !Known.One[0] && 1095 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1096 Known2.resetAll(); 1097 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1098 if (Known2.countMinTrailingOnes() > 0) 1099 Known.Zero.setBit(0); 1100 } 1101 break; 1102 } 1103 case Instruction::Or: 1104 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1105 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1106 1107 Known |= Known2; 1108 break; 1109 case Instruction::Xor: 1110 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1111 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1112 1113 Known ^= Known2; 1114 break; 1115 case Instruction::Mul: { 1116 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1117 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1118 Known, Known2, Depth, Q); 1119 break; 1120 } 1121 case Instruction::UDiv: { 1122 // For the purposes of computing leading zeros we can conservatively 1123 // treat a udiv as a logical right shift by the power of 2 known to 1124 // be less than the denominator. 1125 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1126 unsigned LeadZ = Known2.countMinLeadingZeros(); 1127 1128 Known2.resetAll(); 1129 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1130 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1131 if (RHSMaxLeadingZeros != BitWidth) 1132 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1133 1134 Known.Zero.setHighBits(LeadZ); 1135 break; 1136 } 1137 case Instruction::Select: { 1138 const Value *LHS = nullptr, *RHS = nullptr; 1139 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1140 if (SelectPatternResult::isMinOrMax(SPF)) { 1141 computeKnownBits(RHS, Known, Depth + 1, Q); 1142 computeKnownBits(LHS, Known2, Depth + 1, Q); 1143 switch (SPF) { 1144 default: 1145 llvm_unreachable("Unhandled select pattern flavor!"); 1146 case SPF_SMAX: 1147 Known = KnownBits::smax(Known, Known2); 1148 break; 1149 case SPF_SMIN: 1150 Known = KnownBits::smin(Known, Known2); 1151 break; 1152 case SPF_UMAX: 1153 Known = KnownBits::umax(Known, Known2); 1154 break; 1155 case SPF_UMIN: 1156 Known = KnownBits::umin(Known, Known2); 1157 break; 1158 } 1159 break; 1160 } 1161 1162 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1163 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1164 1165 // Only known if known in both the LHS and RHS. 1166 Known.One &= Known2.One; 1167 Known.Zero &= Known2.Zero; 1168 1169 if (SPF == SPF_ABS) { 1170 // RHS from matchSelectPattern returns the negation part of abs pattern. 1171 // If the negate has an NSW flag we can assume the sign bit of the result 1172 // will be 0 because that makes abs(INT_MIN) undefined. 1173 if (match(RHS, m_Neg(m_Specific(LHS))) && 1174 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1175 Known.Zero.setSignBit(); 1176 } 1177 1178 break; 1179 } 1180 case Instruction::FPTrunc: 1181 case Instruction::FPExt: 1182 case Instruction::FPToUI: 1183 case Instruction::FPToSI: 1184 case Instruction::SIToFP: 1185 case Instruction::UIToFP: 1186 break; // Can't work with floating point. 1187 case Instruction::PtrToInt: 1188 case Instruction::IntToPtr: 1189 // Fall through and handle them the same as zext/trunc. 1190 LLVM_FALLTHROUGH; 1191 case Instruction::ZExt: 1192 case Instruction::Trunc: { 1193 Type *SrcTy = I->getOperand(0)->getType(); 1194 1195 unsigned SrcBitWidth; 1196 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1197 // which fall through here. 1198 Type *ScalarTy = SrcTy->getScalarType(); 1199 SrcBitWidth = ScalarTy->isPointerTy() ? 1200 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1201 Q.DL.getTypeSizeInBits(ScalarTy); 1202 1203 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1204 Known = Known.anyextOrTrunc(SrcBitWidth); 1205 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1206 Known = Known.zextOrTrunc(BitWidth); 1207 break; 1208 } 1209 case Instruction::BitCast: { 1210 Type *SrcTy = I->getOperand(0)->getType(); 1211 if (SrcTy->isIntOrPtrTy() && 1212 // TODO: For now, not handling conversions like: 1213 // (bitcast i64 %x to <2 x i32>) 1214 !I->getType()->isVectorTy()) { 1215 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1216 break; 1217 } 1218 break; 1219 } 1220 case Instruction::SExt: { 1221 // Compute the bits in the result that are not present in the input. 1222 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1223 1224 Known = Known.trunc(SrcBitWidth); 1225 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1226 // If the sign bit of the input is known set or clear, then we know the 1227 // top bits of the result. 1228 Known = Known.sext(BitWidth); 1229 break; 1230 } 1231 case Instruction::Shl: { 1232 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1233 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1234 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1235 APInt KZResult = KnownZero << ShiftAmt; 1236 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1237 // If this shift has "nsw" keyword, then the result is either a poison 1238 // value or has the same sign bit as the first operand. 1239 if (NSW && KnownZero.isSignBitSet()) 1240 KZResult.setSignBit(); 1241 return KZResult; 1242 }; 1243 1244 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1245 APInt KOResult = KnownOne << ShiftAmt; 1246 if (NSW && KnownOne.isSignBitSet()) 1247 KOResult.setSignBit(); 1248 return KOResult; 1249 }; 1250 1251 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1252 KZF, KOF); 1253 break; 1254 } 1255 case Instruction::LShr: { 1256 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1257 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1258 APInt KZResult = KnownZero.lshr(ShiftAmt); 1259 // High bits known zero. 1260 KZResult.setHighBits(ShiftAmt); 1261 return KZResult; 1262 }; 1263 1264 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1265 return KnownOne.lshr(ShiftAmt); 1266 }; 1267 1268 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1269 KZF, KOF); 1270 break; 1271 } 1272 case Instruction::AShr: { 1273 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1274 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1275 return KnownZero.ashr(ShiftAmt); 1276 }; 1277 1278 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1279 return KnownOne.ashr(ShiftAmt); 1280 }; 1281 1282 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1283 KZF, KOF); 1284 break; 1285 } 1286 case Instruction::Sub: { 1287 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1288 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1289 DemandedElts, Known, Known2, Depth, Q); 1290 break; 1291 } 1292 case Instruction::Add: { 1293 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1294 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1295 DemandedElts, Known, Known2, Depth, Q); 1296 break; 1297 } 1298 case Instruction::SRem: 1299 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1300 APInt RA = Rem->getValue().abs(); 1301 if (RA.isPowerOf2()) { 1302 APInt LowBits = RA - 1; 1303 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1304 1305 // The low bits of the first operand are unchanged by the srem. 1306 Known.Zero = Known2.Zero & LowBits; 1307 Known.One = Known2.One & LowBits; 1308 1309 // If the first operand is non-negative or has all low bits zero, then 1310 // the upper bits are all zero. 1311 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1312 Known.Zero |= ~LowBits; 1313 1314 // If the first operand is negative and not all low bits are zero, then 1315 // the upper bits are all one. 1316 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1317 Known.One |= ~LowBits; 1318 1319 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1320 break; 1321 } 1322 } 1323 1324 // The sign bit is the LHS's sign bit, except when the result of the 1325 // remainder is zero. 1326 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1327 // If it's known zero, our sign bit is also zero. 1328 if (Known2.isNonNegative()) 1329 Known.makeNonNegative(); 1330 1331 break; 1332 case Instruction::URem: { 1333 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1334 const APInt &RA = Rem->getValue(); 1335 if (RA.isPowerOf2()) { 1336 APInt LowBits = (RA - 1); 1337 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1338 Known.Zero |= ~LowBits; 1339 Known.One &= LowBits; 1340 break; 1341 } 1342 } 1343 1344 // Since the result is less than or equal to either operand, any leading 1345 // zero bits in either operand must also exist in the result. 1346 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1347 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1348 1349 unsigned Leaders = 1350 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1351 Known.resetAll(); 1352 Known.Zero.setHighBits(Leaders); 1353 break; 1354 } 1355 case Instruction::Alloca: 1356 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1357 break; 1358 case Instruction::GetElementPtr: { 1359 // Analyze all of the subscripts of this getelementptr instruction 1360 // to determine if we can prove known low zero bits. 1361 KnownBits LocalKnown(BitWidth); 1362 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1363 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1364 1365 gep_type_iterator GTI = gep_type_begin(I); 1366 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1367 // TrailZ can only become smaller, short-circuit if we hit zero. 1368 if (TrailZ == 0) 1369 break; 1370 1371 Value *Index = I->getOperand(i); 1372 if (StructType *STy = GTI.getStructTypeOrNull()) { 1373 // Handle struct member offset arithmetic. 1374 1375 // Handle case when index is vector zeroinitializer 1376 Constant *CIndex = cast<Constant>(Index); 1377 if (CIndex->isZeroValue()) 1378 continue; 1379 1380 if (CIndex->getType()->isVectorTy()) 1381 Index = CIndex->getSplatValue(); 1382 1383 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1384 const StructLayout *SL = Q.DL.getStructLayout(STy); 1385 uint64_t Offset = SL->getElementOffset(Idx); 1386 TrailZ = std::min<unsigned>(TrailZ, 1387 countTrailingZeros(Offset)); 1388 } else { 1389 // Handle array index arithmetic. 1390 Type *IndexedTy = GTI.getIndexedType(); 1391 if (!IndexedTy->isSized()) { 1392 TrailZ = 0; 1393 break; 1394 } 1395 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1396 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1397 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1398 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1399 TrailZ = std::min(TrailZ, 1400 unsigned(countTrailingZeros(TypeSize) + 1401 LocalKnown.countMinTrailingZeros())); 1402 } 1403 } 1404 1405 Known.Zero.setLowBits(TrailZ); 1406 break; 1407 } 1408 case Instruction::PHI: { 1409 const PHINode *P = cast<PHINode>(I); 1410 // Handle the case of a simple two-predecessor recurrence PHI. 1411 // There's a lot more that could theoretically be done here, but 1412 // this is sufficient to catch some interesting cases. 1413 if (P->getNumIncomingValues() == 2) { 1414 for (unsigned i = 0; i != 2; ++i) { 1415 Value *L = P->getIncomingValue(i); 1416 Value *R = P->getIncomingValue(!i); 1417 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1418 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1419 Operator *LU = dyn_cast<Operator>(L); 1420 if (!LU) 1421 continue; 1422 unsigned Opcode = LU->getOpcode(); 1423 // Check for operations that have the property that if 1424 // both their operands have low zero bits, the result 1425 // will have low zero bits. 1426 if (Opcode == Instruction::Add || 1427 Opcode == Instruction::Sub || 1428 Opcode == Instruction::And || 1429 Opcode == Instruction::Or || 1430 Opcode == Instruction::Mul) { 1431 Value *LL = LU->getOperand(0); 1432 Value *LR = LU->getOperand(1); 1433 // Find a recurrence. 1434 if (LL == I) 1435 L = LR; 1436 else if (LR == I) 1437 L = LL; 1438 else 1439 continue; // Check for recurrence with L and R flipped. 1440 1441 // Change the context instruction to the "edge" that flows into the 1442 // phi. This is important because that is where the value is actually 1443 // "evaluated" even though it is used later somewhere else. (see also 1444 // D69571). 1445 Query RecQ = Q; 1446 1447 // Ok, we have a PHI of the form L op= R. Check for low 1448 // zero bits. 1449 RecQ.CxtI = RInst; 1450 computeKnownBits(R, Known2, Depth + 1, RecQ); 1451 1452 // We need to take the minimum number of known bits 1453 KnownBits Known3(BitWidth); 1454 RecQ.CxtI = LInst; 1455 computeKnownBits(L, Known3, Depth + 1, RecQ); 1456 1457 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1458 Known3.countMinTrailingZeros())); 1459 1460 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1461 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1462 // If initial value of recurrence is nonnegative, and we are adding 1463 // a nonnegative number with nsw, the result can only be nonnegative 1464 // or poison value regardless of the number of times we execute the 1465 // add in phi recurrence. If initial value is negative and we are 1466 // adding a negative number with nsw, the result can only be 1467 // negative or poison value. Similar arguments apply to sub and mul. 1468 // 1469 // (add non-negative, non-negative) --> non-negative 1470 // (add negative, negative) --> negative 1471 if (Opcode == Instruction::Add) { 1472 if (Known2.isNonNegative() && Known3.isNonNegative()) 1473 Known.makeNonNegative(); 1474 else if (Known2.isNegative() && Known3.isNegative()) 1475 Known.makeNegative(); 1476 } 1477 1478 // (sub nsw non-negative, negative) --> non-negative 1479 // (sub nsw negative, non-negative) --> negative 1480 else if (Opcode == Instruction::Sub && LL == I) { 1481 if (Known2.isNonNegative() && Known3.isNegative()) 1482 Known.makeNonNegative(); 1483 else if (Known2.isNegative() && Known3.isNonNegative()) 1484 Known.makeNegative(); 1485 } 1486 1487 // (mul nsw non-negative, non-negative) --> non-negative 1488 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1489 Known3.isNonNegative()) 1490 Known.makeNonNegative(); 1491 } 1492 1493 break; 1494 } 1495 } 1496 } 1497 1498 // Unreachable blocks may have zero-operand PHI nodes. 1499 if (P->getNumIncomingValues() == 0) 1500 break; 1501 1502 // Otherwise take the unions of the known bit sets of the operands, 1503 // taking conservative care to avoid excessive recursion. 1504 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1505 // Skip if every incoming value references to ourself. 1506 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1507 break; 1508 1509 Known.Zero.setAllBits(); 1510 Known.One.setAllBits(); 1511 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1512 Value *IncValue = P->getIncomingValue(u); 1513 // Skip direct self references. 1514 if (IncValue == P) continue; 1515 1516 // Change the context instruction to the "edge" that flows into the 1517 // phi. This is important because that is where the value is actually 1518 // "evaluated" even though it is used later somewhere else. (see also 1519 // D69571). 1520 Query RecQ = Q; 1521 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1522 1523 Known2 = KnownBits(BitWidth); 1524 // Recurse, but cap the recursion to one level, because we don't 1525 // want to waste time spinning around in loops. 1526 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1527 Known.Zero &= Known2.Zero; 1528 Known.One &= Known2.One; 1529 // If all bits have been ruled out, there's no need to check 1530 // more operands. 1531 if (!Known.Zero && !Known.One) 1532 break; 1533 } 1534 } 1535 break; 1536 } 1537 case Instruction::Call: 1538 case Instruction::Invoke: 1539 // If range metadata is attached to this call, set known bits from that, 1540 // and then intersect with known bits based on other properties of the 1541 // function. 1542 if (MDNode *MD = 1543 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1544 computeKnownBitsFromRangeMetadata(*MD, Known); 1545 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1546 computeKnownBits(RV, Known2, Depth + 1, Q); 1547 Known.Zero |= Known2.Zero; 1548 Known.One |= Known2.One; 1549 } 1550 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1551 switch (II->getIntrinsicID()) { 1552 default: break; 1553 case Intrinsic::abs: 1554 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1555 1556 // If the source's MSB is zero then we know the rest of the bits. 1557 if (Known2.isNonNegative()) { 1558 Known.Zero |= Known2.Zero; 1559 Known.One |= Known2.One; 1560 break; 1561 } 1562 1563 // Absolute value preserves trailing zero count. 1564 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1565 1566 // If this call is undefined for INT_MIN, the result is positive. We 1567 // also know it can't be INT_MIN if there is a set bit that isn't the 1568 // sign bit. 1569 Known2.One.clearSignBit(); 1570 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1571 Known.Zero.setSignBit(); 1572 // FIXME: Handle known negative input? 1573 // FIXME: Calculate the negated Known bits and combine them? 1574 break; 1575 case Intrinsic::bitreverse: 1576 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1577 Known.Zero |= Known2.Zero.reverseBits(); 1578 Known.One |= Known2.One.reverseBits(); 1579 break; 1580 case Intrinsic::bswap: 1581 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1582 Known.Zero |= Known2.Zero.byteSwap(); 1583 Known.One |= Known2.One.byteSwap(); 1584 break; 1585 case Intrinsic::ctlz: { 1586 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1587 // If we have a known 1, its position is our upper bound. 1588 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1589 // If this call is undefined for 0, the result will be less than 2^n. 1590 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1591 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1592 unsigned LowBits = Log2_32(PossibleLZ)+1; 1593 Known.Zero.setBitsFrom(LowBits); 1594 break; 1595 } 1596 case Intrinsic::cttz: { 1597 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1598 // If we have a known 1, its position is our upper bound. 1599 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1600 // If this call is undefined for 0, the result will be less than 2^n. 1601 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1602 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1603 unsigned LowBits = Log2_32(PossibleTZ)+1; 1604 Known.Zero.setBitsFrom(LowBits); 1605 break; 1606 } 1607 case Intrinsic::ctpop: { 1608 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1609 // We can bound the space the count needs. Also, bits known to be zero 1610 // can't contribute to the population. 1611 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1612 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1613 Known.Zero.setBitsFrom(LowBits); 1614 // TODO: we could bound KnownOne using the lower bound on the number 1615 // of bits which might be set provided by popcnt KnownOne2. 1616 break; 1617 } 1618 case Intrinsic::fshr: 1619 case Intrinsic::fshl: { 1620 const APInt *SA; 1621 if (!match(I->getOperand(2), m_APInt(SA))) 1622 break; 1623 1624 // Normalize to funnel shift left. 1625 uint64_t ShiftAmt = SA->urem(BitWidth); 1626 if (II->getIntrinsicID() == Intrinsic::fshr) 1627 ShiftAmt = BitWidth - ShiftAmt; 1628 1629 KnownBits Known3(BitWidth); 1630 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1631 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1632 1633 Known.Zero = 1634 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1635 Known.One = 1636 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1637 break; 1638 } 1639 case Intrinsic::uadd_sat: 1640 case Intrinsic::usub_sat: { 1641 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1642 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1644 1645 // Add: Leading ones of either operand are preserved. 1646 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1647 // as leading zeros in the result. 1648 unsigned LeadingKnown; 1649 if (IsAdd) 1650 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1651 Known2.countMinLeadingOnes()); 1652 else 1653 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1654 Known2.countMinLeadingOnes()); 1655 1656 Known = KnownBits::computeForAddSub( 1657 IsAdd, /* NSW */ false, Known, Known2); 1658 1659 // We select between the operation result and all-ones/zero 1660 // respectively, so we can preserve known ones/zeros. 1661 if (IsAdd) { 1662 Known.One.setHighBits(LeadingKnown); 1663 Known.Zero.clearAllBits(); 1664 } else { 1665 Known.Zero.setHighBits(LeadingKnown); 1666 Known.One.clearAllBits(); 1667 } 1668 break; 1669 } 1670 case Intrinsic::umin: 1671 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1672 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1673 Known = KnownBits::umin(Known, Known2); 1674 break; 1675 case Intrinsic::umax: 1676 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1677 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1678 Known = KnownBits::umax(Known, Known2); 1679 break; 1680 case Intrinsic::smin: 1681 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1682 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1683 Known = KnownBits::smin(Known, Known2); 1684 break; 1685 case Intrinsic::smax: 1686 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1687 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1688 Known = KnownBits::smax(Known, Known2); 1689 break; 1690 case Intrinsic::x86_sse42_crc32_64_64: 1691 Known.Zero.setBitsFrom(32); 1692 break; 1693 } 1694 } 1695 break; 1696 case Instruction::ShuffleVector: { 1697 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1698 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1699 if (!Shuf) { 1700 Known.resetAll(); 1701 return; 1702 } 1703 // For undef elements, we don't know anything about the common state of 1704 // the shuffle result. 1705 APInt DemandedLHS, DemandedRHS; 1706 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1707 Known.resetAll(); 1708 return; 1709 } 1710 Known.One.setAllBits(); 1711 Known.Zero.setAllBits(); 1712 if (!!DemandedLHS) { 1713 const Value *LHS = Shuf->getOperand(0); 1714 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1715 // If we don't know any bits, early out. 1716 if (Known.isUnknown()) 1717 break; 1718 } 1719 if (!!DemandedRHS) { 1720 const Value *RHS = Shuf->getOperand(1); 1721 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1722 Known.One &= Known2.One; 1723 Known.Zero &= Known2.Zero; 1724 } 1725 break; 1726 } 1727 case Instruction::InsertElement: { 1728 const Value *Vec = I->getOperand(0); 1729 const Value *Elt = I->getOperand(1); 1730 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1731 // Early out if the index is non-constant or out-of-range. 1732 unsigned NumElts = DemandedElts.getBitWidth(); 1733 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1734 Known.resetAll(); 1735 return; 1736 } 1737 Known.One.setAllBits(); 1738 Known.Zero.setAllBits(); 1739 unsigned EltIdx = CIdx->getZExtValue(); 1740 // Do we demand the inserted element? 1741 if (DemandedElts[EltIdx]) { 1742 computeKnownBits(Elt, Known, Depth + 1, Q); 1743 // If we don't know any bits, early out. 1744 if (Known.isUnknown()) 1745 break; 1746 } 1747 // We don't need the base vector element that has been inserted. 1748 APInt DemandedVecElts = DemandedElts; 1749 DemandedVecElts.clearBit(EltIdx); 1750 if (!!DemandedVecElts) { 1751 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1752 Known.One &= Known2.One; 1753 Known.Zero &= Known2.Zero; 1754 } 1755 break; 1756 } 1757 case Instruction::ExtractElement: { 1758 // Look through extract element. If the index is non-constant or 1759 // out-of-range demand all elements, otherwise just the extracted element. 1760 const Value *Vec = I->getOperand(0); 1761 const Value *Idx = I->getOperand(1); 1762 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1763 if (isa<ScalableVectorType>(Vec->getType())) { 1764 // FIXME: there's probably *something* we can do with scalable vectors 1765 Known.resetAll(); 1766 break; 1767 } 1768 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1769 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1770 if (CIdx && CIdx->getValue().ult(NumElts)) 1771 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1772 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1773 break; 1774 } 1775 case Instruction::ExtractValue: 1776 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1777 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1778 if (EVI->getNumIndices() != 1) break; 1779 if (EVI->getIndices()[0] == 0) { 1780 switch (II->getIntrinsicID()) { 1781 default: break; 1782 case Intrinsic::uadd_with_overflow: 1783 case Intrinsic::sadd_with_overflow: 1784 computeKnownBitsAddSub(true, II->getArgOperand(0), 1785 II->getArgOperand(1), false, DemandedElts, 1786 Known, Known2, Depth, Q); 1787 break; 1788 case Intrinsic::usub_with_overflow: 1789 case Intrinsic::ssub_with_overflow: 1790 computeKnownBitsAddSub(false, II->getArgOperand(0), 1791 II->getArgOperand(1), false, DemandedElts, 1792 Known, Known2, Depth, Q); 1793 break; 1794 case Intrinsic::umul_with_overflow: 1795 case Intrinsic::smul_with_overflow: 1796 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1797 DemandedElts, Known, Known2, Depth, Q); 1798 break; 1799 } 1800 } 1801 } 1802 break; 1803 case Instruction::Freeze: 1804 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.CxtI, Q.DT, Depth + 1)) 1805 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1806 break; 1807 } 1808 } 1809 1810 /// Determine which bits of V are known to be either zero or one and return 1811 /// them. 1812 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1813 unsigned Depth, const Query &Q) { 1814 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1815 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1816 return Known; 1817 } 1818 1819 /// Determine which bits of V are known to be either zero or one and return 1820 /// them. 1821 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1822 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1823 computeKnownBits(V, Known, Depth, Q); 1824 return Known; 1825 } 1826 1827 /// Determine which bits of V are known to be either zero or one and return 1828 /// them in the Known bit set. 1829 /// 1830 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1831 /// we cannot optimize based on the assumption that it is zero without changing 1832 /// it to be an explicit zero. If we don't change it to zero, other code could 1833 /// optimized based on the contradictory assumption that it is non-zero. 1834 /// Because instcombine aggressively folds operations with undef args anyway, 1835 /// this won't lose us code quality. 1836 /// 1837 /// This function is defined on values with integer type, values with pointer 1838 /// type, and vectors of integers. In the case 1839 /// where V is a vector, known zero, and known one values are the 1840 /// same width as the vector element, and the bit is set only if it is true 1841 /// for all of the demanded elements in the vector specified by DemandedElts. 1842 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1843 KnownBits &Known, unsigned Depth, const Query &Q) { 1844 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1845 // No demanded elts or V is a scalable vector, better to assume we don't 1846 // know anything. 1847 Known.resetAll(); 1848 return; 1849 } 1850 1851 assert(V && "No Value?"); 1852 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1853 1854 #ifndef NDEBUG 1855 Type *Ty = V->getType(); 1856 unsigned BitWidth = Known.getBitWidth(); 1857 1858 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1859 "Not integer or pointer type!"); 1860 1861 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1862 assert( 1863 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1864 "DemandedElt width should equal the fixed vector number of elements"); 1865 } else { 1866 assert(DemandedElts == APInt(1, 1) && 1867 "DemandedElt width should be 1 for scalars"); 1868 } 1869 1870 Type *ScalarTy = Ty->getScalarType(); 1871 if (ScalarTy->isPointerTy()) { 1872 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1873 "V and Known should have same BitWidth"); 1874 } else { 1875 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1876 "V and Known should have same BitWidth"); 1877 } 1878 #endif 1879 1880 const APInt *C; 1881 if (match(V, m_APInt(C))) { 1882 // We know all of the bits for a scalar constant or a splat vector constant! 1883 Known.One = *C; 1884 Known.Zero = ~Known.One; 1885 return; 1886 } 1887 // Null and aggregate-zero are all-zeros. 1888 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1889 Known.setAllZero(); 1890 return; 1891 } 1892 // Handle a constant vector by taking the intersection of the known bits of 1893 // each element. 1894 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1895 // We know that CDV must be a vector of integers. Take the intersection of 1896 // each element. 1897 Known.Zero.setAllBits(); Known.One.setAllBits(); 1898 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1899 if (!DemandedElts[i]) 1900 continue; 1901 APInt Elt = CDV->getElementAsAPInt(i); 1902 Known.Zero &= ~Elt; 1903 Known.One &= Elt; 1904 } 1905 return; 1906 } 1907 1908 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1909 // We know that CV must be a vector of integers. Take the intersection of 1910 // each element. 1911 Known.Zero.setAllBits(); Known.One.setAllBits(); 1912 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1913 if (!DemandedElts[i]) 1914 continue; 1915 Constant *Element = CV->getAggregateElement(i); 1916 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1917 if (!ElementCI) { 1918 Known.resetAll(); 1919 return; 1920 } 1921 const APInt &Elt = ElementCI->getValue(); 1922 Known.Zero &= ~Elt; 1923 Known.One &= Elt; 1924 } 1925 return; 1926 } 1927 1928 // Start out not knowing anything. 1929 Known.resetAll(); 1930 1931 // We can't imply anything about undefs. 1932 if (isa<UndefValue>(V)) 1933 return; 1934 1935 // There's no point in looking through other users of ConstantData for 1936 // assumptions. Confirm that we've handled them all. 1937 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1938 1939 // All recursive calls that increase depth must come after this. 1940 if (Depth == MaxAnalysisRecursionDepth) 1941 return; 1942 1943 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1944 // the bits of its aliasee. 1945 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1946 if (!GA->isInterposable()) 1947 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1948 return; 1949 } 1950 1951 if (const Operator *I = dyn_cast<Operator>(V)) 1952 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1953 1954 // Aligned pointers have trailing zeros - refine Known.Zero set 1955 if (isa<PointerType>(V->getType())) { 1956 Align Alignment = V->getPointerAlignment(Q.DL); 1957 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 1958 } 1959 1960 // computeKnownBitsFromAssume strictly refines Known. 1961 // Therefore, we run them after computeKnownBitsFromOperator. 1962 1963 // Check whether a nearby assume intrinsic can determine some known bits. 1964 computeKnownBitsFromAssume(V, Known, Depth, Q); 1965 1966 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1967 } 1968 1969 /// Return true if the given value is known to have exactly one 1970 /// bit set when defined. For vectors return true if every element is known to 1971 /// be a power of two when defined. Supports values with integer or pointer 1972 /// types and vectors of integers. 1973 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1974 const Query &Q) { 1975 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1976 1977 // Attempt to match against constants. 1978 if (OrZero && match(V, m_Power2OrZero())) 1979 return true; 1980 if (match(V, m_Power2())) 1981 return true; 1982 1983 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1984 // it is shifted off the end then the result is undefined. 1985 if (match(V, m_Shl(m_One(), m_Value()))) 1986 return true; 1987 1988 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1989 // the bottom. If it is shifted off the bottom then the result is undefined. 1990 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1991 return true; 1992 1993 // The remaining tests are all recursive, so bail out if we hit the limit. 1994 if (Depth++ == MaxAnalysisRecursionDepth) 1995 return false; 1996 1997 Value *X = nullptr, *Y = nullptr; 1998 // A shift left or a logical shift right of a power of two is a power of two 1999 // or zero. 2000 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2001 match(V, m_LShr(m_Value(X), m_Value())))) 2002 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2003 2004 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2005 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2006 2007 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2008 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2009 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2010 2011 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2012 // A power of two and'd with anything is a power of two or zero. 2013 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2014 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2015 return true; 2016 // X & (-X) is always a power of two or zero. 2017 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2018 return true; 2019 return false; 2020 } 2021 2022 // Adding a power-of-two or zero to the same power-of-two or zero yields 2023 // either the original power-of-two, a larger power-of-two or zero. 2024 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2025 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2026 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2027 Q.IIQ.hasNoSignedWrap(VOBO)) { 2028 if (match(X, m_And(m_Specific(Y), m_Value())) || 2029 match(X, m_And(m_Value(), m_Specific(Y)))) 2030 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2031 return true; 2032 if (match(Y, m_And(m_Specific(X), m_Value())) || 2033 match(Y, m_And(m_Value(), m_Specific(X)))) 2034 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2035 return true; 2036 2037 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2038 KnownBits LHSBits(BitWidth); 2039 computeKnownBits(X, LHSBits, Depth, Q); 2040 2041 KnownBits RHSBits(BitWidth); 2042 computeKnownBits(Y, RHSBits, Depth, Q); 2043 // If i8 V is a power of two or zero: 2044 // ZeroBits: 1 1 1 0 1 1 1 1 2045 // ~ZeroBits: 0 0 0 1 0 0 0 0 2046 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2047 // If OrZero isn't set, we cannot give back a zero result. 2048 // Make sure either the LHS or RHS has a bit set. 2049 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2050 return true; 2051 } 2052 } 2053 2054 // An exact divide or right shift can only shift off zero bits, so the result 2055 // is a power of two only if the first operand is a power of two and not 2056 // copying a sign bit (sdiv int_min, 2). 2057 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2058 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2059 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2060 Depth, Q); 2061 } 2062 2063 return false; 2064 } 2065 2066 /// Test whether a GEP's result is known to be non-null. 2067 /// 2068 /// Uses properties inherent in a GEP to try to determine whether it is known 2069 /// to be non-null. 2070 /// 2071 /// Currently this routine does not support vector GEPs. 2072 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2073 const Query &Q) { 2074 const Function *F = nullptr; 2075 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2076 F = I->getFunction(); 2077 2078 if (!GEP->isInBounds() || 2079 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2080 return false; 2081 2082 // FIXME: Support vector-GEPs. 2083 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2084 2085 // If the base pointer is non-null, we cannot walk to a null address with an 2086 // inbounds GEP in address space zero. 2087 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2088 return true; 2089 2090 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2091 // If so, then the GEP cannot produce a null pointer, as doing so would 2092 // inherently violate the inbounds contract within address space zero. 2093 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2094 GTI != GTE; ++GTI) { 2095 // Struct types are easy -- they must always be indexed by a constant. 2096 if (StructType *STy = GTI.getStructTypeOrNull()) { 2097 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2098 unsigned ElementIdx = OpC->getZExtValue(); 2099 const StructLayout *SL = Q.DL.getStructLayout(STy); 2100 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2101 if (ElementOffset > 0) 2102 return true; 2103 continue; 2104 } 2105 2106 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2107 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2108 continue; 2109 2110 // Fast path the constant operand case both for efficiency and so we don't 2111 // increment Depth when just zipping down an all-constant GEP. 2112 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2113 if (!OpC->isZero()) 2114 return true; 2115 continue; 2116 } 2117 2118 // We post-increment Depth here because while isKnownNonZero increments it 2119 // as well, when we pop back up that increment won't persist. We don't want 2120 // to recurse 10k times just because we have 10k GEP operands. We don't 2121 // bail completely out because we want to handle constant GEPs regardless 2122 // of depth. 2123 if (Depth++ >= MaxAnalysisRecursionDepth) 2124 continue; 2125 2126 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2127 return true; 2128 } 2129 2130 return false; 2131 } 2132 2133 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2134 const Instruction *CtxI, 2135 const DominatorTree *DT) { 2136 if (isa<Constant>(V)) 2137 return false; 2138 2139 if (!CtxI || !DT) 2140 return false; 2141 2142 unsigned NumUsesExplored = 0; 2143 for (auto *U : V->users()) { 2144 // Avoid massive lists 2145 if (NumUsesExplored >= DomConditionsMaxUses) 2146 break; 2147 NumUsesExplored++; 2148 2149 // If the value is used as an argument to a call or invoke, then argument 2150 // attributes may provide an answer about null-ness. 2151 if (const auto *CB = dyn_cast<CallBase>(U)) 2152 if (auto *CalledFunc = CB->getCalledFunction()) 2153 for (const Argument &Arg : CalledFunc->args()) 2154 if (CB->getArgOperand(Arg.getArgNo()) == V && 2155 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2156 return true; 2157 2158 // If the value is used as a load/store, then the pointer must be non null. 2159 if (V == getLoadStorePointerOperand(U)) { 2160 const Instruction *I = cast<Instruction>(U); 2161 if (!NullPointerIsDefined(I->getFunction(), 2162 V->getType()->getPointerAddressSpace()) && 2163 DT->dominates(I, CtxI)) 2164 return true; 2165 } 2166 2167 // Consider only compare instructions uniquely controlling a branch 2168 CmpInst::Predicate Pred; 2169 if (!match(const_cast<User *>(U), 2170 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2171 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2172 continue; 2173 2174 SmallVector<const User *, 4> WorkList; 2175 SmallPtrSet<const User *, 4> Visited; 2176 for (auto *CmpU : U->users()) { 2177 assert(WorkList.empty() && "Should be!"); 2178 if (Visited.insert(CmpU).second) 2179 WorkList.push_back(CmpU); 2180 2181 while (!WorkList.empty()) { 2182 auto *Curr = WorkList.pop_back_val(); 2183 2184 // If a user is an AND, add all its users to the work list. We only 2185 // propagate "pred != null" condition through AND because it is only 2186 // correct to assume that all conditions of AND are met in true branch. 2187 // TODO: Support similar logic of OR and EQ predicate? 2188 if (Pred == ICmpInst::ICMP_NE) 2189 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2190 if (BO->getOpcode() == Instruction::And) { 2191 for (auto *BOU : BO->users()) 2192 if (Visited.insert(BOU).second) 2193 WorkList.push_back(BOU); 2194 continue; 2195 } 2196 2197 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2198 assert(BI->isConditional() && "uses a comparison!"); 2199 2200 BasicBlock *NonNullSuccessor = 2201 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2202 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2203 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2204 return true; 2205 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2206 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2207 return true; 2208 } 2209 } 2210 } 2211 } 2212 2213 return false; 2214 } 2215 2216 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2217 /// ensure that the value it's attached to is never Value? 'RangeType' is 2218 /// is the type of the value described by the range. 2219 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2220 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2221 assert(NumRanges >= 1); 2222 for (unsigned i = 0; i < NumRanges; ++i) { 2223 ConstantInt *Lower = 2224 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2225 ConstantInt *Upper = 2226 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2227 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2228 if (Range.contains(Value)) 2229 return false; 2230 } 2231 return true; 2232 } 2233 2234 /// Return true if the given value is known to be non-zero when defined. For 2235 /// vectors, return true if every demanded element is known to be non-zero when 2236 /// defined. For pointers, if the context instruction and dominator tree are 2237 /// specified, perform context-sensitive analysis and return true if the 2238 /// pointer couldn't possibly be null at the specified instruction. 2239 /// Supports values with integer or pointer type and vectors of integers. 2240 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2241 const Query &Q) { 2242 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2243 // vector 2244 if (isa<ScalableVectorType>(V->getType())) 2245 return false; 2246 2247 if (auto *C = dyn_cast<Constant>(V)) { 2248 if (C->isNullValue()) 2249 return false; 2250 if (isa<ConstantInt>(C)) 2251 // Must be non-zero due to null test above. 2252 return true; 2253 2254 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2255 // See the comment for IntToPtr/PtrToInt instructions below. 2256 if (CE->getOpcode() == Instruction::IntToPtr || 2257 CE->getOpcode() == Instruction::PtrToInt) 2258 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2259 Q.DL.getTypeSizeInBits(CE->getType())) 2260 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2261 } 2262 2263 // For constant vectors, check that all elements are undefined or known 2264 // non-zero to determine that the whole vector is known non-zero. 2265 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2266 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2267 if (!DemandedElts[i]) 2268 continue; 2269 Constant *Elt = C->getAggregateElement(i); 2270 if (!Elt || Elt->isNullValue()) 2271 return false; 2272 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2273 return false; 2274 } 2275 return true; 2276 } 2277 2278 // A global variable in address space 0 is non null unless extern weak 2279 // or an absolute symbol reference. Other address spaces may have null as a 2280 // valid address for a global, so we can't assume anything. 2281 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2282 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2283 GV->getType()->getAddressSpace() == 0) 2284 return true; 2285 } else 2286 return false; 2287 } 2288 2289 if (auto *I = dyn_cast<Instruction>(V)) { 2290 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2291 // If the possible ranges don't contain zero, then the value is 2292 // definitely non-zero. 2293 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2294 const APInt ZeroValue(Ty->getBitWidth(), 0); 2295 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2296 return true; 2297 } 2298 } 2299 } 2300 2301 if (isKnownNonZeroFromAssume(V, Q)) 2302 return true; 2303 2304 // Some of the tests below are recursive, so bail out if we hit the limit. 2305 if (Depth++ >= MaxAnalysisRecursionDepth) 2306 return false; 2307 2308 // Check for pointer simplifications. 2309 2310 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2311 // Alloca never returns null, malloc might. 2312 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2313 return true; 2314 2315 // A byval, inalloca may not be null in a non-default addres space. A 2316 // nonnull argument is assumed never 0. 2317 if (const Argument *A = dyn_cast<Argument>(V)) { 2318 if (((A->hasPassPointeeByValueCopyAttr() && 2319 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2320 A->hasNonNullAttr())) 2321 return true; 2322 } 2323 2324 // A Load tagged with nonnull metadata is never null. 2325 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2326 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2327 return true; 2328 2329 if (const auto *Call = dyn_cast<CallBase>(V)) { 2330 if (Call->isReturnNonNull()) 2331 return true; 2332 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2333 return isKnownNonZero(RP, Depth, Q); 2334 } 2335 } 2336 2337 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2338 return true; 2339 2340 // Check for recursive pointer simplifications. 2341 if (V->getType()->isPointerTy()) { 2342 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2343 // do not alter the value, or at least not the nullness property of the 2344 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2345 // 2346 // Note that we have to take special care to avoid looking through 2347 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2348 // as casts that can alter the value, e.g., AddrSpaceCasts. 2349 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2350 return isGEPKnownNonNull(GEP, Depth, Q); 2351 2352 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2353 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2354 2355 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2356 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2357 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2358 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2359 } 2360 2361 // Similar to int2ptr above, we can look through ptr2int here if the cast 2362 // is a no-op or an extend and not a truncate. 2363 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2364 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2365 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2366 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2367 2368 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2369 2370 // X | Y != 0 if X != 0 or Y != 0. 2371 Value *X = nullptr, *Y = nullptr; 2372 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2373 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2374 isKnownNonZero(Y, DemandedElts, Depth, Q); 2375 2376 // ext X != 0 if X != 0. 2377 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2378 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2379 2380 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2381 // if the lowest bit is shifted off the end. 2382 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2383 // shl nuw can't remove any non-zero bits. 2384 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2385 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2386 return isKnownNonZero(X, Depth, Q); 2387 2388 KnownBits Known(BitWidth); 2389 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2390 if (Known.One[0]) 2391 return true; 2392 } 2393 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2394 // defined if the sign bit is shifted off the end. 2395 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2396 // shr exact can only shift out zero bits. 2397 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2398 if (BO->isExact()) 2399 return isKnownNonZero(X, Depth, Q); 2400 2401 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2402 if (Known.isNegative()) 2403 return true; 2404 2405 // If the shifter operand is a constant, and all of the bits shifted 2406 // out are known to be zero, and X is known non-zero then at least one 2407 // non-zero bit must remain. 2408 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2409 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2410 // Is there a known one in the portion not shifted out? 2411 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2412 return true; 2413 // Are all the bits to be shifted out known zero? 2414 if (Known.countMinTrailingZeros() >= ShiftVal) 2415 return isKnownNonZero(X, DemandedElts, Depth, Q); 2416 } 2417 } 2418 // div exact can only produce a zero if the dividend is zero. 2419 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2420 return isKnownNonZero(X, DemandedElts, Depth, Q); 2421 } 2422 // X + Y. 2423 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2424 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2425 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2426 2427 // If X and Y are both non-negative (as signed values) then their sum is not 2428 // zero unless both X and Y are zero. 2429 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2430 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2431 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2432 return true; 2433 2434 // If X and Y are both negative (as signed values) then their sum is not 2435 // zero unless both X and Y equal INT_MIN. 2436 if (XKnown.isNegative() && YKnown.isNegative()) { 2437 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2438 // The sign bit of X is set. If some other bit is set then X is not equal 2439 // to INT_MIN. 2440 if (XKnown.One.intersects(Mask)) 2441 return true; 2442 // The sign bit of Y is set. If some other bit is set then Y is not equal 2443 // to INT_MIN. 2444 if (YKnown.One.intersects(Mask)) 2445 return true; 2446 } 2447 2448 // The sum of a non-negative number and a power of two is not zero. 2449 if (XKnown.isNonNegative() && 2450 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2451 return true; 2452 if (YKnown.isNonNegative() && 2453 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2454 return true; 2455 } 2456 // X * Y. 2457 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2458 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2459 // If X and Y are non-zero then so is X * Y as long as the multiplication 2460 // does not overflow. 2461 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2462 isKnownNonZero(X, DemandedElts, Depth, Q) && 2463 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2464 return true; 2465 } 2466 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2467 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2468 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2469 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2470 return true; 2471 } 2472 // PHI 2473 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2474 // Try and detect a recurrence that monotonically increases from a 2475 // starting value, as these are common as induction variables. 2476 if (PN->getNumIncomingValues() == 2) { 2477 Value *Start = PN->getIncomingValue(0); 2478 Value *Induction = PN->getIncomingValue(1); 2479 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2480 std::swap(Start, Induction); 2481 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2482 if (!C->isZero() && !C->isNegative()) { 2483 ConstantInt *X; 2484 if (Q.IIQ.UseInstrInfo && 2485 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2486 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2487 !X->isNegative()) 2488 return true; 2489 } 2490 } 2491 } 2492 // Check if all incoming values are non-zero using recursion. 2493 Query RecQ = Q; 2494 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2495 return llvm::all_of(PN->operands(), [&](const Use &U) { 2496 if (U.get() == PN) 2497 return true; 2498 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2499 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2500 }); 2501 } 2502 // ExtractElement 2503 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2504 const Value *Vec = EEI->getVectorOperand(); 2505 const Value *Idx = EEI->getIndexOperand(); 2506 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2507 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2508 unsigned NumElts = VecTy->getNumElements(); 2509 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2510 if (CIdx && CIdx->getValue().ult(NumElts)) 2511 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2512 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2513 } 2514 } 2515 // Freeze 2516 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2517 auto *Op = FI->getOperand(0); 2518 if (isKnownNonZero(Op, Depth, Q) && 2519 isGuaranteedNotToBePoison(Op, Q.CxtI, Q.DT, Depth)) 2520 return true; 2521 } 2522 2523 KnownBits Known(BitWidth); 2524 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2525 return Known.One != 0; 2526 } 2527 2528 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2529 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2530 // vector 2531 if (isa<ScalableVectorType>(V->getType())) 2532 return false; 2533 2534 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2535 APInt DemandedElts = 2536 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2537 return isKnownNonZero(V, DemandedElts, Depth, Q); 2538 } 2539 2540 /// Return true if V2 == V1 + X, where X is known non-zero. 2541 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2542 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2543 if (!BO || BO->getOpcode() != Instruction::Add) 2544 return false; 2545 Value *Op = nullptr; 2546 if (V2 == BO->getOperand(0)) 2547 Op = BO->getOperand(1); 2548 else if (V2 == BO->getOperand(1)) 2549 Op = BO->getOperand(0); 2550 else 2551 return false; 2552 return isKnownNonZero(Op, 0, Q); 2553 } 2554 2555 /// Return true if it is known that V1 != V2. 2556 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2557 if (V1 == V2) 2558 return false; 2559 if (V1->getType() != V2->getType()) 2560 // We can't look through casts yet. 2561 return false; 2562 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2563 return true; 2564 2565 if (V1->getType()->isIntOrIntVectorTy()) { 2566 // Are any known bits in V1 contradictory to known bits in V2? If V1 2567 // has a known zero where V2 has a known one, they must not be equal. 2568 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2569 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2570 2571 if (Known1.Zero.intersects(Known2.One) || 2572 Known2.Zero.intersects(Known1.One)) 2573 return true; 2574 } 2575 return false; 2576 } 2577 2578 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2579 /// simplify operations downstream. Mask is known to be zero for bits that V 2580 /// cannot have. 2581 /// 2582 /// This function is defined on values with integer type, values with pointer 2583 /// type, and vectors of integers. In the case 2584 /// where V is a vector, the mask, known zero, and known one values are the 2585 /// same width as the vector element, and the bit is set only if it is true 2586 /// for all of the elements in the vector. 2587 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2588 const Query &Q) { 2589 KnownBits Known(Mask.getBitWidth()); 2590 computeKnownBits(V, Known, Depth, Q); 2591 return Mask.isSubsetOf(Known.Zero); 2592 } 2593 2594 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2595 // Returns the input and lower/upper bounds. 2596 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2597 const APInt *&CLow, const APInt *&CHigh) { 2598 assert(isa<Operator>(Select) && 2599 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2600 "Input should be a Select!"); 2601 2602 const Value *LHS = nullptr, *RHS = nullptr; 2603 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2604 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2605 return false; 2606 2607 if (!match(RHS, m_APInt(CLow))) 2608 return false; 2609 2610 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2611 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2612 if (getInverseMinMaxFlavor(SPF) != SPF2) 2613 return false; 2614 2615 if (!match(RHS2, m_APInt(CHigh))) 2616 return false; 2617 2618 if (SPF == SPF_SMIN) 2619 std::swap(CLow, CHigh); 2620 2621 In = LHS2; 2622 return CLow->sle(*CHigh); 2623 } 2624 2625 /// For vector constants, loop over the elements and find the constant with the 2626 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2627 /// or if any element was not analyzed; otherwise, return the count for the 2628 /// element with the minimum number of sign bits. 2629 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2630 const APInt &DemandedElts, 2631 unsigned TyBits) { 2632 const auto *CV = dyn_cast<Constant>(V); 2633 if (!CV || !isa<FixedVectorType>(CV->getType())) 2634 return 0; 2635 2636 unsigned MinSignBits = TyBits; 2637 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2638 for (unsigned i = 0; i != NumElts; ++i) { 2639 if (!DemandedElts[i]) 2640 continue; 2641 // If we find a non-ConstantInt, bail out. 2642 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2643 if (!Elt) 2644 return 0; 2645 2646 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2647 } 2648 2649 return MinSignBits; 2650 } 2651 2652 static unsigned ComputeNumSignBitsImpl(const Value *V, 2653 const APInt &DemandedElts, 2654 unsigned Depth, const Query &Q); 2655 2656 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2657 unsigned Depth, const Query &Q) { 2658 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2659 assert(Result > 0 && "At least one sign bit needs to be present!"); 2660 return Result; 2661 } 2662 2663 /// Return the number of times the sign bit of the register is replicated into 2664 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2665 /// (itself), but other cases can give us information. For example, immediately 2666 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2667 /// other, so we return 3. For vectors, return the number of sign bits for the 2668 /// vector element with the minimum number of known sign bits of the demanded 2669 /// elements in the vector specified by DemandedElts. 2670 static unsigned ComputeNumSignBitsImpl(const Value *V, 2671 const APInt &DemandedElts, 2672 unsigned Depth, const Query &Q) { 2673 Type *Ty = V->getType(); 2674 2675 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2676 // vector 2677 if (isa<ScalableVectorType>(Ty)) 2678 return 1; 2679 2680 #ifndef NDEBUG 2681 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2682 2683 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2684 assert( 2685 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2686 "DemandedElt width should equal the fixed vector number of elements"); 2687 } else { 2688 assert(DemandedElts == APInt(1, 1) && 2689 "DemandedElt width should be 1 for scalars"); 2690 } 2691 #endif 2692 2693 // We return the minimum number of sign bits that are guaranteed to be present 2694 // in V, so for undef we have to conservatively return 1. We don't have the 2695 // same behavior for poison though -- that's a FIXME today. 2696 2697 Type *ScalarTy = Ty->getScalarType(); 2698 unsigned TyBits = ScalarTy->isPointerTy() ? 2699 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2700 Q.DL.getTypeSizeInBits(ScalarTy); 2701 2702 unsigned Tmp, Tmp2; 2703 unsigned FirstAnswer = 1; 2704 2705 // Note that ConstantInt is handled by the general computeKnownBits case 2706 // below. 2707 2708 if (Depth == MaxAnalysisRecursionDepth) 2709 return 1; 2710 2711 if (auto *U = dyn_cast<Operator>(V)) { 2712 switch (Operator::getOpcode(V)) { 2713 default: break; 2714 case Instruction::SExt: 2715 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2716 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2717 2718 case Instruction::SDiv: { 2719 const APInt *Denominator; 2720 // sdiv X, C -> adds log(C) sign bits. 2721 if (match(U->getOperand(1), m_APInt(Denominator))) { 2722 2723 // Ignore non-positive denominator. 2724 if (!Denominator->isStrictlyPositive()) 2725 break; 2726 2727 // Calculate the incoming numerator bits. 2728 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2729 2730 // Add floor(log(C)) bits to the numerator bits. 2731 return std::min(TyBits, NumBits + Denominator->logBase2()); 2732 } 2733 break; 2734 } 2735 2736 case Instruction::SRem: { 2737 const APInt *Denominator; 2738 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2739 // positive constant. This let us put a lower bound on the number of sign 2740 // bits. 2741 if (match(U->getOperand(1), m_APInt(Denominator))) { 2742 2743 // Ignore non-positive denominator. 2744 if (!Denominator->isStrictlyPositive()) 2745 break; 2746 2747 // Calculate the incoming numerator bits. SRem by a positive constant 2748 // can't lower the number of sign bits. 2749 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2750 2751 // Calculate the leading sign bit constraints by examining the 2752 // denominator. Given that the denominator is positive, there are two 2753 // cases: 2754 // 2755 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2756 // (1 << ceilLogBase2(C)). 2757 // 2758 // 2. the numerator is negative. Then the result range is (-C,0] and 2759 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2760 // 2761 // Thus a lower bound on the number of sign bits is `TyBits - 2762 // ceilLogBase2(C)`. 2763 2764 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2765 return std::max(NumrBits, ResBits); 2766 } 2767 break; 2768 } 2769 2770 case Instruction::AShr: { 2771 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2772 // ashr X, C -> adds C sign bits. Vectors too. 2773 const APInt *ShAmt; 2774 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2775 if (ShAmt->uge(TyBits)) 2776 break; // Bad shift. 2777 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2778 Tmp += ShAmtLimited; 2779 if (Tmp > TyBits) Tmp = TyBits; 2780 } 2781 return Tmp; 2782 } 2783 case Instruction::Shl: { 2784 const APInt *ShAmt; 2785 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2786 // shl destroys sign bits. 2787 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2788 if (ShAmt->uge(TyBits) || // Bad shift. 2789 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2790 Tmp2 = ShAmt->getZExtValue(); 2791 return Tmp - Tmp2; 2792 } 2793 break; 2794 } 2795 case Instruction::And: 2796 case Instruction::Or: 2797 case Instruction::Xor: // NOT is handled here. 2798 // Logical binary ops preserve the number of sign bits at the worst. 2799 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2800 if (Tmp != 1) { 2801 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2802 FirstAnswer = std::min(Tmp, Tmp2); 2803 // We computed what we know about the sign bits as our first 2804 // answer. Now proceed to the generic code that uses 2805 // computeKnownBits, and pick whichever answer is better. 2806 } 2807 break; 2808 2809 case Instruction::Select: { 2810 // If we have a clamp pattern, we know that the number of sign bits will 2811 // be the minimum of the clamp min/max range. 2812 const Value *X; 2813 const APInt *CLow, *CHigh; 2814 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2815 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2816 2817 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2818 if (Tmp == 1) break; 2819 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2820 return std::min(Tmp, Tmp2); 2821 } 2822 2823 case Instruction::Add: 2824 // Add can have at most one carry bit. Thus we know that the output 2825 // is, at worst, one more bit than the inputs. 2826 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2827 if (Tmp == 1) break; 2828 2829 // Special case decrementing a value (ADD X, -1): 2830 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2831 if (CRHS->isAllOnesValue()) { 2832 KnownBits Known(TyBits); 2833 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2834 2835 // If the input is known to be 0 or 1, the output is 0/-1, which is 2836 // all sign bits set. 2837 if ((Known.Zero | 1).isAllOnesValue()) 2838 return TyBits; 2839 2840 // If we are subtracting one from a positive number, there is no carry 2841 // out of the result. 2842 if (Known.isNonNegative()) 2843 return Tmp; 2844 } 2845 2846 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2847 if (Tmp2 == 1) break; 2848 return std::min(Tmp, Tmp2) - 1; 2849 2850 case Instruction::Sub: 2851 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2852 if (Tmp2 == 1) break; 2853 2854 // Handle NEG. 2855 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2856 if (CLHS->isNullValue()) { 2857 KnownBits Known(TyBits); 2858 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2859 // If the input is known to be 0 or 1, the output is 0/-1, which is 2860 // all sign bits set. 2861 if ((Known.Zero | 1).isAllOnesValue()) 2862 return TyBits; 2863 2864 // If the input is known to be positive (the sign bit is known clear), 2865 // the output of the NEG has the same number of sign bits as the 2866 // input. 2867 if (Known.isNonNegative()) 2868 return Tmp2; 2869 2870 // Otherwise, we treat this like a SUB. 2871 } 2872 2873 // Sub can have at most one carry bit. Thus we know that the output 2874 // is, at worst, one more bit than the inputs. 2875 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2876 if (Tmp == 1) break; 2877 return std::min(Tmp, Tmp2) - 1; 2878 2879 case Instruction::Mul: { 2880 // The output of the Mul can be at most twice the valid bits in the 2881 // inputs. 2882 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2883 if (SignBitsOp0 == 1) break; 2884 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2885 if (SignBitsOp1 == 1) break; 2886 unsigned OutValidBits = 2887 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2888 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2889 } 2890 2891 case Instruction::PHI: { 2892 const PHINode *PN = cast<PHINode>(U); 2893 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2894 // Don't analyze large in-degree PHIs. 2895 if (NumIncomingValues > 4) break; 2896 // Unreachable blocks may have zero-operand PHI nodes. 2897 if (NumIncomingValues == 0) break; 2898 2899 // Take the minimum of all incoming values. This can't infinitely loop 2900 // because of our depth threshold. 2901 Query RecQ = Q; 2902 Tmp = TyBits; 2903 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2904 if (Tmp == 1) return Tmp; 2905 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2906 Tmp = std::min( 2907 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2908 } 2909 return Tmp; 2910 } 2911 2912 case Instruction::Trunc: 2913 // FIXME: it's tricky to do anything useful for this, but it is an 2914 // important case for targets like X86. 2915 break; 2916 2917 case Instruction::ExtractElement: 2918 // Look through extract element. At the moment we keep this simple and 2919 // skip tracking the specific element. But at least we might find 2920 // information valid for all elements of the vector (for example if vector 2921 // is sign extended, shifted, etc). 2922 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2923 2924 case Instruction::ShuffleVector: { 2925 // Collect the minimum number of sign bits that are shared by every vector 2926 // element referenced by the shuffle. 2927 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2928 if (!Shuf) { 2929 // FIXME: Add support for shufflevector constant expressions. 2930 return 1; 2931 } 2932 APInt DemandedLHS, DemandedRHS; 2933 // For undef elements, we don't know anything about the common state of 2934 // the shuffle result. 2935 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2936 return 1; 2937 Tmp = std::numeric_limits<unsigned>::max(); 2938 if (!!DemandedLHS) { 2939 const Value *LHS = Shuf->getOperand(0); 2940 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2941 } 2942 // If we don't know anything, early out and try computeKnownBits 2943 // fall-back. 2944 if (Tmp == 1) 2945 break; 2946 if (!!DemandedRHS) { 2947 const Value *RHS = Shuf->getOperand(1); 2948 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2949 Tmp = std::min(Tmp, Tmp2); 2950 } 2951 // If we don't know anything, early out and try computeKnownBits 2952 // fall-back. 2953 if (Tmp == 1) 2954 break; 2955 assert(Tmp <= Ty->getScalarSizeInBits() && 2956 "Failed to determine minimum sign bits"); 2957 return Tmp; 2958 } 2959 case Instruction::Call: { 2960 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2961 switch (II->getIntrinsicID()) { 2962 default: break; 2963 case Intrinsic::abs: 2964 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2965 if (Tmp == 1) break; 2966 2967 // Absolute value reduces number of sign bits by at most 1. 2968 return Tmp - 1; 2969 } 2970 } 2971 } 2972 } 2973 } 2974 2975 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2976 // use this information. 2977 2978 // If we can examine all elements of a vector constant successfully, we're 2979 // done (we can't do any better than that). If not, keep trying. 2980 if (unsigned VecSignBits = 2981 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2982 return VecSignBits; 2983 2984 KnownBits Known(TyBits); 2985 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2986 2987 // If we know that the sign bit is either zero or one, determine the number of 2988 // identical bits in the top of the input value. 2989 return std::max(FirstAnswer, Known.countMinSignBits()); 2990 } 2991 2992 /// This function computes the integer multiple of Base that equals V. 2993 /// If successful, it returns true and returns the multiple in 2994 /// Multiple. If unsuccessful, it returns false. It looks 2995 /// through SExt instructions only if LookThroughSExt is true. 2996 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2997 bool LookThroughSExt, unsigned Depth) { 2998 assert(V && "No Value?"); 2999 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3000 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3001 3002 Type *T = V->getType(); 3003 3004 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3005 3006 if (Base == 0) 3007 return false; 3008 3009 if (Base == 1) { 3010 Multiple = V; 3011 return true; 3012 } 3013 3014 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3015 Constant *BaseVal = ConstantInt::get(T, Base); 3016 if (CO && CO == BaseVal) { 3017 // Multiple is 1. 3018 Multiple = ConstantInt::get(T, 1); 3019 return true; 3020 } 3021 3022 if (CI && CI->getZExtValue() % Base == 0) { 3023 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3024 return true; 3025 } 3026 3027 if (Depth == MaxAnalysisRecursionDepth) return false; 3028 3029 Operator *I = dyn_cast<Operator>(V); 3030 if (!I) return false; 3031 3032 switch (I->getOpcode()) { 3033 default: break; 3034 case Instruction::SExt: 3035 if (!LookThroughSExt) return false; 3036 // otherwise fall through to ZExt 3037 LLVM_FALLTHROUGH; 3038 case Instruction::ZExt: 3039 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3040 LookThroughSExt, Depth+1); 3041 case Instruction::Shl: 3042 case Instruction::Mul: { 3043 Value *Op0 = I->getOperand(0); 3044 Value *Op1 = I->getOperand(1); 3045 3046 if (I->getOpcode() == Instruction::Shl) { 3047 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3048 if (!Op1CI) return false; 3049 // Turn Op0 << Op1 into Op0 * 2^Op1 3050 APInt Op1Int = Op1CI->getValue(); 3051 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3052 APInt API(Op1Int.getBitWidth(), 0); 3053 API.setBit(BitToSet); 3054 Op1 = ConstantInt::get(V->getContext(), API); 3055 } 3056 3057 Value *Mul0 = nullptr; 3058 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3059 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3060 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3061 if (Op1C->getType()->getPrimitiveSizeInBits() < 3062 MulC->getType()->getPrimitiveSizeInBits()) 3063 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3064 if (Op1C->getType()->getPrimitiveSizeInBits() > 3065 MulC->getType()->getPrimitiveSizeInBits()) 3066 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3067 3068 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3069 Multiple = ConstantExpr::getMul(MulC, Op1C); 3070 return true; 3071 } 3072 3073 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3074 if (Mul0CI->getValue() == 1) { 3075 // V == Base * Op1, so return Op1 3076 Multiple = Op1; 3077 return true; 3078 } 3079 } 3080 3081 Value *Mul1 = nullptr; 3082 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3083 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3084 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3085 if (Op0C->getType()->getPrimitiveSizeInBits() < 3086 MulC->getType()->getPrimitiveSizeInBits()) 3087 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3088 if (Op0C->getType()->getPrimitiveSizeInBits() > 3089 MulC->getType()->getPrimitiveSizeInBits()) 3090 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3091 3092 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3093 Multiple = ConstantExpr::getMul(MulC, Op0C); 3094 return true; 3095 } 3096 3097 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3098 if (Mul1CI->getValue() == 1) { 3099 // V == Base * Op0, so return Op0 3100 Multiple = Op0; 3101 return true; 3102 } 3103 } 3104 } 3105 } 3106 3107 // We could not determine if V is a multiple of Base. 3108 return false; 3109 } 3110 3111 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3112 const TargetLibraryInfo *TLI) { 3113 const Function *F = CB.getCalledFunction(); 3114 if (!F) 3115 return Intrinsic::not_intrinsic; 3116 3117 if (F->isIntrinsic()) 3118 return F->getIntrinsicID(); 3119 3120 // We are going to infer semantics of a library function based on mapping it 3121 // to an LLVM intrinsic. Check that the library function is available from 3122 // this callbase and in this environment. 3123 LibFunc Func; 3124 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3125 !CB.onlyReadsMemory()) 3126 return Intrinsic::not_intrinsic; 3127 3128 switch (Func) { 3129 default: 3130 break; 3131 case LibFunc_sin: 3132 case LibFunc_sinf: 3133 case LibFunc_sinl: 3134 return Intrinsic::sin; 3135 case LibFunc_cos: 3136 case LibFunc_cosf: 3137 case LibFunc_cosl: 3138 return Intrinsic::cos; 3139 case LibFunc_exp: 3140 case LibFunc_expf: 3141 case LibFunc_expl: 3142 return Intrinsic::exp; 3143 case LibFunc_exp2: 3144 case LibFunc_exp2f: 3145 case LibFunc_exp2l: 3146 return Intrinsic::exp2; 3147 case LibFunc_log: 3148 case LibFunc_logf: 3149 case LibFunc_logl: 3150 return Intrinsic::log; 3151 case LibFunc_log10: 3152 case LibFunc_log10f: 3153 case LibFunc_log10l: 3154 return Intrinsic::log10; 3155 case LibFunc_log2: 3156 case LibFunc_log2f: 3157 case LibFunc_log2l: 3158 return Intrinsic::log2; 3159 case LibFunc_fabs: 3160 case LibFunc_fabsf: 3161 case LibFunc_fabsl: 3162 return Intrinsic::fabs; 3163 case LibFunc_fmin: 3164 case LibFunc_fminf: 3165 case LibFunc_fminl: 3166 return Intrinsic::minnum; 3167 case LibFunc_fmax: 3168 case LibFunc_fmaxf: 3169 case LibFunc_fmaxl: 3170 return Intrinsic::maxnum; 3171 case LibFunc_copysign: 3172 case LibFunc_copysignf: 3173 case LibFunc_copysignl: 3174 return Intrinsic::copysign; 3175 case LibFunc_floor: 3176 case LibFunc_floorf: 3177 case LibFunc_floorl: 3178 return Intrinsic::floor; 3179 case LibFunc_ceil: 3180 case LibFunc_ceilf: 3181 case LibFunc_ceill: 3182 return Intrinsic::ceil; 3183 case LibFunc_trunc: 3184 case LibFunc_truncf: 3185 case LibFunc_truncl: 3186 return Intrinsic::trunc; 3187 case LibFunc_rint: 3188 case LibFunc_rintf: 3189 case LibFunc_rintl: 3190 return Intrinsic::rint; 3191 case LibFunc_nearbyint: 3192 case LibFunc_nearbyintf: 3193 case LibFunc_nearbyintl: 3194 return Intrinsic::nearbyint; 3195 case LibFunc_round: 3196 case LibFunc_roundf: 3197 case LibFunc_roundl: 3198 return Intrinsic::round; 3199 case LibFunc_roundeven: 3200 case LibFunc_roundevenf: 3201 case LibFunc_roundevenl: 3202 return Intrinsic::roundeven; 3203 case LibFunc_pow: 3204 case LibFunc_powf: 3205 case LibFunc_powl: 3206 return Intrinsic::pow; 3207 case LibFunc_sqrt: 3208 case LibFunc_sqrtf: 3209 case LibFunc_sqrtl: 3210 return Intrinsic::sqrt; 3211 } 3212 3213 return Intrinsic::not_intrinsic; 3214 } 3215 3216 /// Return true if we can prove that the specified FP value is never equal to 3217 /// -0.0. 3218 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3219 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3220 /// the same as +0.0 in floating-point ops. 3221 /// 3222 /// NOTE: this function will need to be revisited when we support non-default 3223 /// rounding modes! 3224 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3225 unsigned Depth) { 3226 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3227 return !CFP->getValueAPF().isNegZero(); 3228 3229 if (Depth == MaxAnalysisRecursionDepth) 3230 return false; 3231 3232 auto *Op = dyn_cast<Operator>(V); 3233 if (!Op) 3234 return false; 3235 3236 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3237 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3238 return true; 3239 3240 // sitofp and uitofp turn into +0.0 for zero. 3241 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3242 return true; 3243 3244 if (auto *Call = dyn_cast<CallInst>(Op)) { 3245 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3246 switch (IID) { 3247 default: 3248 break; 3249 // sqrt(-0.0) = -0.0, no other negative results are possible. 3250 case Intrinsic::sqrt: 3251 case Intrinsic::canonicalize: 3252 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3253 // fabs(x) != -0.0 3254 case Intrinsic::fabs: 3255 return true; 3256 } 3257 } 3258 3259 return false; 3260 } 3261 3262 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3263 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3264 /// bit despite comparing equal. 3265 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3266 const TargetLibraryInfo *TLI, 3267 bool SignBitOnly, 3268 unsigned Depth) { 3269 // TODO: This function does not do the right thing when SignBitOnly is true 3270 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3271 // which flips the sign bits of NaNs. See 3272 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3273 3274 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3275 return !CFP->getValueAPF().isNegative() || 3276 (!SignBitOnly && CFP->getValueAPF().isZero()); 3277 } 3278 3279 // Handle vector of constants. 3280 if (auto *CV = dyn_cast<Constant>(V)) { 3281 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3282 unsigned NumElts = CVFVTy->getNumElements(); 3283 for (unsigned i = 0; i != NumElts; ++i) { 3284 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3285 if (!CFP) 3286 return false; 3287 if (CFP->getValueAPF().isNegative() && 3288 (SignBitOnly || !CFP->getValueAPF().isZero())) 3289 return false; 3290 } 3291 3292 // All non-negative ConstantFPs. 3293 return true; 3294 } 3295 } 3296 3297 if (Depth == MaxAnalysisRecursionDepth) 3298 return false; 3299 3300 const Operator *I = dyn_cast<Operator>(V); 3301 if (!I) 3302 return false; 3303 3304 switch (I->getOpcode()) { 3305 default: 3306 break; 3307 // Unsigned integers are always nonnegative. 3308 case Instruction::UIToFP: 3309 return true; 3310 case Instruction::FMul: 3311 case Instruction::FDiv: 3312 // X * X is always non-negative or a NaN. 3313 // X / X is always exactly 1.0 or a NaN. 3314 if (I->getOperand(0) == I->getOperand(1) && 3315 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3316 return true; 3317 3318 LLVM_FALLTHROUGH; 3319 case Instruction::FAdd: 3320 case Instruction::FRem: 3321 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3322 Depth + 1) && 3323 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3324 Depth + 1); 3325 case Instruction::Select: 3326 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3327 Depth + 1) && 3328 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3329 Depth + 1); 3330 case Instruction::FPExt: 3331 case Instruction::FPTrunc: 3332 // Widening/narrowing never change sign. 3333 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3334 Depth + 1); 3335 case Instruction::ExtractElement: 3336 // Look through extract element. At the moment we keep this simple and skip 3337 // tracking the specific element. But at least we might find information 3338 // valid for all elements of the vector. 3339 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3340 Depth + 1); 3341 case Instruction::Call: 3342 const auto *CI = cast<CallInst>(I); 3343 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3344 switch (IID) { 3345 default: 3346 break; 3347 case Intrinsic::maxnum: { 3348 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3349 auto isPositiveNum = [&](Value *V) { 3350 if (SignBitOnly) { 3351 // With SignBitOnly, this is tricky because the result of 3352 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3353 // a constant strictly greater than 0.0. 3354 const APFloat *C; 3355 return match(V, m_APFloat(C)) && 3356 *C > APFloat::getZero(C->getSemantics()); 3357 } 3358 3359 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3360 // maxnum can't be ordered-less-than-zero. 3361 return isKnownNeverNaN(V, TLI) && 3362 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3363 }; 3364 3365 // TODO: This could be improved. We could also check that neither operand 3366 // has its sign bit set (and at least 1 is not-NAN?). 3367 return isPositiveNum(V0) || isPositiveNum(V1); 3368 } 3369 3370 case Intrinsic::maximum: 3371 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3372 Depth + 1) || 3373 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3374 Depth + 1); 3375 case Intrinsic::minnum: 3376 case Intrinsic::minimum: 3377 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3378 Depth + 1) && 3379 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3380 Depth + 1); 3381 case Intrinsic::exp: 3382 case Intrinsic::exp2: 3383 case Intrinsic::fabs: 3384 return true; 3385 3386 case Intrinsic::sqrt: 3387 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3388 if (!SignBitOnly) 3389 return true; 3390 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3391 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3392 3393 case Intrinsic::powi: 3394 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3395 // powi(x,n) is non-negative if n is even. 3396 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3397 return true; 3398 } 3399 // TODO: This is not correct. Given that exp is an integer, here are the 3400 // ways that pow can return a negative value: 3401 // 3402 // pow(x, exp) --> negative if exp is odd and x is negative. 3403 // pow(-0, exp) --> -inf if exp is negative odd. 3404 // pow(-0, exp) --> -0 if exp is positive odd. 3405 // pow(-inf, exp) --> -0 if exp is negative odd. 3406 // pow(-inf, exp) --> -inf if exp is positive odd. 3407 // 3408 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3409 // but we must return false if x == -0. Unfortunately we do not currently 3410 // have a way of expressing this constraint. See details in 3411 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3412 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3413 Depth + 1); 3414 3415 case Intrinsic::fma: 3416 case Intrinsic::fmuladd: 3417 // x*x+y is non-negative if y is non-negative. 3418 return I->getOperand(0) == I->getOperand(1) && 3419 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3420 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3421 Depth + 1); 3422 } 3423 break; 3424 } 3425 return false; 3426 } 3427 3428 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3429 const TargetLibraryInfo *TLI) { 3430 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3431 } 3432 3433 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3434 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3435 } 3436 3437 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3438 unsigned Depth) { 3439 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3440 3441 // If we're told that infinities won't happen, assume they won't. 3442 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3443 if (FPMathOp->hasNoInfs()) 3444 return true; 3445 3446 // Handle scalar constants. 3447 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3448 return !CFP->isInfinity(); 3449 3450 if (Depth == MaxAnalysisRecursionDepth) 3451 return false; 3452 3453 if (auto *Inst = dyn_cast<Instruction>(V)) { 3454 switch (Inst->getOpcode()) { 3455 case Instruction::Select: { 3456 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3457 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3458 } 3459 case Instruction::SIToFP: 3460 case Instruction::UIToFP: { 3461 // Get width of largest magnitude integer (remove a bit if signed). 3462 // This still works for a signed minimum value because the largest FP 3463 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3464 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3465 if (Inst->getOpcode() == Instruction::SIToFP) 3466 --IntSize; 3467 3468 // If the exponent of the largest finite FP value can hold the largest 3469 // integer, the result of the cast must be finite. 3470 Type *FPTy = Inst->getType()->getScalarType(); 3471 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3472 } 3473 default: 3474 break; 3475 } 3476 } 3477 3478 // try to handle fixed width vector constants 3479 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3480 if (VFVTy && isa<Constant>(V)) { 3481 // For vectors, verify that each element is not infinity. 3482 unsigned NumElts = VFVTy->getNumElements(); 3483 for (unsigned i = 0; i != NumElts; ++i) { 3484 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3485 if (!Elt) 3486 return false; 3487 if (isa<UndefValue>(Elt)) 3488 continue; 3489 auto *CElt = dyn_cast<ConstantFP>(Elt); 3490 if (!CElt || CElt->isInfinity()) 3491 return false; 3492 } 3493 // All elements were confirmed non-infinity or undefined. 3494 return true; 3495 } 3496 3497 // was not able to prove that V never contains infinity 3498 return false; 3499 } 3500 3501 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3502 unsigned Depth) { 3503 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3504 3505 // If we're told that NaNs won't happen, assume they won't. 3506 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3507 if (FPMathOp->hasNoNaNs()) 3508 return true; 3509 3510 // Handle scalar constants. 3511 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3512 return !CFP->isNaN(); 3513 3514 if (Depth == MaxAnalysisRecursionDepth) 3515 return false; 3516 3517 if (auto *Inst = dyn_cast<Instruction>(V)) { 3518 switch (Inst->getOpcode()) { 3519 case Instruction::FAdd: 3520 case Instruction::FSub: 3521 // Adding positive and negative infinity produces NaN. 3522 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3523 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3524 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3525 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3526 3527 case Instruction::FMul: 3528 // Zero multiplied with infinity produces NaN. 3529 // FIXME: If neither side can be zero fmul never produces NaN. 3530 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3531 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3532 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3533 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3534 3535 case Instruction::FDiv: 3536 case Instruction::FRem: 3537 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3538 return false; 3539 3540 case Instruction::Select: { 3541 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3542 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3543 } 3544 case Instruction::SIToFP: 3545 case Instruction::UIToFP: 3546 return true; 3547 case Instruction::FPTrunc: 3548 case Instruction::FPExt: 3549 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3550 default: 3551 break; 3552 } 3553 } 3554 3555 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3556 switch (II->getIntrinsicID()) { 3557 case Intrinsic::canonicalize: 3558 case Intrinsic::fabs: 3559 case Intrinsic::copysign: 3560 case Intrinsic::exp: 3561 case Intrinsic::exp2: 3562 case Intrinsic::floor: 3563 case Intrinsic::ceil: 3564 case Intrinsic::trunc: 3565 case Intrinsic::rint: 3566 case Intrinsic::nearbyint: 3567 case Intrinsic::round: 3568 case Intrinsic::roundeven: 3569 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3570 case Intrinsic::sqrt: 3571 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3572 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3573 case Intrinsic::minnum: 3574 case Intrinsic::maxnum: 3575 // If either operand is not NaN, the result is not NaN. 3576 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3577 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3578 default: 3579 return false; 3580 } 3581 } 3582 3583 // Try to handle fixed width vector constants 3584 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3585 if (VFVTy && isa<Constant>(V)) { 3586 // For vectors, verify that each element is not NaN. 3587 unsigned NumElts = VFVTy->getNumElements(); 3588 for (unsigned i = 0; i != NumElts; ++i) { 3589 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3590 if (!Elt) 3591 return false; 3592 if (isa<UndefValue>(Elt)) 3593 continue; 3594 auto *CElt = dyn_cast<ConstantFP>(Elt); 3595 if (!CElt || CElt->isNaN()) 3596 return false; 3597 } 3598 // All elements were confirmed not-NaN or undefined. 3599 return true; 3600 } 3601 3602 // Was not able to prove that V never contains NaN 3603 return false; 3604 } 3605 3606 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3607 3608 // All byte-wide stores are splatable, even of arbitrary variables. 3609 if (V->getType()->isIntegerTy(8)) 3610 return V; 3611 3612 LLVMContext &Ctx = V->getContext(); 3613 3614 // Undef don't care. 3615 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3616 if (isa<UndefValue>(V)) 3617 return UndefInt8; 3618 3619 // Return Undef for zero-sized type. 3620 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3621 return UndefInt8; 3622 3623 Constant *C = dyn_cast<Constant>(V); 3624 if (!C) { 3625 // Conceptually, we could handle things like: 3626 // %a = zext i8 %X to i16 3627 // %b = shl i16 %a, 8 3628 // %c = or i16 %a, %b 3629 // but until there is an example that actually needs this, it doesn't seem 3630 // worth worrying about. 3631 return nullptr; 3632 } 3633 3634 // Handle 'null' ConstantArrayZero etc. 3635 if (C->isNullValue()) 3636 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3637 3638 // Constant floating-point values can be handled as integer values if the 3639 // corresponding integer value is "byteable". An important case is 0.0. 3640 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3641 Type *Ty = nullptr; 3642 if (CFP->getType()->isHalfTy()) 3643 Ty = Type::getInt16Ty(Ctx); 3644 else if (CFP->getType()->isFloatTy()) 3645 Ty = Type::getInt32Ty(Ctx); 3646 else if (CFP->getType()->isDoubleTy()) 3647 Ty = Type::getInt64Ty(Ctx); 3648 // Don't handle long double formats, which have strange constraints. 3649 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3650 : nullptr; 3651 } 3652 3653 // We can handle constant integers that are multiple of 8 bits. 3654 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3655 if (CI->getBitWidth() % 8 == 0) { 3656 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3657 if (!CI->getValue().isSplat(8)) 3658 return nullptr; 3659 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3660 } 3661 } 3662 3663 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3664 if (CE->getOpcode() == Instruction::IntToPtr) { 3665 auto PS = DL.getPointerSizeInBits( 3666 cast<PointerType>(CE->getType())->getAddressSpace()); 3667 return isBytewiseValue( 3668 ConstantExpr::getIntegerCast(CE->getOperand(0), 3669 Type::getIntNTy(Ctx, PS), false), 3670 DL); 3671 } 3672 } 3673 3674 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3675 if (LHS == RHS) 3676 return LHS; 3677 if (!LHS || !RHS) 3678 return nullptr; 3679 if (LHS == UndefInt8) 3680 return RHS; 3681 if (RHS == UndefInt8) 3682 return LHS; 3683 return nullptr; 3684 }; 3685 3686 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3687 Value *Val = UndefInt8; 3688 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3689 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3690 return nullptr; 3691 return Val; 3692 } 3693 3694 if (isa<ConstantAggregate>(C)) { 3695 Value *Val = UndefInt8; 3696 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3697 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3698 return nullptr; 3699 return Val; 3700 } 3701 3702 // Don't try to handle the handful of other constants. 3703 return nullptr; 3704 } 3705 3706 // This is the recursive version of BuildSubAggregate. It takes a few different 3707 // arguments. Idxs is the index within the nested struct From that we are 3708 // looking at now (which is of type IndexedType). IdxSkip is the number of 3709 // indices from Idxs that should be left out when inserting into the resulting 3710 // struct. To is the result struct built so far, new insertvalue instructions 3711 // build on that. 3712 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3713 SmallVectorImpl<unsigned> &Idxs, 3714 unsigned IdxSkip, 3715 Instruction *InsertBefore) { 3716 StructType *STy = dyn_cast<StructType>(IndexedType); 3717 if (STy) { 3718 // Save the original To argument so we can modify it 3719 Value *OrigTo = To; 3720 // General case, the type indexed by Idxs is a struct 3721 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3722 // Process each struct element recursively 3723 Idxs.push_back(i); 3724 Value *PrevTo = To; 3725 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3726 InsertBefore); 3727 Idxs.pop_back(); 3728 if (!To) { 3729 // Couldn't find any inserted value for this index? Cleanup 3730 while (PrevTo != OrigTo) { 3731 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3732 PrevTo = Del->getAggregateOperand(); 3733 Del->eraseFromParent(); 3734 } 3735 // Stop processing elements 3736 break; 3737 } 3738 } 3739 // If we successfully found a value for each of our subaggregates 3740 if (To) 3741 return To; 3742 } 3743 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3744 // the struct's elements had a value that was inserted directly. In the latter 3745 // case, perhaps we can't determine each of the subelements individually, but 3746 // we might be able to find the complete struct somewhere. 3747 3748 // Find the value that is at that particular spot 3749 Value *V = FindInsertedValue(From, Idxs); 3750 3751 if (!V) 3752 return nullptr; 3753 3754 // Insert the value in the new (sub) aggregate 3755 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3756 "tmp", InsertBefore); 3757 } 3758 3759 // This helper takes a nested struct and extracts a part of it (which is again a 3760 // struct) into a new value. For example, given the struct: 3761 // { a, { b, { c, d }, e } } 3762 // and the indices "1, 1" this returns 3763 // { c, d }. 3764 // 3765 // It does this by inserting an insertvalue for each element in the resulting 3766 // struct, as opposed to just inserting a single struct. This will only work if 3767 // each of the elements of the substruct are known (ie, inserted into From by an 3768 // insertvalue instruction somewhere). 3769 // 3770 // All inserted insertvalue instructions are inserted before InsertBefore 3771 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3772 Instruction *InsertBefore) { 3773 assert(InsertBefore && "Must have someplace to insert!"); 3774 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3775 idx_range); 3776 Value *To = UndefValue::get(IndexedType); 3777 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3778 unsigned IdxSkip = Idxs.size(); 3779 3780 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3781 } 3782 3783 /// Given an aggregate and a sequence of indices, see if the scalar value 3784 /// indexed is already around as a register, for example if it was inserted 3785 /// directly into the aggregate. 3786 /// 3787 /// If InsertBefore is not null, this function will duplicate (modified) 3788 /// insertvalues when a part of a nested struct is extracted. 3789 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3790 Instruction *InsertBefore) { 3791 // Nothing to index? Just return V then (this is useful at the end of our 3792 // recursion). 3793 if (idx_range.empty()) 3794 return V; 3795 // We have indices, so V should have an indexable type. 3796 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3797 "Not looking at a struct or array?"); 3798 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3799 "Invalid indices for type?"); 3800 3801 if (Constant *C = dyn_cast<Constant>(V)) { 3802 C = C->getAggregateElement(idx_range[0]); 3803 if (!C) return nullptr; 3804 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3805 } 3806 3807 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3808 // Loop the indices for the insertvalue instruction in parallel with the 3809 // requested indices 3810 const unsigned *req_idx = idx_range.begin(); 3811 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3812 i != e; ++i, ++req_idx) { 3813 if (req_idx == idx_range.end()) { 3814 // We can't handle this without inserting insertvalues 3815 if (!InsertBefore) 3816 return nullptr; 3817 3818 // The requested index identifies a part of a nested aggregate. Handle 3819 // this specially. For example, 3820 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3821 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3822 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3823 // This can be changed into 3824 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3825 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3826 // which allows the unused 0,0 element from the nested struct to be 3827 // removed. 3828 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3829 InsertBefore); 3830 } 3831 3832 // This insert value inserts something else than what we are looking for. 3833 // See if the (aggregate) value inserted into has the value we are 3834 // looking for, then. 3835 if (*req_idx != *i) 3836 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3837 InsertBefore); 3838 } 3839 // If we end up here, the indices of the insertvalue match with those 3840 // requested (though possibly only partially). Now we recursively look at 3841 // the inserted value, passing any remaining indices. 3842 return FindInsertedValue(I->getInsertedValueOperand(), 3843 makeArrayRef(req_idx, idx_range.end()), 3844 InsertBefore); 3845 } 3846 3847 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3848 // If we're extracting a value from an aggregate that was extracted from 3849 // something else, we can extract from that something else directly instead. 3850 // However, we will need to chain I's indices with the requested indices. 3851 3852 // Calculate the number of indices required 3853 unsigned size = I->getNumIndices() + idx_range.size(); 3854 // Allocate some space to put the new indices in 3855 SmallVector<unsigned, 5> Idxs; 3856 Idxs.reserve(size); 3857 // Add indices from the extract value instruction 3858 Idxs.append(I->idx_begin(), I->idx_end()); 3859 3860 // Add requested indices 3861 Idxs.append(idx_range.begin(), idx_range.end()); 3862 3863 assert(Idxs.size() == size 3864 && "Number of indices added not correct?"); 3865 3866 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3867 } 3868 // Otherwise, we don't know (such as, extracting from a function return value 3869 // or load instruction) 3870 return nullptr; 3871 } 3872 3873 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3874 unsigned CharSize) { 3875 // Make sure the GEP has exactly three arguments. 3876 if (GEP->getNumOperands() != 3) 3877 return false; 3878 3879 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3880 // CharSize. 3881 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3882 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3883 return false; 3884 3885 // Check to make sure that the first operand of the GEP is an integer and 3886 // has value 0 so that we are sure we're indexing into the initializer. 3887 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3888 if (!FirstIdx || !FirstIdx->isZero()) 3889 return false; 3890 3891 return true; 3892 } 3893 3894 bool llvm::getConstantDataArrayInfo(const Value *V, 3895 ConstantDataArraySlice &Slice, 3896 unsigned ElementSize, uint64_t Offset) { 3897 assert(V); 3898 3899 // Look through bitcast instructions and geps. 3900 V = V->stripPointerCasts(); 3901 3902 // If the value is a GEP instruction or constant expression, treat it as an 3903 // offset. 3904 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3905 // The GEP operator should be based on a pointer to string constant, and is 3906 // indexing into the string constant. 3907 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3908 return false; 3909 3910 // If the second index isn't a ConstantInt, then this is a variable index 3911 // into the array. If this occurs, we can't say anything meaningful about 3912 // the string. 3913 uint64_t StartIdx = 0; 3914 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3915 StartIdx = CI->getZExtValue(); 3916 else 3917 return false; 3918 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3919 StartIdx + Offset); 3920 } 3921 3922 // The GEP instruction, constant or instruction, must reference a global 3923 // variable that is a constant and is initialized. The referenced constant 3924 // initializer is the array that we'll use for optimization. 3925 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3926 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3927 return false; 3928 3929 const ConstantDataArray *Array; 3930 ArrayType *ArrayTy; 3931 if (GV->getInitializer()->isNullValue()) { 3932 Type *GVTy = GV->getValueType(); 3933 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3934 // A zeroinitializer for the array; there is no ConstantDataArray. 3935 Array = nullptr; 3936 } else { 3937 const DataLayout &DL = GV->getParent()->getDataLayout(); 3938 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3939 uint64_t Length = SizeInBytes / (ElementSize / 8); 3940 if (Length <= Offset) 3941 return false; 3942 3943 Slice.Array = nullptr; 3944 Slice.Offset = 0; 3945 Slice.Length = Length - Offset; 3946 return true; 3947 } 3948 } else { 3949 // This must be a ConstantDataArray. 3950 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3951 if (!Array) 3952 return false; 3953 ArrayTy = Array->getType(); 3954 } 3955 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3956 return false; 3957 3958 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3959 if (Offset > NumElts) 3960 return false; 3961 3962 Slice.Array = Array; 3963 Slice.Offset = Offset; 3964 Slice.Length = NumElts - Offset; 3965 return true; 3966 } 3967 3968 /// This function computes the length of a null-terminated C string pointed to 3969 /// by V. If successful, it returns true and returns the string in Str. 3970 /// If unsuccessful, it returns false. 3971 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3972 uint64_t Offset, bool TrimAtNul) { 3973 ConstantDataArraySlice Slice; 3974 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3975 return false; 3976 3977 if (Slice.Array == nullptr) { 3978 if (TrimAtNul) { 3979 Str = StringRef(); 3980 return true; 3981 } 3982 if (Slice.Length == 1) { 3983 Str = StringRef("", 1); 3984 return true; 3985 } 3986 // We cannot instantiate a StringRef as we do not have an appropriate string 3987 // of 0s at hand. 3988 return false; 3989 } 3990 3991 // Start out with the entire array in the StringRef. 3992 Str = Slice.Array->getAsString(); 3993 // Skip over 'offset' bytes. 3994 Str = Str.substr(Slice.Offset); 3995 3996 if (TrimAtNul) { 3997 // Trim off the \0 and anything after it. If the array is not nul 3998 // terminated, we just return the whole end of string. The client may know 3999 // some other way that the string is length-bound. 4000 Str = Str.substr(0, Str.find('\0')); 4001 } 4002 return true; 4003 } 4004 4005 // These next two are very similar to the above, but also look through PHI 4006 // nodes. 4007 // TODO: See if we can integrate these two together. 4008 4009 /// If we can compute the length of the string pointed to by 4010 /// the specified pointer, return 'len+1'. If we can't, return 0. 4011 static uint64_t GetStringLengthH(const Value *V, 4012 SmallPtrSetImpl<const PHINode*> &PHIs, 4013 unsigned CharSize) { 4014 // Look through noop bitcast instructions. 4015 V = V->stripPointerCasts(); 4016 4017 // If this is a PHI node, there are two cases: either we have already seen it 4018 // or we haven't. 4019 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4020 if (!PHIs.insert(PN).second) 4021 return ~0ULL; // already in the set. 4022 4023 // If it was new, see if all the input strings are the same length. 4024 uint64_t LenSoFar = ~0ULL; 4025 for (Value *IncValue : PN->incoming_values()) { 4026 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4027 if (Len == 0) return 0; // Unknown length -> unknown. 4028 4029 if (Len == ~0ULL) continue; 4030 4031 if (Len != LenSoFar && LenSoFar != ~0ULL) 4032 return 0; // Disagree -> unknown. 4033 LenSoFar = Len; 4034 } 4035 4036 // Success, all agree. 4037 return LenSoFar; 4038 } 4039 4040 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4041 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4042 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4043 if (Len1 == 0) return 0; 4044 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4045 if (Len2 == 0) return 0; 4046 if (Len1 == ~0ULL) return Len2; 4047 if (Len2 == ~0ULL) return Len1; 4048 if (Len1 != Len2) return 0; 4049 return Len1; 4050 } 4051 4052 // Otherwise, see if we can read the string. 4053 ConstantDataArraySlice Slice; 4054 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4055 return 0; 4056 4057 if (Slice.Array == nullptr) 4058 return 1; 4059 4060 // Search for nul characters 4061 unsigned NullIndex = 0; 4062 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4063 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4064 break; 4065 } 4066 4067 return NullIndex + 1; 4068 } 4069 4070 /// If we can compute the length of the string pointed to by 4071 /// the specified pointer, return 'len+1'. If we can't, return 0. 4072 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4073 if (!V->getType()->isPointerTy()) 4074 return 0; 4075 4076 SmallPtrSet<const PHINode*, 32> PHIs; 4077 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4078 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4079 // an empty string as a length. 4080 return Len == ~0ULL ? 1 : Len; 4081 } 4082 4083 const Value * 4084 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4085 bool MustPreserveNullness) { 4086 assert(Call && 4087 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4088 if (const Value *RV = Call->getReturnedArgOperand()) 4089 return RV; 4090 // This can be used only as a aliasing property. 4091 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4092 Call, MustPreserveNullness)) 4093 return Call->getArgOperand(0); 4094 return nullptr; 4095 } 4096 4097 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4098 const CallBase *Call, bool MustPreserveNullness) { 4099 switch (Call->getIntrinsicID()) { 4100 case Intrinsic::launder_invariant_group: 4101 case Intrinsic::strip_invariant_group: 4102 case Intrinsic::aarch64_irg: 4103 case Intrinsic::aarch64_tagp: 4104 return true; 4105 case Intrinsic::ptrmask: 4106 return !MustPreserveNullness; 4107 default: 4108 return false; 4109 } 4110 } 4111 4112 /// \p PN defines a loop-variant pointer to an object. Check if the 4113 /// previous iteration of the loop was referring to the same object as \p PN. 4114 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4115 const LoopInfo *LI) { 4116 // Find the loop-defined value. 4117 Loop *L = LI->getLoopFor(PN->getParent()); 4118 if (PN->getNumIncomingValues() != 2) 4119 return true; 4120 4121 // Find the value from previous iteration. 4122 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4123 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4124 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4125 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4126 return true; 4127 4128 // If a new pointer is loaded in the loop, the pointer references a different 4129 // object in every iteration. E.g.: 4130 // for (i) 4131 // int *p = a[i]; 4132 // ... 4133 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4134 if (!L->isLoopInvariant(Load->getPointerOperand())) 4135 return false; 4136 return true; 4137 } 4138 4139 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4140 if (!V->getType()->isPointerTy()) 4141 return V; 4142 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4143 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4144 V = GEP->getPointerOperand(); 4145 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4146 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4147 V = cast<Operator>(V)->getOperand(0); 4148 if (!V->getType()->isPointerTy()) 4149 return V; 4150 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4151 if (GA->isInterposable()) 4152 return V; 4153 V = GA->getAliasee(); 4154 } else { 4155 if (auto *PHI = dyn_cast<PHINode>(V)) { 4156 // Look through single-arg phi nodes created by LCSSA. 4157 if (PHI->getNumIncomingValues() == 1) { 4158 V = PHI->getIncomingValue(0); 4159 continue; 4160 } 4161 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4162 // CaptureTracking can know about special capturing properties of some 4163 // intrinsics like launder.invariant.group, that can't be expressed with 4164 // the attributes, but have properties like returning aliasing pointer. 4165 // Because some analysis may assume that nocaptured pointer is not 4166 // returned from some special intrinsic (because function would have to 4167 // be marked with returns attribute), it is crucial to use this function 4168 // because it should be in sync with CaptureTracking. Not using it may 4169 // cause weird miscompilations where 2 aliasing pointers are assumed to 4170 // noalias. 4171 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4172 V = RP; 4173 continue; 4174 } 4175 } 4176 4177 return V; 4178 } 4179 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4180 } 4181 return V; 4182 } 4183 4184 void llvm::getUnderlyingObjects(const Value *V, 4185 SmallVectorImpl<const Value *> &Objects, 4186 LoopInfo *LI, unsigned MaxLookup) { 4187 SmallPtrSet<const Value *, 4> Visited; 4188 SmallVector<const Value *, 4> Worklist; 4189 Worklist.push_back(V); 4190 do { 4191 const Value *P = Worklist.pop_back_val(); 4192 P = getUnderlyingObject(P, MaxLookup); 4193 4194 if (!Visited.insert(P).second) 4195 continue; 4196 4197 if (auto *SI = dyn_cast<SelectInst>(P)) { 4198 Worklist.push_back(SI->getTrueValue()); 4199 Worklist.push_back(SI->getFalseValue()); 4200 continue; 4201 } 4202 4203 if (auto *PN = dyn_cast<PHINode>(P)) { 4204 // If this PHI changes the underlying object in every iteration of the 4205 // loop, don't look through it. Consider: 4206 // int **A; 4207 // for (i) { 4208 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4209 // Curr = A[i]; 4210 // *Prev, *Curr; 4211 // 4212 // Prev is tracking Curr one iteration behind so they refer to different 4213 // underlying objects. 4214 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4215 isSameUnderlyingObjectInLoop(PN, LI)) 4216 for (Value *IncValue : PN->incoming_values()) 4217 Worklist.push_back(IncValue); 4218 continue; 4219 } 4220 4221 Objects.push_back(P); 4222 } while (!Worklist.empty()); 4223 } 4224 4225 /// This is the function that does the work of looking through basic 4226 /// ptrtoint+arithmetic+inttoptr sequences. 4227 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4228 do { 4229 if (const Operator *U = dyn_cast<Operator>(V)) { 4230 // If we find a ptrtoint, we can transfer control back to the 4231 // regular getUnderlyingObjectFromInt. 4232 if (U->getOpcode() == Instruction::PtrToInt) 4233 return U->getOperand(0); 4234 // If we find an add of a constant, a multiplied value, or a phi, it's 4235 // likely that the other operand will lead us to the base 4236 // object. We don't have to worry about the case where the 4237 // object address is somehow being computed by the multiply, 4238 // because our callers only care when the result is an 4239 // identifiable object. 4240 if (U->getOpcode() != Instruction::Add || 4241 (!isa<ConstantInt>(U->getOperand(1)) && 4242 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4243 !isa<PHINode>(U->getOperand(1)))) 4244 return V; 4245 V = U->getOperand(0); 4246 } else { 4247 return V; 4248 } 4249 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4250 } while (true); 4251 } 4252 4253 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4254 /// ptrtoint+arithmetic+inttoptr sequences. 4255 /// It returns false if unidentified object is found in getUnderlyingObjects. 4256 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4257 SmallVectorImpl<Value *> &Objects) { 4258 SmallPtrSet<const Value *, 16> Visited; 4259 SmallVector<const Value *, 4> Working(1, V); 4260 do { 4261 V = Working.pop_back_val(); 4262 4263 SmallVector<const Value *, 4> Objs; 4264 getUnderlyingObjects(V, Objs); 4265 4266 for (const Value *V : Objs) { 4267 if (!Visited.insert(V).second) 4268 continue; 4269 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4270 const Value *O = 4271 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4272 if (O->getType()->isPointerTy()) { 4273 Working.push_back(O); 4274 continue; 4275 } 4276 } 4277 // If getUnderlyingObjects fails to find an identifiable object, 4278 // getUnderlyingObjectsForCodeGen also fails for safety. 4279 if (!isIdentifiedObject(V)) { 4280 Objects.clear(); 4281 return false; 4282 } 4283 Objects.push_back(const_cast<Value *>(V)); 4284 } 4285 } while (!Working.empty()); 4286 return true; 4287 } 4288 4289 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4290 AllocaInst *Result = nullptr; 4291 SmallPtrSet<Value *, 4> Visited; 4292 SmallVector<Value *, 4> Worklist; 4293 4294 auto AddWork = [&](Value *V) { 4295 if (Visited.insert(V).second) 4296 Worklist.push_back(V); 4297 }; 4298 4299 AddWork(V); 4300 do { 4301 V = Worklist.pop_back_val(); 4302 assert(Visited.count(V)); 4303 4304 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4305 if (Result && Result != AI) 4306 return nullptr; 4307 Result = AI; 4308 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4309 AddWork(CI->getOperand(0)); 4310 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4311 for (Value *IncValue : PN->incoming_values()) 4312 AddWork(IncValue); 4313 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4314 AddWork(SI->getTrueValue()); 4315 AddWork(SI->getFalseValue()); 4316 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4317 if (OffsetZero && !GEP->hasAllZeroIndices()) 4318 return nullptr; 4319 AddWork(GEP->getPointerOperand()); 4320 } else { 4321 return nullptr; 4322 } 4323 } while (!Worklist.empty()); 4324 4325 return Result; 4326 } 4327 4328 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4329 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4330 for (const User *U : V->users()) { 4331 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4332 if (!II) 4333 return false; 4334 4335 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4336 continue; 4337 4338 if (AllowDroppable && II->isDroppable()) 4339 continue; 4340 4341 return false; 4342 } 4343 return true; 4344 } 4345 4346 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4347 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4348 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4349 } 4350 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4351 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4352 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4353 } 4354 4355 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4356 if (!LI.isUnordered()) 4357 return true; 4358 const Function &F = *LI.getFunction(); 4359 // Speculative load may create a race that did not exist in the source. 4360 return F.hasFnAttribute(Attribute::SanitizeThread) || 4361 // Speculative load may load data from dirty regions. 4362 F.hasFnAttribute(Attribute::SanitizeAddress) || 4363 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4364 } 4365 4366 4367 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4368 const Instruction *CtxI, 4369 const DominatorTree *DT) { 4370 const Operator *Inst = dyn_cast<Operator>(V); 4371 if (!Inst) 4372 return false; 4373 4374 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4375 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4376 if (C->canTrap()) 4377 return false; 4378 4379 switch (Inst->getOpcode()) { 4380 default: 4381 return true; 4382 case Instruction::UDiv: 4383 case Instruction::URem: { 4384 // x / y is undefined if y == 0. 4385 const APInt *V; 4386 if (match(Inst->getOperand(1), m_APInt(V))) 4387 return *V != 0; 4388 return false; 4389 } 4390 case Instruction::SDiv: 4391 case Instruction::SRem: { 4392 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4393 const APInt *Numerator, *Denominator; 4394 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4395 return false; 4396 // We cannot hoist this division if the denominator is 0. 4397 if (*Denominator == 0) 4398 return false; 4399 // It's safe to hoist if the denominator is not 0 or -1. 4400 if (*Denominator != -1) 4401 return true; 4402 // At this point we know that the denominator is -1. It is safe to hoist as 4403 // long we know that the numerator is not INT_MIN. 4404 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4405 return !Numerator->isMinSignedValue(); 4406 // The numerator *might* be MinSignedValue. 4407 return false; 4408 } 4409 case Instruction::Load: { 4410 const LoadInst *LI = cast<LoadInst>(Inst); 4411 if (mustSuppressSpeculation(*LI)) 4412 return false; 4413 const DataLayout &DL = LI->getModule()->getDataLayout(); 4414 return isDereferenceableAndAlignedPointer( 4415 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4416 DL, CtxI, DT); 4417 } 4418 case Instruction::Call: { 4419 auto *CI = cast<const CallInst>(Inst); 4420 const Function *Callee = CI->getCalledFunction(); 4421 4422 // The called function could have undefined behavior or side-effects, even 4423 // if marked readnone nounwind. 4424 return Callee && Callee->isSpeculatable(); 4425 } 4426 case Instruction::VAArg: 4427 case Instruction::Alloca: 4428 case Instruction::Invoke: 4429 case Instruction::CallBr: 4430 case Instruction::PHI: 4431 case Instruction::Store: 4432 case Instruction::Ret: 4433 case Instruction::Br: 4434 case Instruction::IndirectBr: 4435 case Instruction::Switch: 4436 case Instruction::Unreachable: 4437 case Instruction::Fence: 4438 case Instruction::AtomicRMW: 4439 case Instruction::AtomicCmpXchg: 4440 case Instruction::LandingPad: 4441 case Instruction::Resume: 4442 case Instruction::CatchSwitch: 4443 case Instruction::CatchPad: 4444 case Instruction::CatchRet: 4445 case Instruction::CleanupPad: 4446 case Instruction::CleanupRet: 4447 return false; // Misc instructions which have effects 4448 } 4449 } 4450 4451 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4452 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4453 } 4454 4455 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4456 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4457 switch (OR) { 4458 case ConstantRange::OverflowResult::MayOverflow: 4459 return OverflowResult::MayOverflow; 4460 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4461 return OverflowResult::AlwaysOverflowsLow; 4462 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4463 return OverflowResult::AlwaysOverflowsHigh; 4464 case ConstantRange::OverflowResult::NeverOverflows: 4465 return OverflowResult::NeverOverflows; 4466 } 4467 llvm_unreachable("Unknown OverflowResult"); 4468 } 4469 4470 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4471 static ConstantRange computeConstantRangeIncludingKnownBits( 4472 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4473 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4474 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4475 KnownBits Known = computeKnownBits( 4476 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4477 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4478 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4479 ConstantRange::PreferredRangeType RangeType = 4480 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4481 return CR1.intersectWith(CR2, RangeType); 4482 } 4483 4484 OverflowResult llvm::computeOverflowForUnsignedMul( 4485 const Value *LHS, const Value *RHS, const DataLayout &DL, 4486 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4487 bool UseInstrInfo) { 4488 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4489 nullptr, UseInstrInfo); 4490 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4491 nullptr, UseInstrInfo); 4492 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4493 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4494 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4495 } 4496 4497 OverflowResult 4498 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4499 const DataLayout &DL, AssumptionCache *AC, 4500 const Instruction *CxtI, 4501 const DominatorTree *DT, bool UseInstrInfo) { 4502 // Multiplying n * m significant bits yields a result of n + m significant 4503 // bits. If the total number of significant bits does not exceed the 4504 // result bit width (minus 1), there is no overflow. 4505 // This means if we have enough leading sign bits in the operands 4506 // we can guarantee that the result does not overflow. 4507 // Ref: "Hacker's Delight" by Henry Warren 4508 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4509 4510 // Note that underestimating the number of sign bits gives a more 4511 // conservative answer. 4512 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4513 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4514 4515 // First handle the easy case: if we have enough sign bits there's 4516 // definitely no overflow. 4517 if (SignBits > BitWidth + 1) 4518 return OverflowResult::NeverOverflows; 4519 4520 // There are two ambiguous cases where there can be no overflow: 4521 // SignBits == BitWidth + 1 and 4522 // SignBits == BitWidth 4523 // The second case is difficult to check, therefore we only handle the 4524 // first case. 4525 if (SignBits == BitWidth + 1) { 4526 // It overflows only when both arguments are negative and the true 4527 // product is exactly the minimum negative number. 4528 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4529 // For simplicity we just check if at least one side is not negative. 4530 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4531 nullptr, UseInstrInfo); 4532 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4533 nullptr, UseInstrInfo); 4534 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4535 return OverflowResult::NeverOverflows; 4536 } 4537 return OverflowResult::MayOverflow; 4538 } 4539 4540 OverflowResult llvm::computeOverflowForUnsignedAdd( 4541 const Value *LHS, const Value *RHS, const DataLayout &DL, 4542 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4543 bool UseInstrInfo) { 4544 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4545 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4546 nullptr, UseInstrInfo); 4547 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4548 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4549 nullptr, UseInstrInfo); 4550 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4551 } 4552 4553 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4554 const Value *RHS, 4555 const AddOperator *Add, 4556 const DataLayout &DL, 4557 AssumptionCache *AC, 4558 const Instruction *CxtI, 4559 const DominatorTree *DT) { 4560 if (Add && Add->hasNoSignedWrap()) { 4561 return OverflowResult::NeverOverflows; 4562 } 4563 4564 // If LHS and RHS each have at least two sign bits, the addition will look 4565 // like 4566 // 4567 // XX..... + 4568 // YY..... 4569 // 4570 // If the carry into the most significant position is 0, X and Y can't both 4571 // be 1 and therefore the carry out of the addition is also 0. 4572 // 4573 // If the carry into the most significant position is 1, X and Y can't both 4574 // be 0 and therefore the carry out of the addition is also 1. 4575 // 4576 // Since the carry into the most significant position is always equal to 4577 // the carry out of the addition, there is no signed overflow. 4578 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4579 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4580 return OverflowResult::NeverOverflows; 4581 4582 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4583 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4584 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4585 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4586 OverflowResult OR = 4587 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4588 if (OR != OverflowResult::MayOverflow) 4589 return OR; 4590 4591 // The remaining code needs Add to be available. Early returns if not so. 4592 if (!Add) 4593 return OverflowResult::MayOverflow; 4594 4595 // If the sign of Add is the same as at least one of the operands, this add 4596 // CANNOT overflow. If this can be determined from the known bits of the 4597 // operands the above signedAddMayOverflow() check will have already done so. 4598 // The only other way to improve on the known bits is from an assumption, so 4599 // call computeKnownBitsFromAssume() directly. 4600 bool LHSOrRHSKnownNonNegative = 4601 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4602 bool LHSOrRHSKnownNegative = 4603 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4604 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4605 KnownBits AddKnown(LHSRange.getBitWidth()); 4606 computeKnownBitsFromAssume( 4607 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4608 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4609 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4610 return OverflowResult::NeverOverflows; 4611 } 4612 4613 return OverflowResult::MayOverflow; 4614 } 4615 4616 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4617 const Value *RHS, 4618 const DataLayout &DL, 4619 AssumptionCache *AC, 4620 const Instruction *CxtI, 4621 const DominatorTree *DT) { 4622 // Checking for conditions implied by dominating conditions may be expensive. 4623 // Limit it to usub_with_overflow calls for now. 4624 if (match(CxtI, 4625 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4626 if (auto C = 4627 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4628 if (*C) 4629 return OverflowResult::NeverOverflows; 4630 return OverflowResult::AlwaysOverflowsLow; 4631 } 4632 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4633 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4634 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4635 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4636 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4637 } 4638 4639 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4640 const Value *RHS, 4641 const DataLayout &DL, 4642 AssumptionCache *AC, 4643 const Instruction *CxtI, 4644 const DominatorTree *DT) { 4645 // If LHS and RHS each have at least two sign bits, the subtraction 4646 // cannot overflow. 4647 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4648 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4649 return OverflowResult::NeverOverflows; 4650 4651 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4652 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4653 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4654 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4655 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4656 } 4657 4658 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4659 const DominatorTree &DT) { 4660 SmallVector<const BranchInst *, 2> GuardingBranches; 4661 SmallVector<const ExtractValueInst *, 2> Results; 4662 4663 for (const User *U : WO->users()) { 4664 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4665 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4666 4667 if (EVI->getIndices()[0] == 0) 4668 Results.push_back(EVI); 4669 else { 4670 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4671 4672 for (const auto *U : EVI->users()) 4673 if (const auto *B = dyn_cast<BranchInst>(U)) { 4674 assert(B->isConditional() && "How else is it using an i1?"); 4675 GuardingBranches.push_back(B); 4676 } 4677 } 4678 } else { 4679 // We are using the aggregate directly in a way we don't want to analyze 4680 // here (storing it to a global, say). 4681 return false; 4682 } 4683 } 4684 4685 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4686 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4687 if (!NoWrapEdge.isSingleEdge()) 4688 return false; 4689 4690 // Check if all users of the add are provably no-wrap. 4691 for (const auto *Result : Results) { 4692 // If the extractvalue itself is not executed on overflow, the we don't 4693 // need to check each use separately, since domination is transitive. 4694 if (DT.dominates(NoWrapEdge, Result->getParent())) 4695 continue; 4696 4697 for (auto &RU : Result->uses()) 4698 if (!DT.dominates(NoWrapEdge, RU)) 4699 return false; 4700 } 4701 4702 return true; 4703 }; 4704 4705 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4706 } 4707 4708 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4709 // See whether I has flags that may create poison 4710 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4711 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4712 return true; 4713 } 4714 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4715 if (ExactOp->isExact()) 4716 return true; 4717 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4718 auto FMF = FP->getFastMathFlags(); 4719 if (FMF.noNaNs() || FMF.noInfs()) 4720 return true; 4721 } 4722 4723 unsigned Opcode = Op->getOpcode(); 4724 4725 // Check whether opcode is a poison/undef-generating operation 4726 switch (Opcode) { 4727 case Instruction::Shl: 4728 case Instruction::AShr: 4729 case Instruction::LShr: { 4730 // Shifts return poison if shiftwidth is larger than the bitwidth. 4731 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4732 SmallVector<Constant *, 4> ShiftAmounts; 4733 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4734 unsigned NumElts = FVTy->getNumElements(); 4735 for (unsigned i = 0; i < NumElts; ++i) 4736 ShiftAmounts.push_back(C->getAggregateElement(i)); 4737 } else if (isa<ScalableVectorType>(C->getType())) 4738 return true; // Can't tell, just return true to be safe 4739 else 4740 ShiftAmounts.push_back(C); 4741 4742 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4743 auto *CI = dyn_cast<ConstantInt>(C); 4744 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4745 }); 4746 return !Safe; 4747 } 4748 return true; 4749 } 4750 case Instruction::FPToSI: 4751 case Instruction::FPToUI: 4752 // fptosi/ui yields poison if the resulting value does not fit in the 4753 // destination type. 4754 return true; 4755 case Instruction::Call: 4756 case Instruction::CallBr: 4757 case Instruction::Invoke: { 4758 const auto *CB = cast<CallBase>(Op); 4759 return !CB->hasRetAttr(Attribute::NoUndef); 4760 } 4761 case Instruction::InsertElement: 4762 case Instruction::ExtractElement: { 4763 // If index exceeds the length of the vector, it returns poison 4764 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4765 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4766 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4767 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4768 return true; 4769 return false; 4770 } 4771 case Instruction::ShuffleVector: { 4772 // shufflevector may return undef. 4773 if (PoisonOnly) 4774 return false; 4775 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4776 ? cast<ConstantExpr>(Op)->getShuffleMask() 4777 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4778 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4779 } 4780 case Instruction::FNeg: 4781 case Instruction::PHI: 4782 case Instruction::Select: 4783 case Instruction::URem: 4784 case Instruction::SRem: 4785 case Instruction::ExtractValue: 4786 case Instruction::InsertValue: 4787 case Instruction::Freeze: 4788 case Instruction::ICmp: 4789 case Instruction::FCmp: 4790 return false; 4791 case Instruction::GetElementPtr: { 4792 const auto *GEP = cast<GEPOperator>(Op); 4793 return GEP->isInBounds(); 4794 } 4795 default: { 4796 const auto *CE = dyn_cast<ConstantExpr>(Op); 4797 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4798 return false; 4799 else if (Instruction::isBinaryOp(Opcode)) 4800 return false; 4801 // Be conservative and return true. 4802 return true; 4803 } 4804 } 4805 } 4806 4807 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4808 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4809 } 4810 4811 bool llvm::canCreatePoison(const Operator *Op) { 4812 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4813 } 4814 4815 static bool programUndefinedIfUndefOrPoison(const Value *V, 4816 bool PoisonOnly); 4817 4818 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4819 const Instruction *CtxI, 4820 const DominatorTree *DT, 4821 unsigned Depth, bool PoisonOnly) { 4822 if (Depth >= MaxAnalysisRecursionDepth) 4823 return false; 4824 4825 if (isa<MetadataAsValue>(V)) 4826 return false; 4827 4828 if (const auto *A = dyn_cast<Argument>(V)) { 4829 if (A->hasAttribute(Attribute::NoUndef)) 4830 return true; 4831 } 4832 4833 if (auto *C = dyn_cast<Constant>(V)) { 4834 if (isa<UndefValue>(C)) 4835 return PoisonOnly; 4836 4837 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4838 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4839 return true; 4840 4841 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4842 return (PoisonOnly || !C->containsUndefElement()) && 4843 !C->containsConstantExpression(); 4844 } 4845 4846 // Strip cast operations from a pointer value. 4847 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4848 // inbounds with zero offset. To guarantee that the result isn't poison, the 4849 // stripped pointer is checked as it has to be pointing into an allocated 4850 // object or be null `null` to ensure `inbounds` getelement pointers with a 4851 // zero offset could not produce poison. 4852 // It can strip off addrspacecast that do not change bit representation as 4853 // well. We believe that such addrspacecast is equivalent to no-op. 4854 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4855 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4856 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4857 return true; 4858 4859 auto OpCheck = [&](const Value *V) { 4860 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1, PoisonOnly); 4861 }; 4862 4863 if (auto *Opr = dyn_cast<Operator>(V)) { 4864 // If the value is a freeze instruction, then it can never 4865 // be undef or poison. 4866 if (isa<FreezeInst>(V)) 4867 return true; 4868 4869 if (const auto *CB = dyn_cast<CallBase>(V)) { 4870 if (CB->hasRetAttr(Attribute::NoUndef)) 4871 return true; 4872 } 4873 4874 if (const auto *PN = dyn_cast<PHINode>(V)) { 4875 unsigned Num = PN->getNumIncomingValues(); 4876 bool IsWellDefined = true; 4877 for (unsigned i = 0; i < Num; ++i) { 4878 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4879 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), TI, DT, 4880 Depth + 1, PoisonOnly)) { 4881 IsWellDefined = false; 4882 break; 4883 } 4884 } 4885 if (IsWellDefined) 4886 return true; 4887 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4888 return true; 4889 } 4890 4891 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4892 return true; 4893 4894 // CxtI may be null or a cloned instruction. 4895 if (!CtxI || !CtxI->getParent() || !DT) 4896 return false; 4897 4898 auto *DNode = DT->getNode(CtxI->getParent()); 4899 if (!DNode) 4900 // Unreachable block 4901 return false; 4902 4903 // If V is used as a branch condition before reaching CtxI, V cannot be 4904 // undef or poison. 4905 // br V, BB1, BB2 4906 // BB1: 4907 // CtxI ; V cannot be undef or poison here 4908 auto *Dominator = DNode->getIDom(); 4909 while (Dominator) { 4910 auto *TI = Dominator->getBlock()->getTerminator(); 4911 4912 Value *Cond = nullptr; 4913 if (auto BI = dyn_cast<BranchInst>(TI)) { 4914 if (BI->isConditional()) 4915 Cond = BI->getCondition(); 4916 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4917 Cond = SI->getCondition(); 4918 } 4919 4920 if (Cond) { 4921 if (Cond == V) 4922 return true; 4923 else if (PoisonOnly && isa<Operator>(Cond)) { 4924 // For poison, we can analyze further 4925 auto *Opr = cast<Operator>(Cond); 4926 if (propagatesPoison(Opr) && 4927 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4928 return true; 4929 } 4930 } 4931 4932 Dominator = Dominator->getIDom(); 4933 } 4934 4935 return false; 4936 } 4937 4938 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4939 const Instruction *CtxI, 4940 const DominatorTree *DT, 4941 unsigned Depth) { 4942 return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, false); 4943 } 4944 4945 bool llvm::isGuaranteedNotToBePoison(const Value *V, const Instruction *CtxI, 4946 const DominatorTree *DT, unsigned Depth) { 4947 return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, true); 4948 } 4949 4950 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4951 const DataLayout &DL, 4952 AssumptionCache *AC, 4953 const Instruction *CxtI, 4954 const DominatorTree *DT) { 4955 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4956 Add, DL, AC, CxtI, DT); 4957 } 4958 4959 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4960 const Value *RHS, 4961 const DataLayout &DL, 4962 AssumptionCache *AC, 4963 const Instruction *CxtI, 4964 const DominatorTree *DT) { 4965 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4966 } 4967 4968 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4969 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4970 // of time because it's possible for another thread to interfere with it for an 4971 // arbitrary length of time, but programs aren't allowed to rely on that. 4972 4973 // If there is no successor, then execution can't transfer to it. 4974 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4975 return !CRI->unwindsToCaller(); 4976 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4977 return !CatchSwitch->unwindsToCaller(); 4978 if (isa<ResumeInst>(I)) 4979 return false; 4980 if (isa<ReturnInst>(I)) 4981 return false; 4982 if (isa<UnreachableInst>(I)) 4983 return false; 4984 4985 // Calls can throw, or contain an infinite loop, or kill the process. 4986 if (const auto *CB = dyn_cast<CallBase>(I)) { 4987 // Call sites that throw have implicit non-local control flow. 4988 if (!CB->doesNotThrow()) 4989 return false; 4990 4991 // A function which doens't throw and has "willreturn" attribute will 4992 // always return. 4993 if (CB->hasFnAttr(Attribute::WillReturn)) 4994 return true; 4995 4996 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4997 // etc. and thus not return. However, LLVM already assumes that 4998 // 4999 // - Thread exiting actions are modeled as writes to memory invisible to 5000 // the program. 5001 // 5002 // - Loops that don't have side effects (side effects are volatile/atomic 5003 // stores and IO) always terminate (see http://llvm.org/PR965). 5004 // Furthermore IO itself is also modeled as writes to memory invisible to 5005 // the program. 5006 // 5007 // We rely on those assumptions here, and use the memory effects of the call 5008 // target as a proxy for checking that it always returns. 5009 5010 // FIXME: This isn't aggressive enough; a call which only writes to a global 5011 // is guaranteed to return. 5012 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5013 } 5014 5015 // Other instructions return normally. 5016 return true; 5017 } 5018 5019 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5020 // TODO: This is slightly conservative for invoke instruction since exiting 5021 // via an exception *is* normal control for them. 5022 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5023 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5024 return false; 5025 return true; 5026 } 5027 5028 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5029 const Loop *L) { 5030 // The loop header is guaranteed to be executed for every iteration. 5031 // 5032 // FIXME: Relax this constraint to cover all basic blocks that are 5033 // guaranteed to be executed at every iteration. 5034 if (I->getParent() != L->getHeader()) return false; 5035 5036 for (const Instruction &LI : *L->getHeader()) { 5037 if (&LI == I) return true; 5038 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5039 } 5040 llvm_unreachable("Instruction not contained in its own parent basic block."); 5041 } 5042 5043 bool llvm::propagatesPoison(const Operator *I) { 5044 switch (I->getOpcode()) { 5045 case Instruction::Freeze: 5046 case Instruction::Select: 5047 case Instruction::PHI: 5048 case Instruction::Call: 5049 case Instruction::Invoke: 5050 return false; 5051 case Instruction::ICmp: 5052 case Instruction::FCmp: 5053 case Instruction::GetElementPtr: 5054 return true; 5055 default: 5056 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5057 return true; 5058 5059 // Be conservative and return false. 5060 return false; 5061 } 5062 } 5063 5064 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5065 SmallPtrSetImpl<const Value *> &Operands) { 5066 switch (I->getOpcode()) { 5067 case Instruction::Store: 5068 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5069 break; 5070 5071 case Instruction::Load: 5072 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5073 break; 5074 5075 case Instruction::AtomicCmpXchg: 5076 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5077 break; 5078 5079 case Instruction::AtomicRMW: 5080 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5081 break; 5082 5083 case Instruction::UDiv: 5084 case Instruction::SDiv: 5085 case Instruction::URem: 5086 case Instruction::SRem: 5087 Operands.insert(I->getOperand(1)); 5088 break; 5089 5090 case Instruction::Call: 5091 case Instruction::Invoke: { 5092 const CallBase *CB = cast<CallBase>(I); 5093 if (CB->isIndirectCall()) 5094 Operands.insert(CB->getCalledOperand()); 5095 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5096 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5097 Operands.insert(CB->getArgOperand(i)); 5098 } 5099 break; 5100 } 5101 5102 default: 5103 break; 5104 } 5105 } 5106 5107 bool llvm::mustTriggerUB(const Instruction *I, 5108 const SmallSet<const Value *, 16>& KnownPoison) { 5109 SmallPtrSet<const Value *, 4> NonPoisonOps; 5110 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5111 5112 for (const auto *V : NonPoisonOps) 5113 if (KnownPoison.count(V)) 5114 return true; 5115 5116 return false; 5117 } 5118 5119 static bool programUndefinedIfUndefOrPoison(const Value *V, 5120 bool PoisonOnly) { 5121 // We currently only look for uses of values within the same basic 5122 // block, as that makes it easier to guarantee that the uses will be 5123 // executed given that Inst is executed. 5124 // 5125 // FIXME: Expand this to consider uses beyond the same basic block. To do 5126 // this, look out for the distinction between post-dominance and strong 5127 // post-dominance. 5128 const BasicBlock *BB = nullptr; 5129 BasicBlock::const_iterator Begin; 5130 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5131 BB = Inst->getParent(); 5132 Begin = Inst->getIterator(); 5133 Begin++; 5134 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5135 BB = &Arg->getParent()->getEntryBlock(); 5136 Begin = BB->begin(); 5137 } else { 5138 return false; 5139 } 5140 5141 BasicBlock::const_iterator End = BB->end(); 5142 5143 if (!PoisonOnly) { 5144 // Be conservative & just check whether a value is passed to a noundef 5145 // argument. 5146 // Instructions that raise UB with a poison operand are well-defined 5147 // or have unclear semantics when the input is partially undef. 5148 // For example, 'udiv x, (undef | 1)' isn't UB. 5149 5150 for (auto &I : make_range(Begin, End)) { 5151 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5152 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5153 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5154 CB->getArgOperand(i) == V) 5155 return true; 5156 } 5157 } 5158 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5159 break; 5160 } 5161 return false; 5162 } 5163 5164 // Set of instructions that we have proved will yield poison if Inst 5165 // does. 5166 SmallSet<const Value *, 16> YieldsPoison; 5167 SmallSet<const BasicBlock *, 4> Visited; 5168 5169 YieldsPoison.insert(V); 5170 auto Propagate = [&](const User *User) { 5171 if (propagatesPoison(cast<Operator>(User))) 5172 YieldsPoison.insert(User); 5173 }; 5174 for_each(V->users(), Propagate); 5175 Visited.insert(BB); 5176 5177 unsigned Iter = 0; 5178 while (Iter++ < MaxAnalysisRecursionDepth) { 5179 for (auto &I : make_range(Begin, End)) { 5180 if (mustTriggerUB(&I, YieldsPoison)) 5181 return true; 5182 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5183 return false; 5184 5185 // Mark poison that propagates from I through uses of I. 5186 if (YieldsPoison.count(&I)) 5187 for_each(I.users(), Propagate); 5188 } 5189 5190 if (auto *NextBB = BB->getSingleSuccessor()) { 5191 if (Visited.insert(NextBB).second) { 5192 BB = NextBB; 5193 Begin = BB->getFirstNonPHI()->getIterator(); 5194 End = BB->end(); 5195 continue; 5196 } 5197 } 5198 5199 break; 5200 } 5201 return false; 5202 } 5203 5204 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5205 return ::programUndefinedIfUndefOrPoison(Inst, false); 5206 } 5207 5208 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5209 return ::programUndefinedIfUndefOrPoison(Inst, true); 5210 } 5211 5212 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5213 if (FMF.noNaNs()) 5214 return true; 5215 5216 if (auto *C = dyn_cast<ConstantFP>(V)) 5217 return !C->isNaN(); 5218 5219 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5220 if (!C->getElementType()->isFloatingPointTy()) 5221 return false; 5222 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5223 if (C->getElementAsAPFloat(I).isNaN()) 5224 return false; 5225 } 5226 return true; 5227 } 5228 5229 if (isa<ConstantAggregateZero>(V)) 5230 return true; 5231 5232 return false; 5233 } 5234 5235 static bool isKnownNonZero(const Value *V) { 5236 if (auto *C = dyn_cast<ConstantFP>(V)) 5237 return !C->isZero(); 5238 5239 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5240 if (!C->getElementType()->isFloatingPointTy()) 5241 return false; 5242 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5243 if (C->getElementAsAPFloat(I).isZero()) 5244 return false; 5245 } 5246 return true; 5247 } 5248 5249 return false; 5250 } 5251 5252 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5253 /// Given non-min/max outer cmp/select from the clamp pattern this 5254 /// function recognizes if it can be substitued by a "canonical" min/max 5255 /// pattern. 5256 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5257 Value *CmpLHS, Value *CmpRHS, 5258 Value *TrueVal, Value *FalseVal, 5259 Value *&LHS, Value *&RHS) { 5260 // Try to match 5261 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5262 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5263 // and return description of the outer Max/Min. 5264 5265 // First, check if select has inverse order: 5266 if (CmpRHS == FalseVal) { 5267 std::swap(TrueVal, FalseVal); 5268 Pred = CmpInst::getInversePredicate(Pred); 5269 } 5270 5271 // Assume success now. If there's no match, callers should not use these anyway. 5272 LHS = TrueVal; 5273 RHS = FalseVal; 5274 5275 const APFloat *FC1; 5276 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5277 return {SPF_UNKNOWN, SPNB_NA, false}; 5278 5279 const APFloat *FC2; 5280 switch (Pred) { 5281 case CmpInst::FCMP_OLT: 5282 case CmpInst::FCMP_OLE: 5283 case CmpInst::FCMP_ULT: 5284 case CmpInst::FCMP_ULE: 5285 if (match(FalseVal, 5286 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5287 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5288 *FC1 < *FC2) 5289 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5290 break; 5291 case CmpInst::FCMP_OGT: 5292 case CmpInst::FCMP_OGE: 5293 case CmpInst::FCMP_UGT: 5294 case CmpInst::FCMP_UGE: 5295 if (match(FalseVal, 5296 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5297 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5298 *FC1 > *FC2) 5299 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5300 break; 5301 default: 5302 break; 5303 } 5304 5305 return {SPF_UNKNOWN, SPNB_NA, false}; 5306 } 5307 5308 /// Recognize variations of: 5309 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5310 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5311 Value *CmpLHS, Value *CmpRHS, 5312 Value *TrueVal, Value *FalseVal) { 5313 // Swap the select operands and predicate to match the patterns below. 5314 if (CmpRHS != TrueVal) { 5315 Pred = ICmpInst::getSwappedPredicate(Pred); 5316 std::swap(TrueVal, FalseVal); 5317 } 5318 const APInt *C1; 5319 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5320 const APInt *C2; 5321 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5322 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5323 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5324 return {SPF_SMAX, SPNB_NA, false}; 5325 5326 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5327 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5328 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5329 return {SPF_SMIN, SPNB_NA, false}; 5330 5331 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5332 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5333 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5334 return {SPF_UMAX, SPNB_NA, false}; 5335 5336 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5337 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5338 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5339 return {SPF_UMIN, SPNB_NA, false}; 5340 } 5341 return {SPF_UNKNOWN, SPNB_NA, false}; 5342 } 5343 5344 /// Recognize variations of: 5345 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5346 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5347 Value *CmpLHS, Value *CmpRHS, 5348 Value *TVal, Value *FVal, 5349 unsigned Depth) { 5350 // TODO: Allow FP min/max with nnan/nsz. 5351 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5352 5353 Value *A = nullptr, *B = nullptr; 5354 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5355 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5356 return {SPF_UNKNOWN, SPNB_NA, false}; 5357 5358 Value *C = nullptr, *D = nullptr; 5359 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5360 if (L.Flavor != R.Flavor) 5361 return {SPF_UNKNOWN, SPNB_NA, false}; 5362 5363 // We have something like: x Pred y ? min(a, b) : min(c, d). 5364 // Try to match the compare to the min/max operations of the select operands. 5365 // First, make sure we have the right compare predicate. 5366 switch (L.Flavor) { 5367 case SPF_SMIN: 5368 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5369 Pred = ICmpInst::getSwappedPredicate(Pred); 5370 std::swap(CmpLHS, CmpRHS); 5371 } 5372 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5373 break; 5374 return {SPF_UNKNOWN, SPNB_NA, false}; 5375 case SPF_SMAX: 5376 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5377 Pred = ICmpInst::getSwappedPredicate(Pred); 5378 std::swap(CmpLHS, CmpRHS); 5379 } 5380 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5381 break; 5382 return {SPF_UNKNOWN, SPNB_NA, false}; 5383 case SPF_UMIN: 5384 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5385 Pred = ICmpInst::getSwappedPredicate(Pred); 5386 std::swap(CmpLHS, CmpRHS); 5387 } 5388 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5389 break; 5390 return {SPF_UNKNOWN, SPNB_NA, false}; 5391 case SPF_UMAX: 5392 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5393 Pred = ICmpInst::getSwappedPredicate(Pred); 5394 std::swap(CmpLHS, CmpRHS); 5395 } 5396 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5397 break; 5398 return {SPF_UNKNOWN, SPNB_NA, false}; 5399 default: 5400 return {SPF_UNKNOWN, SPNB_NA, false}; 5401 } 5402 5403 // If there is a common operand in the already matched min/max and the other 5404 // min/max operands match the compare operands (either directly or inverted), 5405 // then this is min/max of the same flavor. 5406 5407 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5408 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5409 if (D == B) { 5410 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5411 match(A, m_Not(m_Specific(CmpRHS))))) 5412 return {L.Flavor, SPNB_NA, false}; 5413 } 5414 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5415 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5416 if (C == B) { 5417 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5418 match(A, m_Not(m_Specific(CmpRHS))))) 5419 return {L.Flavor, SPNB_NA, false}; 5420 } 5421 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5422 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5423 if (D == A) { 5424 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5425 match(B, m_Not(m_Specific(CmpRHS))))) 5426 return {L.Flavor, SPNB_NA, false}; 5427 } 5428 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5429 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5430 if (C == A) { 5431 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5432 match(B, m_Not(m_Specific(CmpRHS))))) 5433 return {L.Flavor, SPNB_NA, false}; 5434 } 5435 5436 return {SPF_UNKNOWN, SPNB_NA, false}; 5437 } 5438 5439 /// If the input value is the result of a 'not' op, constant integer, or vector 5440 /// splat of a constant integer, return the bitwise-not source value. 5441 /// TODO: This could be extended to handle non-splat vector integer constants. 5442 static Value *getNotValue(Value *V) { 5443 Value *NotV; 5444 if (match(V, m_Not(m_Value(NotV)))) 5445 return NotV; 5446 5447 const APInt *C; 5448 if (match(V, m_APInt(C))) 5449 return ConstantInt::get(V->getType(), ~(*C)); 5450 5451 return nullptr; 5452 } 5453 5454 /// Match non-obvious integer minimum and maximum sequences. 5455 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5456 Value *CmpLHS, Value *CmpRHS, 5457 Value *TrueVal, Value *FalseVal, 5458 Value *&LHS, Value *&RHS, 5459 unsigned Depth) { 5460 // Assume success. If there's no match, callers should not use these anyway. 5461 LHS = TrueVal; 5462 RHS = FalseVal; 5463 5464 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5465 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5466 return SPR; 5467 5468 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5469 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5470 return SPR; 5471 5472 // Look through 'not' ops to find disguised min/max. 5473 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5474 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5475 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5476 switch (Pred) { 5477 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5478 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5479 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5480 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5481 default: break; 5482 } 5483 } 5484 5485 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5486 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5487 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5488 switch (Pred) { 5489 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5490 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5491 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5492 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5493 default: break; 5494 } 5495 } 5496 5497 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5498 return {SPF_UNKNOWN, SPNB_NA, false}; 5499 5500 // Z = X -nsw Y 5501 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5502 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5503 if (match(TrueVal, m_Zero()) && 5504 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5505 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5506 5507 // Z = X -nsw Y 5508 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5509 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5510 if (match(FalseVal, m_Zero()) && 5511 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5512 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5513 5514 const APInt *C1; 5515 if (!match(CmpRHS, m_APInt(C1))) 5516 return {SPF_UNKNOWN, SPNB_NA, false}; 5517 5518 // An unsigned min/max can be written with a signed compare. 5519 const APInt *C2; 5520 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5521 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5522 // Is the sign bit set? 5523 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5524 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5525 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5526 C2->isMaxSignedValue()) 5527 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5528 5529 // Is the sign bit clear? 5530 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5531 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5532 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5533 C2->isMinSignedValue()) 5534 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5535 } 5536 5537 return {SPF_UNKNOWN, SPNB_NA, false}; 5538 } 5539 5540 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5541 assert(X && Y && "Invalid operand"); 5542 5543 // X = sub (0, Y) || X = sub nsw (0, Y) 5544 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5545 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5546 return true; 5547 5548 // Y = sub (0, X) || Y = sub nsw (0, X) 5549 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5550 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5551 return true; 5552 5553 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5554 Value *A, *B; 5555 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5556 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5557 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5558 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5559 } 5560 5561 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5562 FastMathFlags FMF, 5563 Value *CmpLHS, Value *CmpRHS, 5564 Value *TrueVal, Value *FalseVal, 5565 Value *&LHS, Value *&RHS, 5566 unsigned Depth) { 5567 if (CmpInst::isFPPredicate(Pred)) { 5568 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5569 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5570 // purpose of identifying min/max. Disregard vector constants with undefined 5571 // elements because those can not be back-propagated for analysis. 5572 Value *OutputZeroVal = nullptr; 5573 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5574 !cast<Constant>(TrueVal)->containsUndefElement()) 5575 OutputZeroVal = TrueVal; 5576 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5577 !cast<Constant>(FalseVal)->containsUndefElement()) 5578 OutputZeroVal = FalseVal; 5579 5580 if (OutputZeroVal) { 5581 if (match(CmpLHS, m_AnyZeroFP())) 5582 CmpLHS = OutputZeroVal; 5583 if (match(CmpRHS, m_AnyZeroFP())) 5584 CmpRHS = OutputZeroVal; 5585 } 5586 } 5587 5588 LHS = CmpLHS; 5589 RHS = CmpRHS; 5590 5591 // Signed zero may return inconsistent results between implementations. 5592 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5593 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5594 // Therefore, we behave conservatively and only proceed if at least one of the 5595 // operands is known to not be zero or if we don't care about signed zero. 5596 switch (Pred) { 5597 default: break; 5598 // FIXME: Include OGT/OLT/UGT/ULT. 5599 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5600 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5601 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5602 !isKnownNonZero(CmpRHS)) 5603 return {SPF_UNKNOWN, SPNB_NA, false}; 5604 } 5605 5606 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5607 bool Ordered = false; 5608 5609 // When given one NaN and one non-NaN input: 5610 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5611 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5612 // ordered comparison fails), which could be NaN or non-NaN. 5613 // so here we discover exactly what NaN behavior is required/accepted. 5614 if (CmpInst::isFPPredicate(Pred)) { 5615 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5616 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5617 5618 if (LHSSafe && RHSSafe) { 5619 // Both operands are known non-NaN. 5620 NaNBehavior = SPNB_RETURNS_ANY; 5621 } else if (CmpInst::isOrdered(Pred)) { 5622 // An ordered comparison will return false when given a NaN, so it 5623 // returns the RHS. 5624 Ordered = true; 5625 if (LHSSafe) 5626 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5627 NaNBehavior = SPNB_RETURNS_NAN; 5628 else if (RHSSafe) 5629 NaNBehavior = SPNB_RETURNS_OTHER; 5630 else 5631 // Completely unsafe. 5632 return {SPF_UNKNOWN, SPNB_NA, false}; 5633 } else { 5634 Ordered = false; 5635 // An unordered comparison will return true when given a NaN, so it 5636 // returns the LHS. 5637 if (LHSSafe) 5638 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5639 NaNBehavior = SPNB_RETURNS_OTHER; 5640 else if (RHSSafe) 5641 NaNBehavior = SPNB_RETURNS_NAN; 5642 else 5643 // Completely unsafe. 5644 return {SPF_UNKNOWN, SPNB_NA, false}; 5645 } 5646 } 5647 5648 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5649 std::swap(CmpLHS, CmpRHS); 5650 Pred = CmpInst::getSwappedPredicate(Pred); 5651 if (NaNBehavior == SPNB_RETURNS_NAN) 5652 NaNBehavior = SPNB_RETURNS_OTHER; 5653 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5654 NaNBehavior = SPNB_RETURNS_NAN; 5655 Ordered = !Ordered; 5656 } 5657 5658 // ([if]cmp X, Y) ? X : Y 5659 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5660 switch (Pred) { 5661 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5662 case ICmpInst::ICMP_UGT: 5663 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5664 case ICmpInst::ICMP_SGT: 5665 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5666 case ICmpInst::ICMP_ULT: 5667 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5668 case ICmpInst::ICMP_SLT: 5669 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5670 case FCmpInst::FCMP_UGT: 5671 case FCmpInst::FCMP_UGE: 5672 case FCmpInst::FCMP_OGT: 5673 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5674 case FCmpInst::FCMP_ULT: 5675 case FCmpInst::FCMP_ULE: 5676 case FCmpInst::FCMP_OLT: 5677 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5678 } 5679 } 5680 5681 if (isKnownNegation(TrueVal, FalseVal)) { 5682 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5683 // match against either LHS or sext(LHS). 5684 auto MaybeSExtCmpLHS = 5685 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5686 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5687 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5688 if (match(TrueVal, MaybeSExtCmpLHS)) { 5689 // Set the return values. If the compare uses the negated value (-X >s 0), 5690 // swap the return values because the negated value is always 'RHS'. 5691 LHS = TrueVal; 5692 RHS = FalseVal; 5693 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5694 std::swap(LHS, RHS); 5695 5696 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5697 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5698 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5699 return {SPF_ABS, SPNB_NA, false}; 5700 5701 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5702 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5703 return {SPF_ABS, SPNB_NA, false}; 5704 5705 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5706 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5707 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5708 return {SPF_NABS, SPNB_NA, false}; 5709 } 5710 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5711 // Set the return values. If the compare uses the negated value (-X >s 0), 5712 // swap the return values because the negated value is always 'RHS'. 5713 LHS = FalseVal; 5714 RHS = TrueVal; 5715 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5716 std::swap(LHS, RHS); 5717 5718 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5719 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5720 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5721 return {SPF_NABS, SPNB_NA, false}; 5722 5723 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5724 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5725 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5726 return {SPF_ABS, SPNB_NA, false}; 5727 } 5728 } 5729 5730 if (CmpInst::isIntPredicate(Pred)) 5731 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5732 5733 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5734 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5735 // semantics than minNum. Be conservative in such case. 5736 if (NaNBehavior != SPNB_RETURNS_ANY || 5737 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5738 !isKnownNonZero(CmpRHS))) 5739 return {SPF_UNKNOWN, SPNB_NA, false}; 5740 5741 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5742 } 5743 5744 /// Helps to match a select pattern in case of a type mismatch. 5745 /// 5746 /// The function processes the case when type of true and false values of a 5747 /// select instruction differs from type of the cmp instruction operands because 5748 /// of a cast instruction. The function checks if it is legal to move the cast 5749 /// operation after "select". If yes, it returns the new second value of 5750 /// "select" (with the assumption that cast is moved): 5751 /// 1. As operand of cast instruction when both values of "select" are same cast 5752 /// instructions. 5753 /// 2. As restored constant (by applying reverse cast operation) when the first 5754 /// value of the "select" is a cast operation and the second value is a 5755 /// constant. 5756 /// NOTE: We return only the new second value because the first value could be 5757 /// accessed as operand of cast instruction. 5758 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5759 Instruction::CastOps *CastOp) { 5760 auto *Cast1 = dyn_cast<CastInst>(V1); 5761 if (!Cast1) 5762 return nullptr; 5763 5764 *CastOp = Cast1->getOpcode(); 5765 Type *SrcTy = Cast1->getSrcTy(); 5766 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5767 // If V1 and V2 are both the same cast from the same type, look through V1. 5768 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5769 return Cast2->getOperand(0); 5770 return nullptr; 5771 } 5772 5773 auto *C = dyn_cast<Constant>(V2); 5774 if (!C) 5775 return nullptr; 5776 5777 Constant *CastedTo = nullptr; 5778 switch (*CastOp) { 5779 case Instruction::ZExt: 5780 if (CmpI->isUnsigned()) 5781 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5782 break; 5783 case Instruction::SExt: 5784 if (CmpI->isSigned()) 5785 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5786 break; 5787 case Instruction::Trunc: 5788 Constant *CmpConst; 5789 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5790 CmpConst->getType() == SrcTy) { 5791 // Here we have the following case: 5792 // 5793 // %cond = cmp iN %x, CmpConst 5794 // %tr = trunc iN %x to iK 5795 // %narrowsel = select i1 %cond, iK %t, iK C 5796 // 5797 // We can always move trunc after select operation: 5798 // 5799 // %cond = cmp iN %x, CmpConst 5800 // %widesel = select i1 %cond, iN %x, iN CmpConst 5801 // %tr = trunc iN %widesel to iK 5802 // 5803 // Note that C could be extended in any way because we don't care about 5804 // upper bits after truncation. It can't be abs pattern, because it would 5805 // look like: 5806 // 5807 // select i1 %cond, x, -x. 5808 // 5809 // So only min/max pattern could be matched. Such match requires widened C 5810 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5811 // CmpConst == C is checked below. 5812 CastedTo = CmpConst; 5813 } else { 5814 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5815 } 5816 break; 5817 case Instruction::FPTrunc: 5818 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5819 break; 5820 case Instruction::FPExt: 5821 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5822 break; 5823 case Instruction::FPToUI: 5824 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5825 break; 5826 case Instruction::FPToSI: 5827 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5828 break; 5829 case Instruction::UIToFP: 5830 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5831 break; 5832 case Instruction::SIToFP: 5833 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5834 break; 5835 default: 5836 break; 5837 } 5838 5839 if (!CastedTo) 5840 return nullptr; 5841 5842 // Make sure the cast doesn't lose any information. 5843 Constant *CastedBack = 5844 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5845 if (CastedBack != C) 5846 return nullptr; 5847 5848 return CastedTo; 5849 } 5850 5851 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5852 Instruction::CastOps *CastOp, 5853 unsigned Depth) { 5854 if (Depth >= MaxAnalysisRecursionDepth) 5855 return {SPF_UNKNOWN, SPNB_NA, false}; 5856 5857 SelectInst *SI = dyn_cast<SelectInst>(V); 5858 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5859 5860 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5861 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5862 5863 Value *TrueVal = SI->getTrueValue(); 5864 Value *FalseVal = SI->getFalseValue(); 5865 5866 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5867 CastOp, Depth); 5868 } 5869 5870 SelectPatternResult llvm::matchDecomposedSelectPattern( 5871 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5872 Instruction::CastOps *CastOp, unsigned Depth) { 5873 CmpInst::Predicate Pred = CmpI->getPredicate(); 5874 Value *CmpLHS = CmpI->getOperand(0); 5875 Value *CmpRHS = CmpI->getOperand(1); 5876 FastMathFlags FMF; 5877 if (isa<FPMathOperator>(CmpI)) 5878 FMF = CmpI->getFastMathFlags(); 5879 5880 // Bail out early. 5881 if (CmpI->isEquality()) 5882 return {SPF_UNKNOWN, SPNB_NA, false}; 5883 5884 // Deal with type mismatches. 5885 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5886 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5887 // If this is a potential fmin/fmax with a cast to integer, then ignore 5888 // -0.0 because there is no corresponding integer value. 5889 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5890 FMF.setNoSignedZeros(); 5891 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5892 cast<CastInst>(TrueVal)->getOperand(0), C, 5893 LHS, RHS, Depth); 5894 } 5895 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5896 // If this is a potential fmin/fmax with a cast to integer, then ignore 5897 // -0.0 because there is no corresponding integer value. 5898 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5899 FMF.setNoSignedZeros(); 5900 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5901 C, cast<CastInst>(FalseVal)->getOperand(0), 5902 LHS, RHS, Depth); 5903 } 5904 } 5905 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5906 LHS, RHS, Depth); 5907 } 5908 5909 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5910 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5911 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5912 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5913 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5914 if (SPF == SPF_FMINNUM) 5915 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5916 if (SPF == SPF_FMAXNUM) 5917 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5918 llvm_unreachable("unhandled!"); 5919 } 5920 5921 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5922 if (SPF == SPF_SMIN) return SPF_SMAX; 5923 if (SPF == SPF_UMIN) return SPF_UMAX; 5924 if (SPF == SPF_SMAX) return SPF_SMIN; 5925 if (SPF == SPF_UMAX) return SPF_UMIN; 5926 llvm_unreachable("unhandled!"); 5927 } 5928 5929 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5930 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5931 } 5932 5933 /// Return true if "icmp Pred LHS RHS" is always true. 5934 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5935 const Value *RHS, const DataLayout &DL, 5936 unsigned Depth) { 5937 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5938 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5939 return true; 5940 5941 switch (Pred) { 5942 default: 5943 return false; 5944 5945 case CmpInst::ICMP_SLE: { 5946 const APInt *C; 5947 5948 // LHS s<= LHS +_{nsw} C if C >= 0 5949 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5950 return !C->isNegative(); 5951 return false; 5952 } 5953 5954 case CmpInst::ICMP_ULE: { 5955 const APInt *C; 5956 5957 // LHS u<= LHS +_{nuw} C for any C 5958 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5959 return true; 5960 5961 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5962 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5963 const Value *&X, 5964 const APInt *&CA, const APInt *&CB) { 5965 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5966 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5967 return true; 5968 5969 // If X & C == 0 then (X | C) == X +_{nuw} C 5970 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5971 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5972 KnownBits Known(CA->getBitWidth()); 5973 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5974 /*CxtI*/ nullptr, /*DT*/ nullptr); 5975 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5976 return true; 5977 } 5978 5979 return false; 5980 }; 5981 5982 const Value *X; 5983 const APInt *CLHS, *CRHS; 5984 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5985 return CLHS->ule(*CRHS); 5986 5987 return false; 5988 } 5989 } 5990 } 5991 5992 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5993 /// ALHS ARHS" is true. Otherwise, return None. 5994 static Optional<bool> 5995 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5996 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5997 const DataLayout &DL, unsigned Depth) { 5998 switch (Pred) { 5999 default: 6000 return None; 6001 6002 case CmpInst::ICMP_SLT: 6003 case CmpInst::ICMP_SLE: 6004 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6005 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6006 return true; 6007 return None; 6008 6009 case CmpInst::ICMP_ULT: 6010 case CmpInst::ICMP_ULE: 6011 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6012 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6013 return true; 6014 return None; 6015 } 6016 } 6017 6018 /// Return true if the operands of the two compares match. IsSwappedOps is true 6019 /// when the operands match, but are swapped. 6020 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6021 const Value *BLHS, const Value *BRHS, 6022 bool &IsSwappedOps) { 6023 6024 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6025 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6026 return IsMatchingOps || IsSwappedOps; 6027 } 6028 6029 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6030 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6031 /// Otherwise, return None if we can't infer anything. 6032 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6033 CmpInst::Predicate BPred, 6034 bool AreSwappedOps) { 6035 // Canonicalize the predicate as if the operands were not commuted. 6036 if (AreSwappedOps) 6037 BPred = ICmpInst::getSwappedPredicate(BPred); 6038 6039 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6040 return true; 6041 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6042 return false; 6043 6044 return None; 6045 } 6046 6047 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6048 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6049 /// Otherwise, return None if we can't infer anything. 6050 static Optional<bool> 6051 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6052 const ConstantInt *C1, 6053 CmpInst::Predicate BPred, 6054 const ConstantInt *C2) { 6055 ConstantRange DomCR = 6056 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6057 ConstantRange CR = 6058 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6059 ConstantRange Intersection = DomCR.intersectWith(CR); 6060 ConstantRange Difference = DomCR.difference(CR); 6061 if (Intersection.isEmptySet()) 6062 return false; 6063 if (Difference.isEmptySet()) 6064 return true; 6065 return None; 6066 } 6067 6068 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6069 /// false. Otherwise, return None if we can't infer anything. 6070 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6071 CmpInst::Predicate BPred, 6072 const Value *BLHS, const Value *BRHS, 6073 const DataLayout &DL, bool LHSIsTrue, 6074 unsigned Depth) { 6075 Value *ALHS = LHS->getOperand(0); 6076 Value *ARHS = LHS->getOperand(1); 6077 6078 // The rest of the logic assumes the LHS condition is true. If that's not the 6079 // case, invert the predicate to make it so. 6080 CmpInst::Predicate APred = 6081 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6082 6083 // Can we infer anything when the two compares have matching operands? 6084 bool AreSwappedOps; 6085 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6086 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6087 APred, BPred, AreSwappedOps)) 6088 return Implication; 6089 // No amount of additional analysis will infer the second condition, so 6090 // early exit. 6091 return None; 6092 } 6093 6094 // Can we infer anything when the LHS operands match and the RHS operands are 6095 // constants (not necessarily matching)? 6096 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6097 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6098 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6099 return Implication; 6100 // No amount of additional analysis will infer the second condition, so 6101 // early exit. 6102 return None; 6103 } 6104 6105 if (APred == BPred) 6106 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6107 return None; 6108 } 6109 6110 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6111 /// false. Otherwise, return None if we can't infer anything. We expect the 6112 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6113 static Optional<bool> 6114 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6115 const Value *RHSOp0, const Value *RHSOp1, 6116 6117 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6118 // The LHS must be an 'or' or an 'and' instruction. 6119 assert((LHS->getOpcode() == Instruction::And || 6120 LHS->getOpcode() == Instruction::Or) && 6121 "Expected LHS to be 'and' or 'or'."); 6122 6123 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6124 6125 // If the result of an 'or' is false, then we know both legs of the 'or' are 6126 // false. Similarly, if the result of an 'and' is true, then we know both 6127 // legs of the 'and' are true. 6128 Value *ALHS, *ARHS; 6129 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6130 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6131 // FIXME: Make this non-recursion. 6132 if (Optional<bool> Implication = isImpliedCondition( 6133 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6134 return Implication; 6135 if (Optional<bool> Implication = isImpliedCondition( 6136 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6137 return Implication; 6138 return None; 6139 } 6140 return None; 6141 } 6142 6143 Optional<bool> 6144 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6145 const Value *RHSOp0, const Value *RHSOp1, 6146 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6147 // Bail out when we hit the limit. 6148 if (Depth == MaxAnalysisRecursionDepth) 6149 return None; 6150 6151 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6152 // example. 6153 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6154 return None; 6155 6156 Type *OpTy = LHS->getType(); 6157 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6158 6159 // FIXME: Extending the code below to handle vectors. 6160 if (OpTy->isVectorTy()) 6161 return None; 6162 6163 assert(OpTy->isIntegerTy(1) && "implied by above"); 6164 6165 // Both LHS and RHS are icmps. 6166 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6167 if (LHSCmp) 6168 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6169 Depth); 6170 6171 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6172 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6173 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6174 if (LHSBO) { 6175 if ((LHSBO->getOpcode() == Instruction::And || 6176 LHSBO->getOpcode() == Instruction::Or)) 6177 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6178 Depth); 6179 } 6180 return None; 6181 } 6182 6183 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6184 const DataLayout &DL, bool LHSIsTrue, 6185 unsigned Depth) { 6186 // LHS ==> RHS by definition 6187 if (LHS == RHS) 6188 return LHSIsTrue; 6189 6190 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6191 if (RHSCmp) 6192 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6193 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6194 LHSIsTrue, Depth); 6195 return None; 6196 } 6197 6198 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6199 // condition dominating ContextI or nullptr, if no condition is found. 6200 static std::pair<Value *, bool> 6201 getDomPredecessorCondition(const Instruction *ContextI) { 6202 if (!ContextI || !ContextI->getParent()) 6203 return {nullptr, false}; 6204 6205 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6206 // dominator tree (eg, from a SimplifyQuery) instead? 6207 const BasicBlock *ContextBB = ContextI->getParent(); 6208 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6209 if (!PredBB) 6210 return {nullptr, false}; 6211 6212 // We need a conditional branch in the predecessor. 6213 Value *PredCond; 6214 BasicBlock *TrueBB, *FalseBB; 6215 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6216 return {nullptr, false}; 6217 6218 // The branch should get simplified. Don't bother simplifying this condition. 6219 if (TrueBB == FalseBB) 6220 return {nullptr, false}; 6221 6222 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6223 "Predecessor block does not point to successor?"); 6224 6225 // Is this condition implied by the predecessor condition? 6226 return {PredCond, TrueBB == ContextBB}; 6227 } 6228 6229 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6230 const Instruction *ContextI, 6231 const DataLayout &DL) { 6232 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6233 auto PredCond = getDomPredecessorCondition(ContextI); 6234 if (PredCond.first) 6235 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6236 return None; 6237 } 6238 6239 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6240 const Value *LHS, const Value *RHS, 6241 const Instruction *ContextI, 6242 const DataLayout &DL) { 6243 auto PredCond = getDomPredecessorCondition(ContextI); 6244 if (PredCond.first) 6245 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6246 PredCond.second); 6247 return None; 6248 } 6249 6250 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6251 APInt &Upper, const InstrInfoQuery &IIQ) { 6252 unsigned Width = Lower.getBitWidth(); 6253 const APInt *C; 6254 switch (BO.getOpcode()) { 6255 case Instruction::Add: 6256 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6257 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6258 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6259 // 'add nuw x, C' produces [C, UINT_MAX]. 6260 Lower = *C; 6261 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6262 if (C->isNegative()) { 6263 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6264 Lower = APInt::getSignedMinValue(Width); 6265 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6266 } else { 6267 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6268 Lower = APInt::getSignedMinValue(Width) + *C; 6269 Upper = APInt::getSignedMaxValue(Width) + 1; 6270 } 6271 } 6272 } 6273 break; 6274 6275 case Instruction::And: 6276 if (match(BO.getOperand(1), m_APInt(C))) 6277 // 'and x, C' produces [0, C]. 6278 Upper = *C + 1; 6279 break; 6280 6281 case Instruction::Or: 6282 if (match(BO.getOperand(1), m_APInt(C))) 6283 // 'or x, C' produces [C, UINT_MAX]. 6284 Lower = *C; 6285 break; 6286 6287 case Instruction::AShr: 6288 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6289 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6290 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6291 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6292 } else if (match(BO.getOperand(0), m_APInt(C))) { 6293 unsigned ShiftAmount = Width - 1; 6294 if (!C->isNullValue() && IIQ.isExact(&BO)) 6295 ShiftAmount = C->countTrailingZeros(); 6296 if (C->isNegative()) { 6297 // 'ashr C, x' produces [C, C >> (Width-1)] 6298 Lower = *C; 6299 Upper = C->ashr(ShiftAmount) + 1; 6300 } else { 6301 // 'ashr C, x' produces [C >> (Width-1), C] 6302 Lower = C->ashr(ShiftAmount); 6303 Upper = *C + 1; 6304 } 6305 } 6306 break; 6307 6308 case Instruction::LShr: 6309 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6310 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6311 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6312 } else if (match(BO.getOperand(0), m_APInt(C))) { 6313 // 'lshr C, x' produces [C >> (Width-1), C]. 6314 unsigned ShiftAmount = Width - 1; 6315 if (!C->isNullValue() && IIQ.isExact(&BO)) 6316 ShiftAmount = C->countTrailingZeros(); 6317 Lower = C->lshr(ShiftAmount); 6318 Upper = *C + 1; 6319 } 6320 break; 6321 6322 case Instruction::Shl: 6323 if (match(BO.getOperand(0), m_APInt(C))) { 6324 if (IIQ.hasNoUnsignedWrap(&BO)) { 6325 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6326 Lower = *C; 6327 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6328 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6329 if (C->isNegative()) { 6330 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6331 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6332 Lower = C->shl(ShiftAmount); 6333 Upper = *C + 1; 6334 } else { 6335 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6336 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6337 Lower = *C; 6338 Upper = C->shl(ShiftAmount) + 1; 6339 } 6340 } 6341 } 6342 break; 6343 6344 case Instruction::SDiv: 6345 if (match(BO.getOperand(1), m_APInt(C))) { 6346 APInt IntMin = APInt::getSignedMinValue(Width); 6347 APInt IntMax = APInt::getSignedMaxValue(Width); 6348 if (C->isAllOnesValue()) { 6349 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6350 // where C != -1 and C != 0 and C != 1 6351 Lower = IntMin + 1; 6352 Upper = IntMax + 1; 6353 } else if (C->countLeadingZeros() < Width - 1) { 6354 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6355 // where C != -1 and C != 0 and C != 1 6356 Lower = IntMin.sdiv(*C); 6357 Upper = IntMax.sdiv(*C); 6358 if (Lower.sgt(Upper)) 6359 std::swap(Lower, Upper); 6360 Upper = Upper + 1; 6361 assert(Upper != Lower && "Upper part of range has wrapped!"); 6362 } 6363 } else if (match(BO.getOperand(0), m_APInt(C))) { 6364 if (C->isMinSignedValue()) { 6365 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6366 Lower = *C; 6367 Upper = Lower.lshr(1) + 1; 6368 } else { 6369 // 'sdiv C, x' produces [-|C|, |C|]. 6370 Upper = C->abs() + 1; 6371 Lower = (-Upper) + 1; 6372 } 6373 } 6374 break; 6375 6376 case Instruction::UDiv: 6377 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6378 // 'udiv x, C' produces [0, UINT_MAX / C]. 6379 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6380 } else if (match(BO.getOperand(0), m_APInt(C))) { 6381 // 'udiv C, x' produces [0, C]. 6382 Upper = *C + 1; 6383 } 6384 break; 6385 6386 case Instruction::SRem: 6387 if (match(BO.getOperand(1), m_APInt(C))) { 6388 // 'srem x, C' produces (-|C|, |C|). 6389 Upper = C->abs(); 6390 Lower = (-Upper) + 1; 6391 } 6392 break; 6393 6394 case Instruction::URem: 6395 if (match(BO.getOperand(1), m_APInt(C))) 6396 // 'urem x, C' produces [0, C). 6397 Upper = *C; 6398 break; 6399 6400 default: 6401 break; 6402 } 6403 } 6404 6405 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6406 APInt &Upper) { 6407 unsigned Width = Lower.getBitWidth(); 6408 const APInt *C; 6409 switch (II.getIntrinsicID()) { 6410 case Intrinsic::uadd_sat: 6411 // uadd.sat(x, C) produces [C, UINT_MAX]. 6412 if (match(II.getOperand(0), m_APInt(C)) || 6413 match(II.getOperand(1), m_APInt(C))) 6414 Lower = *C; 6415 break; 6416 case Intrinsic::sadd_sat: 6417 if (match(II.getOperand(0), m_APInt(C)) || 6418 match(II.getOperand(1), m_APInt(C))) { 6419 if (C->isNegative()) { 6420 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6421 Lower = APInt::getSignedMinValue(Width); 6422 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6423 } else { 6424 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6425 Lower = APInt::getSignedMinValue(Width) + *C; 6426 Upper = APInt::getSignedMaxValue(Width) + 1; 6427 } 6428 } 6429 break; 6430 case Intrinsic::usub_sat: 6431 // usub.sat(C, x) produces [0, C]. 6432 if (match(II.getOperand(0), m_APInt(C))) 6433 Upper = *C + 1; 6434 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6435 else if (match(II.getOperand(1), m_APInt(C))) 6436 Upper = APInt::getMaxValue(Width) - *C + 1; 6437 break; 6438 case Intrinsic::ssub_sat: 6439 if (match(II.getOperand(0), m_APInt(C))) { 6440 if (C->isNegative()) { 6441 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6442 Lower = APInt::getSignedMinValue(Width); 6443 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6444 } else { 6445 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6446 Lower = *C - APInt::getSignedMaxValue(Width); 6447 Upper = APInt::getSignedMaxValue(Width) + 1; 6448 } 6449 } else if (match(II.getOperand(1), m_APInt(C))) { 6450 if (C->isNegative()) { 6451 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6452 Lower = APInt::getSignedMinValue(Width) - *C; 6453 Upper = APInt::getSignedMaxValue(Width) + 1; 6454 } else { 6455 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6456 Lower = APInt::getSignedMinValue(Width); 6457 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6458 } 6459 } 6460 break; 6461 case Intrinsic::umin: 6462 case Intrinsic::umax: 6463 case Intrinsic::smin: 6464 case Intrinsic::smax: 6465 if (!match(II.getOperand(0), m_APInt(C)) && 6466 !match(II.getOperand(1), m_APInt(C))) 6467 break; 6468 6469 switch (II.getIntrinsicID()) { 6470 case Intrinsic::umin: 6471 Upper = *C + 1; 6472 break; 6473 case Intrinsic::umax: 6474 Lower = *C; 6475 break; 6476 case Intrinsic::smin: 6477 Lower = APInt::getSignedMinValue(Width); 6478 Upper = *C + 1; 6479 break; 6480 case Intrinsic::smax: 6481 Lower = *C; 6482 Upper = APInt::getSignedMaxValue(Width) + 1; 6483 break; 6484 default: 6485 llvm_unreachable("Must be min/max intrinsic"); 6486 } 6487 break; 6488 case Intrinsic::abs: 6489 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6490 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6491 if (match(II.getOperand(1), m_One())) 6492 Upper = APInt::getSignedMaxValue(Width) + 1; 6493 else 6494 Upper = APInt::getSignedMinValue(Width) + 1; 6495 break; 6496 default: 6497 break; 6498 } 6499 } 6500 6501 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6502 APInt &Upper, const InstrInfoQuery &IIQ) { 6503 const Value *LHS = nullptr, *RHS = nullptr; 6504 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6505 if (R.Flavor == SPF_UNKNOWN) 6506 return; 6507 6508 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6509 6510 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6511 // If the negation part of the abs (in RHS) has the NSW flag, 6512 // then the result of abs(X) is [0..SIGNED_MAX], 6513 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6514 Lower = APInt::getNullValue(BitWidth); 6515 if (match(RHS, m_Neg(m_Specific(LHS))) && 6516 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6517 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6518 else 6519 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6520 return; 6521 } 6522 6523 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6524 // The result of -abs(X) is <= 0. 6525 Lower = APInt::getSignedMinValue(BitWidth); 6526 Upper = APInt(BitWidth, 1); 6527 return; 6528 } 6529 6530 const APInt *C; 6531 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6532 return; 6533 6534 switch (R.Flavor) { 6535 case SPF_UMIN: 6536 Upper = *C + 1; 6537 break; 6538 case SPF_UMAX: 6539 Lower = *C; 6540 break; 6541 case SPF_SMIN: 6542 Lower = APInt::getSignedMinValue(BitWidth); 6543 Upper = *C + 1; 6544 break; 6545 case SPF_SMAX: 6546 Lower = *C; 6547 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6548 break; 6549 default: 6550 break; 6551 } 6552 } 6553 6554 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6555 AssumptionCache *AC, 6556 const Instruction *CtxI, 6557 unsigned Depth) { 6558 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6559 6560 if (Depth == MaxAnalysisRecursionDepth) 6561 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6562 6563 const APInt *C; 6564 if (match(V, m_APInt(C))) 6565 return ConstantRange(*C); 6566 6567 InstrInfoQuery IIQ(UseInstrInfo); 6568 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6569 APInt Lower = APInt(BitWidth, 0); 6570 APInt Upper = APInt(BitWidth, 0); 6571 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6572 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6573 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6574 setLimitsForIntrinsic(*II, Lower, Upper); 6575 else if (auto *SI = dyn_cast<SelectInst>(V)) 6576 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6577 6578 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6579 6580 if (auto *I = dyn_cast<Instruction>(V)) 6581 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6582 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6583 6584 if (CtxI && AC) { 6585 // Try to restrict the range based on information from assumptions. 6586 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6587 if (!AssumeVH) 6588 continue; 6589 CallInst *I = cast<CallInst>(AssumeVH); 6590 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6591 "Got assumption for the wrong function!"); 6592 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6593 "must be an assume intrinsic"); 6594 6595 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6596 continue; 6597 Value *Arg = I->getArgOperand(0); 6598 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6599 // Currently we just use information from comparisons. 6600 if (!Cmp || Cmp->getOperand(0) != V) 6601 continue; 6602 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6603 AC, I, Depth + 1); 6604 CR = CR.intersectWith( 6605 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6606 } 6607 } 6608 6609 return CR; 6610 } 6611 6612 static Optional<int64_t> 6613 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6614 // Skip over the first indices. 6615 gep_type_iterator GTI = gep_type_begin(GEP); 6616 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6617 /*skip along*/; 6618 6619 // Compute the offset implied by the rest of the indices. 6620 int64_t Offset = 0; 6621 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6622 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6623 if (!OpC) 6624 return None; 6625 if (OpC->isZero()) 6626 continue; // No offset. 6627 6628 // Handle struct indices, which add their field offset to the pointer. 6629 if (StructType *STy = GTI.getStructTypeOrNull()) { 6630 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6631 continue; 6632 } 6633 6634 // Otherwise, we have a sequential type like an array or fixed-length 6635 // vector. Multiply the index by the ElementSize. 6636 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6637 if (Size.isScalable()) 6638 return None; 6639 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6640 } 6641 6642 return Offset; 6643 } 6644 6645 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6646 const DataLayout &DL) { 6647 Ptr1 = Ptr1->stripPointerCasts(); 6648 Ptr2 = Ptr2->stripPointerCasts(); 6649 6650 // Handle the trivial case first. 6651 if (Ptr1 == Ptr2) { 6652 return 0; 6653 } 6654 6655 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6656 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6657 6658 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6659 // as in "P" and "gep P, 1". 6660 // Also do this iteratively to handle the the following case: 6661 // Ptr_t1 = GEP Ptr1, c1 6662 // Ptr_t2 = GEP Ptr_t1, c2 6663 // Ptr2 = GEP Ptr_t2, c3 6664 // where we will return c1+c2+c3. 6665 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6666 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6667 // are the same, and return the difference between offsets. 6668 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6669 const Value *Ptr) -> Optional<int64_t> { 6670 const GEPOperator *GEP_T = GEP; 6671 int64_t OffsetVal = 0; 6672 bool HasSameBase = false; 6673 while (GEP_T) { 6674 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6675 if (!Offset) 6676 return None; 6677 OffsetVal += *Offset; 6678 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6679 if (Op0 == Ptr) { 6680 HasSameBase = true; 6681 break; 6682 } 6683 GEP_T = dyn_cast<GEPOperator>(Op0); 6684 } 6685 if (!HasSameBase) 6686 return None; 6687 return OffsetVal; 6688 }; 6689 6690 if (GEP1) { 6691 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6692 if (Offset) 6693 return -*Offset; 6694 } 6695 if (GEP2) { 6696 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6697 if (Offset) 6698 return Offset; 6699 } 6700 6701 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6702 // base. After that base, they may have some number of common (and 6703 // potentially variable) indices. After that they handle some constant 6704 // offset, which determines their offset from each other. At this point, we 6705 // handle no other case. 6706 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6707 return None; 6708 6709 // Skip any common indices and track the GEP types. 6710 unsigned Idx = 1; 6711 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6712 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6713 break; 6714 6715 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6716 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6717 if (!Offset1 || !Offset2) 6718 return None; 6719 return *Offset2 - *Offset1; 6720 } 6721