1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 165 // If we've been provided with a context instruction, then use that (provided 166 // it has been inserted). 167 if (CxtI && CxtI->getParent()) 168 return CxtI; 169 170 // If the value is really an already-inserted instruction, then use that. 171 CxtI = dyn_cast<Instruction>(V1); 172 if (CxtI && CxtI->getParent()) 173 return CxtI; 174 175 CxtI = dyn_cast<Instruction>(V2); 176 if (CxtI && CxtI->getParent()) 177 return CxtI; 178 179 return nullptr; 180 } 181 182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 183 const APInt &DemandedElts, 184 APInt &DemandedLHS, APInt &DemandedRHS) { 185 // The length of scalable vectors is unknown at compile time, thus we 186 // cannot check their values 187 if (isa<ScalableVectorType>(Shuf->getType())) 188 return false; 189 190 int NumElts = 191 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 192 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 193 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 194 if (DemandedElts.isNullValue()) 195 return true; 196 // Simple case of a shuffle with zeroinitializer. 197 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 198 DemandedLHS.setBit(0); 199 return true; 200 } 201 for (int i = 0; i != NumMaskElts; ++i) { 202 if (!DemandedElts[i]) 203 continue; 204 int M = Shuf->getMaskValue(i); 205 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 206 207 // For undef elements, we don't know anything about the common state of 208 // the shuffle result. 209 if (M == -1) 210 return false; 211 if (M < NumElts) 212 DemandedLHS.setBit(M % NumElts); 213 else 214 DemandedRHS.setBit(M % NumElts); 215 } 216 217 return true; 218 } 219 220 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 221 KnownBits &Known, unsigned Depth, const Query &Q); 222 223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 224 const Query &Q) { 225 // FIXME: We currently have no way to represent the DemandedElts of a scalable 226 // vector 227 if (isa<ScalableVectorType>(V->getType())) { 228 Known.resetAll(); 229 return; 230 } 231 232 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 233 APInt DemandedElts = 234 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 235 computeKnownBits(V, DemandedElts, Known, Depth, Q); 236 } 237 238 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 239 const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, 242 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 243 ::computeKnownBits(V, Known, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 245 } 246 247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 248 KnownBits &Known, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, const DominatorTree *DT, 251 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 252 ::computeKnownBits(V, DemandedElts, Known, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 257 unsigned Depth, const Query &Q); 258 259 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 260 const Query &Q); 261 262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 263 unsigned Depth, AssumptionCache *AC, 264 const Instruction *CxtI, 265 const DominatorTree *DT, 266 OptimizationRemarkEmitter *ORE, 267 bool UseInstrInfo) { 268 return ::computeKnownBits( 269 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 270 } 271 272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 273 const DataLayout &DL, unsigned Depth, 274 AssumptionCache *AC, const Instruction *CxtI, 275 const DominatorTree *DT, 276 OptimizationRemarkEmitter *ORE, 277 bool UseInstrInfo) { 278 return ::computeKnownBits( 279 V, DemandedElts, Depth, 280 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 281 } 282 283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 284 const DataLayout &DL, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT, 286 bool UseInstrInfo) { 287 assert(LHS->getType() == RHS->getType() && 288 "LHS and RHS should have the same type"); 289 assert(LHS->getType()->isIntOrIntVectorTy() && 290 "LHS and RHS should be integers"); 291 // Look for an inverted mask: (X & ~M) op (Y & M). 292 Value *M; 293 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 294 match(RHS, m_c_And(m_Specific(M), m_Value()))) 295 return true; 296 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 297 match(LHS, m_c_And(m_Specific(M), m_Value()))) 298 return true; 299 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 300 KnownBits LHSKnown(IT->getBitWidth()); 301 KnownBits RHSKnown(IT->getBitWidth()); 302 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 303 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 304 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 305 } 306 307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 308 for (const User *U : CxtI->users()) { 309 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 310 if (IC->isEquality()) 311 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 312 if (C->isNullValue()) 313 continue; 314 return false; 315 } 316 return true; 317 } 318 319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 320 const Query &Q); 321 322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 323 bool OrZero, unsigned Depth, 324 AssumptionCache *AC, const Instruction *CxtI, 325 const DominatorTree *DT, bool UseInstrInfo) { 326 return ::isKnownToBeAPowerOfTwo( 327 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 328 } 329 330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 331 unsigned Depth, const Query &Q); 332 333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 334 335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 return ::isKnownNonZero(V, Depth, 339 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 340 } 341 342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 343 unsigned Depth, AssumptionCache *AC, 344 const Instruction *CxtI, const DominatorTree *DT, 345 bool UseInstrInfo) { 346 KnownBits Known = 347 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 348 return Known.isNonNegative(); 349 } 350 351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 352 AssumptionCache *AC, const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 if (auto *CI = dyn_cast<ConstantInt>(V)) 355 return CI->getValue().isStrictlyPositive(); 356 357 // TODO: We'd doing two recursive queries here. We should factor this such 358 // that only a single query is needed. 359 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 360 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 361 } 362 363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 364 AssumptionCache *AC, const Instruction *CxtI, 365 const DominatorTree *DT, bool UseInstrInfo) { 366 KnownBits Known = 367 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 368 return Known.isNegative(); 369 } 370 371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 372 const Query &Q); 373 374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 375 const DataLayout &DL, AssumptionCache *AC, 376 const Instruction *CxtI, const DominatorTree *DT, 377 bool UseInstrInfo) { 378 return ::isKnownNonEqual(V1, V2, 0, 379 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 380 UseInstrInfo, /*ORE=*/nullptr)); 381 } 382 383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 384 const Query &Q); 385 386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 387 const DataLayout &DL, unsigned Depth, 388 AssumptionCache *AC, const Instruction *CxtI, 389 const DominatorTree *DT, bool UseInstrInfo) { 390 return ::MaskedValueIsZero( 391 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 392 } 393 394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 395 unsigned Depth, const Query &Q); 396 397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 398 const Query &Q) { 399 // FIXME: We currently have no way to represent the DemandedElts of a scalable 400 // vector 401 if (isa<ScalableVectorType>(V->getType())) 402 return 1; 403 404 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 405 APInt DemandedElts = 406 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 407 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 408 } 409 410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 411 unsigned Depth, AssumptionCache *AC, 412 const Instruction *CxtI, 413 const DominatorTree *DT, bool UseInstrInfo) { 414 return ::ComputeNumSignBits( 415 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 416 } 417 418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 419 bool NSW, const APInt &DemandedElts, 420 KnownBits &KnownOut, KnownBits &Known2, 421 unsigned Depth, const Query &Q) { 422 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 423 424 // If one operand is unknown and we have no nowrap information, 425 // the result will be unknown independently of the second operand. 426 if (KnownOut.isUnknown() && !NSW) 427 return; 428 429 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 430 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 431 } 432 433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 434 const APInt &DemandedElts, KnownBits &Known, 435 KnownBits &Known2, unsigned Depth, 436 const Query &Q) { 437 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 438 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 439 440 bool isKnownNegative = false; 441 bool isKnownNonNegative = false; 442 // If the multiplication is known not to overflow, compute the sign bit. 443 if (NSW) { 444 if (Op0 == Op1) { 445 // The product of a number with itself is non-negative. 446 isKnownNonNegative = true; 447 } else { 448 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 449 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 450 bool isKnownNegativeOp1 = Known.isNegative(); 451 bool isKnownNegativeOp0 = Known2.isNegative(); 452 // The product of two numbers with the same sign is non-negative. 453 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 454 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 455 // The product of a negative number and a non-negative number is either 456 // negative or zero. 457 if (!isKnownNonNegative) 458 isKnownNegative = 459 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 460 Known2.isNonZero()) || 461 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 462 } 463 } 464 465 Known = KnownBits::computeForMul(Known, Known2); 466 467 // Only make use of no-wrap flags if we failed to compute the sign bit 468 // directly. This matters if the multiplication always overflows, in 469 // which case we prefer to follow the result of the direct computation, 470 // though as the program is invoking undefined behaviour we can choose 471 // whatever we like here. 472 if (isKnownNonNegative && !Known.isNegative()) 473 Known.makeNonNegative(); 474 else if (isKnownNegative && !Known.isNonNegative()) 475 Known.makeNegative(); 476 } 477 478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 479 KnownBits &Known) { 480 unsigned BitWidth = Known.getBitWidth(); 481 unsigned NumRanges = Ranges.getNumOperands() / 2; 482 assert(NumRanges >= 1); 483 484 Known.Zero.setAllBits(); 485 Known.One.setAllBits(); 486 487 for (unsigned i = 0; i < NumRanges; ++i) { 488 ConstantInt *Lower = 489 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 490 ConstantInt *Upper = 491 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 492 ConstantRange Range(Lower->getValue(), Upper->getValue()); 493 494 // The first CommonPrefixBits of all values in Range are equal. 495 unsigned CommonPrefixBits = 496 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 497 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 498 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 499 Known.One &= UnsignedMax & Mask; 500 Known.Zero &= ~UnsignedMax & Mask; 501 } 502 } 503 504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 505 SmallVector<const Value *, 16> WorkSet(1, I); 506 SmallPtrSet<const Value *, 32> Visited; 507 SmallPtrSet<const Value *, 16> EphValues; 508 509 // The instruction defining an assumption's condition itself is always 510 // considered ephemeral to that assumption (even if it has other 511 // non-ephemeral users). See r246696's test case for an example. 512 if (is_contained(I->operands(), E)) 513 return true; 514 515 while (!WorkSet.empty()) { 516 const Value *V = WorkSet.pop_back_val(); 517 if (!Visited.insert(V).second) 518 continue; 519 520 // If all uses of this value are ephemeral, then so is this value. 521 if (llvm::all_of(V->users(), [&](const User *U) { 522 return EphValues.count(U); 523 })) { 524 if (V == E) 525 return true; 526 527 if (V == I || isSafeToSpeculativelyExecute(V)) { 528 EphValues.insert(V); 529 if (const User *U = dyn_cast<User>(V)) 530 append_range(WorkSet, U->operands()); 531 } 532 } 533 } 534 535 return false; 536 } 537 538 // Is this an intrinsic that cannot be speculated but also cannot trap? 539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 540 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 541 return CI->isAssumeLikeIntrinsic(); 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 // We limit the scan distance between the assume and its context instruction 573 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 574 // it can be adjusted if needed (could be turned into a cl::opt). 575 unsigned ScanLimit = 15; 576 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 577 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 578 return false; 579 580 return !isEphemeralValueOf(Inv, CxtI); 581 } 582 583 // Inv and CxtI are in different blocks. 584 if (DT) { 585 if (DT->dominates(Inv, CxtI)) 586 return true; 587 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 588 // We don't have a DT, but this trivially dominates. 589 return true; 590 } 591 592 return false; 593 } 594 595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 596 // v u> y implies v != 0. 597 if (Pred == ICmpInst::ICMP_UGT) 598 return true; 599 600 // Special-case v != 0 to also handle v != null. 601 if (Pred == ICmpInst::ICMP_NE) 602 return match(RHS, m_Zero()); 603 604 // All other predicates - rely on generic ConstantRange handling. 605 const APInt *C; 606 if (!match(RHS, m_APInt(C))) 607 return false; 608 609 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 610 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 611 } 612 613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 614 // Use of assumptions is context-sensitive. If we don't have a context, we 615 // cannot use them! 616 if (!Q.AC || !Q.CxtI) 617 return false; 618 619 if (Q.CxtI && V->getType()->isPointerTy()) { 620 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 621 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 622 V->getType()->getPointerAddressSpace())) 623 AttrKinds.push_back(Attribute::Dereferenceable); 624 625 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 626 return true; 627 } 628 629 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 630 if (!AssumeVH) 631 continue; 632 CallInst *I = cast<CallInst>(AssumeVH); 633 assert(I->getFunction() == Q.CxtI->getFunction() && 634 "Got assumption for the wrong function!"); 635 if (Q.isExcluded(I)) 636 continue; 637 638 // Warning: This loop can end up being somewhat performance sensitive. 639 // We're running this loop for once for each value queried resulting in a 640 // runtime of ~O(#assumes * #values). 641 642 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 643 "must be an assume intrinsic"); 644 645 Value *RHS; 646 CmpInst::Predicate Pred; 647 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 648 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 649 return false; 650 651 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 652 return true; 653 } 654 655 return false; 656 } 657 658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 659 unsigned Depth, const Query &Q) { 660 // Use of assumptions is context-sensitive. If we don't have a context, we 661 // cannot use them! 662 if (!Q.AC || !Q.CxtI) 663 return; 664 665 unsigned BitWidth = Known.getBitWidth(); 666 667 // Refine Known set if the pointer alignment is set by assume bundles. 668 if (V->getType()->isPointerTy()) { 669 if (RetainedKnowledge RK = getKnowledgeValidInContext( 670 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 671 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 672 } 673 } 674 675 // Note that the patterns below need to be kept in sync with the code 676 // in AssumptionCache::updateAffectedValues. 677 678 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 679 if (!AssumeVH) 680 continue; 681 CallInst *I = cast<CallInst>(AssumeVH); 682 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 683 "Got assumption for the wrong function!"); 684 if (Q.isExcluded(I)) 685 continue; 686 687 // Warning: This loop can end up being somewhat performance sensitive. 688 // We're running this loop for once for each value queried resulting in a 689 // runtime of ~O(#assumes * #values). 690 691 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 692 "must be an assume intrinsic"); 693 694 Value *Arg = I->getArgOperand(0); 695 696 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 assert(BitWidth == 1 && "assume operand is not i1?"); 698 Known.setAllOnes(); 699 return; 700 } 701 if (match(Arg, m_Not(m_Specific(V))) && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllZero(); 705 return; 706 } 707 708 // The remaining tests are all recursive, so bail out if we hit the limit. 709 if (Depth == MaxAnalysisRecursionDepth) 710 continue; 711 712 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 713 if (!Cmp) 714 continue; 715 716 // Note that ptrtoint may change the bitwidth. 717 Value *A, *B; 718 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 719 720 CmpInst::Predicate Pred; 721 uint64_t C; 722 switch (Cmp->getPredicate()) { 723 default: 724 break; 725 case ICmpInst::ICMP_EQ: 726 // assume(v = a) 727 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 731 Known.Zero |= RHSKnown.Zero; 732 Known.One |= RHSKnown.One; 733 // assume(v & b = a) 734 } else if (match(Cmp, 735 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // known bits from the RHS to V. 744 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 745 Known.One |= RHSKnown.One & MaskKnown.One; 746 // assume(~(v & b) = a) 747 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 748 m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 KnownBits MaskKnown = 753 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 754 755 // For those bits in the mask that are known to be one, we can propagate 756 // inverted known bits from the RHS to V. 757 Known.Zero |= RHSKnown.One & MaskKnown.One; 758 Known.One |= RHSKnown.Zero & MaskKnown.One; 759 // assume(v | b = a) 760 } else if (match(Cmp, 761 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate known 769 // bits from the RHS to V. 770 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 771 Known.One |= RHSKnown.One & BKnown.Zero; 772 // assume(~(v | b) = a) 773 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 774 m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate 782 // inverted known bits from the RHS to V. 783 Known.Zero |= RHSKnown.One & BKnown.Zero; 784 Known.One |= RHSKnown.Zero & BKnown.Zero; 785 // assume(v ^ b = a) 786 } else if (match(Cmp, 787 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 789 KnownBits RHSKnown = 790 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 KnownBits BKnown = 792 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 793 794 // For those bits in B that are known to be zero, we can propagate known 795 // bits from the RHS to V. For those bits in B that are known to be one, 796 // we can propagate inverted known bits from the RHS to V. 797 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 798 Known.One |= RHSKnown.One & BKnown.Zero; 799 Known.Zero |= RHSKnown.One & BKnown.One; 800 Known.One |= RHSKnown.Zero & BKnown.One; 801 // assume(~(v ^ b) = a) 802 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 803 m_Value(A))) && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown = 806 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 KnownBits BKnown = 808 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 810 // For those bits in B that are known to be zero, we can propagate 811 // inverted known bits from the RHS to V. For those bits in B that are 812 // known to be one, we can propagate known bits from the RHS to V. 813 Known.Zero |= RHSKnown.One & BKnown.Zero; 814 Known.One |= RHSKnown.Zero & BKnown.Zero; 815 Known.Zero |= RHSKnown.Zero & BKnown.One; 816 Known.One |= RHSKnown.One & BKnown.One; 817 // assume(v << c = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 823 824 // For those bits in RHS that are known, we can propagate them to known 825 // bits in V shifted to the right by C. 826 RHSKnown.Zero.lshrInPlace(C); 827 Known.Zero |= RHSKnown.Zero; 828 RHSKnown.One.lshrInPlace(C); 829 Known.One |= RHSKnown.One; 830 // assume(~(v << c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 RHSKnown.One.lshrInPlace(C); 839 Known.Zero |= RHSKnown.One; 840 RHSKnown.Zero.lshrInPlace(C); 841 Known.One |= RHSKnown.Zero; 842 // assume(v >> c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 Known.Zero |= RHSKnown.Zero << C; 851 Known.One |= RHSKnown.One << C; 852 // assume(~(v >> c) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 856 KnownBits RHSKnown = 857 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 858 // For those bits in RHS that are known, we can propagate them inverted 859 // to known bits in V shifted to the right by C. 860 Known.Zero |= RHSKnown.One << C; 861 Known.One |= RHSKnown.Zero << C; 862 } 863 break; 864 case ICmpInst::ICMP_SGE: 865 // assume(v >=_s c) where c is non-negative 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SGT: 878 // assume(v >_s c) where c is at least -1. 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 885 // We know that the sign bit is zero. 886 Known.makeNonNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLE: 891 // assume(v <=_s c) where c is negative 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_SLT: 904 // assume(v <_s c) where c is non-positive 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 909 910 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 911 // We know that the sign bit is one. 912 Known.makeNegative(); 913 } 914 } 915 break; 916 case ICmpInst::ICMP_ULE: 917 // assume(v <=_u c) 918 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 919 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 920 KnownBits RHSKnown = 921 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 922 923 // Whatever high bits in c are zero are known to be zero. 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 925 } 926 break; 927 case ICmpInst::ICMP_ULT: 928 // assume(v <_u c) 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 933 934 // If the RHS is known zero, then this assumption must be wrong (nothing 935 // is unsigned less than zero). Signal a conflict and get out of here. 936 if (RHSKnown.isZero()) { 937 Known.Zero.setAllBits(); 938 Known.One.setAllBits(); 939 break; 940 } 941 942 // Whatever high bits in c are zero are known to be zero (if c is a power 943 // of 2, then one more). 944 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 946 else 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 } 951 } 952 953 // If assumptions conflict with each other or previous known bits, then we 954 // have a logical fallacy. It's possible that the assumption is not reachable, 955 // so this isn't a real bug. On the other hand, the program may have undefined 956 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 957 // clear out the known bits, try to warn the user, and hope for the best. 958 if (Known.Zero.intersects(Known.One)) { 959 Known.resetAll(); 960 961 if (Q.ORE) 962 Q.ORE->emit([&]() { 963 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 964 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 965 CxtI) 966 << "Detected conflicting code assumptions. Program may " 967 "have undefined behavior, or compiler may have " 968 "internal error."; 969 }); 970 } 971 } 972 973 /// Compute known bits from a shift operator, including those with a 974 /// non-constant shift amount. Known is the output of this function. Known2 is a 975 /// pre-allocated temporary with the same bit width as Known and on return 976 /// contains the known bit of the shift value source. KF is an 977 /// operator-specific function that, given the known-bits and a shift amount, 978 /// compute the implied known-bits of the shift operator's result respectively 979 /// for that shift amount. The results from calling KF are conservatively 980 /// combined for all permitted shift amounts. 981 static void computeKnownBitsFromShiftOperator( 982 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 983 KnownBits &Known2, unsigned Depth, const Query &Q, 984 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 985 unsigned BitWidth = Known.getBitWidth(); 986 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 988 989 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 990 // BitWidth > 64 and any upper bits are known, we'll end up returning the 991 // limit value (which implies all bits are known). 992 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 993 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 994 bool ShiftAmtIsConstant = Known.isConstant(); 995 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 996 997 if (ShiftAmtIsConstant) { 998 Known = KF(Known2, Known); 999 1000 // If the known bits conflict, this must be an overflowing left shift, so 1001 // the shift result is poison. We can return anything we want. Choose 0 for 1002 // the best folding opportunity. 1003 if (Known.hasConflict()) 1004 Known.setAllZero(); 1005 1006 return; 1007 } 1008 1009 // If the shift amount could be greater than or equal to the bit-width of the 1010 // LHS, the value could be poison, but bail out because the check below is 1011 // expensive. 1012 // TODO: Should we just carry on? 1013 if (MaxShiftAmtIsOutOfRange) { 1014 Known.resetAll(); 1015 return; 1016 } 1017 1018 // It would be more-clearly correct to use the two temporaries for this 1019 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1020 Known.resetAll(); 1021 1022 // If we know the shifter operand is nonzero, we can sometimes infer more 1023 // known bits. However this is expensive to compute, so be lazy about it and 1024 // only compute it when absolutely necessary. 1025 Optional<bool> ShifterOperandIsNonZero; 1026 1027 // Early exit if we can't constrain any well-defined shift amount. 1028 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1029 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1032 if (!*ShifterOperandIsNonZero) 1033 return; 1034 } 1035 1036 Known.Zero.setAllBits(); 1037 Known.One.setAllBits(); 1038 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1039 // Combine the shifted known input bits only for those shift amounts 1040 // compatible with its known constraints. 1041 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1042 continue; 1043 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1044 continue; 1045 // If we know the shifter is nonzero, we may be able to infer more known 1046 // bits. This check is sunk down as far as possible to avoid the expensive 1047 // call to isKnownNonZero if the cheaper checks above fail. 1048 if (ShiftAmt == 0) { 1049 if (!ShifterOperandIsNonZero.hasValue()) 1050 ShifterOperandIsNonZero = 1051 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1052 if (*ShifterOperandIsNonZero) 1053 continue; 1054 } 1055 1056 Known = KnownBits::commonBits( 1057 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1058 } 1059 1060 // If the known bits conflict, the result is poison. Return a 0 and hope the 1061 // caller can further optimize that. 1062 if (Known.hasConflict()) 1063 Known.setAllZero(); 1064 } 1065 1066 static void computeKnownBitsFromOperator(const Operator *I, 1067 const APInt &DemandedElts, 1068 KnownBits &Known, unsigned Depth, 1069 const Query &Q) { 1070 unsigned BitWidth = Known.getBitWidth(); 1071 1072 KnownBits Known2(BitWidth); 1073 switch (I->getOpcode()) { 1074 default: break; 1075 case Instruction::Load: 1076 if (MDNode *MD = 1077 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1078 computeKnownBitsFromRangeMetadata(*MD, Known); 1079 break; 1080 case Instruction::And: { 1081 // If either the LHS or the RHS are Zero, the result is zero. 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known &= Known2; 1086 1087 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1088 // here we handle the more general case of adding any odd number by 1089 // matching the form add(x, add(x, y)) where y is odd. 1090 // TODO: This could be generalized to clearing any bit set in y where the 1091 // following bit is known to be unset in y. 1092 Value *X = nullptr, *Y = nullptr; 1093 if (!Known.Zero[0] && !Known.One[0] && 1094 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1095 Known2.resetAll(); 1096 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1097 if (Known2.countMinTrailingOnes() > 0) 1098 Known.Zero.setBit(0); 1099 } 1100 break; 1101 } 1102 case Instruction::Or: 1103 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1104 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1105 1106 Known |= Known2; 1107 break; 1108 case Instruction::Xor: 1109 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1111 1112 Known ^= Known2; 1113 break; 1114 case Instruction::Mul: { 1115 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1116 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1117 Known, Known2, Depth, Q); 1118 break; 1119 } 1120 case Instruction::UDiv: { 1121 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1123 Known = KnownBits::udiv(Known, Known2); 1124 break; 1125 } 1126 case Instruction::Select: { 1127 const Value *LHS = nullptr, *RHS = nullptr; 1128 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1129 if (SelectPatternResult::isMinOrMax(SPF)) { 1130 computeKnownBits(RHS, Known, Depth + 1, Q); 1131 computeKnownBits(LHS, Known2, Depth + 1, Q); 1132 switch (SPF) { 1133 default: 1134 llvm_unreachable("Unhandled select pattern flavor!"); 1135 case SPF_SMAX: 1136 Known = KnownBits::smax(Known, Known2); 1137 break; 1138 case SPF_SMIN: 1139 Known = KnownBits::smin(Known, Known2); 1140 break; 1141 case SPF_UMAX: 1142 Known = KnownBits::umax(Known, Known2); 1143 break; 1144 case SPF_UMIN: 1145 Known = KnownBits::umin(Known, Known2); 1146 break; 1147 } 1148 break; 1149 } 1150 1151 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1152 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1153 1154 // Only known if known in both the LHS and RHS. 1155 Known = KnownBits::commonBits(Known, Known2); 1156 1157 if (SPF == SPF_ABS) { 1158 // RHS from matchSelectPattern returns the negation part of abs pattern. 1159 // If the negate has an NSW flag we can assume the sign bit of the result 1160 // will be 0 because that makes abs(INT_MIN) undefined. 1161 if (match(RHS, m_Neg(m_Specific(LHS))) && 1162 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1163 Known.Zero.setSignBit(); 1164 } 1165 1166 break; 1167 } 1168 case Instruction::FPTrunc: 1169 case Instruction::FPExt: 1170 case Instruction::FPToUI: 1171 case Instruction::FPToSI: 1172 case Instruction::SIToFP: 1173 case Instruction::UIToFP: 1174 break; // Can't work with floating point. 1175 case Instruction::PtrToInt: 1176 case Instruction::IntToPtr: 1177 // Fall through and handle them the same as zext/trunc. 1178 LLVM_FALLTHROUGH; 1179 case Instruction::ZExt: 1180 case Instruction::Trunc: { 1181 Type *SrcTy = I->getOperand(0)->getType(); 1182 1183 unsigned SrcBitWidth; 1184 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1185 // which fall through here. 1186 Type *ScalarTy = SrcTy->getScalarType(); 1187 SrcBitWidth = ScalarTy->isPointerTy() ? 1188 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1189 Q.DL.getTypeSizeInBits(ScalarTy); 1190 1191 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1192 Known = Known.anyextOrTrunc(SrcBitWidth); 1193 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1194 Known = Known.zextOrTrunc(BitWidth); 1195 break; 1196 } 1197 case Instruction::BitCast: { 1198 Type *SrcTy = I->getOperand(0)->getType(); 1199 if (SrcTy->isIntOrPtrTy() && 1200 // TODO: For now, not handling conversions like: 1201 // (bitcast i64 %x to <2 x i32>) 1202 !I->getType()->isVectorTy()) { 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 break; 1205 } 1206 break; 1207 } 1208 case Instruction::SExt: { 1209 // Compute the bits in the result that are not present in the input. 1210 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1211 1212 Known = Known.trunc(SrcBitWidth); 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 // If the sign bit of the input is known set or clear, then we know the 1215 // top bits of the result. 1216 Known = Known.sext(BitWidth); 1217 break; 1218 } 1219 case Instruction::Shl: { 1220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1221 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1222 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1223 // If this shift has "nsw" keyword, then the result is either a poison 1224 // value or has the same sign bit as the first operand. 1225 if (NSW) { 1226 if (KnownVal.Zero.isSignBitSet()) 1227 Result.Zero.setSignBit(); 1228 if (KnownVal.One.isSignBitSet()) 1229 Result.One.setSignBit(); 1230 } 1231 return Result; 1232 }; 1233 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1234 KF); 1235 // Trailing zeros of a right-shifted constant never decrease. 1236 const APInt *C; 1237 if (match(I->getOperand(0), m_APInt(C))) 1238 Known.Zero.setLowBits(C->countTrailingZeros()); 1239 break; 1240 } 1241 case Instruction::LShr: { 1242 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1243 return KnownBits::lshr(KnownVal, KnownAmt); 1244 }; 1245 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1246 KF); 1247 // Leading zeros of a left-shifted constant never decrease. 1248 const APInt *C; 1249 if (match(I->getOperand(0), m_APInt(C))) 1250 Known.Zero.setHighBits(C->countLeadingZeros()); 1251 break; 1252 } 1253 case Instruction::AShr: { 1254 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1255 return KnownBits::ashr(KnownVal, KnownAmt); 1256 }; 1257 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1258 KF); 1259 break; 1260 } 1261 case Instruction::Sub: { 1262 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1263 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1264 DemandedElts, Known, Known2, Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 DemandedElts, Known, Known2, Depth, Q); 1271 break; 1272 } 1273 case Instruction::SRem: 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 Known = KnownBits::srem(Known, Known2); 1277 break; 1278 1279 case Instruction::URem: 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1282 Known = KnownBits::urem(Known, Known2); 1283 break; 1284 case Instruction::Alloca: 1285 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1286 break; 1287 case Instruction::GetElementPtr: { 1288 // Analyze all of the subscripts of this getelementptr instruction 1289 // to determine if we can prove known low zero bits. 1290 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1291 // Accumulate the constant indices in a separate variable 1292 // to minimize the number of calls to computeForAddSub. 1293 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1294 1295 gep_type_iterator GTI = gep_type_begin(I); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor = 1351 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1352 } 1353 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 // Note that inbounds does *not* guarantee nsw for the addition, as only 1361 // the offset is signed, while the base address is unsigned. 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1364 } 1365 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1366 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1367 Known = KnownBits::computeForAddSub( 1368 /*Add=*/true, /*NSW=*/false, Known, Index); 1369 } 1370 break; 1371 } 1372 case Instruction::PHI: { 1373 const PHINode *P = cast<PHINode>(I); 1374 BinaryOperator *BO = nullptr; 1375 Value *R = nullptr, *L = nullptr; 1376 if (matchSimpleRecurrence(P, BO, R, L)) { 1377 // Handle the case of a simple two-predecessor recurrence PHI. 1378 // There's a lot more that could theoretically be done here, but 1379 // this is sufficient to catch some interesting cases. 1380 unsigned Opcode = BO->getOpcode(); 1381 1382 // If this is a shift recurrence, we know the bits being shifted in. 1383 // We can combine that with information about the start value of the 1384 // recurrence to conclude facts about the result. 1385 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1386 Opcode == Instruction::Shl) && 1387 BO->getOperand(0) == I) { 1388 1389 // We have matched a recurrence of the form: 1390 // %iv = [R, %entry], [%iv.next, %backedge] 1391 // %iv.next = shift_op %iv, L 1392 1393 // Recurse with the phi context to avoid concern about whether facts 1394 // inferred hold at original context instruction. TODO: It may be 1395 // correct to use the original context. IF warranted, explore and 1396 // add sufficient tests to cover. 1397 Query RecQ = Q; 1398 RecQ.CxtI = P; 1399 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1400 switch (Opcode) { 1401 case Instruction::Shl: 1402 // A shl recurrence will only increase the tailing zeros 1403 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1404 break; 1405 case Instruction::LShr: 1406 // A lshr recurrence will preserve the leading zeros of the 1407 // start value 1408 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1409 break; 1410 case Instruction::AShr: 1411 // An ashr recurrence will extend the initial sign bit 1412 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1413 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1414 break; 1415 }; 1416 } 1417 1418 // Check for operations that have the property that if 1419 // both their operands have low zero bits, the result 1420 // will have low zero bits. 1421 if (Opcode == Instruction::Add || 1422 Opcode == Instruction::Sub || 1423 Opcode == Instruction::And || 1424 Opcode == Instruction::Or || 1425 Opcode == Instruction::Mul) { 1426 // Change the context instruction to the "edge" that flows into the 1427 // phi. This is important because that is where the value is actually 1428 // "evaluated" even though it is used later somewhere else. (see also 1429 // D69571). 1430 Query RecQ = Q; 1431 1432 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1433 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1434 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1435 1436 // Ok, we have a PHI of the form L op= R. Check for low 1437 // zero bits. 1438 RecQ.CxtI = RInst; 1439 computeKnownBits(R, Known2, Depth + 1, RecQ); 1440 1441 // We need to take the minimum number of known bits 1442 KnownBits Known3(BitWidth); 1443 RecQ.CxtI = LInst; 1444 computeKnownBits(L, Known3, Depth + 1, RecQ); 1445 1446 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1447 Known3.countMinTrailingZeros())); 1448 1449 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1450 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1451 // If initial value of recurrence is nonnegative, and we are adding 1452 // a nonnegative number with nsw, the result can only be nonnegative 1453 // or poison value regardless of the number of times we execute the 1454 // add in phi recurrence. If initial value is negative and we are 1455 // adding a negative number with nsw, the result can only be 1456 // negative or poison value. Similar arguments apply to sub and mul. 1457 // 1458 // (add non-negative, non-negative) --> non-negative 1459 // (add negative, negative) --> negative 1460 if (Opcode == Instruction::Add) { 1461 if (Known2.isNonNegative() && Known3.isNonNegative()) 1462 Known.makeNonNegative(); 1463 else if (Known2.isNegative() && Known3.isNegative()) 1464 Known.makeNegative(); 1465 } 1466 1467 // (sub nsw non-negative, negative) --> non-negative 1468 // (sub nsw negative, non-negative) --> negative 1469 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1470 if (Known2.isNonNegative() && Known3.isNegative()) 1471 Known.makeNonNegative(); 1472 else if (Known2.isNegative() && Known3.isNonNegative()) 1473 Known.makeNegative(); 1474 } 1475 1476 // (mul nsw non-negative, non-negative) --> non-negative 1477 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1478 Known3.isNonNegative()) 1479 Known.makeNonNegative(); 1480 } 1481 1482 break; 1483 } 1484 } 1485 1486 // Unreachable blocks may have zero-operand PHI nodes. 1487 if (P->getNumIncomingValues() == 0) 1488 break; 1489 1490 // Otherwise take the unions of the known bit sets of the operands, 1491 // taking conservative care to avoid excessive recursion. 1492 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1493 // Skip if every incoming value references to ourself. 1494 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1495 break; 1496 1497 Known.Zero.setAllBits(); 1498 Known.One.setAllBits(); 1499 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1500 Value *IncValue = P->getIncomingValue(u); 1501 // Skip direct self references. 1502 if (IncValue == P) continue; 1503 1504 // Change the context instruction to the "edge" that flows into the 1505 // phi. This is important because that is where the value is actually 1506 // "evaluated" even though it is used later somewhere else. (see also 1507 // D69571). 1508 Query RecQ = Q; 1509 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1510 1511 Known2 = KnownBits(BitWidth); 1512 // Recurse, but cap the recursion to one level, because we don't 1513 // want to waste time spinning around in loops. 1514 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1515 Known = KnownBits::commonBits(Known, Known2); 1516 // If all bits have been ruled out, there's no need to check 1517 // more operands. 1518 if (Known.isUnknown()) 1519 break; 1520 } 1521 } 1522 break; 1523 } 1524 case Instruction::Call: 1525 case Instruction::Invoke: 1526 // If range metadata is attached to this call, set known bits from that, 1527 // and then intersect with known bits based on other properties of the 1528 // function. 1529 if (MDNode *MD = 1530 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1531 computeKnownBitsFromRangeMetadata(*MD, Known); 1532 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1533 computeKnownBits(RV, Known2, Depth + 1, Q); 1534 Known.Zero |= Known2.Zero; 1535 Known.One |= Known2.One; 1536 } 1537 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1538 switch (II->getIntrinsicID()) { 1539 default: break; 1540 case Intrinsic::abs: { 1541 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1542 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1543 Known = Known2.abs(IntMinIsPoison); 1544 break; 1545 } 1546 case Intrinsic::bitreverse: 1547 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1548 Known.Zero |= Known2.Zero.reverseBits(); 1549 Known.One |= Known2.One.reverseBits(); 1550 break; 1551 case Intrinsic::bswap: 1552 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1553 Known.Zero |= Known2.Zero.byteSwap(); 1554 Known.One |= Known2.One.byteSwap(); 1555 break; 1556 case Intrinsic::ctlz: { 1557 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1558 // If we have a known 1, its position is our upper bound. 1559 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1560 // If this call is undefined for 0, the result will be less than 2^n. 1561 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1562 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1563 unsigned LowBits = Log2_32(PossibleLZ)+1; 1564 Known.Zero.setBitsFrom(LowBits); 1565 break; 1566 } 1567 case Intrinsic::cttz: { 1568 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1569 // If we have a known 1, its position is our upper bound. 1570 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1571 // If this call is undefined for 0, the result will be less than 2^n. 1572 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1573 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1574 unsigned LowBits = Log2_32(PossibleTZ)+1; 1575 Known.Zero.setBitsFrom(LowBits); 1576 break; 1577 } 1578 case Intrinsic::ctpop: { 1579 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1580 // We can bound the space the count needs. Also, bits known to be zero 1581 // can't contribute to the population. 1582 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1583 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1584 Known.Zero.setBitsFrom(LowBits); 1585 // TODO: we could bound KnownOne using the lower bound on the number 1586 // of bits which might be set provided by popcnt KnownOne2. 1587 break; 1588 } 1589 case Intrinsic::fshr: 1590 case Intrinsic::fshl: { 1591 const APInt *SA; 1592 if (!match(I->getOperand(2), m_APInt(SA))) 1593 break; 1594 1595 // Normalize to funnel shift left. 1596 uint64_t ShiftAmt = SA->urem(BitWidth); 1597 if (II->getIntrinsicID() == Intrinsic::fshr) 1598 ShiftAmt = BitWidth - ShiftAmt; 1599 1600 KnownBits Known3(BitWidth); 1601 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1602 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1603 1604 Known.Zero = 1605 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1606 Known.One = 1607 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1608 break; 1609 } 1610 case Intrinsic::uadd_sat: 1611 case Intrinsic::usub_sat: { 1612 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1613 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1614 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1615 1616 // Add: Leading ones of either operand are preserved. 1617 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1618 // as leading zeros in the result. 1619 unsigned LeadingKnown; 1620 if (IsAdd) 1621 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1622 Known2.countMinLeadingOnes()); 1623 else 1624 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1625 Known2.countMinLeadingOnes()); 1626 1627 Known = KnownBits::computeForAddSub( 1628 IsAdd, /* NSW */ false, Known, Known2); 1629 1630 // We select between the operation result and all-ones/zero 1631 // respectively, so we can preserve known ones/zeros. 1632 if (IsAdd) { 1633 Known.One.setHighBits(LeadingKnown); 1634 Known.Zero.clearAllBits(); 1635 } else { 1636 Known.Zero.setHighBits(LeadingKnown); 1637 Known.One.clearAllBits(); 1638 } 1639 break; 1640 } 1641 case Intrinsic::umin: 1642 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1644 Known = KnownBits::umin(Known, Known2); 1645 break; 1646 case Intrinsic::umax: 1647 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1648 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1649 Known = KnownBits::umax(Known, Known2); 1650 break; 1651 case Intrinsic::smin: 1652 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1653 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1654 Known = KnownBits::smin(Known, Known2); 1655 break; 1656 case Intrinsic::smax: 1657 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1658 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1659 Known = KnownBits::smax(Known, Known2); 1660 break; 1661 case Intrinsic::x86_sse42_crc32_64_64: 1662 Known.Zero.setBitsFrom(32); 1663 break; 1664 } 1665 } 1666 break; 1667 case Instruction::ShuffleVector: { 1668 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1669 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1670 if (!Shuf) { 1671 Known.resetAll(); 1672 return; 1673 } 1674 // For undef elements, we don't know anything about the common state of 1675 // the shuffle result. 1676 APInt DemandedLHS, DemandedRHS; 1677 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1678 Known.resetAll(); 1679 return; 1680 } 1681 Known.One.setAllBits(); 1682 Known.Zero.setAllBits(); 1683 if (!!DemandedLHS) { 1684 const Value *LHS = Shuf->getOperand(0); 1685 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1686 // If we don't know any bits, early out. 1687 if (Known.isUnknown()) 1688 break; 1689 } 1690 if (!!DemandedRHS) { 1691 const Value *RHS = Shuf->getOperand(1); 1692 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1693 Known = KnownBits::commonBits(Known, Known2); 1694 } 1695 break; 1696 } 1697 case Instruction::InsertElement: { 1698 const Value *Vec = I->getOperand(0); 1699 const Value *Elt = I->getOperand(1); 1700 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1701 // Early out if the index is non-constant or out-of-range. 1702 unsigned NumElts = DemandedElts.getBitWidth(); 1703 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1704 Known.resetAll(); 1705 return; 1706 } 1707 Known.One.setAllBits(); 1708 Known.Zero.setAllBits(); 1709 unsigned EltIdx = CIdx->getZExtValue(); 1710 // Do we demand the inserted element? 1711 if (DemandedElts[EltIdx]) { 1712 computeKnownBits(Elt, Known, Depth + 1, Q); 1713 // If we don't know any bits, early out. 1714 if (Known.isUnknown()) 1715 break; 1716 } 1717 // We don't need the base vector element that has been inserted. 1718 APInt DemandedVecElts = DemandedElts; 1719 DemandedVecElts.clearBit(EltIdx); 1720 if (!!DemandedVecElts) { 1721 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1722 Known = KnownBits::commonBits(Known, Known2); 1723 } 1724 break; 1725 } 1726 case Instruction::ExtractElement: { 1727 // Look through extract element. If the index is non-constant or 1728 // out-of-range demand all elements, otherwise just the extracted element. 1729 const Value *Vec = I->getOperand(0); 1730 const Value *Idx = I->getOperand(1); 1731 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1732 if (isa<ScalableVectorType>(Vec->getType())) { 1733 // FIXME: there's probably *something* we can do with scalable vectors 1734 Known.resetAll(); 1735 break; 1736 } 1737 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1738 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1739 if (CIdx && CIdx->getValue().ult(NumElts)) 1740 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1741 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1742 break; 1743 } 1744 case Instruction::ExtractValue: 1745 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1746 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1747 if (EVI->getNumIndices() != 1) break; 1748 if (EVI->getIndices()[0] == 0) { 1749 switch (II->getIntrinsicID()) { 1750 default: break; 1751 case Intrinsic::uadd_with_overflow: 1752 case Intrinsic::sadd_with_overflow: 1753 computeKnownBitsAddSub(true, II->getArgOperand(0), 1754 II->getArgOperand(1), false, DemandedElts, 1755 Known, Known2, Depth, Q); 1756 break; 1757 case Intrinsic::usub_with_overflow: 1758 case Intrinsic::ssub_with_overflow: 1759 computeKnownBitsAddSub(false, II->getArgOperand(0), 1760 II->getArgOperand(1), false, DemandedElts, 1761 Known, Known2, Depth, Q); 1762 break; 1763 case Intrinsic::umul_with_overflow: 1764 case Intrinsic::smul_with_overflow: 1765 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1766 DemandedElts, Known, Known2, Depth, Q); 1767 break; 1768 } 1769 } 1770 } 1771 break; 1772 case Instruction::Freeze: 1773 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1774 Depth + 1)) 1775 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1776 break; 1777 } 1778 } 1779 1780 /// Determine which bits of V are known to be either zero or one and return 1781 /// them. 1782 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1783 unsigned Depth, const Query &Q) { 1784 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1785 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1786 return Known; 1787 } 1788 1789 /// Determine which bits of V are known to be either zero or one and return 1790 /// them. 1791 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1792 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1793 computeKnownBits(V, Known, Depth, Q); 1794 return Known; 1795 } 1796 1797 /// Determine which bits of V are known to be either zero or one and return 1798 /// them in the Known bit set. 1799 /// 1800 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1801 /// we cannot optimize based on the assumption that it is zero without changing 1802 /// it to be an explicit zero. If we don't change it to zero, other code could 1803 /// optimized based on the contradictory assumption that it is non-zero. 1804 /// Because instcombine aggressively folds operations with undef args anyway, 1805 /// this won't lose us code quality. 1806 /// 1807 /// This function is defined on values with integer type, values with pointer 1808 /// type, and vectors of integers. In the case 1809 /// where V is a vector, known zero, and known one values are the 1810 /// same width as the vector element, and the bit is set only if it is true 1811 /// for all of the demanded elements in the vector specified by DemandedElts. 1812 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1813 KnownBits &Known, unsigned Depth, const Query &Q) { 1814 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1815 // No demanded elts or V is a scalable vector, better to assume we don't 1816 // know anything. 1817 Known.resetAll(); 1818 return; 1819 } 1820 1821 assert(V && "No Value?"); 1822 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1823 1824 #ifndef NDEBUG 1825 Type *Ty = V->getType(); 1826 unsigned BitWidth = Known.getBitWidth(); 1827 1828 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1829 "Not integer or pointer type!"); 1830 1831 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1832 assert( 1833 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1834 "DemandedElt width should equal the fixed vector number of elements"); 1835 } else { 1836 assert(DemandedElts == APInt(1, 1) && 1837 "DemandedElt width should be 1 for scalars"); 1838 } 1839 1840 Type *ScalarTy = Ty->getScalarType(); 1841 if (ScalarTy->isPointerTy()) { 1842 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1843 "V and Known should have same BitWidth"); 1844 } else { 1845 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1846 "V and Known should have same BitWidth"); 1847 } 1848 #endif 1849 1850 const APInt *C; 1851 if (match(V, m_APInt(C))) { 1852 // We know all of the bits for a scalar constant or a splat vector constant! 1853 Known = KnownBits::makeConstant(*C); 1854 return; 1855 } 1856 // Null and aggregate-zero are all-zeros. 1857 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1858 Known.setAllZero(); 1859 return; 1860 } 1861 // Handle a constant vector by taking the intersection of the known bits of 1862 // each element. 1863 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1864 // We know that CDV must be a vector of integers. Take the intersection of 1865 // each element. 1866 Known.Zero.setAllBits(); Known.One.setAllBits(); 1867 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1868 if (!DemandedElts[i]) 1869 continue; 1870 APInt Elt = CDV->getElementAsAPInt(i); 1871 Known.Zero &= ~Elt; 1872 Known.One &= Elt; 1873 } 1874 return; 1875 } 1876 1877 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1878 // We know that CV must be a vector of integers. Take the intersection of 1879 // each element. 1880 Known.Zero.setAllBits(); Known.One.setAllBits(); 1881 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1882 if (!DemandedElts[i]) 1883 continue; 1884 Constant *Element = CV->getAggregateElement(i); 1885 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1886 if (!ElementCI) { 1887 Known.resetAll(); 1888 return; 1889 } 1890 const APInt &Elt = ElementCI->getValue(); 1891 Known.Zero &= ~Elt; 1892 Known.One &= Elt; 1893 } 1894 return; 1895 } 1896 1897 // Start out not knowing anything. 1898 Known.resetAll(); 1899 1900 // We can't imply anything about undefs. 1901 if (isa<UndefValue>(V)) 1902 return; 1903 1904 // There's no point in looking through other users of ConstantData for 1905 // assumptions. Confirm that we've handled them all. 1906 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1907 1908 // All recursive calls that increase depth must come after this. 1909 if (Depth == MaxAnalysisRecursionDepth) 1910 return; 1911 1912 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1913 // the bits of its aliasee. 1914 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1915 if (!GA->isInterposable()) 1916 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1917 return; 1918 } 1919 1920 if (const Operator *I = dyn_cast<Operator>(V)) 1921 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1922 1923 // Aligned pointers have trailing zeros - refine Known.Zero set 1924 if (isa<PointerType>(V->getType())) { 1925 Align Alignment = V->getPointerAlignment(Q.DL); 1926 Known.Zero.setLowBits(Log2(Alignment)); 1927 } 1928 1929 // computeKnownBitsFromAssume strictly refines Known. 1930 // Therefore, we run them after computeKnownBitsFromOperator. 1931 1932 // Check whether a nearby assume intrinsic can determine some known bits. 1933 computeKnownBitsFromAssume(V, Known, Depth, Q); 1934 1935 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1936 } 1937 1938 /// Return true if the given value is known to have exactly one 1939 /// bit set when defined. For vectors return true if every element is known to 1940 /// be a power of two when defined. Supports values with integer or pointer 1941 /// types and vectors of integers. 1942 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1943 const Query &Q) { 1944 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1945 1946 // Attempt to match against constants. 1947 if (OrZero && match(V, m_Power2OrZero())) 1948 return true; 1949 if (match(V, m_Power2())) 1950 return true; 1951 1952 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1953 // it is shifted off the end then the result is undefined. 1954 if (match(V, m_Shl(m_One(), m_Value()))) 1955 return true; 1956 1957 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1958 // the bottom. If it is shifted off the bottom then the result is undefined. 1959 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1960 return true; 1961 1962 // The remaining tests are all recursive, so bail out if we hit the limit. 1963 if (Depth++ == MaxAnalysisRecursionDepth) 1964 return false; 1965 1966 Value *X = nullptr, *Y = nullptr; 1967 // A shift left or a logical shift right of a power of two is a power of two 1968 // or zero. 1969 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1970 match(V, m_LShr(m_Value(X), m_Value())))) 1971 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1972 1973 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1974 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1975 1976 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1977 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1978 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1979 1980 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1981 // A power of two and'd with anything is a power of two or zero. 1982 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1983 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1984 return true; 1985 // X & (-X) is always a power of two or zero. 1986 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1987 return true; 1988 return false; 1989 } 1990 1991 // Adding a power-of-two or zero to the same power-of-two or zero yields 1992 // either the original power-of-two, a larger power-of-two or zero. 1993 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1994 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1995 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1996 Q.IIQ.hasNoSignedWrap(VOBO)) { 1997 if (match(X, m_And(m_Specific(Y), m_Value())) || 1998 match(X, m_And(m_Value(), m_Specific(Y)))) 1999 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2000 return true; 2001 if (match(Y, m_And(m_Specific(X), m_Value())) || 2002 match(Y, m_And(m_Value(), m_Specific(X)))) 2003 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2004 return true; 2005 2006 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2007 KnownBits LHSBits(BitWidth); 2008 computeKnownBits(X, LHSBits, Depth, Q); 2009 2010 KnownBits RHSBits(BitWidth); 2011 computeKnownBits(Y, RHSBits, Depth, Q); 2012 // If i8 V is a power of two or zero: 2013 // ZeroBits: 1 1 1 0 1 1 1 1 2014 // ~ZeroBits: 0 0 0 1 0 0 0 0 2015 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2016 // If OrZero isn't set, we cannot give back a zero result. 2017 // Make sure either the LHS or RHS has a bit set. 2018 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2019 return true; 2020 } 2021 } 2022 2023 // An exact divide or right shift can only shift off zero bits, so the result 2024 // is a power of two only if the first operand is a power of two and not 2025 // copying a sign bit (sdiv int_min, 2). 2026 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2027 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2028 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2029 Depth, Q); 2030 } 2031 2032 return false; 2033 } 2034 2035 /// Test whether a GEP's result is known to be non-null. 2036 /// 2037 /// Uses properties inherent in a GEP to try to determine whether it is known 2038 /// to be non-null. 2039 /// 2040 /// Currently this routine does not support vector GEPs. 2041 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2042 const Query &Q) { 2043 const Function *F = nullptr; 2044 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2045 F = I->getFunction(); 2046 2047 if (!GEP->isInBounds() || 2048 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2049 return false; 2050 2051 // FIXME: Support vector-GEPs. 2052 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2053 2054 // If the base pointer is non-null, we cannot walk to a null address with an 2055 // inbounds GEP in address space zero. 2056 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2057 return true; 2058 2059 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2060 // If so, then the GEP cannot produce a null pointer, as doing so would 2061 // inherently violate the inbounds contract within address space zero. 2062 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2063 GTI != GTE; ++GTI) { 2064 // Struct types are easy -- they must always be indexed by a constant. 2065 if (StructType *STy = GTI.getStructTypeOrNull()) { 2066 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2067 unsigned ElementIdx = OpC->getZExtValue(); 2068 const StructLayout *SL = Q.DL.getStructLayout(STy); 2069 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2070 if (ElementOffset > 0) 2071 return true; 2072 continue; 2073 } 2074 2075 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2076 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2077 continue; 2078 2079 // Fast path the constant operand case both for efficiency and so we don't 2080 // increment Depth when just zipping down an all-constant GEP. 2081 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2082 if (!OpC->isZero()) 2083 return true; 2084 continue; 2085 } 2086 2087 // We post-increment Depth here because while isKnownNonZero increments it 2088 // as well, when we pop back up that increment won't persist. We don't want 2089 // to recurse 10k times just because we have 10k GEP operands. We don't 2090 // bail completely out because we want to handle constant GEPs regardless 2091 // of depth. 2092 if (Depth++ >= MaxAnalysisRecursionDepth) 2093 continue; 2094 2095 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2096 return true; 2097 } 2098 2099 return false; 2100 } 2101 2102 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2103 const Instruction *CtxI, 2104 const DominatorTree *DT) { 2105 if (isa<Constant>(V)) 2106 return false; 2107 2108 if (!CtxI || !DT) 2109 return false; 2110 2111 unsigned NumUsesExplored = 0; 2112 for (auto *U : V->users()) { 2113 // Avoid massive lists 2114 if (NumUsesExplored >= DomConditionsMaxUses) 2115 break; 2116 NumUsesExplored++; 2117 2118 // If the value is used as an argument to a call or invoke, then argument 2119 // attributes may provide an answer about null-ness. 2120 if (const auto *CB = dyn_cast<CallBase>(U)) 2121 if (auto *CalledFunc = CB->getCalledFunction()) 2122 for (const Argument &Arg : CalledFunc->args()) 2123 if (CB->getArgOperand(Arg.getArgNo()) == V && 2124 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2125 DT->dominates(CB, CtxI)) 2126 return true; 2127 2128 // If the value is used as a load/store, then the pointer must be non null. 2129 if (V == getLoadStorePointerOperand(U)) { 2130 const Instruction *I = cast<Instruction>(U); 2131 if (!NullPointerIsDefined(I->getFunction(), 2132 V->getType()->getPointerAddressSpace()) && 2133 DT->dominates(I, CtxI)) 2134 return true; 2135 } 2136 2137 // Consider only compare instructions uniquely controlling a branch 2138 Value *RHS; 2139 CmpInst::Predicate Pred; 2140 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2141 continue; 2142 2143 bool NonNullIfTrue; 2144 if (cmpExcludesZero(Pred, RHS)) 2145 NonNullIfTrue = true; 2146 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2147 NonNullIfTrue = false; 2148 else 2149 continue; 2150 2151 SmallVector<const User *, 4> WorkList; 2152 SmallPtrSet<const User *, 4> Visited; 2153 for (auto *CmpU : U->users()) { 2154 assert(WorkList.empty() && "Should be!"); 2155 if (Visited.insert(CmpU).second) 2156 WorkList.push_back(CmpU); 2157 2158 while (!WorkList.empty()) { 2159 auto *Curr = WorkList.pop_back_val(); 2160 2161 // If a user is an AND, add all its users to the work list. We only 2162 // propagate "pred != null" condition through AND because it is only 2163 // correct to assume that all conditions of AND are met in true branch. 2164 // TODO: Support similar logic of OR and EQ predicate? 2165 if (NonNullIfTrue) 2166 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2167 for (auto *CurrU : Curr->users()) 2168 if (Visited.insert(CurrU).second) 2169 WorkList.push_back(CurrU); 2170 continue; 2171 } 2172 2173 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2174 assert(BI->isConditional() && "uses a comparison!"); 2175 2176 BasicBlock *NonNullSuccessor = 2177 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2178 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2179 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2180 return true; 2181 } else if (NonNullIfTrue && isGuard(Curr) && 2182 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2183 return true; 2184 } 2185 } 2186 } 2187 } 2188 2189 return false; 2190 } 2191 2192 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2193 /// ensure that the value it's attached to is never Value? 'RangeType' is 2194 /// is the type of the value described by the range. 2195 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2196 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2197 assert(NumRanges >= 1); 2198 for (unsigned i = 0; i < NumRanges; ++i) { 2199 ConstantInt *Lower = 2200 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2201 ConstantInt *Upper = 2202 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2203 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2204 if (Range.contains(Value)) 2205 return false; 2206 } 2207 return true; 2208 } 2209 2210 /// Return true if the given value is known to be non-zero when defined. For 2211 /// vectors, return true if every demanded element is known to be non-zero when 2212 /// defined. For pointers, if the context instruction and dominator tree are 2213 /// specified, perform context-sensitive analysis and return true if the 2214 /// pointer couldn't possibly be null at the specified instruction. 2215 /// Supports values with integer or pointer type and vectors of integers. 2216 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2217 const Query &Q) { 2218 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2219 // vector 2220 if (isa<ScalableVectorType>(V->getType())) 2221 return false; 2222 2223 if (auto *C = dyn_cast<Constant>(V)) { 2224 if (C->isNullValue()) 2225 return false; 2226 if (isa<ConstantInt>(C)) 2227 // Must be non-zero due to null test above. 2228 return true; 2229 2230 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2231 // See the comment for IntToPtr/PtrToInt instructions below. 2232 if (CE->getOpcode() == Instruction::IntToPtr || 2233 CE->getOpcode() == Instruction::PtrToInt) 2234 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2235 .getFixedSize() <= 2236 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2237 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2238 } 2239 2240 // For constant vectors, check that all elements are undefined or known 2241 // non-zero to determine that the whole vector is known non-zero. 2242 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2243 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2244 if (!DemandedElts[i]) 2245 continue; 2246 Constant *Elt = C->getAggregateElement(i); 2247 if (!Elt || Elt->isNullValue()) 2248 return false; 2249 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2250 return false; 2251 } 2252 return true; 2253 } 2254 2255 // A global variable in address space 0 is non null unless extern weak 2256 // or an absolute symbol reference. Other address spaces may have null as a 2257 // valid address for a global, so we can't assume anything. 2258 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2259 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2260 GV->getType()->getAddressSpace() == 0) 2261 return true; 2262 } else 2263 return false; 2264 } 2265 2266 if (auto *I = dyn_cast<Instruction>(V)) { 2267 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2268 // If the possible ranges don't contain zero, then the value is 2269 // definitely non-zero. 2270 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2271 const APInt ZeroValue(Ty->getBitWidth(), 0); 2272 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2273 return true; 2274 } 2275 } 2276 } 2277 2278 if (isKnownNonZeroFromAssume(V, Q)) 2279 return true; 2280 2281 // Some of the tests below are recursive, so bail out if we hit the limit. 2282 if (Depth++ >= MaxAnalysisRecursionDepth) 2283 return false; 2284 2285 // Check for pointer simplifications. 2286 2287 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2288 // Alloca never returns null, malloc might. 2289 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2290 return true; 2291 2292 // A byval, inalloca may not be null in a non-default addres space. A 2293 // nonnull argument is assumed never 0. 2294 if (const Argument *A = dyn_cast<Argument>(V)) { 2295 if (((A->hasPassPointeeByValueCopyAttr() && 2296 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2297 A->hasNonNullAttr())) 2298 return true; 2299 } 2300 2301 // A Load tagged with nonnull metadata is never null. 2302 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2303 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2304 return true; 2305 2306 if (const auto *Call = dyn_cast<CallBase>(V)) { 2307 if (Call->isReturnNonNull()) 2308 return true; 2309 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2310 return isKnownNonZero(RP, Depth, Q); 2311 } 2312 } 2313 2314 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2315 return true; 2316 2317 // Check for recursive pointer simplifications. 2318 if (V->getType()->isPointerTy()) { 2319 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2320 // do not alter the value, or at least not the nullness property of the 2321 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2322 // 2323 // Note that we have to take special care to avoid looking through 2324 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2325 // as casts that can alter the value, e.g., AddrSpaceCasts. 2326 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2327 return isGEPKnownNonNull(GEP, Depth, Q); 2328 2329 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2330 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2331 2332 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2333 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2334 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2335 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2336 } 2337 2338 // Similar to int2ptr above, we can look through ptr2int here if the cast 2339 // is a no-op or an extend and not a truncate. 2340 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2341 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2342 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2343 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2344 2345 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2346 2347 // X | Y != 0 if X != 0 or Y != 0. 2348 Value *X = nullptr, *Y = nullptr; 2349 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2350 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2351 isKnownNonZero(Y, DemandedElts, Depth, Q); 2352 2353 // ext X != 0 if X != 0. 2354 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2355 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2356 2357 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2358 // if the lowest bit is shifted off the end. 2359 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2360 // shl nuw can't remove any non-zero bits. 2361 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2362 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2363 return isKnownNonZero(X, Depth, Q); 2364 2365 KnownBits Known(BitWidth); 2366 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2367 if (Known.One[0]) 2368 return true; 2369 } 2370 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2371 // defined if the sign bit is shifted off the end. 2372 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2373 // shr exact can only shift out zero bits. 2374 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2375 if (BO->isExact()) 2376 return isKnownNonZero(X, Depth, Q); 2377 2378 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2379 if (Known.isNegative()) 2380 return true; 2381 2382 // If the shifter operand is a constant, and all of the bits shifted 2383 // out are known to be zero, and X is known non-zero then at least one 2384 // non-zero bit must remain. 2385 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2386 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2387 // Is there a known one in the portion not shifted out? 2388 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2389 return true; 2390 // Are all the bits to be shifted out known zero? 2391 if (Known.countMinTrailingZeros() >= ShiftVal) 2392 return isKnownNonZero(X, DemandedElts, Depth, Q); 2393 } 2394 } 2395 // div exact can only produce a zero if the dividend is zero. 2396 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2397 return isKnownNonZero(X, DemandedElts, Depth, Q); 2398 } 2399 // X + Y. 2400 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2401 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2402 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2403 2404 // If X and Y are both non-negative (as signed values) then their sum is not 2405 // zero unless both X and Y are zero. 2406 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2407 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2408 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2409 return true; 2410 2411 // If X and Y are both negative (as signed values) then their sum is not 2412 // zero unless both X and Y equal INT_MIN. 2413 if (XKnown.isNegative() && YKnown.isNegative()) { 2414 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2415 // The sign bit of X is set. If some other bit is set then X is not equal 2416 // to INT_MIN. 2417 if (XKnown.One.intersects(Mask)) 2418 return true; 2419 // The sign bit of Y is set. If some other bit is set then Y is not equal 2420 // to INT_MIN. 2421 if (YKnown.One.intersects(Mask)) 2422 return true; 2423 } 2424 2425 // The sum of a non-negative number and a power of two is not zero. 2426 if (XKnown.isNonNegative() && 2427 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2428 return true; 2429 if (YKnown.isNonNegative() && 2430 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2431 return true; 2432 } 2433 // X * Y. 2434 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2435 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2436 // If X and Y are non-zero then so is X * Y as long as the multiplication 2437 // does not overflow. 2438 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2439 isKnownNonZero(X, DemandedElts, Depth, Q) && 2440 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2441 return true; 2442 } 2443 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2444 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2445 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2446 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2447 return true; 2448 } 2449 // PHI 2450 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2451 // Try and detect a recurrence that monotonically increases from a 2452 // starting value, as these are common as induction variables. 2453 BinaryOperator *BO = nullptr; 2454 Value *Start = nullptr, *Step = nullptr; 2455 const APInt *StartC, *StepC; 2456 if (Q.IIQ.UseInstrInfo && matchSimpleRecurrence(PN, BO, Start, Step) && 2457 match(Start, m_APInt(StartC)) && match(Step, m_APInt(StepC))) { 2458 if (BO->getOpcode() == Instruction::Add && 2459 (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2460 StartC->isStrictlyPositive() && !StepC->isNegative()) 2461 return true; 2462 if (BO->getOpcode() == Instruction::Mul && 2463 (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2464 !StartC->isNullValue() && StepC->isStrictlyPositive()) 2465 return true; 2466 } 2467 // Check if all incoming values are non-zero using recursion. 2468 Query RecQ = Q; 2469 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2470 return llvm::all_of(PN->operands(), [&](const Use &U) { 2471 if (U.get() == PN) 2472 return true; 2473 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2474 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2475 }); 2476 } 2477 // ExtractElement 2478 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2479 const Value *Vec = EEI->getVectorOperand(); 2480 const Value *Idx = EEI->getIndexOperand(); 2481 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2482 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2483 unsigned NumElts = VecTy->getNumElements(); 2484 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2485 if (CIdx && CIdx->getValue().ult(NumElts)) 2486 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2487 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2488 } 2489 } 2490 // Freeze 2491 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2492 auto *Op = FI->getOperand(0); 2493 if (isKnownNonZero(Op, Depth, Q) && 2494 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2495 return true; 2496 } 2497 2498 KnownBits Known(BitWidth); 2499 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2500 return Known.One != 0; 2501 } 2502 2503 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2504 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2505 // vector 2506 if (isa<ScalableVectorType>(V->getType())) 2507 return false; 2508 2509 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2510 APInt DemandedElts = 2511 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2512 return isKnownNonZero(V, DemandedElts, Depth, Q); 2513 } 2514 2515 /// Return true if V2 == V1 + X, where X is known non-zero. 2516 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2517 const Query &Q) { 2518 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2519 if (!BO || BO->getOpcode() != Instruction::Add) 2520 return false; 2521 Value *Op = nullptr; 2522 if (V2 == BO->getOperand(0)) 2523 Op = BO->getOperand(1); 2524 else if (V2 == BO->getOperand(1)) 2525 Op = BO->getOperand(0); 2526 else 2527 return false; 2528 return isKnownNonZero(Op, Depth + 1, Q); 2529 } 2530 2531 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2532 /// the multiplication is nuw or nsw. 2533 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2534 const Query &Q) { 2535 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2536 const APInt *C; 2537 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2538 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2539 !C->isNullValue() && !C->isOneValue() && 2540 isKnownNonZero(V1, Depth + 1, Q); 2541 } 2542 return false; 2543 } 2544 2545 /// Return true if it is known that V1 != V2. 2546 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2547 const Query &Q) { 2548 if (V1 == V2) 2549 return false; 2550 if (V1->getType() != V2->getType()) 2551 // We can't look through casts yet. 2552 return false; 2553 2554 if (Depth >= MaxAnalysisRecursionDepth) 2555 return false; 2556 2557 // See if we can recurse through (exactly one of) our operands. This 2558 // requires our operation be 1-to-1 and map every input value to exactly 2559 // one output value. Such an operation is invertible. 2560 auto *O1 = dyn_cast<Operator>(V1); 2561 auto *O2 = dyn_cast<Operator>(V2); 2562 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2563 switch (O1->getOpcode()) { 2564 default: break; 2565 case Instruction::Add: 2566 case Instruction::Sub: 2567 // Assume operand order has been canonicalized 2568 if (O1->getOperand(0) == O2->getOperand(0)) 2569 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2570 Depth + 1, Q); 2571 if (O1->getOperand(1) == O2->getOperand(1)) 2572 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2573 Depth + 1, Q); 2574 break; 2575 case Instruction::Mul: { 2576 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2577 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2578 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2579 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2580 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2581 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2582 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2583 break; 2584 2585 // Assume operand order has been canonicalized 2586 if (O1->getOperand(1) == O2->getOperand(1) && 2587 isa<ConstantInt>(O1->getOperand(1)) && 2588 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2589 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2590 Depth + 1, Q); 2591 break; 2592 } 2593 case Instruction::SExt: 2594 case Instruction::ZExt: 2595 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2596 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2597 Depth + 1, Q); 2598 break; 2599 }; 2600 } 2601 2602 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2603 return true; 2604 2605 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2606 return true; 2607 2608 if (V1->getType()->isIntOrIntVectorTy()) { 2609 // Are any known bits in V1 contradictory to known bits in V2? If V1 2610 // has a known zero where V2 has a known one, they must not be equal. 2611 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2612 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2613 2614 if (Known1.Zero.intersects(Known2.One) || 2615 Known2.Zero.intersects(Known1.One)) 2616 return true; 2617 } 2618 return false; 2619 } 2620 2621 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2622 /// simplify operations downstream. Mask is known to be zero for bits that V 2623 /// cannot have. 2624 /// 2625 /// This function is defined on values with integer type, values with pointer 2626 /// type, and vectors of integers. In the case 2627 /// where V is a vector, the mask, known zero, and known one values are the 2628 /// same width as the vector element, and the bit is set only if it is true 2629 /// for all of the elements in the vector. 2630 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2631 const Query &Q) { 2632 KnownBits Known(Mask.getBitWidth()); 2633 computeKnownBits(V, Known, Depth, Q); 2634 return Mask.isSubsetOf(Known.Zero); 2635 } 2636 2637 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2638 // Returns the input and lower/upper bounds. 2639 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2640 const APInt *&CLow, const APInt *&CHigh) { 2641 assert(isa<Operator>(Select) && 2642 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2643 "Input should be a Select!"); 2644 2645 const Value *LHS = nullptr, *RHS = nullptr; 2646 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2647 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2648 return false; 2649 2650 if (!match(RHS, m_APInt(CLow))) 2651 return false; 2652 2653 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2654 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2655 if (getInverseMinMaxFlavor(SPF) != SPF2) 2656 return false; 2657 2658 if (!match(RHS2, m_APInt(CHigh))) 2659 return false; 2660 2661 if (SPF == SPF_SMIN) 2662 std::swap(CLow, CHigh); 2663 2664 In = LHS2; 2665 return CLow->sle(*CHigh); 2666 } 2667 2668 /// For vector constants, loop over the elements and find the constant with the 2669 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2670 /// or if any element was not analyzed; otherwise, return the count for the 2671 /// element with the minimum number of sign bits. 2672 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2673 const APInt &DemandedElts, 2674 unsigned TyBits) { 2675 const auto *CV = dyn_cast<Constant>(V); 2676 if (!CV || !isa<FixedVectorType>(CV->getType())) 2677 return 0; 2678 2679 unsigned MinSignBits = TyBits; 2680 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2681 for (unsigned i = 0; i != NumElts; ++i) { 2682 if (!DemandedElts[i]) 2683 continue; 2684 // If we find a non-ConstantInt, bail out. 2685 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2686 if (!Elt) 2687 return 0; 2688 2689 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2690 } 2691 2692 return MinSignBits; 2693 } 2694 2695 static unsigned ComputeNumSignBitsImpl(const Value *V, 2696 const APInt &DemandedElts, 2697 unsigned Depth, const Query &Q); 2698 2699 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2700 unsigned Depth, const Query &Q) { 2701 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2702 assert(Result > 0 && "At least one sign bit needs to be present!"); 2703 return Result; 2704 } 2705 2706 /// Return the number of times the sign bit of the register is replicated into 2707 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2708 /// (itself), but other cases can give us information. For example, immediately 2709 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2710 /// other, so we return 3. For vectors, return the number of sign bits for the 2711 /// vector element with the minimum number of known sign bits of the demanded 2712 /// elements in the vector specified by DemandedElts. 2713 static unsigned ComputeNumSignBitsImpl(const Value *V, 2714 const APInt &DemandedElts, 2715 unsigned Depth, const Query &Q) { 2716 Type *Ty = V->getType(); 2717 2718 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2719 // vector 2720 if (isa<ScalableVectorType>(Ty)) 2721 return 1; 2722 2723 #ifndef NDEBUG 2724 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2725 2726 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2727 assert( 2728 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2729 "DemandedElt width should equal the fixed vector number of elements"); 2730 } else { 2731 assert(DemandedElts == APInt(1, 1) && 2732 "DemandedElt width should be 1 for scalars"); 2733 } 2734 #endif 2735 2736 // We return the minimum number of sign bits that are guaranteed to be present 2737 // in V, so for undef we have to conservatively return 1. We don't have the 2738 // same behavior for poison though -- that's a FIXME today. 2739 2740 Type *ScalarTy = Ty->getScalarType(); 2741 unsigned TyBits = ScalarTy->isPointerTy() ? 2742 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2743 Q.DL.getTypeSizeInBits(ScalarTy); 2744 2745 unsigned Tmp, Tmp2; 2746 unsigned FirstAnswer = 1; 2747 2748 // Note that ConstantInt is handled by the general computeKnownBits case 2749 // below. 2750 2751 if (Depth == MaxAnalysisRecursionDepth) 2752 return 1; 2753 2754 if (auto *U = dyn_cast<Operator>(V)) { 2755 switch (Operator::getOpcode(V)) { 2756 default: break; 2757 case Instruction::SExt: 2758 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2759 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2760 2761 case Instruction::SDiv: { 2762 const APInt *Denominator; 2763 // sdiv X, C -> adds log(C) sign bits. 2764 if (match(U->getOperand(1), m_APInt(Denominator))) { 2765 2766 // Ignore non-positive denominator. 2767 if (!Denominator->isStrictlyPositive()) 2768 break; 2769 2770 // Calculate the incoming numerator bits. 2771 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2772 2773 // Add floor(log(C)) bits to the numerator bits. 2774 return std::min(TyBits, NumBits + Denominator->logBase2()); 2775 } 2776 break; 2777 } 2778 2779 case Instruction::SRem: { 2780 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2781 2782 const APInt *Denominator; 2783 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2784 // positive constant. This let us put a lower bound on the number of sign 2785 // bits. 2786 if (match(U->getOperand(1), m_APInt(Denominator))) { 2787 2788 // Ignore non-positive denominator. 2789 if (Denominator->isStrictlyPositive()) { 2790 // Calculate the leading sign bit constraints by examining the 2791 // denominator. Given that the denominator is positive, there are two 2792 // cases: 2793 // 2794 // 1. The numerator is positive. The result range is [0,C) and 2795 // [0,C) u< (1 << ceilLogBase2(C)). 2796 // 2797 // 2. The numerator is negative. Then the result range is (-C,0] and 2798 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2799 // 2800 // Thus a lower bound on the number of sign bits is `TyBits - 2801 // ceilLogBase2(C)`. 2802 2803 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2804 Tmp = std::max(Tmp, ResBits); 2805 } 2806 } 2807 return Tmp; 2808 } 2809 2810 case Instruction::AShr: { 2811 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2812 // ashr X, C -> adds C sign bits. Vectors too. 2813 const APInt *ShAmt; 2814 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2815 if (ShAmt->uge(TyBits)) 2816 break; // Bad shift. 2817 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2818 Tmp += ShAmtLimited; 2819 if (Tmp > TyBits) Tmp = TyBits; 2820 } 2821 return Tmp; 2822 } 2823 case Instruction::Shl: { 2824 const APInt *ShAmt; 2825 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2826 // shl destroys sign bits. 2827 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2828 if (ShAmt->uge(TyBits) || // Bad shift. 2829 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2830 Tmp2 = ShAmt->getZExtValue(); 2831 return Tmp - Tmp2; 2832 } 2833 break; 2834 } 2835 case Instruction::And: 2836 case Instruction::Or: 2837 case Instruction::Xor: // NOT is handled here. 2838 // Logical binary ops preserve the number of sign bits at the worst. 2839 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2840 if (Tmp != 1) { 2841 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2842 FirstAnswer = std::min(Tmp, Tmp2); 2843 // We computed what we know about the sign bits as our first 2844 // answer. Now proceed to the generic code that uses 2845 // computeKnownBits, and pick whichever answer is better. 2846 } 2847 break; 2848 2849 case Instruction::Select: { 2850 // If we have a clamp pattern, we know that the number of sign bits will 2851 // be the minimum of the clamp min/max range. 2852 const Value *X; 2853 const APInt *CLow, *CHigh; 2854 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2855 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2856 2857 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2858 if (Tmp == 1) break; 2859 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2860 return std::min(Tmp, Tmp2); 2861 } 2862 2863 case Instruction::Add: 2864 // Add can have at most one carry bit. Thus we know that the output 2865 // is, at worst, one more bit than the inputs. 2866 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2867 if (Tmp == 1) break; 2868 2869 // Special case decrementing a value (ADD X, -1): 2870 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2871 if (CRHS->isAllOnesValue()) { 2872 KnownBits Known(TyBits); 2873 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2874 2875 // If the input is known to be 0 or 1, the output is 0/-1, which is 2876 // all sign bits set. 2877 if ((Known.Zero | 1).isAllOnesValue()) 2878 return TyBits; 2879 2880 // If we are subtracting one from a positive number, there is no carry 2881 // out of the result. 2882 if (Known.isNonNegative()) 2883 return Tmp; 2884 } 2885 2886 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2887 if (Tmp2 == 1) break; 2888 return std::min(Tmp, Tmp2) - 1; 2889 2890 case Instruction::Sub: 2891 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2892 if (Tmp2 == 1) break; 2893 2894 // Handle NEG. 2895 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2896 if (CLHS->isNullValue()) { 2897 KnownBits Known(TyBits); 2898 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2899 // If the input is known to be 0 or 1, the output is 0/-1, which is 2900 // all sign bits set. 2901 if ((Known.Zero | 1).isAllOnesValue()) 2902 return TyBits; 2903 2904 // If the input is known to be positive (the sign bit is known clear), 2905 // the output of the NEG has the same number of sign bits as the 2906 // input. 2907 if (Known.isNonNegative()) 2908 return Tmp2; 2909 2910 // Otherwise, we treat this like a SUB. 2911 } 2912 2913 // Sub can have at most one carry bit. Thus we know that the output 2914 // is, at worst, one more bit than the inputs. 2915 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2916 if (Tmp == 1) break; 2917 return std::min(Tmp, Tmp2) - 1; 2918 2919 case Instruction::Mul: { 2920 // The output of the Mul can be at most twice the valid bits in the 2921 // inputs. 2922 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2923 if (SignBitsOp0 == 1) break; 2924 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2925 if (SignBitsOp1 == 1) break; 2926 unsigned OutValidBits = 2927 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2928 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2929 } 2930 2931 case Instruction::PHI: { 2932 const PHINode *PN = cast<PHINode>(U); 2933 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2934 // Don't analyze large in-degree PHIs. 2935 if (NumIncomingValues > 4) break; 2936 // Unreachable blocks may have zero-operand PHI nodes. 2937 if (NumIncomingValues == 0) break; 2938 2939 // Take the minimum of all incoming values. This can't infinitely loop 2940 // because of our depth threshold. 2941 Query RecQ = Q; 2942 Tmp = TyBits; 2943 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2944 if (Tmp == 1) return Tmp; 2945 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2946 Tmp = std::min( 2947 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2948 } 2949 return Tmp; 2950 } 2951 2952 case Instruction::Trunc: 2953 // FIXME: it's tricky to do anything useful for this, but it is an 2954 // important case for targets like X86. 2955 break; 2956 2957 case Instruction::ExtractElement: 2958 // Look through extract element. At the moment we keep this simple and 2959 // skip tracking the specific element. But at least we might find 2960 // information valid for all elements of the vector (for example if vector 2961 // is sign extended, shifted, etc). 2962 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2963 2964 case Instruction::ShuffleVector: { 2965 // Collect the minimum number of sign bits that are shared by every vector 2966 // element referenced by the shuffle. 2967 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2968 if (!Shuf) { 2969 // FIXME: Add support for shufflevector constant expressions. 2970 return 1; 2971 } 2972 APInt DemandedLHS, DemandedRHS; 2973 // For undef elements, we don't know anything about the common state of 2974 // the shuffle result. 2975 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2976 return 1; 2977 Tmp = std::numeric_limits<unsigned>::max(); 2978 if (!!DemandedLHS) { 2979 const Value *LHS = Shuf->getOperand(0); 2980 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2981 } 2982 // If we don't know anything, early out and try computeKnownBits 2983 // fall-back. 2984 if (Tmp == 1) 2985 break; 2986 if (!!DemandedRHS) { 2987 const Value *RHS = Shuf->getOperand(1); 2988 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2989 Tmp = std::min(Tmp, Tmp2); 2990 } 2991 // If we don't know anything, early out and try computeKnownBits 2992 // fall-back. 2993 if (Tmp == 1) 2994 break; 2995 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2996 return Tmp; 2997 } 2998 case Instruction::Call: { 2999 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3000 switch (II->getIntrinsicID()) { 3001 default: break; 3002 case Intrinsic::abs: 3003 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3004 if (Tmp == 1) break; 3005 3006 // Absolute value reduces number of sign bits by at most 1. 3007 return Tmp - 1; 3008 } 3009 } 3010 } 3011 } 3012 } 3013 3014 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3015 // use this information. 3016 3017 // If we can examine all elements of a vector constant successfully, we're 3018 // done (we can't do any better than that). If not, keep trying. 3019 if (unsigned VecSignBits = 3020 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3021 return VecSignBits; 3022 3023 KnownBits Known(TyBits); 3024 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3025 3026 // If we know that the sign bit is either zero or one, determine the number of 3027 // identical bits in the top of the input value. 3028 return std::max(FirstAnswer, Known.countMinSignBits()); 3029 } 3030 3031 /// This function computes the integer multiple of Base that equals V. 3032 /// If successful, it returns true and returns the multiple in 3033 /// Multiple. If unsuccessful, it returns false. It looks 3034 /// through SExt instructions only if LookThroughSExt is true. 3035 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3036 bool LookThroughSExt, unsigned Depth) { 3037 assert(V && "No Value?"); 3038 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3039 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3040 3041 Type *T = V->getType(); 3042 3043 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3044 3045 if (Base == 0) 3046 return false; 3047 3048 if (Base == 1) { 3049 Multiple = V; 3050 return true; 3051 } 3052 3053 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3054 Constant *BaseVal = ConstantInt::get(T, Base); 3055 if (CO && CO == BaseVal) { 3056 // Multiple is 1. 3057 Multiple = ConstantInt::get(T, 1); 3058 return true; 3059 } 3060 3061 if (CI && CI->getZExtValue() % Base == 0) { 3062 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3063 return true; 3064 } 3065 3066 if (Depth == MaxAnalysisRecursionDepth) return false; 3067 3068 Operator *I = dyn_cast<Operator>(V); 3069 if (!I) return false; 3070 3071 switch (I->getOpcode()) { 3072 default: break; 3073 case Instruction::SExt: 3074 if (!LookThroughSExt) return false; 3075 // otherwise fall through to ZExt 3076 LLVM_FALLTHROUGH; 3077 case Instruction::ZExt: 3078 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3079 LookThroughSExt, Depth+1); 3080 case Instruction::Shl: 3081 case Instruction::Mul: { 3082 Value *Op0 = I->getOperand(0); 3083 Value *Op1 = I->getOperand(1); 3084 3085 if (I->getOpcode() == Instruction::Shl) { 3086 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3087 if (!Op1CI) return false; 3088 // Turn Op0 << Op1 into Op0 * 2^Op1 3089 APInt Op1Int = Op1CI->getValue(); 3090 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3091 APInt API(Op1Int.getBitWidth(), 0); 3092 API.setBit(BitToSet); 3093 Op1 = ConstantInt::get(V->getContext(), API); 3094 } 3095 3096 Value *Mul0 = nullptr; 3097 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3098 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3099 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3100 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3101 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3102 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3103 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3104 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3105 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3106 3107 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3108 Multiple = ConstantExpr::getMul(MulC, Op1C); 3109 return true; 3110 } 3111 3112 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3113 if (Mul0CI->getValue() == 1) { 3114 // V == Base * Op1, so return Op1 3115 Multiple = Op1; 3116 return true; 3117 } 3118 } 3119 3120 Value *Mul1 = nullptr; 3121 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3122 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3123 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3124 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3125 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3126 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3127 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3128 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3129 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3130 3131 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3132 Multiple = ConstantExpr::getMul(MulC, Op0C); 3133 return true; 3134 } 3135 3136 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3137 if (Mul1CI->getValue() == 1) { 3138 // V == Base * Op0, so return Op0 3139 Multiple = Op0; 3140 return true; 3141 } 3142 } 3143 } 3144 } 3145 3146 // We could not determine if V is a multiple of Base. 3147 return false; 3148 } 3149 3150 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3151 const TargetLibraryInfo *TLI) { 3152 const Function *F = CB.getCalledFunction(); 3153 if (!F) 3154 return Intrinsic::not_intrinsic; 3155 3156 if (F->isIntrinsic()) 3157 return F->getIntrinsicID(); 3158 3159 // We are going to infer semantics of a library function based on mapping it 3160 // to an LLVM intrinsic. Check that the library function is available from 3161 // this callbase and in this environment. 3162 LibFunc Func; 3163 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3164 !CB.onlyReadsMemory()) 3165 return Intrinsic::not_intrinsic; 3166 3167 switch (Func) { 3168 default: 3169 break; 3170 case LibFunc_sin: 3171 case LibFunc_sinf: 3172 case LibFunc_sinl: 3173 return Intrinsic::sin; 3174 case LibFunc_cos: 3175 case LibFunc_cosf: 3176 case LibFunc_cosl: 3177 return Intrinsic::cos; 3178 case LibFunc_exp: 3179 case LibFunc_expf: 3180 case LibFunc_expl: 3181 return Intrinsic::exp; 3182 case LibFunc_exp2: 3183 case LibFunc_exp2f: 3184 case LibFunc_exp2l: 3185 return Intrinsic::exp2; 3186 case LibFunc_log: 3187 case LibFunc_logf: 3188 case LibFunc_logl: 3189 return Intrinsic::log; 3190 case LibFunc_log10: 3191 case LibFunc_log10f: 3192 case LibFunc_log10l: 3193 return Intrinsic::log10; 3194 case LibFunc_log2: 3195 case LibFunc_log2f: 3196 case LibFunc_log2l: 3197 return Intrinsic::log2; 3198 case LibFunc_fabs: 3199 case LibFunc_fabsf: 3200 case LibFunc_fabsl: 3201 return Intrinsic::fabs; 3202 case LibFunc_fmin: 3203 case LibFunc_fminf: 3204 case LibFunc_fminl: 3205 return Intrinsic::minnum; 3206 case LibFunc_fmax: 3207 case LibFunc_fmaxf: 3208 case LibFunc_fmaxl: 3209 return Intrinsic::maxnum; 3210 case LibFunc_copysign: 3211 case LibFunc_copysignf: 3212 case LibFunc_copysignl: 3213 return Intrinsic::copysign; 3214 case LibFunc_floor: 3215 case LibFunc_floorf: 3216 case LibFunc_floorl: 3217 return Intrinsic::floor; 3218 case LibFunc_ceil: 3219 case LibFunc_ceilf: 3220 case LibFunc_ceill: 3221 return Intrinsic::ceil; 3222 case LibFunc_trunc: 3223 case LibFunc_truncf: 3224 case LibFunc_truncl: 3225 return Intrinsic::trunc; 3226 case LibFunc_rint: 3227 case LibFunc_rintf: 3228 case LibFunc_rintl: 3229 return Intrinsic::rint; 3230 case LibFunc_nearbyint: 3231 case LibFunc_nearbyintf: 3232 case LibFunc_nearbyintl: 3233 return Intrinsic::nearbyint; 3234 case LibFunc_round: 3235 case LibFunc_roundf: 3236 case LibFunc_roundl: 3237 return Intrinsic::round; 3238 case LibFunc_roundeven: 3239 case LibFunc_roundevenf: 3240 case LibFunc_roundevenl: 3241 return Intrinsic::roundeven; 3242 case LibFunc_pow: 3243 case LibFunc_powf: 3244 case LibFunc_powl: 3245 return Intrinsic::pow; 3246 case LibFunc_sqrt: 3247 case LibFunc_sqrtf: 3248 case LibFunc_sqrtl: 3249 return Intrinsic::sqrt; 3250 } 3251 3252 return Intrinsic::not_intrinsic; 3253 } 3254 3255 /// Return true if we can prove that the specified FP value is never equal to 3256 /// -0.0. 3257 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3258 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3259 /// the same as +0.0 in floating-point ops. 3260 /// 3261 /// NOTE: this function will need to be revisited when we support non-default 3262 /// rounding modes! 3263 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3264 unsigned Depth) { 3265 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3266 return !CFP->getValueAPF().isNegZero(); 3267 3268 if (Depth == MaxAnalysisRecursionDepth) 3269 return false; 3270 3271 auto *Op = dyn_cast<Operator>(V); 3272 if (!Op) 3273 return false; 3274 3275 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3276 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3277 return true; 3278 3279 // sitofp and uitofp turn into +0.0 for zero. 3280 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3281 return true; 3282 3283 if (auto *Call = dyn_cast<CallInst>(Op)) { 3284 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3285 switch (IID) { 3286 default: 3287 break; 3288 // sqrt(-0.0) = -0.0, no other negative results are possible. 3289 case Intrinsic::sqrt: 3290 case Intrinsic::canonicalize: 3291 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3292 // fabs(x) != -0.0 3293 case Intrinsic::fabs: 3294 return true; 3295 } 3296 } 3297 3298 return false; 3299 } 3300 3301 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3302 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3303 /// bit despite comparing equal. 3304 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3305 const TargetLibraryInfo *TLI, 3306 bool SignBitOnly, 3307 unsigned Depth) { 3308 // TODO: This function does not do the right thing when SignBitOnly is true 3309 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3310 // which flips the sign bits of NaNs. See 3311 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3312 3313 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3314 return !CFP->getValueAPF().isNegative() || 3315 (!SignBitOnly && CFP->getValueAPF().isZero()); 3316 } 3317 3318 // Handle vector of constants. 3319 if (auto *CV = dyn_cast<Constant>(V)) { 3320 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3321 unsigned NumElts = CVFVTy->getNumElements(); 3322 for (unsigned i = 0; i != NumElts; ++i) { 3323 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3324 if (!CFP) 3325 return false; 3326 if (CFP->getValueAPF().isNegative() && 3327 (SignBitOnly || !CFP->getValueAPF().isZero())) 3328 return false; 3329 } 3330 3331 // All non-negative ConstantFPs. 3332 return true; 3333 } 3334 } 3335 3336 if (Depth == MaxAnalysisRecursionDepth) 3337 return false; 3338 3339 const Operator *I = dyn_cast<Operator>(V); 3340 if (!I) 3341 return false; 3342 3343 switch (I->getOpcode()) { 3344 default: 3345 break; 3346 // Unsigned integers are always nonnegative. 3347 case Instruction::UIToFP: 3348 return true; 3349 case Instruction::FMul: 3350 case Instruction::FDiv: 3351 // X * X is always non-negative or a NaN. 3352 // X / X is always exactly 1.0 or a NaN. 3353 if (I->getOperand(0) == I->getOperand(1) && 3354 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3355 return true; 3356 3357 LLVM_FALLTHROUGH; 3358 case Instruction::FAdd: 3359 case Instruction::FRem: 3360 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3361 Depth + 1) && 3362 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3363 Depth + 1); 3364 case Instruction::Select: 3365 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3366 Depth + 1) && 3367 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3368 Depth + 1); 3369 case Instruction::FPExt: 3370 case Instruction::FPTrunc: 3371 // Widening/narrowing never change sign. 3372 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3373 Depth + 1); 3374 case Instruction::ExtractElement: 3375 // Look through extract element. At the moment we keep this simple and skip 3376 // tracking the specific element. But at least we might find information 3377 // valid for all elements of the vector. 3378 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3379 Depth + 1); 3380 case Instruction::Call: 3381 const auto *CI = cast<CallInst>(I); 3382 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3383 switch (IID) { 3384 default: 3385 break; 3386 case Intrinsic::maxnum: { 3387 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3388 auto isPositiveNum = [&](Value *V) { 3389 if (SignBitOnly) { 3390 // With SignBitOnly, this is tricky because the result of 3391 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3392 // a constant strictly greater than 0.0. 3393 const APFloat *C; 3394 return match(V, m_APFloat(C)) && 3395 *C > APFloat::getZero(C->getSemantics()); 3396 } 3397 3398 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3399 // maxnum can't be ordered-less-than-zero. 3400 return isKnownNeverNaN(V, TLI) && 3401 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3402 }; 3403 3404 // TODO: This could be improved. We could also check that neither operand 3405 // has its sign bit set (and at least 1 is not-NAN?). 3406 return isPositiveNum(V0) || isPositiveNum(V1); 3407 } 3408 3409 case Intrinsic::maximum: 3410 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3411 Depth + 1) || 3412 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3413 Depth + 1); 3414 case Intrinsic::minnum: 3415 case Intrinsic::minimum: 3416 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3417 Depth + 1) && 3418 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3419 Depth + 1); 3420 case Intrinsic::exp: 3421 case Intrinsic::exp2: 3422 case Intrinsic::fabs: 3423 return true; 3424 3425 case Intrinsic::sqrt: 3426 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3427 if (!SignBitOnly) 3428 return true; 3429 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3430 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3431 3432 case Intrinsic::powi: 3433 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3434 // powi(x,n) is non-negative if n is even. 3435 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3436 return true; 3437 } 3438 // TODO: This is not correct. Given that exp is an integer, here are the 3439 // ways that pow can return a negative value: 3440 // 3441 // pow(x, exp) --> negative if exp is odd and x is negative. 3442 // pow(-0, exp) --> -inf if exp is negative odd. 3443 // pow(-0, exp) --> -0 if exp is positive odd. 3444 // pow(-inf, exp) --> -0 if exp is negative odd. 3445 // pow(-inf, exp) --> -inf if exp is positive odd. 3446 // 3447 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3448 // but we must return false if x == -0. Unfortunately we do not currently 3449 // have a way of expressing this constraint. See details in 3450 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3451 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3452 Depth + 1); 3453 3454 case Intrinsic::fma: 3455 case Intrinsic::fmuladd: 3456 // x*x+y is non-negative if y is non-negative. 3457 return I->getOperand(0) == I->getOperand(1) && 3458 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3459 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3460 Depth + 1); 3461 } 3462 break; 3463 } 3464 return false; 3465 } 3466 3467 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3468 const TargetLibraryInfo *TLI) { 3469 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3470 } 3471 3472 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3473 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3474 } 3475 3476 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3477 unsigned Depth) { 3478 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3479 3480 // If we're told that infinities won't happen, assume they won't. 3481 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3482 if (FPMathOp->hasNoInfs()) 3483 return true; 3484 3485 // Handle scalar constants. 3486 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3487 return !CFP->isInfinity(); 3488 3489 if (Depth == MaxAnalysisRecursionDepth) 3490 return false; 3491 3492 if (auto *Inst = dyn_cast<Instruction>(V)) { 3493 switch (Inst->getOpcode()) { 3494 case Instruction::Select: { 3495 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3496 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3497 } 3498 case Instruction::SIToFP: 3499 case Instruction::UIToFP: { 3500 // Get width of largest magnitude integer (remove a bit if signed). 3501 // This still works for a signed minimum value because the largest FP 3502 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3503 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3504 if (Inst->getOpcode() == Instruction::SIToFP) 3505 --IntSize; 3506 3507 // If the exponent of the largest finite FP value can hold the largest 3508 // integer, the result of the cast must be finite. 3509 Type *FPTy = Inst->getType()->getScalarType(); 3510 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3511 } 3512 default: 3513 break; 3514 } 3515 } 3516 3517 // try to handle fixed width vector constants 3518 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3519 if (VFVTy && isa<Constant>(V)) { 3520 // For vectors, verify that each element is not infinity. 3521 unsigned NumElts = VFVTy->getNumElements(); 3522 for (unsigned i = 0; i != NumElts; ++i) { 3523 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3524 if (!Elt) 3525 return false; 3526 if (isa<UndefValue>(Elt)) 3527 continue; 3528 auto *CElt = dyn_cast<ConstantFP>(Elt); 3529 if (!CElt || CElt->isInfinity()) 3530 return false; 3531 } 3532 // All elements were confirmed non-infinity or undefined. 3533 return true; 3534 } 3535 3536 // was not able to prove that V never contains infinity 3537 return false; 3538 } 3539 3540 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3541 unsigned Depth) { 3542 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3543 3544 // If we're told that NaNs won't happen, assume they won't. 3545 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3546 if (FPMathOp->hasNoNaNs()) 3547 return true; 3548 3549 // Handle scalar constants. 3550 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3551 return !CFP->isNaN(); 3552 3553 if (Depth == MaxAnalysisRecursionDepth) 3554 return false; 3555 3556 if (auto *Inst = dyn_cast<Instruction>(V)) { 3557 switch (Inst->getOpcode()) { 3558 case Instruction::FAdd: 3559 case Instruction::FSub: 3560 // Adding positive and negative infinity produces NaN. 3561 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3562 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3563 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3564 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3565 3566 case Instruction::FMul: 3567 // Zero multiplied with infinity produces NaN. 3568 // FIXME: If neither side can be zero fmul never produces NaN. 3569 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3570 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3571 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3572 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3573 3574 case Instruction::FDiv: 3575 case Instruction::FRem: 3576 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3577 return false; 3578 3579 case Instruction::Select: { 3580 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3581 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3582 } 3583 case Instruction::SIToFP: 3584 case Instruction::UIToFP: 3585 return true; 3586 case Instruction::FPTrunc: 3587 case Instruction::FPExt: 3588 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3589 default: 3590 break; 3591 } 3592 } 3593 3594 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3595 switch (II->getIntrinsicID()) { 3596 case Intrinsic::canonicalize: 3597 case Intrinsic::fabs: 3598 case Intrinsic::copysign: 3599 case Intrinsic::exp: 3600 case Intrinsic::exp2: 3601 case Intrinsic::floor: 3602 case Intrinsic::ceil: 3603 case Intrinsic::trunc: 3604 case Intrinsic::rint: 3605 case Intrinsic::nearbyint: 3606 case Intrinsic::round: 3607 case Intrinsic::roundeven: 3608 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3609 case Intrinsic::sqrt: 3610 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3611 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3612 case Intrinsic::minnum: 3613 case Intrinsic::maxnum: 3614 // If either operand is not NaN, the result is not NaN. 3615 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3616 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3617 default: 3618 return false; 3619 } 3620 } 3621 3622 // Try to handle fixed width vector constants 3623 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3624 if (VFVTy && isa<Constant>(V)) { 3625 // For vectors, verify that each element is not NaN. 3626 unsigned NumElts = VFVTy->getNumElements(); 3627 for (unsigned i = 0; i != NumElts; ++i) { 3628 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3629 if (!Elt) 3630 return false; 3631 if (isa<UndefValue>(Elt)) 3632 continue; 3633 auto *CElt = dyn_cast<ConstantFP>(Elt); 3634 if (!CElt || CElt->isNaN()) 3635 return false; 3636 } 3637 // All elements were confirmed not-NaN or undefined. 3638 return true; 3639 } 3640 3641 // Was not able to prove that V never contains NaN 3642 return false; 3643 } 3644 3645 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3646 3647 // All byte-wide stores are splatable, even of arbitrary variables. 3648 if (V->getType()->isIntegerTy(8)) 3649 return V; 3650 3651 LLVMContext &Ctx = V->getContext(); 3652 3653 // Undef don't care. 3654 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3655 if (isa<UndefValue>(V)) 3656 return UndefInt8; 3657 3658 // Return Undef for zero-sized type. 3659 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3660 return UndefInt8; 3661 3662 Constant *C = dyn_cast<Constant>(V); 3663 if (!C) { 3664 // Conceptually, we could handle things like: 3665 // %a = zext i8 %X to i16 3666 // %b = shl i16 %a, 8 3667 // %c = or i16 %a, %b 3668 // but until there is an example that actually needs this, it doesn't seem 3669 // worth worrying about. 3670 return nullptr; 3671 } 3672 3673 // Handle 'null' ConstantArrayZero etc. 3674 if (C->isNullValue()) 3675 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3676 3677 // Constant floating-point values can be handled as integer values if the 3678 // corresponding integer value is "byteable". An important case is 0.0. 3679 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3680 Type *Ty = nullptr; 3681 if (CFP->getType()->isHalfTy()) 3682 Ty = Type::getInt16Ty(Ctx); 3683 else if (CFP->getType()->isFloatTy()) 3684 Ty = Type::getInt32Ty(Ctx); 3685 else if (CFP->getType()->isDoubleTy()) 3686 Ty = Type::getInt64Ty(Ctx); 3687 // Don't handle long double formats, which have strange constraints. 3688 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3689 : nullptr; 3690 } 3691 3692 // We can handle constant integers that are multiple of 8 bits. 3693 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3694 if (CI->getBitWidth() % 8 == 0) { 3695 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3696 if (!CI->getValue().isSplat(8)) 3697 return nullptr; 3698 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3699 } 3700 } 3701 3702 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3703 if (CE->getOpcode() == Instruction::IntToPtr) { 3704 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3705 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3706 return isBytewiseValue( 3707 ConstantExpr::getIntegerCast(CE->getOperand(0), 3708 Type::getIntNTy(Ctx, BitWidth), false), 3709 DL); 3710 } 3711 } 3712 } 3713 3714 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3715 if (LHS == RHS) 3716 return LHS; 3717 if (!LHS || !RHS) 3718 return nullptr; 3719 if (LHS == UndefInt8) 3720 return RHS; 3721 if (RHS == UndefInt8) 3722 return LHS; 3723 return nullptr; 3724 }; 3725 3726 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3727 Value *Val = UndefInt8; 3728 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3729 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3730 return nullptr; 3731 return Val; 3732 } 3733 3734 if (isa<ConstantAggregate>(C)) { 3735 Value *Val = UndefInt8; 3736 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3737 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3738 return nullptr; 3739 return Val; 3740 } 3741 3742 // Don't try to handle the handful of other constants. 3743 return nullptr; 3744 } 3745 3746 // This is the recursive version of BuildSubAggregate. It takes a few different 3747 // arguments. Idxs is the index within the nested struct From that we are 3748 // looking at now (which is of type IndexedType). IdxSkip is the number of 3749 // indices from Idxs that should be left out when inserting into the resulting 3750 // struct. To is the result struct built so far, new insertvalue instructions 3751 // build on that. 3752 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3753 SmallVectorImpl<unsigned> &Idxs, 3754 unsigned IdxSkip, 3755 Instruction *InsertBefore) { 3756 StructType *STy = dyn_cast<StructType>(IndexedType); 3757 if (STy) { 3758 // Save the original To argument so we can modify it 3759 Value *OrigTo = To; 3760 // General case, the type indexed by Idxs is a struct 3761 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3762 // Process each struct element recursively 3763 Idxs.push_back(i); 3764 Value *PrevTo = To; 3765 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3766 InsertBefore); 3767 Idxs.pop_back(); 3768 if (!To) { 3769 // Couldn't find any inserted value for this index? Cleanup 3770 while (PrevTo != OrigTo) { 3771 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3772 PrevTo = Del->getAggregateOperand(); 3773 Del->eraseFromParent(); 3774 } 3775 // Stop processing elements 3776 break; 3777 } 3778 } 3779 // If we successfully found a value for each of our subaggregates 3780 if (To) 3781 return To; 3782 } 3783 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3784 // the struct's elements had a value that was inserted directly. In the latter 3785 // case, perhaps we can't determine each of the subelements individually, but 3786 // we might be able to find the complete struct somewhere. 3787 3788 // Find the value that is at that particular spot 3789 Value *V = FindInsertedValue(From, Idxs); 3790 3791 if (!V) 3792 return nullptr; 3793 3794 // Insert the value in the new (sub) aggregate 3795 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3796 "tmp", InsertBefore); 3797 } 3798 3799 // This helper takes a nested struct and extracts a part of it (which is again a 3800 // struct) into a new value. For example, given the struct: 3801 // { a, { b, { c, d }, e } } 3802 // and the indices "1, 1" this returns 3803 // { c, d }. 3804 // 3805 // It does this by inserting an insertvalue for each element in the resulting 3806 // struct, as opposed to just inserting a single struct. This will only work if 3807 // each of the elements of the substruct are known (ie, inserted into From by an 3808 // insertvalue instruction somewhere). 3809 // 3810 // All inserted insertvalue instructions are inserted before InsertBefore 3811 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3812 Instruction *InsertBefore) { 3813 assert(InsertBefore && "Must have someplace to insert!"); 3814 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3815 idx_range); 3816 Value *To = UndefValue::get(IndexedType); 3817 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3818 unsigned IdxSkip = Idxs.size(); 3819 3820 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3821 } 3822 3823 /// Given an aggregate and a sequence of indices, see if the scalar value 3824 /// indexed is already around as a register, for example if it was inserted 3825 /// directly into the aggregate. 3826 /// 3827 /// If InsertBefore is not null, this function will duplicate (modified) 3828 /// insertvalues when a part of a nested struct is extracted. 3829 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3830 Instruction *InsertBefore) { 3831 // Nothing to index? Just return V then (this is useful at the end of our 3832 // recursion). 3833 if (idx_range.empty()) 3834 return V; 3835 // We have indices, so V should have an indexable type. 3836 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3837 "Not looking at a struct or array?"); 3838 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3839 "Invalid indices for type?"); 3840 3841 if (Constant *C = dyn_cast<Constant>(V)) { 3842 C = C->getAggregateElement(idx_range[0]); 3843 if (!C) return nullptr; 3844 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3845 } 3846 3847 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3848 // Loop the indices for the insertvalue instruction in parallel with the 3849 // requested indices 3850 const unsigned *req_idx = idx_range.begin(); 3851 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3852 i != e; ++i, ++req_idx) { 3853 if (req_idx == idx_range.end()) { 3854 // We can't handle this without inserting insertvalues 3855 if (!InsertBefore) 3856 return nullptr; 3857 3858 // The requested index identifies a part of a nested aggregate. Handle 3859 // this specially. For example, 3860 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3861 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3862 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3863 // This can be changed into 3864 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3865 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3866 // which allows the unused 0,0 element from the nested struct to be 3867 // removed. 3868 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3869 InsertBefore); 3870 } 3871 3872 // This insert value inserts something else than what we are looking for. 3873 // See if the (aggregate) value inserted into has the value we are 3874 // looking for, then. 3875 if (*req_idx != *i) 3876 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3877 InsertBefore); 3878 } 3879 // If we end up here, the indices of the insertvalue match with those 3880 // requested (though possibly only partially). Now we recursively look at 3881 // the inserted value, passing any remaining indices. 3882 return FindInsertedValue(I->getInsertedValueOperand(), 3883 makeArrayRef(req_idx, idx_range.end()), 3884 InsertBefore); 3885 } 3886 3887 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3888 // If we're extracting a value from an aggregate that was extracted from 3889 // something else, we can extract from that something else directly instead. 3890 // However, we will need to chain I's indices with the requested indices. 3891 3892 // Calculate the number of indices required 3893 unsigned size = I->getNumIndices() + idx_range.size(); 3894 // Allocate some space to put the new indices in 3895 SmallVector<unsigned, 5> Idxs; 3896 Idxs.reserve(size); 3897 // Add indices from the extract value instruction 3898 Idxs.append(I->idx_begin(), I->idx_end()); 3899 3900 // Add requested indices 3901 Idxs.append(idx_range.begin(), idx_range.end()); 3902 3903 assert(Idxs.size() == size 3904 && "Number of indices added not correct?"); 3905 3906 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3907 } 3908 // Otherwise, we don't know (such as, extracting from a function return value 3909 // or load instruction) 3910 return nullptr; 3911 } 3912 3913 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3914 unsigned CharSize) { 3915 // Make sure the GEP has exactly three arguments. 3916 if (GEP->getNumOperands() != 3) 3917 return false; 3918 3919 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3920 // CharSize. 3921 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3922 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3923 return false; 3924 3925 // Check to make sure that the first operand of the GEP is an integer and 3926 // has value 0 so that we are sure we're indexing into the initializer. 3927 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3928 if (!FirstIdx || !FirstIdx->isZero()) 3929 return false; 3930 3931 return true; 3932 } 3933 3934 bool llvm::getConstantDataArrayInfo(const Value *V, 3935 ConstantDataArraySlice &Slice, 3936 unsigned ElementSize, uint64_t Offset) { 3937 assert(V); 3938 3939 // Look through bitcast instructions and geps. 3940 V = V->stripPointerCasts(); 3941 3942 // If the value is a GEP instruction or constant expression, treat it as an 3943 // offset. 3944 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3945 // The GEP operator should be based on a pointer to string constant, and is 3946 // indexing into the string constant. 3947 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3948 return false; 3949 3950 // If the second index isn't a ConstantInt, then this is a variable index 3951 // into the array. If this occurs, we can't say anything meaningful about 3952 // the string. 3953 uint64_t StartIdx = 0; 3954 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3955 StartIdx = CI->getZExtValue(); 3956 else 3957 return false; 3958 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3959 StartIdx + Offset); 3960 } 3961 3962 // The GEP instruction, constant or instruction, must reference a global 3963 // variable that is a constant and is initialized. The referenced constant 3964 // initializer is the array that we'll use for optimization. 3965 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3966 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3967 return false; 3968 3969 const ConstantDataArray *Array; 3970 ArrayType *ArrayTy; 3971 if (GV->getInitializer()->isNullValue()) { 3972 Type *GVTy = GV->getValueType(); 3973 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3974 // A zeroinitializer for the array; there is no ConstantDataArray. 3975 Array = nullptr; 3976 } else { 3977 const DataLayout &DL = GV->getParent()->getDataLayout(); 3978 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3979 uint64_t Length = SizeInBytes / (ElementSize / 8); 3980 if (Length <= Offset) 3981 return false; 3982 3983 Slice.Array = nullptr; 3984 Slice.Offset = 0; 3985 Slice.Length = Length - Offset; 3986 return true; 3987 } 3988 } else { 3989 // This must be a ConstantDataArray. 3990 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3991 if (!Array) 3992 return false; 3993 ArrayTy = Array->getType(); 3994 } 3995 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3996 return false; 3997 3998 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3999 if (Offset > NumElts) 4000 return false; 4001 4002 Slice.Array = Array; 4003 Slice.Offset = Offset; 4004 Slice.Length = NumElts - Offset; 4005 return true; 4006 } 4007 4008 /// This function computes the length of a null-terminated C string pointed to 4009 /// by V. If successful, it returns true and returns the string in Str. 4010 /// If unsuccessful, it returns false. 4011 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4012 uint64_t Offset, bool TrimAtNul) { 4013 ConstantDataArraySlice Slice; 4014 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4015 return false; 4016 4017 if (Slice.Array == nullptr) { 4018 if (TrimAtNul) { 4019 Str = StringRef(); 4020 return true; 4021 } 4022 if (Slice.Length == 1) { 4023 Str = StringRef("", 1); 4024 return true; 4025 } 4026 // We cannot instantiate a StringRef as we do not have an appropriate string 4027 // of 0s at hand. 4028 return false; 4029 } 4030 4031 // Start out with the entire array in the StringRef. 4032 Str = Slice.Array->getAsString(); 4033 // Skip over 'offset' bytes. 4034 Str = Str.substr(Slice.Offset); 4035 4036 if (TrimAtNul) { 4037 // Trim off the \0 and anything after it. If the array is not nul 4038 // terminated, we just return the whole end of string. The client may know 4039 // some other way that the string is length-bound. 4040 Str = Str.substr(0, Str.find('\0')); 4041 } 4042 return true; 4043 } 4044 4045 // These next two are very similar to the above, but also look through PHI 4046 // nodes. 4047 // TODO: See if we can integrate these two together. 4048 4049 /// If we can compute the length of the string pointed to by 4050 /// the specified pointer, return 'len+1'. If we can't, return 0. 4051 static uint64_t GetStringLengthH(const Value *V, 4052 SmallPtrSetImpl<const PHINode*> &PHIs, 4053 unsigned CharSize) { 4054 // Look through noop bitcast instructions. 4055 V = V->stripPointerCasts(); 4056 4057 // If this is a PHI node, there are two cases: either we have already seen it 4058 // or we haven't. 4059 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4060 if (!PHIs.insert(PN).second) 4061 return ~0ULL; // already in the set. 4062 4063 // If it was new, see if all the input strings are the same length. 4064 uint64_t LenSoFar = ~0ULL; 4065 for (Value *IncValue : PN->incoming_values()) { 4066 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4067 if (Len == 0) return 0; // Unknown length -> unknown. 4068 4069 if (Len == ~0ULL) continue; 4070 4071 if (Len != LenSoFar && LenSoFar != ~0ULL) 4072 return 0; // Disagree -> unknown. 4073 LenSoFar = Len; 4074 } 4075 4076 // Success, all agree. 4077 return LenSoFar; 4078 } 4079 4080 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4081 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4082 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4083 if (Len1 == 0) return 0; 4084 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4085 if (Len2 == 0) return 0; 4086 if (Len1 == ~0ULL) return Len2; 4087 if (Len2 == ~0ULL) return Len1; 4088 if (Len1 != Len2) return 0; 4089 return Len1; 4090 } 4091 4092 // Otherwise, see if we can read the string. 4093 ConstantDataArraySlice Slice; 4094 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4095 return 0; 4096 4097 if (Slice.Array == nullptr) 4098 return 1; 4099 4100 // Search for nul characters 4101 unsigned NullIndex = 0; 4102 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4103 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4104 break; 4105 } 4106 4107 return NullIndex + 1; 4108 } 4109 4110 /// If we can compute the length of the string pointed to by 4111 /// the specified pointer, return 'len+1'. If we can't, return 0. 4112 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4113 if (!V->getType()->isPointerTy()) 4114 return 0; 4115 4116 SmallPtrSet<const PHINode*, 32> PHIs; 4117 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4118 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4119 // an empty string as a length. 4120 return Len == ~0ULL ? 1 : Len; 4121 } 4122 4123 const Value * 4124 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4125 bool MustPreserveNullness) { 4126 assert(Call && 4127 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4128 if (const Value *RV = Call->getReturnedArgOperand()) 4129 return RV; 4130 // This can be used only as a aliasing property. 4131 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4132 Call, MustPreserveNullness)) 4133 return Call->getArgOperand(0); 4134 return nullptr; 4135 } 4136 4137 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4138 const CallBase *Call, bool MustPreserveNullness) { 4139 switch (Call->getIntrinsicID()) { 4140 case Intrinsic::launder_invariant_group: 4141 case Intrinsic::strip_invariant_group: 4142 case Intrinsic::aarch64_irg: 4143 case Intrinsic::aarch64_tagp: 4144 return true; 4145 case Intrinsic::ptrmask: 4146 return !MustPreserveNullness; 4147 default: 4148 return false; 4149 } 4150 } 4151 4152 /// \p PN defines a loop-variant pointer to an object. Check if the 4153 /// previous iteration of the loop was referring to the same object as \p PN. 4154 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4155 const LoopInfo *LI) { 4156 // Find the loop-defined value. 4157 Loop *L = LI->getLoopFor(PN->getParent()); 4158 if (PN->getNumIncomingValues() != 2) 4159 return true; 4160 4161 // Find the value from previous iteration. 4162 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4163 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4164 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4165 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4166 return true; 4167 4168 // If a new pointer is loaded in the loop, the pointer references a different 4169 // object in every iteration. E.g.: 4170 // for (i) 4171 // int *p = a[i]; 4172 // ... 4173 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4174 if (!L->isLoopInvariant(Load->getPointerOperand())) 4175 return false; 4176 return true; 4177 } 4178 4179 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4180 if (!V->getType()->isPointerTy()) 4181 return V; 4182 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4183 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4184 V = GEP->getPointerOperand(); 4185 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4186 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4187 V = cast<Operator>(V)->getOperand(0); 4188 if (!V->getType()->isPointerTy()) 4189 return V; 4190 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4191 if (GA->isInterposable()) 4192 return V; 4193 V = GA->getAliasee(); 4194 } else { 4195 if (auto *PHI = dyn_cast<PHINode>(V)) { 4196 // Look through single-arg phi nodes created by LCSSA. 4197 if (PHI->getNumIncomingValues() == 1) { 4198 V = PHI->getIncomingValue(0); 4199 continue; 4200 } 4201 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4202 // CaptureTracking can know about special capturing properties of some 4203 // intrinsics like launder.invariant.group, that can't be expressed with 4204 // the attributes, but have properties like returning aliasing pointer. 4205 // Because some analysis may assume that nocaptured pointer is not 4206 // returned from some special intrinsic (because function would have to 4207 // be marked with returns attribute), it is crucial to use this function 4208 // because it should be in sync with CaptureTracking. Not using it may 4209 // cause weird miscompilations where 2 aliasing pointers are assumed to 4210 // noalias. 4211 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4212 V = RP; 4213 continue; 4214 } 4215 } 4216 4217 return V; 4218 } 4219 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4220 } 4221 return V; 4222 } 4223 4224 void llvm::getUnderlyingObjects(const Value *V, 4225 SmallVectorImpl<const Value *> &Objects, 4226 LoopInfo *LI, unsigned MaxLookup) { 4227 SmallPtrSet<const Value *, 4> Visited; 4228 SmallVector<const Value *, 4> Worklist; 4229 Worklist.push_back(V); 4230 do { 4231 const Value *P = Worklist.pop_back_val(); 4232 P = getUnderlyingObject(P, MaxLookup); 4233 4234 if (!Visited.insert(P).second) 4235 continue; 4236 4237 if (auto *SI = dyn_cast<SelectInst>(P)) { 4238 Worklist.push_back(SI->getTrueValue()); 4239 Worklist.push_back(SI->getFalseValue()); 4240 continue; 4241 } 4242 4243 if (auto *PN = dyn_cast<PHINode>(P)) { 4244 // If this PHI changes the underlying object in every iteration of the 4245 // loop, don't look through it. Consider: 4246 // int **A; 4247 // for (i) { 4248 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4249 // Curr = A[i]; 4250 // *Prev, *Curr; 4251 // 4252 // Prev is tracking Curr one iteration behind so they refer to different 4253 // underlying objects. 4254 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4255 isSameUnderlyingObjectInLoop(PN, LI)) 4256 append_range(Worklist, PN->incoming_values()); 4257 continue; 4258 } 4259 4260 Objects.push_back(P); 4261 } while (!Worklist.empty()); 4262 } 4263 4264 /// This is the function that does the work of looking through basic 4265 /// ptrtoint+arithmetic+inttoptr sequences. 4266 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4267 do { 4268 if (const Operator *U = dyn_cast<Operator>(V)) { 4269 // If we find a ptrtoint, we can transfer control back to the 4270 // regular getUnderlyingObjectFromInt. 4271 if (U->getOpcode() == Instruction::PtrToInt) 4272 return U->getOperand(0); 4273 // If we find an add of a constant, a multiplied value, or a phi, it's 4274 // likely that the other operand will lead us to the base 4275 // object. We don't have to worry about the case where the 4276 // object address is somehow being computed by the multiply, 4277 // because our callers only care when the result is an 4278 // identifiable object. 4279 if (U->getOpcode() != Instruction::Add || 4280 (!isa<ConstantInt>(U->getOperand(1)) && 4281 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4282 !isa<PHINode>(U->getOperand(1)))) 4283 return V; 4284 V = U->getOperand(0); 4285 } else { 4286 return V; 4287 } 4288 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4289 } while (true); 4290 } 4291 4292 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4293 /// ptrtoint+arithmetic+inttoptr sequences. 4294 /// It returns false if unidentified object is found in getUnderlyingObjects. 4295 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4296 SmallVectorImpl<Value *> &Objects) { 4297 SmallPtrSet<const Value *, 16> Visited; 4298 SmallVector<const Value *, 4> Working(1, V); 4299 do { 4300 V = Working.pop_back_val(); 4301 4302 SmallVector<const Value *, 4> Objs; 4303 getUnderlyingObjects(V, Objs); 4304 4305 for (const Value *V : Objs) { 4306 if (!Visited.insert(V).second) 4307 continue; 4308 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4309 const Value *O = 4310 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4311 if (O->getType()->isPointerTy()) { 4312 Working.push_back(O); 4313 continue; 4314 } 4315 } 4316 // If getUnderlyingObjects fails to find an identifiable object, 4317 // getUnderlyingObjectsForCodeGen also fails for safety. 4318 if (!isIdentifiedObject(V)) { 4319 Objects.clear(); 4320 return false; 4321 } 4322 Objects.push_back(const_cast<Value *>(V)); 4323 } 4324 } while (!Working.empty()); 4325 return true; 4326 } 4327 4328 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4329 AllocaInst *Result = nullptr; 4330 SmallPtrSet<Value *, 4> Visited; 4331 SmallVector<Value *, 4> Worklist; 4332 4333 auto AddWork = [&](Value *V) { 4334 if (Visited.insert(V).second) 4335 Worklist.push_back(V); 4336 }; 4337 4338 AddWork(V); 4339 do { 4340 V = Worklist.pop_back_val(); 4341 assert(Visited.count(V)); 4342 4343 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4344 if (Result && Result != AI) 4345 return nullptr; 4346 Result = AI; 4347 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4348 AddWork(CI->getOperand(0)); 4349 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4350 for (Value *IncValue : PN->incoming_values()) 4351 AddWork(IncValue); 4352 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4353 AddWork(SI->getTrueValue()); 4354 AddWork(SI->getFalseValue()); 4355 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4356 if (OffsetZero && !GEP->hasAllZeroIndices()) 4357 return nullptr; 4358 AddWork(GEP->getPointerOperand()); 4359 } else { 4360 return nullptr; 4361 } 4362 } while (!Worklist.empty()); 4363 4364 return Result; 4365 } 4366 4367 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4368 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4369 for (const User *U : V->users()) { 4370 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4371 if (!II) 4372 return false; 4373 4374 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4375 continue; 4376 4377 if (AllowDroppable && II->isDroppable()) 4378 continue; 4379 4380 return false; 4381 } 4382 return true; 4383 } 4384 4385 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4386 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4387 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4388 } 4389 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4390 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4391 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4392 } 4393 4394 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4395 if (!LI.isUnordered()) 4396 return true; 4397 const Function &F = *LI.getFunction(); 4398 // Speculative load may create a race that did not exist in the source. 4399 return F.hasFnAttribute(Attribute::SanitizeThread) || 4400 // Speculative load may load data from dirty regions. 4401 F.hasFnAttribute(Attribute::SanitizeAddress) || 4402 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4403 } 4404 4405 4406 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4407 const Instruction *CtxI, 4408 const DominatorTree *DT) { 4409 const Operator *Inst = dyn_cast<Operator>(V); 4410 if (!Inst) 4411 return false; 4412 4413 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4414 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4415 if (C->canTrap()) 4416 return false; 4417 4418 switch (Inst->getOpcode()) { 4419 default: 4420 return true; 4421 case Instruction::UDiv: 4422 case Instruction::URem: { 4423 // x / y is undefined if y == 0. 4424 const APInt *V; 4425 if (match(Inst->getOperand(1), m_APInt(V))) 4426 return *V != 0; 4427 return false; 4428 } 4429 case Instruction::SDiv: 4430 case Instruction::SRem: { 4431 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4432 const APInt *Numerator, *Denominator; 4433 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4434 return false; 4435 // We cannot hoist this division if the denominator is 0. 4436 if (*Denominator == 0) 4437 return false; 4438 // It's safe to hoist if the denominator is not 0 or -1. 4439 if (!Denominator->isAllOnesValue()) 4440 return true; 4441 // At this point we know that the denominator is -1. It is safe to hoist as 4442 // long we know that the numerator is not INT_MIN. 4443 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4444 return !Numerator->isMinSignedValue(); 4445 // The numerator *might* be MinSignedValue. 4446 return false; 4447 } 4448 case Instruction::Load: { 4449 const LoadInst *LI = cast<LoadInst>(Inst); 4450 if (mustSuppressSpeculation(*LI)) 4451 return false; 4452 const DataLayout &DL = LI->getModule()->getDataLayout(); 4453 return isDereferenceableAndAlignedPointer( 4454 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4455 DL, CtxI, DT); 4456 } 4457 case Instruction::Call: { 4458 auto *CI = cast<const CallInst>(Inst); 4459 const Function *Callee = CI->getCalledFunction(); 4460 4461 // The called function could have undefined behavior or side-effects, even 4462 // if marked readnone nounwind. 4463 return Callee && Callee->isSpeculatable(); 4464 } 4465 case Instruction::VAArg: 4466 case Instruction::Alloca: 4467 case Instruction::Invoke: 4468 case Instruction::CallBr: 4469 case Instruction::PHI: 4470 case Instruction::Store: 4471 case Instruction::Ret: 4472 case Instruction::Br: 4473 case Instruction::IndirectBr: 4474 case Instruction::Switch: 4475 case Instruction::Unreachable: 4476 case Instruction::Fence: 4477 case Instruction::AtomicRMW: 4478 case Instruction::AtomicCmpXchg: 4479 case Instruction::LandingPad: 4480 case Instruction::Resume: 4481 case Instruction::CatchSwitch: 4482 case Instruction::CatchPad: 4483 case Instruction::CatchRet: 4484 case Instruction::CleanupPad: 4485 case Instruction::CleanupRet: 4486 return false; // Misc instructions which have effects 4487 } 4488 } 4489 4490 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4491 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4492 } 4493 4494 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4495 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4496 switch (OR) { 4497 case ConstantRange::OverflowResult::MayOverflow: 4498 return OverflowResult::MayOverflow; 4499 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4500 return OverflowResult::AlwaysOverflowsLow; 4501 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4502 return OverflowResult::AlwaysOverflowsHigh; 4503 case ConstantRange::OverflowResult::NeverOverflows: 4504 return OverflowResult::NeverOverflows; 4505 } 4506 llvm_unreachable("Unknown OverflowResult"); 4507 } 4508 4509 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4510 static ConstantRange computeConstantRangeIncludingKnownBits( 4511 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4512 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4513 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4514 KnownBits Known = computeKnownBits( 4515 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4516 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4517 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4518 ConstantRange::PreferredRangeType RangeType = 4519 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4520 return CR1.intersectWith(CR2, RangeType); 4521 } 4522 4523 OverflowResult llvm::computeOverflowForUnsignedMul( 4524 const Value *LHS, const Value *RHS, const DataLayout &DL, 4525 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4526 bool UseInstrInfo) { 4527 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4528 nullptr, UseInstrInfo); 4529 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4530 nullptr, UseInstrInfo); 4531 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4532 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4533 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4534 } 4535 4536 OverflowResult 4537 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4538 const DataLayout &DL, AssumptionCache *AC, 4539 const Instruction *CxtI, 4540 const DominatorTree *DT, bool UseInstrInfo) { 4541 // Multiplying n * m significant bits yields a result of n + m significant 4542 // bits. If the total number of significant bits does not exceed the 4543 // result bit width (minus 1), there is no overflow. 4544 // This means if we have enough leading sign bits in the operands 4545 // we can guarantee that the result does not overflow. 4546 // Ref: "Hacker's Delight" by Henry Warren 4547 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4548 4549 // Note that underestimating the number of sign bits gives a more 4550 // conservative answer. 4551 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4552 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4553 4554 // First handle the easy case: if we have enough sign bits there's 4555 // definitely no overflow. 4556 if (SignBits > BitWidth + 1) 4557 return OverflowResult::NeverOverflows; 4558 4559 // There are two ambiguous cases where there can be no overflow: 4560 // SignBits == BitWidth + 1 and 4561 // SignBits == BitWidth 4562 // The second case is difficult to check, therefore we only handle the 4563 // first case. 4564 if (SignBits == BitWidth + 1) { 4565 // It overflows only when both arguments are negative and the true 4566 // product is exactly the minimum negative number. 4567 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4568 // For simplicity we just check if at least one side is not negative. 4569 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4570 nullptr, UseInstrInfo); 4571 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4572 nullptr, UseInstrInfo); 4573 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4574 return OverflowResult::NeverOverflows; 4575 } 4576 return OverflowResult::MayOverflow; 4577 } 4578 4579 OverflowResult llvm::computeOverflowForUnsignedAdd( 4580 const Value *LHS, const Value *RHS, const DataLayout &DL, 4581 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4582 bool UseInstrInfo) { 4583 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4584 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4585 nullptr, UseInstrInfo); 4586 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4587 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4588 nullptr, UseInstrInfo); 4589 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4590 } 4591 4592 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4593 const Value *RHS, 4594 const AddOperator *Add, 4595 const DataLayout &DL, 4596 AssumptionCache *AC, 4597 const Instruction *CxtI, 4598 const DominatorTree *DT) { 4599 if (Add && Add->hasNoSignedWrap()) { 4600 return OverflowResult::NeverOverflows; 4601 } 4602 4603 // If LHS and RHS each have at least two sign bits, the addition will look 4604 // like 4605 // 4606 // XX..... + 4607 // YY..... 4608 // 4609 // If the carry into the most significant position is 0, X and Y can't both 4610 // be 1 and therefore the carry out of the addition is also 0. 4611 // 4612 // If the carry into the most significant position is 1, X and Y can't both 4613 // be 0 and therefore the carry out of the addition is also 1. 4614 // 4615 // Since the carry into the most significant position is always equal to 4616 // the carry out of the addition, there is no signed overflow. 4617 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4618 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4619 return OverflowResult::NeverOverflows; 4620 4621 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4622 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4623 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4624 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4625 OverflowResult OR = 4626 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4627 if (OR != OverflowResult::MayOverflow) 4628 return OR; 4629 4630 // The remaining code needs Add to be available. Early returns if not so. 4631 if (!Add) 4632 return OverflowResult::MayOverflow; 4633 4634 // If the sign of Add is the same as at least one of the operands, this add 4635 // CANNOT overflow. If this can be determined from the known bits of the 4636 // operands the above signedAddMayOverflow() check will have already done so. 4637 // The only other way to improve on the known bits is from an assumption, so 4638 // call computeKnownBitsFromAssume() directly. 4639 bool LHSOrRHSKnownNonNegative = 4640 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4641 bool LHSOrRHSKnownNegative = 4642 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4643 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4644 KnownBits AddKnown(LHSRange.getBitWidth()); 4645 computeKnownBitsFromAssume( 4646 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4647 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4648 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4649 return OverflowResult::NeverOverflows; 4650 } 4651 4652 return OverflowResult::MayOverflow; 4653 } 4654 4655 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4656 const Value *RHS, 4657 const DataLayout &DL, 4658 AssumptionCache *AC, 4659 const Instruction *CxtI, 4660 const DominatorTree *DT) { 4661 // Checking for conditions implied by dominating conditions may be expensive. 4662 // Limit it to usub_with_overflow calls for now. 4663 if (match(CxtI, 4664 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4665 if (auto C = 4666 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4667 if (*C) 4668 return OverflowResult::NeverOverflows; 4669 return OverflowResult::AlwaysOverflowsLow; 4670 } 4671 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4672 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4673 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4674 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4675 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4676 } 4677 4678 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4679 const Value *RHS, 4680 const DataLayout &DL, 4681 AssumptionCache *AC, 4682 const Instruction *CxtI, 4683 const DominatorTree *DT) { 4684 // If LHS and RHS each have at least two sign bits, the subtraction 4685 // cannot overflow. 4686 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4687 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4688 return OverflowResult::NeverOverflows; 4689 4690 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4691 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4692 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4693 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4694 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4695 } 4696 4697 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4698 const DominatorTree &DT) { 4699 SmallVector<const BranchInst *, 2> GuardingBranches; 4700 SmallVector<const ExtractValueInst *, 2> Results; 4701 4702 for (const User *U : WO->users()) { 4703 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4704 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4705 4706 if (EVI->getIndices()[0] == 0) 4707 Results.push_back(EVI); 4708 else { 4709 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4710 4711 for (const auto *U : EVI->users()) 4712 if (const auto *B = dyn_cast<BranchInst>(U)) { 4713 assert(B->isConditional() && "How else is it using an i1?"); 4714 GuardingBranches.push_back(B); 4715 } 4716 } 4717 } else { 4718 // We are using the aggregate directly in a way we don't want to analyze 4719 // here (storing it to a global, say). 4720 return false; 4721 } 4722 } 4723 4724 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4725 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4726 if (!NoWrapEdge.isSingleEdge()) 4727 return false; 4728 4729 // Check if all users of the add are provably no-wrap. 4730 for (const auto *Result : Results) { 4731 // If the extractvalue itself is not executed on overflow, the we don't 4732 // need to check each use separately, since domination is transitive. 4733 if (DT.dominates(NoWrapEdge, Result->getParent())) 4734 continue; 4735 4736 for (auto &RU : Result->uses()) 4737 if (!DT.dominates(NoWrapEdge, RU)) 4738 return false; 4739 } 4740 4741 return true; 4742 }; 4743 4744 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4745 } 4746 4747 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4748 // See whether I has flags that may create poison 4749 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4750 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4751 return true; 4752 } 4753 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4754 if (ExactOp->isExact()) 4755 return true; 4756 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4757 auto FMF = FP->getFastMathFlags(); 4758 if (FMF.noNaNs() || FMF.noInfs()) 4759 return true; 4760 } 4761 4762 unsigned Opcode = Op->getOpcode(); 4763 4764 // Check whether opcode is a poison/undef-generating operation 4765 switch (Opcode) { 4766 case Instruction::Shl: 4767 case Instruction::AShr: 4768 case Instruction::LShr: { 4769 // Shifts return poison if shiftwidth is larger than the bitwidth. 4770 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4771 SmallVector<Constant *, 4> ShiftAmounts; 4772 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4773 unsigned NumElts = FVTy->getNumElements(); 4774 for (unsigned i = 0; i < NumElts; ++i) 4775 ShiftAmounts.push_back(C->getAggregateElement(i)); 4776 } else if (isa<ScalableVectorType>(C->getType())) 4777 return true; // Can't tell, just return true to be safe 4778 else 4779 ShiftAmounts.push_back(C); 4780 4781 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4782 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4783 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4784 }); 4785 return !Safe; 4786 } 4787 return true; 4788 } 4789 case Instruction::FPToSI: 4790 case Instruction::FPToUI: 4791 // fptosi/ui yields poison if the resulting value does not fit in the 4792 // destination type. 4793 return true; 4794 case Instruction::Call: 4795 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4796 switch (II->getIntrinsicID()) { 4797 // TODO: Add more intrinsics. 4798 case Intrinsic::ctpop: 4799 return false; 4800 } 4801 } 4802 LLVM_FALLTHROUGH; 4803 case Instruction::CallBr: 4804 case Instruction::Invoke: { 4805 const auto *CB = cast<CallBase>(Op); 4806 return !CB->hasRetAttr(Attribute::NoUndef); 4807 } 4808 case Instruction::InsertElement: 4809 case Instruction::ExtractElement: { 4810 // If index exceeds the length of the vector, it returns poison 4811 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4812 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4813 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4814 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4815 return true; 4816 return false; 4817 } 4818 case Instruction::ShuffleVector: { 4819 // shufflevector may return undef. 4820 if (PoisonOnly) 4821 return false; 4822 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4823 ? cast<ConstantExpr>(Op)->getShuffleMask() 4824 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4825 return is_contained(Mask, UndefMaskElem); 4826 } 4827 case Instruction::FNeg: 4828 case Instruction::PHI: 4829 case Instruction::Select: 4830 case Instruction::URem: 4831 case Instruction::SRem: 4832 case Instruction::ExtractValue: 4833 case Instruction::InsertValue: 4834 case Instruction::Freeze: 4835 case Instruction::ICmp: 4836 case Instruction::FCmp: 4837 return false; 4838 case Instruction::GetElementPtr: { 4839 const auto *GEP = cast<GEPOperator>(Op); 4840 return GEP->isInBounds(); 4841 } 4842 default: { 4843 const auto *CE = dyn_cast<ConstantExpr>(Op); 4844 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4845 return false; 4846 else if (Instruction::isBinaryOp(Opcode)) 4847 return false; 4848 // Be conservative and return true. 4849 return true; 4850 } 4851 } 4852 } 4853 4854 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4855 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4856 } 4857 4858 bool llvm::canCreatePoison(const Operator *Op) { 4859 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4860 } 4861 4862 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4863 const Value *V, unsigned Depth) { 4864 if (ValAssumedPoison == V) 4865 return true; 4866 4867 const unsigned MaxDepth = 2; 4868 if (Depth >= MaxDepth) 4869 return false; 4870 4871 if (const auto *I = dyn_cast<Instruction>(V)) { 4872 if (propagatesPoison(cast<Operator>(I))) 4873 return any_of(I->operands(), [=](const Value *Op) { 4874 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4875 }); 4876 4877 // 'select ValAssumedPoison, _, _' is poison. 4878 if (const auto *SI = dyn_cast<SelectInst>(I)) 4879 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 4880 Depth + 1); 4881 // V = extractvalue V0, idx 4882 // V2 = extractvalue V0, idx2 4883 // V0's elements are all poison or not. (e.g., add_with_overflow) 4884 const WithOverflowInst *II; 4885 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 4886 match(ValAssumedPoison, m_ExtractValue(m_Specific(II)))) 4887 return true; 4888 } 4889 return false; 4890 } 4891 4892 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4893 unsigned Depth) { 4894 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4895 return true; 4896 4897 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4898 return true; 4899 4900 const unsigned MaxDepth = 2; 4901 if (Depth >= MaxDepth) 4902 return false; 4903 4904 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 4905 if (I && !canCreatePoison(cast<Operator>(I))) { 4906 return all_of(I->operands(), [=](const Value *Op) { 4907 return impliesPoison(Op, V, Depth + 1); 4908 }); 4909 } 4910 return false; 4911 } 4912 4913 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 4914 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 4915 } 4916 4917 static bool programUndefinedIfUndefOrPoison(const Value *V, 4918 bool PoisonOnly); 4919 4920 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4921 AssumptionCache *AC, 4922 const Instruction *CtxI, 4923 const DominatorTree *DT, 4924 unsigned Depth, bool PoisonOnly) { 4925 if (Depth >= MaxAnalysisRecursionDepth) 4926 return false; 4927 4928 if (isa<MetadataAsValue>(V)) 4929 return false; 4930 4931 if (const auto *A = dyn_cast<Argument>(V)) { 4932 if (A->hasAttribute(Attribute::NoUndef)) 4933 return true; 4934 } 4935 4936 if (auto *C = dyn_cast<Constant>(V)) { 4937 if (isa<UndefValue>(C)) 4938 return PoisonOnly && !isa<PoisonValue>(C); 4939 4940 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4941 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4942 return true; 4943 4944 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4945 return (PoisonOnly ? !C->containsPoisonElement() 4946 : !C->containsUndefOrPoisonElement()) && 4947 !C->containsConstantExpression(); 4948 } 4949 4950 // Strip cast operations from a pointer value. 4951 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4952 // inbounds with zero offset. To guarantee that the result isn't poison, the 4953 // stripped pointer is checked as it has to be pointing into an allocated 4954 // object or be null `null` to ensure `inbounds` getelement pointers with a 4955 // zero offset could not produce poison. 4956 // It can strip off addrspacecast that do not change bit representation as 4957 // well. We believe that such addrspacecast is equivalent to no-op. 4958 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4959 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4960 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4961 return true; 4962 4963 auto OpCheck = [&](const Value *V) { 4964 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4965 PoisonOnly); 4966 }; 4967 4968 if (auto *Opr = dyn_cast<Operator>(V)) { 4969 // If the value is a freeze instruction, then it can never 4970 // be undef or poison. 4971 if (isa<FreezeInst>(V)) 4972 return true; 4973 4974 if (const auto *CB = dyn_cast<CallBase>(V)) { 4975 if (CB->hasRetAttr(Attribute::NoUndef)) 4976 return true; 4977 } 4978 4979 if (const auto *PN = dyn_cast<PHINode>(V)) { 4980 unsigned Num = PN->getNumIncomingValues(); 4981 bool IsWellDefined = true; 4982 for (unsigned i = 0; i < Num; ++i) { 4983 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4984 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4985 DT, Depth + 1, PoisonOnly)) { 4986 IsWellDefined = false; 4987 break; 4988 } 4989 } 4990 if (IsWellDefined) 4991 return true; 4992 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4993 return true; 4994 } 4995 4996 if (auto *I = dyn_cast<LoadInst>(V)) 4997 if (I->getMetadata(LLVMContext::MD_noundef)) 4998 return true; 4999 5000 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5001 return true; 5002 5003 // CxtI may be null or a cloned instruction. 5004 if (!CtxI || !CtxI->getParent() || !DT) 5005 return false; 5006 5007 auto *DNode = DT->getNode(CtxI->getParent()); 5008 if (!DNode) 5009 // Unreachable block 5010 return false; 5011 5012 // If V is used as a branch condition before reaching CtxI, V cannot be 5013 // undef or poison. 5014 // br V, BB1, BB2 5015 // BB1: 5016 // CtxI ; V cannot be undef or poison here 5017 auto *Dominator = DNode->getIDom(); 5018 while (Dominator) { 5019 auto *TI = Dominator->getBlock()->getTerminator(); 5020 5021 Value *Cond = nullptr; 5022 if (auto BI = dyn_cast<BranchInst>(TI)) { 5023 if (BI->isConditional()) 5024 Cond = BI->getCondition(); 5025 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5026 Cond = SI->getCondition(); 5027 } 5028 5029 if (Cond) { 5030 if (Cond == V) 5031 return true; 5032 else if (PoisonOnly && isa<Operator>(Cond)) { 5033 // For poison, we can analyze further 5034 auto *Opr = cast<Operator>(Cond); 5035 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5036 return true; 5037 } 5038 } 5039 5040 Dominator = Dominator->getIDom(); 5041 } 5042 5043 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5044 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5045 return true; 5046 5047 return false; 5048 } 5049 5050 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5051 const Instruction *CtxI, 5052 const DominatorTree *DT, 5053 unsigned Depth) { 5054 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5055 } 5056 5057 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5058 const Instruction *CtxI, 5059 const DominatorTree *DT, unsigned Depth) { 5060 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5061 } 5062 5063 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5064 const DataLayout &DL, 5065 AssumptionCache *AC, 5066 const Instruction *CxtI, 5067 const DominatorTree *DT) { 5068 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5069 Add, DL, AC, CxtI, DT); 5070 } 5071 5072 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5073 const Value *RHS, 5074 const DataLayout &DL, 5075 AssumptionCache *AC, 5076 const Instruction *CxtI, 5077 const DominatorTree *DT) { 5078 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5079 } 5080 5081 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5082 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5083 // of time because it's possible for another thread to interfere with it for an 5084 // arbitrary length of time, but programs aren't allowed to rely on that. 5085 5086 // If there is no successor, then execution can't transfer to it. 5087 if (isa<ReturnInst>(I)) 5088 return false; 5089 if (isa<UnreachableInst>(I)) 5090 return false; 5091 5092 // An instruction that returns without throwing must transfer control flow 5093 // to a successor. 5094 return !I->mayThrow() && I->willReturn(); 5095 } 5096 5097 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5098 // TODO: This is slightly conservative for invoke instruction since exiting 5099 // via an exception *is* normal control for them. 5100 for (const Instruction &I : *BB) 5101 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5102 return false; 5103 return true; 5104 } 5105 5106 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5107 const Loop *L) { 5108 // The loop header is guaranteed to be executed for every iteration. 5109 // 5110 // FIXME: Relax this constraint to cover all basic blocks that are 5111 // guaranteed to be executed at every iteration. 5112 if (I->getParent() != L->getHeader()) return false; 5113 5114 for (const Instruction &LI : *L->getHeader()) { 5115 if (&LI == I) return true; 5116 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5117 } 5118 llvm_unreachable("Instruction not contained in its own parent basic block."); 5119 } 5120 5121 bool llvm::propagatesPoison(const Operator *I) { 5122 switch (I->getOpcode()) { 5123 case Instruction::Freeze: 5124 case Instruction::Select: 5125 case Instruction::PHI: 5126 case Instruction::Call: 5127 case Instruction::Invoke: 5128 return false; 5129 case Instruction::ICmp: 5130 case Instruction::FCmp: 5131 case Instruction::GetElementPtr: 5132 return true; 5133 default: 5134 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5135 return true; 5136 5137 // Be conservative and return false. 5138 return false; 5139 } 5140 } 5141 5142 void llvm::getGuaranteedWellDefinedOps( 5143 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5144 switch (I->getOpcode()) { 5145 case Instruction::Store: 5146 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5147 break; 5148 5149 case Instruction::Load: 5150 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5151 break; 5152 5153 // Since dereferenceable attribute imply noundef, atomic operations 5154 // also implicitly have noundef pointers too 5155 case Instruction::AtomicCmpXchg: 5156 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5157 break; 5158 5159 case Instruction::AtomicRMW: 5160 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5161 break; 5162 5163 case Instruction::Call: 5164 case Instruction::Invoke: { 5165 const CallBase *CB = cast<CallBase>(I); 5166 if (CB->isIndirectCall()) 5167 Operands.insert(CB->getCalledOperand()); 5168 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5169 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5170 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5171 Operands.insert(CB->getArgOperand(i)); 5172 } 5173 break; 5174 } 5175 5176 default: 5177 break; 5178 } 5179 } 5180 5181 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5182 SmallPtrSetImpl<const Value *> &Operands) { 5183 getGuaranteedWellDefinedOps(I, Operands); 5184 switch (I->getOpcode()) { 5185 // Divisors of these operations are allowed to be partially undef. 5186 case Instruction::UDiv: 5187 case Instruction::SDiv: 5188 case Instruction::URem: 5189 case Instruction::SRem: 5190 Operands.insert(I->getOperand(1)); 5191 break; 5192 5193 default: 5194 break; 5195 } 5196 } 5197 5198 bool llvm::mustTriggerUB(const Instruction *I, 5199 const SmallSet<const Value *, 16>& KnownPoison) { 5200 SmallPtrSet<const Value *, 4> NonPoisonOps; 5201 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5202 5203 for (const auto *V : NonPoisonOps) 5204 if (KnownPoison.count(V)) 5205 return true; 5206 5207 return false; 5208 } 5209 5210 static bool programUndefinedIfUndefOrPoison(const Value *V, 5211 bool PoisonOnly) { 5212 // We currently only look for uses of values within the same basic 5213 // block, as that makes it easier to guarantee that the uses will be 5214 // executed given that Inst is executed. 5215 // 5216 // FIXME: Expand this to consider uses beyond the same basic block. To do 5217 // this, look out for the distinction between post-dominance and strong 5218 // post-dominance. 5219 const BasicBlock *BB = nullptr; 5220 BasicBlock::const_iterator Begin; 5221 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5222 BB = Inst->getParent(); 5223 Begin = Inst->getIterator(); 5224 Begin++; 5225 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5226 BB = &Arg->getParent()->getEntryBlock(); 5227 Begin = BB->begin(); 5228 } else { 5229 return false; 5230 } 5231 5232 BasicBlock::const_iterator End = BB->end(); 5233 5234 if (!PoisonOnly) { 5235 // Since undef does not propagate eagerly, be conservative & just check 5236 // whether a value is directly passed to an instruction that must take 5237 // well-defined operands. 5238 5239 for (auto &I : make_range(Begin, End)) { 5240 SmallPtrSet<const Value *, 4> WellDefinedOps; 5241 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5242 for (auto *Op : WellDefinedOps) { 5243 if (Op == V) 5244 return true; 5245 } 5246 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5247 break; 5248 } 5249 return false; 5250 } 5251 5252 // Set of instructions that we have proved will yield poison if Inst 5253 // does. 5254 SmallSet<const Value *, 16> YieldsPoison; 5255 SmallSet<const BasicBlock *, 4> Visited; 5256 5257 YieldsPoison.insert(V); 5258 auto Propagate = [&](const User *User) { 5259 if (propagatesPoison(cast<Operator>(User))) 5260 YieldsPoison.insert(User); 5261 }; 5262 for_each(V->users(), Propagate); 5263 Visited.insert(BB); 5264 5265 unsigned Iter = 0; 5266 while (Iter++ < MaxAnalysisRecursionDepth) { 5267 for (auto &I : make_range(Begin, End)) { 5268 if (mustTriggerUB(&I, YieldsPoison)) 5269 return true; 5270 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5271 return false; 5272 5273 // Mark poison that propagates from I through uses of I. 5274 if (YieldsPoison.count(&I)) 5275 for_each(I.users(), Propagate); 5276 } 5277 5278 if (auto *NextBB = BB->getSingleSuccessor()) { 5279 if (Visited.insert(NextBB).second) { 5280 BB = NextBB; 5281 Begin = BB->getFirstNonPHI()->getIterator(); 5282 End = BB->end(); 5283 continue; 5284 } 5285 } 5286 5287 break; 5288 } 5289 return false; 5290 } 5291 5292 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5293 return ::programUndefinedIfUndefOrPoison(Inst, false); 5294 } 5295 5296 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5297 return ::programUndefinedIfUndefOrPoison(Inst, true); 5298 } 5299 5300 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5301 if (FMF.noNaNs()) 5302 return true; 5303 5304 if (auto *C = dyn_cast<ConstantFP>(V)) 5305 return !C->isNaN(); 5306 5307 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5308 if (!C->getElementType()->isFloatingPointTy()) 5309 return false; 5310 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5311 if (C->getElementAsAPFloat(I).isNaN()) 5312 return false; 5313 } 5314 return true; 5315 } 5316 5317 if (isa<ConstantAggregateZero>(V)) 5318 return true; 5319 5320 return false; 5321 } 5322 5323 static bool isKnownNonZero(const Value *V) { 5324 if (auto *C = dyn_cast<ConstantFP>(V)) 5325 return !C->isZero(); 5326 5327 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5328 if (!C->getElementType()->isFloatingPointTy()) 5329 return false; 5330 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5331 if (C->getElementAsAPFloat(I).isZero()) 5332 return false; 5333 } 5334 return true; 5335 } 5336 5337 return false; 5338 } 5339 5340 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5341 /// Given non-min/max outer cmp/select from the clamp pattern this 5342 /// function recognizes if it can be substitued by a "canonical" min/max 5343 /// pattern. 5344 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5345 Value *CmpLHS, Value *CmpRHS, 5346 Value *TrueVal, Value *FalseVal, 5347 Value *&LHS, Value *&RHS) { 5348 // Try to match 5349 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5350 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5351 // and return description of the outer Max/Min. 5352 5353 // First, check if select has inverse order: 5354 if (CmpRHS == FalseVal) { 5355 std::swap(TrueVal, FalseVal); 5356 Pred = CmpInst::getInversePredicate(Pred); 5357 } 5358 5359 // Assume success now. If there's no match, callers should not use these anyway. 5360 LHS = TrueVal; 5361 RHS = FalseVal; 5362 5363 const APFloat *FC1; 5364 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5365 return {SPF_UNKNOWN, SPNB_NA, false}; 5366 5367 const APFloat *FC2; 5368 switch (Pred) { 5369 case CmpInst::FCMP_OLT: 5370 case CmpInst::FCMP_OLE: 5371 case CmpInst::FCMP_ULT: 5372 case CmpInst::FCMP_ULE: 5373 if (match(FalseVal, 5374 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5375 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5376 *FC1 < *FC2) 5377 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5378 break; 5379 case CmpInst::FCMP_OGT: 5380 case CmpInst::FCMP_OGE: 5381 case CmpInst::FCMP_UGT: 5382 case CmpInst::FCMP_UGE: 5383 if (match(FalseVal, 5384 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5385 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5386 *FC1 > *FC2) 5387 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5388 break; 5389 default: 5390 break; 5391 } 5392 5393 return {SPF_UNKNOWN, SPNB_NA, false}; 5394 } 5395 5396 /// Recognize variations of: 5397 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5398 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5399 Value *CmpLHS, Value *CmpRHS, 5400 Value *TrueVal, Value *FalseVal) { 5401 // Swap the select operands and predicate to match the patterns below. 5402 if (CmpRHS != TrueVal) { 5403 Pred = ICmpInst::getSwappedPredicate(Pred); 5404 std::swap(TrueVal, FalseVal); 5405 } 5406 const APInt *C1; 5407 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5408 const APInt *C2; 5409 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5410 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5411 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5412 return {SPF_SMAX, SPNB_NA, false}; 5413 5414 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5415 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5416 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5417 return {SPF_SMIN, SPNB_NA, false}; 5418 5419 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5420 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5421 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5422 return {SPF_UMAX, SPNB_NA, false}; 5423 5424 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5425 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5426 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5427 return {SPF_UMIN, SPNB_NA, false}; 5428 } 5429 return {SPF_UNKNOWN, SPNB_NA, false}; 5430 } 5431 5432 /// Recognize variations of: 5433 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5434 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5435 Value *CmpLHS, Value *CmpRHS, 5436 Value *TVal, Value *FVal, 5437 unsigned Depth) { 5438 // TODO: Allow FP min/max with nnan/nsz. 5439 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5440 5441 Value *A = nullptr, *B = nullptr; 5442 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5443 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5444 return {SPF_UNKNOWN, SPNB_NA, false}; 5445 5446 Value *C = nullptr, *D = nullptr; 5447 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5448 if (L.Flavor != R.Flavor) 5449 return {SPF_UNKNOWN, SPNB_NA, false}; 5450 5451 // We have something like: x Pred y ? min(a, b) : min(c, d). 5452 // Try to match the compare to the min/max operations of the select operands. 5453 // First, make sure we have the right compare predicate. 5454 switch (L.Flavor) { 5455 case SPF_SMIN: 5456 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5457 Pred = ICmpInst::getSwappedPredicate(Pred); 5458 std::swap(CmpLHS, CmpRHS); 5459 } 5460 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5461 break; 5462 return {SPF_UNKNOWN, SPNB_NA, false}; 5463 case SPF_SMAX: 5464 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5465 Pred = ICmpInst::getSwappedPredicate(Pred); 5466 std::swap(CmpLHS, CmpRHS); 5467 } 5468 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5469 break; 5470 return {SPF_UNKNOWN, SPNB_NA, false}; 5471 case SPF_UMIN: 5472 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5473 Pred = ICmpInst::getSwappedPredicate(Pred); 5474 std::swap(CmpLHS, CmpRHS); 5475 } 5476 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5477 break; 5478 return {SPF_UNKNOWN, SPNB_NA, false}; 5479 case SPF_UMAX: 5480 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5481 Pred = ICmpInst::getSwappedPredicate(Pred); 5482 std::swap(CmpLHS, CmpRHS); 5483 } 5484 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5485 break; 5486 return {SPF_UNKNOWN, SPNB_NA, false}; 5487 default: 5488 return {SPF_UNKNOWN, SPNB_NA, false}; 5489 } 5490 5491 // If there is a common operand in the already matched min/max and the other 5492 // min/max operands match the compare operands (either directly or inverted), 5493 // then this is min/max of the same flavor. 5494 5495 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5496 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5497 if (D == B) { 5498 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5499 match(A, m_Not(m_Specific(CmpRHS))))) 5500 return {L.Flavor, SPNB_NA, false}; 5501 } 5502 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5503 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5504 if (C == B) { 5505 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5506 match(A, m_Not(m_Specific(CmpRHS))))) 5507 return {L.Flavor, SPNB_NA, false}; 5508 } 5509 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5510 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5511 if (D == A) { 5512 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5513 match(B, m_Not(m_Specific(CmpRHS))))) 5514 return {L.Flavor, SPNB_NA, false}; 5515 } 5516 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5517 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5518 if (C == A) { 5519 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5520 match(B, m_Not(m_Specific(CmpRHS))))) 5521 return {L.Flavor, SPNB_NA, false}; 5522 } 5523 5524 return {SPF_UNKNOWN, SPNB_NA, false}; 5525 } 5526 5527 /// If the input value is the result of a 'not' op, constant integer, or vector 5528 /// splat of a constant integer, return the bitwise-not source value. 5529 /// TODO: This could be extended to handle non-splat vector integer constants. 5530 static Value *getNotValue(Value *V) { 5531 Value *NotV; 5532 if (match(V, m_Not(m_Value(NotV)))) 5533 return NotV; 5534 5535 const APInt *C; 5536 if (match(V, m_APInt(C))) 5537 return ConstantInt::get(V->getType(), ~(*C)); 5538 5539 return nullptr; 5540 } 5541 5542 /// Match non-obvious integer minimum and maximum sequences. 5543 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5544 Value *CmpLHS, Value *CmpRHS, 5545 Value *TrueVal, Value *FalseVal, 5546 Value *&LHS, Value *&RHS, 5547 unsigned Depth) { 5548 // Assume success. If there's no match, callers should not use these anyway. 5549 LHS = TrueVal; 5550 RHS = FalseVal; 5551 5552 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5553 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5554 return SPR; 5555 5556 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5557 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5558 return SPR; 5559 5560 // Look through 'not' ops to find disguised min/max. 5561 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5562 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5563 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5564 switch (Pred) { 5565 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5566 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5567 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5568 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5569 default: break; 5570 } 5571 } 5572 5573 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5574 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5575 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5576 switch (Pred) { 5577 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5578 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5579 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5580 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5581 default: break; 5582 } 5583 } 5584 5585 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5586 return {SPF_UNKNOWN, SPNB_NA, false}; 5587 5588 // Z = X -nsw Y 5589 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5590 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5591 if (match(TrueVal, m_Zero()) && 5592 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5593 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5594 5595 // Z = X -nsw Y 5596 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5597 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5598 if (match(FalseVal, m_Zero()) && 5599 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5600 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5601 5602 const APInt *C1; 5603 if (!match(CmpRHS, m_APInt(C1))) 5604 return {SPF_UNKNOWN, SPNB_NA, false}; 5605 5606 // An unsigned min/max can be written with a signed compare. 5607 const APInt *C2; 5608 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5609 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5610 // Is the sign bit set? 5611 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5612 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5613 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5614 C2->isMaxSignedValue()) 5615 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5616 5617 // Is the sign bit clear? 5618 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5619 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5620 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5621 C2->isMinSignedValue()) 5622 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5623 } 5624 5625 return {SPF_UNKNOWN, SPNB_NA, false}; 5626 } 5627 5628 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5629 assert(X && Y && "Invalid operand"); 5630 5631 // X = sub (0, Y) || X = sub nsw (0, Y) 5632 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5633 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5634 return true; 5635 5636 // Y = sub (0, X) || Y = sub nsw (0, X) 5637 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5638 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5639 return true; 5640 5641 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5642 Value *A, *B; 5643 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5644 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5645 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5646 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5647 } 5648 5649 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5650 FastMathFlags FMF, 5651 Value *CmpLHS, Value *CmpRHS, 5652 Value *TrueVal, Value *FalseVal, 5653 Value *&LHS, Value *&RHS, 5654 unsigned Depth) { 5655 if (CmpInst::isFPPredicate(Pred)) { 5656 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5657 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5658 // purpose of identifying min/max. Disregard vector constants with undefined 5659 // elements because those can not be back-propagated for analysis. 5660 Value *OutputZeroVal = nullptr; 5661 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5662 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5663 OutputZeroVal = TrueVal; 5664 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5665 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5666 OutputZeroVal = FalseVal; 5667 5668 if (OutputZeroVal) { 5669 if (match(CmpLHS, m_AnyZeroFP())) 5670 CmpLHS = OutputZeroVal; 5671 if (match(CmpRHS, m_AnyZeroFP())) 5672 CmpRHS = OutputZeroVal; 5673 } 5674 } 5675 5676 LHS = CmpLHS; 5677 RHS = CmpRHS; 5678 5679 // Signed zero may return inconsistent results between implementations. 5680 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5681 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5682 // Therefore, we behave conservatively and only proceed if at least one of the 5683 // operands is known to not be zero or if we don't care about signed zero. 5684 switch (Pred) { 5685 default: break; 5686 // FIXME: Include OGT/OLT/UGT/ULT. 5687 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5688 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5689 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5690 !isKnownNonZero(CmpRHS)) 5691 return {SPF_UNKNOWN, SPNB_NA, false}; 5692 } 5693 5694 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5695 bool Ordered = false; 5696 5697 // When given one NaN and one non-NaN input: 5698 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5699 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5700 // ordered comparison fails), which could be NaN or non-NaN. 5701 // so here we discover exactly what NaN behavior is required/accepted. 5702 if (CmpInst::isFPPredicate(Pred)) { 5703 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5704 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5705 5706 if (LHSSafe && RHSSafe) { 5707 // Both operands are known non-NaN. 5708 NaNBehavior = SPNB_RETURNS_ANY; 5709 } else if (CmpInst::isOrdered(Pred)) { 5710 // An ordered comparison will return false when given a NaN, so it 5711 // returns the RHS. 5712 Ordered = true; 5713 if (LHSSafe) 5714 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5715 NaNBehavior = SPNB_RETURNS_NAN; 5716 else if (RHSSafe) 5717 NaNBehavior = SPNB_RETURNS_OTHER; 5718 else 5719 // Completely unsafe. 5720 return {SPF_UNKNOWN, SPNB_NA, false}; 5721 } else { 5722 Ordered = false; 5723 // An unordered comparison will return true when given a NaN, so it 5724 // returns the LHS. 5725 if (LHSSafe) 5726 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5727 NaNBehavior = SPNB_RETURNS_OTHER; 5728 else if (RHSSafe) 5729 NaNBehavior = SPNB_RETURNS_NAN; 5730 else 5731 // Completely unsafe. 5732 return {SPF_UNKNOWN, SPNB_NA, false}; 5733 } 5734 } 5735 5736 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5737 std::swap(CmpLHS, CmpRHS); 5738 Pred = CmpInst::getSwappedPredicate(Pred); 5739 if (NaNBehavior == SPNB_RETURNS_NAN) 5740 NaNBehavior = SPNB_RETURNS_OTHER; 5741 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5742 NaNBehavior = SPNB_RETURNS_NAN; 5743 Ordered = !Ordered; 5744 } 5745 5746 // ([if]cmp X, Y) ? X : Y 5747 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5748 switch (Pred) { 5749 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5750 case ICmpInst::ICMP_UGT: 5751 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5752 case ICmpInst::ICMP_SGT: 5753 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5754 case ICmpInst::ICMP_ULT: 5755 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5756 case ICmpInst::ICMP_SLT: 5757 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5758 case FCmpInst::FCMP_UGT: 5759 case FCmpInst::FCMP_UGE: 5760 case FCmpInst::FCMP_OGT: 5761 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5762 case FCmpInst::FCMP_ULT: 5763 case FCmpInst::FCMP_ULE: 5764 case FCmpInst::FCMP_OLT: 5765 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5766 } 5767 } 5768 5769 if (isKnownNegation(TrueVal, FalseVal)) { 5770 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5771 // match against either LHS or sext(LHS). 5772 auto MaybeSExtCmpLHS = 5773 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5774 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5775 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5776 if (match(TrueVal, MaybeSExtCmpLHS)) { 5777 // Set the return values. If the compare uses the negated value (-X >s 0), 5778 // swap the return values because the negated value is always 'RHS'. 5779 LHS = TrueVal; 5780 RHS = FalseVal; 5781 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5782 std::swap(LHS, RHS); 5783 5784 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5785 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5786 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5787 return {SPF_ABS, SPNB_NA, false}; 5788 5789 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5790 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5791 return {SPF_ABS, SPNB_NA, false}; 5792 5793 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5794 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5795 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5796 return {SPF_NABS, SPNB_NA, false}; 5797 } 5798 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5799 // Set the return values. If the compare uses the negated value (-X >s 0), 5800 // swap the return values because the negated value is always 'RHS'. 5801 LHS = FalseVal; 5802 RHS = TrueVal; 5803 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5804 std::swap(LHS, RHS); 5805 5806 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5807 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5808 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5809 return {SPF_NABS, SPNB_NA, false}; 5810 5811 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5812 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5813 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5814 return {SPF_ABS, SPNB_NA, false}; 5815 } 5816 } 5817 5818 if (CmpInst::isIntPredicate(Pred)) 5819 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5820 5821 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5822 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5823 // semantics than minNum. Be conservative in such case. 5824 if (NaNBehavior != SPNB_RETURNS_ANY || 5825 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5826 !isKnownNonZero(CmpRHS))) 5827 return {SPF_UNKNOWN, SPNB_NA, false}; 5828 5829 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5830 } 5831 5832 /// Helps to match a select pattern in case of a type mismatch. 5833 /// 5834 /// The function processes the case when type of true and false values of a 5835 /// select instruction differs from type of the cmp instruction operands because 5836 /// of a cast instruction. The function checks if it is legal to move the cast 5837 /// operation after "select". If yes, it returns the new second value of 5838 /// "select" (with the assumption that cast is moved): 5839 /// 1. As operand of cast instruction when both values of "select" are same cast 5840 /// instructions. 5841 /// 2. As restored constant (by applying reverse cast operation) when the first 5842 /// value of the "select" is a cast operation and the second value is a 5843 /// constant. 5844 /// NOTE: We return only the new second value because the first value could be 5845 /// accessed as operand of cast instruction. 5846 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5847 Instruction::CastOps *CastOp) { 5848 auto *Cast1 = dyn_cast<CastInst>(V1); 5849 if (!Cast1) 5850 return nullptr; 5851 5852 *CastOp = Cast1->getOpcode(); 5853 Type *SrcTy = Cast1->getSrcTy(); 5854 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5855 // If V1 and V2 are both the same cast from the same type, look through V1. 5856 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5857 return Cast2->getOperand(0); 5858 return nullptr; 5859 } 5860 5861 auto *C = dyn_cast<Constant>(V2); 5862 if (!C) 5863 return nullptr; 5864 5865 Constant *CastedTo = nullptr; 5866 switch (*CastOp) { 5867 case Instruction::ZExt: 5868 if (CmpI->isUnsigned()) 5869 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5870 break; 5871 case Instruction::SExt: 5872 if (CmpI->isSigned()) 5873 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5874 break; 5875 case Instruction::Trunc: 5876 Constant *CmpConst; 5877 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5878 CmpConst->getType() == SrcTy) { 5879 // Here we have the following case: 5880 // 5881 // %cond = cmp iN %x, CmpConst 5882 // %tr = trunc iN %x to iK 5883 // %narrowsel = select i1 %cond, iK %t, iK C 5884 // 5885 // We can always move trunc after select operation: 5886 // 5887 // %cond = cmp iN %x, CmpConst 5888 // %widesel = select i1 %cond, iN %x, iN CmpConst 5889 // %tr = trunc iN %widesel to iK 5890 // 5891 // Note that C could be extended in any way because we don't care about 5892 // upper bits after truncation. It can't be abs pattern, because it would 5893 // look like: 5894 // 5895 // select i1 %cond, x, -x. 5896 // 5897 // So only min/max pattern could be matched. Such match requires widened C 5898 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5899 // CmpConst == C is checked below. 5900 CastedTo = CmpConst; 5901 } else { 5902 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5903 } 5904 break; 5905 case Instruction::FPTrunc: 5906 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5907 break; 5908 case Instruction::FPExt: 5909 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5910 break; 5911 case Instruction::FPToUI: 5912 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5913 break; 5914 case Instruction::FPToSI: 5915 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5916 break; 5917 case Instruction::UIToFP: 5918 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5919 break; 5920 case Instruction::SIToFP: 5921 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5922 break; 5923 default: 5924 break; 5925 } 5926 5927 if (!CastedTo) 5928 return nullptr; 5929 5930 // Make sure the cast doesn't lose any information. 5931 Constant *CastedBack = 5932 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5933 if (CastedBack != C) 5934 return nullptr; 5935 5936 return CastedTo; 5937 } 5938 5939 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5940 Instruction::CastOps *CastOp, 5941 unsigned Depth) { 5942 if (Depth >= MaxAnalysisRecursionDepth) 5943 return {SPF_UNKNOWN, SPNB_NA, false}; 5944 5945 SelectInst *SI = dyn_cast<SelectInst>(V); 5946 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5947 5948 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5949 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5950 5951 Value *TrueVal = SI->getTrueValue(); 5952 Value *FalseVal = SI->getFalseValue(); 5953 5954 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5955 CastOp, Depth); 5956 } 5957 5958 SelectPatternResult llvm::matchDecomposedSelectPattern( 5959 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5960 Instruction::CastOps *CastOp, unsigned Depth) { 5961 CmpInst::Predicate Pred = CmpI->getPredicate(); 5962 Value *CmpLHS = CmpI->getOperand(0); 5963 Value *CmpRHS = CmpI->getOperand(1); 5964 FastMathFlags FMF; 5965 if (isa<FPMathOperator>(CmpI)) 5966 FMF = CmpI->getFastMathFlags(); 5967 5968 // Bail out early. 5969 if (CmpI->isEquality()) 5970 return {SPF_UNKNOWN, SPNB_NA, false}; 5971 5972 // Deal with type mismatches. 5973 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5974 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5975 // If this is a potential fmin/fmax with a cast to integer, then ignore 5976 // -0.0 because there is no corresponding integer value. 5977 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5978 FMF.setNoSignedZeros(); 5979 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5980 cast<CastInst>(TrueVal)->getOperand(0), C, 5981 LHS, RHS, Depth); 5982 } 5983 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5984 // If this is a potential fmin/fmax with a cast to integer, then ignore 5985 // -0.0 because there is no corresponding integer value. 5986 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5987 FMF.setNoSignedZeros(); 5988 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5989 C, cast<CastInst>(FalseVal)->getOperand(0), 5990 LHS, RHS, Depth); 5991 } 5992 } 5993 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5994 LHS, RHS, Depth); 5995 } 5996 5997 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5998 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5999 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6000 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6001 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6002 if (SPF == SPF_FMINNUM) 6003 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6004 if (SPF == SPF_FMAXNUM) 6005 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6006 llvm_unreachable("unhandled!"); 6007 } 6008 6009 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6010 if (SPF == SPF_SMIN) return SPF_SMAX; 6011 if (SPF == SPF_UMIN) return SPF_UMAX; 6012 if (SPF == SPF_SMAX) return SPF_SMIN; 6013 if (SPF == SPF_UMAX) return SPF_UMIN; 6014 llvm_unreachable("unhandled!"); 6015 } 6016 6017 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6018 switch (MinMaxID) { 6019 case Intrinsic::smax: return Intrinsic::smin; 6020 case Intrinsic::smin: return Intrinsic::smax; 6021 case Intrinsic::umax: return Intrinsic::umin; 6022 case Intrinsic::umin: return Intrinsic::umax; 6023 default: llvm_unreachable("Unexpected intrinsic"); 6024 } 6025 } 6026 6027 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6028 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6029 } 6030 6031 std::pair<Intrinsic::ID, bool> 6032 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6033 // Check if VL contains select instructions that can be folded into a min/max 6034 // vector intrinsic and return the intrinsic if it is possible. 6035 // TODO: Support floating point min/max. 6036 bool AllCmpSingleUse = true; 6037 SelectPatternResult SelectPattern; 6038 SelectPattern.Flavor = SPF_UNKNOWN; 6039 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6040 Value *LHS, *RHS; 6041 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6042 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6043 CurrentPattern.Flavor == SPF_FMINNUM || 6044 CurrentPattern.Flavor == SPF_FMAXNUM || 6045 !I->getType()->isIntOrIntVectorTy()) 6046 return false; 6047 if (SelectPattern.Flavor != SPF_UNKNOWN && 6048 SelectPattern.Flavor != CurrentPattern.Flavor) 6049 return false; 6050 SelectPattern = CurrentPattern; 6051 AllCmpSingleUse &= 6052 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6053 return true; 6054 })) { 6055 switch (SelectPattern.Flavor) { 6056 case SPF_SMIN: 6057 return {Intrinsic::smin, AllCmpSingleUse}; 6058 case SPF_UMIN: 6059 return {Intrinsic::umin, AllCmpSingleUse}; 6060 case SPF_SMAX: 6061 return {Intrinsic::smax, AllCmpSingleUse}; 6062 case SPF_UMAX: 6063 return {Intrinsic::umax, AllCmpSingleUse}; 6064 default: 6065 llvm_unreachable("unexpected select pattern flavor"); 6066 } 6067 } 6068 return {Intrinsic::not_intrinsic, false}; 6069 } 6070 6071 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6072 Value *&Start, Value *&Step) { 6073 // Handle the case of a simple two-predecessor recurrence PHI. 6074 // There's a lot more that could theoretically be done here, but 6075 // this is sufficient to catch some interesting cases. 6076 if (P->getNumIncomingValues() != 2) 6077 return false; 6078 6079 for (unsigned i = 0; i != 2; ++i) { 6080 Value *L = P->getIncomingValue(i); 6081 Value *R = P->getIncomingValue(!i); 6082 Operator *LU = dyn_cast<Operator>(L); 6083 if (!LU) 6084 continue; 6085 unsigned Opcode = LU->getOpcode(); 6086 6087 switch (Opcode) { 6088 default: 6089 continue; 6090 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6091 case Instruction::LShr: 6092 case Instruction::AShr: 6093 case Instruction::Shl: 6094 case Instruction::Add: 6095 case Instruction::Sub: 6096 case Instruction::And: 6097 case Instruction::Or: 6098 case Instruction::Mul: { 6099 Value *LL = LU->getOperand(0); 6100 Value *LR = LU->getOperand(1); 6101 // Find a recurrence. 6102 if (LL == P) 6103 L = LR; 6104 else if (LR == P) 6105 L = LL; 6106 else 6107 continue; // Check for recurrence with L and R flipped. 6108 6109 break; // Match! 6110 } 6111 }; 6112 6113 // We have matched a recurrence of the form: 6114 // %iv = [R, %entry], [%iv.next, %backedge] 6115 // %iv.next = binop %iv, L 6116 // OR 6117 // %iv = [R, %entry], [%iv.next, %backedge] 6118 // %iv.next = binop L, %iv 6119 BO = cast<BinaryOperator>(LU); 6120 Start = R; 6121 Step = L; 6122 return true; 6123 } 6124 return false; 6125 } 6126 6127 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6128 Value *&Start, Value *&Step) { 6129 BinaryOperator *BO = nullptr; 6130 P = dyn_cast<PHINode>(I->getOperand(0)); 6131 if (!P) 6132 P = dyn_cast<PHINode>(I->getOperand(1)); 6133 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6134 } 6135 6136 /// Return true if "icmp Pred LHS RHS" is always true. 6137 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6138 const Value *RHS, const DataLayout &DL, 6139 unsigned Depth) { 6140 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6141 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6142 return true; 6143 6144 switch (Pred) { 6145 default: 6146 return false; 6147 6148 case CmpInst::ICMP_SLE: { 6149 const APInt *C; 6150 6151 // LHS s<= LHS +_{nsw} C if C >= 0 6152 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6153 return !C->isNegative(); 6154 return false; 6155 } 6156 6157 case CmpInst::ICMP_ULE: { 6158 const APInt *C; 6159 6160 // LHS u<= LHS +_{nuw} C for any C 6161 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6162 return true; 6163 6164 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6165 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6166 const Value *&X, 6167 const APInt *&CA, const APInt *&CB) { 6168 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6169 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6170 return true; 6171 6172 // If X & C == 0 then (X | C) == X +_{nuw} C 6173 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6174 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6175 KnownBits Known(CA->getBitWidth()); 6176 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6177 /*CxtI*/ nullptr, /*DT*/ nullptr); 6178 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6179 return true; 6180 } 6181 6182 return false; 6183 }; 6184 6185 const Value *X; 6186 const APInt *CLHS, *CRHS; 6187 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6188 return CLHS->ule(*CRHS); 6189 6190 return false; 6191 } 6192 } 6193 } 6194 6195 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6196 /// ALHS ARHS" is true. Otherwise, return None. 6197 static Optional<bool> 6198 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6199 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6200 const DataLayout &DL, unsigned Depth) { 6201 switch (Pred) { 6202 default: 6203 return None; 6204 6205 case CmpInst::ICMP_SLT: 6206 case CmpInst::ICMP_SLE: 6207 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6208 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6209 return true; 6210 return None; 6211 6212 case CmpInst::ICMP_ULT: 6213 case CmpInst::ICMP_ULE: 6214 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6215 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6216 return true; 6217 return None; 6218 } 6219 } 6220 6221 /// Return true if the operands of the two compares match. IsSwappedOps is true 6222 /// when the operands match, but are swapped. 6223 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6224 const Value *BLHS, const Value *BRHS, 6225 bool &IsSwappedOps) { 6226 6227 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6228 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6229 return IsMatchingOps || IsSwappedOps; 6230 } 6231 6232 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6233 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6234 /// Otherwise, return None if we can't infer anything. 6235 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6236 CmpInst::Predicate BPred, 6237 bool AreSwappedOps) { 6238 // Canonicalize the predicate as if the operands were not commuted. 6239 if (AreSwappedOps) 6240 BPred = ICmpInst::getSwappedPredicate(BPred); 6241 6242 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6243 return true; 6244 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6245 return false; 6246 6247 return None; 6248 } 6249 6250 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6251 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6252 /// Otherwise, return None if we can't infer anything. 6253 static Optional<bool> 6254 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6255 const ConstantInt *C1, 6256 CmpInst::Predicate BPred, 6257 const ConstantInt *C2) { 6258 ConstantRange DomCR = 6259 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6260 ConstantRange CR = 6261 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6262 ConstantRange Intersection = DomCR.intersectWith(CR); 6263 ConstantRange Difference = DomCR.difference(CR); 6264 if (Intersection.isEmptySet()) 6265 return false; 6266 if (Difference.isEmptySet()) 6267 return true; 6268 return None; 6269 } 6270 6271 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6272 /// false. Otherwise, return None if we can't infer anything. 6273 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6274 CmpInst::Predicate BPred, 6275 const Value *BLHS, const Value *BRHS, 6276 const DataLayout &DL, bool LHSIsTrue, 6277 unsigned Depth) { 6278 Value *ALHS = LHS->getOperand(0); 6279 Value *ARHS = LHS->getOperand(1); 6280 6281 // The rest of the logic assumes the LHS condition is true. If that's not the 6282 // case, invert the predicate to make it so. 6283 CmpInst::Predicate APred = 6284 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6285 6286 // Can we infer anything when the two compares have matching operands? 6287 bool AreSwappedOps; 6288 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6289 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6290 APred, BPred, AreSwappedOps)) 6291 return Implication; 6292 // No amount of additional analysis will infer the second condition, so 6293 // early exit. 6294 return None; 6295 } 6296 6297 // Can we infer anything when the LHS operands match and the RHS operands are 6298 // constants (not necessarily matching)? 6299 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6300 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6301 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6302 return Implication; 6303 // No amount of additional analysis will infer the second condition, so 6304 // early exit. 6305 return None; 6306 } 6307 6308 if (APred == BPred) 6309 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6310 return None; 6311 } 6312 6313 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6314 /// false. Otherwise, return None if we can't infer anything. We expect the 6315 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6316 static Optional<bool> 6317 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6318 const Value *RHSOp0, const Value *RHSOp1, 6319 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6320 // The LHS must be an 'or', 'and', or a 'select' instruction. 6321 assert((LHS->getOpcode() == Instruction::And || 6322 LHS->getOpcode() == Instruction::Or || 6323 LHS->getOpcode() == Instruction::Select) && 6324 "Expected LHS to be 'and', 'or', or 'select'."); 6325 6326 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6327 6328 // If the result of an 'or' is false, then we know both legs of the 'or' are 6329 // false. Similarly, if the result of an 'and' is true, then we know both 6330 // legs of the 'and' are true. 6331 const Value *ALHS, *ARHS; 6332 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6333 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6334 // FIXME: Make this non-recursion. 6335 if (Optional<bool> Implication = isImpliedCondition( 6336 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6337 return Implication; 6338 if (Optional<bool> Implication = isImpliedCondition( 6339 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6340 return Implication; 6341 return None; 6342 } 6343 return None; 6344 } 6345 6346 Optional<bool> 6347 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6348 const Value *RHSOp0, const Value *RHSOp1, 6349 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6350 // Bail out when we hit the limit. 6351 if (Depth == MaxAnalysisRecursionDepth) 6352 return None; 6353 6354 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6355 // example. 6356 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6357 return None; 6358 6359 Type *OpTy = LHS->getType(); 6360 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6361 6362 // FIXME: Extending the code below to handle vectors. 6363 if (OpTy->isVectorTy()) 6364 return None; 6365 6366 assert(OpTy->isIntegerTy(1) && "implied by above"); 6367 6368 // Both LHS and RHS are icmps. 6369 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6370 if (LHSCmp) 6371 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6372 Depth); 6373 6374 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6375 /// the RHS to be an icmp. 6376 /// FIXME: Add support for and/or/select on the RHS. 6377 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6378 if ((LHSI->getOpcode() == Instruction::And || 6379 LHSI->getOpcode() == Instruction::Or || 6380 LHSI->getOpcode() == Instruction::Select)) 6381 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6382 Depth); 6383 } 6384 return None; 6385 } 6386 6387 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6388 const DataLayout &DL, bool LHSIsTrue, 6389 unsigned Depth) { 6390 // LHS ==> RHS by definition 6391 if (LHS == RHS) 6392 return LHSIsTrue; 6393 6394 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6395 if (RHSCmp) 6396 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6397 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6398 LHSIsTrue, Depth); 6399 return None; 6400 } 6401 6402 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6403 // condition dominating ContextI or nullptr, if no condition is found. 6404 static std::pair<Value *, bool> 6405 getDomPredecessorCondition(const Instruction *ContextI) { 6406 if (!ContextI || !ContextI->getParent()) 6407 return {nullptr, false}; 6408 6409 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6410 // dominator tree (eg, from a SimplifyQuery) instead? 6411 const BasicBlock *ContextBB = ContextI->getParent(); 6412 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6413 if (!PredBB) 6414 return {nullptr, false}; 6415 6416 // We need a conditional branch in the predecessor. 6417 Value *PredCond; 6418 BasicBlock *TrueBB, *FalseBB; 6419 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6420 return {nullptr, false}; 6421 6422 // The branch should get simplified. Don't bother simplifying this condition. 6423 if (TrueBB == FalseBB) 6424 return {nullptr, false}; 6425 6426 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6427 "Predecessor block does not point to successor?"); 6428 6429 // Is this condition implied by the predecessor condition? 6430 return {PredCond, TrueBB == ContextBB}; 6431 } 6432 6433 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6434 const Instruction *ContextI, 6435 const DataLayout &DL) { 6436 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6437 auto PredCond = getDomPredecessorCondition(ContextI); 6438 if (PredCond.first) 6439 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6440 return None; 6441 } 6442 6443 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6444 const Value *LHS, const Value *RHS, 6445 const Instruction *ContextI, 6446 const DataLayout &DL) { 6447 auto PredCond = getDomPredecessorCondition(ContextI); 6448 if (PredCond.first) 6449 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6450 PredCond.second); 6451 return None; 6452 } 6453 6454 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6455 APInt &Upper, const InstrInfoQuery &IIQ) { 6456 unsigned Width = Lower.getBitWidth(); 6457 const APInt *C; 6458 switch (BO.getOpcode()) { 6459 case Instruction::Add: 6460 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6461 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6462 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6463 // 'add nuw x, C' produces [C, UINT_MAX]. 6464 Lower = *C; 6465 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6466 if (C->isNegative()) { 6467 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6468 Lower = APInt::getSignedMinValue(Width); 6469 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6470 } else { 6471 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6472 Lower = APInt::getSignedMinValue(Width) + *C; 6473 Upper = APInt::getSignedMaxValue(Width) + 1; 6474 } 6475 } 6476 } 6477 break; 6478 6479 case Instruction::And: 6480 if (match(BO.getOperand(1), m_APInt(C))) 6481 // 'and x, C' produces [0, C]. 6482 Upper = *C + 1; 6483 break; 6484 6485 case Instruction::Or: 6486 if (match(BO.getOperand(1), m_APInt(C))) 6487 // 'or x, C' produces [C, UINT_MAX]. 6488 Lower = *C; 6489 break; 6490 6491 case Instruction::AShr: 6492 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6493 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6494 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6495 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6496 } else if (match(BO.getOperand(0), m_APInt(C))) { 6497 unsigned ShiftAmount = Width - 1; 6498 if (!C->isNullValue() && IIQ.isExact(&BO)) 6499 ShiftAmount = C->countTrailingZeros(); 6500 if (C->isNegative()) { 6501 // 'ashr C, x' produces [C, C >> (Width-1)] 6502 Lower = *C; 6503 Upper = C->ashr(ShiftAmount) + 1; 6504 } else { 6505 // 'ashr C, x' produces [C >> (Width-1), C] 6506 Lower = C->ashr(ShiftAmount); 6507 Upper = *C + 1; 6508 } 6509 } 6510 break; 6511 6512 case Instruction::LShr: 6513 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6514 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6515 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6516 } else if (match(BO.getOperand(0), m_APInt(C))) { 6517 // 'lshr C, x' produces [C >> (Width-1), C]. 6518 unsigned ShiftAmount = Width - 1; 6519 if (!C->isNullValue() && IIQ.isExact(&BO)) 6520 ShiftAmount = C->countTrailingZeros(); 6521 Lower = C->lshr(ShiftAmount); 6522 Upper = *C + 1; 6523 } 6524 break; 6525 6526 case Instruction::Shl: 6527 if (match(BO.getOperand(0), m_APInt(C))) { 6528 if (IIQ.hasNoUnsignedWrap(&BO)) { 6529 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6530 Lower = *C; 6531 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6532 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6533 if (C->isNegative()) { 6534 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6535 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6536 Lower = C->shl(ShiftAmount); 6537 Upper = *C + 1; 6538 } else { 6539 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6540 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6541 Lower = *C; 6542 Upper = C->shl(ShiftAmount) + 1; 6543 } 6544 } 6545 } 6546 break; 6547 6548 case Instruction::SDiv: 6549 if (match(BO.getOperand(1), m_APInt(C))) { 6550 APInt IntMin = APInt::getSignedMinValue(Width); 6551 APInt IntMax = APInt::getSignedMaxValue(Width); 6552 if (C->isAllOnesValue()) { 6553 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6554 // where C != -1 and C != 0 and C != 1 6555 Lower = IntMin + 1; 6556 Upper = IntMax + 1; 6557 } else if (C->countLeadingZeros() < Width - 1) { 6558 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6559 // where C != -1 and C != 0 and C != 1 6560 Lower = IntMin.sdiv(*C); 6561 Upper = IntMax.sdiv(*C); 6562 if (Lower.sgt(Upper)) 6563 std::swap(Lower, Upper); 6564 Upper = Upper + 1; 6565 assert(Upper != Lower && "Upper part of range has wrapped!"); 6566 } 6567 } else if (match(BO.getOperand(0), m_APInt(C))) { 6568 if (C->isMinSignedValue()) { 6569 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6570 Lower = *C; 6571 Upper = Lower.lshr(1) + 1; 6572 } else { 6573 // 'sdiv C, x' produces [-|C|, |C|]. 6574 Upper = C->abs() + 1; 6575 Lower = (-Upper) + 1; 6576 } 6577 } 6578 break; 6579 6580 case Instruction::UDiv: 6581 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6582 // 'udiv x, C' produces [0, UINT_MAX / C]. 6583 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6584 } else if (match(BO.getOperand(0), m_APInt(C))) { 6585 // 'udiv C, x' produces [0, C]. 6586 Upper = *C + 1; 6587 } 6588 break; 6589 6590 case Instruction::SRem: 6591 if (match(BO.getOperand(1), m_APInt(C))) { 6592 // 'srem x, C' produces (-|C|, |C|). 6593 Upper = C->abs(); 6594 Lower = (-Upper) + 1; 6595 } 6596 break; 6597 6598 case Instruction::URem: 6599 if (match(BO.getOperand(1), m_APInt(C))) 6600 // 'urem x, C' produces [0, C). 6601 Upper = *C; 6602 break; 6603 6604 default: 6605 break; 6606 } 6607 } 6608 6609 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6610 APInt &Upper) { 6611 unsigned Width = Lower.getBitWidth(); 6612 const APInt *C; 6613 switch (II.getIntrinsicID()) { 6614 case Intrinsic::ctpop: 6615 case Intrinsic::ctlz: 6616 case Intrinsic::cttz: 6617 // Maximum of set/clear bits is the bit width. 6618 assert(Lower == 0 && "Expected lower bound to be zero"); 6619 Upper = Width + 1; 6620 break; 6621 case Intrinsic::uadd_sat: 6622 // uadd.sat(x, C) produces [C, UINT_MAX]. 6623 if (match(II.getOperand(0), m_APInt(C)) || 6624 match(II.getOperand(1), m_APInt(C))) 6625 Lower = *C; 6626 break; 6627 case Intrinsic::sadd_sat: 6628 if (match(II.getOperand(0), m_APInt(C)) || 6629 match(II.getOperand(1), m_APInt(C))) { 6630 if (C->isNegative()) { 6631 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6632 Lower = APInt::getSignedMinValue(Width); 6633 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6634 } else { 6635 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6636 Lower = APInt::getSignedMinValue(Width) + *C; 6637 Upper = APInt::getSignedMaxValue(Width) + 1; 6638 } 6639 } 6640 break; 6641 case Intrinsic::usub_sat: 6642 // usub.sat(C, x) produces [0, C]. 6643 if (match(II.getOperand(0), m_APInt(C))) 6644 Upper = *C + 1; 6645 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6646 else if (match(II.getOperand(1), m_APInt(C))) 6647 Upper = APInt::getMaxValue(Width) - *C + 1; 6648 break; 6649 case Intrinsic::ssub_sat: 6650 if (match(II.getOperand(0), m_APInt(C))) { 6651 if (C->isNegative()) { 6652 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6653 Lower = APInt::getSignedMinValue(Width); 6654 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6655 } else { 6656 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6657 Lower = *C - APInt::getSignedMaxValue(Width); 6658 Upper = APInt::getSignedMaxValue(Width) + 1; 6659 } 6660 } else if (match(II.getOperand(1), m_APInt(C))) { 6661 if (C->isNegative()) { 6662 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6663 Lower = APInt::getSignedMinValue(Width) - *C; 6664 Upper = APInt::getSignedMaxValue(Width) + 1; 6665 } else { 6666 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6667 Lower = APInt::getSignedMinValue(Width); 6668 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6669 } 6670 } 6671 break; 6672 case Intrinsic::umin: 6673 case Intrinsic::umax: 6674 case Intrinsic::smin: 6675 case Intrinsic::smax: 6676 if (!match(II.getOperand(0), m_APInt(C)) && 6677 !match(II.getOperand(1), m_APInt(C))) 6678 break; 6679 6680 switch (II.getIntrinsicID()) { 6681 case Intrinsic::umin: 6682 Upper = *C + 1; 6683 break; 6684 case Intrinsic::umax: 6685 Lower = *C; 6686 break; 6687 case Intrinsic::smin: 6688 Lower = APInt::getSignedMinValue(Width); 6689 Upper = *C + 1; 6690 break; 6691 case Intrinsic::smax: 6692 Lower = *C; 6693 Upper = APInt::getSignedMaxValue(Width) + 1; 6694 break; 6695 default: 6696 llvm_unreachable("Must be min/max intrinsic"); 6697 } 6698 break; 6699 case Intrinsic::abs: 6700 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6701 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6702 if (match(II.getOperand(1), m_One())) 6703 Upper = APInt::getSignedMaxValue(Width) + 1; 6704 else 6705 Upper = APInt::getSignedMinValue(Width) + 1; 6706 break; 6707 default: 6708 break; 6709 } 6710 } 6711 6712 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6713 APInt &Upper, const InstrInfoQuery &IIQ) { 6714 const Value *LHS = nullptr, *RHS = nullptr; 6715 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6716 if (R.Flavor == SPF_UNKNOWN) 6717 return; 6718 6719 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6720 6721 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6722 // If the negation part of the abs (in RHS) has the NSW flag, 6723 // then the result of abs(X) is [0..SIGNED_MAX], 6724 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6725 Lower = APInt::getNullValue(BitWidth); 6726 if (match(RHS, m_Neg(m_Specific(LHS))) && 6727 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6728 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6729 else 6730 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6731 return; 6732 } 6733 6734 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6735 // The result of -abs(X) is <= 0. 6736 Lower = APInt::getSignedMinValue(BitWidth); 6737 Upper = APInt(BitWidth, 1); 6738 return; 6739 } 6740 6741 const APInt *C; 6742 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6743 return; 6744 6745 switch (R.Flavor) { 6746 case SPF_UMIN: 6747 Upper = *C + 1; 6748 break; 6749 case SPF_UMAX: 6750 Lower = *C; 6751 break; 6752 case SPF_SMIN: 6753 Lower = APInt::getSignedMinValue(BitWidth); 6754 Upper = *C + 1; 6755 break; 6756 case SPF_SMAX: 6757 Lower = *C; 6758 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6759 break; 6760 default: 6761 break; 6762 } 6763 } 6764 6765 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6766 AssumptionCache *AC, 6767 const Instruction *CtxI, 6768 unsigned Depth) { 6769 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6770 6771 if (Depth == MaxAnalysisRecursionDepth) 6772 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6773 6774 const APInt *C; 6775 if (match(V, m_APInt(C))) 6776 return ConstantRange(*C); 6777 6778 InstrInfoQuery IIQ(UseInstrInfo); 6779 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6780 APInt Lower = APInt(BitWidth, 0); 6781 APInt Upper = APInt(BitWidth, 0); 6782 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6783 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6784 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6785 setLimitsForIntrinsic(*II, Lower, Upper); 6786 else if (auto *SI = dyn_cast<SelectInst>(V)) 6787 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6788 6789 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6790 6791 if (auto *I = dyn_cast<Instruction>(V)) 6792 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6793 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6794 6795 if (CtxI && AC) { 6796 // Try to restrict the range based on information from assumptions. 6797 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6798 if (!AssumeVH) 6799 continue; 6800 CallInst *I = cast<CallInst>(AssumeVH); 6801 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6802 "Got assumption for the wrong function!"); 6803 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6804 "must be an assume intrinsic"); 6805 6806 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6807 continue; 6808 Value *Arg = I->getArgOperand(0); 6809 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6810 // Currently we just use information from comparisons. 6811 if (!Cmp || Cmp->getOperand(0) != V) 6812 continue; 6813 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6814 AC, I, Depth + 1); 6815 CR = CR.intersectWith( 6816 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6817 } 6818 } 6819 6820 return CR; 6821 } 6822 6823 static Optional<int64_t> 6824 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6825 // Skip over the first indices. 6826 gep_type_iterator GTI = gep_type_begin(GEP); 6827 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6828 /*skip along*/; 6829 6830 // Compute the offset implied by the rest of the indices. 6831 int64_t Offset = 0; 6832 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6833 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6834 if (!OpC) 6835 return None; 6836 if (OpC->isZero()) 6837 continue; // No offset. 6838 6839 // Handle struct indices, which add their field offset to the pointer. 6840 if (StructType *STy = GTI.getStructTypeOrNull()) { 6841 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6842 continue; 6843 } 6844 6845 // Otherwise, we have a sequential type like an array or fixed-length 6846 // vector. Multiply the index by the ElementSize. 6847 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6848 if (Size.isScalable()) 6849 return None; 6850 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6851 } 6852 6853 return Offset; 6854 } 6855 6856 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6857 const DataLayout &DL) { 6858 Ptr1 = Ptr1->stripPointerCasts(); 6859 Ptr2 = Ptr2->stripPointerCasts(); 6860 6861 // Handle the trivial case first. 6862 if (Ptr1 == Ptr2) { 6863 return 0; 6864 } 6865 6866 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6867 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6868 6869 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6870 // as in "P" and "gep P, 1". 6871 // Also do this iteratively to handle the the following case: 6872 // Ptr_t1 = GEP Ptr1, c1 6873 // Ptr_t2 = GEP Ptr_t1, c2 6874 // Ptr2 = GEP Ptr_t2, c3 6875 // where we will return c1+c2+c3. 6876 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6877 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6878 // are the same, and return the difference between offsets. 6879 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6880 const Value *Ptr) -> Optional<int64_t> { 6881 const GEPOperator *GEP_T = GEP; 6882 int64_t OffsetVal = 0; 6883 bool HasSameBase = false; 6884 while (GEP_T) { 6885 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6886 if (!Offset) 6887 return None; 6888 OffsetVal += *Offset; 6889 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6890 if (Op0 == Ptr) { 6891 HasSameBase = true; 6892 break; 6893 } 6894 GEP_T = dyn_cast<GEPOperator>(Op0); 6895 } 6896 if (!HasSameBase) 6897 return None; 6898 return OffsetVal; 6899 }; 6900 6901 if (GEP1) { 6902 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6903 if (Offset) 6904 return -*Offset; 6905 } 6906 if (GEP2) { 6907 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6908 if (Offset) 6909 return Offset; 6910 } 6911 6912 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6913 // base. After that base, they may have some number of common (and 6914 // potentially variable) indices. After that they handle some constant 6915 // offset, which determines their offset from each other. At this point, we 6916 // handle no other case. 6917 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6918 return None; 6919 6920 // Skip any common indices and track the GEP types. 6921 unsigned Idx = 1; 6922 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6923 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6924 break; 6925 6926 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6927 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6928 if (!Offset1 || !Offset2) 6929 return None; 6930 return *Offset2 - *Offset1; 6931 } 6932