1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/PatternMatch.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include <algorithm> 69 #include <array> 70 #include <cassert> 71 #include <cstdint> 72 #include <iterator> 73 #include <utility> 74 75 using namespace llvm; 76 using namespace llvm::PatternMatch; 77 78 const unsigned MaxDepth = 6; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getIndexTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static void computeKnownBits(const Value *V, KnownBits &Known, 165 unsigned Depth, const Query &Q); 166 167 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 168 const DataLayout &DL, unsigned Depth, 169 AssumptionCache *AC, const Instruction *CxtI, 170 const DominatorTree *DT, 171 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 172 ::computeKnownBits(V, Known, Depth, 173 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 174 } 175 176 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 177 const Query &Q); 178 179 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 180 unsigned Depth, AssumptionCache *AC, 181 const Instruction *CxtI, 182 const DominatorTree *DT, 183 OptimizationRemarkEmitter *ORE, 184 bool UseInstrInfo) { 185 return ::computeKnownBits( 186 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 187 } 188 189 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 190 const DataLayout &DL, AssumptionCache *AC, 191 const Instruction *CxtI, const DominatorTree *DT, 192 bool UseInstrInfo) { 193 assert(LHS->getType() == RHS->getType() && 194 "LHS and RHS should have the same type"); 195 assert(LHS->getType()->isIntOrIntVectorTy() && 196 "LHS and RHS should be integers"); 197 // Look for an inverted mask: (X & ~M) op (Y & M). 198 Value *M; 199 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 200 match(RHS, m_c_And(m_Specific(M), m_Value()))) 201 return true; 202 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 203 match(LHS, m_c_And(m_Specific(M), m_Value()))) 204 return true; 205 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 206 KnownBits LHSKnown(IT->getBitWidth()); 207 KnownBits RHSKnown(IT->getBitWidth()); 208 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 209 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 210 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 211 } 212 213 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 214 for (const User *U : CxtI->users()) { 215 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 216 if (IC->isEquality()) 217 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 218 if (C->isNullValue()) 219 continue; 220 return false; 221 } 222 return true; 223 } 224 225 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 226 const Query &Q); 227 228 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 229 bool OrZero, unsigned Depth, 230 AssumptionCache *AC, const Instruction *CxtI, 231 const DominatorTree *DT, bool UseInstrInfo) { 232 return ::isKnownToBeAPowerOfTwo( 233 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 234 } 235 236 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 237 238 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 239 AssumptionCache *AC, const Instruction *CxtI, 240 const DominatorTree *DT, bool UseInstrInfo) { 241 return ::isKnownNonZero(V, Depth, 242 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 243 } 244 245 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 246 unsigned Depth, AssumptionCache *AC, 247 const Instruction *CxtI, const DominatorTree *DT, 248 bool UseInstrInfo) { 249 KnownBits Known = 250 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 251 return Known.isNonNegative(); 252 } 253 254 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 255 AssumptionCache *AC, const Instruction *CxtI, 256 const DominatorTree *DT, bool UseInstrInfo) { 257 if (auto *CI = dyn_cast<ConstantInt>(V)) 258 return CI->getValue().isStrictlyPositive(); 259 260 // TODO: We'd doing two recursive queries here. We should factor this such 261 // that only a single query is needed. 262 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 263 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 264 } 265 266 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 267 AssumptionCache *AC, const Instruction *CxtI, 268 const DominatorTree *DT, bool UseInstrInfo) { 269 KnownBits Known = 270 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 271 return Known.isNegative(); 272 } 273 274 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 275 276 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 277 const DataLayout &DL, AssumptionCache *AC, 278 const Instruction *CxtI, const DominatorTree *DT, 279 bool UseInstrInfo) { 280 return ::isKnownNonEqual(V1, V2, 281 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 282 UseInstrInfo, /*ORE=*/nullptr)); 283 } 284 285 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 286 const Query &Q); 287 288 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 289 const DataLayout &DL, unsigned Depth, 290 AssumptionCache *AC, const Instruction *CxtI, 291 const DominatorTree *DT, bool UseInstrInfo) { 292 return ::MaskedValueIsZero( 293 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 294 } 295 296 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 297 const Query &Q); 298 299 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 300 unsigned Depth, AssumptionCache *AC, 301 const Instruction *CxtI, 302 const DominatorTree *DT, bool UseInstrInfo) { 303 return ::ComputeNumSignBits( 304 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 305 } 306 307 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 308 bool NSW, 309 KnownBits &KnownOut, KnownBits &Known2, 310 unsigned Depth, const Query &Q) { 311 unsigned BitWidth = KnownOut.getBitWidth(); 312 313 // If an initial sequence of bits in the result is not needed, the 314 // corresponding bits in the operands are not needed. 315 KnownBits LHSKnown(BitWidth); 316 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 317 computeKnownBits(Op1, Known2, Depth + 1, Q); 318 319 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 320 } 321 322 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 323 KnownBits &Known, KnownBits &Known2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = Known.getBitWidth(); 326 computeKnownBits(Op1, Known, Depth + 1, Q); 327 computeKnownBits(Op0, Known2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 338 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 339 bool isKnownNegativeOp1 = Known.isNegative(); 340 bool isKnownNegativeOp0 = Known2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 assert(!Known.hasConflict() && !Known2.hasConflict()); 355 // Compute a conservative estimate for high known-0 bits. 356 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 357 Known2.countMinLeadingZeros(), 358 BitWidth) - BitWidth; 359 LeadZ = std::min(LeadZ, BitWidth); 360 361 // The result of the bottom bits of an integer multiply can be 362 // inferred by looking at the bottom bits of both operands and 363 // multiplying them together. 364 // We can infer at least the minimum number of known trailing bits 365 // of both operands. Depending on number of trailing zeros, we can 366 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 367 // a and b are divisible by m and n respectively. 368 // We then calculate how many of those bits are inferrable and set 369 // the output. For example, the i8 mul: 370 // a = XXXX1100 (12) 371 // b = XXXX1110 (14) 372 // We know the bottom 3 bits are zero since the first can be divided by 373 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 374 // Applying the multiplication to the trimmed arguments gets: 375 // XX11 (3) 376 // X111 (7) 377 // ------- 378 // XX11 379 // XX11 380 // XX11 381 // XX11 382 // ------- 383 // XXXXX01 384 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 385 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 386 // The proof for this can be described as: 387 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 388 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 389 // umin(countTrailingZeros(C2), C6) + 390 // umin(C5 - umin(countTrailingZeros(C1), C5), 391 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 392 // %aa = shl i8 %a, C5 393 // %bb = shl i8 %b, C6 394 // %aaa = or i8 %aa, C1 395 // %bbb = or i8 %bb, C2 396 // %mul = mul i8 %aaa, %bbb 397 // %mask = and i8 %mul, C7 398 // => 399 // %mask = i8 ((C1*C2)&C7) 400 // Where C5, C6 describe the known bits of %a, %b 401 // C1, C2 describe the known bottom bits of %a, %b. 402 // C7 describes the mask of the known bits of the result. 403 APInt Bottom0 = Known.One; 404 APInt Bottom1 = Known2.One; 405 406 // How many times we'd be able to divide each argument by 2 (shr by 1). 407 // This gives us the number of trailing zeros on the multiplication result. 408 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 409 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 410 unsigned TrailZero0 = Known.countMinTrailingZeros(); 411 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 412 unsigned TrailZ = TrailZero0 + TrailZero1; 413 414 // Figure out the fewest known-bits operand. 415 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 416 TrailBitsKnown1 - TrailZero1); 417 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 418 419 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 420 Bottom1.getLoBits(TrailBitsKnown1); 421 422 Known.resetAll(); 423 Known.Zero.setHighBits(LeadZ); 424 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 425 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 426 427 // Only make use of no-wrap flags if we failed to compute the sign bit 428 // directly. This matters if the multiplication always overflows, in 429 // which case we prefer to follow the result of the direct computation, 430 // though as the program is invoking undefined behaviour we can choose 431 // whatever we like here. 432 if (isKnownNonNegative && !Known.isNegative()) 433 Known.makeNonNegative(); 434 else if (isKnownNegative && !Known.isNonNegative()) 435 Known.makeNegative(); 436 } 437 438 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 439 KnownBits &Known) { 440 unsigned BitWidth = Known.getBitWidth(); 441 unsigned NumRanges = Ranges.getNumOperands() / 2; 442 assert(NumRanges >= 1); 443 444 Known.Zero.setAllBits(); 445 Known.One.setAllBits(); 446 447 for (unsigned i = 0; i < NumRanges; ++i) { 448 ConstantInt *Lower = 449 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 450 ConstantInt *Upper = 451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 452 ConstantRange Range(Lower->getValue(), Upper->getValue()); 453 454 // The first CommonPrefixBits of all values in Range are equal. 455 unsigned CommonPrefixBits = 456 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 457 458 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 459 Known.One &= Range.getUnsignedMax() & Mask; 460 Known.Zero &= ~Range.getUnsignedMax() & Mask; 461 } 462 } 463 464 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 465 SmallVector<const Value *, 16> WorkSet(1, I); 466 SmallPtrSet<const Value *, 32> Visited; 467 SmallPtrSet<const Value *, 16> EphValues; 468 469 // The instruction defining an assumption's condition itself is always 470 // considered ephemeral to that assumption (even if it has other 471 // non-ephemeral users). See r246696's test case for an example. 472 if (is_contained(I->operands(), E)) 473 return true; 474 475 while (!WorkSet.empty()) { 476 const Value *V = WorkSet.pop_back_val(); 477 if (!Visited.insert(V).second) 478 continue; 479 480 // If all uses of this value are ephemeral, then so is this value. 481 if (llvm::all_of(V->users(), [&](const User *U) { 482 return EphValues.count(U); 483 })) { 484 if (V == E) 485 return true; 486 487 if (V == I || isSafeToSpeculativelyExecute(V)) { 488 EphValues.insert(V); 489 if (const User *U = dyn_cast<User>(V)) 490 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 491 J != JE; ++J) 492 WorkSet.push_back(*J); 493 } 494 } 495 } 496 497 return false; 498 } 499 500 // Is this an intrinsic that cannot be speculated but also cannot trap? 501 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 502 if (const CallInst *CI = dyn_cast<CallInst>(I)) 503 if (Function *F = CI->getCalledFunction()) 504 switch (F->getIntrinsicID()) { 505 default: break; 506 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 507 case Intrinsic::assume: 508 case Intrinsic::sideeffect: 509 case Intrinsic::dbg_declare: 510 case Intrinsic::dbg_value: 511 case Intrinsic::dbg_label: 512 case Intrinsic::invariant_start: 513 case Intrinsic::invariant_end: 514 case Intrinsic::lifetime_start: 515 case Intrinsic::lifetime_end: 516 case Intrinsic::objectsize: 517 case Intrinsic::ptr_annotation: 518 case Intrinsic::var_annotation: 519 return true; 520 } 521 522 return false; 523 } 524 525 bool llvm::isValidAssumeForContext(const Instruction *Inv, 526 const Instruction *CxtI, 527 const DominatorTree *DT) { 528 // There are two restrictions on the use of an assume: 529 // 1. The assume must dominate the context (or the control flow must 530 // reach the assume whenever it reaches the context). 531 // 2. The context must not be in the assume's set of ephemeral values 532 // (otherwise we will use the assume to prove that the condition 533 // feeding the assume is trivially true, thus causing the removal of 534 // the assume). 535 536 if (DT) { 537 if (DT->dominates(Inv, CxtI)) 538 return true; 539 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 540 // We don't have a DT, but this trivially dominates. 541 return true; 542 } 543 544 // With or without a DT, the only remaining case we will check is if the 545 // instructions are in the same BB. Give up if that is not the case. 546 if (Inv->getParent() != CxtI->getParent()) 547 return false; 548 549 // If we have a dom tree, then we now know that the assume doesn't dominate 550 // the other instruction. If we don't have a dom tree then we can check if 551 // the assume is first in the BB. 552 if (!DT) { 553 // Search forward from the assume until we reach the context (or the end 554 // of the block); the common case is that the assume will come first. 555 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 556 IE = Inv->getParent()->end(); I != IE; ++I) 557 if (&*I == CxtI) 558 return true; 559 } 560 561 // Don't let an assume affect itself - this would cause the problems 562 // `isEphemeralValueOf` is trying to prevent, and it would also make 563 // the loop below go out of bounds. 564 if (Inv == CxtI) 565 return false; 566 567 // The context comes first, but they're both in the same block. Make sure 568 // there is nothing in between that might interrupt the control flow. 569 for (BasicBlock::const_iterator I = 570 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 571 I != IE; ++I) 572 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 573 return false; 574 575 return !isEphemeralValueOf(Inv, CxtI); 576 } 577 578 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 579 unsigned Depth, const Query &Q) { 580 // Use of assumptions is context-sensitive. If we don't have a context, we 581 // cannot use them! 582 if (!Q.AC || !Q.CxtI) 583 return; 584 585 unsigned BitWidth = Known.getBitWidth(); 586 587 // Note that the patterns below need to be kept in sync with the code 588 // in AssumptionCache::updateAffectedValues. 589 590 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 591 if (!AssumeVH) 592 continue; 593 CallInst *I = cast<CallInst>(AssumeVH); 594 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 595 "Got assumption for the wrong function!"); 596 if (Q.isExcluded(I)) 597 continue; 598 599 // Warning: This loop can end up being somewhat performance sensitive. 600 // We're running this loop for once for each value queried resulting in a 601 // runtime of ~O(#assumes * #values). 602 603 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 604 "must be an assume intrinsic"); 605 606 Value *Arg = I->getArgOperand(0); 607 608 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 609 assert(BitWidth == 1 && "assume operand is not i1?"); 610 Known.setAllOnes(); 611 return; 612 } 613 if (match(Arg, m_Not(m_Specific(V))) && 614 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 615 assert(BitWidth == 1 && "assume operand is not i1?"); 616 Known.setAllZero(); 617 return; 618 } 619 620 // The remaining tests are all recursive, so bail out if we hit the limit. 621 if (Depth == MaxDepth) 622 continue; 623 624 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 625 if (!Cmp) 626 continue; 627 628 Value *A, *B; 629 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 630 631 CmpInst::Predicate Pred; 632 uint64_t C; 633 switch (Cmp->getPredicate()) { 634 default: 635 break; 636 case ICmpInst::ICMP_EQ: 637 // assume(v = a) 638 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 639 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 640 KnownBits RHSKnown(BitWidth); 641 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 642 Known.Zero |= RHSKnown.Zero; 643 Known.One |= RHSKnown.One; 644 // assume(v & b = a) 645 } else if (match(Cmp, 646 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 647 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 648 KnownBits RHSKnown(BitWidth); 649 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 650 KnownBits MaskKnown(BitWidth); 651 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 652 653 // For those bits in the mask that are known to be one, we can propagate 654 // known bits from the RHS to V. 655 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 656 Known.One |= RHSKnown.One & MaskKnown.One; 657 // assume(~(v & b) = a) 658 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 659 m_Value(A))) && 660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 661 KnownBits RHSKnown(BitWidth); 662 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 663 KnownBits MaskKnown(BitWidth); 664 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 665 666 // For those bits in the mask that are known to be one, we can propagate 667 // inverted known bits from the RHS to V. 668 Known.Zero |= RHSKnown.One & MaskKnown.One; 669 Known.One |= RHSKnown.Zero & MaskKnown.One; 670 // assume(v | b = a) 671 } else if (match(Cmp, 672 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 673 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 674 KnownBits RHSKnown(BitWidth); 675 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 676 KnownBits BKnown(BitWidth); 677 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 678 679 // For those bits in B that are known to be zero, we can propagate known 680 // bits from the RHS to V. 681 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 682 Known.One |= RHSKnown.One & BKnown.Zero; 683 // assume(~(v | b) = a) 684 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 685 m_Value(A))) && 686 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 687 KnownBits RHSKnown(BitWidth); 688 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 689 KnownBits BKnown(BitWidth); 690 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 691 692 // For those bits in B that are known to be zero, we can propagate 693 // inverted known bits from the RHS to V. 694 Known.Zero |= RHSKnown.One & BKnown.Zero; 695 Known.One |= RHSKnown.Zero & BKnown.Zero; 696 // assume(v ^ b = a) 697 } else if (match(Cmp, 698 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 699 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 700 KnownBits RHSKnown(BitWidth); 701 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 702 KnownBits BKnown(BitWidth); 703 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 704 705 // For those bits in B that are known to be zero, we can propagate known 706 // bits from the RHS to V. For those bits in B that are known to be one, 707 // we can propagate inverted known bits from the RHS to V. 708 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 709 Known.One |= RHSKnown.One & BKnown.Zero; 710 Known.Zero |= RHSKnown.One & BKnown.One; 711 Known.One |= RHSKnown.Zero & BKnown.One; 712 // assume(~(v ^ b) = a) 713 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 714 m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown(BitWidth); 717 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 718 KnownBits BKnown(BitWidth); 719 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 720 721 // For those bits in B that are known to be zero, we can propagate 722 // inverted known bits from the RHS to V. For those bits in B that are 723 // known to be one, we can propagate known bits from the RHS to V. 724 Known.Zero |= RHSKnown.One & BKnown.Zero; 725 Known.One |= RHSKnown.Zero & BKnown.Zero; 726 Known.Zero |= RHSKnown.Zero & BKnown.One; 727 Known.One |= RHSKnown.One & BKnown.One; 728 // assume(v << c = a) 729 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 730 m_Value(A))) && 731 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 732 KnownBits RHSKnown(BitWidth); 733 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 734 // For those bits in RHS that are known, we can propagate them to known 735 // bits in V shifted to the right by C. 736 RHSKnown.Zero.lshrInPlace(C); 737 Known.Zero |= RHSKnown.Zero; 738 RHSKnown.One.lshrInPlace(C); 739 Known.One |= RHSKnown.One; 740 // assume(~(v << c) = a) 741 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 742 m_Value(A))) && 743 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 744 KnownBits RHSKnown(BitWidth); 745 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 746 // For those bits in RHS that are known, we can propagate them inverted 747 // to known bits in V shifted to the right by C. 748 RHSKnown.One.lshrInPlace(C); 749 Known.Zero |= RHSKnown.One; 750 RHSKnown.Zero.lshrInPlace(C); 751 Known.One |= RHSKnown.Zero; 752 // assume(v >> c = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 756 KnownBits RHSKnown(BitWidth); 757 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 758 // For those bits in RHS that are known, we can propagate them to known 759 // bits in V shifted to the right by C. 760 Known.Zero |= RHSKnown.Zero << C; 761 Known.One |= RHSKnown.One << C; 762 // assume(~(v >> c) = a) 763 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 764 m_Value(A))) && 765 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 766 KnownBits RHSKnown(BitWidth); 767 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 768 // For those bits in RHS that are known, we can propagate them inverted 769 // to known bits in V shifted to the right by C. 770 Known.Zero |= RHSKnown.One << C; 771 Known.One |= RHSKnown.Zero << C; 772 } 773 break; 774 case ICmpInst::ICMP_SGE: 775 // assume(v >=_s c) where c is non-negative 776 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 778 KnownBits RHSKnown(BitWidth); 779 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 780 781 if (RHSKnown.isNonNegative()) { 782 // We know that the sign bit is zero. 783 Known.makeNonNegative(); 784 } 785 } 786 break; 787 case ICmpInst::ICMP_SGT: 788 // assume(v >_s c) where c is at least -1. 789 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 790 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 791 KnownBits RHSKnown(BitWidth); 792 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 793 794 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 795 // We know that the sign bit is zero. 796 Known.makeNonNegative(); 797 } 798 } 799 break; 800 case ICmpInst::ICMP_SLE: 801 // assume(v <=_s c) where c is negative 802 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 803 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 804 KnownBits RHSKnown(BitWidth); 805 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 806 807 if (RHSKnown.isNegative()) { 808 // We know that the sign bit is one. 809 Known.makeNegative(); 810 } 811 } 812 break; 813 case ICmpInst::ICMP_SLT: 814 // assume(v <_s c) where c is non-positive 815 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 816 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 817 KnownBits RHSKnown(BitWidth); 818 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 819 820 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 821 // We know that the sign bit is one. 822 Known.makeNegative(); 823 } 824 } 825 break; 826 case ICmpInst::ICMP_ULE: 827 // assume(v <=_u c) 828 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 829 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 830 KnownBits RHSKnown(BitWidth); 831 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 832 833 // Whatever high bits in c are zero are known to be zero. 834 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 835 } 836 break; 837 case ICmpInst::ICMP_ULT: 838 // assume(v <_u c) 839 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 840 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 841 KnownBits RHSKnown(BitWidth); 842 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 843 844 // If the RHS is known zero, then this assumption must be wrong (nothing 845 // is unsigned less than zero). Signal a conflict and get out of here. 846 if (RHSKnown.isZero()) { 847 Known.Zero.setAllBits(); 848 Known.One.setAllBits(); 849 break; 850 } 851 852 // Whatever high bits in c are zero are known to be zero (if c is a power 853 // of 2, then one more). 854 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 855 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 856 else 857 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 858 } 859 break; 860 } 861 } 862 863 // If assumptions conflict with each other or previous known bits, then we 864 // have a logical fallacy. It's possible that the assumption is not reachable, 865 // so this isn't a real bug. On the other hand, the program may have undefined 866 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 867 // clear out the known bits, try to warn the user, and hope for the best. 868 if (Known.Zero.intersects(Known.One)) { 869 Known.resetAll(); 870 871 if (Q.ORE) 872 Q.ORE->emit([&]() { 873 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 874 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 875 CxtI) 876 << "Detected conflicting code assumptions. Program may " 877 "have undefined behavior, or compiler may have " 878 "internal error."; 879 }); 880 } 881 } 882 883 /// Compute known bits from a shift operator, including those with a 884 /// non-constant shift amount. Known is the output of this function. Known2 is a 885 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 886 /// operator-specific functions that, given the known-zero or known-one bits 887 /// respectively, and a shift amount, compute the implied known-zero or 888 /// known-one bits of the shift operator's result respectively for that shift 889 /// amount. The results from calling KZF and KOF are conservatively combined for 890 /// all permitted shift amounts. 891 static void computeKnownBitsFromShiftOperator( 892 const Operator *I, KnownBits &Known, KnownBits &Known2, 893 unsigned Depth, const Query &Q, 894 function_ref<APInt(const APInt &, unsigned)> KZF, 895 function_ref<APInt(const APInt &, unsigned)> KOF) { 896 unsigned BitWidth = Known.getBitWidth(); 897 898 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 899 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 900 901 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 902 Known.Zero = KZF(Known.Zero, ShiftAmt); 903 Known.One = KOF(Known.One, ShiftAmt); 904 // If the known bits conflict, this must be an overflowing left shift, so 905 // the shift result is poison. We can return anything we want. Choose 0 for 906 // the best folding opportunity. 907 if (Known.hasConflict()) 908 Known.setAllZero(); 909 910 return; 911 } 912 913 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 914 915 // If the shift amount could be greater than or equal to the bit-width of the 916 // LHS, the value could be poison, but bail out because the check below is 917 // expensive. TODO: Should we just carry on? 918 if ((~Known.Zero).uge(BitWidth)) { 919 Known.resetAll(); 920 return; 921 } 922 923 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 924 // BitWidth > 64 and any upper bits are known, we'll end up returning the 925 // limit value (which implies all bits are known). 926 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 927 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 928 929 // It would be more-clearly correct to use the two temporaries for this 930 // calculation. Reusing the APInts here to prevent unnecessary allocations. 931 Known.resetAll(); 932 933 // If we know the shifter operand is nonzero, we can sometimes infer more 934 // known bits. However this is expensive to compute, so be lazy about it and 935 // only compute it when absolutely necessary. 936 Optional<bool> ShifterOperandIsNonZero; 937 938 // Early exit if we can't constrain any well-defined shift amount. 939 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 940 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 941 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 942 if (!*ShifterOperandIsNonZero) 943 return; 944 } 945 946 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 947 948 Known.Zero.setAllBits(); 949 Known.One.setAllBits(); 950 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 951 // Combine the shifted known input bits only for those shift amounts 952 // compatible with its known constraints. 953 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 954 continue; 955 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 956 continue; 957 // If we know the shifter is nonzero, we may be able to infer more known 958 // bits. This check is sunk down as far as possible to avoid the expensive 959 // call to isKnownNonZero if the cheaper checks above fail. 960 if (ShiftAmt == 0) { 961 if (!ShifterOperandIsNonZero.hasValue()) 962 ShifterOperandIsNonZero = 963 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 964 if (*ShifterOperandIsNonZero) 965 continue; 966 } 967 968 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 969 Known.One &= KOF(Known2.One, ShiftAmt); 970 } 971 972 // If the known bits conflict, the result is poison. Return a 0 and hope the 973 // caller can further optimize that. 974 if (Known.hasConflict()) 975 Known.setAllZero(); 976 } 977 978 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 979 unsigned Depth, const Query &Q) { 980 unsigned BitWidth = Known.getBitWidth(); 981 982 KnownBits Known2(Known); 983 switch (I->getOpcode()) { 984 default: break; 985 case Instruction::Load: 986 if (MDNode *MD = 987 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 988 computeKnownBitsFromRangeMetadata(*MD, Known); 989 break; 990 case Instruction::And: { 991 // If either the LHS or the RHS are Zero, the result is zero. 992 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 993 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 994 995 // Output known-1 bits are only known if set in both the LHS & RHS. 996 Known.One &= Known2.One; 997 // Output known-0 are known to be clear if zero in either the LHS | RHS. 998 Known.Zero |= Known2.Zero; 999 1000 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1001 // here we handle the more general case of adding any odd number by 1002 // matching the form add(x, add(x, y)) where y is odd. 1003 // TODO: This could be generalized to clearing any bit set in y where the 1004 // following bit is known to be unset in y. 1005 Value *X = nullptr, *Y = nullptr; 1006 if (!Known.Zero[0] && !Known.One[0] && 1007 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1008 Known2.resetAll(); 1009 computeKnownBits(Y, Known2, Depth + 1, Q); 1010 if (Known2.countMinTrailingOnes() > 0) 1011 Known.Zero.setBit(0); 1012 } 1013 break; 1014 } 1015 case Instruction::Or: 1016 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1017 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1018 1019 // Output known-0 bits are only known if clear in both the LHS & RHS. 1020 Known.Zero &= Known2.Zero; 1021 // Output known-1 are known to be set if set in either the LHS | RHS. 1022 Known.One |= Known2.One; 1023 break; 1024 case Instruction::Xor: { 1025 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1026 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1027 1028 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1029 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1030 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1031 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1032 Known.Zero = std::move(KnownZeroOut); 1033 break; 1034 } 1035 case Instruction::Mul: { 1036 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1037 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1038 Known2, Depth, Q); 1039 break; 1040 } 1041 case Instruction::UDiv: { 1042 // For the purposes of computing leading zeros we can conservatively 1043 // treat a udiv as a logical right shift by the power of 2 known to 1044 // be less than the denominator. 1045 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1046 unsigned LeadZ = Known2.countMinLeadingZeros(); 1047 1048 Known2.resetAll(); 1049 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1050 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1051 if (RHSMaxLeadingZeros != BitWidth) 1052 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1053 1054 Known.Zero.setHighBits(LeadZ); 1055 break; 1056 } 1057 case Instruction::Select: { 1058 const Value *LHS = nullptr, *RHS = nullptr; 1059 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1060 if (SelectPatternResult::isMinOrMax(SPF)) { 1061 computeKnownBits(RHS, Known, Depth + 1, Q); 1062 computeKnownBits(LHS, Known2, Depth + 1, Q); 1063 } else { 1064 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1065 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1066 } 1067 1068 unsigned MaxHighOnes = 0; 1069 unsigned MaxHighZeros = 0; 1070 if (SPF == SPF_SMAX) { 1071 // If both sides are negative, the result is negative. 1072 if (Known.isNegative() && Known2.isNegative()) 1073 // We can derive a lower bound on the result by taking the max of the 1074 // leading one bits. 1075 MaxHighOnes = 1076 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1077 // If either side is non-negative, the result is non-negative. 1078 else if (Known.isNonNegative() || Known2.isNonNegative()) 1079 MaxHighZeros = 1; 1080 } else if (SPF == SPF_SMIN) { 1081 // If both sides are non-negative, the result is non-negative. 1082 if (Known.isNonNegative() && Known2.isNonNegative()) 1083 // We can derive an upper bound on the result by taking the max of the 1084 // leading zero bits. 1085 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1086 Known2.countMinLeadingZeros()); 1087 // If either side is negative, the result is negative. 1088 else if (Known.isNegative() || Known2.isNegative()) 1089 MaxHighOnes = 1; 1090 } else if (SPF == SPF_UMAX) { 1091 // We can derive a lower bound on the result by taking the max of the 1092 // leading one bits. 1093 MaxHighOnes = 1094 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1095 } else if (SPF == SPF_UMIN) { 1096 // We can derive an upper bound on the result by taking the max of the 1097 // leading zero bits. 1098 MaxHighZeros = 1099 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1100 } else if (SPF == SPF_ABS) { 1101 // RHS from matchSelectPattern returns the negation part of abs pattern. 1102 // If the negate has an NSW flag we can assume the sign bit of the result 1103 // will be 0 because that makes abs(INT_MIN) undefined. 1104 if (match(RHS, m_Neg(m_Specific(LHS))) && 1105 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1106 MaxHighZeros = 1; 1107 } 1108 1109 // Only known if known in both the LHS and RHS. 1110 Known.One &= Known2.One; 1111 Known.Zero &= Known2.Zero; 1112 if (MaxHighOnes > 0) 1113 Known.One.setHighBits(MaxHighOnes); 1114 if (MaxHighZeros > 0) 1115 Known.Zero.setHighBits(MaxHighZeros); 1116 break; 1117 } 1118 case Instruction::FPTrunc: 1119 case Instruction::FPExt: 1120 case Instruction::FPToUI: 1121 case Instruction::FPToSI: 1122 case Instruction::SIToFP: 1123 case Instruction::UIToFP: 1124 break; // Can't work with floating point. 1125 case Instruction::PtrToInt: 1126 case Instruction::IntToPtr: 1127 // Fall through and handle them the same as zext/trunc. 1128 LLVM_FALLTHROUGH; 1129 case Instruction::ZExt: 1130 case Instruction::Trunc: { 1131 Type *SrcTy = I->getOperand(0)->getType(); 1132 1133 unsigned SrcBitWidth; 1134 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1135 // which fall through here. 1136 Type *ScalarTy = SrcTy->getScalarType(); 1137 SrcBitWidth = ScalarTy->isPointerTy() ? 1138 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1139 Q.DL.getTypeSizeInBits(ScalarTy); 1140 1141 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1142 Known = Known.zextOrTrunc(SrcBitWidth, false); 1143 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1144 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); 1145 break; 1146 } 1147 case Instruction::BitCast: { 1148 Type *SrcTy = I->getOperand(0)->getType(); 1149 if (SrcTy->isIntOrPtrTy() && 1150 // TODO: For now, not handling conversions like: 1151 // (bitcast i64 %x to <2 x i32>) 1152 !I->getType()->isVectorTy()) { 1153 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1154 break; 1155 } 1156 break; 1157 } 1158 case Instruction::SExt: { 1159 // Compute the bits in the result that are not present in the input. 1160 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1161 1162 Known = Known.trunc(SrcBitWidth); 1163 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1164 // If the sign bit of the input is known set or clear, then we know the 1165 // top bits of the result. 1166 Known = Known.sext(BitWidth); 1167 break; 1168 } 1169 case Instruction::Shl: { 1170 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1171 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1172 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1173 APInt KZResult = KnownZero << ShiftAmt; 1174 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1175 // If this shift has "nsw" keyword, then the result is either a poison 1176 // value or has the same sign bit as the first operand. 1177 if (NSW && KnownZero.isSignBitSet()) 1178 KZResult.setSignBit(); 1179 return KZResult; 1180 }; 1181 1182 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1183 APInt KOResult = KnownOne << ShiftAmt; 1184 if (NSW && KnownOne.isSignBitSet()) 1185 KOResult.setSignBit(); 1186 return KOResult; 1187 }; 1188 1189 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1190 break; 1191 } 1192 case Instruction::LShr: { 1193 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1194 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1195 APInt KZResult = KnownZero.lshr(ShiftAmt); 1196 // High bits known zero. 1197 KZResult.setHighBits(ShiftAmt); 1198 return KZResult; 1199 }; 1200 1201 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1202 return KnownOne.lshr(ShiftAmt); 1203 }; 1204 1205 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1206 break; 1207 } 1208 case Instruction::AShr: { 1209 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1210 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1211 return KnownZero.ashr(ShiftAmt); 1212 }; 1213 1214 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1215 return KnownOne.ashr(ShiftAmt); 1216 }; 1217 1218 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1219 break; 1220 } 1221 case Instruction::Sub: { 1222 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1223 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1224 Known, Known2, Depth, Q); 1225 break; 1226 } 1227 case Instruction::Add: { 1228 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1229 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1230 Known, Known2, Depth, Q); 1231 break; 1232 } 1233 case Instruction::SRem: 1234 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1235 APInt RA = Rem->getValue().abs(); 1236 if (RA.isPowerOf2()) { 1237 APInt LowBits = RA - 1; 1238 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1239 1240 // The low bits of the first operand are unchanged by the srem. 1241 Known.Zero = Known2.Zero & LowBits; 1242 Known.One = Known2.One & LowBits; 1243 1244 // If the first operand is non-negative or has all low bits zero, then 1245 // the upper bits are all zero. 1246 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1247 Known.Zero |= ~LowBits; 1248 1249 // If the first operand is negative and not all low bits are zero, then 1250 // the upper bits are all one. 1251 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1252 Known.One |= ~LowBits; 1253 1254 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1255 break; 1256 } 1257 } 1258 1259 // The sign bit is the LHS's sign bit, except when the result of the 1260 // remainder is zero. 1261 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1262 // If it's known zero, our sign bit is also zero. 1263 if (Known2.isNonNegative()) 1264 Known.makeNonNegative(); 1265 1266 break; 1267 case Instruction::URem: { 1268 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1269 const APInt &RA = Rem->getValue(); 1270 if (RA.isPowerOf2()) { 1271 APInt LowBits = (RA - 1); 1272 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1273 Known.Zero |= ~LowBits; 1274 Known.One &= LowBits; 1275 break; 1276 } 1277 } 1278 1279 // Since the result is less than or equal to either operand, any leading 1280 // zero bits in either operand must also exist in the result. 1281 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1282 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1283 1284 unsigned Leaders = 1285 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1286 Known.resetAll(); 1287 Known.Zero.setHighBits(Leaders); 1288 break; 1289 } 1290 1291 case Instruction::Alloca: { 1292 const AllocaInst *AI = cast<AllocaInst>(I); 1293 unsigned Align = AI->getAlignment(); 1294 if (Align == 0) 1295 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1296 1297 if (Align > 0) 1298 Known.Zero.setLowBits(countTrailingZeros(Align)); 1299 break; 1300 } 1301 case Instruction::GetElementPtr: { 1302 // Analyze all of the subscripts of this getelementptr instruction 1303 // to determine if we can prove known low zero bits. 1304 KnownBits LocalKnown(BitWidth); 1305 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1306 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1307 1308 gep_type_iterator GTI = gep_type_begin(I); 1309 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1310 Value *Index = I->getOperand(i); 1311 if (StructType *STy = GTI.getStructTypeOrNull()) { 1312 // Handle struct member offset arithmetic. 1313 1314 // Handle case when index is vector zeroinitializer 1315 Constant *CIndex = cast<Constant>(Index); 1316 if (CIndex->isZeroValue()) 1317 continue; 1318 1319 if (CIndex->getType()->isVectorTy()) 1320 Index = CIndex->getSplatValue(); 1321 1322 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1323 const StructLayout *SL = Q.DL.getStructLayout(STy); 1324 uint64_t Offset = SL->getElementOffset(Idx); 1325 TrailZ = std::min<unsigned>(TrailZ, 1326 countTrailingZeros(Offset)); 1327 } else { 1328 // Handle array index arithmetic. 1329 Type *IndexedTy = GTI.getIndexedType(); 1330 if (!IndexedTy->isSized()) { 1331 TrailZ = 0; 1332 break; 1333 } 1334 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1335 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1336 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1337 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1338 TrailZ = std::min(TrailZ, 1339 unsigned(countTrailingZeros(TypeSize) + 1340 LocalKnown.countMinTrailingZeros())); 1341 } 1342 } 1343 1344 Known.Zero.setLowBits(TrailZ); 1345 break; 1346 } 1347 case Instruction::PHI: { 1348 const PHINode *P = cast<PHINode>(I); 1349 // Handle the case of a simple two-predecessor recurrence PHI. 1350 // There's a lot more that could theoretically be done here, but 1351 // this is sufficient to catch some interesting cases. 1352 if (P->getNumIncomingValues() == 2) { 1353 for (unsigned i = 0; i != 2; ++i) { 1354 Value *L = P->getIncomingValue(i); 1355 Value *R = P->getIncomingValue(!i); 1356 Operator *LU = dyn_cast<Operator>(L); 1357 if (!LU) 1358 continue; 1359 unsigned Opcode = LU->getOpcode(); 1360 // Check for operations that have the property that if 1361 // both their operands have low zero bits, the result 1362 // will have low zero bits. 1363 if (Opcode == Instruction::Add || 1364 Opcode == Instruction::Sub || 1365 Opcode == Instruction::And || 1366 Opcode == Instruction::Or || 1367 Opcode == Instruction::Mul) { 1368 Value *LL = LU->getOperand(0); 1369 Value *LR = LU->getOperand(1); 1370 // Find a recurrence. 1371 if (LL == I) 1372 L = LR; 1373 else if (LR == I) 1374 L = LL; 1375 else 1376 continue; // Check for recurrence with L and R flipped. 1377 // Ok, we have a PHI of the form L op= R. Check for low 1378 // zero bits. 1379 computeKnownBits(R, Known2, Depth + 1, Q); 1380 1381 // We need to take the minimum number of known bits 1382 KnownBits Known3(Known); 1383 computeKnownBits(L, Known3, Depth + 1, Q); 1384 1385 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1386 Known3.countMinTrailingZeros())); 1387 1388 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1389 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1390 // If initial value of recurrence is nonnegative, and we are adding 1391 // a nonnegative number with nsw, the result can only be nonnegative 1392 // or poison value regardless of the number of times we execute the 1393 // add in phi recurrence. If initial value is negative and we are 1394 // adding a negative number with nsw, the result can only be 1395 // negative or poison value. Similar arguments apply to sub and mul. 1396 // 1397 // (add non-negative, non-negative) --> non-negative 1398 // (add negative, negative) --> negative 1399 if (Opcode == Instruction::Add) { 1400 if (Known2.isNonNegative() && Known3.isNonNegative()) 1401 Known.makeNonNegative(); 1402 else if (Known2.isNegative() && Known3.isNegative()) 1403 Known.makeNegative(); 1404 } 1405 1406 // (sub nsw non-negative, negative) --> non-negative 1407 // (sub nsw negative, non-negative) --> negative 1408 else if (Opcode == Instruction::Sub && LL == I) { 1409 if (Known2.isNonNegative() && Known3.isNegative()) 1410 Known.makeNonNegative(); 1411 else if (Known2.isNegative() && Known3.isNonNegative()) 1412 Known.makeNegative(); 1413 } 1414 1415 // (mul nsw non-negative, non-negative) --> non-negative 1416 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1417 Known3.isNonNegative()) 1418 Known.makeNonNegative(); 1419 } 1420 1421 break; 1422 } 1423 } 1424 } 1425 1426 // Unreachable blocks may have zero-operand PHI nodes. 1427 if (P->getNumIncomingValues() == 0) 1428 break; 1429 1430 // Otherwise take the unions of the known bit sets of the operands, 1431 // taking conservative care to avoid excessive recursion. 1432 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1433 // Skip if every incoming value references to ourself. 1434 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1435 break; 1436 1437 Known.Zero.setAllBits(); 1438 Known.One.setAllBits(); 1439 for (Value *IncValue : P->incoming_values()) { 1440 // Skip direct self references. 1441 if (IncValue == P) continue; 1442 1443 Known2 = KnownBits(BitWidth); 1444 // Recurse, but cap the recursion to one level, because we don't 1445 // want to waste time spinning around in loops. 1446 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1447 Known.Zero &= Known2.Zero; 1448 Known.One &= Known2.One; 1449 // If all bits have been ruled out, there's no need to check 1450 // more operands. 1451 if (!Known.Zero && !Known.One) 1452 break; 1453 } 1454 } 1455 break; 1456 } 1457 case Instruction::Call: 1458 case Instruction::Invoke: 1459 // If range metadata is attached to this call, set known bits from that, 1460 // and then intersect with known bits based on other properties of the 1461 // function. 1462 if (MDNode *MD = 1463 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1464 computeKnownBitsFromRangeMetadata(*MD, Known); 1465 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1466 computeKnownBits(RV, Known2, Depth + 1, Q); 1467 Known.Zero |= Known2.Zero; 1468 Known.One |= Known2.One; 1469 } 1470 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1471 switch (II->getIntrinsicID()) { 1472 default: break; 1473 case Intrinsic::bitreverse: 1474 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1475 Known.Zero |= Known2.Zero.reverseBits(); 1476 Known.One |= Known2.One.reverseBits(); 1477 break; 1478 case Intrinsic::bswap: 1479 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1480 Known.Zero |= Known2.Zero.byteSwap(); 1481 Known.One |= Known2.One.byteSwap(); 1482 break; 1483 case Intrinsic::ctlz: { 1484 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1485 // If we have a known 1, its position is our upper bound. 1486 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1487 // If this call is undefined for 0, the result will be less than 2^n. 1488 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1489 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1490 unsigned LowBits = Log2_32(PossibleLZ)+1; 1491 Known.Zero.setBitsFrom(LowBits); 1492 break; 1493 } 1494 case Intrinsic::cttz: { 1495 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1496 // If we have a known 1, its position is our upper bound. 1497 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1498 // If this call is undefined for 0, the result will be less than 2^n. 1499 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1500 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1501 unsigned LowBits = Log2_32(PossibleTZ)+1; 1502 Known.Zero.setBitsFrom(LowBits); 1503 break; 1504 } 1505 case Intrinsic::ctpop: { 1506 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1507 // We can bound the space the count needs. Also, bits known to be zero 1508 // can't contribute to the population. 1509 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1510 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1511 Known.Zero.setBitsFrom(LowBits); 1512 // TODO: we could bound KnownOne using the lower bound on the number 1513 // of bits which might be set provided by popcnt KnownOne2. 1514 break; 1515 } 1516 case Intrinsic::fshr: 1517 case Intrinsic::fshl: { 1518 const APInt *SA; 1519 if (!match(I->getOperand(2), m_APInt(SA))) 1520 break; 1521 1522 // Normalize to funnel shift left. 1523 uint64_t ShiftAmt = SA->urem(BitWidth); 1524 if (II->getIntrinsicID() == Intrinsic::fshr) 1525 ShiftAmt = BitWidth - ShiftAmt; 1526 1527 KnownBits Known3(Known); 1528 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1529 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1530 1531 Known.Zero = 1532 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1533 Known.One = 1534 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1535 break; 1536 } 1537 case Intrinsic::uadd_sat: 1538 case Intrinsic::usub_sat: { 1539 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1540 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1541 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1542 1543 // Add: Leading ones of either operand are preserved. 1544 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1545 // as leading zeros in the result. 1546 unsigned LeadingKnown; 1547 if (IsAdd) 1548 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1549 Known2.countMinLeadingOnes()); 1550 else 1551 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1552 Known2.countMinLeadingOnes()); 1553 1554 Known = KnownBits::computeForAddSub( 1555 IsAdd, /* NSW */ false, Known, Known2); 1556 1557 // We select between the operation result and all-ones/zero 1558 // respectively, so we can preserve known ones/zeros. 1559 if (IsAdd) { 1560 Known.One.setHighBits(LeadingKnown); 1561 Known.Zero.clearAllBits(); 1562 } else { 1563 Known.Zero.setHighBits(LeadingKnown); 1564 Known.One.clearAllBits(); 1565 } 1566 break; 1567 } 1568 case Intrinsic::x86_sse42_crc32_64_64: 1569 Known.Zero.setBitsFrom(32); 1570 break; 1571 } 1572 } 1573 break; 1574 case Instruction::ExtractElement: 1575 // Look through extract element. At the moment we keep this simple and skip 1576 // tracking the specific element. But at least we might find information 1577 // valid for all elements of the vector (for example if vector is sign 1578 // extended, shifted, etc). 1579 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1580 break; 1581 case Instruction::ExtractValue: 1582 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1583 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1584 if (EVI->getNumIndices() != 1) break; 1585 if (EVI->getIndices()[0] == 0) { 1586 switch (II->getIntrinsicID()) { 1587 default: break; 1588 case Intrinsic::uadd_with_overflow: 1589 case Intrinsic::sadd_with_overflow: 1590 computeKnownBitsAddSub(true, II->getArgOperand(0), 1591 II->getArgOperand(1), false, Known, Known2, 1592 Depth, Q); 1593 break; 1594 case Intrinsic::usub_with_overflow: 1595 case Intrinsic::ssub_with_overflow: 1596 computeKnownBitsAddSub(false, II->getArgOperand(0), 1597 II->getArgOperand(1), false, Known, Known2, 1598 Depth, Q); 1599 break; 1600 case Intrinsic::umul_with_overflow: 1601 case Intrinsic::smul_with_overflow: 1602 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1603 Known, Known2, Depth, Q); 1604 break; 1605 } 1606 } 1607 } 1608 } 1609 } 1610 1611 /// Determine which bits of V are known to be either zero or one and return 1612 /// them. 1613 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1614 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1615 computeKnownBits(V, Known, Depth, Q); 1616 return Known; 1617 } 1618 1619 /// Determine which bits of V are known to be either zero or one and return 1620 /// them in the Known bit set. 1621 /// 1622 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1623 /// we cannot optimize based on the assumption that it is zero without changing 1624 /// it to be an explicit zero. If we don't change it to zero, other code could 1625 /// optimized based on the contradictory assumption that it is non-zero. 1626 /// Because instcombine aggressively folds operations with undef args anyway, 1627 /// this won't lose us code quality. 1628 /// 1629 /// This function is defined on values with integer type, values with pointer 1630 /// type, and vectors of integers. In the case 1631 /// where V is a vector, known zero, and known one values are the 1632 /// same width as the vector element, and the bit is set only if it is true 1633 /// for all of the elements in the vector. 1634 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1635 const Query &Q) { 1636 assert(V && "No Value?"); 1637 assert(Depth <= MaxDepth && "Limit Search Depth"); 1638 unsigned BitWidth = Known.getBitWidth(); 1639 1640 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1641 V->getType()->isPtrOrPtrVectorTy()) && 1642 "Not integer or pointer type!"); 1643 1644 Type *ScalarTy = V->getType()->getScalarType(); 1645 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1646 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1647 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1648 (void)BitWidth; 1649 (void)ExpectedWidth; 1650 1651 const APInt *C; 1652 if (match(V, m_APInt(C))) { 1653 // We know all of the bits for a scalar constant or a splat vector constant! 1654 Known.One = *C; 1655 Known.Zero = ~Known.One; 1656 return; 1657 } 1658 // Null and aggregate-zero are all-zeros. 1659 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1660 Known.setAllZero(); 1661 return; 1662 } 1663 // Handle a constant vector by taking the intersection of the known bits of 1664 // each element. 1665 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1666 // We know that CDS must be a vector of integers. Take the intersection of 1667 // each element. 1668 Known.Zero.setAllBits(); Known.One.setAllBits(); 1669 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1670 APInt Elt = CDS->getElementAsAPInt(i); 1671 Known.Zero &= ~Elt; 1672 Known.One &= Elt; 1673 } 1674 return; 1675 } 1676 1677 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1678 // We know that CV must be a vector of integers. Take the intersection of 1679 // each element. 1680 Known.Zero.setAllBits(); Known.One.setAllBits(); 1681 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1682 Constant *Element = CV->getAggregateElement(i); 1683 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1684 if (!ElementCI) { 1685 Known.resetAll(); 1686 return; 1687 } 1688 const APInt &Elt = ElementCI->getValue(); 1689 Known.Zero &= ~Elt; 1690 Known.One &= Elt; 1691 } 1692 return; 1693 } 1694 1695 // Start out not knowing anything. 1696 Known.resetAll(); 1697 1698 // We can't imply anything about undefs. 1699 if (isa<UndefValue>(V)) 1700 return; 1701 1702 // There's no point in looking through other users of ConstantData for 1703 // assumptions. Confirm that we've handled them all. 1704 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1705 1706 // Limit search depth. 1707 // All recursive calls that increase depth must come after this. 1708 if (Depth == MaxDepth) 1709 return; 1710 1711 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1712 // the bits of its aliasee. 1713 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1714 if (!GA->isInterposable()) 1715 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1716 return; 1717 } 1718 1719 if (const Operator *I = dyn_cast<Operator>(V)) 1720 computeKnownBitsFromOperator(I, Known, Depth, Q); 1721 1722 // Aligned pointers have trailing zeros - refine Known.Zero set 1723 if (V->getType()->isPointerTy()) { 1724 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1725 if (Align) 1726 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1727 } 1728 1729 // computeKnownBitsFromAssume strictly refines Known. 1730 // Therefore, we run them after computeKnownBitsFromOperator. 1731 1732 // Check whether a nearby assume intrinsic can determine some known bits. 1733 computeKnownBitsFromAssume(V, Known, Depth, Q); 1734 1735 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1736 } 1737 1738 /// Return true if the given value is known to have exactly one 1739 /// bit set when defined. For vectors return true if every element is known to 1740 /// be a power of two when defined. Supports values with integer or pointer 1741 /// types and vectors of integers. 1742 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1743 const Query &Q) { 1744 assert(Depth <= MaxDepth && "Limit Search Depth"); 1745 1746 // Attempt to match against constants. 1747 if (OrZero && match(V, m_Power2OrZero())) 1748 return true; 1749 if (match(V, m_Power2())) 1750 return true; 1751 1752 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1753 // it is shifted off the end then the result is undefined. 1754 if (match(V, m_Shl(m_One(), m_Value()))) 1755 return true; 1756 1757 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1758 // the bottom. If it is shifted off the bottom then the result is undefined. 1759 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1760 return true; 1761 1762 // The remaining tests are all recursive, so bail out if we hit the limit. 1763 if (Depth++ == MaxDepth) 1764 return false; 1765 1766 Value *X = nullptr, *Y = nullptr; 1767 // A shift left or a logical shift right of a power of two is a power of two 1768 // or zero. 1769 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1770 match(V, m_LShr(m_Value(X), m_Value())))) 1771 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1772 1773 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1774 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1775 1776 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1777 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1778 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1779 1780 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1781 // A power of two and'd with anything is a power of two or zero. 1782 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1783 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1784 return true; 1785 // X & (-X) is always a power of two or zero. 1786 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1787 return true; 1788 return false; 1789 } 1790 1791 // Adding a power-of-two or zero to the same power-of-two or zero yields 1792 // either the original power-of-two, a larger power-of-two or zero. 1793 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1794 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1795 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1796 Q.IIQ.hasNoSignedWrap(VOBO)) { 1797 if (match(X, m_And(m_Specific(Y), m_Value())) || 1798 match(X, m_And(m_Value(), m_Specific(Y)))) 1799 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1800 return true; 1801 if (match(Y, m_And(m_Specific(X), m_Value())) || 1802 match(Y, m_And(m_Value(), m_Specific(X)))) 1803 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1804 return true; 1805 1806 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1807 KnownBits LHSBits(BitWidth); 1808 computeKnownBits(X, LHSBits, Depth, Q); 1809 1810 KnownBits RHSBits(BitWidth); 1811 computeKnownBits(Y, RHSBits, Depth, Q); 1812 // If i8 V is a power of two or zero: 1813 // ZeroBits: 1 1 1 0 1 1 1 1 1814 // ~ZeroBits: 0 0 0 1 0 0 0 0 1815 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1816 // If OrZero isn't set, we cannot give back a zero result. 1817 // Make sure either the LHS or RHS has a bit set. 1818 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1819 return true; 1820 } 1821 } 1822 1823 // An exact divide or right shift can only shift off zero bits, so the result 1824 // is a power of two only if the first operand is a power of two and not 1825 // copying a sign bit (sdiv int_min, 2). 1826 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1827 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1828 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1829 Depth, Q); 1830 } 1831 1832 return false; 1833 } 1834 1835 /// Test whether a GEP's result is known to be non-null. 1836 /// 1837 /// Uses properties inherent in a GEP to try to determine whether it is known 1838 /// to be non-null. 1839 /// 1840 /// Currently this routine does not support vector GEPs. 1841 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1842 const Query &Q) { 1843 const Function *F = nullptr; 1844 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1845 F = I->getFunction(); 1846 1847 if (!GEP->isInBounds() || 1848 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1849 return false; 1850 1851 // FIXME: Support vector-GEPs. 1852 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1853 1854 // If the base pointer is non-null, we cannot walk to a null address with an 1855 // inbounds GEP in address space zero. 1856 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1857 return true; 1858 1859 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1860 // If so, then the GEP cannot produce a null pointer, as doing so would 1861 // inherently violate the inbounds contract within address space zero. 1862 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1863 GTI != GTE; ++GTI) { 1864 // Struct types are easy -- they must always be indexed by a constant. 1865 if (StructType *STy = GTI.getStructTypeOrNull()) { 1866 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1867 unsigned ElementIdx = OpC->getZExtValue(); 1868 const StructLayout *SL = Q.DL.getStructLayout(STy); 1869 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1870 if (ElementOffset > 0) 1871 return true; 1872 continue; 1873 } 1874 1875 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1876 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1877 continue; 1878 1879 // Fast path the constant operand case both for efficiency and so we don't 1880 // increment Depth when just zipping down an all-constant GEP. 1881 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1882 if (!OpC->isZero()) 1883 return true; 1884 continue; 1885 } 1886 1887 // We post-increment Depth here because while isKnownNonZero increments it 1888 // as well, when we pop back up that increment won't persist. We don't want 1889 // to recurse 10k times just because we have 10k GEP operands. We don't 1890 // bail completely out because we want to handle constant GEPs regardless 1891 // of depth. 1892 if (Depth++ >= MaxDepth) 1893 continue; 1894 1895 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1896 return true; 1897 } 1898 1899 return false; 1900 } 1901 1902 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1903 const Instruction *CtxI, 1904 const DominatorTree *DT) { 1905 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1906 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1907 1908 if (!CtxI || !DT) 1909 return false; 1910 1911 unsigned NumUsesExplored = 0; 1912 for (auto *U : V->users()) { 1913 // Avoid massive lists 1914 if (NumUsesExplored >= DomConditionsMaxUses) 1915 break; 1916 NumUsesExplored++; 1917 1918 // If the value is used as an argument to a call or invoke, then argument 1919 // attributes may provide an answer about null-ness. 1920 if (auto CS = ImmutableCallSite(U)) 1921 if (auto *CalledFunc = CS.getCalledFunction()) 1922 for (const Argument &Arg : CalledFunc->args()) 1923 if (CS.getArgOperand(Arg.getArgNo()) == V && 1924 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1925 return true; 1926 1927 // Consider only compare instructions uniquely controlling a branch 1928 CmpInst::Predicate Pred; 1929 if (!match(const_cast<User *>(U), 1930 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1931 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1932 continue; 1933 1934 SmallVector<const User *, 4> WorkList; 1935 SmallPtrSet<const User *, 4> Visited; 1936 for (auto *CmpU : U->users()) { 1937 assert(WorkList.empty() && "Should be!"); 1938 if (Visited.insert(CmpU).second) 1939 WorkList.push_back(CmpU); 1940 1941 while (!WorkList.empty()) { 1942 auto *Curr = WorkList.pop_back_val(); 1943 1944 // If a user is an AND, add all its users to the work list. We only 1945 // propagate "pred != null" condition through AND because it is only 1946 // correct to assume that all conditions of AND are met in true branch. 1947 // TODO: Support similar logic of OR and EQ predicate? 1948 if (Pred == ICmpInst::ICMP_NE) 1949 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1950 if (BO->getOpcode() == Instruction::And) { 1951 for (auto *BOU : BO->users()) 1952 if (Visited.insert(BOU).second) 1953 WorkList.push_back(BOU); 1954 continue; 1955 } 1956 1957 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1958 assert(BI->isConditional() && "uses a comparison!"); 1959 1960 BasicBlock *NonNullSuccessor = 1961 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1962 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1963 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1964 return true; 1965 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 1966 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1967 return true; 1968 } 1969 } 1970 } 1971 } 1972 1973 return false; 1974 } 1975 1976 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1977 /// ensure that the value it's attached to is never Value? 'RangeType' is 1978 /// is the type of the value described by the range. 1979 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1980 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1981 assert(NumRanges >= 1); 1982 for (unsigned i = 0; i < NumRanges; ++i) { 1983 ConstantInt *Lower = 1984 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1985 ConstantInt *Upper = 1986 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1987 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1988 if (Range.contains(Value)) 1989 return false; 1990 } 1991 return true; 1992 } 1993 1994 /// Return true if the given value is known to be non-zero when defined. For 1995 /// vectors, return true if every element is known to be non-zero when 1996 /// defined. For pointers, if the context instruction and dominator tree are 1997 /// specified, perform context-sensitive analysis and return true if the 1998 /// pointer couldn't possibly be null at the specified instruction. 1999 /// Supports values with integer or pointer type and vectors of integers. 2000 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2001 if (auto *C = dyn_cast<Constant>(V)) { 2002 if (C->isNullValue()) 2003 return false; 2004 if (isa<ConstantInt>(C)) 2005 // Must be non-zero due to null test above. 2006 return true; 2007 2008 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2009 // See the comment for IntToPtr/PtrToInt instructions below. 2010 if (CE->getOpcode() == Instruction::IntToPtr || 2011 CE->getOpcode() == Instruction::PtrToInt) 2012 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2013 Q.DL.getTypeSizeInBits(CE->getType())) 2014 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2015 } 2016 2017 // For constant vectors, check that all elements are undefined or known 2018 // non-zero to determine that the whole vector is known non-zero. 2019 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2020 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2021 Constant *Elt = C->getAggregateElement(i); 2022 if (!Elt || Elt->isNullValue()) 2023 return false; 2024 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2025 return false; 2026 } 2027 return true; 2028 } 2029 2030 // A global variable in address space 0 is non null unless extern weak 2031 // or an absolute symbol reference. Other address spaces may have null as a 2032 // valid address for a global, so we can't assume anything. 2033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2034 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2035 GV->getType()->getAddressSpace() == 0) 2036 return true; 2037 } else 2038 return false; 2039 } 2040 2041 if (auto *I = dyn_cast<Instruction>(V)) { 2042 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2043 // If the possible ranges don't contain zero, then the value is 2044 // definitely non-zero. 2045 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2046 const APInt ZeroValue(Ty->getBitWidth(), 0); 2047 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2048 return true; 2049 } 2050 } 2051 } 2052 2053 // Some of the tests below are recursive, so bail out if we hit the limit. 2054 if (Depth++ >= MaxDepth) 2055 return false; 2056 2057 // Check for pointer simplifications. 2058 if (V->getType()->isPointerTy()) { 2059 // Alloca never returns null, malloc might. 2060 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2061 return true; 2062 2063 // A byval, inalloca, or nonnull argument is never null. 2064 if (const Argument *A = dyn_cast<Argument>(V)) 2065 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2066 return true; 2067 2068 // A Load tagged with nonnull metadata is never null. 2069 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2070 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2071 return true; 2072 2073 if (const auto *Call = dyn_cast<CallBase>(V)) { 2074 if (Call->isReturnNonNull()) 2075 return true; 2076 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2077 return isKnownNonZero(RP, Depth, Q); 2078 } 2079 } 2080 2081 2082 // Check for recursive pointer simplifications. 2083 if (V->getType()->isPointerTy()) { 2084 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2085 return true; 2086 2087 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2088 // do not alter the value, or at least not the nullness property of the 2089 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2090 // 2091 // Note that we have to take special care to avoid looking through 2092 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2093 // as casts that can alter the value, e.g., AddrSpaceCasts. 2094 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2095 if (isGEPKnownNonNull(GEP, Depth, Q)) 2096 return true; 2097 2098 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2099 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2100 2101 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2102 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2103 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2104 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2105 } 2106 2107 // Similar to int2ptr above, we can look through ptr2int here if the cast 2108 // is a no-op or an extend and not a truncate. 2109 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2110 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2111 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2112 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2113 2114 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2115 2116 // X | Y != 0 if X != 0 or Y != 0. 2117 Value *X = nullptr, *Y = nullptr; 2118 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2119 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2120 2121 // ext X != 0 if X != 0. 2122 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2123 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2124 2125 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2126 // if the lowest bit is shifted off the end. 2127 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2128 // shl nuw can't remove any non-zero bits. 2129 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2130 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2131 return isKnownNonZero(X, Depth, Q); 2132 2133 KnownBits Known(BitWidth); 2134 computeKnownBits(X, Known, Depth, Q); 2135 if (Known.One[0]) 2136 return true; 2137 } 2138 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2139 // defined if the sign bit is shifted off the end. 2140 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2141 // shr exact can only shift out zero bits. 2142 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2143 if (BO->isExact()) 2144 return isKnownNonZero(X, Depth, Q); 2145 2146 KnownBits Known = computeKnownBits(X, Depth, Q); 2147 if (Known.isNegative()) 2148 return true; 2149 2150 // If the shifter operand is a constant, and all of the bits shifted 2151 // out are known to be zero, and X is known non-zero then at least one 2152 // non-zero bit must remain. 2153 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2154 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2155 // Is there a known one in the portion not shifted out? 2156 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2157 return true; 2158 // Are all the bits to be shifted out known zero? 2159 if (Known.countMinTrailingZeros() >= ShiftVal) 2160 return isKnownNonZero(X, Depth, Q); 2161 } 2162 } 2163 // div exact can only produce a zero if the dividend is zero. 2164 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2165 return isKnownNonZero(X, Depth, Q); 2166 } 2167 // X + Y. 2168 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2169 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2170 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2171 2172 // If X and Y are both non-negative (as signed values) then their sum is not 2173 // zero unless both X and Y are zero. 2174 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2175 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2176 return true; 2177 2178 // If X and Y are both negative (as signed values) then their sum is not 2179 // zero unless both X and Y equal INT_MIN. 2180 if (XKnown.isNegative() && YKnown.isNegative()) { 2181 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2182 // The sign bit of X is set. If some other bit is set then X is not equal 2183 // to INT_MIN. 2184 if (XKnown.One.intersects(Mask)) 2185 return true; 2186 // The sign bit of Y is set. If some other bit is set then Y is not equal 2187 // to INT_MIN. 2188 if (YKnown.One.intersects(Mask)) 2189 return true; 2190 } 2191 2192 // The sum of a non-negative number and a power of two is not zero. 2193 if (XKnown.isNonNegative() && 2194 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2195 return true; 2196 if (YKnown.isNonNegative() && 2197 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2198 return true; 2199 } 2200 // X * Y. 2201 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2202 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2203 // If X and Y are non-zero then so is X * Y as long as the multiplication 2204 // does not overflow. 2205 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2206 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2207 return true; 2208 } 2209 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2210 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2211 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2212 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2213 return true; 2214 } 2215 // PHI 2216 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2217 // Try and detect a recurrence that monotonically increases from a 2218 // starting value, as these are common as induction variables. 2219 if (PN->getNumIncomingValues() == 2) { 2220 Value *Start = PN->getIncomingValue(0); 2221 Value *Induction = PN->getIncomingValue(1); 2222 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2223 std::swap(Start, Induction); 2224 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2225 if (!C->isZero() && !C->isNegative()) { 2226 ConstantInt *X; 2227 if (Q.IIQ.UseInstrInfo && 2228 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2229 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2230 !X->isNegative()) 2231 return true; 2232 } 2233 } 2234 } 2235 // Check if all incoming values are non-zero constant. 2236 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2237 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2238 }); 2239 if (AllNonZeroConstants) 2240 return true; 2241 } 2242 2243 KnownBits Known(BitWidth); 2244 computeKnownBits(V, Known, Depth, Q); 2245 return Known.One != 0; 2246 } 2247 2248 /// Return true if V2 == V1 + X, where X is known non-zero. 2249 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2250 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2251 if (!BO || BO->getOpcode() != Instruction::Add) 2252 return false; 2253 Value *Op = nullptr; 2254 if (V2 == BO->getOperand(0)) 2255 Op = BO->getOperand(1); 2256 else if (V2 == BO->getOperand(1)) 2257 Op = BO->getOperand(0); 2258 else 2259 return false; 2260 return isKnownNonZero(Op, 0, Q); 2261 } 2262 2263 /// Return true if it is known that V1 != V2. 2264 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2265 if (V1 == V2) 2266 return false; 2267 if (V1->getType() != V2->getType()) 2268 // We can't look through casts yet. 2269 return false; 2270 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2271 return true; 2272 2273 if (V1->getType()->isIntOrIntVectorTy()) { 2274 // Are any known bits in V1 contradictory to known bits in V2? If V1 2275 // has a known zero where V2 has a known one, they must not be equal. 2276 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2277 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2278 2279 if (Known1.Zero.intersects(Known2.One) || 2280 Known2.Zero.intersects(Known1.One)) 2281 return true; 2282 } 2283 return false; 2284 } 2285 2286 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2287 /// simplify operations downstream. Mask is known to be zero for bits that V 2288 /// cannot have. 2289 /// 2290 /// This function is defined on values with integer type, values with pointer 2291 /// type, and vectors of integers. In the case 2292 /// where V is a vector, the mask, known zero, and known one values are the 2293 /// same width as the vector element, and the bit is set only if it is true 2294 /// for all of the elements in the vector. 2295 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2296 const Query &Q) { 2297 KnownBits Known(Mask.getBitWidth()); 2298 computeKnownBits(V, Known, Depth, Q); 2299 return Mask.isSubsetOf(Known.Zero); 2300 } 2301 2302 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2303 // Returns the input and lower/upper bounds. 2304 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2305 const APInt *&CLow, const APInt *&CHigh) { 2306 assert(isa<Operator>(Select) && 2307 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2308 "Input should be a Select!"); 2309 2310 const Value *LHS = nullptr, *RHS = nullptr; 2311 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2312 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2313 return false; 2314 2315 if (!match(RHS, m_APInt(CLow))) 2316 return false; 2317 2318 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2319 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2320 if (getInverseMinMaxFlavor(SPF) != SPF2) 2321 return false; 2322 2323 if (!match(RHS2, m_APInt(CHigh))) 2324 return false; 2325 2326 if (SPF == SPF_SMIN) 2327 std::swap(CLow, CHigh); 2328 2329 In = LHS2; 2330 return CLow->sle(*CHigh); 2331 } 2332 2333 /// For vector constants, loop over the elements and find the constant with the 2334 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2335 /// or if any element was not analyzed; otherwise, return the count for the 2336 /// element with the minimum number of sign bits. 2337 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2338 unsigned TyBits) { 2339 const auto *CV = dyn_cast<Constant>(V); 2340 if (!CV || !CV->getType()->isVectorTy()) 2341 return 0; 2342 2343 unsigned MinSignBits = TyBits; 2344 unsigned NumElts = CV->getType()->getVectorNumElements(); 2345 for (unsigned i = 0; i != NumElts; ++i) { 2346 // If we find a non-ConstantInt, bail out. 2347 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2348 if (!Elt) 2349 return 0; 2350 2351 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2352 } 2353 2354 return MinSignBits; 2355 } 2356 2357 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2358 const Query &Q); 2359 2360 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2361 const Query &Q) { 2362 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2363 assert(Result > 0 && "At least one sign bit needs to be present!"); 2364 return Result; 2365 } 2366 2367 /// Return the number of times the sign bit of the register is replicated into 2368 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2369 /// (itself), but other cases can give us information. For example, immediately 2370 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2371 /// other, so we return 3. For vectors, return the number of sign bits for the 2372 /// vector element with the minimum number of known sign bits. 2373 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2374 const Query &Q) { 2375 assert(Depth <= MaxDepth && "Limit Search Depth"); 2376 2377 // We return the minimum number of sign bits that are guaranteed to be present 2378 // in V, so for undef we have to conservatively return 1. We don't have the 2379 // same behavior for poison though -- that's a FIXME today. 2380 2381 Type *ScalarTy = V->getType()->getScalarType(); 2382 unsigned TyBits = ScalarTy->isPointerTy() ? 2383 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2384 Q.DL.getTypeSizeInBits(ScalarTy); 2385 2386 unsigned Tmp, Tmp2; 2387 unsigned FirstAnswer = 1; 2388 2389 // Note that ConstantInt is handled by the general computeKnownBits case 2390 // below. 2391 2392 if (Depth == MaxDepth) 2393 return 1; // Limit search depth. 2394 2395 if (auto *U = dyn_cast<Operator>(V)) { 2396 switch (Operator::getOpcode(V)) { 2397 default: break; 2398 case Instruction::SExt: 2399 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2400 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2401 2402 case Instruction::SDiv: { 2403 const APInt *Denominator; 2404 // sdiv X, C -> adds log(C) sign bits. 2405 if (match(U->getOperand(1), m_APInt(Denominator))) { 2406 2407 // Ignore non-positive denominator. 2408 if (!Denominator->isStrictlyPositive()) 2409 break; 2410 2411 // Calculate the incoming numerator bits. 2412 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2413 2414 // Add floor(log(C)) bits to the numerator bits. 2415 return std::min(TyBits, NumBits + Denominator->logBase2()); 2416 } 2417 break; 2418 } 2419 2420 case Instruction::SRem: { 2421 const APInt *Denominator; 2422 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2423 // positive constant. This let us put a lower bound on the number of sign 2424 // bits. 2425 if (match(U->getOperand(1), m_APInt(Denominator))) { 2426 2427 // Ignore non-positive denominator. 2428 if (!Denominator->isStrictlyPositive()) 2429 break; 2430 2431 // Calculate the incoming numerator bits. SRem by a positive constant 2432 // can't lower the number of sign bits. 2433 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2434 2435 // Calculate the leading sign bit constraints by examining the 2436 // denominator. Given that the denominator is positive, there are two 2437 // cases: 2438 // 2439 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2440 // (1 << ceilLogBase2(C)). 2441 // 2442 // 2. the numerator is negative. Then the result range is (-C,0] and 2443 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2444 // 2445 // Thus a lower bound on the number of sign bits is `TyBits - 2446 // ceilLogBase2(C)`. 2447 2448 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2449 return std::max(NumrBits, ResBits); 2450 } 2451 break; 2452 } 2453 2454 case Instruction::AShr: { 2455 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2456 // ashr X, C -> adds C sign bits. Vectors too. 2457 const APInt *ShAmt; 2458 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2459 if (ShAmt->uge(TyBits)) 2460 break; // Bad shift. 2461 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2462 Tmp += ShAmtLimited; 2463 if (Tmp > TyBits) Tmp = TyBits; 2464 } 2465 return Tmp; 2466 } 2467 case Instruction::Shl: { 2468 const APInt *ShAmt; 2469 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2470 // shl destroys sign bits. 2471 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2472 if (ShAmt->uge(TyBits) || // Bad shift. 2473 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2474 Tmp2 = ShAmt->getZExtValue(); 2475 return Tmp - Tmp2; 2476 } 2477 break; 2478 } 2479 case Instruction::And: 2480 case Instruction::Or: 2481 case Instruction::Xor: // NOT is handled here. 2482 // Logical binary ops preserve the number of sign bits at the worst. 2483 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2484 if (Tmp != 1) { 2485 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2486 FirstAnswer = std::min(Tmp, Tmp2); 2487 // We computed what we know about the sign bits as our first 2488 // answer. Now proceed to the generic code that uses 2489 // computeKnownBits, and pick whichever answer is better. 2490 } 2491 break; 2492 2493 case Instruction::Select: { 2494 // If we have a clamp pattern, we know that the number of sign bits will 2495 // be the minimum of the clamp min/max range. 2496 const Value *X; 2497 const APInt *CLow, *CHigh; 2498 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2499 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2500 2501 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2502 if (Tmp == 1) break; 2503 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2504 return std::min(Tmp, Tmp2); 2505 } 2506 2507 case Instruction::Add: 2508 // Add can have at most one carry bit. Thus we know that the output 2509 // is, at worst, one more bit than the inputs. 2510 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2511 if (Tmp == 1) break; 2512 2513 // Special case decrementing a value (ADD X, -1): 2514 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2515 if (CRHS->isAllOnesValue()) { 2516 KnownBits Known(TyBits); 2517 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2518 2519 // If the input is known to be 0 or 1, the output is 0/-1, which is 2520 // all sign bits set. 2521 if ((Known.Zero | 1).isAllOnesValue()) 2522 return TyBits; 2523 2524 // If we are subtracting one from a positive number, there is no carry 2525 // out of the result. 2526 if (Known.isNonNegative()) 2527 return Tmp; 2528 } 2529 2530 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2531 if (Tmp2 == 1) break; 2532 return std::min(Tmp, Tmp2) - 1; 2533 2534 case Instruction::Sub: 2535 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2536 if (Tmp2 == 1) break; 2537 2538 // Handle NEG. 2539 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2540 if (CLHS->isNullValue()) { 2541 KnownBits Known(TyBits); 2542 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2543 // If the input is known to be 0 or 1, the output is 0/-1, which is 2544 // all sign bits set. 2545 if ((Known.Zero | 1).isAllOnesValue()) 2546 return TyBits; 2547 2548 // If the input is known to be positive (the sign bit is known clear), 2549 // the output of the NEG has the same number of sign bits as the 2550 // input. 2551 if (Known.isNonNegative()) 2552 return Tmp2; 2553 2554 // Otherwise, we treat this like a SUB. 2555 } 2556 2557 // Sub can have at most one carry bit. Thus we know that the output 2558 // is, at worst, one more bit than the inputs. 2559 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2560 if (Tmp == 1) break; 2561 return std::min(Tmp, Tmp2) - 1; 2562 2563 case Instruction::Mul: { 2564 // The output of the Mul can be at most twice the valid bits in the 2565 // inputs. 2566 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2567 if (SignBitsOp0 == 1) break; 2568 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2569 if (SignBitsOp1 == 1) break; 2570 unsigned OutValidBits = 2571 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2572 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2573 } 2574 2575 case Instruction::PHI: { 2576 const PHINode *PN = cast<PHINode>(U); 2577 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2578 // Don't analyze large in-degree PHIs. 2579 if (NumIncomingValues > 4) break; 2580 // Unreachable blocks may have zero-operand PHI nodes. 2581 if (NumIncomingValues == 0) break; 2582 2583 // Take the minimum of all incoming values. This can't infinitely loop 2584 // because of our depth threshold. 2585 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2586 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2587 if (Tmp == 1) return Tmp; 2588 Tmp = std::min( 2589 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2590 } 2591 return Tmp; 2592 } 2593 2594 case Instruction::Trunc: 2595 // FIXME: it's tricky to do anything useful for this, but it is an 2596 // important case for targets like X86. 2597 break; 2598 2599 case Instruction::ExtractElement: 2600 // Look through extract element. At the moment we keep this simple and 2601 // skip tracking the specific element. But at least we might find 2602 // information valid for all elements of the vector (for example if vector 2603 // is sign extended, shifted, etc). 2604 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2605 2606 case Instruction::ShuffleVector: { 2607 // TODO: This is copied almost directly from the SelectionDAG version of 2608 // ComputeNumSignBits. It would be better if we could share common 2609 // code. If not, make sure that changes are translated to the DAG. 2610 2611 // Collect the minimum number of sign bits that are shared by every vector 2612 // element referenced by the shuffle. 2613 auto *Shuf = cast<ShuffleVectorInst>(U); 2614 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 2615 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 2616 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2617 for (int i = 0; i != NumMaskElts; ++i) { 2618 int M = Shuf->getMaskValue(i); 2619 assert(M < NumElts * 2 && "Invalid shuffle mask constant"); 2620 // For undef elements, we don't know anything about the common state of 2621 // the shuffle result. 2622 if (M == -1) 2623 return 1; 2624 if (M < NumElts) 2625 DemandedLHS.setBit(M % NumElts); 2626 else 2627 DemandedRHS.setBit(M % NumElts); 2628 } 2629 Tmp = std::numeric_limits<unsigned>::max(); 2630 if (!!DemandedLHS) 2631 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); 2632 if (!!DemandedRHS) { 2633 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); 2634 Tmp = std::min(Tmp, Tmp2); 2635 } 2636 // If we don't know anything, early out and try computeKnownBits 2637 // fall-back. 2638 if (Tmp == 1) 2639 break; 2640 assert(Tmp <= V->getType()->getScalarSizeInBits() && 2641 "Failed to determine minimum sign bits"); 2642 return Tmp; 2643 } 2644 } 2645 } 2646 2647 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2648 // use this information. 2649 2650 // If we can examine all elements of a vector constant successfully, we're 2651 // done (we can't do any better than that). If not, keep trying. 2652 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2653 return VecSignBits; 2654 2655 KnownBits Known(TyBits); 2656 computeKnownBits(V, Known, Depth, Q); 2657 2658 // If we know that the sign bit is either zero or one, determine the number of 2659 // identical bits in the top of the input value. 2660 return std::max(FirstAnswer, Known.countMinSignBits()); 2661 } 2662 2663 /// This function computes the integer multiple of Base that equals V. 2664 /// If successful, it returns true and returns the multiple in 2665 /// Multiple. If unsuccessful, it returns false. It looks 2666 /// through SExt instructions only if LookThroughSExt is true. 2667 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2668 bool LookThroughSExt, unsigned Depth) { 2669 assert(V && "No Value?"); 2670 assert(Depth <= MaxDepth && "Limit Search Depth"); 2671 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2672 2673 Type *T = V->getType(); 2674 2675 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2676 2677 if (Base == 0) 2678 return false; 2679 2680 if (Base == 1) { 2681 Multiple = V; 2682 return true; 2683 } 2684 2685 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2686 Constant *BaseVal = ConstantInt::get(T, Base); 2687 if (CO && CO == BaseVal) { 2688 // Multiple is 1. 2689 Multiple = ConstantInt::get(T, 1); 2690 return true; 2691 } 2692 2693 if (CI && CI->getZExtValue() % Base == 0) { 2694 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2695 return true; 2696 } 2697 2698 if (Depth == MaxDepth) return false; // Limit search depth. 2699 2700 Operator *I = dyn_cast<Operator>(V); 2701 if (!I) return false; 2702 2703 switch (I->getOpcode()) { 2704 default: break; 2705 case Instruction::SExt: 2706 if (!LookThroughSExt) return false; 2707 // otherwise fall through to ZExt 2708 LLVM_FALLTHROUGH; 2709 case Instruction::ZExt: 2710 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2711 LookThroughSExt, Depth+1); 2712 case Instruction::Shl: 2713 case Instruction::Mul: { 2714 Value *Op0 = I->getOperand(0); 2715 Value *Op1 = I->getOperand(1); 2716 2717 if (I->getOpcode() == Instruction::Shl) { 2718 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2719 if (!Op1CI) return false; 2720 // Turn Op0 << Op1 into Op0 * 2^Op1 2721 APInt Op1Int = Op1CI->getValue(); 2722 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2723 APInt API(Op1Int.getBitWidth(), 0); 2724 API.setBit(BitToSet); 2725 Op1 = ConstantInt::get(V->getContext(), API); 2726 } 2727 2728 Value *Mul0 = nullptr; 2729 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2730 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2731 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2732 if (Op1C->getType()->getPrimitiveSizeInBits() < 2733 MulC->getType()->getPrimitiveSizeInBits()) 2734 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2735 if (Op1C->getType()->getPrimitiveSizeInBits() > 2736 MulC->getType()->getPrimitiveSizeInBits()) 2737 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2738 2739 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2740 Multiple = ConstantExpr::getMul(MulC, Op1C); 2741 return true; 2742 } 2743 2744 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2745 if (Mul0CI->getValue() == 1) { 2746 // V == Base * Op1, so return Op1 2747 Multiple = Op1; 2748 return true; 2749 } 2750 } 2751 2752 Value *Mul1 = nullptr; 2753 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2754 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2755 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2756 if (Op0C->getType()->getPrimitiveSizeInBits() < 2757 MulC->getType()->getPrimitiveSizeInBits()) 2758 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2759 if (Op0C->getType()->getPrimitiveSizeInBits() > 2760 MulC->getType()->getPrimitiveSizeInBits()) 2761 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2762 2763 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2764 Multiple = ConstantExpr::getMul(MulC, Op0C); 2765 return true; 2766 } 2767 2768 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2769 if (Mul1CI->getValue() == 1) { 2770 // V == Base * Op0, so return Op0 2771 Multiple = Op0; 2772 return true; 2773 } 2774 } 2775 } 2776 } 2777 2778 // We could not determine if V is a multiple of Base. 2779 return false; 2780 } 2781 2782 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2783 const TargetLibraryInfo *TLI) { 2784 const Function *F = ICS.getCalledFunction(); 2785 if (!F) 2786 return Intrinsic::not_intrinsic; 2787 2788 if (F->isIntrinsic()) 2789 return F->getIntrinsicID(); 2790 2791 if (!TLI) 2792 return Intrinsic::not_intrinsic; 2793 2794 LibFunc Func; 2795 // We're going to make assumptions on the semantics of the functions, check 2796 // that the target knows that it's available in this environment and it does 2797 // not have local linkage. 2798 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2799 return Intrinsic::not_intrinsic; 2800 2801 if (!ICS.onlyReadsMemory()) 2802 return Intrinsic::not_intrinsic; 2803 2804 // Otherwise check if we have a call to a function that can be turned into a 2805 // vector intrinsic. 2806 switch (Func) { 2807 default: 2808 break; 2809 case LibFunc_sin: 2810 case LibFunc_sinf: 2811 case LibFunc_sinl: 2812 return Intrinsic::sin; 2813 case LibFunc_cos: 2814 case LibFunc_cosf: 2815 case LibFunc_cosl: 2816 return Intrinsic::cos; 2817 case LibFunc_exp: 2818 case LibFunc_expf: 2819 case LibFunc_expl: 2820 return Intrinsic::exp; 2821 case LibFunc_exp2: 2822 case LibFunc_exp2f: 2823 case LibFunc_exp2l: 2824 return Intrinsic::exp2; 2825 case LibFunc_log: 2826 case LibFunc_logf: 2827 case LibFunc_logl: 2828 return Intrinsic::log; 2829 case LibFunc_log10: 2830 case LibFunc_log10f: 2831 case LibFunc_log10l: 2832 return Intrinsic::log10; 2833 case LibFunc_log2: 2834 case LibFunc_log2f: 2835 case LibFunc_log2l: 2836 return Intrinsic::log2; 2837 case LibFunc_fabs: 2838 case LibFunc_fabsf: 2839 case LibFunc_fabsl: 2840 return Intrinsic::fabs; 2841 case LibFunc_fmin: 2842 case LibFunc_fminf: 2843 case LibFunc_fminl: 2844 return Intrinsic::minnum; 2845 case LibFunc_fmax: 2846 case LibFunc_fmaxf: 2847 case LibFunc_fmaxl: 2848 return Intrinsic::maxnum; 2849 case LibFunc_copysign: 2850 case LibFunc_copysignf: 2851 case LibFunc_copysignl: 2852 return Intrinsic::copysign; 2853 case LibFunc_floor: 2854 case LibFunc_floorf: 2855 case LibFunc_floorl: 2856 return Intrinsic::floor; 2857 case LibFunc_ceil: 2858 case LibFunc_ceilf: 2859 case LibFunc_ceill: 2860 return Intrinsic::ceil; 2861 case LibFunc_trunc: 2862 case LibFunc_truncf: 2863 case LibFunc_truncl: 2864 return Intrinsic::trunc; 2865 case LibFunc_rint: 2866 case LibFunc_rintf: 2867 case LibFunc_rintl: 2868 return Intrinsic::rint; 2869 case LibFunc_nearbyint: 2870 case LibFunc_nearbyintf: 2871 case LibFunc_nearbyintl: 2872 return Intrinsic::nearbyint; 2873 case LibFunc_round: 2874 case LibFunc_roundf: 2875 case LibFunc_roundl: 2876 return Intrinsic::round; 2877 case LibFunc_pow: 2878 case LibFunc_powf: 2879 case LibFunc_powl: 2880 return Intrinsic::pow; 2881 case LibFunc_sqrt: 2882 case LibFunc_sqrtf: 2883 case LibFunc_sqrtl: 2884 return Intrinsic::sqrt; 2885 } 2886 2887 return Intrinsic::not_intrinsic; 2888 } 2889 2890 /// Return true if we can prove that the specified FP value is never equal to 2891 /// -0.0. 2892 /// 2893 /// NOTE: this function will need to be revisited when we support non-default 2894 /// rounding modes! 2895 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2896 unsigned Depth) { 2897 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2898 return !CFP->getValueAPF().isNegZero(); 2899 2900 // Limit search depth. 2901 if (Depth == MaxDepth) 2902 return false; 2903 2904 auto *Op = dyn_cast<Operator>(V); 2905 if (!Op) 2906 return false; 2907 2908 // Check if the nsz fast-math flag is set. 2909 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2910 if (FPO->hasNoSignedZeros()) 2911 return true; 2912 2913 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2914 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2915 return true; 2916 2917 // sitofp and uitofp turn into +0.0 for zero. 2918 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2919 return true; 2920 2921 if (auto *Call = dyn_cast<CallInst>(Op)) { 2922 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2923 switch (IID) { 2924 default: 2925 break; 2926 // sqrt(-0.0) = -0.0, no other negative results are possible. 2927 case Intrinsic::sqrt: 2928 case Intrinsic::canonicalize: 2929 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2930 // fabs(x) != -0.0 2931 case Intrinsic::fabs: 2932 return true; 2933 } 2934 } 2935 2936 return false; 2937 } 2938 2939 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2940 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2941 /// bit despite comparing equal. 2942 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2943 const TargetLibraryInfo *TLI, 2944 bool SignBitOnly, 2945 unsigned Depth) { 2946 // TODO: This function does not do the right thing when SignBitOnly is true 2947 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2948 // which flips the sign bits of NaNs. See 2949 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2950 2951 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2952 return !CFP->getValueAPF().isNegative() || 2953 (!SignBitOnly && CFP->getValueAPF().isZero()); 2954 } 2955 2956 // Handle vector of constants. 2957 if (auto *CV = dyn_cast<Constant>(V)) { 2958 if (CV->getType()->isVectorTy()) { 2959 unsigned NumElts = CV->getType()->getVectorNumElements(); 2960 for (unsigned i = 0; i != NumElts; ++i) { 2961 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2962 if (!CFP) 2963 return false; 2964 if (CFP->getValueAPF().isNegative() && 2965 (SignBitOnly || !CFP->getValueAPF().isZero())) 2966 return false; 2967 } 2968 2969 // All non-negative ConstantFPs. 2970 return true; 2971 } 2972 } 2973 2974 if (Depth == MaxDepth) 2975 return false; // Limit search depth. 2976 2977 const Operator *I = dyn_cast<Operator>(V); 2978 if (!I) 2979 return false; 2980 2981 switch (I->getOpcode()) { 2982 default: 2983 break; 2984 // Unsigned integers are always nonnegative. 2985 case Instruction::UIToFP: 2986 return true; 2987 case Instruction::FMul: 2988 // x*x is always non-negative or a NaN. 2989 if (I->getOperand(0) == I->getOperand(1) && 2990 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2991 return true; 2992 2993 LLVM_FALLTHROUGH; 2994 case Instruction::FAdd: 2995 case Instruction::FDiv: 2996 case Instruction::FRem: 2997 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2998 Depth + 1) && 2999 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3000 Depth + 1); 3001 case Instruction::Select: 3002 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3003 Depth + 1) && 3004 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3005 Depth + 1); 3006 case Instruction::FPExt: 3007 case Instruction::FPTrunc: 3008 // Widening/narrowing never change sign. 3009 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3010 Depth + 1); 3011 case Instruction::ExtractElement: 3012 // Look through extract element. At the moment we keep this simple and skip 3013 // tracking the specific element. But at least we might find information 3014 // valid for all elements of the vector. 3015 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3016 Depth + 1); 3017 case Instruction::Call: 3018 const auto *CI = cast<CallInst>(I); 3019 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3020 switch (IID) { 3021 default: 3022 break; 3023 case Intrinsic::maxnum: 3024 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3025 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3026 SignBitOnly, Depth + 1)) || 3027 (isKnownNeverNaN(I->getOperand(1), TLI) && 3028 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3029 SignBitOnly, Depth + 1)); 3030 3031 case Intrinsic::maximum: 3032 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3033 Depth + 1) || 3034 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3035 Depth + 1); 3036 case Intrinsic::minnum: 3037 case Intrinsic::minimum: 3038 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3039 Depth + 1) && 3040 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3041 Depth + 1); 3042 case Intrinsic::exp: 3043 case Intrinsic::exp2: 3044 case Intrinsic::fabs: 3045 return true; 3046 3047 case Intrinsic::sqrt: 3048 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3049 if (!SignBitOnly) 3050 return true; 3051 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3052 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3053 3054 case Intrinsic::powi: 3055 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3056 // powi(x,n) is non-negative if n is even. 3057 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3058 return true; 3059 } 3060 // TODO: This is not correct. Given that exp is an integer, here are the 3061 // ways that pow can return a negative value: 3062 // 3063 // pow(x, exp) --> negative if exp is odd and x is negative. 3064 // pow(-0, exp) --> -inf if exp is negative odd. 3065 // pow(-0, exp) --> -0 if exp is positive odd. 3066 // pow(-inf, exp) --> -0 if exp is negative odd. 3067 // pow(-inf, exp) --> -inf if exp is positive odd. 3068 // 3069 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3070 // but we must return false if x == -0. Unfortunately we do not currently 3071 // have a way of expressing this constraint. See details in 3072 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3073 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3074 Depth + 1); 3075 3076 case Intrinsic::fma: 3077 case Intrinsic::fmuladd: 3078 // x*x+y is non-negative if y is non-negative. 3079 return I->getOperand(0) == I->getOperand(1) && 3080 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3081 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3082 Depth + 1); 3083 } 3084 break; 3085 } 3086 return false; 3087 } 3088 3089 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3090 const TargetLibraryInfo *TLI) { 3091 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3092 } 3093 3094 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3095 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3096 } 3097 3098 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3099 unsigned Depth) { 3100 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3101 3102 // If we're told that infinities won't happen, assume they won't. 3103 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3104 if (FPMathOp->hasNoInfs()) 3105 return true; 3106 3107 // Handle scalar constants. 3108 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3109 return !CFP->isInfinity(); 3110 3111 if (Depth == MaxDepth) 3112 return false; 3113 3114 if (auto *Inst = dyn_cast<Instruction>(V)) { 3115 switch (Inst->getOpcode()) { 3116 case Instruction::Select: { 3117 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3118 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3119 } 3120 case Instruction::UIToFP: 3121 // If the input type fits into the floating type the result is finite. 3122 return ilogb(APFloat::getLargest( 3123 Inst->getType()->getScalarType()->getFltSemantics())) >= 3124 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3125 default: 3126 break; 3127 } 3128 } 3129 3130 // Bail out for constant expressions, but try to handle vector constants. 3131 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3132 return false; 3133 3134 // For vectors, verify that each element is not infinity. 3135 unsigned NumElts = V->getType()->getVectorNumElements(); 3136 for (unsigned i = 0; i != NumElts; ++i) { 3137 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3138 if (!Elt) 3139 return false; 3140 if (isa<UndefValue>(Elt)) 3141 continue; 3142 auto *CElt = dyn_cast<ConstantFP>(Elt); 3143 if (!CElt || CElt->isInfinity()) 3144 return false; 3145 } 3146 // All elements were confirmed non-infinity or undefined. 3147 return true; 3148 } 3149 3150 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3151 unsigned Depth) { 3152 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3153 3154 // If we're told that NaNs won't happen, assume they won't. 3155 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3156 if (FPMathOp->hasNoNaNs()) 3157 return true; 3158 3159 // Handle scalar constants. 3160 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3161 return !CFP->isNaN(); 3162 3163 if (Depth == MaxDepth) 3164 return false; 3165 3166 if (auto *Inst = dyn_cast<Instruction>(V)) { 3167 switch (Inst->getOpcode()) { 3168 case Instruction::FAdd: 3169 case Instruction::FSub: 3170 // Adding positive and negative infinity produces NaN. 3171 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3172 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3173 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3174 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3175 3176 case Instruction::FMul: 3177 // Zero multiplied with infinity produces NaN. 3178 // FIXME: If neither side can be zero fmul never produces NaN. 3179 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3180 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3181 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3182 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3183 3184 case Instruction::FDiv: 3185 case Instruction::FRem: 3186 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3187 return false; 3188 3189 case Instruction::Select: { 3190 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3191 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3192 } 3193 case Instruction::SIToFP: 3194 case Instruction::UIToFP: 3195 return true; 3196 case Instruction::FPTrunc: 3197 case Instruction::FPExt: 3198 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3199 default: 3200 break; 3201 } 3202 } 3203 3204 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3205 switch (II->getIntrinsicID()) { 3206 case Intrinsic::canonicalize: 3207 case Intrinsic::fabs: 3208 case Intrinsic::copysign: 3209 case Intrinsic::exp: 3210 case Intrinsic::exp2: 3211 case Intrinsic::floor: 3212 case Intrinsic::ceil: 3213 case Intrinsic::trunc: 3214 case Intrinsic::rint: 3215 case Intrinsic::nearbyint: 3216 case Intrinsic::round: 3217 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3218 case Intrinsic::sqrt: 3219 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3220 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3221 case Intrinsic::minnum: 3222 case Intrinsic::maxnum: 3223 // If either operand is not NaN, the result is not NaN. 3224 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3225 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3226 default: 3227 return false; 3228 } 3229 } 3230 3231 // Bail out for constant expressions, but try to handle vector constants. 3232 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3233 return false; 3234 3235 // For vectors, verify that each element is not NaN. 3236 unsigned NumElts = V->getType()->getVectorNumElements(); 3237 for (unsigned i = 0; i != NumElts; ++i) { 3238 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3239 if (!Elt) 3240 return false; 3241 if (isa<UndefValue>(Elt)) 3242 continue; 3243 auto *CElt = dyn_cast<ConstantFP>(Elt); 3244 if (!CElt || CElt->isNaN()) 3245 return false; 3246 } 3247 // All elements were confirmed not-NaN or undefined. 3248 return true; 3249 } 3250 3251 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3252 3253 // All byte-wide stores are splatable, even of arbitrary variables. 3254 if (V->getType()->isIntegerTy(8)) 3255 return V; 3256 3257 LLVMContext &Ctx = V->getContext(); 3258 3259 // Undef don't care. 3260 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3261 if (isa<UndefValue>(V)) 3262 return UndefInt8; 3263 3264 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3265 if (!Size) 3266 return UndefInt8; 3267 3268 Constant *C = dyn_cast<Constant>(V); 3269 if (!C) { 3270 // Conceptually, we could handle things like: 3271 // %a = zext i8 %X to i16 3272 // %b = shl i16 %a, 8 3273 // %c = or i16 %a, %b 3274 // but until there is an example that actually needs this, it doesn't seem 3275 // worth worrying about. 3276 return nullptr; 3277 } 3278 3279 // Handle 'null' ConstantArrayZero etc. 3280 if (C->isNullValue()) 3281 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3282 3283 // Constant floating-point values can be handled as integer values if the 3284 // corresponding integer value is "byteable". An important case is 0.0. 3285 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3286 Type *Ty = nullptr; 3287 if (CFP->getType()->isHalfTy()) 3288 Ty = Type::getInt16Ty(Ctx); 3289 else if (CFP->getType()->isFloatTy()) 3290 Ty = Type::getInt32Ty(Ctx); 3291 else if (CFP->getType()->isDoubleTy()) 3292 Ty = Type::getInt64Ty(Ctx); 3293 // Don't handle long double formats, which have strange constraints. 3294 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3295 : nullptr; 3296 } 3297 3298 // We can handle constant integers that are multiple of 8 bits. 3299 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3300 if (CI->getBitWidth() % 8 == 0) { 3301 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3302 if (!CI->getValue().isSplat(8)) 3303 return nullptr; 3304 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3305 } 3306 } 3307 3308 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3309 if (CE->getOpcode() == Instruction::IntToPtr) { 3310 auto PS = DL.getPointerSizeInBits( 3311 cast<PointerType>(CE->getType())->getAddressSpace()); 3312 return isBytewiseValue( 3313 ConstantExpr::getIntegerCast(CE->getOperand(0), 3314 Type::getIntNTy(Ctx, PS), false), 3315 DL); 3316 } 3317 } 3318 3319 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3320 if (LHS == RHS) 3321 return LHS; 3322 if (!LHS || !RHS) 3323 return nullptr; 3324 if (LHS == UndefInt8) 3325 return RHS; 3326 if (RHS == UndefInt8) 3327 return LHS; 3328 return nullptr; 3329 }; 3330 3331 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3332 Value *Val = UndefInt8; 3333 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3334 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3335 return nullptr; 3336 return Val; 3337 } 3338 3339 if (isa<ConstantAggregate>(C)) { 3340 Value *Val = UndefInt8; 3341 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3342 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3343 return nullptr; 3344 return Val; 3345 } 3346 3347 // Don't try to handle the handful of other constants. 3348 return nullptr; 3349 } 3350 3351 // This is the recursive version of BuildSubAggregate. It takes a few different 3352 // arguments. Idxs is the index within the nested struct From that we are 3353 // looking at now (which is of type IndexedType). IdxSkip is the number of 3354 // indices from Idxs that should be left out when inserting into the resulting 3355 // struct. To is the result struct built so far, new insertvalue instructions 3356 // build on that. 3357 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3358 SmallVectorImpl<unsigned> &Idxs, 3359 unsigned IdxSkip, 3360 Instruction *InsertBefore) { 3361 StructType *STy = dyn_cast<StructType>(IndexedType); 3362 if (STy) { 3363 // Save the original To argument so we can modify it 3364 Value *OrigTo = To; 3365 // General case, the type indexed by Idxs is a struct 3366 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3367 // Process each struct element recursively 3368 Idxs.push_back(i); 3369 Value *PrevTo = To; 3370 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3371 InsertBefore); 3372 Idxs.pop_back(); 3373 if (!To) { 3374 // Couldn't find any inserted value for this index? Cleanup 3375 while (PrevTo != OrigTo) { 3376 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3377 PrevTo = Del->getAggregateOperand(); 3378 Del->eraseFromParent(); 3379 } 3380 // Stop processing elements 3381 break; 3382 } 3383 } 3384 // If we successfully found a value for each of our subaggregates 3385 if (To) 3386 return To; 3387 } 3388 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3389 // the struct's elements had a value that was inserted directly. In the latter 3390 // case, perhaps we can't determine each of the subelements individually, but 3391 // we might be able to find the complete struct somewhere. 3392 3393 // Find the value that is at that particular spot 3394 Value *V = FindInsertedValue(From, Idxs); 3395 3396 if (!V) 3397 return nullptr; 3398 3399 // Insert the value in the new (sub) aggregate 3400 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3401 "tmp", InsertBefore); 3402 } 3403 3404 // This helper takes a nested struct and extracts a part of it (which is again a 3405 // struct) into a new value. For example, given the struct: 3406 // { a, { b, { c, d }, e } } 3407 // and the indices "1, 1" this returns 3408 // { c, d }. 3409 // 3410 // It does this by inserting an insertvalue for each element in the resulting 3411 // struct, as opposed to just inserting a single struct. This will only work if 3412 // each of the elements of the substruct are known (ie, inserted into From by an 3413 // insertvalue instruction somewhere). 3414 // 3415 // All inserted insertvalue instructions are inserted before InsertBefore 3416 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3417 Instruction *InsertBefore) { 3418 assert(InsertBefore && "Must have someplace to insert!"); 3419 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3420 idx_range); 3421 Value *To = UndefValue::get(IndexedType); 3422 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3423 unsigned IdxSkip = Idxs.size(); 3424 3425 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3426 } 3427 3428 /// Given an aggregate and a sequence of indices, see if the scalar value 3429 /// indexed is already around as a register, for example if it was inserted 3430 /// directly into the aggregate. 3431 /// 3432 /// If InsertBefore is not null, this function will duplicate (modified) 3433 /// insertvalues when a part of a nested struct is extracted. 3434 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3435 Instruction *InsertBefore) { 3436 // Nothing to index? Just return V then (this is useful at the end of our 3437 // recursion). 3438 if (idx_range.empty()) 3439 return V; 3440 // We have indices, so V should have an indexable type. 3441 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3442 "Not looking at a struct or array?"); 3443 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3444 "Invalid indices for type?"); 3445 3446 if (Constant *C = dyn_cast<Constant>(V)) { 3447 C = C->getAggregateElement(idx_range[0]); 3448 if (!C) return nullptr; 3449 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3450 } 3451 3452 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3453 // Loop the indices for the insertvalue instruction in parallel with the 3454 // requested indices 3455 const unsigned *req_idx = idx_range.begin(); 3456 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3457 i != e; ++i, ++req_idx) { 3458 if (req_idx == idx_range.end()) { 3459 // We can't handle this without inserting insertvalues 3460 if (!InsertBefore) 3461 return nullptr; 3462 3463 // The requested index identifies a part of a nested aggregate. Handle 3464 // this specially. For example, 3465 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3466 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3467 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3468 // This can be changed into 3469 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3470 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3471 // which allows the unused 0,0 element from the nested struct to be 3472 // removed. 3473 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3474 InsertBefore); 3475 } 3476 3477 // This insert value inserts something else than what we are looking for. 3478 // See if the (aggregate) value inserted into has the value we are 3479 // looking for, then. 3480 if (*req_idx != *i) 3481 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3482 InsertBefore); 3483 } 3484 // If we end up here, the indices of the insertvalue match with those 3485 // requested (though possibly only partially). Now we recursively look at 3486 // the inserted value, passing any remaining indices. 3487 return FindInsertedValue(I->getInsertedValueOperand(), 3488 makeArrayRef(req_idx, idx_range.end()), 3489 InsertBefore); 3490 } 3491 3492 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3493 // If we're extracting a value from an aggregate that was extracted from 3494 // something else, we can extract from that something else directly instead. 3495 // However, we will need to chain I's indices with the requested indices. 3496 3497 // Calculate the number of indices required 3498 unsigned size = I->getNumIndices() + idx_range.size(); 3499 // Allocate some space to put the new indices in 3500 SmallVector<unsigned, 5> Idxs; 3501 Idxs.reserve(size); 3502 // Add indices from the extract value instruction 3503 Idxs.append(I->idx_begin(), I->idx_end()); 3504 3505 // Add requested indices 3506 Idxs.append(idx_range.begin(), idx_range.end()); 3507 3508 assert(Idxs.size() == size 3509 && "Number of indices added not correct?"); 3510 3511 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3512 } 3513 // Otherwise, we don't know (such as, extracting from a function return value 3514 // or load instruction) 3515 return nullptr; 3516 } 3517 3518 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3519 unsigned CharSize) { 3520 // Make sure the GEP has exactly three arguments. 3521 if (GEP->getNumOperands() != 3) 3522 return false; 3523 3524 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3525 // CharSize. 3526 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3527 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3528 return false; 3529 3530 // Check to make sure that the first operand of the GEP is an integer and 3531 // has value 0 so that we are sure we're indexing into the initializer. 3532 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3533 if (!FirstIdx || !FirstIdx->isZero()) 3534 return false; 3535 3536 return true; 3537 } 3538 3539 bool llvm::getConstantDataArrayInfo(const Value *V, 3540 ConstantDataArraySlice &Slice, 3541 unsigned ElementSize, uint64_t Offset) { 3542 assert(V); 3543 3544 // Look through bitcast instructions and geps. 3545 V = V->stripPointerCasts(); 3546 3547 // If the value is a GEP instruction or constant expression, treat it as an 3548 // offset. 3549 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3550 // The GEP operator should be based on a pointer to string constant, and is 3551 // indexing into the string constant. 3552 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3553 return false; 3554 3555 // If the second index isn't a ConstantInt, then this is a variable index 3556 // into the array. If this occurs, we can't say anything meaningful about 3557 // the string. 3558 uint64_t StartIdx = 0; 3559 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3560 StartIdx = CI->getZExtValue(); 3561 else 3562 return false; 3563 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3564 StartIdx + Offset); 3565 } 3566 3567 // The GEP instruction, constant or instruction, must reference a global 3568 // variable that is a constant and is initialized. The referenced constant 3569 // initializer is the array that we'll use for optimization. 3570 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3571 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3572 return false; 3573 3574 const ConstantDataArray *Array; 3575 ArrayType *ArrayTy; 3576 if (GV->getInitializer()->isNullValue()) { 3577 Type *GVTy = GV->getValueType(); 3578 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3579 // A zeroinitializer for the array; there is no ConstantDataArray. 3580 Array = nullptr; 3581 } else { 3582 const DataLayout &DL = GV->getParent()->getDataLayout(); 3583 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3584 uint64_t Length = SizeInBytes / (ElementSize / 8); 3585 if (Length <= Offset) 3586 return false; 3587 3588 Slice.Array = nullptr; 3589 Slice.Offset = 0; 3590 Slice.Length = Length - Offset; 3591 return true; 3592 } 3593 } else { 3594 // This must be a ConstantDataArray. 3595 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3596 if (!Array) 3597 return false; 3598 ArrayTy = Array->getType(); 3599 } 3600 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3601 return false; 3602 3603 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3604 if (Offset > NumElts) 3605 return false; 3606 3607 Slice.Array = Array; 3608 Slice.Offset = Offset; 3609 Slice.Length = NumElts - Offset; 3610 return true; 3611 } 3612 3613 /// This function computes the length of a null-terminated C string pointed to 3614 /// by V. If successful, it returns true and returns the string in Str. 3615 /// If unsuccessful, it returns false. 3616 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3617 uint64_t Offset, bool TrimAtNul) { 3618 ConstantDataArraySlice Slice; 3619 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3620 return false; 3621 3622 if (Slice.Array == nullptr) { 3623 if (TrimAtNul) { 3624 Str = StringRef(); 3625 return true; 3626 } 3627 if (Slice.Length == 1) { 3628 Str = StringRef("", 1); 3629 return true; 3630 } 3631 // We cannot instantiate a StringRef as we do not have an appropriate string 3632 // of 0s at hand. 3633 return false; 3634 } 3635 3636 // Start out with the entire array in the StringRef. 3637 Str = Slice.Array->getAsString(); 3638 // Skip over 'offset' bytes. 3639 Str = Str.substr(Slice.Offset); 3640 3641 if (TrimAtNul) { 3642 // Trim off the \0 and anything after it. If the array is not nul 3643 // terminated, we just return the whole end of string. The client may know 3644 // some other way that the string is length-bound. 3645 Str = Str.substr(0, Str.find('\0')); 3646 } 3647 return true; 3648 } 3649 3650 // These next two are very similar to the above, but also look through PHI 3651 // nodes. 3652 // TODO: See if we can integrate these two together. 3653 3654 /// If we can compute the length of the string pointed to by 3655 /// the specified pointer, return 'len+1'. If we can't, return 0. 3656 static uint64_t GetStringLengthH(const Value *V, 3657 SmallPtrSetImpl<const PHINode*> &PHIs, 3658 unsigned CharSize) { 3659 // Look through noop bitcast instructions. 3660 V = V->stripPointerCasts(); 3661 3662 // If this is a PHI node, there are two cases: either we have already seen it 3663 // or we haven't. 3664 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3665 if (!PHIs.insert(PN).second) 3666 return ~0ULL; // already in the set. 3667 3668 // If it was new, see if all the input strings are the same length. 3669 uint64_t LenSoFar = ~0ULL; 3670 for (Value *IncValue : PN->incoming_values()) { 3671 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3672 if (Len == 0) return 0; // Unknown length -> unknown. 3673 3674 if (Len == ~0ULL) continue; 3675 3676 if (Len != LenSoFar && LenSoFar != ~0ULL) 3677 return 0; // Disagree -> unknown. 3678 LenSoFar = Len; 3679 } 3680 3681 // Success, all agree. 3682 return LenSoFar; 3683 } 3684 3685 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3686 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3687 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3688 if (Len1 == 0) return 0; 3689 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3690 if (Len2 == 0) return 0; 3691 if (Len1 == ~0ULL) return Len2; 3692 if (Len2 == ~0ULL) return Len1; 3693 if (Len1 != Len2) return 0; 3694 return Len1; 3695 } 3696 3697 // Otherwise, see if we can read the string. 3698 ConstantDataArraySlice Slice; 3699 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3700 return 0; 3701 3702 if (Slice.Array == nullptr) 3703 return 1; 3704 3705 // Search for nul characters 3706 unsigned NullIndex = 0; 3707 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3708 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3709 break; 3710 } 3711 3712 return NullIndex + 1; 3713 } 3714 3715 /// If we can compute the length of the string pointed to by 3716 /// the specified pointer, return 'len+1'. If we can't, return 0. 3717 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3718 if (!V->getType()->isPointerTy()) 3719 return 0; 3720 3721 SmallPtrSet<const PHINode*, 32> PHIs; 3722 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3723 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3724 // an empty string as a length. 3725 return Len == ~0ULL ? 1 : Len; 3726 } 3727 3728 const Value * 3729 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3730 bool MustPreserveNullness) { 3731 assert(Call && 3732 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3733 if (const Value *RV = Call->getReturnedArgOperand()) 3734 return RV; 3735 // This can be used only as a aliasing property. 3736 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3737 Call, MustPreserveNullness)) 3738 return Call->getArgOperand(0); 3739 return nullptr; 3740 } 3741 3742 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3743 const CallBase *Call, bool MustPreserveNullness) { 3744 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3745 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3746 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3747 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3748 (!MustPreserveNullness && 3749 Call->getIntrinsicID() == Intrinsic::ptrmask); 3750 } 3751 3752 /// \p PN defines a loop-variant pointer to an object. Check if the 3753 /// previous iteration of the loop was referring to the same object as \p PN. 3754 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3755 const LoopInfo *LI) { 3756 // Find the loop-defined value. 3757 Loop *L = LI->getLoopFor(PN->getParent()); 3758 if (PN->getNumIncomingValues() != 2) 3759 return true; 3760 3761 // Find the value from previous iteration. 3762 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3763 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3764 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3765 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3766 return true; 3767 3768 // If a new pointer is loaded in the loop, the pointer references a different 3769 // object in every iteration. E.g.: 3770 // for (i) 3771 // int *p = a[i]; 3772 // ... 3773 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3774 if (!L->isLoopInvariant(Load->getPointerOperand())) 3775 return false; 3776 return true; 3777 } 3778 3779 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3780 unsigned MaxLookup) { 3781 if (!V->getType()->isPointerTy()) 3782 return V; 3783 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3784 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3785 V = GEP->getPointerOperand(); 3786 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3787 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3788 V = cast<Operator>(V)->getOperand(0); 3789 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3790 if (GA->isInterposable()) 3791 return V; 3792 V = GA->getAliasee(); 3793 } else if (isa<AllocaInst>(V)) { 3794 // An alloca can't be further simplified. 3795 return V; 3796 } else { 3797 if (auto *Call = dyn_cast<CallBase>(V)) { 3798 // CaptureTracking can know about special capturing properties of some 3799 // intrinsics like launder.invariant.group, that can't be expressed with 3800 // the attributes, but have properties like returning aliasing pointer. 3801 // Because some analysis may assume that nocaptured pointer is not 3802 // returned from some special intrinsic (because function would have to 3803 // be marked with returns attribute), it is crucial to use this function 3804 // because it should be in sync with CaptureTracking. Not using it may 3805 // cause weird miscompilations where 2 aliasing pointers are assumed to 3806 // noalias. 3807 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 3808 V = RP; 3809 continue; 3810 } 3811 } 3812 3813 // See if InstructionSimplify knows any relevant tricks. 3814 if (Instruction *I = dyn_cast<Instruction>(V)) 3815 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3816 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3817 V = Simplified; 3818 continue; 3819 } 3820 3821 return V; 3822 } 3823 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3824 } 3825 return V; 3826 } 3827 3828 void llvm::GetUnderlyingObjects(const Value *V, 3829 SmallVectorImpl<const Value *> &Objects, 3830 const DataLayout &DL, LoopInfo *LI, 3831 unsigned MaxLookup) { 3832 SmallPtrSet<const Value *, 4> Visited; 3833 SmallVector<const Value *, 4> Worklist; 3834 Worklist.push_back(V); 3835 do { 3836 const Value *P = Worklist.pop_back_val(); 3837 P = GetUnderlyingObject(P, DL, MaxLookup); 3838 3839 if (!Visited.insert(P).second) 3840 continue; 3841 3842 if (auto *SI = dyn_cast<SelectInst>(P)) { 3843 Worklist.push_back(SI->getTrueValue()); 3844 Worklist.push_back(SI->getFalseValue()); 3845 continue; 3846 } 3847 3848 if (auto *PN = dyn_cast<PHINode>(P)) { 3849 // If this PHI changes the underlying object in every iteration of the 3850 // loop, don't look through it. Consider: 3851 // int **A; 3852 // for (i) { 3853 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3854 // Curr = A[i]; 3855 // *Prev, *Curr; 3856 // 3857 // Prev is tracking Curr one iteration behind so they refer to different 3858 // underlying objects. 3859 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3860 isSameUnderlyingObjectInLoop(PN, LI)) 3861 for (Value *IncValue : PN->incoming_values()) 3862 Worklist.push_back(IncValue); 3863 continue; 3864 } 3865 3866 Objects.push_back(P); 3867 } while (!Worklist.empty()); 3868 } 3869 3870 /// This is the function that does the work of looking through basic 3871 /// ptrtoint+arithmetic+inttoptr sequences. 3872 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3873 do { 3874 if (const Operator *U = dyn_cast<Operator>(V)) { 3875 // If we find a ptrtoint, we can transfer control back to the 3876 // regular getUnderlyingObjectFromInt. 3877 if (U->getOpcode() == Instruction::PtrToInt) 3878 return U->getOperand(0); 3879 // If we find an add of a constant, a multiplied value, or a phi, it's 3880 // likely that the other operand will lead us to the base 3881 // object. We don't have to worry about the case where the 3882 // object address is somehow being computed by the multiply, 3883 // because our callers only care when the result is an 3884 // identifiable object. 3885 if (U->getOpcode() != Instruction::Add || 3886 (!isa<ConstantInt>(U->getOperand(1)) && 3887 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3888 !isa<PHINode>(U->getOperand(1)))) 3889 return V; 3890 V = U->getOperand(0); 3891 } else { 3892 return V; 3893 } 3894 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3895 } while (true); 3896 } 3897 3898 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3899 /// ptrtoint+arithmetic+inttoptr sequences. 3900 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3901 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3902 SmallVectorImpl<Value *> &Objects, 3903 const DataLayout &DL) { 3904 SmallPtrSet<const Value *, 16> Visited; 3905 SmallVector<const Value *, 4> Working(1, V); 3906 do { 3907 V = Working.pop_back_val(); 3908 3909 SmallVector<const Value *, 4> Objs; 3910 GetUnderlyingObjects(V, Objs, DL); 3911 3912 for (const Value *V : Objs) { 3913 if (!Visited.insert(V).second) 3914 continue; 3915 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3916 const Value *O = 3917 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3918 if (O->getType()->isPointerTy()) { 3919 Working.push_back(O); 3920 continue; 3921 } 3922 } 3923 // If GetUnderlyingObjects fails to find an identifiable object, 3924 // getUnderlyingObjectsForCodeGen also fails for safety. 3925 if (!isIdentifiedObject(V)) { 3926 Objects.clear(); 3927 return false; 3928 } 3929 Objects.push_back(const_cast<Value *>(V)); 3930 } 3931 } while (!Working.empty()); 3932 return true; 3933 } 3934 3935 /// Return true if the only users of this pointer are lifetime markers. 3936 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3937 for (const User *U : V->users()) { 3938 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3939 if (!II) return false; 3940 3941 if (!II->isLifetimeStartOrEnd()) 3942 return false; 3943 } 3944 return true; 3945 } 3946 3947 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 3948 if (!LI.isUnordered()) 3949 return true; 3950 const Function &F = *LI.getFunction(); 3951 // Speculative load may create a race that did not exist in the source. 3952 return F.hasFnAttribute(Attribute::SanitizeThread) || 3953 // Speculative load may load data from dirty regions. 3954 F.hasFnAttribute(Attribute::SanitizeAddress) || 3955 F.hasFnAttribute(Attribute::SanitizeHWAddress); 3956 } 3957 3958 3959 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3960 const Instruction *CtxI, 3961 const DominatorTree *DT) { 3962 const Operator *Inst = dyn_cast<Operator>(V); 3963 if (!Inst) 3964 return false; 3965 3966 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3967 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3968 if (C->canTrap()) 3969 return false; 3970 3971 switch (Inst->getOpcode()) { 3972 default: 3973 return true; 3974 case Instruction::UDiv: 3975 case Instruction::URem: { 3976 // x / y is undefined if y == 0. 3977 const APInt *V; 3978 if (match(Inst->getOperand(1), m_APInt(V))) 3979 return *V != 0; 3980 return false; 3981 } 3982 case Instruction::SDiv: 3983 case Instruction::SRem: { 3984 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3985 const APInt *Numerator, *Denominator; 3986 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3987 return false; 3988 // We cannot hoist this division if the denominator is 0. 3989 if (*Denominator == 0) 3990 return false; 3991 // It's safe to hoist if the denominator is not 0 or -1. 3992 if (*Denominator != -1) 3993 return true; 3994 // At this point we know that the denominator is -1. It is safe to hoist as 3995 // long we know that the numerator is not INT_MIN. 3996 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3997 return !Numerator->isMinSignedValue(); 3998 // The numerator *might* be MinSignedValue. 3999 return false; 4000 } 4001 case Instruction::Load: { 4002 const LoadInst *LI = cast<LoadInst>(Inst); 4003 if (mustSuppressSpeculation(*LI)) 4004 return false; 4005 const DataLayout &DL = LI->getModule()->getDataLayout(); 4006 return isDereferenceableAndAlignedPointer( 4007 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4008 DL, CtxI, DT); 4009 } 4010 case Instruction::Call: { 4011 auto *CI = cast<const CallInst>(Inst); 4012 const Function *Callee = CI->getCalledFunction(); 4013 4014 // The called function could have undefined behavior or side-effects, even 4015 // if marked readnone nounwind. 4016 return Callee && Callee->isSpeculatable(); 4017 } 4018 case Instruction::VAArg: 4019 case Instruction::Alloca: 4020 case Instruction::Invoke: 4021 case Instruction::CallBr: 4022 case Instruction::PHI: 4023 case Instruction::Store: 4024 case Instruction::Ret: 4025 case Instruction::Br: 4026 case Instruction::IndirectBr: 4027 case Instruction::Switch: 4028 case Instruction::Unreachable: 4029 case Instruction::Fence: 4030 case Instruction::AtomicRMW: 4031 case Instruction::AtomicCmpXchg: 4032 case Instruction::LandingPad: 4033 case Instruction::Resume: 4034 case Instruction::CatchSwitch: 4035 case Instruction::CatchPad: 4036 case Instruction::CatchRet: 4037 case Instruction::CleanupPad: 4038 case Instruction::CleanupRet: 4039 return false; // Misc instructions which have effects 4040 } 4041 } 4042 4043 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4044 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4045 } 4046 4047 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4048 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4049 switch (OR) { 4050 case ConstantRange::OverflowResult::MayOverflow: 4051 return OverflowResult::MayOverflow; 4052 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4053 return OverflowResult::AlwaysOverflowsLow; 4054 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4055 return OverflowResult::AlwaysOverflowsHigh; 4056 case ConstantRange::OverflowResult::NeverOverflows: 4057 return OverflowResult::NeverOverflows; 4058 } 4059 llvm_unreachable("Unknown OverflowResult"); 4060 } 4061 4062 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4063 static ConstantRange computeConstantRangeIncludingKnownBits( 4064 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4065 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4066 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4067 KnownBits Known = computeKnownBits( 4068 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4069 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4070 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4071 ConstantRange::PreferredRangeType RangeType = 4072 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4073 return CR1.intersectWith(CR2, RangeType); 4074 } 4075 4076 OverflowResult llvm::computeOverflowForUnsignedMul( 4077 const Value *LHS, const Value *RHS, const DataLayout &DL, 4078 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4079 bool UseInstrInfo) { 4080 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4081 nullptr, UseInstrInfo); 4082 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4083 nullptr, UseInstrInfo); 4084 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4085 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4086 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4087 } 4088 4089 OverflowResult 4090 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4091 const DataLayout &DL, AssumptionCache *AC, 4092 const Instruction *CxtI, 4093 const DominatorTree *DT, bool UseInstrInfo) { 4094 // Multiplying n * m significant bits yields a result of n + m significant 4095 // bits. If the total number of significant bits does not exceed the 4096 // result bit width (minus 1), there is no overflow. 4097 // This means if we have enough leading sign bits in the operands 4098 // we can guarantee that the result does not overflow. 4099 // Ref: "Hacker's Delight" by Henry Warren 4100 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4101 4102 // Note that underestimating the number of sign bits gives a more 4103 // conservative answer. 4104 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4105 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4106 4107 // First handle the easy case: if we have enough sign bits there's 4108 // definitely no overflow. 4109 if (SignBits > BitWidth + 1) 4110 return OverflowResult::NeverOverflows; 4111 4112 // There are two ambiguous cases where there can be no overflow: 4113 // SignBits == BitWidth + 1 and 4114 // SignBits == BitWidth 4115 // The second case is difficult to check, therefore we only handle the 4116 // first case. 4117 if (SignBits == BitWidth + 1) { 4118 // It overflows only when both arguments are negative and the true 4119 // product is exactly the minimum negative number. 4120 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4121 // For simplicity we just check if at least one side is not negative. 4122 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4123 nullptr, UseInstrInfo); 4124 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4125 nullptr, UseInstrInfo); 4126 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4127 return OverflowResult::NeverOverflows; 4128 } 4129 return OverflowResult::MayOverflow; 4130 } 4131 4132 OverflowResult llvm::computeOverflowForUnsignedAdd( 4133 const Value *LHS, const Value *RHS, const DataLayout &DL, 4134 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4135 bool UseInstrInfo) { 4136 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4137 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4138 nullptr, UseInstrInfo); 4139 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4140 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4141 nullptr, UseInstrInfo); 4142 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4143 } 4144 4145 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4146 const Value *RHS, 4147 const AddOperator *Add, 4148 const DataLayout &DL, 4149 AssumptionCache *AC, 4150 const Instruction *CxtI, 4151 const DominatorTree *DT) { 4152 if (Add && Add->hasNoSignedWrap()) { 4153 return OverflowResult::NeverOverflows; 4154 } 4155 4156 // If LHS and RHS each have at least two sign bits, the addition will look 4157 // like 4158 // 4159 // XX..... + 4160 // YY..... 4161 // 4162 // If the carry into the most significant position is 0, X and Y can't both 4163 // be 1 and therefore the carry out of the addition is also 0. 4164 // 4165 // If the carry into the most significant position is 1, X and Y can't both 4166 // be 0 and therefore the carry out of the addition is also 1. 4167 // 4168 // Since the carry into the most significant position is always equal to 4169 // the carry out of the addition, there is no signed overflow. 4170 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4171 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4172 return OverflowResult::NeverOverflows; 4173 4174 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4175 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4176 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4177 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4178 OverflowResult OR = 4179 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4180 if (OR != OverflowResult::MayOverflow) 4181 return OR; 4182 4183 // The remaining code needs Add to be available. Early returns if not so. 4184 if (!Add) 4185 return OverflowResult::MayOverflow; 4186 4187 // If the sign of Add is the same as at least one of the operands, this add 4188 // CANNOT overflow. If this can be determined from the known bits of the 4189 // operands the above signedAddMayOverflow() check will have already done so. 4190 // The only other way to improve on the known bits is from an assumption, so 4191 // call computeKnownBitsFromAssume() directly. 4192 bool LHSOrRHSKnownNonNegative = 4193 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4194 bool LHSOrRHSKnownNegative = 4195 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4196 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4197 KnownBits AddKnown(LHSRange.getBitWidth()); 4198 computeKnownBitsFromAssume( 4199 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4200 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4201 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4202 return OverflowResult::NeverOverflows; 4203 } 4204 4205 return OverflowResult::MayOverflow; 4206 } 4207 4208 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4209 const Value *RHS, 4210 const DataLayout &DL, 4211 AssumptionCache *AC, 4212 const Instruction *CxtI, 4213 const DominatorTree *DT) { 4214 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4215 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4216 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4217 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4218 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4219 } 4220 4221 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4222 const Value *RHS, 4223 const DataLayout &DL, 4224 AssumptionCache *AC, 4225 const Instruction *CxtI, 4226 const DominatorTree *DT) { 4227 // If LHS and RHS each have at least two sign bits, the subtraction 4228 // cannot overflow. 4229 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4230 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4231 return OverflowResult::NeverOverflows; 4232 4233 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4234 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4235 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4236 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4237 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4238 } 4239 4240 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4241 const DominatorTree &DT) { 4242 SmallVector<const BranchInst *, 2> GuardingBranches; 4243 SmallVector<const ExtractValueInst *, 2> Results; 4244 4245 for (const User *U : WO->users()) { 4246 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4247 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4248 4249 if (EVI->getIndices()[0] == 0) 4250 Results.push_back(EVI); 4251 else { 4252 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4253 4254 for (const auto *U : EVI->users()) 4255 if (const auto *B = dyn_cast<BranchInst>(U)) { 4256 assert(B->isConditional() && "How else is it using an i1?"); 4257 GuardingBranches.push_back(B); 4258 } 4259 } 4260 } else { 4261 // We are using the aggregate directly in a way we don't want to analyze 4262 // here (storing it to a global, say). 4263 return false; 4264 } 4265 } 4266 4267 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4268 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4269 if (!NoWrapEdge.isSingleEdge()) 4270 return false; 4271 4272 // Check if all users of the add are provably no-wrap. 4273 for (const auto *Result : Results) { 4274 // If the extractvalue itself is not executed on overflow, the we don't 4275 // need to check each use separately, since domination is transitive. 4276 if (DT.dominates(NoWrapEdge, Result->getParent())) 4277 continue; 4278 4279 for (auto &RU : Result->uses()) 4280 if (!DT.dominates(NoWrapEdge, RU)) 4281 return false; 4282 } 4283 4284 return true; 4285 }; 4286 4287 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4288 } 4289 4290 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V) { 4291 // If the value is a freeze instruction, then it can never 4292 // be undef or poison. 4293 if (isa<FreezeInst>(V)) 4294 return true; 4295 // TODO: Some instructions are guaranteed to return neither undef 4296 // nor poison if their arguments are not poison/undef. 4297 4298 // TODO: Deal with other Constant subclasses. 4299 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4300 return true; 4301 4302 return false; 4303 } 4304 4305 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4306 const DataLayout &DL, 4307 AssumptionCache *AC, 4308 const Instruction *CxtI, 4309 const DominatorTree *DT) { 4310 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4311 Add, DL, AC, CxtI, DT); 4312 } 4313 4314 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4315 const Value *RHS, 4316 const DataLayout &DL, 4317 AssumptionCache *AC, 4318 const Instruction *CxtI, 4319 const DominatorTree *DT) { 4320 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4321 } 4322 4323 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4324 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4325 // of time because it's possible for another thread to interfere with it for an 4326 // arbitrary length of time, but programs aren't allowed to rely on that. 4327 4328 // If there is no successor, then execution can't transfer to it. 4329 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4330 return !CRI->unwindsToCaller(); 4331 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4332 return !CatchSwitch->unwindsToCaller(); 4333 if (isa<ResumeInst>(I)) 4334 return false; 4335 if (isa<ReturnInst>(I)) 4336 return false; 4337 if (isa<UnreachableInst>(I)) 4338 return false; 4339 4340 // Calls can throw, or contain an infinite loop, or kill the process. 4341 if (auto CS = ImmutableCallSite(I)) { 4342 // Call sites that throw have implicit non-local control flow. 4343 if (!CS.doesNotThrow()) 4344 return false; 4345 4346 // A function which doens't throw and has "willreturn" attribute will 4347 // always return. 4348 if (CS.hasFnAttr(Attribute::WillReturn)) 4349 return true; 4350 4351 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4352 // etc. and thus not return. However, LLVM already assumes that 4353 // 4354 // - Thread exiting actions are modeled as writes to memory invisible to 4355 // the program. 4356 // 4357 // - Loops that don't have side effects (side effects are volatile/atomic 4358 // stores and IO) always terminate (see http://llvm.org/PR965). 4359 // Furthermore IO itself is also modeled as writes to memory invisible to 4360 // the program. 4361 // 4362 // We rely on those assumptions here, and use the memory effects of the call 4363 // target as a proxy for checking that it always returns. 4364 4365 // FIXME: This isn't aggressive enough; a call which only writes to a global 4366 // is guaranteed to return. 4367 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4368 } 4369 4370 // Other instructions return normally. 4371 return true; 4372 } 4373 4374 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4375 // TODO: This is slightly conservative for invoke instruction since exiting 4376 // via an exception *is* normal control for them. 4377 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4378 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4379 return false; 4380 return true; 4381 } 4382 4383 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4384 const Loop *L) { 4385 // The loop header is guaranteed to be executed for every iteration. 4386 // 4387 // FIXME: Relax this constraint to cover all basic blocks that are 4388 // guaranteed to be executed at every iteration. 4389 if (I->getParent() != L->getHeader()) return false; 4390 4391 for (const Instruction &LI : *L->getHeader()) { 4392 if (&LI == I) return true; 4393 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4394 } 4395 llvm_unreachable("Instruction not contained in its own parent basic block."); 4396 } 4397 4398 bool llvm::propagatesFullPoison(const Instruction *I) { 4399 // TODO: This should include all instructions apart from phis, selects and 4400 // call-like instructions. 4401 switch (I->getOpcode()) { 4402 case Instruction::Add: 4403 case Instruction::Sub: 4404 case Instruction::Xor: 4405 case Instruction::Trunc: 4406 case Instruction::BitCast: 4407 case Instruction::AddrSpaceCast: 4408 case Instruction::Mul: 4409 case Instruction::Shl: 4410 case Instruction::GetElementPtr: 4411 // These operations all propagate poison unconditionally. Note that poison 4412 // is not any particular value, so xor or subtraction of poison with 4413 // itself still yields poison, not zero. 4414 return true; 4415 4416 case Instruction::AShr: 4417 case Instruction::SExt: 4418 // For these operations, one bit of the input is replicated across 4419 // multiple output bits. A replicated poison bit is still poison. 4420 return true; 4421 4422 case Instruction::ICmp: 4423 // Comparing poison with any value yields poison. This is why, for 4424 // instance, x s< (x +nsw 1) can be folded to true. 4425 return true; 4426 4427 default: 4428 return false; 4429 } 4430 } 4431 4432 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4433 switch (I->getOpcode()) { 4434 case Instruction::Store: 4435 return cast<StoreInst>(I)->getPointerOperand(); 4436 4437 case Instruction::Load: 4438 return cast<LoadInst>(I)->getPointerOperand(); 4439 4440 case Instruction::AtomicCmpXchg: 4441 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4442 4443 case Instruction::AtomicRMW: 4444 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4445 4446 case Instruction::UDiv: 4447 case Instruction::SDiv: 4448 case Instruction::URem: 4449 case Instruction::SRem: 4450 return I->getOperand(1); 4451 4452 default: 4453 // Note: It's really tempting to think that a conditional branch or 4454 // switch should be listed here, but that's incorrect. It's not 4455 // branching off of poison which is UB, it is executing a side effecting 4456 // instruction which follows the branch. 4457 return nullptr; 4458 } 4459 } 4460 4461 bool llvm::mustTriggerUB(const Instruction *I, 4462 const SmallSet<const Value *, 16>& KnownPoison) { 4463 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4464 return (NotPoison && KnownPoison.count(NotPoison)); 4465 } 4466 4467 4468 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4469 // We currently only look for uses of poison values within the same basic 4470 // block, as that makes it easier to guarantee that the uses will be 4471 // executed given that PoisonI is executed. 4472 // 4473 // FIXME: Expand this to consider uses beyond the same basic block. To do 4474 // this, look out for the distinction between post-dominance and strong 4475 // post-dominance. 4476 const BasicBlock *BB = PoisonI->getParent(); 4477 4478 // Set of instructions that we have proved will yield poison if PoisonI 4479 // does. 4480 SmallSet<const Value *, 16> YieldsPoison; 4481 SmallSet<const BasicBlock *, 4> Visited; 4482 YieldsPoison.insert(PoisonI); 4483 Visited.insert(PoisonI->getParent()); 4484 4485 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4486 4487 unsigned Iter = 0; 4488 while (Iter++ < MaxDepth) { 4489 for (auto &I : make_range(Begin, End)) { 4490 if (&I != PoisonI) { 4491 if (mustTriggerUB(&I, YieldsPoison)) 4492 return true; 4493 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4494 return false; 4495 } 4496 4497 // Mark poison that propagates from I through uses of I. 4498 if (YieldsPoison.count(&I)) { 4499 for (const User *User : I.users()) { 4500 const Instruction *UserI = cast<Instruction>(User); 4501 if (propagatesFullPoison(UserI)) 4502 YieldsPoison.insert(User); 4503 } 4504 } 4505 } 4506 4507 if (auto *NextBB = BB->getSingleSuccessor()) { 4508 if (Visited.insert(NextBB).second) { 4509 BB = NextBB; 4510 Begin = BB->getFirstNonPHI()->getIterator(); 4511 End = BB->end(); 4512 continue; 4513 } 4514 } 4515 4516 break; 4517 } 4518 return false; 4519 } 4520 4521 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4522 if (FMF.noNaNs()) 4523 return true; 4524 4525 if (auto *C = dyn_cast<ConstantFP>(V)) 4526 return !C->isNaN(); 4527 4528 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4529 if (!C->getElementType()->isFloatingPointTy()) 4530 return false; 4531 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4532 if (C->getElementAsAPFloat(I).isNaN()) 4533 return false; 4534 } 4535 return true; 4536 } 4537 4538 return false; 4539 } 4540 4541 static bool isKnownNonZero(const Value *V) { 4542 if (auto *C = dyn_cast<ConstantFP>(V)) 4543 return !C->isZero(); 4544 4545 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4546 if (!C->getElementType()->isFloatingPointTy()) 4547 return false; 4548 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4549 if (C->getElementAsAPFloat(I).isZero()) 4550 return false; 4551 } 4552 return true; 4553 } 4554 4555 return false; 4556 } 4557 4558 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4559 /// Given non-min/max outer cmp/select from the clamp pattern this 4560 /// function recognizes if it can be substitued by a "canonical" min/max 4561 /// pattern. 4562 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4563 Value *CmpLHS, Value *CmpRHS, 4564 Value *TrueVal, Value *FalseVal, 4565 Value *&LHS, Value *&RHS) { 4566 // Try to match 4567 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4568 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4569 // and return description of the outer Max/Min. 4570 4571 // First, check if select has inverse order: 4572 if (CmpRHS == FalseVal) { 4573 std::swap(TrueVal, FalseVal); 4574 Pred = CmpInst::getInversePredicate(Pred); 4575 } 4576 4577 // Assume success now. If there's no match, callers should not use these anyway. 4578 LHS = TrueVal; 4579 RHS = FalseVal; 4580 4581 const APFloat *FC1; 4582 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4583 return {SPF_UNKNOWN, SPNB_NA, false}; 4584 4585 const APFloat *FC2; 4586 switch (Pred) { 4587 case CmpInst::FCMP_OLT: 4588 case CmpInst::FCMP_OLE: 4589 case CmpInst::FCMP_ULT: 4590 case CmpInst::FCMP_ULE: 4591 if (match(FalseVal, 4592 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4593 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4594 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4595 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4596 break; 4597 case CmpInst::FCMP_OGT: 4598 case CmpInst::FCMP_OGE: 4599 case CmpInst::FCMP_UGT: 4600 case CmpInst::FCMP_UGE: 4601 if (match(FalseVal, 4602 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4603 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4604 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4605 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4606 break; 4607 default: 4608 break; 4609 } 4610 4611 return {SPF_UNKNOWN, SPNB_NA, false}; 4612 } 4613 4614 /// Recognize variations of: 4615 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4616 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4617 Value *CmpLHS, Value *CmpRHS, 4618 Value *TrueVal, Value *FalseVal) { 4619 // Swap the select operands and predicate to match the patterns below. 4620 if (CmpRHS != TrueVal) { 4621 Pred = ICmpInst::getSwappedPredicate(Pred); 4622 std::swap(TrueVal, FalseVal); 4623 } 4624 const APInt *C1; 4625 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4626 const APInt *C2; 4627 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4628 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4629 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4630 return {SPF_SMAX, SPNB_NA, false}; 4631 4632 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4633 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4634 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4635 return {SPF_SMIN, SPNB_NA, false}; 4636 4637 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4638 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4639 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4640 return {SPF_UMAX, SPNB_NA, false}; 4641 4642 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4643 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4644 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4645 return {SPF_UMIN, SPNB_NA, false}; 4646 } 4647 return {SPF_UNKNOWN, SPNB_NA, false}; 4648 } 4649 4650 /// Recognize variations of: 4651 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4652 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4653 Value *CmpLHS, Value *CmpRHS, 4654 Value *TVal, Value *FVal, 4655 unsigned Depth) { 4656 // TODO: Allow FP min/max with nnan/nsz. 4657 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4658 4659 Value *A = nullptr, *B = nullptr; 4660 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4661 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4662 return {SPF_UNKNOWN, SPNB_NA, false}; 4663 4664 Value *C = nullptr, *D = nullptr; 4665 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4666 if (L.Flavor != R.Flavor) 4667 return {SPF_UNKNOWN, SPNB_NA, false}; 4668 4669 // We have something like: x Pred y ? min(a, b) : min(c, d). 4670 // Try to match the compare to the min/max operations of the select operands. 4671 // First, make sure we have the right compare predicate. 4672 switch (L.Flavor) { 4673 case SPF_SMIN: 4674 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4675 Pred = ICmpInst::getSwappedPredicate(Pred); 4676 std::swap(CmpLHS, CmpRHS); 4677 } 4678 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4679 break; 4680 return {SPF_UNKNOWN, SPNB_NA, false}; 4681 case SPF_SMAX: 4682 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4683 Pred = ICmpInst::getSwappedPredicate(Pred); 4684 std::swap(CmpLHS, CmpRHS); 4685 } 4686 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4687 break; 4688 return {SPF_UNKNOWN, SPNB_NA, false}; 4689 case SPF_UMIN: 4690 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4691 Pred = ICmpInst::getSwappedPredicate(Pred); 4692 std::swap(CmpLHS, CmpRHS); 4693 } 4694 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4695 break; 4696 return {SPF_UNKNOWN, SPNB_NA, false}; 4697 case SPF_UMAX: 4698 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4699 Pred = ICmpInst::getSwappedPredicate(Pred); 4700 std::swap(CmpLHS, CmpRHS); 4701 } 4702 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4703 break; 4704 return {SPF_UNKNOWN, SPNB_NA, false}; 4705 default: 4706 return {SPF_UNKNOWN, SPNB_NA, false}; 4707 } 4708 4709 // If there is a common operand in the already matched min/max and the other 4710 // min/max operands match the compare operands (either directly or inverted), 4711 // then this is min/max of the same flavor. 4712 4713 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4714 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4715 if (D == B) { 4716 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4717 match(A, m_Not(m_Specific(CmpRHS))))) 4718 return {L.Flavor, SPNB_NA, false}; 4719 } 4720 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4721 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4722 if (C == B) { 4723 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4724 match(A, m_Not(m_Specific(CmpRHS))))) 4725 return {L.Flavor, SPNB_NA, false}; 4726 } 4727 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4728 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4729 if (D == A) { 4730 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4731 match(B, m_Not(m_Specific(CmpRHS))))) 4732 return {L.Flavor, SPNB_NA, false}; 4733 } 4734 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4735 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4736 if (C == A) { 4737 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4738 match(B, m_Not(m_Specific(CmpRHS))))) 4739 return {L.Flavor, SPNB_NA, false}; 4740 } 4741 4742 return {SPF_UNKNOWN, SPNB_NA, false}; 4743 } 4744 4745 /// Match non-obvious integer minimum and maximum sequences. 4746 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4747 Value *CmpLHS, Value *CmpRHS, 4748 Value *TrueVal, Value *FalseVal, 4749 Value *&LHS, Value *&RHS, 4750 unsigned Depth) { 4751 // Assume success. If there's no match, callers should not use these anyway. 4752 LHS = TrueVal; 4753 RHS = FalseVal; 4754 4755 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4756 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4757 return SPR; 4758 4759 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4760 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4761 return SPR; 4762 4763 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4764 return {SPF_UNKNOWN, SPNB_NA, false}; 4765 4766 // Z = X -nsw Y 4767 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4768 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4769 if (match(TrueVal, m_Zero()) && 4770 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4771 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4772 4773 // Z = X -nsw Y 4774 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4775 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4776 if (match(FalseVal, m_Zero()) && 4777 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4778 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4779 4780 const APInt *C1; 4781 if (!match(CmpRHS, m_APInt(C1))) 4782 return {SPF_UNKNOWN, SPNB_NA, false}; 4783 4784 // An unsigned min/max can be written with a signed compare. 4785 const APInt *C2; 4786 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4787 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4788 // Is the sign bit set? 4789 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4790 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4791 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4792 C2->isMaxSignedValue()) 4793 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4794 4795 // Is the sign bit clear? 4796 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4797 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4798 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4799 C2->isMinSignedValue()) 4800 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4801 } 4802 4803 // Look through 'not' ops to find disguised signed min/max. 4804 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4805 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4806 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4807 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4808 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4809 4810 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4811 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4812 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4813 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4814 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4815 4816 return {SPF_UNKNOWN, SPNB_NA, false}; 4817 } 4818 4819 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4820 assert(X && Y && "Invalid operand"); 4821 4822 // X = sub (0, Y) || X = sub nsw (0, Y) 4823 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4824 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4825 return true; 4826 4827 // Y = sub (0, X) || Y = sub nsw (0, X) 4828 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4829 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4830 return true; 4831 4832 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4833 Value *A, *B; 4834 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4835 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4836 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4837 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4838 } 4839 4840 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4841 FastMathFlags FMF, 4842 Value *CmpLHS, Value *CmpRHS, 4843 Value *TrueVal, Value *FalseVal, 4844 Value *&LHS, Value *&RHS, 4845 unsigned Depth) { 4846 if (CmpInst::isFPPredicate(Pred)) { 4847 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 4848 // 0.0 operand, set the compare's 0.0 operands to that same value for the 4849 // purpose of identifying min/max. Disregard vector constants with undefined 4850 // elements because those can not be back-propagated for analysis. 4851 Value *OutputZeroVal = nullptr; 4852 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 4853 !cast<Constant>(TrueVal)->containsUndefElement()) 4854 OutputZeroVal = TrueVal; 4855 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 4856 !cast<Constant>(FalseVal)->containsUndefElement()) 4857 OutputZeroVal = FalseVal; 4858 4859 if (OutputZeroVal) { 4860 if (match(CmpLHS, m_AnyZeroFP())) 4861 CmpLHS = OutputZeroVal; 4862 if (match(CmpRHS, m_AnyZeroFP())) 4863 CmpRHS = OutputZeroVal; 4864 } 4865 } 4866 4867 LHS = CmpLHS; 4868 RHS = CmpRHS; 4869 4870 // Signed zero may return inconsistent results between implementations. 4871 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4872 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4873 // Therefore, we behave conservatively and only proceed if at least one of the 4874 // operands is known to not be zero or if we don't care about signed zero. 4875 switch (Pred) { 4876 default: break; 4877 // FIXME: Include OGT/OLT/UGT/ULT. 4878 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4879 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4880 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4881 !isKnownNonZero(CmpRHS)) 4882 return {SPF_UNKNOWN, SPNB_NA, false}; 4883 } 4884 4885 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4886 bool Ordered = false; 4887 4888 // When given one NaN and one non-NaN input: 4889 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4890 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4891 // ordered comparison fails), which could be NaN or non-NaN. 4892 // so here we discover exactly what NaN behavior is required/accepted. 4893 if (CmpInst::isFPPredicate(Pred)) { 4894 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4895 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4896 4897 if (LHSSafe && RHSSafe) { 4898 // Both operands are known non-NaN. 4899 NaNBehavior = SPNB_RETURNS_ANY; 4900 } else if (CmpInst::isOrdered(Pred)) { 4901 // An ordered comparison will return false when given a NaN, so it 4902 // returns the RHS. 4903 Ordered = true; 4904 if (LHSSafe) 4905 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4906 NaNBehavior = SPNB_RETURNS_NAN; 4907 else if (RHSSafe) 4908 NaNBehavior = SPNB_RETURNS_OTHER; 4909 else 4910 // Completely unsafe. 4911 return {SPF_UNKNOWN, SPNB_NA, false}; 4912 } else { 4913 Ordered = false; 4914 // An unordered comparison will return true when given a NaN, so it 4915 // returns the LHS. 4916 if (LHSSafe) 4917 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4918 NaNBehavior = SPNB_RETURNS_OTHER; 4919 else if (RHSSafe) 4920 NaNBehavior = SPNB_RETURNS_NAN; 4921 else 4922 // Completely unsafe. 4923 return {SPF_UNKNOWN, SPNB_NA, false}; 4924 } 4925 } 4926 4927 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4928 std::swap(CmpLHS, CmpRHS); 4929 Pred = CmpInst::getSwappedPredicate(Pred); 4930 if (NaNBehavior == SPNB_RETURNS_NAN) 4931 NaNBehavior = SPNB_RETURNS_OTHER; 4932 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4933 NaNBehavior = SPNB_RETURNS_NAN; 4934 Ordered = !Ordered; 4935 } 4936 4937 // ([if]cmp X, Y) ? X : Y 4938 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4939 switch (Pred) { 4940 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4941 case ICmpInst::ICMP_UGT: 4942 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4943 case ICmpInst::ICMP_SGT: 4944 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4945 case ICmpInst::ICMP_ULT: 4946 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4947 case ICmpInst::ICMP_SLT: 4948 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4949 case FCmpInst::FCMP_UGT: 4950 case FCmpInst::FCMP_UGE: 4951 case FCmpInst::FCMP_OGT: 4952 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4953 case FCmpInst::FCMP_ULT: 4954 case FCmpInst::FCMP_ULE: 4955 case FCmpInst::FCMP_OLT: 4956 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4957 } 4958 } 4959 4960 if (isKnownNegation(TrueVal, FalseVal)) { 4961 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4962 // match against either LHS or sext(LHS). 4963 auto MaybeSExtCmpLHS = 4964 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4965 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4966 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4967 if (match(TrueVal, MaybeSExtCmpLHS)) { 4968 // Set the return values. If the compare uses the negated value (-X >s 0), 4969 // swap the return values because the negated value is always 'RHS'. 4970 LHS = TrueVal; 4971 RHS = FalseVal; 4972 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4973 std::swap(LHS, RHS); 4974 4975 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4976 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4977 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4978 return {SPF_ABS, SPNB_NA, false}; 4979 4980 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 4981 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 4982 return {SPF_ABS, SPNB_NA, false}; 4983 4984 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 4985 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 4986 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4987 return {SPF_NABS, SPNB_NA, false}; 4988 } 4989 else if (match(FalseVal, MaybeSExtCmpLHS)) { 4990 // Set the return values. If the compare uses the negated value (-X >s 0), 4991 // swap the return values because the negated value is always 'RHS'. 4992 LHS = FalseVal; 4993 RHS = TrueVal; 4994 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 4995 std::swap(LHS, RHS); 4996 4997 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 4998 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 4999 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5000 return {SPF_NABS, SPNB_NA, false}; 5001 5002 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5003 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5004 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5005 return {SPF_ABS, SPNB_NA, false}; 5006 } 5007 } 5008 5009 if (CmpInst::isIntPredicate(Pred)) 5010 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5011 5012 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5013 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5014 // semantics than minNum. Be conservative in such case. 5015 if (NaNBehavior != SPNB_RETURNS_ANY || 5016 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5017 !isKnownNonZero(CmpRHS))) 5018 return {SPF_UNKNOWN, SPNB_NA, false}; 5019 5020 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5021 } 5022 5023 /// Helps to match a select pattern in case of a type mismatch. 5024 /// 5025 /// The function processes the case when type of true and false values of a 5026 /// select instruction differs from type of the cmp instruction operands because 5027 /// of a cast instruction. The function checks if it is legal to move the cast 5028 /// operation after "select". If yes, it returns the new second value of 5029 /// "select" (with the assumption that cast is moved): 5030 /// 1. As operand of cast instruction when both values of "select" are same cast 5031 /// instructions. 5032 /// 2. As restored constant (by applying reverse cast operation) when the first 5033 /// value of the "select" is a cast operation and the second value is a 5034 /// constant. 5035 /// NOTE: We return only the new second value because the first value could be 5036 /// accessed as operand of cast instruction. 5037 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5038 Instruction::CastOps *CastOp) { 5039 auto *Cast1 = dyn_cast<CastInst>(V1); 5040 if (!Cast1) 5041 return nullptr; 5042 5043 *CastOp = Cast1->getOpcode(); 5044 Type *SrcTy = Cast1->getSrcTy(); 5045 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5046 // If V1 and V2 are both the same cast from the same type, look through V1. 5047 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5048 return Cast2->getOperand(0); 5049 return nullptr; 5050 } 5051 5052 auto *C = dyn_cast<Constant>(V2); 5053 if (!C) 5054 return nullptr; 5055 5056 Constant *CastedTo = nullptr; 5057 switch (*CastOp) { 5058 case Instruction::ZExt: 5059 if (CmpI->isUnsigned()) 5060 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5061 break; 5062 case Instruction::SExt: 5063 if (CmpI->isSigned()) 5064 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5065 break; 5066 case Instruction::Trunc: 5067 Constant *CmpConst; 5068 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5069 CmpConst->getType() == SrcTy) { 5070 // Here we have the following case: 5071 // 5072 // %cond = cmp iN %x, CmpConst 5073 // %tr = trunc iN %x to iK 5074 // %narrowsel = select i1 %cond, iK %t, iK C 5075 // 5076 // We can always move trunc after select operation: 5077 // 5078 // %cond = cmp iN %x, CmpConst 5079 // %widesel = select i1 %cond, iN %x, iN CmpConst 5080 // %tr = trunc iN %widesel to iK 5081 // 5082 // Note that C could be extended in any way because we don't care about 5083 // upper bits after truncation. It can't be abs pattern, because it would 5084 // look like: 5085 // 5086 // select i1 %cond, x, -x. 5087 // 5088 // So only min/max pattern could be matched. Such match requires widened C 5089 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5090 // CmpConst == C is checked below. 5091 CastedTo = CmpConst; 5092 } else { 5093 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5094 } 5095 break; 5096 case Instruction::FPTrunc: 5097 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5098 break; 5099 case Instruction::FPExt: 5100 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5101 break; 5102 case Instruction::FPToUI: 5103 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5104 break; 5105 case Instruction::FPToSI: 5106 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5107 break; 5108 case Instruction::UIToFP: 5109 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5110 break; 5111 case Instruction::SIToFP: 5112 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5113 break; 5114 default: 5115 break; 5116 } 5117 5118 if (!CastedTo) 5119 return nullptr; 5120 5121 // Make sure the cast doesn't lose any information. 5122 Constant *CastedBack = 5123 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5124 if (CastedBack != C) 5125 return nullptr; 5126 5127 return CastedTo; 5128 } 5129 5130 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5131 Instruction::CastOps *CastOp, 5132 unsigned Depth) { 5133 if (Depth >= MaxDepth) 5134 return {SPF_UNKNOWN, SPNB_NA, false}; 5135 5136 SelectInst *SI = dyn_cast<SelectInst>(V); 5137 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5138 5139 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5140 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5141 5142 Value *TrueVal = SI->getTrueValue(); 5143 Value *FalseVal = SI->getFalseValue(); 5144 5145 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5146 CastOp, Depth); 5147 } 5148 5149 SelectPatternResult llvm::matchDecomposedSelectPattern( 5150 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5151 Instruction::CastOps *CastOp, unsigned Depth) { 5152 CmpInst::Predicate Pred = CmpI->getPredicate(); 5153 Value *CmpLHS = CmpI->getOperand(0); 5154 Value *CmpRHS = CmpI->getOperand(1); 5155 FastMathFlags FMF; 5156 if (isa<FPMathOperator>(CmpI)) 5157 FMF = CmpI->getFastMathFlags(); 5158 5159 // Bail out early. 5160 if (CmpI->isEquality()) 5161 return {SPF_UNKNOWN, SPNB_NA, false}; 5162 5163 // Deal with type mismatches. 5164 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5165 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5166 // If this is a potential fmin/fmax with a cast to integer, then ignore 5167 // -0.0 because there is no corresponding integer value. 5168 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5169 FMF.setNoSignedZeros(); 5170 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5171 cast<CastInst>(TrueVal)->getOperand(0), C, 5172 LHS, RHS, Depth); 5173 } 5174 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5175 // If this is a potential fmin/fmax with a cast to integer, then ignore 5176 // -0.0 because there is no corresponding integer value. 5177 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5178 FMF.setNoSignedZeros(); 5179 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5180 C, cast<CastInst>(FalseVal)->getOperand(0), 5181 LHS, RHS, Depth); 5182 } 5183 } 5184 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5185 LHS, RHS, Depth); 5186 } 5187 5188 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5189 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5190 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5191 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5192 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5193 if (SPF == SPF_FMINNUM) 5194 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5195 if (SPF == SPF_FMAXNUM) 5196 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5197 llvm_unreachable("unhandled!"); 5198 } 5199 5200 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5201 if (SPF == SPF_SMIN) return SPF_SMAX; 5202 if (SPF == SPF_UMIN) return SPF_UMAX; 5203 if (SPF == SPF_SMAX) return SPF_SMIN; 5204 if (SPF == SPF_UMAX) return SPF_UMIN; 5205 llvm_unreachable("unhandled!"); 5206 } 5207 5208 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5209 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5210 } 5211 5212 /// Return true if "icmp Pred LHS RHS" is always true. 5213 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5214 const Value *RHS, const DataLayout &DL, 5215 unsigned Depth) { 5216 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5217 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5218 return true; 5219 5220 switch (Pred) { 5221 default: 5222 return false; 5223 5224 case CmpInst::ICMP_SLE: { 5225 const APInt *C; 5226 5227 // LHS s<= LHS +_{nsw} C if C >= 0 5228 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5229 return !C->isNegative(); 5230 return false; 5231 } 5232 5233 case CmpInst::ICMP_ULE: { 5234 const APInt *C; 5235 5236 // LHS u<= LHS +_{nuw} C for any C 5237 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5238 return true; 5239 5240 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5241 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5242 const Value *&X, 5243 const APInt *&CA, const APInt *&CB) { 5244 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5245 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5246 return true; 5247 5248 // If X & C == 0 then (X | C) == X +_{nuw} C 5249 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5250 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5251 KnownBits Known(CA->getBitWidth()); 5252 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5253 /*CxtI*/ nullptr, /*DT*/ nullptr); 5254 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5255 return true; 5256 } 5257 5258 return false; 5259 }; 5260 5261 const Value *X; 5262 const APInt *CLHS, *CRHS; 5263 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5264 return CLHS->ule(*CRHS); 5265 5266 return false; 5267 } 5268 } 5269 } 5270 5271 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5272 /// ALHS ARHS" is true. Otherwise, return None. 5273 static Optional<bool> 5274 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5275 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5276 const DataLayout &DL, unsigned Depth) { 5277 switch (Pred) { 5278 default: 5279 return None; 5280 5281 case CmpInst::ICMP_SLT: 5282 case CmpInst::ICMP_SLE: 5283 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5284 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5285 return true; 5286 return None; 5287 5288 case CmpInst::ICMP_ULT: 5289 case CmpInst::ICMP_ULE: 5290 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5291 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5292 return true; 5293 return None; 5294 } 5295 } 5296 5297 /// Return true if the operands of the two compares match. IsSwappedOps is true 5298 /// when the operands match, but are swapped. 5299 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5300 const Value *BLHS, const Value *BRHS, 5301 bool &IsSwappedOps) { 5302 5303 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5304 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5305 return IsMatchingOps || IsSwappedOps; 5306 } 5307 5308 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5309 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5310 /// Otherwise, return None if we can't infer anything. 5311 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5312 CmpInst::Predicate BPred, 5313 bool AreSwappedOps) { 5314 // Canonicalize the predicate as if the operands were not commuted. 5315 if (AreSwappedOps) 5316 BPred = ICmpInst::getSwappedPredicate(BPred); 5317 5318 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5319 return true; 5320 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5321 return false; 5322 5323 return None; 5324 } 5325 5326 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5327 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5328 /// Otherwise, return None if we can't infer anything. 5329 static Optional<bool> 5330 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5331 const ConstantInt *C1, 5332 CmpInst::Predicate BPred, 5333 const ConstantInt *C2) { 5334 ConstantRange DomCR = 5335 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5336 ConstantRange CR = 5337 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5338 ConstantRange Intersection = DomCR.intersectWith(CR); 5339 ConstantRange Difference = DomCR.difference(CR); 5340 if (Intersection.isEmptySet()) 5341 return false; 5342 if (Difference.isEmptySet()) 5343 return true; 5344 return None; 5345 } 5346 5347 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5348 /// false. Otherwise, return None if we can't infer anything. 5349 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5350 const ICmpInst *RHS, 5351 const DataLayout &DL, bool LHSIsTrue, 5352 unsigned Depth) { 5353 Value *ALHS = LHS->getOperand(0); 5354 Value *ARHS = LHS->getOperand(1); 5355 // The rest of the logic assumes the LHS condition is true. If that's not the 5356 // case, invert the predicate to make it so. 5357 ICmpInst::Predicate APred = 5358 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5359 5360 Value *BLHS = RHS->getOperand(0); 5361 Value *BRHS = RHS->getOperand(1); 5362 ICmpInst::Predicate BPred = RHS->getPredicate(); 5363 5364 // Can we infer anything when the two compares have matching operands? 5365 bool AreSwappedOps; 5366 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5367 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5368 APred, BPred, AreSwappedOps)) 5369 return Implication; 5370 // No amount of additional analysis will infer the second condition, so 5371 // early exit. 5372 return None; 5373 } 5374 5375 // Can we infer anything when the LHS operands match and the RHS operands are 5376 // constants (not necessarily matching)? 5377 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5378 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5379 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5380 return Implication; 5381 // No amount of additional analysis will infer the second condition, so 5382 // early exit. 5383 return None; 5384 } 5385 5386 if (APred == BPred) 5387 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5388 return None; 5389 } 5390 5391 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5392 /// false. Otherwise, return None if we can't infer anything. We expect the 5393 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5394 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5395 const ICmpInst *RHS, 5396 const DataLayout &DL, bool LHSIsTrue, 5397 unsigned Depth) { 5398 // The LHS must be an 'or' or an 'and' instruction. 5399 assert((LHS->getOpcode() == Instruction::And || 5400 LHS->getOpcode() == Instruction::Or) && 5401 "Expected LHS to be 'and' or 'or'."); 5402 5403 assert(Depth <= MaxDepth && "Hit recursion limit"); 5404 5405 // If the result of an 'or' is false, then we know both legs of the 'or' are 5406 // false. Similarly, if the result of an 'and' is true, then we know both 5407 // legs of the 'and' are true. 5408 Value *ALHS, *ARHS; 5409 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5410 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5411 // FIXME: Make this non-recursion. 5412 if (Optional<bool> Implication = 5413 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5414 return Implication; 5415 if (Optional<bool> Implication = 5416 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5417 return Implication; 5418 return None; 5419 } 5420 return None; 5421 } 5422 5423 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5424 const DataLayout &DL, bool LHSIsTrue, 5425 unsigned Depth) { 5426 // Bail out when we hit the limit. 5427 if (Depth == MaxDepth) 5428 return None; 5429 5430 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5431 // example. 5432 if (LHS->getType() != RHS->getType()) 5433 return None; 5434 5435 Type *OpTy = LHS->getType(); 5436 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5437 5438 // LHS ==> RHS by definition 5439 if (LHS == RHS) 5440 return LHSIsTrue; 5441 5442 // FIXME: Extending the code below to handle vectors. 5443 if (OpTy->isVectorTy()) 5444 return None; 5445 5446 assert(OpTy->isIntegerTy(1) && "implied by above"); 5447 5448 // Both LHS and RHS are icmps. 5449 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5450 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5451 if (LHSCmp && RHSCmp) 5452 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5453 5454 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5455 // an icmp. FIXME: Add support for and/or on the RHS. 5456 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5457 if (LHSBO && RHSCmp) { 5458 if ((LHSBO->getOpcode() == Instruction::And || 5459 LHSBO->getOpcode() == Instruction::Or)) 5460 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5461 } 5462 return None; 5463 } 5464 5465 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5466 const Instruction *ContextI, 5467 const DataLayout &DL) { 5468 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5469 if (!ContextI || !ContextI->getParent()) 5470 return None; 5471 5472 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5473 // dominator tree (eg, from a SimplifyQuery) instead? 5474 const BasicBlock *ContextBB = ContextI->getParent(); 5475 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5476 if (!PredBB) 5477 return None; 5478 5479 // We need a conditional branch in the predecessor. 5480 Value *PredCond; 5481 BasicBlock *TrueBB, *FalseBB; 5482 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5483 return None; 5484 5485 // The branch should get simplified. Don't bother simplifying this condition. 5486 if (TrueBB == FalseBB) 5487 return None; 5488 5489 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5490 "Predecessor block does not point to successor?"); 5491 5492 // Is this condition implied by the predecessor condition? 5493 bool CondIsTrue = TrueBB == ContextBB; 5494 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5495 } 5496 5497 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5498 APInt &Upper, const InstrInfoQuery &IIQ) { 5499 unsigned Width = Lower.getBitWidth(); 5500 const APInt *C; 5501 switch (BO.getOpcode()) { 5502 case Instruction::Add: 5503 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5504 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5505 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5506 // 'add nuw x, C' produces [C, UINT_MAX]. 5507 Lower = *C; 5508 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5509 if (C->isNegative()) { 5510 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5511 Lower = APInt::getSignedMinValue(Width); 5512 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5513 } else { 5514 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5515 Lower = APInt::getSignedMinValue(Width) + *C; 5516 Upper = APInt::getSignedMaxValue(Width) + 1; 5517 } 5518 } 5519 } 5520 break; 5521 5522 case Instruction::And: 5523 if (match(BO.getOperand(1), m_APInt(C))) 5524 // 'and x, C' produces [0, C]. 5525 Upper = *C + 1; 5526 break; 5527 5528 case Instruction::Or: 5529 if (match(BO.getOperand(1), m_APInt(C))) 5530 // 'or x, C' produces [C, UINT_MAX]. 5531 Lower = *C; 5532 break; 5533 5534 case Instruction::AShr: 5535 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5536 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5537 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5538 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5539 } else if (match(BO.getOperand(0), m_APInt(C))) { 5540 unsigned ShiftAmount = Width - 1; 5541 if (!C->isNullValue() && IIQ.isExact(&BO)) 5542 ShiftAmount = C->countTrailingZeros(); 5543 if (C->isNegative()) { 5544 // 'ashr C, x' produces [C, C >> (Width-1)] 5545 Lower = *C; 5546 Upper = C->ashr(ShiftAmount) + 1; 5547 } else { 5548 // 'ashr C, x' produces [C >> (Width-1), C] 5549 Lower = C->ashr(ShiftAmount); 5550 Upper = *C + 1; 5551 } 5552 } 5553 break; 5554 5555 case Instruction::LShr: 5556 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5557 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5558 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5559 } else if (match(BO.getOperand(0), m_APInt(C))) { 5560 // 'lshr C, x' produces [C >> (Width-1), C]. 5561 unsigned ShiftAmount = Width - 1; 5562 if (!C->isNullValue() && IIQ.isExact(&BO)) 5563 ShiftAmount = C->countTrailingZeros(); 5564 Lower = C->lshr(ShiftAmount); 5565 Upper = *C + 1; 5566 } 5567 break; 5568 5569 case Instruction::Shl: 5570 if (match(BO.getOperand(0), m_APInt(C))) { 5571 if (IIQ.hasNoUnsignedWrap(&BO)) { 5572 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5573 Lower = *C; 5574 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5575 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5576 if (C->isNegative()) { 5577 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5578 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5579 Lower = C->shl(ShiftAmount); 5580 Upper = *C + 1; 5581 } else { 5582 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5583 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5584 Lower = *C; 5585 Upper = C->shl(ShiftAmount) + 1; 5586 } 5587 } 5588 } 5589 break; 5590 5591 case Instruction::SDiv: 5592 if (match(BO.getOperand(1), m_APInt(C))) { 5593 APInt IntMin = APInt::getSignedMinValue(Width); 5594 APInt IntMax = APInt::getSignedMaxValue(Width); 5595 if (C->isAllOnesValue()) { 5596 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5597 // where C != -1 and C != 0 and C != 1 5598 Lower = IntMin + 1; 5599 Upper = IntMax + 1; 5600 } else if (C->countLeadingZeros() < Width - 1) { 5601 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5602 // where C != -1 and C != 0 and C != 1 5603 Lower = IntMin.sdiv(*C); 5604 Upper = IntMax.sdiv(*C); 5605 if (Lower.sgt(Upper)) 5606 std::swap(Lower, Upper); 5607 Upper = Upper + 1; 5608 assert(Upper != Lower && "Upper part of range has wrapped!"); 5609 } 5610 } else if (match(BO.getOperand(0), m_APInt(C))) { 5611 if (C->isMinSignedValue()) { 5612 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5613 Lower = *C; 5614 Upper = Lower.lshr(1) + 1; 5615 } else { 5616 // 'sdiv C, x' produces [-|C|, |C|]. 5617 Upper = C->abs() + 1; 5618 Lower = (-Upper) + 1; 5619 } 5620 } 5621 break; 5622 5623 case Instruction::UDiv: 5624 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5625 // 'udiv x, C' produces [0, UINT_MAX / C]. 5626 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5627 } else if (match(BO.getOperand(0), m_APInt(C))) { 5628 // 'udiv C, x' produces [0, C]. 5629 Upper = *C + 1; 5630 } 5631 break; 5632 5633 case Instruction::SRem: 5634 if (match(BO.getOperand(1), m_APInt(C))) { 5635 // 'srem x, C' produces (-|C|, |C|). 5636 Upper = C->abs(); 5637 Lower = (-Upper) + 1; 5638 } 5639 break; 5640 5641 case Instruction::URem: 5642 if (match(BO.getOperand(1), m_APInt(C))) 5643 // 'urem x, C' produces [0, C). 5644 Upper = *C; 5645 break; 5646 5647 default: 5648 break; 5649 } 5650 } 5651 5652 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5653 APInt &Upper) { 5654 unsigned Width = Lower.getBitWidth(); 5655 const APInt *C; 5656 switch (II.getIntrinsicID()) { 5657 case Intrinsic::uadd_sat: 5658 // uadd.sat(x, C) produces [C, UINT_MAX]. 5659 if (match(II.getOperand(0), m_APInt(C)) || 5660 match(II.getOperand(1), m_APInt(C))) 5661 Lower = *C; 5662 break; 5663 case Intrinsic::sadd_sat: 5664 if (match(II.getOperand(0), m_APInt(C)) || 5665 match(II.getOperand(1), m_APInt(C))) { 5666 if (C->isNegative()) { 5667 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5668 Lower = APInt::getSignedMinValue(Width); 5669 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5670 } else { 5671 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5672 Lower = APInt::getSignedMinValue(Width) + *C; 5673 Upper = APInt::getSignedMaxValue(Width) + 1; 5674 } 5675 } 5676 break; 5677 case Intrinsic::usub_sat: 5678 // usub.sat(C, x) produces [0, C]. 5679 if (match(II.getOperand(0), m_APInt(C))) 5680 Upper = *C + 1; 5681 // usub.sat(x, C) produces [0, UINT_MAX - C]. 5682 else if (match(II.getOperand(1), m_APInt(C))) 5683 Upper = APInt::getMaxValue(Width) - *C + 1; 5684 break; 5685 case Intrinsic::ssub_sat: 5686 if (match(II.getOperand(0), m_APInt(C))) { 5687 if (C->isNegative()) { 5688 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 5689 Lower = APInt::getSignedMinValue(Width); 5690 Upper = *C - APInt::getSignedMinValue(Width) + 1; 5691 } else { 5692 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 5693 Lower = *C - APInt::getSignedMaxValue(Width); 5694 Upper = APInt::getSignedMaxValue(Width) + 1; 5695 } 5696 } else if (match(II.getOperand(1), m_APInt(C))) { 5697 if (C->isNegative()) { 5698 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 5699 Lower = APInt::getSignedMinValue(Width) - *C; 5700 Upper = APInt::getSignedMaxValue(Width) + 1; 5701 } else { 5702 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 5703 Lower = APInt::getSignedMinValue(Width); 5704 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 5705 } 5706 } 5707 break; 5708 default: 5709 break; 5710 } 5711 } 5712 5713 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 5714 APInt &Upper, const InstrInfoQuery &IIQ) { 5715 const Value *LHS = nullptr, *RHS = nullptr; 5716 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 5717 if (R.Flavor == SPF_UNKNOWN) 5718 return; 5719 5720 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 5721 5722 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 5723 // If the negation part of the abs (in RHS) has the NSW flag, 5724 // then the result of abs(X) is [0..SIGNED_MAX], 5725 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 5726 Lower = APInt::getNullValue(BitWidth); 5727 if (match(RHS, m_Neg(m_Specific(LHS))) && 5728 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 5729 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5730 else 5731 Upper = APInt::getSignedMinValue(BitWidth) + 1; 5732 return; 5733 } 5734 5735 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 5736 // The result of -abs(X) is <= 0. 5737 Lower = APInt::getSignedMinValue(BitWidth); 5738 Upper = APInt(BitWidth, 1); 5739 return; 5740 } 5741 5742 const APInt *C; 5743 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 5744 return; 5745 5746 switch (R.Flavor) { 5747 case SPF_UMIN: 5748 Upper = *C + 1; 5749 break; 5750 case SPF_UMAX: 5751 Lower = *C; 5752 break; 5753 case SPF_SMIN: 5754 Lower = APInt::getSignedMinValue(BitWidth); 5755 Upper = *C + 1; 5756 break; 5757 case SPF_SMAX: 5758 Lower = *C; 5759 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5760 break; 5761 default: 5762 break; 5763 } 5764 } 5765 5766 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 5767 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 5768 5769 const APInt *C; 5770 if (match(V, m_APInt(C))) 5771 return ConstantRange(*C); 5772 5773 InstrInfoQuery IIQ(UseInstrInfo); 5774 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 5775 APInt Lower = APInt(BitWidth, 0); 5776 APInt Upper = APInt(BitWidth, 0); 5777 if (auto *BO = dyn_cast<BinaryOperator>(V)) 5778 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 5779 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 5780 setLimitsForIntrinsic(*II, Lower, Upper); 5781 else if (auto *SI = dyn_cast<SelectInst>(V)) 5782 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 5783 5784 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 5785 5786 if (auto *I = dyn_cast<Instruction>(V)) 5787 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 5788 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 5789 5790 return CR; 5791 } 5792 5793 static Optional<int64_t> 5794 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 5795 // Skip over the first indices. 5796 gep_type_iterator GTI = gep_type_begin(GEP); 5797 for (unsigned i = 1; i != Idx; ++i, ++GTI) 5798 /*skip along*/; 5799 5800 // Compute the offset implied by the rest of the indices. 5801 int64_t Offset = 0; 5802 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 5803 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 5804 if (!OpC) 5805 return None; 5806 if (OpC->isZero()) 5807 continue; // No offset. 5808 5809 // Handle struct indices, which add their field offset to the pointer. 5810 if (StructType *STy = GTI.getStructTypeOrNull()) { 5811 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 5812 continue; 5813 } 5814 5815 // Otherwise, we have a sequential type like an array or vector. Multiply 5816 // the index by the ElementSize. 5817 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 5818 Offset += Size * OpC->getSExtValue(); 5819 } 5820 5821 return Offset; 5822 } 5823 5824 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 5825 const DataLayout &DL) { 5826 Ptr1 = Ptr1->stripPointerCasts(); 5827 Ptr2 = Ptr2->stripPointerCasts(); 5828 5829 // Handle the trivial case first. 5830 if (Ptr1 == Ptr2) { 5831 return 0; 5832 } 5833 5834 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 5835 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 5836 5837 // If one pointer is a GEP see if the GEP is a constant offset from the base, 5838 // as in "P" and "gep P, 1". 5839 // Also do this iteratively to handle the the following case: 5840 // Ptr_t1 = GEP Ptr1, c1 5841 // Ptr_t2 = GEP Ptr_t1, c2 5842 // Ptr2 = GEP Ptr_t2, c3 5843 // where we will return c1+c2+c3. 5844 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 5845 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 5846 // are the same, and return the difference between offsets. 5847 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 5848 const Value *Ptr) -> Optional<int64_t> { 5849 const GEPOperator *GEP_T = GEP; 5850 int64_t OffsetVal = 0; 5851 bool HasSameBase = false; 5852 while (GEP_T) { 5853 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 5854 if (!Offset) 5855 return None; 5856 OffsetVal += *Offset; 5857 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 5858 if (Op0 == Ptr) { 5859 HasSameBase = true; 5860 break; 5861 } 5862 GEP_T = dyn_cast<GEPOperator>(Op0); 5863 } 5864 if (!HasSameBase) 5865 return None; 5866 return OffsetVal; 5867 }; 5868 5869 if (GEP1) { 5870 auto Offset = getOffsetFromBase(GEP1, Ptr2); 5871 if (Offset) 5872 return -*Offset; 5873 } 5874 if (GEP2) { 5875 auto Offset = getOffsetFromBase(GEP2, Ptr1); 5876 if (Offset) 5877 return Offset; 5878 } 5879 5880 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 5881 // base. After that base, they may have some number of common (and 5882 // potentially variable) indices. After that they handle some constant 5883 // offset, which determines their offset from each other. At this point, we 5884 // handle no other case. 5885 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 5886 return None; 5887 5888 // Skip any common indices and track the GEP types. 5889 unsigned Idx = 1; 5890 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 5891 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 5892 break; 5893 5894 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 5895 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 5896 if (!Offset1 || !Offset2) 5897 return None; 5898 return *Offset2 - *Offset1; 5899 } 5900