1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include <algorithm>
69 #include <array>
70 #include <cassert>
71 #include <cstdint>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 using namespace llvm::PatternMatch;
77 
78 const unsigned MaxDepth = 6;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getIndexTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static void computeKnownBits(const Value *V, KnownBits &Known,
165                              unsigned Depth, const Query &Q);
166 
167 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
168                             const DataLayout &DL, unsigned Depth,
169                             AssumptionCache *AC, const Instruction *CxtI,
170                             const DominatorTree *DT,
171                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
172   ::computeKnownBits(V, Known, Depth,
173                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
174 }
175 
176 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
177                                   const Query &Q);
178 
179 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
180                                  unsigned Depth, AssumptionCache *AC,
181                                  const Instruction *CxtI,
182                                  const DominatorTree *DT,
183                                  OptimizationRemarkEmitter *ORE,
184                                  bool UseInstrInfo) {
185   return ::computeKnownBits(
186       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
187 }
188 
189 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
190                                const DataLayout &DL, AssumptionCache *AC,
191                                const Instruction *CxtI, const DominatorTree *DT,
192                                bool UseInstrInfo) {
193   assert(LHS->getType() == RHS->getType() &&
194          "LHS and RHS should have the same type");
195   assert(LHS->getType()->isIntOrIntVectorTy() &&
196          "LHS and RHS should be integers");
197   // Look for an inverted mask: (X & ~M) op (Y & M).
198   Value *M;
199   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
200       match(RHS, m_c_And(m_Specific(M), m_Value())))
201     return true;
202   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
203       match(LHS, m_c_And(m_Specific(M), m_Value())))
204     return true;
205   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
206   KnownBits LHSKnown(IT->getBitWidth());
207   KnownBits RHSKnown(IT->getBitWidth());
208   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
209   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
210   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
211 }
212 
213 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
214   for (const User *U : CxtI->users()) {
215     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
216       if (IC->isEquality())
217         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
218           if (C->isNullValue())
219             continue;
220     return false;
221   }
222   return true;
223 }
224 
225 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
226                                    const Query &Q);
227 
228 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
229                                   bool OrZero, unsigned Depth,
230                                   AssumptionCache *AC, const Instruction *CxtI,
231                                   const DominatorTree *DT, bool UseInstrInfo) {
232   return ::isKnownToBeAPowerOfTwo(
233       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
234 }
235 
236 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
237 
238 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
239                           AssumptionCache *AC, const Instruction *CxtI,
240                           const DominatorTree *DT, bool UseInstrInfo) {
241   return ::isKnownNonZero(V, Depth,
242                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
243 }
244 
245 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
246                               unsigned Depth, AssumptionCache *AC,
247                               const Instruction *CxtI, const DominatorTree *DT,
248                               bool UseInstrInfo) {
249   KnownBits Known =
250       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
251   return Known.isNonNegative();
252 }
253 
254 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
255                            AssumptionCache *AC, const Instruction *CxtI,
256                            const DominatorTree *DT, bool UseInstrInfo) {
257   if (auto *CI = dyn_cast<ConstantInt>(V))
258     return CI->getValue().isStrictlyPositive();
259 
260   // TODO: We'd doing two recursive queries here.  We should factor this such
261   // that only a single query is needed.
262   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
263          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
264 }
265 
266 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
267                            AssumptionCache *AC, const Instruction *CxtI,
268                            const DominatorTree *DT, bool UseInstrInfo) {
269   KnownBits Known =
270       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
271   return Known.isNegative();
272 }
273 
274 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
275 
276 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
277                            const DataLayout &DL, AssumptionCache *AC,
278                            const Instruction *CxtI, const DominatorTree *DT,
279                            bool UseInstrInfo) {
280   return ::isKnownNonEqual(V1, V2,
281                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
282                                  UseInstrInfo, /*ORE=*/nullptr));
283 }
284 
285 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
286                               const Query &Q);
287 
288 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
289                              const DataLayout &DL, unsigned Depth,
290                              AssumptionCache *AC, const Instruction *CxtI,
291                              const DominatorTree *DT, bool UseInstrInfo) {
292   return ::MaskedValueIsZero(
293       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
294 }
295 
296 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
297                                    const Query &Q);
298 
299 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
300                                   unsigned Depth, AssumptionCache *AC,
301                                   const Instruction *CxtI,
302                                   const DominatorTree *DT, bool UseInstrInfo) {
303   return ::ComputeNumSignBits(
304       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
305 }
306 
307 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
308                                    bool NSW,
309                                    KnownBits &KnownOut, KnownBits &Known2,
310                                    unsigned Depth, const Query &Q) {
311   unsigned BitWidth = KnownOut.getBitWidth();
312 
313   // If an initial sequence of bits in the result is not needed, the
314   // corresponding bits in the operands are not needed.
315   KnownBits LHSKnown(BitWidth);
316   computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
317   computeKnownBits(Op1, Known2, Depth + 1, Q);
318 
319   KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
320 }
321 
322 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
323                                 KnownBits &Known, KnownBits &Known2,
324                                 unsigned Depth, const Query &Q) {
325   unsigned BitWidth = Known.getBitWidth();
326   computeKnownBits(Op1, Known, Depth + 1, Q);
327   computeKnownBits(Op0, Known2, Depth + 1, Q);
328 
329   bool isKnownNegative = false;
330   bool isKnownNonNegative = false;
331   // If the multiplication is known not to overflow, compute the sign bit.
332   if (NSW) {
333     if (Op0 == Op1) {
334       // The product of a number with itself is non-negative.
335       isKnownNonNegative = true;
336     } else {
337       bool isKnownNonNegativeOp1 = Known.isNonNegative();
338       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
339       bool isKnownNegativeOp1 = Known.isNegative();
340       bool isKnownNegativeOp0 = Known2.isNegative();
341       // The product of two numbers with the same sign is non-negative.
342       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
343         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
344       // The product of a negative number and a non-negative number is either
345       // negative or zero.
346       if (!isKnownNonNegative)
347         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
348                            isKnownNonZero(Op0, Depth, Q)) ||
349                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
350                            isKnownNonZero(Op1, Depth, Q));
351     }
352   }
353 
354   assert(!Known.hasConflict() && !Known2.hasConflict());
355   // Compute a conservative estimate for high known-0 bits.
356   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
357                              Known2.countMinLeadingZeros(),
358                              BitWidth) - BitWidth;
359   LeadZ = std::min(LeadZ, BitWidth);
360 
361   // The result of the bottom bits of an integer multiply can be
362   // inferred by looking at the bottom bits of both operands and
363   // multiplying them together.
364   // We can infer at least the minimum number of known trailing bits
365   // of both operands. Depending on number of trailing zeros, we can
366   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
367   // a and b are divisible by m and n respectively.
368   // We then calculate how many of those bits are inferrable and set
369   // the output. For example, the i8 mul:
370   //  a = XXXX1100 (12)
371   //  b = XXXX1110 (14)
372   // We know the bottom 3 bits are zero since the first can be divided by
373   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
374   // Applying the multiplication to the trimmed arguments gets:
375   //    XX11 (3)
376   //    X111 (7)
377   // -------
378   //    XX11
379   //   XX11
380   //  XX11
381   // XX11
382   // -------
383   // XXXXX01
384   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
385   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
386   // The proof for this can be described as:
387   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
388   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
389   //                    umin(countTrailingZeros(C2), C6) +
390   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
391   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
392   // %aa = shl i8 %a, C5
393   // %bb = shl i8 %b, C6
394   // %aaa = or i8 %aa, C1
395   // %bbb = or i8 %bb, C2
396   // %mul = mul i8 %aaa, %bbb
397   // %mask = and i8 %mul, C7
398   //   =>
399   // %mask = i8 ((C1*C2)&C7)
400   // Where C5, C6 describe the known bits of %a, %b
401   // C1, C2 describe the known bottom bits of %a, %b.
402   // C7 describes the mask of the known bits of the result.
403   APInt Bottom0 = Known.One;
404   APInt Bottom1 = Known2.One;
405 
406   // How many times we'd be able to divide each argument by 2 (shr by 1).
407   // This gives us the number of trailing zeros on the multiplication result.
408   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
409   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
410   unsigned TrailZero0 = Known.countMinTrailingZeros();
411   unsigned TrailZero1 = Known2.countMinTrailingZeros();
412   unsigned TrailZ = TrailZero0 + TrailZero1;
413 
414   // Figure out the fewest known-bits operand.
415   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
416                                       TrailBitsKnown1 - TrailZero1);
417   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
418 
419   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
420                       Bottom1.getLoBits(TrailBitsKnown1);
421 
422   Known.resetAll();
423   Known.Zero.setHighBits(LeadZ);
424   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
425   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
426 
427   // Only make use of no-wrap flags if we failed to compute the sign bit
428   // directly.  This matters if the multiplication always overflows, in
429   // which case we prefer to follow the result of the direct computation,
430   // though as the program is invoking undefined behaviour we can choose
431   // whatever we like here.
432   if (isKnownNonNegative && !Known.isNegative())
433     Known.makeNonNegative();
434   else if (isKnownNegative && !Known.isNonNegative())
435     Known.makeNegative();
436 }
437 
438 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
439                                              KnownBits &Known) {
440   unsigned BitWidth = Known.getBitWidth();
441   unsigned NumRanges = Ranges.getNumOperands() / 2;
442   assert(NumRanges >= 1);
443 
444   Known.Zero.setAllBits();
445   Known.One.setAllBits();
446 
447   for (unsigned i = 0; i < NumRanges; ++i) {
448     ConstantInt *Lower =
449         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
450     ConstantInt *Upper =
451         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
452     ConstantRange Range(Lower->getValue(), Upper->getValue());
453 
454     // The first CommonPrefixBits of all values in Range are equal.
455     unsigned CommonPrefixBits =
456         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
457 
458     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
459     Known.One &= Range.getUnsignedMax() & Mask;
460     Known.Zero &= ~Range.getUnsignedMax() & Mask;
461   }
462 }
463 
464 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
465   SmallVector<const Value *, 16> WorkSet(1, I);
466   SmallPtrSet<const Value *, 32> Visited;
467   SmallPtrSet<const Value *, 16> EphValues;
468 
469   // The instruction defining an assumption's condition itself is always
470   // considered ephemeral to that assumption (even if it has other
471   // non-ephemeral users). See r246696's test case for an example.
472   if (is_contained(I->operands(), E))
473     return true;
474 
475   while (!WorkSet.empty()) {
476     const Value *V = WorkSet.pop_back_val();
477     if (!Visited.insert(V).second)
478       continue;
479 
480     // If all uses of this value are ephemeral, then so is this value.
481     if (llvm::all_of(V->users(), [&](const User *U) {
482                                    return EphValues.count(U);
483                                  })) {
484       if (V == E)
485         return true;
486 
487       if (V == I || isSafeToSpeculativelyExecute(V)) {
488        EphValues.insert(V);
489        if (const User *U = dyn_cast<User>(V))
490          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
491               J != JE; ++J)
492            WorkSet.push_back(*J);
493       }
494     }
495   }
496 
497   return false;
498 }
499 
500 // Is this an intrinsic that cannot be speculated but also cannot trap?
501 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
502   if (const CallInst *CI = dyn_cast<CallInst>(I))
503     if (Function *F = CI->getCalledFunction())
504       switch (F->getIntrinsicID()) {
505       default: break;
506       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
507       case Intrinsic::assume:
508       case Intrinsic::sideeffect:
509       case Intrinsic::dbg_declare:
510       case Intrinsic::dbg_value:
511       case Intrinsic::dbg_label:
512       case Intrinsic::invariant_start:
513       case Intrinsic::invariant_end:
514       case Intrinsic::lifetime_start:
515       case Intrinsic::lifetime_end:
516       case Intrinsic::objectsize:
517       case Intrinsic::ptr_annotation:
518       case Intrinsic::var_annotation:
519         return true;
520       }
521 
522   return false;
523 }
524 
525 bool llvm::isValidAssumeForContext(const Instruction *Inv,
526                                    const Instruction *CxtI,
527                                    const DominatorTree *DT) {
528   // There are two restrictions on the use of an assume:
529   //  1. The assume must dominate the context (or the control flow must
530   //     reach the assume whenever it reaches the context).
531   //  2. The context must not be in the assume's set of ephemeral values
532   //     (otherwise we will use the assume to prove that the condition
533   //     feeding the assume is trivially true, thus causing the removal of
534   //     the assume).
535 
536   if (DT) {
537     if (DT->dominates(Inv, CxtI))
538       return true;
539   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
540     // We don't have a DT, but this trivially dominates.
541     return true;
542   }
543 
544   // With or without a DT, the only remaining case we will check is if the
545   // instructions are in the same BB.  Give up if that is not the case.
546   if (Inv->getParent() != CxtI->getParent())
547     return false;
548 
549   // If we have a dom tree, then we now know that the assume doesn't dominate
550   // the other instruction.  If we don't have a dom tree then we can check if
551   // the assume is first in the BB.
552   if (!DT) {
553     // Search forward from the assume until we reach the context (or the end
554     // of the block); the common case is that the assume will come first.
555     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
556          IE = Inv->getParent()->end(); I != IE; ++I)
557       if (&*I == CxtI)
558         return true;
559   }
560 
561   // Don't let an assume affect itself - this would cause the problems
562   // `isEphemeralValueOf` is trying to prevent, and it would also make
563   // the loop below go out of bounds.
564   if (Inv == CxtI)
565     return false;
566 
567   // The context comes first, but they're both in the same block. Make sure
568   // there is nothing in between that might interrupt the control flow.
569   for (BasicBlock::const_iterator I =
570          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
571        I != IE; ++I)
572     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
573       return false;
574 
575   return !isEphemeralValueOf(Inv, CxtI);
576 }
577 
578 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
579                                        unsigned Depth, const Query &Q) {
580   // Use of assumptions is context-sensitive. If we don't have a context, we
581   // cannot use them!
582   if (!Q.AC || !Q.CxtI)
583     return;
584 
585   unsigned BitWidth = Known.getBitWidth();
586 
587   // Note that the patterns below need to be kept in sync with the code
588   // in AssumptionCache::updateAffectedValues.
589 
590   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
591     if (!AssumeVH)
592       continue;
593     CallInst *I = cast<CallInst>(AssumeVH);
594     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
595            "Got assumption for the wrong function!");
596     if (Q.isExcluded(I))
597       continue;
598 
599     // Warning: This loop can end up being somewhat performance sensitive.
600     // We're running this loop for once for each value queried resulting in a
601     // runtime of ~O(#assumes * #values).
602 
603     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
604            "must be an assume intrinsic");
605 
606     Value *Arg = I->getArgOperand(0);
607 
608     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
609       assert(BitWidth == 1 && "assume operand is not i1?");
610       Known.setAllOnes();
611       return;
612     }
613     if (match(Arg, m_Not(m_Specific(V))) &&
614         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
615       assert(BitWidth == 1 && "assume operand is not i1?");
616       Known.setAllZero();
617       return;
618     }
619 
620     // The remaining tests are all recursive, so bail out if we hit the limit.
621     if (Depth == MaxDepth)
622       continue;
623 
624     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
625     if (!Cmp)
626       continue;
627 
628     Value *A, *B;
629     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
630 
631     CmpInst::Predicate Pred;
632     uint64_t C;
633     switch (Cmp->getPredicate()) {
634     default:
635       break;
636     case ICmpInst::ICMP_EQ:
637       // assume(v = a)
638       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
639           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
640         KnownBits RHSKnown(BitWidth);
641         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
642         Known.Zero |= RHSKnown.Zero;
643         Known.One  |= RHSKnown.One;
644       // assume(v & b = a)
645       } else if (match(Cmp,
646                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
647                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
648         KnownBits RHSKnown(BitWidth);
649         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
650         KnownBits MaskKnown(BitWidth);
651         computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
652 
653         // For those bits in the mask that are known to be one, we can propagate
654         // known bits from the RHS to V.
655         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
656         Known.One  |= RHSKnown.One  & MaskKnown.One;
657       // assume(~(v & b) = a)
658       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
659                                      m_Value(A))) &&
660                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
661         KnownBits RHSKnown(BitWidth);
662         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
663         KnownBits MaskKnown(BitWidth);
664         computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
665 
666         // For those bits in the mask that are known to be one, we can propagate
667         // inverted known bits from the RHS to V.
668         Known.Zero |= RHSKnown.One  & MaskKnown.One;
669         Known.One  |= RHSKnown.Zero & MaskKnown.One;
670       // assume(v | b = a)
671       } else if (match(Cmp,
672                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
673                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
674         KnownBits RHSKnown(BitWidth);
675         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
676         KnownBits BKnown(BitWidth);
677         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
678 
679         // For those bits in B that are known to be zero, we can propagate known
680         // bits from the RHS to V.
681         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
682         Known.One  |= RHSKnown.One  & BKnown.Zero;
683       // assume(~(v | b) = a)
684       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
685                                      m_Value(A))) &&
686                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
687         KnownBits RHSKnown(BitWidth);
688         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
689         KnownBits BKnown(BitWidth);
690         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
691 
692         // For those bits in B that are known to be zero, we can propagate
693         // inverted known bits from the RHS to V.
694         Known.Zero |= RHSKnown.One  & BKnown.Zero;
695         Known.One  |= RHSKnown.Zero & BKnown.Zero;
696       // assume(v ^ b = a)
697       } else if (match(Cmp,
698                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
699                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
700         KnownBits RHSKnown(BitWidth);
701         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
702         KnownBits BKnown(BitWidth);
703         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
704 
705         // For those bits in B that are known to be zero, we can propagate known
706         // bits from the RHS to V. For those bits in B that are known to be one,
707         // we can propagate inverted known bits from the RHS to V.
708         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
709         Known.One  |= RHSKnown.One  & BKnown.Zero;
710         Known.Zero |= RHSKnown.One  & BKnown.One;
711         Known.One  |= RHSKnown.Zero & BKnown.One;
712       // assume(~(v ^ b) = a)
713       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
714                                      m_Value(A))) &&
715                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
716         KnownBits RHSKnown(BitWidth);
717         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
718         KnownBits BKnown(BitWidth);
719         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
720 
721         // For those bits in B that are known to be zero, we can propagate
722         // inverted known bits from the RHS to V. For those bits in B that are
723         // known to be one, we can propagate known bits from the RHS to V.
724         Known.Zero |= RHSKnown.One  & BKnown.Zero;
725         Known.One  |= RHSKnown.Zero & BKnown.Zero;
726         Known.Zero |= RHSKnown.Zero & BKnown.One;
727         Known.One  |= RHSKnown.One  & BKnown.One;
728       // assume(v << c = a)
729       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
730                                      m_Value(A))) &&
731                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
732         KnownBits RHSKnown(BitWidth);
733         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
734         // For those bits in RHS that are known, we can propagate them to known
735         // bits in V shifted to the right by C.
736         RHSKnown.Zero.lshrInPlace(C);
737         Known.Zero |= RHSKnown.Zero;
738         RHSKnown.One.lshrInPlace(C);
739         Known.One  |= RHSKnown.One;
740       // assume(~(v << c) = a)
741       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
742                                      m_Value(A))) &&
743                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
744         KnownBits RHSKnown(BitWidth);
745         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
746         // For those bits in RHS that are known, we can propagate them inverted
747         // to known bits in V shifted to the right by C.
748         RHSKnown.One.lshrInPlace(C);
749         Known.Zero |= RHSKnown.One;
750         RHSKnown.Zero.lshrInPlace(C);
751         Known.One  |= RHSKnown.Zero;
752       // assume(v >> c = a)
753       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
754                                      m_Value(A))) &&
755                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
756         KnownBits RHSKnown(BitWidth);
757         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
758         // For those bits in RHS that are known, we can propagate them to known
759         // bits in V shifted to the right by C.
760         Known.Zero |= RHSKnown.Zero << C;
761         Known.One  |= RHSKnown.One  << C;
762       // assume(~(v >> c) = a)
763       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
764                                      m_Value(A))) &&
765                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
766         KnownBits RHSKnown(BitWidth);
767         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
768         // For those bits in RHS that are known, we can propagate them inverted
769         // to known bits in V shifted to the right by C.
770         Known.Zero |= RHSKnown.One  << C;
771         Known.One  |= RHSKnown.Zero << C;
772       }
773       break;
774     case ICmpInst::ICMP_SGE:
775       // assume(v >=_s c) where c is non-negative
776       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
777           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
778         KnownBits RHSKnown(BitWidth);
779         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
780 
781         if (RHSKnown.isNonNegative()) {
782           // We know that the sign bit is zero.
783           Known.makeNonNegative();
784         }
785       }
786       break;
787     case ICmpInst::ICMP_SGT:
788       // assume(v >_s c) where c is at least -1.
789       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
790           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
791         KnownBits RHSKnown(BitWidth);
792         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
793 
794         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
795           // We know that the sign bit is zero.
796           Known.makeNonNegative();
797         }
798       }
799       break;
800     case ICmpInst::ICMP_SLE:
801       // assume(v <=_s c) where c is negative
802       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
803           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
804         KnownBits RHSKnown(BitWidth);
805         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
806 
807         if (RHSKnown.isNegative()) {
808           // We know that the sign bit is one.
809           Known.makeNegative();
810         }
811       }
812       break;
813     case ICmpInst::ICMP_SLT:
814       // assume(v <_s c) where c is non-positive
815       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
816           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
817         KnownBits RHSKnown(BitWidth);
818         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
819 
820         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
821           // We know that the sign bit is one.
822           Known.makeNegative();
823         }
824       }
825       break;
826     case ICmpInst::ICMP_ULE:
827       // assume(v <=_u c)
828       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
829           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
830         KnownBits RHSKnown(BitWidth);
831         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
832 
833         // Whatever high bits in c are zero are known to be zero.
834         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
835       }
836       break;
837     case ICmpInst::ICMP_ULT:
838       // assume(v <_u c)
839       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
840           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
841         KnownBits RHSKnown(BitWidth);
842         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
843 
844         // If the RHS is known zero, then this assumption must be wrong (nothing
845         // is unsigned less than zero). Signal a conflict and get out of here.
846         if (RHSKnown.isZero()) {
847           Known.Zero.setAllBits();
848           Known.One.setAllBits();
849           break;
850         }
851 
852         // Whatever high bits in c are zero are known to be zero (if c is a power
853         // of 2, then one more).
854         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
855           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
856         else
857           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
858       }
859       break;
860     }
861   }
862 
863   // If assumptions conflict with each other or previous known bits, then we
864   // have a logical fallacy. It's possible that the assumption is not reachable,
865   // so this isn't a real bug. On the other hand, the program may have undefined
866   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
867   // clear out the known bits, try to warn the user, and hope for the best.
868   if (Known.Zero.intersects(Known.One)) {
869     Known.resetAll();
870 
871     if (Q.ORE)
872       Q.ORE->emit([&]() {
873         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
874         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
875                                           CxtI)
876                << "Detected conflicting code assumptions. Program may "
877                   "have undefined behavior, or compiler may have "
878                   "internal error.";
879       });
880   }
881 }
882 
883 /// Compute known bits from a shift operator, including those with a
884 /// non-constant shift amount. Known is the output of this function. Known2 is a
885 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
886 /// operator-specific functions that, given the known-zero or known-one bits
887 /// respectively, and a shift amount, compute the implied known-zero or
888 /// known-one bits of the shift operator's result respectively for that shift
889 /// amount. The results from calling KZF and KOF are conservatively combined for
890 /// all permitted shift amounts.
891 static void computeKnownBitsFromShiftOperator(
892     const Operator *I, KnownBits &Known, KnownBits &Known2,
893     unsigned Depth, const Query &Q,
894     function_ref<APInt(const APInt &, unsigned)> KZF,
895     function_ref<APInt(const APInt &, unsigned)> KOF) {
896   unsigned BitWidth = Known.getBitWidth();
897 
898   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
899     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
900 
901     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
902     Known.Zero = KZF(Known.Zero, ShiftAmt);
903     Known.One  = KOF(Known.One, ShiftAmt);
904     // If the known bits conflict, this must be an overflowing left shift, so
905     // the shift result is poison. We can return anything we want. Choose 0 for
906     // the best folding opportunity.
907     if (Known.hasConflict())
908       Known.setAllZero();
909 
910     return;
911   }
912 
913   computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
914 
915   // If the shift amount could be greater than or equal to the bit-width of the
916   // LHS, the value could be poison, but bail out because the check below is
917   // expensive. TODO: Should we just carry on?
918   if ((~Known.Zero).uge(BitWidth)) {
919     Known.resetAll();
920     return;
921   }
922 
923   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
924   // BitWidth > 64 and any upper bits are known, we'll end up returning the
925   // limit value (which implies all bits are known).
926   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
927   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
928 
929   // It would be more-clearly correct to use the two temporaries for this
930   // calculation. Reusing the APInts here to prevent unnecessary allocations.
931   Known.resetAll();
932 
933   // If we know the shifter operand is nonzero, we can sometimes infer more
934   // known bits. However this is expensive to compute, so be lazy about it and
935   // only compute it when absolutely necessary.
936   Optional<bool> ShifterOperandIsNonZero;
937 
938   // Early exit if we can't constrain any well-defined shift amount.
939   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
940       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
941     ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
942     if (!*ShifterOperandIsNonZero)
943       return;
944   }
945 
946   computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
947 
948   Known.Zero.setAllBits();
949   Known.One.setAllBits();
950   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
951     // Combine the shifted known input bits only for those shift amounts
952     // compatible with its known constraints.
953     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
954       continue;
955     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
956       continue;
957     // If we know the shifter is nonzero, we may be able to infer more known
958     // bits. This check is sunk down as far as possible to avoid the expensive
959     // call to isKnownNonZero if the cheaper checks above fail.
960     if (ShiftAmt == 0) {
961       if (!ShifterOperandIsNonZero.hasValue())
962         ShifterOperandIsNonZero =
963             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
964       if (*ShifterOperandIsNonZero)
965         continue;
966     }
967 
968     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
969     Known.One  &= KOF(Known2.One, ShiftAmt);
970   }
971 
972   // If the known bits conflict, the result is poison. Return a 0 and hope the
973   // caller can further optimize that.
974   if (Known.hasConflict())
975     Known.setAllZero();
976 }
977 
978 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
979                                          unsigned Depth, const Query &Q) {
980   unsigned BitWidth = Known.getBitWidth();
981 
982   KnownBits Known2(Known);
983   switch (I->getOpcode()) {
984   default: break;
985   case Instruction::Load:
986     if (MDNode *MD =
987             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
988       computeKnownBitsFromRangeMetadata(*MD, Known);
989     break;
990   case Instruction::And: {
991     // If either the LHS or the RHS are Zero, the result is zero.
992     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
993     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
994 
995     // Output known-1 bits are only known if set in both the LHS & RHS.
996     Known.One &= Known2.One;
997     // Output known-0 are known to be clear if zero in either the LHS | RHS.
998     Known.Zero |= Known2.Zero;
999 
1000     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1001     // here we handle the more general case of adding any odd number by
1002     // matching the form add(x, add(x, y)) where y is odd.
1003     // TODO: This could be generalized to clearing any bit set in y where the
1004     // following bit is known to be unset in y.
1005     Value *X = nullptr, *Y = nullptr;
1006     if (!Known.Zero[0] && !Known.One[0] &&
1007         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1008       Known2.resetAll();
1009       computeKnownBits(Y, Known2, Depth + 1, Q);
1010       if (Known2.countMinTrailingOnes() > 0)
1011         Known.Zero.setBit(0);
1012     }
1013     break;
1014   }
1015   case Instruction::Or:
1016     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1017     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1018 
1019     // Output known-0 bits are only known if clear in both the LHS & RHS.
1020     Known.Zero &= Known2.Zero;
1021     // Output known-1 are known to be set if set in either the LHS | RHS.
1022     Known.One |= Known2.One;
1023     break;
1024   case Instruction::Xor: {
1025     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1026     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1027 
1028     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1029     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1030     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1031     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1032     Known.Zero = std::move(KnownZeroOut);
1033     break;
1034   }
1035   case Instruction::Mul: {
1036     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1037     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1038                         Known2, Depth, Q);
1039     break;
1040   }
1041   case Instruction::UDiv: {
1042     // For the purposes of computing leading zeros we can conservatively
1043     // treat a udiv as a logical right shift by the power of 2 known to
1044     // be less than the denominator.
1045     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1046     unsigned LeadZ = Known2.countMinLeadingZeros();
1047 
1048     Known2.resetAll();
1049     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1050     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1051     if (RHSMaxLeadingZeros != BitWidth)
1052       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1053 
1054     Known.Zero.setHighBits(LeadZ);
1055     break;
1056   }
1057   case Instruction::Select: {
1058     const Value *LHS = nullptr, *RHS = nullptr;
1059     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1060     if (SelectPatternResult::isMinOrMax(SPF)) {
1061       computeKnownBits(RHS, Known, Depth + 1, Q);
1062       computeKnownBits(LHS, Known2, Depth + 1, Q);
1063     } else {
1064       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1065       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1066     }
1067 
1068     unsigned MaxHighOnes = 0;
1069     unsigned MaxHighZeros = 0;
1070     if (SPF == SPF_SMAX) {
1071       // If both sides are negative, the result is negative.
1072       if (Known.isNegative() && Known2.isNegative())
1073         // We can derive a lower bound on the result by taking the max of the
1074         // leading one bits.
1075         MaxHighOnes =
1076             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1077       // If either side is non-negative, the result is non-negative.
1078       else if (Known.isNonNegative() || Known2.isNonNegative())
1079         MaxHighZeros = 1;
1080     } else if (SPF == SPF_SMIN) {
1081       // If both sides are non-negative, the result is non-negative.
1082       if (Known.isNonNegative() && Known2.isNonNegative())
1083         // We can derive an upper bound on the result by taking the max of the
1084         // leading zero bits.
1085         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1086                                 Known2.countMinLeadingZeros());
1087       // If either side is negative, the result is negative.
1088       else if (Known.isNegative() || Known2.isNegative())
1089         MaxHighOnes = 1;
1090     } else if (SPF == SPF_UMAX) {
1091       // We can derive a lower bound on the result by taking the max of the
1092       // leading one bits.
1093       MaxHighOnes =
1094           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1095     } else if (SPF == SPF_UMIN) {
1096       // We can derive an upper bound on the result by taking the max of the
1097       // leading zero bits.
1098       MaxHighZeros =
1099           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1100     } else if (SPF == SPF_ABS) {
1101       // RHS from matchSelectPattern returns the negation part of abs pattern.
1102       // If the negate has an NSW flag we can assume the sign bit of the result
1103       // will be 0 because that makes abs(INT_MIN) undefined.
1104       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1105           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1106         MaxHighZeros = 1;
1107     }
1108 
1109     // Only known if known in both the LHS and RHS.
1110     Known.One &= Known2.One;
1111     Known.Zero &= Known2.Zero;
1112     if (MaxHighOnes > 0)
1113       Known.One.setHighBits(MaxHighOnes);
1114     if (MaxHighZeros > 0)
1115       Known.Zero.setHighBits(MaxHighZeros);
1116     break;
1117   }
1118   case Instruction::FPTrunc:
1119   case Instruction::FPExt:
1120   case Instruction::FPToUI:
1121   case Instruction::FPToSI:
1122   case Instruction::SIToFP:
1123   case Instruction::UIToFP:
1124     break; // Can't work with floating point.
1125   case Instruction::PtrToInt:
1126   case Instruction::IntToPtr:
1127     // Fall through and handle them the same as zext/trunc.
1128     LLVM_FALLTHROUGH;
1129   case Instruction::ZExt:
1130   case Instruction::Trunc: {
1131     Type *SrcTy = I->getOperand(0)->getType();
1132 
1133     unsigned SrcBitWidth;
1134     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1135     // which fall through here.
1136     Type *ScalarTy = SrcTy->getScalarType();
1137     SrcBitWidth = ScalarTy->isPointerTy() ?
1138       Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1139       Q.DL.getTypeSizeInBits(ScalarTy);
1140 
1141     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1142     Known = Known.zextOrTrunc(SrcBitWidth, false);
1143     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1144     Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */);
1145     break;
1146   }
1147   case Instruction::BitCast: {
1148     Type *SrcTy = I->getOperand(0)->getType();
1149     if (SrcTy->isIntOrPtrTy() &&
1150         // TODO: For now, not handling conversions like:
1151         // (bitcast i64 %x to <2 x i32>)
1152         !I->getType()->isVectorTy()) {
1153       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1154       break;
1155     }
1156     break;
1157   }
1158   case Instruction::SExt: {
1159     // Compute the bits in the result that are not present in the input.
1160     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1161 
1162     Known = Known.trunc(SrcBitWidth);
1163     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1164     // If the sign bit of the input is known set or clear, then we know the
1165     // top bits of the result.
1166     Known = Known.sext(BitWidth);
1167     break;
1168   }
1169   case Instruction::Shl: {
1170     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1171     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1172     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1173       APInt KZResult = KnownZero << ShiftAmt;
1174       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1175       // If this shift has "nsw" keyword, then the result is either a poison
1176       // value or has the same sign bit as the first operand.
1177       if (NSW && KnownZero.isSignBitSet())
1178         KZResult.setSignBit();
1179       return KZResult;
1180     };
1181 
1182     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1183       APInt KOResult = KnownOne << ShiftAmt;
1184       if (NSW && KnownOne.isSignBitSet())
1185         KOResult.setSignBit();
1186       return KOResult;
1187     };
1188 
1189     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1190     break;
1191   }
1192   case Instruction::LShr: {
1193     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1194     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1195       APInt KZResult = KnownZero.lshr(ShiftAmt);
1196       // High bits known zero.
1197       KZResult.setHighBits(ShiftAmt);
1198       return KZResult;
1199     };
1200 
1201     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1202       return KnownOne.lshr(ShiftAmt);
1203     };
1204 
1205     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1206     break;
1207   }
1208   case Instruction::AShr: {
1209     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1210     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1211       return KnownZero.ashr(ShiftAmt);
1212     };
1213 
1214     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1215       return KnownOne.ashr(ShiftAmt);
1216     };
1217 
1218     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1219     break;
1220   }
1221   case Instruction::Sub: {
1222     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1223     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1224                            Known, Known2, Depth, Q);
1225     break;
1226   }
1227   case Instruction::Add: {
1228     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1229     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1230                            Known, Known2, Depth, Q);
1231     break;
1232   }
1233   case Instruction::SRem:
1234     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1235       APInt RA = Rem->getValue().abs();
1236       if (RA.isPowerOf2()) {
1237         APInt LowBits = RA - 1;
1238         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1239 
1240         // The low bits of the first operand are unchanged by the srem.
1241         Known.Zero = Known2.Zero & LowBits;
1242         Known.One = Known2.One & LowBits;
1243 
1244         // If the first operand is non-negative or has all low bits zero, then
1245         // the upper bits are all zero.
1246         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1247           Known.Zero |= ~LowBits;
1248 
1249         // If the first operand is negative and not all low bits are zero, then
1250         // the upper bits are all one.
1251         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1252           Known.One |= ~LowBits;
1253 
1254         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1255         break;
1256       }
1257     }
1258 
1259     // The sign bit is the LHS's sign bit, except when the result of the
1260     // remainder is zero.
1261     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1262     // If it's known zero, our sign bit is also zero.
1263     if (Known2.isNonNegative())
1264       Known.makeNonNegative();
1265 
1266     break;
1267   case Instruction::URem: {
1268     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1269       const APInt &RA = Rem->getValue();
1270       if (RA.isPowerOf2()) {
1271         APInt LowBits = (RA - 1);
1272         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1273         Known.Zero |= ~LowBits;
1274         Known.One &= LowBits;
1275         break;
1276       }
1277     }
1278 
1279     // Since the result is less than or equal to either operand, any leading
1280     // zero bits in either operand must also exist in the result.
1281     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1282     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1283 
1284     unsigned Leaders =
1285         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1286     Known.resetAll();
1287     Known.Zero.setHighBits(Leaders);
1288     break;
1289   }
1290 
1291   case Instruction::Alloca: {
1292     const AllocaInst *AI = cast<AllocaInst>(I);
1293     unsigned Align = AI->getAlignment();
1294     if (Align == 0)
1295       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1296 
1297     if (Align > 0)
1298       Known.Zero.setLowBits(countTrailingZeros(Align));
1299     break;
1300   }
1301   case Instruction::GetElementPtr: {
1302     // Analyze all of the subscripts of this getelementptr instruction
1303     // to determine if we can prove known low zero bits.
1304     KnownBits LocalKnown(BitWidth);
1305     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1306     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1307 
1308     gep_type_iterator GTI = gep_type_begin(I);
1309     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1310       Value *Index = I->getOperand(i);
1311       if (StructType *STy = GTI.getStructTypeOrNull()) {
1312         // Handle struct member offset arithmetic.
1313 
1314         // Handle case when index is vector zeroinitializer
1315         Constant *CIndex = cast<Constant>(Index);
1316         if (CIndex->isZeroValue())
1317           continue;
1318 
1319         if (CIndex->getType()->isVectorTy())
1320           Index = CIndex->getSplatValue();
1321 
1322         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1323         const StructLayout *SL = Q.DL.getStructLayout(STy);
1324         uint64_t Offset = SL->getElementOffset(Idx);
1325         TrailZ = std::min<unsigned>(TrailZ,
1326                                     countTrailingZeros(Offset));
1327       } else {
1328         // Handle array index arithmetic.
1329         Type *IndexedTy = GTI.getIndexedType();
1330         if (!IndexedTy->isSized()) {
1331           TrailZ = 0;
1332           break;
1333         }
1334         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1335         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1336         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1337         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1338         TrailZ = std::min(TrailZ,
1339                           unsigned(countTrailingZeros(TypeSize) +
1340                                    LocalKnown.countMinTrailingZeros()));
1341       }
1342     }
1343 
1344     Known.Zero.setLowBits(TrailZ);
1345     break;
1346   }
1347   case Instruction::PHI: {
1348     const PHINode *P = cast<PHINode>(I);
1349     // Handle the case of a simple two-predecessor recurrence PHI.
1350     // There's a lot more that could theoretically be done here, but
1351     // this is sufficient to catch some interesting cases.
1352     if (P->getNumIncomingValues() == 2) {
1353       for (unsigned i = 0; i != 2; ++i) {
1354         Value *L = P->getIncomingValue(i);
1355         Value *R = P->getIncomingValue(!i);
1356         Operator *LU = dyn_cast<Operator>(L);
1357         if (!LU)
1358           continue;
1359         unsigned Opcode = LU->getOpcode();
1360         // Check for operations that have the property that if
1361         // both their operands have low zero bits, the result
1362         // will have low zero bits.
1363         if (Opcode == Instruction::Add ||
1364             Opcode == Instruction::Sub ||
1365             Opcode == Instruction::And ||
1366             Opcode == Instruction::Or ||
1367             Opcode == Instruction::Mul) {
1368           Value *LL = LU->getOperand(0);
1369           Value *LR = LU->getOperand(1);
1370           // Find a recurrence.
1371           if (LL == I)
1372             L = LR;
1373           else if (LR == I)
1374             L = LL;
1375           else
1376             continue; // Check for recurrence with L and R flipped.
1377           // Ok, we have a PHI of the form L op= R. Check for low
1378           // zero bits.
1379           computeKnownBits(R, Known2, Depth + 1, Q);
1380 
1381           // We need to take the minimum number of known bits
1382           KnownBits Known3(Known);
1383           computeKnownBits(L, Known3, Depth + 1, Q);
1384 
1385           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1386                                          Known3.countMinTrailingZeros()));
1387 
1388           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1389           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1390             // If initial value of recurrence is nonnegative, and we are adding
1391             // a nonnegative number with nsw, the result can only be nonnegative
1392             // or poison value regardless of the number of times we execute the
1393             // add in phi recurrence. If initial value is negative and we are
1394             // adding a negative number with nsw, the result can only be
1395             // negative or poison value. Similar arguments apply to sub and mul.
1396             //
1397             // (add non-negative, non-negative) --> non-negative
1398             // (add negative, negative) --> negative
1399             if (Opcode == Instruction::Add) {
1400               if (Known2.isNonNegative() && Known3.isNonNegative())
1401                 Known.makeNonNegative();
1402               else if (Known2.isNegative() && Known3.isNegative())
1403                 Known.makeNegative();
1404             }
1405 
1406             // (sub nsw non-negative, negative) --> non-negative
1407             // (sub nsw negative, non-negative) --> negative
1408             else if (Opcode == Instruction::Sub && LL == I) {
1409               if (Known2.isNonNegative() && Known3.isNegative())
1410                 Known.makeNonNegative();
1411               else if (Known2.isNegative() && Known3.isNonNegative())
1412                 Known.makeNegative();
1413             }
1414 
1415             // (mul nsw non-negative, non-negative) --> non-negative
1416             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1417                      Known3.isNonNegative())
1418               Known.makeNonNegative();
1419           }
1420 
1421           break;
1422         }
1423       }
1424     }
1425 
1426     // Unreachable blocks may have zero-operand PHI nodes.
1427     if (P->getNumIncomingValues() == 0)
1428       break;
1429 
1430     // Otherwise take the unions of the known bit sets of the operands,
1431     // taking conservative care to avoid excessive recursion.
1432     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1433       // Skip if every incoming value references to ourself.
1434       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1435         break;
1436 
1437       Known.Zero.setAllBits();
1438       Known.One.setAllBits();
1439       for (Value *IncValue : P->incoming_values()) {
1440         // Skip direct self references.
1441         if (IncValue == P) continue;
1442 
1443         Known2 = KnownBits(BitWidth);
1444         // Recurse, but cap the recursion to one level, because we don't
1445         // want to waste time spinning around in loops.
1446         computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1447         Known.Zero &= Known2.Zero;
1448         Known.One &= Known2.One;
1449         // If all bits have been ruled out, there's no need to check
1450         // more operands.
1451         if (!Known.Zero && !Known.One)
1452           break;
1453       }
1454     }
1455     break;
1456   }
1457   case Instruction::Call:
1458   case Instruction::Invoke:
1459     // If range metadata is attached to this call, set known bits from that,
1460     // and then intersect with known bits based on other properties of the
1461     // function.
1462     if (MDNode *MD =
1463             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1464       computeKnownBitsFromRangeMetadata(*MD, Known);
1465     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1466       computeKnownBits(RV, Known2, Depth + 1, Q);
1467       Known.Zero |= Known2.Zero;
1468       Known.One |= Known2.One;
1469     }
1470     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1471       switch (II->getIntrinsicID()) {
1472       default: break;
1473       case Intrinsic::bitreverse:
1474         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1475         Known.Zero |= Known2.Zero.reverseBits();
1476         Known.One |= Known2.One.reverseBits();
1477         break;
1478       case Intrinsic::bswap:
1479         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1480         Known.Zero |= Known2.Zero.byteSwap();
1481         Known.One |= Known2.One.byteSwap();
1482         break;
1483       case Intrinsic::ctlz: {
1484         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1485         // If we have a known 1, its position is our upper bound.
1486         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1487         // If this call is undefined for 0, the result will be less than 2^n.
1488         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1489           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1490         unsigned LowBits = Log2_32(PossibleLZ)+1;
1491         Known.Zero.setBitsFrom(LowBits);
1492         break;
1493       }
1494       case Intrinsic::cttz: {
1495         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1496         // If we have a known 1, its position is our upper bound.
1497         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1498         // If this call is undefined for 0, the result will be less than 2^n.
1499         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1500           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1501         unsigned LowBits = Log2_32(PossibleTZ)+1;
1502         Known.Zero.setBitsFrom(LowBits);
1503         break;
1504       }
1505       case Intrinsic::ctpop: {
1506         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1507         // We can bound the space the count needs.  Also, bits known to be zero
1508         // can't contribute to the population.
1509         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1510         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1511         Known.Zero.setBitsFrom(LowBits);
1512         // TODO: we could bound KnownOne using the lower bound on the number
1513         // of bits which might be set provided by popcnt KnownOne2.
1514         break;
1515       }
1516       case Intrinsic::fshr:
1517       case Intrinsic::fshl: {
1518         const APInt *SA;
1519         if (!match(I->getOperand(2), m_APInt(SA)))
1520           break;
1521 
1522         // Normalize to funnel shift left.
1523         uint64_t ShiftAmt = SA->urem(BitWidth);
1524         if (II->getIntrinsicID() == Intrinsic::fshr)
1525           ShiftAmt = BitWidth - ShiftAmt;
1526 
1527         KnownBits Known3(Known);
1528         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1529         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1530 
1531         Known.Zero =
1532             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1533         Known.One =
1534             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1535         break;
1536       }
1537       case Intrinsic::uadd_sat:
1538       case Intrinsic::usub_sat: {
1539         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1540         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1541         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1542 
1543         // Add: Leading ones of either operand are preserved.
1544         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1545         // as leading zeros in the result.
1546         unsigned LeadingKnown;
1547         if (IsAdd)
1548           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1549                                   Known2.countMinLeadingOnes());
1550         else
1551           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1552                                   Known2.countMinLeadingOnes());
1553 
1554         Known = KnownBits::computeForAddSub(
1555             IsAdd, /* NSW */ false, Known, Known2);
1556 
1557         // We select between the operation result and all-ones/zero
1558         // respectively, so we can preserve known ones/zeros.
1559         if (IsAdd) {
1560           Known.One.setHighBits(LeadingKnown);
1561           Known.Zero.clearAllBits();
1562         } else {
1563           Known.Zero.setHighBits(LeadingKnown);
1564           Known.One.clearAllBits();
1565         }
1566         break;
1567       }
1568       case Intrinsic::x86_sse42_crc32_64_64:
1569         Known.Zero.setBitsFrom(32);
1570         break;
1571       }
1572     }
1573     break;
1574   case Instruction::ExtractElement:
1575     // Look through extract element. At the moment we keep this simple and skip
1576     // tracking the specific element. But at least we might find information
1577     // valid for all elements of the vector (for example if vector is sign
1578     // extended, shifted, etc).
1579     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1580     break;
1581   case Instruction::ExtractValue:
1582     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1583       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1584       if (EVI->getNumIndices() != 1) break;
1585       if (EVI->getIndices()[0] == 0) {
1586         switch (II->getIntrinsicID()) {
1587         default: break;
1588         case Intrinsic::uadd_with_overflow:
1589         case Intrinsic::sadd_with_overflow:
1590           computeKnownBitsAddSub(true, II->getArgOperand(0),
1591                                  II->getArgOperand(1), false, Known, Known2,
1592                                  Depth, Q);
1593           break;
1594         case Intrinsic::usub_with_overflow:
1595         case Intrinsic::ssub_with_overflow:
1596           computeKnownBitsAddSub(false, II->getArgOperand(0),
1597                                  II->getArgOperand(1), false, Known, Known2,
1598                                  Depth, Q);
1599           break;
1600         case Intrinsic::umul_with_overflow:
1601         case Intrinsic::smul_with_overflow:
1602           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1603                               Known, Known2, Depth, Q);
1604           break;
1605         }
1606       }
1607     }
1608   }
1609 }
1610 
1611 /// Determine which bits of V are known to be either zero or one and return
1612 /// them.
1613 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1614   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1615   computeKnownBits(V, Known, Depth, Q);
1616   return Known;
1617 }
1618 
1619 /// Determine which bits of V are known to be either zero or one and return
1620 /// them in the Known bit set.
1621 ///
1622 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1623 /// we cannot optimize based on the assumption that it is zero without changing
1624 /// it to be an explicit zero.  If we don't change it to zero, other code could
1625 /// optimized based on the contradictory assumption that it is non-zero.
1626 /// Because instcombine aggressively folds operations with undef args anyway,
1627 /// this won't lose us code quality.
1628 ///
1629 /// This function is defined on values with integer type, values with pointer
1630 /// type, and vectors of integers.  In the case
1631 /// where V is a vector, known zero, and known one values are the
1632 /// same width as the vector element, and the bit is set only if it is true
1633 /// for all of the elements in the vector.
1634 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1635                       const Query &Q) {
1636   assert(V && "No Value?");
1637   assert(Depth <= MaxDepth && "Limit Search Depth");
1638   unsigned BitWidth = Known.getBitWidth();
1639 
1640   assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1641           V->getType()->isPtrOrPtrVectorTy()) &&
1642          "Not integer or pointer type!");
1643 
1644   Type *ScalarTy = V->getType()->getScalarType();
1645   unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1646     Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1647   assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1648   (void)BitWidth;
1649   (void)ExpectedWidth;
1650 
1651   const APInt *C;
1652   if (match(V, m_APInt(C))) {
1653     // We know all of the bits for a scalar constant or a splat vector constant!
1654     Known.One = *C;
1655     Known.Zero = ~Known.One;
1656     return;
1657   }
1658   // Null and aggregate-zero are all-zeros.
1659   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1660     Known.setAllZero();
1661     return;
1662   }
1663   // Handle a constant vector by taking the intersection of the known bits of
1664   // each element.
1665   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1666     // We know that CDS must be a vector of integers. Take the intersection of
1667     // each element.
1668     Known.Zero.setAllBits(); Known.One.setAllBits();
1669     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1670       APInt Elt = CDS->getElementAsAPInt(i);
1671       Known.Zero &= ~Elt;
1672       Known.One &= Elt;
1673     }
1674     return;
1675   }
1676 
1677   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1678     // We know that CV must be a vector of integers. Take the intersection of
1679     // each element.
1680     Known.Zero.setAllBits(); Known.One.setAllBits();
1681     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1682       Constant *Element = CV->getAggregateElement(i);
1683       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1684       if (!ElementCI) {
1685         Known.resetAll();
1686         return;
1687       }
1688       const APInt &Elt = ElementCI->getValue();
1689       Known.Zero &= ~Elt;
1690       Known.One &= Elt;
1691     }
1692     return;
1693   }
1694 
1695   // Start out not knowing anything.
1696   Known.resetAll();
1697 
1698   // We can't imply anything about undefs.
1699   if (isa<UndefValue>(V))
1700     return;
1701 
1702   // There's no point in looking through other users of ConstantData for
1703   // assumptions.  Confirm that we've handled them all.
1704   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1705 
1706   // Limit search depth.
1707   // All recursive calls that increase depth must come after this.
1708   if (Depth == MaxDepth)
1709     return;
1710 
1711   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1712   // the bits of its aliasee.
1713   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1714     if (!GA->isInterposable())
1715       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1716     return;
1717   }
1718 
1719   if (const Operator *I = dyn_cast<Operator>(V))
1720     computeKnownBitsFromOperator(I, Known, Depth, Q);
1721 
1722   // Aligned pointers have trailing zeros - refine Known.Zero set
1723   if (V->getType()->isPointerTy()) {
1724     const MaybeAlign Align = V->getPointerAlignment(Q.DL);
1725     if (Align)
1726       Known.Zero.setLowBits(countTrailingZeros(Align->value()));
1727   }
1728 
1729   // computeKnownBitsFromAssume strictly refines Known.
1730   // Therefore, we run them after computeKnownBitsFromOperator.
1731 
1732   // Check whether a nearby assume intrinsic can determine some known bits.
1733   computeKnownBitsFromAssume(V, Known, Depth, Q);
1734 
1735   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1736 }
1737 
1738 /// Return true if the given value is known to have exactly one
1739 /// bit set when defined. For vectors return true if every element is known to
1740 /// be a power of two when defined. Supports values with integer or pointer
1741 /// types and vectors of integers.
1742 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1743                             const Query &Q) {
1744   assert(Depth <= MaxDepth && "Limit Search Depth");
1745 
1746   // Attempt to match against constants.
1747   if (OrZero && match(V, m_Power2OrZero()))
1748       return true;
1749   if (match(V, m_Power2()))
1750       return true;
1751 
1752   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1753   // it is shifted off the end then the result is undefined.
1754   if (match(V, m_Shl(m_One(), m_Value())))
1755     return true;
1756 
1757   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1758   // the bottom.  If it is shifted off the bottom then the result is undefined.
1759   if (match(V, m_LShr(m_SignMask(), m_Value())))
1760     return true;
1761 
1762   // The remaining tests are all recursive, so bail out if we hit the limit.
1763   if (Depth++ == MaxDepth)
1764     return false;
1765 
1766   Value *X = nullptr, *Y = nullptr;
1767   // A shift left or a logical shift right of a power of two is a power of two
1768   // or zero.
1769   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1770                  match(V, m_LShr(m_Value(X), m_Value()))))
1771     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1772 
1773   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1774     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1775 
1776   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1777     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1778            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1779 
1780   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1781     // A power of two and'd with anything is a power of two or zero.
1782     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1783         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1784       return true;
1785     // X & (-X) is always a power of two or zero.
1786     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1787       return true;
1788     return false;
1789   }
1790 
1791   // Adding a power-of-two or zero to the same power-of-two or zero yields
1792   // either the original power-of-two, a larger power-of-two or zero.
1793   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1794     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1795     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1796         Q.IIQ.hasNoSignedWrap(VOBO)) {
1797       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1798           match(X, m_And(m_Value(), m_Specific(Y))))
1799         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1800           return true;
1801       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1802           match(Y, m_And(m_Value(), m_Specific(X))))
1803         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1804           return true;
1805 
1806       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1807       KnownBits LHSBits(BitWidth);
1808       computeKnownBits(X, LHSBits, Depth, Q);
1809 
1810       KnownBits RHSBits(BitWidth);
1811       computeKnownBits(Y, RHSBits, Depth, Q);
1812       // If i8 V is a power of two or zero:
1813       //  ZeroBits: 1 1 1 0 1 1 1 1
1814       // ~ZeroBits: 0 0 0 1 0 0 0 0
1815       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1816         // If OrZero isn't set, we cannot give back a zero result.
1817         // Make sure either the LHS or RHS has a bit set.
1818         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1819           return true;
1820     }
1821   }
1822 
1823   // An exact divide or right shift can only shift off zero bits, so the result
1824   // is a power of two only if the first operand is a power of two and not
1825   // copying a sign bit (sdiv int_min, 2).
1826   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1827       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1828     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1829                                   Depth, Q);
1830   }
1831 
1832   return false;
1833 }
1834 
1835 /// Test whether a GEP's result is known to be non-null.
1836 ///
1837 /// Uses properties inherent in a GEP to try to determine whether it is known
1838 /// to be non-null.
1839 ///
1840 /// Currently this routine does not support vector GEPs.
1841 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1842                               const Query &Q) {
1843   const Function *F = nullptr;
1844   if (const Instruction *I = dyn_cast<Instruction>(GEP))
1845     F = I->getFunction();
1846 
1847   if (!GEP->isInBounds() ||
1848       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1849     return false;
1850 
1851   // FIXME: Support vector-GEPs.
1852   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1853 
1854   // If the base pointer is non-null, we cannot walk to a null address with an
1855   // inbounds GEP in address space zero.
1856   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1857     return true;
1858 
1859   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1860   // If so, then the GEP cannot produce a null pointer, as doing so would
1861   // inherently violate the inbounds contract within address space zero.
1862   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1863        GTI != GTE; ++GTI) {
1864     // Struct types are easy -- they must always be indexed by a constant.
1865     if (StructType *STy = GTI.getStructTypeOrNull()) {
1866       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1867       unsigned ElementIdx = OpC->getZExtValue();
1868       const StructLayout *SL = Q.DL.getStructLayout(STy);
1869       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1870       if (ElementOffset > 0)
1871         return true;
1872       continue;
1873     }
1874 
1875     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1876     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1877       continue;
1878 
1879     // Fast path the constant operand case both for efficiency and so we don't
1880     // increment Depth when just zipping down an all-constant GEP.
1881     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1882       if (!OpC->isZero())
1883         return true;
1884       continue;
1885     }
1886 
1887     // We post-increment Depth here because while isKnownNonZero increments it
1888     // as well, when we pop back up that increment won't persist. We don't want
1889     // to recurse 10k times just because we have 10k GEP operands. We don't
1890     // bail completely out because we want to handle constant GEPs regardless
1891     // of depth.
1892     if (Depth++ >= MaxDepth)
1893       continue;
1894 
1895     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1896       return true;
1897   }
1898 
1899   return false;
1900 }
1901 
1902 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1903                                                   const Instruction *CtxI,
1904                                                   const DominatorTree *DT) {
1905   assert(V->getType()->isPointerTy() && "V must be pointer type");
1906   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1907 
1908   if (!CtxI || !DT)
1909     return false;
1910 
1911   unsigned NumUsesExplored = 0;
1912   for (auto *U : V->users()) {
1913     // Avoid massive lists
1914     if (NumUsesExplored >= DomConditionsMaxUses)
1915       break;
1916     NumUsesExplored++;
1917 
1918     // If the value is used as an argument to a call or invoke, then argument
1919     // attributes may provide an answer about null-ness.
1920     if (auto CS = ImmutableCallSite(U))
1921       if (auto *CalledFunc = CS.getCalledFunction())
1922         for (const Argument &Arg : CalledFunc->args())
1923           if (CS.getArgOperand(Arg.getArgNo()) == V &&
1924               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1925             return true;
1926 
1927     // Consider only compare instructions uniquely controlling a branch
1928     CmpInst::Predicate Pred;
1929     if (!match(const_cast<User *>(U),
1930                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1931         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1932       continue;
1933 
1934     SmallVector<const User *, 4> WorkList;
1935     SmallPtrSet<const User *, 4> Visited;
1936     for (auto *CmpU : U->users()) {
1937       assert(WorkList.empty() && "Should be!");
1938       if (Visited.insert(CmpU).second)
1939         WorkList.push_back(CmpU);
1940 
1941       while (!WorkList.empty()) {
1942         auto *Curr = WorkList.pop_back_val();
1943 
1944         // If a user is an AND, add all its users to the work list. We only
1945         // propagate "pred != null" condition through AND because it is only
1946         // correct to assume that all conditions of AND are met in true branch.
1947         // TODO: Support similar logic of OR and EQ predicate?
1948         if (Pred == ICmpInst::ICMP_NE)
1949           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1950             if (BO->getOpcode() == Instruction::And) {
1951               for (auto *BOU : BO->users())
1952                 if (Visited.insert(BOU).second)
1953                   WorkList.push_back(BOU);
1954               continue;
1955             }
1956 
1957         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1958           assert(BI->isConditional() && "uses a comparison!");
1959 
1960           BasicBlock *NonNullSuccessor =
1961               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1962           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1963           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1964             return true;
1965         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1966                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
1967           return true;
1968         }
1969       }
1970     }
1971   }
1972 
1973   return false;
1974 }
1975 
1976 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1977 /// ensure that the value it's attached to is never Value?  'RangeType' is
1978 /// is the type of the value described by the range.
1979 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1980   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1981   assert(NumRanges >= 1);
1982   for (unsigned i = 0; i < NumRanges; ++i) {
1983     ConstantInt *Lower =
1984         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1985     ConstantInt *Upper =
1986         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1987     ConstantRange Range(Lower->getValue(), Upper->getValue());
1988     if (Range.contains(Value))
1989       return false;
1990   }
1991   return true;
1992 }
1993 
1994 /// Return true if the given value is known to be non-zero when defined. For
1995 /// vectors, return true if every element is known to be non-zero when
1996 /// defined. For pointers, if the context instruction and dominator tree are
1997 /// specified, perform context-sensitive analysis and return true if the
1998 /// pointer couldn't possibly be null at the specified instruction.
1999 /// Supports values with integer or pointer type and vectors of integers.
2000 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
2001   if (auto *C = dyn_cast<Constant>(V)) {
2002     if (C->isNullValue())
2003       return false;
2004     if (isa<ConstantInt>(C))
2005       // Must be non-zero due to null test above.
2006       return true;
2007 
2008     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2009       // See the comment for IntToPtr/PtrToInt instructions below.
2010       if (CE->getOpcode() == Instruction::IntToPtr ||
2011           CE->getOpcode() == Instruction::PtrToInt)
2012         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2013             Q.DL.getTypeSizeInBits(CE->getType()))
2014           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2015     }
2016 
2017     // For constant vectors, check that all elements are undefined or known
2018     // non-zero to determine that the whole vector is known non-zero.
2019     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
2020       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2021         Constant *Elt = C->getAggregateElement(i);
2022         if (!Elt || Elt->isNullValue())
2023           return false;
2024         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2025           return false;
2026       }
2027       return true;
2028     }
2029 
2030     // A global variable in address space 0 is non null unless extern weak
2031     // or an absolute symbol reference. Other address spaces may have null as a
2032     // valid address for a global, so we can't assume anything.
2033     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2034       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2035           GV->getType()->getAddressSpace() == 0)
2036         return true;
2037     } else
2038       return false;
2039   }
2040 
2041   if (auto *I = dyn_cast<Instruction>(V)) {
2042     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2043       // If the possible ranges don't contain zero, then the value is
2044       // definitely non-zero.
2045       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2046         const APInt ZeroValue(Ty->getBitWidth(), 0);
2047         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2048           return true;
2049       }
2050     }
2051   }
2052 
2053   // Some of the tests below are recursive, so bail out if we hit the limit.
2054   if (Depth++ >= MaxDepth)
2055     return false;
2056 
2057   // Check for pointer simplifications.
2058   if (V->getType()->isPointerTy()) {
2059     // Alloca never returns null, malloc might.
2060     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2061       return true;
2062 
2063     // A byval, inalloca, or nonnull argument is never null.
2064     if (const Argument *A = dyn_cast<Argument>(V))
2065       if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2066         return true;
2067 
2068     // A Load tagged with nonnull metadata is never null.
2069     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2070       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2071         return true;
2072 
2073     if (const auto *Call = dyn_cast<CallBase>(V)) {
2074       if (Call->isReturnNonNull())
2075         return true;
2076       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2077         return isKnownNonZero(RP, Depth, Q);
2078     }
2079   }
2080 
2081 
2082   // Check for recursive pointer simplifications.
2083   if (V->getType()->isPointerTy()) {
2084     if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2085       return true;
2086 
2087     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2088     // do not alter the value, or at least not the nullness property of the
2089     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2090     //
2091     // Note that we have to take special care to avoid looking through
2092     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2093     // as casts that can alter the value, e.g., AddrSpaceCasts.
2094     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2095       if (isGEPKnownNonNull(GEP, Depth, Q))
2096         return true;
2097 
2098     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2099       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2100 
2101     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2102       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2103           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2104         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2105   }
2106 
2107   // Similar to int2ptr above, we can look through ptr2int here if the cast
2108   // is a no-op or an extend and not a truncate.
2109   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2110     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2111         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2112       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2113 
2114   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2115 
2116   // X | Y != 0 if X != 0 or Y != 0.
2117   Value *X = nullptr, *Y = nullptr;
2118   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2119     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2120 
2121   // ext X != 0 if X != 0.
2122   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2123     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2124 
2125   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2126   // if the lowest bit is shifted off the end.
2127   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2128     // shl nuw can't remove any non-zero bits.
2129     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2130     if (Q.IIQ.hasNoUnsignedWrap(BO))
2131       return isKnownNonZero(X, Depth, Q);
2132 
2133     KnownBits Known(BitWidth);
2134     computeKnownBits(X, Known, Depth, Q);
2135     if (Known.One[0])
2136       return true;
2137   }
2138   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2139   // defined if the sign bit is shifted off the end.
2140   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2141     // shr exact can only shift out zero bits.
2142     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2143     if (BO->isExact())
2144       return isKnownNonZero(X, Depth, Q);
2145 
2146     KnownBits Known = computeKnownBits(X, Depth, Q);
2147     if (Known.isNegative())
2148       return true;
2149 
2150     // If the shifter operand is a constant, and all of the bits shifted
2151     // out are known to be zero, and X is known non-zero then at least one
2152     // non-zero bit must remain.
2153     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2154       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2155       // Is there a known one in the portion not shifted out?
2156       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2157         return true;
2158       // Are all the bits to be shifted out known zero?
2159       if (Known.countMinTrailingZeros() >= ShiftVal)
2160         return isKnownNonZero(X, Depth, Q);
2161     }
2162   }
2163   // div exact can only produce a zero if the dividend is zero.
2164   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2165     return isKnownNonZero(X, Depth, Q);
2166   }
2167   // X + Y.
2168   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2169     KnownBits XKnown = computeKnownBits(X, Depth, Q);
2170     KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2171 
2172     // If X and Y are both non-negative (as signed values) then their sum is not
2173     // zero unless both X and Y are zero.
2174     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2175       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2176         return true;
2177 
2178     // If X and Y are both negative (as signed values) then their sum is not
2179     // zero unless both X and Y equal INT_MIN.
2180     if (XKnown.isNegative() && YKnown.isNegative()) {
2181       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2182       // The sign bit of X is set.  If some other bit is set then X is not equal
2183       // to INT_MIN.
2184       if (XKnown.One.intersects(Mask))
2185         return true;
2186       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2187       // to INT_MIN.
2188       if (YKnown.One.intersects(Mask))
2189         return true;
2190     }
2191 
2192     // The sum of a non-negative number and a power of two is not zero.
2193     if (XKnown.isNonNegative() &&
2194         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2195       return true;
2196     if (YKnown.isNonNegative() &&
2197         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2198       return true;
2199   }
2200   // X * Y.
2201   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2202     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2203     // If X and Y are non-zero then so is X * Y as long as the multiplication
2204     // does not overflow.
2205     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2206         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2207       return true;
2208   }
2209   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2210   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2211     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2212         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2213       return true;
2214   }
2215   // PHI
2216   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2217     // Try and detect a recurrence that monotonically increases from a
2218     // starting value, as these are common as induction variables.
2219     if (PN->getNumIncomingValues() == 2) {
2220       Value *Start = PN->getIncomingValue(0);
2221       Value *Induction = PN->getIncomingValue(1);
2222       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2223         std::swap(Start, Induction);
2224       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2225         if (!C->isZero() && !C->isNegative()) {
2226           ConstantInt *X;
2227           if (Q.IIQ.UseInstrInfo &&
2228               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2229                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2230               !X->isNegative())
2231             return true;
2232         }
2233       }
2234     }
2235     // Check if all incoming values are non-zero constant.
2236     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2237       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2238     });
2239     if (AllNonZeroConstants)
2240       return true;
2241   }
2242 
2243   KnownBits Known(BitWidth);
2244   computeKnownBits(V, Known, Depth, Q);
2245   return Known.One != 0;
2246 }
2247 
2248 /// Return true if V2 == V1 + X, where X is known non-zero.
2249 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2250   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2251   if (!BO || BO->getOpcode() != Instruction::Add)
2252     return false;
2253   Value *Op = nullptr;
2254   if (V2 == BO->getOperand(0))
2255     Op = BO->getOperand(1);
2256   else if (V2 == BO->getOperand(1))
2257     Op = BO->getOperand(0);
2258   else
2259     return false;
2260   return isKnownNonZero(Op, 0, Q);
2261 }
2262 
2263 /// Return true if it is known that V1 != V2.
2264 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2265   if (V1 == V2)
2266     return false;
2267   if (V1->getType() != V2->getType())
2268     // We can't look through casts yet.
2269     return false;
2270   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2271     return true;
2272 
2273   if (V1->getType()->isIntOrIntVectorTy()) {
2274     // Are any known bits in V1 contradictory to known bits in V2? If V1
2275     // has a known zero where V2 has a known one, they must not be equal.
2276     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2277     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2278 
2279     if (Known1.Zero.intersects(Known2.One) ||
2280         Known2.Zero.intersects(Known1.One))
2281       return true;
2282   }
2283   return false;
2284 }
2285 
2286 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2287 /// simplify operations downstream. Mask is known to be zero for bits that V
2288 /// cannot have.
2289 ///
2290 /// This function is defined on values with integer type, values with pointer
2291 /// type, and vectors of integers.  In the case
2292 /// where V is a vector, the mask, known zero, and known one values are the
2293 /// same width as the vector element, and the bit is set only if it is true
2294 /// for all of the elements in the vector.
2295 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2296                        const Query &Q) {
2297   KnownBits Known(Mask.getBitWidth());
2298   computeKnownBits(V, Known, Depth, Q);
2299   return Mask.isSubsetOf(Known.Zero);
2300 }
2301 
2302 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2303 // Returns the input and lower/upper bounds.
2304 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2305                                 const APInt *&CLow, const APInt *&CHigh) {
2306   assert(isa<Operator>(Select) &&
2307          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2308          "Input should be a Select!");
2309 
2310   const Value *LHS = nullptr, *RHS = nullptr;
2311   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2312   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2313     return false;
2314 
2315   if (!match(RHS, m_APInt(CLow)))
2316     return false;
2317 
2318   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2319   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2320   if (getInverseMinMaxFlavor(SPF) != SPF2)
2321     return false;
2322 
2323   if (!match(RHS2, m_APInt(CHigh)))
2324     return false;
2325 
2326   if (SPF == SPF_SMIN)
2327     std::swap(CLow, CHigh);
2328 
2329   In = LHS2;
2330   return CLow->sle(*CHigh);
2331 }
2332 
2333 /// For vector constants, loop over the elements and find the constant with the
2334 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2335 /// or if any element was not analyzed; otherwise, return the count for the
2336 /// element with the minimum number of sign bits.
2337 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2338                                                  unsigned TyBits) {
2339   const auto *CV = dyn_cast<Constant>(V);
2340   if (!CV || !CV->getType()->isVectorTy())
2341     return 0;
2342 
2343   unsigned MinSignBits = TyBits;
2344   unsigned NumElts = CV->getType()->getVectorNumElements();
2345   for (unsigned i = 0; i != NumElts; ++i) {
2346     // If we find a non-ConstantInt, bail out.
2347     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2348     if (!Elt)
2349       return 0;
2350 
2351     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2352   }
2353 
2354   return MinSignBits;
2355 }
2356 
2357 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2358                                        const Query &Q);
2359 
2360 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2361                                    const Query &Q) {
2362   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2363   assert(Result > 0 && "At least one sign bit needs to be present!");
2364   return Result;
2365 }
2366 
2367 /// Return the number of times the sign bit of the register is replicated into
2368 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2369 /// (itself), but other cases can give us information. For example, immediately
2370 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2371 /// other, so we return 3. For vectors, return the number of sign bits for the
2372 /// vector element with the minimum number of known sign bits.
2373 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2374                                        const Query &Q) {
2375   assert(Depth <= MaxDepth && "Limit Search Depth");
2376 
2377   // We return the minimum number of sign bits that are guaranteed to be present
2378   // in V, so for undef we have to conservatively return 1.  We don't have the
2379   // same behavior for poison though -- that's a FIXME today.
2380 
2381   Type *ScalarTy = V->getType()->getScalarType();
2382   unsigned TyBits = ScalarTy->isPointerTy() ?
2383     Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2384     Q.DL.getTypeSizeInBits(ScalarTy);
2385 
2386   unsigned Tmp, Tmp2;
2387   unsigned FirstAnswer = 1;
2388 
2389   // Note that ConstantInt is handled by the general computeKnownBits case
2390   // below.
2391 
2392   if (Depth == MaxDepth)
2393     return 1;  // Limit search depth.
2394 
2395   if (auto *U = dyn_cast<Operator>(V)) {
2396     switch (Operator::getOpcode(V)) {
2397     default: break;
2398     case Instruction::SExt:
2399       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2400       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2401 
2402     case Instruction::SDiv: {
2403       const APInt *Denominator;
2404       // sdiv X, C -> adds log(C) sign bits.
2405       if (match(U->getOperand(1), m_APInt(Denominator))) {
2406 
2407         // Ignore non-positive denominator.
2408         if (!Denominator->isStrictlyPositive())
2409           break;
2410 
2411         // Calculate the incoming numerator bits.
2412         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2413 
2414         // Add floor(log(C)) bits to the numerator bits.
2415         return std::min(TyBits, NumBits + Denominator->logBase2());
2416       }
2417       break;
2418     }
2419 
2420     case Instruction::SRem: {
2421       const APInt *Denominator;
2422       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2423       // positive constant.  This let us put a lower bound on the number of sign
2424       // bits.
2425       if (match(U->getOperand(1), m_APInt(Denominator))) {
2426 
2427         // Ignore non-positive denominator.
2428         if (!Denominator->isStrictlyPositive())
2429           break;
2430 
2431         // Calculate the incoming numerator bits. SRem by a positive constant
2432         // can't lower the number of sign bits.
2433         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2434 
2435         // Calculate the leading sign bit constraints by examining the
2436         // denominator.  Given that the denominator is positive, there are two
2437         // cases:
2438         //
2439         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2440         //     (1 << ceilLogBase2(C)).
2441         //
2442         //  2. the numerator is negative. Then the result range is (-C,0] and
2443         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2444         //
2445         // Thus a lower bound on the number of sign bits is `TyBits -
2446         // ceilLogBase2(C)`.
2447 
2448         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2449         return std::max(NumrBits, ResBits);
2450       }
2451       break;
2452     }
2453 
2454     case Instruction::AShr: {
2455       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2456       // ashr X, C   -> adds C sign bits.  Vectors too.
2457       const APInt *ShAmt;
2458       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2459         if (ShAmt->uge(TyBits))
2460           break; // Bad shift.
2461         unsigned ShAmtLimited = ShAmt->getZExtValue();
2462         Tmp += ShAmtLimited;
2463         if (Tmp > TyBits) Tmp = TyBits;
2464       }
2465       return Tmp;
2466     }
2467     case Instruction::Shl: {
2468       const APInt *ShAmt;
2469       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2470         // shl destroys sign bits.
2471         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2472         if (ShAmt->uge(TyBits) ||   // Bad shift.
2473             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2474         Tmp2 = ShAmt->getZExtValue();
2475         return Tmp - Tmp2;
2476       }
2477       break;
2478     }
2479     case Instruction::And:
2480     case Instruction::Or:
2481     case Instruction::Xor: // NOT is handled here.
2482       // Logical binary ops preserve the number of sign bits at the worst.
2483       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2484       if (Tmp != 1) {
2485         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2486         FirstAnswer = std::min(Tmp, Tmp2);
2487         // We computed what we know about the sign bits as our first
2488         // answer. Now proceed to the generic code that uses
2489         // computeKnownBits, and pick whichever answer is better.
2490       }
2491       break;
2492 
2493     case Instruction::Select: {
2494       // If we have a clamp pattern, we know that the number of sign bits will
2495       // be the minimum of the clamp min/max range.
2496       const Value *X;
2497       const APInt *CLow, *CHigh;
2498       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2499         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2500 
2501       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2502       if (Tmp == 1) break;
2503       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2504       return std::min(Tmp, Tmp2);
2505     }
2506 
2507     case Instruction::Add:
2508       // Add can have at most one carry bit.  Thus we know that the output
2509       // is, at worst, one more bit than the inputs.
2510       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2511       if (Tmp == 1) break;
2512 
2513       // Special case decrementing a value (ADD X, -1):
2514       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2515         if (CRHS->isAllOnesValue()) {
2516           KnownBits Known(TyBits);
2517           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2518 
2519           // If the input is known to be 0 or 1, the output is 0/-1, which is
2520           // all sign bits set.
2521           if ((Known.Zero | 1).isAllOnesValue())
2522             return TyBits;
2523 
2524           // If we are subtracting one from a positive number, there is no carry
2525           // out of the result.
2526           if (Known.isNonNegative())
2527             return Tmp;
2528         }
2529 
2530       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2531       if (Tmp2 == 1) break;
2532       return std::min(Tmp, Tmp2) - 1;
2533 
2534     case Instruction::Sub:
2535       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2536       if (Tmp2 == 1) break;
2537 
2538       // Handle NEG.
2539       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2540         if (CLHS->isNullValue()) {
2541           KnownBits Known(TyBits);
2542           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2543           // If the input is known to be 0 or 1, the output is 0/-1, which is
2544           // all sign bits set.
2545           if ((Known.Zero | 1).isAllOnesValue())
2546             return TyBits;
2547 
2548           // If the input is known to be positive (the sign bit is known clear),
2549           // the output of the NEG has the same number of sign bits as the
2550           // input.
2551           if (Known.isNonNegative())
2552             return Tmp2;
2553 
2554           // Otherwise, we treat this like a SUB.
2555         }
2556 
2557       // Sub can have at most one carry bit.  Thus we know that the output
2558       // is, at worst, one more bit than the inputs.
2559       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2560       if (Tmp == 1) break;
2561       return std::min(Tmp, Tmp2) - 1;
2562 
2563     case Instruction::Mul: {
2564       // The output of the Mul can be at most twice the valid bits in the
2565       // inputs.
2566       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2567       if (SignBitsOp0 == 1) break;
2568       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2569       if (SignBitsOp1 == 1) break;
2570       unsigned OutValidBits =
2571           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2572       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2573     }
2574 
2575     case Instruction::PHI: {
2576       const PHINode *PN = cast<PHINode>(U);
2577       unsigned NumIncomingValues = PN->getNumIncomingValues();
2578       // Don't analyze large in-degree PHIs.
2579       if (NumIncomingValues > 4) break;
2580       // Unreachable blocks may have zero-operand PHI nodes.
2581       if (NumIncomingValues == 0) break;
2582 
2583       // Take the minimum of all incoming values.  This can't infinitely loop
2584       // because of our depth threshold.
2585       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2586       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2587         if (Tmp == 1) return Tmp;
2588         Tmp = std::min(
2589             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2590       }
2591       return Tmp;
2592     }
2593 
2594     case Instruction::Trunc:
2595       // FIXME: it's tricky to do anything useful for this, but it is an
2596       // important case for targets like X86.
2597       break;
2598 
2599     case Instruction::ExtractElement:
2600       // Look through extract element. At the moment we keep this simple and
2601       // skip tracking the specific element. But at least we might find
2602       // information valid for all elements of the vector (for example if vector
2603       // is sign extended, shifted, etc).
2604       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2605 
2606     case Instruction::ShuffleVector: {
2607       // TODO: This is copied almost directly from the SelectionDAG version of
2608       //       ComputeNumSignBits. It would be better if we could share common
2609       //       code. If not, make sure that changes are translated to the DAG.
2610 
2611       // Collect the minimum number of sign bits that are shared by every vector
2612       // element referenced by the shuffle.
2613       auto *Shuf = cast<ShuffleVectorInst>(U);
2614       int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2615       int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2616       APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2617       for (int i = 0; i != NumMaskElts; ++i) {
2618         int M = Shuf->getMaskValue(i);
2619         assert(M < NumElts * 2 && "Invalid shuffle mask constant");
2620         // For undef elements, we don't know anything about the common state of
2621         // the shuffle result.
2622         if (M == -1)
2623           return 1;
2624         if (M < NumElts)
2625           DemandedLHS.setBit(M % NumElts);
2626         else
2627           DemandedRHS.setBit(M % NumElts);
2628       }
2629       Tmp = std::numeric_limits<unsigned>::max();
2630       if (!!DemandedLHS)
2631         Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2632       if (!!DemandedRHS) {
2633         Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2634         Tmp = std::min(Tmp, Tmp2);
2635       }
2636       // If we don't know anything, early out and try computeKnownBits
2637       // fall-back.
2638       if (Tmp == 1)
2639         break;
2640       assert(Tmp <= V->getType()->getScalarSizeInBits() &&
2641              "Failed to determine minimum sign bits");
2642       return Tmp;
2643     }
2644     }
2645   }
2646 
2647   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2648   // use this information.
2649 
2650   // If we can examine all elements of a vector constant successfully, we're
2651   // done (we can't do any better than that). If not, keep trying.
2652   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2653     return VecSignBits;
2654 
2655   KnownBits Known(TyBits);
2656   computeKnownBits(V, Known, Depth, Q);
2657 
2658   // If we know that the sign bit is either zero or one, determine the number of
2659   // identical bits in the top of the input value.
2660   return std::max(FirstAnswer, Known.countMinSignBits());
2661 }
2662 
2663 /// This function computes the integer multiple of Base that equals V.
2664 /// If successful, it returns true and returns the multiple in
2665 /// Multiple. If unsuccessful, it returns false. It looks
2666 /// through SExt instructions only if LookThroughSExt is true.
2667 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2668                            bool LookThroughSExt, unsigned Depth) {
2669   assert(V && "No Value?");
2670   assert(Depth <= MaxDepth && "Limit Search Depth");
2671   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2672 
2673   Type *T = V->getType();
2674 
2675   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2676 
2677   if (Base == 0)
2678     return false;
2679 
2680   if (Base == 1) {
2681     Multiple = V;
2682     return true;
2683   }
2684 
2685   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2686   Constant *BaseVal = ConstantInt::get(T, Base);
2687   if (CO && CO == BaseVal) {
2688     // Multiple is 1.
2689     Multiple = ConstantInt::get(T, 1);
2690     return true;
2691   }
2692 
2693   if (CI && CI->getZExtValue() % Base == 0) {
2694     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2695     return true;
2696   }
2697 
2698   if (Depth == MaxDepth) return false;  // Limit search depth.
2699 
2700   Operator *I = dyn_cast<Operator>(V);
2701   if (!I) return false;
2702 
2703   switch (I->getOpcode()) {
2704   default: break;
2705   case Instruction::SExt:
2706     if (!LookThroughSExt) return false;
2707     // otherwise fall through to ZExt
2708     LLVM_FALLTHROUGH;
2709   case Instruction::ZExt:
2710     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2711                            LookThroughSExt, Depth+1);
2712   case Instruction::Shl:
2713   case Instruction::Mul: {
2714     Value *Op0 = I->getOperand(0);
2715     Value *Op1 = I->getOperand(1);
2716 
2717     if (I->getOpcode() == Instruction::Shl) {
2718       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2719       if (!Op1CI) return false;
2720       // Turn Op0 << Op1 into Op0 * 2^Op1
2721       APInt Op1Int = Op1CI->getValue();
2722       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2723       APInt API(Op1Int.getBitWidth(), 0);
2724       API.setBit(BitToSet);
2725       Op1 = ConstantInt::get(V->getContext(), API);
2726     }
2727 
2728     Value *Mul0 = nullptr;
2729     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2730       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2731         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2732           if (Op1C->getType()->getPrimitiveSizeInBits() <
2733               MulC->getType()->getPrimitiveSizeInBits())
2734             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2735           if (Op1C->getType()->getPrimitiveSizeInBits() >
2736               MulC->getType()->getPrimitiveSizeInBits())
2737             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2738 
2739           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2740           Multiple = ConstantExpr::getMul(MulC, Op1C);
2741           return true;
2742         }
2743 
2744       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2745         if (Mul0CI->getValue() == 1) {
2746           // V == Base * Op1, so return Op1
2747           Multiple = Op1;
2748           return true;
2749         }
2750     }
2751 
2752     Value *Mul1 = nullptr;
2753     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2754       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2755         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2756           if (Op0C->getType()->getPrimitiveSizeInBits() <
2757               MulC->getType()->getPrimitiveSizeInBits())
2758             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2759           if (Op0C->getType()->getPrimitiveSizeInBits() >
2760               MulC->getType()->getPrimitiveSizeInBits())
2761             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2762 
2763           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2764           Multiple = ConstantExpr::getMul(MulC, Op0C);
2765           return true;
2766         }
2767 
2768       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2769         if (Mul1CI->getValue() == 1) {
2770           // V == Base * Op0, so return Op0
2771           Multiple = Op0;
2772           return true;
2773         }
2774     }
2775   }
2776   }
2777 
2778   // We could not determine if V is a multiple of Base.
2779   return false;
2780 }
2781 
2782 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2783                                             const TargetLibraryInfo *TLI) {
2784   const Function *F = ICS.getCalledFunction();
2785   if (!F)
2786     return Intrinsic::not_intrinsic;
2787 
2788   if (F->isIntrinsic())
2789     return F->getIntrinsicID();
2790 
2791   if (!TLI)
2792     return Intrinsic::not_intrinsic;
2793 
2794   LibFunc Func;
2795   // We're going to make assumptions on the semantics of the functions, check
2796   // that the target knows that it's available in this environment and it does
2797   // not have local linkage.
2798   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2799     return Intrinsic::not_intrinsic;
2800 
2801   if (!ICS.onlyReadsMemory())
2802     return Intrinsic::not_intrinsic;
2803 
2804   // Otherwise check if we have a call to a function that can be turned into a
2805   // vector intrinsic.
2806   switch (Func) {
2807   default:
2808     break;
2809   case LibFunc_sin:
2810   case LibFunc_sinf:
2811   case LibFunc_sinl:
2812     return Intrinsic::sin;
2813   case LibFunc_cos:
2814   case LibFunc_cosf:
2815   case LibFunc_cosl:
2816     return Intrinsic::cos;
2817   case LibFunc_exp:
2818   case LibFunc_expf:
2819   case LibFunc_expl:
2820     return Intrinsic::exp;
2821   case LibFunc_exp2:
2822   case LibFunc_exp2f:
2823   case LibFunc_exp2l:
2824     return Intrinsic::exp2;
2825   case LibFunc_log:
2826   case LibFunc_logf:
2827   case LibFunc_logl:
2828     return Intrinsic::log;
2829   case LibFunc_log10:
2830   case LibFunc_log10f:
2831   case LibFunc_log10l:
2832     return Intrinsic::log10;
2833   case LibFunc_log2:
2834   case LibFunc_log2f:
2835   case LibFunc_log2l:
2836     return Intrinsic::log2;
2837   case LibFunc_fabs:
2838   case LibFunc_fabsf:
2839   case LibFunc_fabsl:
2840     return Intrinsic::fabs;
2841   case LibFunc_fmin:
2842   case LibFunc_fminf:
2843   case LibFunc_fminl:
2844     return Intrinsic::minnum;
2845   case LibFunc_fmax:
2846   case LibFunc_fmaxf:
2847   case LibFunc_fmaxl:
2848     return Intrinsic::maxnum;
2849   case LibFunc_copysign:
2850   case LibFunc_copysignf:
2851   case LibFunc_copysignl:
2852     return Intrinsic::copysign;
2853   case LibFunc_floor:
2854   case LibFunc_floorf:
2855   case LibFunc_floorl:
2856     return Intrinsic::floor;
2857   case LibFunc_ceil:
2858   case LibFunc_ceilf:
2859   case LibFunc_ceill:
2860     return Intrinsic::ceil;
2861   case LibFunc_trunc:
2862   case LibFunc_truncf:
2863   case LibFunc_truncl:
2864     return Intrinsic::trunc;
2865   case LibFunc_rint:
2866   case LibFunc_rintf:
2867   case LibFunc_rintl:
2868     return Intrinsic::rint;
2869   case LibFunc_nearbyint:
2870   case LibFunc_nearbyintf:
2871   case LibFunc_nearbyintl:
2872     return Intrinsic::nearbyint;
2873   case LibFunc_round:
2874   case LibFunc_roundf:
2875   case LibFunc_roundl:
2876     return Intrinsic::round;
2877   case LibFunc_pow:
2878   case LibFunc_powf:
2879   case LibFunc_powl:
2880     return Intrinsic::pow;
2881   case LibFunc_sqrt:
2882   case LibFunc_sqrtf:
2883   case LibFunc_sqrtl:
2884     return Intrinsic::sqrt;
2885   }
2886 
2887   return Intrinsic::not_intrinsic;
2888 }
2889 
2890 /// Return true if we can prove that the specified FP value is never equal to
2891 /// -0.0.
2892 ///
2893 /// NOTE: this function will need to be revisited when we support non-default
2894 /// rounding modes!
2895 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2896                                 unsigned Depth) {
2897   if (auto *CFP = dyn_cast<ConstantFP>(V))
2898     return !CFP->getValueAPF().isNegZero();
2899 
2900   // Limit search depth.
2901   if (Depth == MaxDepth)
2902     return false;
2903 
2904   auto *Op = dyn_cast<Operator>(V);
2905   if (!Op)
2906     return false;
2907 
2908   // Check if the nsz fast-math flag is set.
2909   if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2910     if (FPO->hasNoSignedZeros())
2911       return true;
2912 
2913   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2914   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2915     return true;
2916 
2917   // sitofp and uitofp turn into +0.0 for zero.
2918   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2919     return true;
2920 
2921   if (auto *Call = dyn_cast<CallInst>(Op)) {
2922     Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2923     switch (IID) {
2924     default:
2925       break;
2926     // sqrt(-0.0) = -0.0, no other negative results are possible.
2927     case Intrinsic::sqrt:
2928     case Intrinsic::canonicalize:
2929       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2930     // fabs(x) != -0.0
2931     case Intrinsic::fabs:
2932       return true;
2933     }
2934   }
2935 
2936   return false;
2937 }
2938 
2939 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2940 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2941 /// bit despite comparing equal.
2942 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2943                                             const TargetLibraryInfo *TLI,
2944                                             bool SignBitOnly,
2945                                             unsigned Depth) {
2946   // TODO: This function does not do the right thing when SignBitOnly is true
2947   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2948   // which flips the sign bits of NaNs.  See
2949   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2950 
2951   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2952     return !CFP->getValueAPF().isNegative() ||
2953            (!SignBitOnly && CFP->getValueAPF().isZero());
2954   }
2955 
2956   // Handle vector of constants.
2957   if (auto *CV = dyn_cast<Constant>(V)) {
2958     if (CV->getType()->isVectorTy()) {
2959       unsigned NumElts = CV->getType()->getVectorNumElements();
2960       for (unsigned i = 0; i != NumElts; ++i) {
2961         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2962         if (!CFP)
2963           return false;
2964         if (CFP->getValueAPF().isNegative() &&
2965             (SignBitOnly || !CFP->getValueAPF().isZero()))
2966           return false;
2967       }
2968 
2969       // All non-negative ConstantFPs.
2970       return true;
2971     }
2972   }
2973 
2974   if (Depth == MaxDepth)
2975     return false; // Limit search depth.
2976 
2977   const Operator *I = dyn_cast<Operator>(V);
2978   if (!I)
2979     return false;
2980 
2981   switch (I->getOpcode()) {
2982   default:
2983     break;
2984   // Unsigned integers are always nonnegative.
2985   case Instruction::UIToFP:
2986     return true;
2987   case Instruction::FMul:
2988     // x*x is always non-negative or a NaN.
2989     if (I->getOperand(0) == I->getOperand(1) &&
2990         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2991       return true;
2992 
2993     LLVM_FALLTHROUGH;
2994   case Instruction::FAdd:
2995   case Instruction::FDiv:
2996   case Instruction::FRem:
2997     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2998                                            Depth + 1) &&
2999            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3000                                            Depth + 1);
3001   case Instruction::Select:
3002     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3003                                            Depth + 1) &&
3004            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3005                                            Depth + 1);
3006   case Instruction::FPExt:
3007   case Instruction::FPTrunc:
3008     // Widening/narrowing never change sign.
3009     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3010                                            Depth + 1);
3011   case Instruction::ExtractElement:
3012     // Look through extract element. At the moment we keep this simple and skip
3013     // tracking the specific element. But at least we might find information
3014     // valid for all elements of the vector.
3015     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3016                                            Depth + 1);
3017   case Instruction::Call:
3018     const auto *CI = cast<CallInst>(I);
3019     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
3020     switch (IID) {
3021     default:
3022       break;
3023     case Intrinsic::maxnum:
3024       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
3025               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
3026                                               SignBitOnly, Depth + 1)) ||
3027             (isKnownNeverNaN(I->getOperand(1), TLI) &&
3028               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3029                                               SignBitOnly, Depth + 1));
3030 
3031     case Intrinsic::maximum:
3032       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3033                                              Depth + 1) ||
3034              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3035                                              Depth + 1);
3036     case Intrinsic::minnum:
3037     case Intrinsic::minimum:
3038       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3039                                              Depth + 1) &&
3040              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3041                                              Depth + 1);
3042     case Intrinsic::exp:
3043     case Intrinsic::exp2:
3044     case Intrinsic::fabs:
3045       return true;
3046 
3047     case Intrinsic::sqrt:
3048       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3049       if (!SignBitOnly)
3050         return true;
3051       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3052                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3053 
3054     case Intrinsic::powi:
3055       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3056         // powi(x,n) is non-negative if n is even.
3057         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3058           return true;
3059       }
3060       // TODO: This is not correct.  Given that exp is an integer, here are the
3061       // ways that pow can return a negative value:
3062       //
3063       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3064       //   pow(-0, exp)   --> -inf if exp is negative odd.
3065       //   pow(-0, exp)   --> -0 if exp is positive odd.
3066       //   pow(-inf, exp) --> -0 if exp is negative odd.
3067       //   pow(-inf, exp) --> -inf if exp is positive odd.
3068       //
3069       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3070       // but we must return false if x == -0.  Unfortunately we do not currently
3071       // have a way of expressing this constraint.  See details in
3072       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3073       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3074                                              Depth + 1);
3075 
3076     case Intrinsic::fma:
3077     case Intrinsic::fmuladd:
3078       // x*x+y is non-negative if y is non-negative.
3079       return I->getOperand(0) == I->getOperand(1) &&
3080              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3081              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3082                                              Depth + 1);
3083     }
3084     break;
3085   }
3086   return false;
3087 }
3088 
3089 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3090                                        const TargetLibraryInfo *TLI) {
3091   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3092 }
3093 
3094 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3095   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3096 }
3097 
3098 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3099                                 unsigned Depth) {
3100   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3101 
3102   // If we're told that infinities won't happen, assume they won't.
3103   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3104     if (FPMathOp->hasNoInfs())
3105       return true;
3106 
3107   // Handle scalar constants.
3108   if (auto *CFP = dyn_cast<ConstantFP>(V))
3109     return !CFP->isInfinity();
3110 
3111   if (Depth == MaxDepth)
3112     return false;
3113 
3114   if (auto *Inst = dyn_cast<Instruction>(V)) {
3115     switch (Inst->getOpcode()) {
3116     case Instruction::Select: {
3117       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3118              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3119     }
3120     case Instruction::UIToFP:
3121       // If the input type fits into the floating type the result is finite.
3122       return ilogb(APFloat::getLargest(
3123                  Inst->getType()->getScalarType()->getFltSemantics())) >=
3124              (int)Inst->getOperand(0)->getType()->getScalarSizeInBits();
3125     default:
3126       break;
3127     }
3128   }
3129 
3130   // Bail out for constant expressions, but try to handle vector constants.
3131   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3132     return false;
3133 
3134   // For vectors, verify that each element is not infinity.
3135   unsigned NumElts = V->getType()->getVectorNumElements();
3136   for (unsigned i = 0; i != NumElts; ++i) {
3137     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3138     if (!Elt)
3139       return false;
3140     if (isa<UndefValue>(Elt))
3141       continue;
3142     auto *CElt = dyn_cast<ConstantFP>(Elt);
3143     if (!CElt || CElt->isInfinity())
3144       return false;
3145   }
3146   // All elements were confirmed non-infinity or undefined.
3147   return true;
3148 }
3149 
3150 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3151                            unsigned Depth) {
3152   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3153 
3154   // If we're told that NaNs won't happen, assume they won't.
3155   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3156     if (FPMathOp->hasNoNaNs())
3157       return true;
3158 
3159   // Handle scalar constants.
3160   if (auto *CFP = dyn_cast<ConstantFP>(V))
3161     return !CFP->isNaN();
3162 
3163   if (Depth == MaxDepth)
3164     return false;
3165 
3166   if (auto *Inst = dyn_cast<Instruction>(V)) {
3167     switch (Inst->getOpcode()) {
3168     case Instruction::FAdd:
3169     case Instruction::FSub:
3170       // Adding positive and negative infinity produces NaN.
3171       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3172              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3173              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3174               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3175 
3176     case Instruction::FMul:
3177       // Zero multiplied with infinity produces NaN.
3178       // FIXME: If neither side can be zero fmul never produces NaN.
3179       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3180              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3181              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3182              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3183 
3184     case Instruction::FDiv:
3185     case Instruction::FRem:
3186       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3187       return false;
3188 
3189     case Instruction::Select: {
3190       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3191              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3192     }
3193     case Instruction::SIToFP:
3194     case Instruction::UIToFP:
3195       return true;
3196     case Instruction::FPTrunc:
3197     case Instruction::FPExt:
3198       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3199     default:
3200       break;
3201     }
3202   }
3203 
3204   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3205     switch (II->getIntrinsicID()) {
3206     case Intrinsic::canonicalize:
3207     case Intrinsic::fabs:
3208     case Intrinsic::copysign:
3209     case Intrinsic::exp:
3210     case Intrinsic::exp2:
3211     case Intrinsic::floor:
3212     case Intrinsic::ceil:
3213     case Intrinsic::trunc:
3214     case Intrinsic::rint:
3215     case Intrinsic::nearbyint:
3216     case Intrinsic::round:
3217       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3218     case Intrinsic::sqrt:
3219       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3220              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3221     case Intrinsic::minnum:
3222     case Intrinsic::maxnum:
3223       // If either operand is not NaN, the result is not NaN.
3224       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3225              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3226     default:
3227       return false;
3228     }
3229   }
3230 
3231   // Bail out for constant expressions, but try to handle vector constants.
3232   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3233     return false;
3234 
3235   // For vectors, verify that each element is not NaN.
3236   unsigned NumElts = V->getType()->getVectorNumElements();
3237   for (unsigned i = 0; i != NumElts; ++i) {
3238     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3239     if (!Elt)
3240       return false;
3241     if (isa<UndefValue>(Elt))
3242       continue;
3243     auto *CElt = dyn_cast<ConstantFP>(Elt);
3244     if (!CElt || CElt->isNaN())
3245       return false;
3246   }
3247   // All elements were confirmed not-NaN or undefined.
3248   return true;
3249 }
3250 
3251 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3252 
3253   // All byte-wide stores are splatable, even of arbitrary variables.
3254   if (V->getType()->isIntegerTy(8))
3255     return V;
3256 
3257   LLVMContext &Ctx = V->getContext();
3258 
3259   // Undef don't care.
3260   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3261   if (isa<UndefValue>(V))
3262     return UndefInt8;
3263 
3264   const uint64_t Size = DL.getTypeStoreSize(V->getType());
3265   if (!Size)
3266     return UndefInt8;
3267 
3268   Constant *C = dyn_cast<Constant>(V);
3269   if (!C) {
3270     // Conceptually, we could handle things like:
3271     //   %a = zext i8 %X to i16
3272     //   %b = shl i16 %a, 8
3273     //   %c = or i16 %a, %b
3274     // but until there is an example that actually needs this, it doesn't seem
3275     // worth worrying about.
3276     return nullptr;
3277   }
3278 
3279   // Handle 'null' ConstantArrayZero etc.
3280   if (C->isNullValue())
3281     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3282 
3283   // Constant floating-point values can be handled as integer values if the
3284   // corresponding integer value is "byteable".  An important case is 0.0.
3285   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3286     Type *Ty = nullptr;
3287     if (CFP->getType()->isHalfTy())
3288       Ty = Type::getInt16Ty(Ctx);
3289     else if (CFP->getType()->isFloatTy())
3290       Ty = Type::getInt32Ty(Ctx);
3291     else if (CFP->getType()->isDoubleTy())
3292       Ty = Type::getInt64Ty(Ctx);
3293     // Don't handle long double formats, which have strange constraints.
3294     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3295               : nullptr;
3296   }
3297 
3298   // We can handle constant integers that are multiple of 8 bits.
3299   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3300     if (CI->getBitWidth() % 8 == 0) {
3301       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3302       if (!CI->getValue().isSplat(8))
3303         return nullptr;
3304       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3305     }
3306   }
3307 
3308   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3309     if (CE->getOpcode() == Instruction::IntToPtr) {
3310       auto PS = DL.getPointerSizeInBits(
3311           cast<PointerType>(CE->getType())->getAddressSpace());
3312       return isBytewiseValue(
3313           ConstantExpr::getIntegerCast(CE->getOperand(0),
3314                                        Type::getIntNTy(Ctx, PS), false),
3315           DL);
3316     }
3317   }
3318 
3319   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3320     if (LHS == RHS)
3321       return LHS;
3322     if (!LHS || !RHS)
3323       return nullptr;
3324     if (LHS == UndefInt8)
3325       return RHS;
3326     if (RHS == UndefInt8)
3327       return LHS;
3328     return nullptr;
3329   };
3330 
3331   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3332     Value *Val = UndefInt8;
3333     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3334       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3335         return nullptr;
3336     return Val;
3337   }
3338 
3339   if (isa<ConstantAggregate>(C)) {
3340     Value *Val = UndefInt8;
3341     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3342       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3343         return nullptr;
3344     return Val;
3345   }
3346 
3347   // Don't try to handle the handful of other constants.
3348   return nullptr;
3349 }
3350 
3351 // This is the recursive version of BuildSubAggregate. It takes a few different
3352 // arguments. Idxs is the index within the nested struct From that we are
3353 // looking at now (which is of type IndexedType). IdxSkip is the number of
3354 // indices from Idxs that should be left out when inserting into the resulting
3355 // struct. To is the result struct built so far, new insertvalue instructions
3356 // build on that.
3357 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3358                                 SmallVectorImpl<unsigned> &Idxs,
3359                                 unsigned IdxSkip,
3360                                 Instruction *InsertBefore) {
3361   StructType *STy = dyn_cast<StructType>(IndexedType);
3362   if (STy) {
3363     // Save the original To argument so we can modify it
3364     Value *OrigTo = To;
3365     // General case, the type indexed by Idxs is a struct
3366     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3367       // Process each struct element recursively
3368       Idxs.push_back(i);
3369       Value *PrevTo = To;
3370       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3371                              InsertBefore);
3372       Idxs.pop_back();
3373       if (!To) {
3374         // Couldn't find any inserted value for this index? Cleanup
3375         while (PrevTo != OrigTo) {
3376           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3377           PrevTo = Del->getAggregateOperand();
3378           Del->eraseFromParent();
3379         }
3380         // Stop processing elements
3381         break;
3382       }
3383     }
3384     // If we successfully found a value for each of our subaggregates
3385     if (To)
3386       return To;
3387   }
3388   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3389   // the struct's elements had a value that was inserted directly. In the latter
3390   // case, perhaps we can't determine each of the subelements individually, but
3391   // we might be able to find the complete struct somewhere.
3392 
3393   // Find the value that is at that particular spot
3394   Value *V = FindInsertedValue(From, Idxs);
3395 
3396   if (!V)
3397     return nullptr;
3398 
3399   // Insert the value in the new (sub) aggregate
3400   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3401                                  "tmp", InsertBefore);
3402 }
3403 
3404 // This helper takes a nested struct and extracts a part of it (which is again a
3405 // struct) into a new value. For example, given the struct:
3406 // { a, { b, { c, d }, e } }
3407 // and the indices "1, 1" this returns
3408 // { c, d }.
3409 //
3410 // It does this by inserting an insertvalue for each element in the resulting
3411 // struct, as opposed to just inserting a single struct. This will only work if
3412 // each of the elements of the substruct are known (ie, inserted into From by an
3413 // insertvalue instruction somewhere).
3414 //
3415 // All inserted insertvalue instructions are inserted before InsertBefore
3416 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3417                                 Instruction *InsertBefore) {
3418   assert(InsertBefore && "Must have someplace to insert!");
3419   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3420                                                              idx_range);
3421   Value *To = UndefValue::get(IndexedType);
3422   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3423   unsigned IdxSkip = Idxs.size();
3424 
3425   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3426 }
3427 
3428 /// Given an aggregate and a sequence of indices, see if the scalar value
3429 /// indexed is already around as a register, for example if it was inserted
3430 /// directly into the aggregate.
3431 ///
3432 /// If InsertBefore is not null, this function will duplicate (modified)
3433 /// insertvalues when a part of a nested struct is extracted.
3434 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3435                                Instruction *InsertBefore) {
3436   // Nothing to index? Just return V then (this is useful at the end of our
3437   // recursion).
3438   if (idx_range.empty())
3439     return V;
3440   // We have indices, so V should have an indexable type.
3441   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3442          "Not looking at a struct or array?");
3443   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3444          "Invalid indices for type?");
3445 
3446   if (Constant *C = dyn_cast<Constant>(V)) {
3447     C = C->getAggregateElement(idx_range[0]);
3448     if (!C) return nullptr;
3449     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3450   }
3451 
3452   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3453     // Loop the indices for the insertvalue instruction in parallel with the
3454     // requested indices
3455     const unsigned *req_idx = idx_range.begin();
3456     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3457          i != e; ++i, ++req_idx) {
3458       if (req_idx == idx_range.end()) {
3459         // We can't handle this without inserting insertvalues
3460         if (!InsertBefore)
3461           return nullptr;
3462 
3463         // The requested index identifies a part of a nested aggregate. Handle
3464         // this specially. For example,
3465         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3466         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3467         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3468         // This can be changed into
3469         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3470         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3471         // which allows the unused 0,0 element from the nested struct to be
3472         // removed.
3473         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3474                                  InsertBefore);
3475       }
3476 
3477       // This insert value inserts something else than what we are looking for.
3478       // See if the (aggregate) value inserted into has the value we are
3479       // looking for, then.
3480       if (*req_idx != *i)
3481         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3482                                  InsertBefore);
3483     }
3484     // If we end up here, the indices of the insertvalue match with those
3485     // requested (though possibly only partially). Now we recursively look at
3486     // the inserted value, passing any remaining indices.
3487     return FindInsertedValue(I->getInsertedValueOperand(),
3488                              makeArrayRef(req_idx, idx_range.end()),
3489                              InsertBefore);
3490   }
3491 
3492   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3493     // If we're extracting a value from an aggregate that was extracted from
3494     // something else, we can extract from that something else directly instead.
3495     // However, we will need to chain I's indices with the requested indices.
3496 
3497     // Calculate the number of indices required
3498     unsigned size = I->getNumIndices() + idx_range.size();
3499     // Allocate some space to put the new indices in
3500     SmallVector<unsigned, 5> Idxs;
3501     Idxs.reserve(size);
3502     // Add indices from the extract value instruction
3503     Idxs.append(I->idx_begin(), I->idx_end());
3504 
3505     // Add requested indices
3506     Idxs.append(idx_range.begin(), idx_range.end());
3507 
3508     assert(Idxs.size() == size
3509            && "Number of indices added not correct?");
3510 
3511     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3512   }
3513   // Otherwise, we don't know (such as, extracting from a function return value
3514   // or load instruction)
3515   return nullptr;
3516 }
3517 
3518 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3519                                        unsigned CharSize) {
3520   // Make sure the GEP has exactly three arguments.
3521   if (GEP->getNumOperands() != 3)
3522     return false;
3523 
3524   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3525   // CharSize.
3526   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3527   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3528     return false;
3529 
3530   // Check to make sure that the first operand of the GEP is an integer and
3531   // has value 0 so that we are sure we're indexing into the initializer.
3532   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3533   if (!FirstIdx || !FirstIdx->isZero())
3534     return false;
3535 
3536   return true;
3537 }
3538 
3539 bool llvm::getConstantDataArrayInfo(const Value *V,
3540                                     ConstantDataArraySlice &Slice,
3541                                     unsigned ElementSize, uint64_t Offset) {
3542   assert(V);
3543 
3544   // Look through bitcast instructions and geps.
3545   V = V->stripPointerCasts();
3546 
3547   // If the value is a GEP instruction or constant expression, treat it as an
3548   // offset.
3549   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3550     // The GEP operator should be based on a pointer to string constant, and is
3551     // indexing into the string constant.
3552     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3553       return false;
3554 
3555     // If the second index isn't a ConstantInt, then this is a variable index
3556     // into the array.  If this occurs, we can't say anything meaningful about
3557     // the string.
3558     uint64_t StartIdx = 0;
3559     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3560       StartIdx = CI->getZExtValue();
3561     else
3562       return false;
3563     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3564                                     StartIdx + Offset);
3565   }
3566 
3567   // The GEP instruction, constant or instruction, must reference a global
3568   // variable that is a constant and is initialized. The referenced constant
3569   // initializer is the array that we'll use for optimization.
3570   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3571   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3572     return false;
3573 
3574   const ConstantDataArray *Array;
3575   ArrayType *ArrayTy;
3576   if (GV->getInitializer()->isNullValue()) {
3577     Type *GVTy = GV->getValueType();
3578     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3579       // A zeroinitializer for the array; there is no ConstantDataArray.
3580       Array = nullptr;
3581     } else {
3582       const DataLayout &DL = GV->getParent()->getDataLayout();
3583       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3584       uint64_t Length = SizeInBytes / (ElementSize / 8);
3585       if (Length <= Offset)
3586         return false;
3587 
3588       Slice.Array = nullptr;
3589       Slice.Offset = 0;
3590       Slice.Length = Length - Offset;
3591       return true;
3592     }
3593   } else {
3594     // This must be a ConstantDataArray.
3595     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3596     if (!Array)
3597       return false;
3598     ArrayTy = Array->getType();
3599   }
3600   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3601     return false;
3602 
3603   uint64_t NumElts = ArrayTy->getArrayNumElements();
3604   if (Offset > NumElts)
3605     return false;
3606 
3607   Slice.Array = Array;
3608   Slice.Offset = Offset;
3609   Slice.Length = NumElts - Offset;
3610   return true;
3611 }
3612 
3613 /// This function computes the length of a null-terminated C string pointed to
3614 /// by V. If successful, it returns true and returns the string in Str.
3615 /// If unsuccessful, it returns false.
3616 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3617                                  uint64_t Offset, bool TrimAtNul) {
3618   ConstantDataArraySlice Slice;
3619   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3620     return false;
3621 
3622   if (Slice.Array == nullptr) {
3623     if (TrimAtNul) {
3624       Str = StringRef();
3625       return true;
3626     }
3627     if (Slice.Length == 1) {
3628       Str = StringRef("", 1);
3629       return true;
3630     }
3631     // We cannot instantiate a StringRef as we do not have an appropriate string
3632     // of 0s at hand.
3633     return false;
3634   }
3635 
3636   // Start out with the entire array in the StringRef.
3637   Str = Slice.Array->getAsString();
3638   // Skip over 'offset' bytes.
3639   Str = Str.substr(Slice.Offset);
3640 
3641   if (TrimAtNul) {
3642     // Trim off the \0 and anything after it.  If the array is not nul
3643     // terminated, we just return the whole end of string.  The client may know
3644     // some other way that the string is length-bound.
3645     Str = Str.substr(0, Str.find('\0'));
3646   }
3647   return true;
3648 }
3649 
3650 // These next two are very similar to the above, but also look through PHI
3651 // nodes.
3652 // TODO: See if we can integrate these two together.
3653 
3654 /// If we can compute the length of the string pointed to by
3655 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3656 static uint64_t GetStringLengthH(const Value *V,
3657                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3658                                  unsigned CharSize) {
3659   // Look through noop bitcast instructions.
3660   V = V->stripPointerCasts();
3661 
3662   // If this is a PHI node, there are two cases: either we have already seen it
3663   // or we haven't.
3664   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3665     if (!PHIs.insert(PN).second)
3666       return ~0ULL;  // already in the set.
3667 
3668     // If it was new, see if all the input strings are the same length.
3669     uint64_t LenSoFar = ~0ULL;
3670     for (Value *IncValue : PN->incoming_values()) {
3671       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3672       if (Len == 0) return 0; // Unknown length -> unknown.
3673 
3674       if (Len == ~0ULL) continue;
3675 
3676       if (Len != LenSoFar && LenSoFar != ~0ULL)
3677         return 0;    // Disagree -> unknown.
3678       LenSoFar = Len;
3679     }
3680 
3681     // Success, all agree.
3682     return LenSoFar;
3683   }
3684 
3685   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3686   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3687     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3688     if (Len1 == 0) return 0;
3689     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3690     if (Len2 == 0) return 0;
3691     if (Len1 == ~0ULL) return Len2;
3692     if (Len2 == ~0ULL) return Len1;
3693     if (Len1 != Len2) return 0;
3694     return Len1;
3695   }
3696 
3697   // Otherwise, see if we can read the string.
3698   ConstantDataArraySlice Slice;
3699   if (!getConstantDataArrayInfo(V, Slice, CharSize))
3700     return 0;
3701 
3702   if (Slice.Array == nullptr)
3703     return 1;
3704 
3705   // Search for nul characters
3706   unsigned NullIndex = 0;
3707   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3708     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3709       break;
3710   }
3711 
3712   return NullIndex + 1;
3713 }
3714 
3715 /// If we can compute the length of the string pointed to by
3716 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3717 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3718   if (!V->getType()->isPointerTy())
3719     return 0;
3720 
3721   SmallPtrSet<const PHINode*, 32> PHIs;
3722   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3723   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3724   // an empty string as a length.
3725   return Len == ~0ULL ? 1 : Len;
3726 }
3727 
3728 const Value *
3729 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
3730                                            bool MustPreserveNullness) {
3731   assert(Call &&
3732          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
3733   if (const Value *RV = Call->getReturnedArgOperand())
3734     return RV;
3735   // This can be used only as a aliasing property.
3736   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3737           Call, MustPreserveNullness))
3738     return Call->getArgOperand(0);
3739   return nullptr;
3740 }
3741 
3742 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3743     const CallBase *Call, bool MustPreserveNullness) {
3744   return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
3745          Call->getIntrinsicID() == Intrinsic::strip_invariant_group ||
3746          Call->getIntrinsicID() == Intrinsic::aarch64_irg ||
3747          Call->getIntrinsicID() == Intrinsic::aarch64_tagp ||
3748          (!MustPreserveNullness &&
3749           Call->getIntrinsicID() == Intrinsic::ptrmask);
3750 }
3751 
3752 /// \p PN defines a loop-variant pointer to an object.  Check if the
3753 /// previous iteration of the loop was referring to the same object as \p PN.
3754 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3755                                          const LoopInfo *LI) {
3756   // Find the loop-defined value.
3757   Loop *L = LI->getLoopFor(PN->getParent());
3758   if (PN->getNumIncomingValues() != 2)
3759     return true;
3760 
3761   // Find the value from previous iteration.
3762   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3763   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3764     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3765   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3766     return true;
3767 
3768   // If a new pointer is loaded in the loop, the pointer references a different
3769   // object in every iteration.  E.g.:
3770   //    for (i)
3771   //       int *p = a[i];
3772   //       ...
3773   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3774     if (!L->isLoopInvariant(Load->getPointerOperand()))
3775       return false;
3776   return true;
3777 }
3778 
3779 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3780                                  unsigned MaxLookup) {
3781   if (!V->getType()->isPointerTy())
3782     return V;
3783   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3784     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3785       V = GEP->getPointerOperand();
3786     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3787                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3788       V = cast<Operator>(V)->getOperand(0);
3789     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3790       if (GA->isInterposable())
3791         return V;
3792       V = GA->getAliasee();
3793     } else if (isa<AllocaInst>(V)) {
3794       // An alloca can't be further simplified.
3795       return V;
3796     } else {
3797       if (auto *Call = dyn_cast<CallBase>(V)) {
3798         // CaptureTracking can know about special capturing properties of some
3799         // intrinsics like launder.invariant.group, that can't be expressed with
3800         // the attributes, but have properties like returning aliasing pointer.
3801         // Because some analysis may assume that nocaptured pointer is not
3802         // returned from some special intrinsic (because function would have to
3803         // be marked with returns attribute), it is crucial to use this function
3804         // because it should be in sync with CaptureTracking. Not using it may
3805         // cause weird miscompilations where 2 aliasing pointers are assumed to
3806         // noalias.
3807         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
3808           V = RP;
3809           continue;
3810         }
3811       }
3812 
3813       // See if InstructionSimplify knows any relevant tricks.
3814       if (Instruction *I = dyn_cast<Instruction>(V))
3815         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3816         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3817           V = Simplified;
3818           continue;
3819         }
3820 
3821       return V;
3822     }
3823     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3824   }
3825   return V;
3826 }
3827 
3828 void llvm::GetUnderlyingObjects(const Value *V,
3829                                 SmallVectorImpl<const Value *> &Objects,
3830                                 const DataLayout &DL, LoopInfo *LI,
3831                                 unsigned MaxLookup) {
3832   SmallPtrSet<const Value *, 4> Visited;
3833   SmallVector<const Value *, 4> Worklist;
3834   Worklist.push_back(V);
3835   do {
3836     const Value *P = Worklist.pop_back_val();
3837     P = GetUnderlyingObject(P, DL, MaxLookup);
3838 
3839     if (!Visited.insert(P).second)
3840       continue;
3841 
3842     if (auto *SI = dyn_cast<SelectInst>(P)) {
3843       Worklist.push_back(SI->getTrueValue());
3844       Worklist.push_back(SI->getFalseValue());
3845       continue;
3846     }
3847 
3848     if (auto *PN = dyn_cast<PHINode>(P)) {
3849       // If this PHI changes the underlying object in every iteration of the
3850       // loop, don't look through it.  Consider:
3851       //   int **A;
3852       //   for (i) {
3853       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3854       //     Curr = A[i];
3855       //     *Prev, *Curr;
3856       //
3857       // Prev is tracking Curr one iteration behind so they refer to different
3858       // underlying objects.
3859       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3860           isSameUnderlyingObjectInLoop(PN, LI))
3861         for (Value *IncValue : PN->incoming_values())
3862           Worklist.push_back(IncValue);
3863       continue;
3864     }
3865 
3866     Objects.push_back(P);
3867   } while (!Worklist.empty());
3868 }
3869 
3870 /// This is the function that does the work of looking through basic
3871 /// ptrtoint+arithmetic+inttoptr sequences.
3872 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3873   do {
3874     if (const Operator *U = dyn_cast<Operator>(V)) {
3875       // If we find a ptrtoint, we can transfer control back to the
3876       // regular getUnderlyingObjectFromInt.
3877       if (U->getOpcode() == Instruction::PtrToInt)
3878         return U->getOperand(0);
3879       // If we find an add of a constant, a multiplied value, or a phi, it's
3880       // likely that the other operand will lead us to the base
3881       // object. We don't have to worry about the case where the
3882       // object address is somehow being computed by the multiply,
3883       // because our callers only care when the result is an
3884       // identifiable object.
3885       if (U->getOpcode() != Instruction::Add ||
3886           (!isa<ConstantInt>(U->getOperand(1)) &&
3887            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3888            !isa<PHINode>(U->getOperand(1))))
3889         return V;
3890       V = U->getOperand(0);
3891     } else {
3892       return V;
3893     }
3894     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3895   } while (true);
3896 }
3897 
3898 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3899 /// ptrtoint+arithmetic+inttoptr sequences.
3900 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3901 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3902                           SmallVectorImpl<Value *> &Objects,
3903                           const DataLayout &DL) {
3904   SmallPtrSet<const Value *, 16> Visited;
3905   SmallVector<const Value *, 4> Working(1, V);
3906   do {
3907     V = Working.pop_back_val();
3908 
3909     SmallVector<const Value *, 4> Objs;
3910     GetUnderlyingObjects(V, Objs, DL);
3911 
3912     for (const Value *V : Objs) {
3913       if (!Visited.insert(V).second)
3914         continue;
3915       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3916         const Value *O =
3917           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3918         if (O->getType()->isPointerTy()) {
3919           Working.push_back(O);
3920           continue;
3921         }
3922       }
3923       // If GetUnderlyingObjects fails to find an identifiable object,
3924       // getUnderlyingObjectsForCodeGen also fails for safety.
3925       if (!isIdentifiedObject(V)) {
3926         Objects.clear();
3927         return false;
3928       }
3929       Objects.push_back(const_cast<Value *>(V));
3930     }
3931   } while (!Working.empty());
3932   return true;
3933 }
3934 
3935 /// Return true if the only users of this pointer are lifetime markers.
3936 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3937   for (const User *U : V->users()) {
3938     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3939     if (!II) return false;
3940 
3941     if (!II->isLifetimeStartOrEnd())
3942       return false;
3943   }
3944   return true;
3945 }
3946 
3947 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
3948   if (!LI.isUnordered())
3949     return true;
3950   const Function &F = *LI.getFunction();
3951   // Speculative load may create a race that did not exist in the source.
3952   return F.hasFnAttribute(Attribute::SanitizeThread) ||
3953     // Speculative load may load data from dirty regions.
3954     F.hasFnAttribute(Attribute::SanitizeAddress) ||
3955     F.hasFnAttribute(Attribute::SanitizeHWAddress);
3956 }
3957 
3958 
3959 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3960                                         const Instruction *CtxI,
3961                                         const DominatorTree *DT) {
3962   const Operator *Inst = dyn_cast<Operator>(V);
3963   if (!Inst)
3964     return false;
3965 
3966   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3967     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3968       if (C->canTrap())
3969         return false;
3970 
3971   switch (Inst->getOpcode()) {
3972   default:
3973     return true;
3974   case Instruction::UDiv:
3975   case Instruction::URem: {
3976     // x / y is undefined if y == 0.
3977     const APInt *V;
3978     if (match(Inst->getOperand(1), m_APInt(V)))
3979       return *V != 0;
3980     return false;
3981   }
3982   case Instruction::SDiv:
3983   case Instruction::SRem: {
3984     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3985     const APInt *Numerator, *Denominator;
3986     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3987       return false;
3988     // We cannot hoist this division if the denominator is 0.
3989     if (*Denominator == 0)
3990       return false;
3991     // It's safe to hoist if the denominator is not 0 or -1.
3992     if (*Denominator != -1)
3993       return true;
3994     // At this point we know that the denominator is -1.  It is safe to hoist as
3995     // long we know that the numerator is not INT_MIN.
3996     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3997       return !Numerator->isMinSignedValue();
3998     // The numerator *might* be MinSignedValue.
3999     return false;
4000   }
4001   case Instruction::Load: {
4002     const LoadInst *LI = cast<LoadInst>(Inst);
4003     if (mustSuppressSpeculation(*LI))
4004       return false;
4005     const DataLayout &DL = LI->getModule()->getDataLayout();
4006     return isDereferenceableAndAlignedPointer(
4007         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4008         DL, CtxI, DT);
4009   }
4010   case Instruction::Call: {
4011     auto *CI = cast<const CallInst>(Inst);
4012     const Function *Callee = CI->getCalledFunction();
4013 
4014     // The called function could have undefined behavior or side-effects, even
4015     // if marked readnone nounwind.
4016     return Callee && Callee->isSpeculatable();
4017   }
4018   case Instruction::VAArg:
4019   case Instruction::Alloca:
4020   case Instruction::Invoke:
4021   case Instruction::CallBr:
4022   case Instruction::PHI:
4023   case Instruction::Store:
4024   case Instruction::Ret:
4025   case Instruction::Br:
4026   case Instruction::IndirectBr:
4027   case Instruction::Switch:
4028   case Instruction::Unreachable:
4029   case Instruction::Fence:
4030   case Instruction::AtomicRMW:
4031   case Instruction::AtomicCmpXchg:
4032   case Instruction::LandingPad:
4033   case Instruction::Resume:
4034   case Instruction::CatchSwitch:
4035   case Instruction::CatchPad:
4036   case Instruction::CatchRet:
4037   case Instruction::CleanupPad:
4038   case Instruction::CleanupRet:
4039     return false; // Misc instructions which have effects
4040   }
4041 }
4042 
4043 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4044   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4045 }
4046 
4047 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4048 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4049   switch (OR) {
4050     case ConstantRange::OverflowResult::MayOverflow:
4051       return OverflowResult::MayOverflow;
4052     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4053       return OverflowResult::AlwaysOverflowsLow;
4054     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4055       return OverflowResult::AlwaysOverflowsHigh;
4056     case ConstantRange::OverflowResult::NeverOverflows:
4057       return OverflowResult::NeverOverflows;
4058   }
4059   llvm_unreachable("Unknown OverflowResult");
4060 }
4061 
4062 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4063 static ConstantRange computeConstantRangeIncludingKnownBits(
4064     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4065     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4066     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4067   KnownBits Known = computeKnownBits(
4068       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4069   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4070   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4071   ConstantRange::PreferredRangeType RangeType =
4072       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4073   return CR1.intersectWith(CR2, RangeType);
4074 }
4075 
4076 OverflowResult llvm::computeOverflowForUnsignedMul(
4077     const Value *LHS, const Value *RHS, const DataLayout &DL,
4078     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4079     bool UseInstrInfo) {
4080   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4081                                         nullptr, UseInstrInfo);
4082   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4083                                         nullptr, UseInstrInfo);
4084   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4085   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4086   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4087 }
4088 
4089 OverflowResult
4090 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4091                                   const DataLayout &DL, AssumptionCache *AC,
4092                                   const Instruction *CxtI,
4093                                   const DominatorTree *DT, bool UseInstrInfo) {
4094   // Multiplying n * m significant bits yields a result of n + m significant
4095   // bits. If the total number of significant bits does not exceed the
4096   // result bit width (minus 1), there is no overflow.
4097   // This means if we have enough leading sign bits in the operands
4098   // we can guarantee that the result does not overflow.
4099   // Ref: "Hacker's Delight" by Henry Warren
4100   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4101 
4102   // Note that underestimating the number of sign bits gives a more
4103   // conservative answer.
4104   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4105                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4106 
4107   // First handle the easy case: if we have enough sign bits there's
4108   // definitely no overflow.
4109   if (SignBits > BitWidth + 1)
4110     return OverflowResult::NeverOverflows;
4111 
4112   // There are two ambiguous cases where there can be no overflow:
4113   //   SignBits == BitWidth + 1    and
4114   //   SignBits == BitWidth
4115   // The second case is difficult to check, therefore we only handle the
4116   // first case.
4117   if (SignBits == BitWidth + 1) {
4118     // It overflows only when both arguments are negative and the true
4119     // product is exactly the minimum negative number.
4120     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4121     // For simplicity we just check if at least one side is not negative.
4122     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4123                                           nullptr, UseInstrInfo);
4124     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4125                                           nullptr, UseInstrInfo);
4126     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4127       return OverflowResult::NeverOverflows;
4128   }
4129   return OverflowResult::MayOverflow;
4130 }
4131 
4132 OverflowResult llvm::computeOverflowForUnsignedAdd(
4133     const Value *LHS, const Value *RHS, const DataLayout &DL,
4134     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4135     bool UseInstrInfo) {
4136   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4137       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4138       nullptr, UseInstrInfo);
4139   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4140       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4141       nullptr, UseInstrInfo);
4142   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4143 }
4144 
4145 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4146                                                   const Value *RHS,
4147                                                   const AddOperator *Add,
4148                                                   const DataLayout &DL,
4149                                                   AssumptionCache *AC,
4150                                                   const Instruction *CxtI,
4151                                                   const DominatorTree *DT) {
4152   if (Add && Add->hasNoSignedWrap()) {
4153     return OverflowResult::NeverOverflows;
4154   }
4155 
4156   // If LHS and RHS each have at least two sign bits, the addition will look
4157   // like
4158   //
4159   // XX..... +
4160   // YY.....
4161   //
4162   // If the carry into the most significant position is 0, X and Y can't both
4163   // be 1 and therefore the carry out of the addition is also 0.
4164   //
4165   // If the carry into the most significant position is 1, X and Y can't both
4166   // be 0 and therefore the carry out of the addition is also 1.
4167   //
4168   // Since the carry into the most significant position is always equal to
4169   // the carry out of the addition, there is no signed overflow.
4170   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4171       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4172     return OverflowResult::NeverOverflows;
4173 
4174   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4175       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4176   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4177       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4178   OverflowResult OR =
4179       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4180   if (OR != OverflowResult::MayOverflow)
4181     return OR;
4182 
4183   // The remaining code needs Add to be available. Early returns if not so.
4184   if (!Add)
4185     return OverflowResult::MayOverflow;
4186 
4187   // If the sign of Add is the same as at least one of the operands, this add
4188   // CANNOT overflow. If this can be determined from the known bits of the
4189   // operands the above signedAddMayOverflow() check will have already done so.
4190   // The only other way to improve on the known bits is from an assumption, so
4191   // call computeKnownBitsFromAssume() directly.
4192   bool LHSOrRHSKnownNonNegative =
4193       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4194   bool LHSOrRHSKnownNegative =
4195       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4196   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4197     KnownBits AddKnown(LHSRange.getBitWidth());
4198     computeKnownBitsFromAssume(
4199         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4200     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4201         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4202       return OverflowResult::NeverOverflows;
4203   }
4204 
4205   return OverflowResult::MayOverflow;
4206 }
4207 
4208 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4209                                                    const Value *RHS,
4210                                                    const DataLayout &DL,
4211                                                    AssumptionCache *AC,
4212                                                    const Instruction *CxtI,
4213                                                    const DominatorTree *DT) {
4214   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4215       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4216   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4217       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4218   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4219 }
4220 
4221 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4222                                                  const Value *RHS,
4223                                                  const DataLayout &DL,
4224                                                  AssumptionCache *AC,
4225                                                  const Instruction *CxtI,
4226                                                  const DominatorTree *DT) {
4227   // If LHS and RHS each have at least two sign bits, the subtraction
4228   // cannot overflow.
4229   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4230       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4231     return OverflowResult::NeverOverflows;
4232 
4233   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4234       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4235   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4236       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4237   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4238 }
4239 
4240 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4241                                      const DominatorTree &DT) {
4242   SmallVector<const BranchInst *, 2> GuardingBranches;
4243   SmallVector<const ExtractValueInst *, 2> Results;
4244 
4245   for (const User *U : WO->users()) {
4246     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4247       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4248 
4249       if (EVI->getIndices()[0] == 0)
4250         Results.push_back(EVI);
4251       else {
4252         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4253 
4254         for (const auto *U : EVI->users())
4255           if (const auto *B = dyn_cast<BranchInst>(U)) {
4256             assert(B->isConditional() && "How else is it using an i1?");
4257             GuardingBranches.push_back(B);
4258           }
4259       }
4260     } else {
4261       // We are using the aggregate directly in a way we don't want to analyze
4262       // here (storing it to a global, say).
4263       return false;
4264     }
4265   }
4266 
4267   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4268     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4269     if (!NoWrapEdge.isSingleEdge())
4270       return false;
4271 
4272     // Check if all users of the add are provably no-wrap.
4273     for (const auto *Result : Results) {
4274       // If the extractvalue itself is not executed on overflow, the we don't
4275       // need to check each use separately, since domination is transitive.
4276       if (DT.dominates(NoWrapEdge, Result->getParent()))
4277         continue;
4278 
4279       for (auto &RU : Result->uses())
4280         if (!DT.dominates(NoWrapEdge, RU))
4281           return false;
4282     }
4283 
4284     return true;
4285   };
4286 
4287   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4288 }
4289 
4290 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V) {
4291   // If the value is a freeze instruction, then it can never
4292   // be undef or poison.
4293   if (isa<FreezeInst>(V))
4294     return true;
4295   // TODO: Some instructions are guaranteed to return neither undef
4296   // nor poison if their arguments are not poison/undef.
4297 
4298   // TODO: Deal with other Constant subclasses.
4299   if (isa<ConstantInt>(V) || isa<GlobalVariable>(V))
4300     return true;
4301 
4302   return false;
4303 }
4304 
4305 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4306                                                  const DataLayout &DL,
4307                                                  AssumptionCache *AC,
4308                                                  const Instruction *CxtI,
4309                                                  const DominatorTree *DT) {
4310   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4311                                        Add, DL, AC, CxtI, DT);
4312 }
4313 
4314 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4315                                                  const Value *RHS,
4316                                                  const DataLayout &DL,
4317                                                  AssumptionCache *AC,
4318                                                  const Instruction *CxtI,
4319                                                  const DominatorTree *DT) {
4320   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4321 }
4322 
4323 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4324   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4325   // of time because it's possible for another thread to interfere with it for an
4326   // arbitrary length of time, but programs aren't allowed to rely on that.
4327 
4328   // If there is no successor, then execution can't transfer to it.
4329   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4330     return !CRI->unwindsToCaller();
4331   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4332     return !CatchSwitch->unwindsToCaller();
4333   if (isa<ResumeInst>(I))
4334     return false;
4335   if (isa<ReturnInst>(I))
4336     return false;
4337   if (isa<UnreachableInst>(I))
4338     return false;
4339 
4340   // Calls can throw, or contain an infinite loop, or kill the process.
4341   if (auto CS = ImmutableCallSite(I)) {
4342     // Call sites that throw have implicit non-local control flow.
4343     if (!CS.doesNotThrow())
4344       return false;
4345 
4346     // A function which doens't throw and has "willreturn" attribute will
4347     // always return.
4348     if (CS.hasFnAttr(Attribute::WillReturn))
4349       return true;
4350 
4351     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4352     // etc. and thus not return.  However, LLVM already assumes that
4353     //
4354     //  - Thread exiting actions are modeled as writes to memory invisible to
4355     //    the program.
4356     //
4357     //  - Loops that don't have side effects (side effects are volatile/atomic
4358     //    stores and IO) always terminate (see http://llvm.org/PR965).
4359     //    Furthermore IO itself is also modeled as writes to memory invisible to
4360     //    the program.
4361     //
4362     // We rely on those assumptions here, and use the memory effects of the call
4363     // target as a proxy for checking that it always returns.
4364 
4365     // FIXME: This isn't aggressive enough; a call which only writes to a global
4366     // is guaranteed to return.
4367     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory();
4368   }
4369 
4370   // Other instructions return normally.
4371   return true;
4372 }
4373 
4374 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4375   // TODO: This is slightly conservative for invoke instruction since exiting
4376   // via an exception *is* normal control for them.
4377   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4378     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4379       return false;
4380   return true;
4381 }
4382 
4383 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4384                                                   const Loop *L) {
4385   // The loop header is guaranteed to be executed for every iteration.
4386   //
4387   // FIXME: Relax this constraint to cover all basic blocks that are
4388   // guaranteed to be executed at every iteration.
4389   if (I->getParent() != L->getHeader()) return false;
4390 
4391   for (const Instruction &LI : *L->getHeader()) {
4392     if (&LI == I) return true;
4393     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4394   }
4395   llvm_unreachable("Instruction not contained in its own parent basic block.");
4396 }
4397 
4398 bool llvm::propagatesFullPoison(const Instruction *I) {
4399   // TODO: This should include all instructions apart from phis, selects and
4400   // call-like instructions.
4401   switch (I->getOpcode()) {
4402   case Instruction::Add:
4403   case Instruction::Sub:
4404   case Instruction::Xor:
4405   case Instruction::Trunc:
4406   case Instruction::BitCast:
4407   case Instruction::AddrSpaceCast:
4408   case Instruction::Mul:
4409   case Instruction::Shl:
4410   case Instruction::GetElementPtr:
4411     // These operations all propagate poison unconditionally. Note that poison
4412     // is not any particular value, so xor or subtraction of poison with
4413     // itself still yields poison, not zero.
4414     return true;
4415 
4416   case Instruction::AShr:
4417   case Instruction::SExt:
4418     // For these operations, one bit of the input is replicated across
4419     // multiple output bits. A replicated poison bit is still poison.
4420     return true;
4421 
4422   case Instruction::ICmp:
4423     // Comparing poison with any value yields poison.  This is why, for
4424     // instance, x s< (x +nsw 1) can be folded to true.
4425     return true;
4426 
4427   default:
4428     return false;
4429   }
4430 }
4431 
4432 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4433   switch (I->getOpcode()) {
4434     case Instruction::Store:
4435       return cast<StoreInst>(I)->getPointerOperand();
4436 
4437     case Instruction::Load:
4438       return cast<LoadInst>(I)->getPointerOperand();
4439 
4440     case Instruction::AtomicCmpXchg:
4441       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4442 
4443     case Instruction::AtomicRMW:
4444       return cast<AtomicRMWInst>(I)->getPointerOperand();
4445 
4446     case Instruction::UDiv:
4447     case Instruction::SDiv:
4448     case Instruction::URem:
4449     case Instruction::SRem:
4450       return I->getOperand(1);
4451 
4452     default:
4453       // Note: It's really tempting to think that a conditional branch or
4454       // switch should be listed here, but that's incorrect.  It's not
4455       // branching off of poison which is UB, it is executing a side effecting
4456       // instruction which follows the branch.
4457       return nullptr;
4458   }
4459 }
4460 
4461 bool llvm::mustTriggerUB(const Instruction *I,
4462                          const SmallSet<const Value *, 16>& KnownPoison) {
4463   auto *NotPoison = getGuaranteedNonFullPoisonOp(I);
4464   return (NotPoison && KnownPoison.count(NotPoison));
4465 }
4466 
4467 
4468 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4469   // We currently only look for uses of poison values within the same basic
4470   // block, as that makes it easier to guarantee that the uses will be
4471   // executed given that PoisonI is executed.
4472   //
4473   // FIXME: Expand this to consider uses beyond the same basic block. To do
4474   // this, look out for the distinction between post-dominance and strong
4475   // post-dominance.
4476   const BasicBlock *BB = PoisonI->getParent();
4477 
4478   // Set of instructions that we have proved will yield poison if PoisonI
4479   // does.
4480   SmallSet<const Value *, 16> YieldsPoison;
4481   SmallSet<const BasicBlock *, 4> Visited;
4482   YieldsPoison.insert(PoisonI);
4483   Visited.insert(PoisonI->getParent());
4484 
4485   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4486 
4487   unsigned Iter = 0;
4488   while (Iter++ < MaxDepth) {
4489     for (auto &I : make_range(Begin, End)) {
4490       if (&I != PoisonI) {
4491         if (mustTriggerUB(&I, YieldsPoison))
4492           return true;
4493         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4494           return false;
4495       }
4496 
4497       // Mark poison that propagates from I through uses of I.
4498       if (YieldsPoison.count(&I)) {
4499         for (const User *User : I.users()) {
4500           const Instruction *UserI = cast<Instruction>(User);
4501           if (propagatesFullPoison(UserI))
4502             YieldsPoison.insert(User);
4503         }
4504       }
4505     }
4506 
4507     if (auto *NextBB = BB->getSingleSuccessor()) {
4508       if (Visited.insert(NextBB).second) {
4509         BB = NextBB;
4510         Begin = BB->getFirstNonPHI()->getIterator();
4511         End = BB->end();
4512         continue;
4513       }
4514     }
4515 
4516     break;
4517   }
4518   return false;
4519 }
4520 
4521 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4522   if (FMF.noNaNs())
4523     return true;
4524 
4525   if (auto *C = dyn_cast<ConstantFP>(V))
4526     return !C->isNaN();
4527 
4528   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4529     if (!C->getElementType()->isFloatingPointTy())
4530       return false;
4531     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4532       if (C->getElementAsAPFloat(I).isNaN())
4533         return false;
4534     }
4535     return true;
4536   }
4537 
4538   return false;
4539 }
4540 
4541 static bool isKnownNonZero(const Value *V) {
4542   if (auto *C = dyn_cast<ConstantFP>(V))
4543     return !C->isZero();
4544 
4545   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4546     if (!C->getElementType()->isFloatingPointTy())
4547       return false;
4548     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4549       if (C->getElementAsAPFloat(I).isZero())
4550         return false;
4551     }
4552     return true;
4553   }
4554 
4555   return false;
4556 }
4557 
4558 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4559 /// Given non-min/max outer cmp/select from the clamp pattern this
4560 /// function recognizes if it can be substitued by a "canonical" min/max
4561 /// pattern.
4562 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4563                                                Value *CmpLHS, Value *CmpRHS,
4564                                                Value *TrueVal, Value *FalseVal,
4565                                                Value *&LHS, Value *&RHS) {
4566   // Try to match
4567   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4568   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4569   // and return description of the outer Max/Min.
4570 
4571   // First, check if select has inverse order:
4572   if (CmpRHS == FalseVal) {
4573     std::swap(TrueVal, FalseVal);
4574     Pred = CmpInst::getInversePredicate(Pred);
4575   }
4576 
4577   // Assume success now. If there's no match, callers should not use these anyway.
4578   LHS = TrueVal;
4579   RHS = FalseVal;
4580 
4581   const APFloat *FC1;
4582   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4583     return {SPF_UNKNOWN, SPNB_NA, false};
4584 
4585   const APFloat *FC2;
4586   switch (Pred) {
4587   case CmpInst::FCMP_OLT:
4588   case CmpInst::FCMP_OLE:
4589   case CmpInst::FCMP_ULT:
4590   case CmpInst::FCMP_ULE:
4591     if (match(FalseVal,
4592               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4593                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4594         FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4595       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4596     break;
4597   case CmpInst::FCMP_OGT:
4598   case CmpInst::FCMP_OGE:
4599   case CmpInst::FCMP_UGT:
4600   case CmpInst::FCMP_UGE:
4601     if (match(FalseVal,
4602               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4603                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4604         FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4605       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4606     break;
4607   default:
4608     break;
4609   }
4610 
4611   return {SPF_UNKNOWN, SPNB_NA, false};
4612 }
4613 
4614 /// Recognize variations of:
4615 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4616 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4617                                       Value *CmpLHS, Value *CmpRHS,
4618                                       Value *TrueVal, Value *FalseVal) {
4619   // Swap the select operands and predicate to match the patterns below.
4620   if (CmpRHS != TrueVal) {
4621     Pred = ICmpInst::getSwappedPredicate(Pred);
4622     std::swap(TrueVal, FalseVal);
4623   }
4624   const APInt *C1;
4625   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4626     const APInt *C2;
4627     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4628     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4629         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4630       return {SPF_SMAX, SPNB_NA, false};
4631 
4632     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4633     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4634         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4635       return {SPF_SMIN, SPNB_NA, false};
4636 
4637     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4638     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4639         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4640       return {SPF_UMAX, SPNB_NA, false};
4641 
4642     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4643     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4644         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4645       return {SPF_UMIN, SPNB_NA, false};
4646   }
4647   return {SPF_UNKNOWN, SPNB_NA, false};
4648 }
4649 
4650 /// Recognize variations of:
4651 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4652 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4653                                                Value *CmpLHS, Value *CmpRHS,
4654                                                Value *TVal, Value *FVal,
4655                                                unsigned Depth) {
4656   // TODO: Allow FP min/max with nnan/nsz.
4657   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4658 
4659   Value *A = nullptr, *B = nullptr;
4660   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4661   if (!SelectPatternResult::isMinOrMax(L.Flavor))
4662     return {SPF_UNKNOWN, SPNB_NA, false};
4663 
4664   Value *C = nullptr, *D = nullptr;
4665   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4666   if (L.Flavor != R.Flavor)
4667     return {SPF_UNKNOWN, SPNB_NA, false};
4668 
4669   // We have something like: x Pred y ? min(a, b) : min(c, d).
4670   // Try to match the compare to the min/max operations of the select operands.
4671   // First, make sure we have the right compare predicate.
4672   switch (L.Flavor) {
4673   case SPF_SMIN:
4674     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4675       Pred = ICmpInst::getSwappedPredicate(Pred);
4676       std::swap(CmpLHS, CmpRHS);
4677     }
4678     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4679       break;
4680     return {SPF_UNKNOWN, SPNB_NA, false};
4681   case SPF_SMAX:
4682     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4683       Pred = ICmpInst::getSwappedPredicate(Pred);
4684       std::swap(CmpLHS, CmpRHS);
4685     }
4686     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4687       break;
4688     return {SPF_UNKNOWN, SPNB_NA, false};
4689   case SPF_UMIN:
4690     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4691       Pred = ICmpInst::getSwappedPredicate(Pred);
4692       std::swap(CmpLHS, CmpRHS);
4693     }
4694     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4695       break;
4696     return {SPF_UNKNOWN, SPNB_NA, false};
4697   case SPF_UMAX:
4698     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4699       Pred = ICmpInst::getSwappedPredicate(Pred);
4700       std::swap(CmpLHS, CmpRHS);
4701     }
4702     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4703       break;
4704     return {SPF_UNKNOWN, SPNB_NA, false};
4705   default:
4706     return {SPF_UNKNOWN, SPNB_NA, false};
4707   }
4708 
4709   // If there is a common operand in the already matched min/max and the other
4710   // min/max operands match the compare operands (either directly or inverted),
4711   // then this is min/max of the same flavor.
4712 
4713   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4714   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4715   if (D == B) {
4716     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4717                                          match(A, m_Not(m_Specific(CmpRHS)))))
4718       return {L.Flavor, SPNB_NA, false};
4719   }
4720   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4721   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4722   if (C == B) {
4723     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4724                                          match(A, m_Not(m_Specific(CmpRHS)))))
4725       return {L.Flavor, SPNB_NA, false};
4726   }
4727   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4728   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4729   if (D == A) {
4730     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4731                                          match(B, m_Not(m_Specific(CmpRHS)))))
4732       return {L.Flavor, SPNB_NA, false};
4733   }
4734   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4735   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4736   if (C == A) {
4737     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4738                                          match(B, m_Not(m_Specific(CmpRHS)))))
4739       return {L.Flavor, SPNB_NA, false};
4740   }
4741 
4742   return {SPF_UNKNOWN, SPNB_NA, false};
4743 }
4744 
4745 /// Match non-obvious integer minimum and maximum sequences.
4746 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4747                                        Value *CmpLHS, Value *CmpRHS,
4748                                        Value *TrueVal, Value *FalseVal,
4749                                        Value *&LHS, Value *&RHS,
4750                                        unsigned Depth) {
4751   // Assume success. If there's no match, callers should not use these anyway.
4752   LHS = TrueVal;
4753   RHS = FalseVal;
4754 
4755   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4756   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4757     return SPR;
4758 
4759   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4760   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4761     return SPR;
4762 
4763   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4764     return {SPF_UNKNOWN, SPNB_NA, false};
4765 
4766   // Z = X -nsw Y
4767   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4768   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4769   if (match(TrueVal, m_Zero()) &&
4770       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4771     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4772 
4773   // Z = X -nsw Y
4774   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4775   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4776   if (match(FalseVal, m_Zero()) &&
4777       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4778     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4779 
4780   const APInt *C1;
4781   if (!match(CmpRHS, m_APInt(C1)))
4782     return {SPF_UNKNOWN, SPNB_NA, false};
4783 
4784   // An unsigned min/max can be written with a signed compare.
4785   const APInt *C2;
4786   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4787       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4788     // Is the sign bit set?
4789     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4790     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4791     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4792         C2->isMaxSignedValue())
4793       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4794 
4795     // Is the sign bit clear?
4796     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4797     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4798     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4799         C2->isMinSignedValue())
4800       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4801   }
4802 
4803   // Look through 'not' ops to find disguised signed min/max.
4804   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4805   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4806   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4807       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4808     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4809 
4810   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4811   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4812   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4813       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4814     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4815 
4816   return {SPF_UNKNOWN, SPNB_NA, false};
4817 }
4818 
4819 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4820   assert(X && Y && "Invalid operand");
4821 
4822   // X = sub (0, Y) || X = sub nsw (0, Y)
4823   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4824       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4825     return true;
4826 
4827   // Y = sub (0, X) || Y = sub nsw (0, X)
4828   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4829       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4830     return true;
4831 
4832   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4833   Value *A, *B;
4834   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4835                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4836          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4837                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4838 }
4839 
4840 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4841                                               FastMathFlags FMF,
4842                                               Value *CmpLHS, Value *CmpRHS,
4843                                               Value *TrueVal, Value *FalseVal,
4844                                               Value *&LHS, Value *&RHS,
4845                                               unsigned Depth) {
4846   if (CmpInst::isFPPredicate(Pred)) {
4847     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4848     // 0.0 operand, set the compare's 0.0 operands to that same value for the
4849     // purpose of identifying min/max. Disregard vector constants with undefined
4850     // elements because those can not be back-propagated for analysis.
4851     Value *OutputZeroVal = nullptr;
4852     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4853         !cast<Constant>(TrueVal)->containsUndefElement())
4854       OutputZeroVal = TrueVal;
4855     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4856              !cast<Constant>(FalseVal)->containsUndefElement())
4857       OutputZeroVal = FalseVal;
4858 
4859     if (OutputZeroVal) {
4860       if (match(CmpLHS, m_AnyZeroFP()))
4861         CmpLHS = OutputZeroVal;
4862       if (match(CmpRHS, m_AnyZeroFP()))
4863         CmpRHS = OutputZeroVal;
4864     }
4865   }
4866 
4867   LHS = CmpLHS;
4868   RHS = CmpRHS;
4869 
4870   // Signed zero may return inconsistent results between implementations.
4871   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4872   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4873   // Therefore, we behave conservatively and only proceed if at least one of the
4874   // operands is known to not be zero or if we don't care about signed zero.
4875   switch (Pred) {
4876   default: break;
4877   // FIXME: Include OGT/OLT/UGT/ULT.
4878   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4879   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4880     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4881         !isKnownNonZero(CmpRHS))
4882       return {SPF_UNKNOWN, SPNB_NA, false};
4883   }
4884 
4885   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4886   bool Ordered = false;
4887 
4888   // When given one NaN and one non-NaN input:
4889   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4890   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4891   //     ordered comparison fails), which could be NaN or non-NaN.
4892   // so here we discover exactly what NaN behavior is required/accepted.
4893   if (CmpInst::isFPPredicate(Pred)) {
4894     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4895     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4896 
4897     if (LHSSafe && RHSSafe) {
4898       // Both operands are known non-NaN.
4899       NaNBehavior = SPNB_RETURNS_ANY;
4900     } else if (CmpInst::isOrdered(Pred)) {
4901       // An ordered comparison will return false when given a NaN, so it
4902       // returns the RHS.
4903       Ordered = true;
4904       if (LHSSafe)
4905         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4906         NaNBehavior = SPNB_RETURNS_NAN;
4907       else if (RHSSafe)
4908         NaNBehavior = SPNB_RETURNS_OTHER;
4909       else
4910         // Completely unsafe.
4911         return {SPF_UNKNOWN, SPNB_NA, false};
4912     } else {
4913       Ordered = false;
4914       // An unordered comparison will return true when given a NaN, so it
4915       // returns the LHS.
4916       if (LHSSafe)
4917         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4918         NaNBehavior = SPNB_RETURNS_OTHER;
4919       else if (RHSSafe)
4920         NaNBehavior = SPNB_RETURNS_NAN;
4921       else
4922         // Completely unsafe.
4923         return {SPF_UNKNOWN, SPNB_NA, false};
4924     }
4925   }
4926 
4927   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4928     std::swap(CmpLHS, CmpRHS);
4929     Pred = CmpInst::getSwappedPredicate(Pred);
4930     if (NaNBehavior == SPNB_RETURNS_NAN)
4931       NaNBehavior = SPNB_RETURNS_OTHER;
4932     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4933       NaNBehavior = SPNB_RETURNS_NAN;
4934     Ordered = !Ordered;
4935   }
4936 
4937   // ([if]cmp X, Y) ? X : Y
4938   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4939     switch (Pred) {
4940     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4941     case ICmpInst::ICMP_UGT:
4942     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4943     case ICmpInst::ICMP_SGT:
4944     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4945     case ICmpInst::ICMP_ULT:
4946     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4947     case ICmpInst::ICMP_SLT:
4948     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4949     case FCmpInst::FCMP_UGT:
4950     case FCmpInst::FCMP_UGE:
4951     case FCmpInst::FCMP_OGT:
4952     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4953     case FCmpInst::FCMP_ULT:
4954     case FCmpInst::FCMP_ULE:
4955     case FCmpInst::FCMP_OLT:
4956     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4957     }
4958   }
4959 
4960   if (isKnownNegation(TrueVal, FalseVal)) {
4961     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4962     // match against either LHS or sext(LHS).
4963     auto MaybeSExtCmpLHS =
4964         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4965     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4966     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4967     if (match(TrueVal, MaybeSExtCmpLHS)) {
4968       // Set the return values. If the compare uses the negated value (-X >s 0),
4969       // swap the return values because the negated value is always 'RHS'.
4970       LHS = TrueVal;
4971       RHS = FalseVal;
4972       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4973         std::swap(LHS, RHS);
4974 
4975       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4976       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4977       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4978         return {SPF_ABS, SPNB_NA, false};
4979 
4980       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
4981       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
4982         return {SPF_ABS, SPNB_NA, false};
4983 
4984       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4985       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4986       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4987         return {SPF_NABS, SPNB_NA, false};
4988     }
4989     else if (match(FalseVal, MaybeSExtCmpLHS)) {
4990       // Set the return values. If the compare uses the negated value (-X >s 0),
4991       // swap the return values because the negated value is always 'RHS'.
4992       LHS = FalseVal;
4993       RHS = TrueVal;
4994       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4995         std::swap(LHS, RHS);
4996 
4997       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4998       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4999       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5000         return {SPF_NABS, SPNB_NA, false};
5001 
5002       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5003       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5004       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5005         return {SPF_ABS, SPNB_NA, false};
5006     }
5007   }
5008 
5009   if (CmpInst::isIntPredicate(Pred))
5010     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5011 
5012   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5013   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5014   // semantics than minNum. Be conservative in such case.
5015   if (NaNBehavior != SPNB_RETURNS_ANY ||
5016       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5017        !isKnownNonZero(CmpRHS)))
5018     return {SPF_UNKNOWN, SPNB_NA, false};
5019 
5020   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5021 }
5022 
5023 /// Helps to match a select pattern in case of a type mismatch.
5024 ///
5025 /// The function processes the case when type of true and false values of a
5026 /// select instruction differs from type of the cmp instruction operands because
5027 /// of a cast instruction. The function checks if it is legal to move the cast
5028 /// operation after "select". If yes, it returns the new second value of
5029 /// "select" (with the assumption that cast is moved):
5030 /// 1. As operand of cast instruction when both values of "select" are same cast
5031 /// instructions.
5032 /// 2. As restored constant (by applying reverse cast operation) when the first
5033 /// value of the "select" is a cast operation and the second value is a
5034 /// constant.
5035 /// NOTE: We return only the new second value because the first value could be
5036 /// accessed as operand of cast instruction.
5037 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5038                               Instruction::CastOps *CastOp) {
5039   auto *Cast1 = dyn_cast<CastInst>(V1);
5040   if (!Cast1)
5041     return nullptr;
5042 
5043   *CastOp = Cast1->getOpcode();
5044   Type *SrcTy = Cast1->getSrcTy();
5045   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5046     // If V1 and V2 are both the same cast from the same type, look through V1.
5047     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5048       return Cast2->getOperand(0);
5049     return nullptr;
5050   }
5051 
5052   auto *C = dyn_cast<Constant>(V2);
5053   if (!C)
5054     return nullptr;
5055 
5056   Constant *CastedTo = nullptr;
5057   switch (*CastOp) {
5058   case Instruction::ZExt:
5059     if (CmpI->isUnsigned())
5060       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5061     break;
5062   case Instruction::SExt:
5063     if (CmpI->isSigned())
5064       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5065     break;
5066   case Instruction::Trunc:
5067     Constant *CmpConst;
5068     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5069         CmpConst->getType() == SrcTy) {
5070       // Here we have the following case:
5071       //
5072       //   %cond = cmp iN %x, CmpConst
5073       //   %tr = trunc iN %x to iK
5074       //   %narrowsel = select i1 %cond, iK %t, iK C
5075       //
5076       // We can always move trunc after select operation:
5077       //
5078       //   %cond = cmp iN %x, CmpConst
5079       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5080       //   %tr = trunc iN %widesel to iK
5081       //
5082       // Note that C could be extended in any way because we don't care about
5083       // upper bits after truncation. It can't be abs pattern, because it would
5084       // look like:
5085       //
5086       //   select i1 %cond, x, -x.
5087       //
5088       // So only min/max pattern could be matched. Such match requires widened C
5089       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5090       // CmpConst == C is checked below.
5091       CastedTo = CmpConst;
5092     } else {
5093       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5094     }
5095     break;
5096   case Instruction::FPTrunc:
5097     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5098     break;
5099   case Instruction::FPExt:
5100     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5101     break;
5102   case Instruction::FPToUI:
5103     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5104     break;
5105   case Instruction::FPToSI:
5106     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5107     break;
5108   case Instruction::UIToFP:
5109     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5110     break;
5111   case Instruction::SIToFP:
5112     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5113     break;
5114   default:
5115     break;
5116   }
5117 
5118   if (!CastedTo)
5119     return nullptr;
5120 
5121   // Make sure the cast doesn't lose any information.
5122   Constant *CastedBack =
5123       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5124   if (CastedBack != C)
5125     return nullptr;
5126 
5127   return CastedTo;
5128 }
5129 
5130 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5131                                              Instruction::CastOps *CastOp,
5132                                              unsigned Depth) {
5133   if (Depth >= MaxDepth)
5134     return {SPF_UNKNOWN, SPNB_NA, false};
5135 
5136   SelectInst *SI = dyn_cast<SelectInst>(V);
5137   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5138 
5139   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5140   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5141 
5142   Value *TrueVal = SI->getTrueValue();
5143   Value *FalseVal = SI->getFalseValue();
5144 
5145   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5146                                             CastOp, Depth);
5147 }
5148 
5149 SelectPatternResult llvm::matchDecomposedSelectPattern(
5150     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5151     Instruction::CastOps *CastOp, unsigned Depth) {
5152   CmpInst::Predicate Pred = CmpI->getPredicate();
5153   Value *CmpLHS = CmpI->getOperand(0);
5154   Value *CmpRHS = CmpI->getOperand(1);
5155   FastMathFlags FMF;
5156   if (isa<FPMathOperator>(CmpI))
5157     FMF = CmpI->getFastMathFlags();
5158 
5159   // Bail out early.
5160   if (CmpI->isEquality())
5161     return {SPF_UNKNOWN, SPNB_NA, false};
5162 
5163   // Deal with type mismatches.
5164   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5165     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5166       // If this is a potential fmin/fmax with a cast to integer, then ignore
5167       // -0.0 because there is no corresponding integer value.
5168       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5169         FMF.setNoSignedZeros();
5170       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5171                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5172                                   LHS, RHS, Depth);
5173     }
5174     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5175       // If this is a potential fmin/fmax with a cast to integer, then ignore
5176       // -0.0 because there is no corresponding integer value.
5177       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5178         FMF.setNoSignedZeros();
5179       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5180                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5181                                   LHS, RHS, Depth);
5182     }
5183   }
5184   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5185                               LHS, RHS, Depth);
5186 }
5187 
5188 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5189   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5190   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5191   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5192   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5193   if (SPF == SPF_FMINNUM)
5194     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5195   if (SPF == SPF_FMAXNUM)
5196     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5197   llvm_unreachable("unhandled!");
5198 }
5199 
5200 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5201   if (SPF == SPF_SMIN) return SPF_SMAX;
5202   if (SPF == SPF_UMIN) return SPF_UMAX;
5203   if (SPF == SPF_SMAX) return SPF_SMIN;
5204   if (SPF == SPF_UMAX) return SPF_UMIN;
5205   llvm_unreachable("unhandled!");
5206 }
5207 
5208 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5209   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5210 }
5211 
5212 /// Return true if "icmp Pred LHS RHS" is always true.
5213 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5214                             const Value *RHS, const DataLayout &DL,
5215                             unsigned Depth) {
5216   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5217   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5218     return true;
5219 
5220   switch (Pred) {
5221   default:
5222     return false;
5223 
5224   case CmpInst::ICMP_SLE: {
5225     const APInt *C;
5226 
5227     // LHS s<= LHS +_{nsw} C   if C >= 0
5228     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5229       return !C->isNegative();
5230     return false;
5231   }
5232 
5233   case CmpInst::ICMP_ULE: {
5234     const APInt *C;
5235 
5236     // LHS u<= LHS +_{nuw} C   for any C
5237     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5238       return true;
5239 
5240     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5241     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5242                                        const Value *&X,
5243                                        const APInt *&CA, const APInt *&CB) {
5244       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5245           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5246         return true;
5247 
5248       // If X & C == 0 then (X | C) == X +_{nuw} C
5249       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5250           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5251         KnownBits Known(CA->getBitWidth());
5252         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5253                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5254         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5255           return true;
5256       }
5257 
5258       return false;
5259     };
5260 
5261     const Value *X;
5262     const APInt *CLHS, *CRHS;
5263     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5264       return CLHS->ule(*CRHS);
5265 
5266     return false;
5267   }
5268   }
5269 }
5270 
5271 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5272 /// ALHS ARHS" is true.  Otherwise, return None.
5273 static Optional<bool>
5274 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5275                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5276                       const DataLayout &DL, unsigned Depth) {
5277   switch (Pred) {
5278   default:
5279     return None;
5280 
5281   case CmpInst::ICMP_SLT:
5282   case CmpInst::ICMP_SLE:
5283     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5284         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5285       return true;
5286     return None;
5287 
5288   case CmpInst::ICMP_ULT:
5289   case CmpInst::ICMP_ULE:
5290     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5291         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5292       return true;
5293     return None;
5294   }
5295 }
5296 
5297 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5298 /// when the operands match, but are swapped.
5299 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5300                           const Value *BLHS, const Value *BRHS,
5301                           bool &IsSwappedOps) {
5302 
5303   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5304   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5305   return IsMatchingOps || IsSwappedOps;
5306 }
5307 
5308 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5309 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5310 /// Otherwise, return None if we can't infer anything.
5311 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5312                                                     CmpInst::Predicate BPred,
5313                                                     bool AreSwappedOps) {
5314   // Canonicalize the predicate as if the operands were not commuted.
5315   if (AreSwappedOps)
5316     BPred = ICmpInst::getSwappedPredicate(BPred);
5317 
5318   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5319     return true;
5320   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5321     return false;
5322 
5323   return None;
5324 }
5325 
5326 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5327 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5328 /// Otherwise, return None if we can't infer anything.
5329 static Optional<bool>
5330 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
5331                                  const ConstantInt *C1,
5332                                  CmpInst::Predicate BPred,
5333                                  const ConstantInt *C2) {
5334   ConstantRange DomCR =
5335       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5336   ConstantRange CR =
5337       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5338   ConstantRange Intersection = DomCR.intersectWith(CR);
5339   ConstantRange Difference = DomCR.difference(CR);
5340   if (Intersection.isEmptySet())
5341     return false;
5342   if (Difference.isEmptySet())
5343     return true;
5344   return None;
5345 }
5346 
5347 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5348 /// false.  Otherwise, return None if we can't infer anything.
5349 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5350                                          const ICmpInst *RHS,
5351                                          const DataLayout &DL, bool LHSIsTrue,
5352                                          unsigned Depth) {
5353   Value *ALHS = LHS->getOperand(0);
5354   Value *ARHS = LHS->getOperand(1);
5355   // The rest of the logic assumes the LHS condition is true.  If that's not the
5356   // case, invert the predicate to make it so.
5357   ICmpInst::Predicate APred =
5358       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5359 
5360   Value *BLHS = RHS->getOperand(0);
5361   Value *BRHS = RHS->getOperand(1);
5362   ICmpInst::Predicate BPred = RHS->getPredicate();
5363 
5364   // Can we infer anything when the two compares have matching operands?
5365   bool AreSwappedOps;
5366   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
5367     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5368             APred, BPred, AreSwappedOps))
5369       return Implication;
5370     // No amount of additional analysis will infer the second condition, so
5371     // early exit.
5372     return None;
5373   }
5374 
5375   // Can we infer anything when the LHS operands match and the RHS operands are
5376   // constants (not necessarily matching)?
5377   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5378     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5379             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
5380       return Implication;
5381     // No amount of additional analysis will infer the second condition, so
5382     // early exit.
5383     return None;
5384   }
5385 
5386   if (APred == BPred)
5387     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5388   return None;
5389 }
5390 
5391 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5392 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5393 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5394 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5395                                          const ICmpInst *RHS,
5396                                          const DataLayout &DL, bool LHSIsTrue,
5397                                          unsigned Depth) {
5398   // The LHS must be an 'or' or an 'and' instruction.
5399   assert((LHS->getOpcode() == Instruction::And ||
5400           LHS->getOpcode() == Instruction::Or) &&
5401          "Expected LHS to be 'and' or 'or'.");
5402 
5403   assert(Depth <= MaxDepth && "Hit recursion limit");
5404 
5405   // If the result of an 'or' is false, then we know both legs of the 'or' are
5406   // false.  Similarly, if the result of an 'and' is true, then we know both
5407   // legs of the 'and' are true.
5408   Value *ALHS, *ARHS;
5409   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5410       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5411     // FIXME: Make this non-recursion.
5412     if (Optional<bool> Implication =
5413             isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5414       return Implication;
5415     if (Optional<bool> Implication =
5416             isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5417       return Implication;
5418     return None;
5419   }
5420   return None;
5421 }
5422 
5423 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5424                                         const DataLayout &DL, bool LHSIsTrue,
5425                                         unsigned Depth) {
5426   // Bail out when we hit the limit.
5427   if (Depth == MaxDepth)
5428     return None;
5429 
5430   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5431   // example.
5432   if (LHS->getType() != RHS->getType())
5433     return None;
5434 
5435   Type *OpTy = LHS->getType();
5436   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5437 
5438   // LHS ==> RHS by definition
5439   if (LHS == RHS)
5440     return LHSIsTrue;
5441 
5442   // FIXME: Extending the code below to handle vectors.
5443   if (OpTy->isVectorTy())
5444     return None;
5445 
5446   assert(OpTy->isIntegerTy(1) && "implied by above");
5447 
5448   // Both LHS and RHS are icmps.
5449   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5450   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5451   if (LHSCmp && RHSCmp)
5452     return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5453 
5454   // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
5455   // an icmp. FIXME: Add support for and/or on the RHS.
5456   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5457   if (LHSBO && RHSCmp) {
5458     if ((LHSBO->getOpcode() == Instruction::And ||
5459          LHSBO->getOpcode() == Instruction::Or))
5460       return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5461   }
5462   return None;
5463 }
5464 
5465 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5466                                              const Instruction *ContextI,
5467                                              const DataLayout &DL) {
5468   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
5469   if (!ContextI || !ContextI->getParent())
5470     return None;
5471 
5472   // TODO: This is a poor/cheap way to determine dominance. Should we use a
5473   // dominator tree (eg, from a SimplifyQuery) instead?
5474   const BasicBlock *ContextBB = ContextI->getParent();
5475   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5476   if (!PredBB)
5477     return None;
5478 
5479   // We need a conditional branch in the predecessor.
5480   Value *PredCond;
5481   BasicBlock *TrueBB, *FalseBB;
5482   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5483     return None;
5484 
5485   // The branch should get simplified. Don't bother simplifying this condition.
5486   if (TrueBB == FalseBB)
5487     return None;
5488 
5489   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
5490          "Predecessor block does not point to successor?");
5491 
5492   // Is this condition implied by the predecessor condition?
5493   bool CondIsTrue = TrueBB == ContextBB;
5494   return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5495 }
5496 
5497 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
5498                               APInt &Upper, const InstrInfoQuery &IIQ) {
5499   unsigned Width = Lower.getBitWidth();
5500   const APInt *C;
5501   switch (BO.getOpcode()) {
5502   case Instruction::Add:
5503     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5504       // FIXME: If we have both nuw and nsw, we should reduce the range further.
5505       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5506         // 'add nuw x, C' produces [C, UINT_MAX].
5507         Lower = *C;
5508       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5509         if (C->isNegative()) {
5510           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
5511           Lower = APInt::getSignedMinValue(Width);
5512           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5513         } else {
5514           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
5515           Lower = APInt::getSignedMinValue(Width) + *C;
5516           Upper = APInt::getSignedMaxValue(Width) + 1;
5517         }
5518       }
5519     }
5520     break;
5521 
5522   case Instruction::And:
5523     if (match(BO.getOperand(1), m_APInt(C)))
5524       // 'and x, C' produces [0, C].
5525       Upper = *C + 1;
5526     break;
5527 
5528   case Instruction::Or:
5529     if (match(BO.getOperand(1), m_APInt(C)))
5530       // 'or x, C' produces [C, UINT_MAX].
5531       Lower = *C;
5532     break;
5533 
5534   case Instruction::AShr:
5535     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5536       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
5537       Lower = APInt::getSignedMinValue(Width).ashr(*C);
5538       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
5539     } else if (match(BO.getOperand(0), m_APInt(C))) {
5540       unsigned ShiftAmount = Width - 1;
5541       if (!C->isNullValue() && IIQ.isExact(&BO))
5542         ShiftAmount = C->countTrailingZeros();
5543       if (C->isNegative()) {
5544         // 'ashr C, x' produces [C, C >> (Width-1)]
5545         Lower = *C;
5546         Upper = C->ashr(ShiftAmount) + 1;
5547       } else {
5548         // 'ashr C, x' produces [C >> (Width-1), C]
5549         Lower = C->ashr(ShiftAmount);
5550         Upper = *C + 1;
5551       }
5552     }
5553     break;
5554 
5555   case Instruction::LShr:
5556     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5557       // 'lshr x, C' produces [0, UINT_MAX >> C].
5558       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
5559     } else if (match(BO.getOperand(0), m_APInt(C))) {
5560       // 'lshr C, x' produces [C >> (Width-1), C].
5561       unsigned ShiftAmount = Width - 1;
5562       if (!C->isNullValue() && IIQ.isExact(&BO))
5563         ShiftAmount = C->countTrailingZeros();
5564       Lower = C->lshr(ShiftAmount);
5565       Upper = *C + 1;
5566     }
5567     break;
5568 
5569   case Instruction::Shl:
5570     if (match(BO.getOperand(0), m_APInt(C))) {
5571       if (IIQ.hasNoUnsignedWrap(&BO)) {
5572         // 'shl nuw C, x' produces [C, C << CLZ(C)]
5573         Lower = *C;
5574         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
5575       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
5576         if (C->isNegative()) {
5577           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
5578           unsigned ShiftAmount = C->countLeadingOnes() - 1;
5579           Lower = C->shl(ShiftAmount);
5580           Upper = *C + 1;
5581         } else {
5582           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
5583           unsigned ShiftAmount = C->countLeadingZeros() - 1;
5584           Lower = *C;
5585           Upper = C->shl(ShiftAmount) + 1;
5586         }
5587       }
5588     }
5589     break;
5590 
5591   case Instruction::SDiv:
5592     if (match(BO.getOperand(1), m_APInt(C))) {
5593       APInt IntMin = APInt::getSignedMinValue(Width);
5594       APInt IntMax = APInt::getSignedMaxValue(Width);
5595       if (C->isAllOnesValue()) {
5596         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
5597         //    where C != -1 and C != 0 and C != 1
5598         Lower = IntMin + 1;
5599         Upper = IntMax + 1;
5600       } else if (C->countLeadingZeros() < Width - 1) {
5601         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
5602         //    where C != -1 and C != 0 and C != 1
5603         Lower = IntMin.sdiv(*C);
5604         Upper = IntMax.sdiv(*C);
5605         if (Lower.sgt(Upper))
5606           std::swap(Lower, Upper);
5607         Upper = Upper + 1;
5608         assert(Upper != Lower && "Upper part of range has wrapped!");
5609       }
5610     } else if (match(BO.getOperand(0), m_APInt(C))) {
5611       if (C->isMinSignedValue()) {
5612         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
5613         Lower = *C;
5614         Upper = Lower.lshr(1) + 1;
5615       } else {
5616         // 'sdiv C, x' produces [-|C|, |C|].
5617         Upper = C->abs() + 1;
5618         Lower = (-Upper) + 1;
5619       }
5620     }
5621     break;
5622 
5623   case Instruction::UDiv:
5624     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5625       // 'udiv x, C' produces [0, UINT_MAX / C].
5626       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
5627     } else if (match(BO.getOperand(0), m_APInt(C))) {
5628       // 'udiv C, x' produces [0, C].
5629       Upper = *C + 1;
5630     }
5631     break;
5632 
5633   case Instruction::SRem:
5634     if (match(BO.getOperand(1), m_APInt(C))) {
5635       // 'srem x, C' produces (-|C|, |C|).
5636       Upper = C->abs();
5637       Lower = (-Upper) + 1;
5638     }
5639     break;
5640 
5641   case Instruction::URem:
5642     if (match(BO.getOperand(1), m_APInt(C)))
5643       // 'urem x, C' produces [0, C).
5644       Upper = *C;
5645     break;
5646 
5647   default:
5648     break;
5649   }
5650 }
5651 
5652 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
5653                                   APInt &Upper) {
5654   unsigned Width = Lower.getBitWidth();
5655   const APInt *C;
5656   switch (II.getIntrinsicID()) {
5657   case Intrinsic::uadd_sat:
5658     // uadd.sat(x, C) produces [C, UINT_MAX].
5659     if (match(II.getOperand(0), m_APInt(C)) ||
5660         match(II.getOperand(1), m_APInt(C)))
5661       Lower = *C;
5662     break;
5663   case Intrinsic::sadd_sat:
5664     if (match(II.getOperand(0), m_APInt(C)) ||
5665         match(II.getOperand(1), m_APInt(C))) {
5666       if (C->isNegative()) {
5667         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
5668         Lower = APInt::getSignedMinValue(Width);
5669         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5670       } else {
5671         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
5672         Lower = APInt::getSignedMinValue(Width) + *C;
5673         Upper = APInt::getSignedMaxValue(Width) + 1;
5674       }
5675     }
5676     break;
5677   case Intrinsic::usub_sat:
5678     // usub.sat(C, x) produces [0, C].
5679     if (match(II.getOperand(0), m_APInt(C)))
5680       Upper = *C + 1;
5681     // usub.sat(x, C) produces [0, UINT_MAX - C].
5682     else if (match(II.getOperand(1), m_APInt(C)))
5683       Upper = APInt::getMaxValue(Width) - *C + 1;
5684     break;
5685   case Intrinsic::ssub_sat:
5686     if (match(II.getOperand(0), m_APInt(C))) {
5687       if (C->isNegative()) {
5688         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
5689         Lower = APInt::getSignedMinValue(Width);
5690         Upper = *C - APInt::getSignedMinValue(Width) + 1;
5691       } else {
5692         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
5693         Lower = *C - APInt::getSignedMaxValue(Width);
5694         Upper = APInt::getSignedMaxValue(Width) + 1;
5695       }
5696     } else if (match(II.getOperand(1), m_APInt(C))) {
5697       if (C->isNegative()) {
5698         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
5699         Lower = APInt::getSignedMinValue(Width) - *C;
5700         Upper = APInt::getSignedMaxValue(Width) + 1;
5701       } else {
5702         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
5703         Lower = APInt::getSignedMinValue(Width);
5704         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
5705       }
5706     }
5707     break;
5708   default:
5709     break;
5710   }
5711 }
5712 
5713 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
5714                                       APInt &Upper, const InstrInfoQuery &IIQ) {
5715   const Value *LHS = nullptr, *RHS = nullptr;
5716   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
5717   if (R.Flavor == SPF_UNKNOWN)
5718     return;
5719 
5720   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
5721 
5722   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
5723     // If the negation part of the abs (in RHS) has the NSW flag,
5724     // then the result of abs(X) is [0..SIGNED_MAX],
5725     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
5726     Lower = APInt::getNullValue(BitWidth);
5727     if (match(RHS, m_Neg(m_Specific(LHS))) &&
5728         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
5729       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5730     else
5731       Upper = APInt::getSignedMinValue(BitWidth) + 1;
5732     return;
5733   }
5734 
5735   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
5736     // The result of -abs(X) is <= 0.
5737     Lower = APInt::getSignedMinValue(BitWidth);
5738     Upper = APInt(BitWidth, 1);
5739     return;
5740   }
5741 
5742   const APInt *C;
5743   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
5744     return;
5745 
5746   switch (R.Flavor) {
5747     case SPF_UMIN:
5748       Upper = *C + 1;
5749       break;
5750     case SPF_UMAX:
5751       Lower = *C;
5752       break;
5753     case SPF_SMIN:
5754       Lower = APInt::getSignedMinValue(BitWidth);
5755       Upper = *C + 1;
5756       break;
5757     case SPF_SMAX:
5758       Lower = *C;
5759       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5760       break;
5761     default:
5762       break;
5763   }
5764 }
5765 
5766 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) {
5767   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
5768 
5769   const APInt *C;
5770   if (match(V, m_APInt(C)))
5771     return ConstantRange(*C);
5772 
5773   InstrInfoQuery IIQ(UseInstrInfo);
5774   unsigned BitWidth = V->getType()->getScalarSizeInBits();
5775   APInt Lower = APInt(BitWidth, 0);
5776   APInt Upper = APInt(BitWidth, 0);
5777   if (auto *BO = dyn_cast<BinaryOperator>(V))
5778     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
5779   else if (auto *II = dyn_cast<IntrinsicInst>(V))
5780     setLimitsForIntrinsic(*II, Lower, Upper);
5781   else if (auto *SI = dyn_cast<SelectInst>(V))
5782     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
5783 
5784   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
5785 
5786   if (auto *I = dyn_cast<Instruction>(V))
5787     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
5788       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
5789 
5790   return CR;
5791 }
5792 
5793 static Optional<int64_t>
5794 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
5795   // Skip over the first indices.
5796   gep_type_iterator GTI = gep_type_begin(GEP);
5797   for (unsigned i = 1; i != Idx; ++i, ++GTI)
5798     /*skip along*/;
5799 
5800   // Compute the offset implied by the rest of the indices.
5801   int64_t Offset = 0;
5802   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
5803     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
5804     if (!OpC)
5805       return None;
5806     if (OpC->isZero())
5807       continue; // No offset.
5808 
5809     // Handle struct indices, which add their field offset to the pointer.
5810     if (StructType *STy = GTI.getStructTypeOrNull()) {
5811       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5812       continue;
5813     }
5814 
5815     // Otherwise, we have a sequential type like an array or vector.  Multiply
5816     // the index by the ElementSize.
5817     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
5818     Offset += Size * OpC->getSExtValue();
5819   }
5820 
5821   return Offset;
5822 }
5823 
5824 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
5825                                         const DataLayout &DL) {
5826   Ptr1 = Ptr1->stripPointerCasts();
5827   Ptr2 = Ptr2->stripPointerCasts();
5828 
5829   // Handle the trivial case first.
5830   if (Ptr1 == Ptr2) {
5831     return 0;
5832   }
5833 
5834   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
5835   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
5836 
5837   // If one pointer is a GEP see if the GEP is a constant offset from the base,
5838   // as in "P" and "gep P, 1".
5839   // Also do this iteratively to handle the the following case:
5840   //   Ptr_t1 = GEP Ptr1, c1
5841   //   Ptr_t2 = GEP Ptr_t1, c2
5842   //   Ptr2 = GEP Ptr_t2, c3
5843   // where we will return c1+c2+c3.
5844   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
5845   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
5846   // are the same, and return the difference between offsets.
5847   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
5848                                  const Value *Ptr) -> Optional<int64_t> {
5849     const GEPOperator *GEP_T = GEP;
5850     int64_t OffsetVal = 0;
5851     bool HasSameBase = false;
5852     while (GEP_T) {
5853       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
5854       if (!Offset)
5855         return None;
5856       OffsetVal += *Offset;
5857       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
5858       if (Op0 == Ptr) {
5859         HasSameBase = true;
5860         break;
5861       }
5862       GEP_T = dyn_cast<GEPOperator>(Op0);
5863     }
5864     if (!HasSameBase)
5865       return None;
5866     return OffsetVal;
5867   };
5868 
5869   if (GEP1) {
5870     auto Offset = getOffsetFromBase(GEP1, Ptr2);
5871     if (Offset)
5872       return -*Offset;
5873   }
5874   if (GEP2) {
5875     auto Offset = getOffsetFromBase(GEP2, Ptr1);
5876     if (Offset)
5877       return Offset;
5878   }
5879 
5880   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
5881   // base.  After that base, they may have some number of common (and
5882   // potentially variable) indices.  After that they handle some constant
5883   // offset, which determines their offset from each other.  At this point, we
5884   // handle no other case.
5885   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
5886     return None;
5887 
5888   // Skip any common indices and track the GEP types.
5889   unsigned Idx = 1;
5890   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
5891     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
5892       break;
5893 
5894   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
5895   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
5896   if (!Offset1 || !Offset2)
5897     return None;
5898   return *Offset2 - *Offset1;
5899 }
5900