1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getIndexTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 unsigned NumExcluded = 0; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 126 127 Query(const Query &Q, const Value *NewExcl) 128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 129 NumExcluded(Q.NumExcluded) { 130 Excluded = Q.Excluded; 131 Excluded[NumExcluded++] = NewExcl; 132 assert(NumExcluded <= Excluded.size()); 133 } 134 135 bool isExcluded(const Value *Value) const { 136 if (NumExcluded == 0) 137 return false; 138 auto End = Excluded.begin() + NumExcluded; 139 return std::find(Excluded.begin(), End, Value) != End; 140 } 141 }; 142 143 } // end anonymous namespace 144 145 // Given the provided Value and, potentially, a context instruction, return 146 // the preferred context instruction (if any). 147 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 return nullptr; 159 } 160 161 static void computeKnownBits(const Value *V, KnownBits &Known, 162 unsigned Depth, const Query &Q); 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, 168 OptimizationRemarkEmitter *ORE) { 169 ::computeKnownBits(V, Known, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 171 } 172 173 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 174 const Query &Q); 175 176 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT, 180 OptimizationRemarkEmitter *ORE) { 181 return ::computeKnownBits(V, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 183 } 184 185 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 186 const DataLayout &DL, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 assert(LHS->getType() == RHS->getType() && 190 "LHS and RHS should have the same type"); 191 assert(LHS->getType()->isIntOrIntVectorTy() && 192 "LHS and RHS should be integers"); 193 // Look for an inverted mask: (X & ~M) op (Y & M). 194 Value *M; 195 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 196 match(RHS, m_c_And(m_Specific(M), m_Value()))) 197 return true; 198 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 199 match(LHS, m_c_And(m_Specific(M), m_Value()))) 200 return true; 201 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 202 KnownBits LHSKnown(IT->getBitWidth()); 203 KnownBits RHSKnown(IT->getBitWidth()); 204 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 205 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 206 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 207 } 208 209 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 210 for (const User *U : CxtI->users()) { 211 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 212 if (IC->isEquality()) 213 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 214 if (C->isNullValue()) 215 continue; 216 return false; 217 } 218 return true; 219 } 220 221 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 222 const Query &Q); 223 224 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 225 bool OrZero, 226 unsigned Depth, AssumptionCache *AC, 227 const Instruction *CxtI, 228 const DominatorTree *DT) { 229 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT)); 231 } 232 233 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 234 235 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 236 AssumptionCache *AC, const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 242 unsigned Depth, 243 AssumptionCache *AC, const Instruction *CxtI, 244 const DominatorTree *DT) { 245 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 246 return Known.isNonNegative(); 247 } 248 249 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 250 AssumptionCache *AC, const Instruction *CxtI, 251 const DominatorTree *DT) { 252 if (auto *CI = dyn_cast<ConstantInt>(V)) 253 return CI->getValue().isStrictlyPositive(); 254 255 // TODO: We'd doing two recursive queries here. We should factor this such 256 // that only a single query is needed. 257 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 258 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 259 } 260 261 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 262 AssumptionCache *AC, const Instruction *CxtI, 263 const DominatorTree *DT) { 264 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 265 return Known.isNegative(); 266 } 267 268 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 269 270 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 271 const DataLayout &DL, 272 AssumptionCache *AC, const Instruction *CxtI, 273 const DominatorTree *DT) { 274 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 275 safeCxtI(V1, safeCxtI(V2, CxtI)), 276 DT)); 277 } 278 279 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 280 const Query &Q); 281 282 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 283 const DataLayout &DL, 284 unsigned Depth, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT) { 286 return ::MaskedValueIsZero(V, Mask, Depth, 287 Query(DL, AC, safeCxtI(V, CxtI), DT)); 288 } 289 290 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 291 const Query &Q); 292 293 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 294 unsigned Depth, AssumptionCache *AC, 295 const Instruction *CxtI, 296 const DominatorTree *DT) { 297 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 298 } 299 300 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 301 bool NSW, 302 KnownBits &KnownOut, KnownBits &Known2, 303 unsigned Depth, const Query &Q) { 304 unsigned BitWidth = KnownOut.getBitWidth(); 305 306 // If an initial sequence of bits in the result is not needed, the 307 // corresponding bits in the operands are not needed. 308 KnownBits LHSKnown(BitWidth); 309 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 310 computeKnownBits(Op1, Known2, Depth + 1, Q); 311 312 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 313 } 314 315 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 316 KnownBits &Known, KnownBits &Known2, 317 unsigned Depth, const Query &Q) { 318 unsigned BitWidth = Known.getBitWidth(); 319 computeKnownBits(Op1, Known, Depth + 1, Q); 320 computeKnownBits(Op0, Known2, Depth + 1, Q); 321 322 bool isKnownNegative = false; 323 bool isKnownNonNegative = false; 324 // If the multiplication is known not to overflow, compute the sign bit. 325 if (NSW) { 326 if (Op0 == Op1) { 327 // The product of a number with itself is non-negative. 328 isKnownNonNegative = true; 329 } else { 330 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 331 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 332 bool isKnownNegativeOp1 = Known.isNegative(); 333 bool isKnownNegativeOp0 = Known2.isNegative(); 334 // The product of two numbers with the same sign is non-negative. 335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 337 // The product of a negative number and a non-negative number is either 338 // negative or zero. 339 if (!isKnownNonNegative) 340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 341 isKnownNonZero(Op0, Depth, Q)) || 342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 343 isKnownNonZero(Op1, Depth, Q)); 344 } 345 } 346 347 assert(!Known.hasConflict() && !Known2.hasConflict()); 348 // Compute a conservative estimate for high known-0 bits. 349 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 350 Known2.countMinLeadingZeros(), 351 BitWidth) - BitWidth; 352 LeadZ = std::min(LeadZ, BitWidth); 353 354 // The result of the bottom bits of an integer multiply can be 355 // inferred by looking at the bottom bits of both operands and 356 // multiplying them together. 357 // We can infer at least the minimum number of known trailing bits 358 // of both operands. Depending on number of trailing zeros, we can 359 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 360 // a and b are divisible by m and n respectively. 361 // We then calculate how many of those bits are inferrable and set 362 // the output. For example, the i8 mul: 363 // a = XXXX1100 (12) 364 // b = XXXX1110 (14) 365 // We know the bottom 3 bits are zero since the first can be divided by 366 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 367 // Applying the multiplication to the trimmed arguments gets: 368 // XX11 (3) 369 // X111 (7) 370 // ------- 371 // XX11 372 // XX11 373 // XX11 374 // XX11 375 // ------- 376 // XXXXX01 377 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 378 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 379 // The proof for this can be described as: 380 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 381 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 382 // umin(countTrailingZeros(C2), C6) + 383 // umin(C5 - umin(countTrailingZeros(C1), C5), 384 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 385 // %aa = shl i8 %a, C5 386 // %bb = shl i8 %b, C6 387 // %aaa = or i8 %aa, C1 388 // %bbb = or i8 %bb, C2 389 // %mul = mul i8 %aaa, %bbb 390 // %mask = and i8 %mul, C7 391 // => 392 // %mask = i8 ((C1*C2)&C7) 393 // Where C5, C6 describe the known bits of %a, %b 394 // C1, C2 describe the known bottom bits of %a, %b. 395 // C7 describes the mask of the known bits of the result. 396 APInt Bottom0 = Known.One; 397 APInt Bottom1 = Known2.One; 398 399 // How many times we'd be able to divide each argument by 2 (shr by 1). 400 // This gives us the number of trailing zeros on the multiplication result. 401 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 402 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 403 unsigned TrailZero0 = Known.countMinTrailingZeros(); 404 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 405 unsigned TrailZ = TrailZero0 + TrailZero1; 406 407 // Figure out the fewest known-bits operand. 408 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 409 TrailBitsKnown1 - TrailZero1); 410 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 411 412 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 413 Bottom1.getLoBits(TrailBitsKnown1); 414 415 Known.resetAll(); 416 Known.Zero.setHighBits(LeadZ); 417 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 418 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 419 420 // Only make use of no-wrap flags if we failed to compute the sign bit 421 // directly. This matters if the multiplication always overflows, in 422 // which case we prefer to follow the result of the direct computation, 423 // though as the program is invoking undefined behaviour we can choose 424 // whatever we like here. 425 if (isKnownNonNegative && !Known.isNegative()) 426 Known.makeNonNegative(); 427 else if (isKnownNegative && !Known.isNonNegative()) 428 Known.makeNegative(); 429 } 430 431 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 432 KnownBits &Known) { 433 unsigned BitWidth = Known.getBitWidth(); 434 unsigned NumRanges = Ranges.getNumOperands() / 2; 435 assert(NumRanges >= 1); 436 437 Known.Zero.setAllBits(); 438 Known.One.setAllBits(); 439 440 for (unsigned i = 0; i < NumRanges; ++i) { 441 ConstantInt *Lower = 442 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 443 ConstantInt *Upper = 444 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 445 ConstantRange Range(Lower->getValue(), Upper->getValue()); 446 447 // The first CommonPrefixBits of all values in Range are equal. 448 unsigned CommonPrefixBits = 449 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 450 451 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 452 Known.One &= Range.getUnsignedMax() & Mask; 453 Known.Zero &= ~Range.getUnsignedMax() & Mask; 454 } 455 } 456 457 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 458 SmallVector<const Value *, 16> WorkSet(1, I); 459 SmallPtrSet<const Value *, 32> Visited; 460 SmallPtrSet<const Value *, 16> EphValues; 461 462 // The instruction defining an assumption's condition itself is always 463 // considered ephemeral to that assumption (even if it has other 464 // non-ephemeral users). See r246696's test case for an example. 465 if (is_contained(I->operands(), E)) 466 return true; 467 468 while (!WorkSet.empty()) { 469 const Value *V = WorkSet.pop_back_val(); 470 if (!Visited.insert(V).second) 471 continue; 472 473 // If all uses of this value are ephemeral, then so is this value. 474 if (llvm::all_of(V->users(), [&](const User *U) { 475 return EphValues.count(U); 476 })) { 477 if (V == E) 478 return true; 479 480 if (V == I || isSafeToSpeculativelyExecute(V)) { 481 EphValues.insert(V); 482 if (const User *U = dyn_cast<User>(V)) 483 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 484 J != JE; ++J) 485 WorkSet.push_back(*J); 486 } 487 } 488 } 489 490 return false; 491 } 492 493 // Is this an intrinsic that cannot be speculated but also cannot trap? 494 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 495 if (const CallInst *CI = dyn_cast<CallInst>(I)) 496 if (Function *F = CI->getCalledFunction()) 497 switch (F->getIntrinsicID()) { 498 default: break; 499 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 500 case Intrinsic::assume: 501 case Intrinsic::sideeffect: 502 case Intrinsic::dbg_declare: 503 case Intrinsic::dbg_value: 504 case Intrinsic::dbg_label: 505 case Intrinsic::invariant_start: 506 case Intrinsic::invariant_end: 507 case Intrinsic::lifetime_start: 508 case Intrinsic::lifetime_end: 509 case Intrinsic::objectsize: 510 case Intrinsic::ptr_annotation: 511 case Intrinsic::var_annotation: 512 return true; 513 } 514 515 return false; 516 } 517 518 bool llvm::isValidAssumeForContext(const Instruction *Inv, 519 const Instruction *CxtI, 520 const DominatorTree *DT) { 521 // There are two restrictions on the use of an assume: 522 // 1. The assume must dominate the context (or the control flow must 523 // reach the assume whenever it reaches the context). 524 // 2. The context must not be in the assume's set of ephemeral values 525 // (otherwise we will use the assume to prove that the condition 526 // feeding the assume is trivially true, thus causing the removal of 527 // the assume). 528 529 if (DT) { 530 if (DT->dominates(Inv, CxtI)) 531 return true; 532 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 533 // We don't have a DT, but this trivially dominates. 534 return true; 535 } 536 537 // With or without a DT, the only remaining case we will check is if the 538 // instructions are in the same BB. Give up if that is not the case. 539 if (Inv->getParent() != CxtI->getParent()) 540 return false; 541 542 // If we have a dom tree, then we now know that the assume doesn't dominate 543 // the other instruction. If we don't have a dom tree then we can check if 544 // the assume is first in the BB. 545 if (!DT) { 546 // Search forward from the assume until we reach the context (or the end 547 // of the block); the common case is that the assume will come first. 548 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 549 IE = Inv->getParent()->end(); I != IE; ++I) 550 if (&*I == CxtI) 551 return true; 552 } 553 554 // The context comes first, but they're both in the same block. Make sure 555 // there is nothing in between that might interrupt the control flow. 556 for (BasicBlock::const_iterator I = 557 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 558 I != IE; ++I) 559 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 560 return false; 561 562 return !isEphemeralValueOf(Inv, CxtI); 563 } 564 565 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 566 unsigned Depth, const Query &Q) { 567 // Use of assumptions is context-sensitive. If we don't have a context, we 568 // cannot use them! 569 if (!Q.AC || !Q.CxtI) 570 return; 571 572 unsigned BitWidth = Known.getBitWidth(); 573 574 // Note that the patterns below need to be kept in sync with the code 575 // in AssumptionCache::updateAffectedValues. 576 577 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 578 if (!AssumeVH) 579 continue; 580 CallInst *I = cast<CallInst>(AssumeVH); 581 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 582 "Got assumption for the wrong function!"); 583 if (Q.isExcluded(I)) 584 continue; 585 586 // Warning: This loop can end up being somewhat performance sensitive. 587 // We're running this loop for once for each value queried resulting in a 588 // runtime of ~O(#assumes * #values). 589 590 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 591 "must be an assume intrinsic"); 592 593 Value *Arg = I->getArgOperand(0); 594 595 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 596 assert(BitWidth == 1 && "assume operand is not i1?"); 597 Known.setAllOnes(); 598 return; 599 } 600 if (match(Arg, m_Not(m_Specific(V))) && 601 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 602 assert(BitWidth == 1 && "assume operand is not i1?"); 603 Known.setAllZero(); 604 return; 605 } 606 607 // The remaining tests are all recursive, so bail out if we hit the limit. 608 if (Depth == MaxDepth) 609 continue; 610 611 Value *A, *B; 612 auto m_V = m_CombineOr(m_Specific(V), 613 m_CombineOr(m_PtrToInt(m_Specific(V)), 614 m_BitCast(m_Specific(V)))); 615 616 CmpInst::Predicate Pred; 617 uint64_t C; 618 // assume(v = a) 619 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 620 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 KnownBits RHSKnown(BitWidth); 622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 623 Known.Zero |= RHSKnown.Zero; 624 Known.One |= RHSKnown.One; 625 // assume(v & b = a) 626 } else if (match(Arg, 627 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 628 Pred == ICmpInst::ICMP_EQ && 629 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 630 KnownBits RHSKnown(BitWidth); 631 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 632 KnownBits MaskKnown(BitWidth); 633 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 634 635 // For those bits in the mask that are known to be one, we can propagate 636 // known bits from the RHS to V. 637 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 638 Known.One |= RHSKnown.One & MaskKnown.One; 639 // assume(~(v & b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 KnownBits RHSKnown(BitWidth); 645 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 646 KnownBits MaskKnown(BitWidth); 647 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 648 649 // For those bits in the mask that are known to be one, we can propagate 650 // inverted known bits from the RHS to V. 651 Known.Zero |= RHSKnown.One & MaskKnown.One; 652 Known.One |= RHSKnown.Zero & MaskKnown.One; 653 // assume(v | b = a) 654 } else if (match(Arg, 655 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 656 Pred == ICmpInst::ICMP_EQ && 657 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 658 KnownBits RHSKnown(BitWidth); 659 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 660 KnownBits BKnown(BitWidth); 661 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 662 663 // For those bits in B that are known to be zero, we can propagate known 664 // bits from the RHS to V. 665 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 666 Known.One |= RHSKnown.One & BKnown.Zero; 667 // assume(~(v | b) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 KnownBits RHSKnown(BitWidth); 673 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 674 KnownBits BKnown(BitWidth); 675 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 676 677 // For those bits in B that are known to be zero, we can propagate 678 // inverted known bits from the RHS to V. 679 Known.Zero |= RHSKnown.One & BKnown.Zero; 680 Known.One |= RHSKnown.Zero & BKnown.Zero; 681 // assume(v ^ b = a) 682 } else if (match(Arg, 683 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 684 Pred == ICmpInst::ICMP_EQ && 685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 686 KnownBits RHSKnown(BitWidth); 687 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 688 KnownBits BKnown(BitWidth); 689 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 690 691 // For those bits in B that are known to be zero, we can propagate known 692 // bits from the RHS to V. For those bits in B that are known to be one, 693 // we can propagate inverted known bits from the RHS to V. 694 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 695 Known.One |= RHSKnown.One & BKnown.Zero; 696 Known.Zero |= RHSKnown.One & BKnown.One; 697 Known.One |= RHSKnown.Zero & BKnown.One; 698 // assume(~(v ^ b) = a) 699 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 700 m_Value(A))) && 701 Pred == ICmpInst::ICMP_EQ && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 KnownBits RHSKnown(BitWidth); 704 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 705 KnownBits BKnown(BitWidth); 706 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 707 708 // For those bits in B that are known to be zero, we can propagate 709 // inverted known bits from the RHS to V. For those bits in B that are 710 // known to be one, we can propagate known bits from the RHS to V. 711 Known.Zero |= RHSKnown.One & BKnown.Zero; 712 Known.One |= RHSKnown.Zero & BKnown.Zero; 713 Known.Zero |= RHSKnown.Zero & BKnown.One; 714 Known.One |= RHSKnown.One & BKnown.One; 715 // assume(v << c = a) 716 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 717 m_Value(A))) && 718 Pred == ICmpInst::ICMP_EQ && 719 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 720 C < BitWidth) { 721 KnownBits RHSKnown(BitWidth); 722 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 723 // For those bits in RHS that are known, we can propagate them to known 724 // bits in V shifted to the right by C. 725 RHSKnown.Zero.lshrInPlace(C); 726 Known.Zero |= RHSKnown.Zero; 727 RHSKnown.One.lshrInPlace(C); 728 Known.One |= RHSKnown.One; 729 // assume(~(v << c) = a) 730 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 731 m_Value(A))) && 732 Pred == ICmpInst::ICMP_EQ && 733 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 734 C < BitWidth) { 735 KnownBits RHSKnown(BitWidth); 736 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 737 // For those bits in RHS that are known, we can propagate them inverted 738 // to known bits in V shifted to the right by C. 739 RHSKnown.One.lshrInPlace(C); 740 Known.Zero |= RHSKnown.One; 741 RHSKnown.Zero.lshrInPlace(C); 742 Known.One |= RHSKnown.Zero; 743 // assume(v >> c = a) 744 } else if (match(Arg, 745 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 746 m_Value(A))) && 747 Pred == ICmpInst::ICMP_EQ && 748 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 749 C < BitWidth) { 750 KnownBits RHSKnown(BitWidth); 751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 752 // For those bits in RHS that are known, we can propagate them to known 753 // bits in V shifted to the right by C. 754 Known.Zero |= RHSKnown.Zero << C; 755 Known.One |= RHSKnown.One << C; 756 // assume(~(v >> c) = a) 757 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 758 m_Value(A))) && 759 Pred == ICmpInst::ICMP_EQ && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 761 C < BitWidth) { 762 KnownBits RHSKnown(BitWidth); 763 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 764 // For those bits in RHS that are known, we can propagate them inverted 765 // to known bits in V shifted to the right by C. 766 Known.Zero |= RHSKnown.One << C; 767 Known.One |= RHSKnown.Zero << C; 768 // assume(v >=_s c) where c is non-negative 769 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 770 Pred == ICmpInst::ICMP_SGE && 771 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 772 KnownBits RHSKnown(BitWidth); 773 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 774 775 if (RHSKnown.isNonNegative()) { 776 // We know that the sign bit is zero. 777 Known.makeNonNegative(); 778 } 779 // assume(v >_s c) where c is at least -1. 780 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 781 Pred == ICmpInst::ICMP_SGT && 782 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 783 KnownBits RHSKnown(BitWidth); 784 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 785 786 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 787 // We know that the sign bit is zero. 788 Known.makeNonNegative(); 789 } 790 // assume(v <=_s c) where c is negative 791 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 792 Pred == ICmpInst::ICMP_SLE && 793 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 794 KnownBits RHSKnown(BitWidth); 795 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 796 797 if (RHSKnown.isNegative()) { 798 // We know that the sign bit is one. 799 Known.makeNegative(); 800 } 801 // assume(v <_s c) where c is non-positive 802 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 803 Pred == ICmpInst::ICMP_SLT && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown(BitWidth); 806 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 807 808 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 809 // We know that the sign bit is one. 810 Known.makeNegative(); 811 } 812 // assume(v <=_u c) 813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 814 Pred == ICmpInst::ICMP_ULE && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown(BitWidth); 817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 818 819 // Whatever high bits in c are zero are known to be zero. 820 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 821 // assume(v <_u c) 822 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 823 Pred == ICmpInst::ICMP_ULT && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 825 KnownBits RHSKnown(BitWidth); 826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 827 828 // If the RHS is known zero, then this assumption must be wrong (nothing 829 // is unsigned less than zero). Signal a conflict and get out of here. 830 if (RHSKnown.isZero()) { 831 Known.Zero.setAllBits(); 832 Known.One.setAllBits(); 833 break; 834 } 835 836 // Whatever high bits in c are zero are known to be zero (if c is a power 837 // of 2, then one more). 838 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 839 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 840 else 841 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 842 } 843 } 844 845 // If assumptions conflict with each other or previous known bits, then we 846 // have a logical fallacy. It's possible that the assumption is not reachable, 847 // so this isn't a real bug. On the other hand, the program may have undefined 848 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 849 // clear out the known bits, try to warn the user, and hope for the best. 850 if (Known.Zero.intersects(Known.One)) { 851 Known.resetAll(); 852 853 if (Q.ORE) 854 Q.ORE->emit([&]() { 855 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 856 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 857 CxtI) 858 << "Detected conflicting code assumptions. Program may " 859 "have undefined behavior, or compiler may have " 860 "internal error."; 861 }); 862 } 863 } 864 865 /// Compute known bits from a shift operator, including those with a 866 /// non-constant shift amount. Known is the output of this function. Known2 is a 867 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 868 /// operator-specific functions that, given the known-zero or known-one bits 869 /// respectively, and a shift amount, compute the implied known-zero or 870 /// known-one bits of the shift operator's result respectively for that shift 871 /// amount. The results from calling KZF and KOF are conservatively combined for 872 /// all permitted shift amounts. 873 static void computeKnownBitsFromShiftOperator( 874 const Operator *I, KnownBits &Known, KnownBits &Known2, 875 unsigned Depth, const Query &Q, 876 function_ref<APInt(const APInt &, unsigned)> KZF, 877 function_ref<APInt(const APInt &, unsigned)> KOF) { 878 unsigned BitWidth = Known.getBitWidth(); 879 880 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 881 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 882 883 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 884 Known.Zero = KZF(Known.Zero, ShiftAmt); 885 Known.One = KOF(Known.One, ShiftAmt); 886 // If the known bits conflict, this must be an overflowing left shift, so 887 // the shift result is poison. We can return anything we want. Choose 0 for 888 // the best folding opportunity. 889 if (Known.hasConflict()) 890 Known.setAllZero(); 891 892 return; 893 } 894 895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 896 897 // If the shift amount could be greater than or equal to the bit-width of the 898 // LHS, the value could be poison, but bail out because the check below is 899 // expensive. TODO: Should we just carry on? 900 if ((~Known.Zero).uge(BitWidth)) { 901 Known.resetAll(); 902 return; 903 } 904 905 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 906 // BitWidth > 64 and any upper bits are known, we'll end up returning the 907 // limit value (which implies all bits are known). 908 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 909 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 910 911 // It would be more-clearly correct to use the two temporaries for this 912 // calculation. Reusing the APInts here to prevent unnecessary allocations. 913 Known.resetAll(); 914 915 // If we know the shifter operand is nonzero, we can sometimes infer more 916 // known bits. However this is expensive to compute, so be lazy about it and 917 // only compute it when absolutely necessary. 918 Optional<bool> ShifterOperandIsNonZero; 919 920 // Early exit if we can't constrain any well-defined shift amount. 921 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 922 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 923 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 924 if (!*ShifterOperandIsNonZero) 925 return; 926 } 927 928 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 929 930 Known.Zero.setAllBits(); 931 Known.One.setAllBits(); 932 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 933 // Combine the shifted known input bits only for those shift amounts 934 // compatible with its known constraints. 935 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 936 continue; 937 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 938 continue; 939 // If we know the shifter is nonzero, we may be able to infer more known 940 // bits. This check is sunk down as far as possible to avoid the expensive 941 // call to isKnownNonZero if the cheaper checks above fail. 942 if (ShiftAmt == 0) { 943 if (!ShifterOperandIsNonZero.hasValue()) 944 ShifterOperandIsNonZero = 945 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 946 if (*ShifterOperandIsNonZero) 947 continue; 948 } 949 950 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 951 Known.One &= KOF(Known2.One, ShiftAmt); 952 } 953 954 // If the known bits conflict, the result is poison. Return a 0 and hope the 955 // caller can further optimize that. 956 if (Known.hasConflict()) 957 Known.setAllZero(); 958 } 959 960 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 961 unsigned Depth, const Query &Q) { 962 unsigned BitWidth = Known.getBitWidth(); 963 964 KnownBits Known2(Known); 965 switch (I->getOpcode()) { 966 default: break; 967 case Instruction::Load: 968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 969 computeKnownBitsFromRangeMetadata(*MD, Known); 970 break; 971 case Instruction::And: { 972 // If either the LHS or the RHS are Zero, the result is zero. 973 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 974 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 975 976 // Output known-1 bits are only known if set in both the LHS & RHS. 977 Known.One &= Known2.One; 978 // Output known-0 are known to be clear if zero in either the LHS | RHS. 979 Known.Zero |= Known2.Zero; 980 981 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 982 // here we handle the more general case of adding any odd number by 983 // matching the form add(x, add(x, y)) where y is odd. 984 // TODO: This could be generalized to clearing any bit set in y where the 985 // following bit is known to be unset in y. 986 Value *X = nullptr, *Y = nullptr; 987 if (!Known.Zero[0] && !Known.One[0] && 988 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 989 Known2.resetAll(); 990 computeKnownBits(Y, Known2, Depth + 1, Q); 991 if (Known2.countMinTrailingOnes() > 0) 992 Known.Zero.setBit(0); 993 } 994 break; 995 } 996 case Instruction::Or: 997 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 998 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 999 1000 // Output known-0 bits are only known if clear in both the LHS & RHS. 1001 Known.Zero &= Known2.Zero; 1002 // Output known-1 are known to be set if set in either the LHS | RHS. 1003 Known.One |= Known2.One; 1004 break; 1005 case Instruction::Xor: { 1006 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1007 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1008 1009 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1010 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1011 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1012 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1013 Known.Zero = std::move(KnownZeroOut); 1014 break; 1015 } 1016 case Instruction::Mul: { 1017 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1018 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1019 Known2, Depth, Q); 1020 break; 1021 } 1022 case Instruction::UDiv: { 1023 // For the purposes of computing leading zeros we can conservatively 1024 // treat a udiv as a logical right shift by the power of 2 known to 1025 // be less than the denominator. 1026 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1027 unsigned LeadZ = Known2.countMinLeadingZeros(); 1028 1029 Known2.resetAll(); 1030 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1031 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1032 if (RHSMaxLeadingZeros != BitWidth) 1033 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1034 1035 Known.Zero.setHighBits(LeadZ); 1036 break; 1037 } 1038 case Instruction::Select: { 1039 const Value *LHS, *RHS; 1040 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1041 if (SelectPatternResult::isMinOrMax(SPF)) { 1042 computeKnownBits(RHS, Known, Depth + 1, Q); 1043 computeKnownBits(LHS, Known2, Depth + 1, Q); 1044 } else { 1045 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1046 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1047 } 1048 1049 unsigned MaxHighOnes = 0; 1050 unsigned MaxHighZeros = 0; 1051 if (SPF == SPF_SMAX) { 1052 // If both sides are negative, the result is negative. 1053 if (Known.isNegative() && Known2.isNegative()) 1054 // We can derive a lower bound on the result by taking the max of the 1055 // leading one bits. 1056 MaxHighOnes = 1057 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1058 // If either side is non-negative, the result is non-negative. 1059 else if (Known.isNonNegative() || Known2.isNonNegative()) 1060 MaxHighZeros = 1; 1061 } else if (SPF == SPF_SMIN) { 1062 // If both sides are non-negative, the result is non-negative. 1063 if (Known.isNonNegative() && Known2.isNonNegative()) 1064 // We can derive an upper bound on the result by taking the max of the 1065 // leading zero bits. 1066 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1067 Known2.countMinLeadingZeros()); 1068 // If either side is negative, the result is negative. 1069 else if (Known.isNegative() || Known2.isNegative()) 1070 MaxHighOnes = 1; 1071 } else if (SPF == SPF_UMAX) { 1072 // We can derive a lower bound on the result by taking the max of the 1073 // leading one bits. 1074 MaxHighOnes = 1075 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1076 } else if (SPF == SPF_UMIN) { 1077 // We can derive an upper bound on the result by taking the max of the 1078 // leading zero bits. 1079 MaxHighZeros = 1080 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1081 } else if (SPF == SPF_ABS) { 1082 // RHS from matchSelectPattern returns the negation part of abs pattern. 1083 // If the negate has an NSW flag we can assume the sign bit of the result 1084 // will be 0 because that makes abs(INT_MIN) undefined. 1085 if (cast<Instruction>(RHS)->hasNoSignedWrap()) 1086 MaxHighZeros = 1; 1087 } 1088 1089 // Only known if known in both the LHS and RHS. 1090 Known.One &= Known2.One; 1091 Known.Zero &= Known2.Zero; 1092 if (MaxHighOnes > 0) 1093 Known.One.setHighBits(MaxHighOnes); 1094 if (MaxHighZeros > 0) 1095 Known.Zero.setHighBits(MaxHighZeros); 1096 break; 1097 } 1098 case Instruction::FPTrunc: 1099 case Instruction::FPExt: 1100 case Instruction::FPToUI: 1101 case Instruction::FPToSI: 1102 case Instruction::SIToFP: 1103 case Instruction::UIToFP: 1104 break; // Can't work with floating point. 1105 case Instruction::PtrToInt: 1106 case Instruction::IntToPtr: 1107 // Fall through and handle them the same as zext/trunc. 1108 LLVM_FALLTHROUGH; 1109 case Instruction::ZExt: 1110 case Instruction::Trunc: { 1111 Type *SrcTy = I->getOperand(0)->getType(); 1112 1113 unsigned SrcBitWidth; 1114 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1115 // which fall through here. 1116 Type *ScalarTy = SrcTy->getScalarType(); 1117 SrcBitWidth = ScalarTy->isPointerTy() ? 1118 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1119 Q.DL.getTypeSizeInBits(ScalarTy); 1120 1121 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1122 Known = Known.zextOrTrunc(SrcBitWidth); 1123 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1124 Known = Known.zextOrTrunc(BitWidth); 1125 // Any top bits are known to be zero. 1126 if (BitWidth > SrcBitWidth) 1127 Known.Zero.setBitsFrom(SrcBitWidth); 1128 break; 1129 } 1130 case Instruction::BitCast: { 1131 Type *SrcTy = I->getOperand(0)->getType(); 1132 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1133 // TODO: For now, not handling conversions like: 1134 // (bitcast i64 %x to <2 x i32>) 1135 !I->getType()->isVectorTy()) { 1136 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1137 break; 1138 } 1139 break; 1140 } 1141 case Instruction::SExt: { 1142 // Compute the bits in the result that are not present in the input. 1143 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1144 1145 Known = Known.trunc(SrcBitWidth); 1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1147 // If the sign bit of the input is known set or clear, then we know the 1148 // top bits of the result. 1149 Known = Known.sext(BitWidth); 1150 break; 1151 } 1152 case Instruction::Shl: { 1153 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1154 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1155 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1156 APInt KZResult = KnownZero << ShiftAmt; 1157 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1158 // If this shift has "nsw" keyword, then the result is either a poison 1159 // value or has the same sign bit as the first operand. 1160 if (NSW && KnownZero.isSignBitSet()) 1161 KZResult.setSignBit(); 1162 return KZResult; 1163 }; 1164 1165 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1166 APInt KOResult = KnownOne << ShiftAmt; 1167 if (NSW && KnownOne.isSignBitSet()) 1168 KOResult.setSignBit(); 1169 return KOResult; 1170 }; 1171 1172 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1173 break; 1174 } 1175 case Instruction::LShr: { 1176 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1177 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1178 APInt KZResult = KnownZero.lshr(ShiftAmt); 1179 // High bits known zero. 1180 KZResult.setHighBits(ShiftAmt); 1181 return KZResult; 1182 }; 1183 1184 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1185 return KnownOne.lshr(ShiftAmt); 1186 }; 1187 1188 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1189 break; 1190 } 1191 case Instruction::AShr: { 1192 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1193 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1194 return KnownZero.ashr(ShiftAmt); 1195 }; 1196 1197 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1198 return KnownOne.ashr(ShiftAmt); 1199 }; 1200 1201 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1202 break; 1203 } 1204 case Instruction::Sub: { 1205 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1206 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1207 Known, Known2, Depth, Q); 1208 break; 1209 } 1210 case Instruction::Add: { 1211 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1212 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1213 Known, Known2, Depth, Q); 1214 break; 1215 } 1216 case Instruction::SRem: 1217 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1218 APInt RA = Rem->getValue().abs(); 1219 if (RA.isPowerOf2()) { 1220 APInt LowBits = RA - 1; 1221 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1222 1223 // The low bits of the first operand are unchanged by the srem. 1224 Known.Zero = Known2.Zero & LowBits; 1225 Known.One = Known2.One & LowBits; 1226 1227 // If the first operand is non-negative or has all low bits zero, then 1228 // the upper bits are all zero. 1229 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1230 Known.Zero |= ~LowBits; 1231 1232 // If the first operand is negative and not all low bits are zero, then 1233 // the upper bits are all one. 1234 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1235 Known.One |= ~LowBits; 1236 1237 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1238 break; 1239 } 1240 } 1241 1242 // The sign bit is the LHS's sign bit, except when the result of the 1243 // remainder is zero. 1244 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1245 // If it's known zero, our sign bit is also zero. 1246 if (Known2.isNonNegative()) 1247 Known.makeNonNegative(); 1248 1249 break; 1250 case Instruction::URem: { 1251 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1252 const APInt &RA = Rem->getValue(); 1253 if (RA.isPowerOf2()) { 1254 APInt LowBits = (RA - 1); 1255 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1256 Known.Zero |= ~LowBits; 1257 Known.One &= LowBits; 1258 break; 1259 } 1260 } 1261 1262 // Since the result is less than or equal to either operand, any leading 1263 // zero bits in either operand must also exist in the result. 1264 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1265 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1266 1267 unsigned Leaders = 1268 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1269 Known.resetAll(); 1270 Known.Zero.setHighBits(Leaders); 1271 break; 1272 } 1273 1274 case Instruction::Alloca: { 1275 const AllocaInst *AI = cast<AllocaInst>(I); 1276 unsigned Align = AI->getAlignment(); 1277 if (Align == 0) 1278 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1279 1280 if (Align > 0) 1281 Known.Zero.setLowBits(countTrailingZeros(Align)); 1282 break; 1283 } 1284 case Instruction::GetElementPtr: { 1285 // Analyze all of the subscripts of this getelementptr instruction 1286 // to determine if we can prove known low zero bits. 1287 KnownBits LocalKnown(BitWidth); 1288 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1289 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1290 1291 gep_type_iterator GTI = gep_type_begin(I); 1292 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1293 Value *Index = I->getOperand(i); 1294 if (StructType *STy = GTI.getStructTypeOrNull()) { 1295 // Handle struct member offset arithmetic. 1296 1297 // Handle case when index is vector zeroinitializer 1298 Constant *CIndex = cast<Constant>(Index); 1299 if (CIndex->isZeroValue()) 1300 continue; 1301 1302 if (CIndex->getType()->isVectorTy()) 1303 Index = CIndex->getSplatValue(); 1304 1305 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1306 const StructLayout *SL = Q.DL.getStructLayout(STy); 1307 uint64_t Offset = SL->getElementOffset(Idx); 1308 TrailZ = std::min<unsigned>(TrailZ, 1309 countTrailingZeros(Offset)); 1310 } else { 1311 // Handle array index arithmetic. 1312 Type *IndexedTy = GTI.getIndexedType(); 1313 if (!IndexedTy->isSized()) { 1314 TrailZ = 0; 1315 break; 1316 } 1317 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1318 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1319 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1320 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1321 TrailZ = std::min(TrailZ, 1322 unsigned(countTrailingZeros(TypeSize) + 1323 LocalKnown.countMinTrailingZeros())); 1324 } 1325 } 1326 1327 Known.Zero.setLowBits(TrailZ); 1328 break; 1329 } 1330 case Instruction::PHI: { 1331 const PHINode *P = cast<PHINode>(I); 1332 // Handle the case of a simple two-predecessor recurrence PHI. 1333 // There's a lot more that could theoretically be done here, but 1334 // this is sufficient to catch some interesting cases. 1335 if (P->getNumIncomingValues() == 2) { 1336 for (unsigned i = 0; i != 2; ++i) { 1337 Value *L = P->getIncomingValue(i); 1338 Value *R = P->getIncomingValue(!i); 1339 Operator *LU = dyn_cast<Operator>(L); 1340 if (!LU) 1341 continue; 1342 unsigned Opcode = LU->getOpcode(); 1343 // Check for operations that have the property that if 1344 // both their operands have low zero bits, the result 1345 // will have low zero bits. 1346 if (Opcode == Instruction::Add || 1347 Opcode == Instruction::Sub || 1348 Opcode == Instruction::And || 1349 Opcode == Instruction::Or || 1350 Opcode == Instruction::Mul) { 1351 Value *LL = LU->getOperand(0); 1352 Value *LR = LU->getOperand(1); 1353 // Find a recurrence. 1354 if (LL == I) 1355 L = LR; 1356 else if (LR == I) 1357 L = LL; 1358 else 1359 break; 1360 // Ok, we have a PHI of the form L op= R. Check for low 1361 // zero bits. 1362 computeKnownBits(R, Known2, Depth + 1, Q); 1363 1364 // We need to take the minimum number of known bits 1365 KnownBits Known3(Known); 1366 computeKnownBits(L, Known3, Depth + 1, Q); 1367 1368 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1369 Known3.countMinTrailingZeros())); 1370 1371 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1372 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1373 // If initial value of recurrence is nonnegative, and we are adding 1374 // a nonnegative number with nsw, the result can only be nonnegative 1375 // or poison value regardless of the number of times we execute the 1376 // add in phi recurrence. If initial value is negative and we are 1377 // adding a negative number with nsw, the result can only be 1378 // negative or poison value. Similar arguments apply to sub and mul. 1379 // 1380 // (add non-negative, non-negative) --> non-negative 1381 // (add negative, negative) --> negative 1382 if (Opcode == Instruction::Add) { 1383 if (Known2.isNonNegative() && Known3.isNonNegative()) 1384 Known.makeNonNegative(); 1385 else if (Known2.isNegative() && Known3.isNegative()) 1386 Known.makeNegative(); 1387 } 1388 1389 // (sub nsw non-negative, negative) --> non-negative 1390 // (sub nsw negative, non-negative) --> negative 1391 else if (Opcode == Instruction::Sub && LL == I) { 1392 if (Known2.isNonNegative() && Known3.isNegative()) 1393 Known.makeNonNegative(); 1394 else if (Known2.isNegative() && Known3.isNonNegative()) 1395 Known.makeNegative(); 1396 } 1397 1398 // (mul nsw non-negative, non-negative) --> non-negative 1399 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1400 Known3.isNonNegative()) 1401 Known.makeNonNegative(); 1402 } 1403 1404 break; 1405 } 1406 } 1407 } 1408 1409 // Unreachable blocks may have zero-operand PHI nodes. 1410 if (P->getNumIncomingValues() == 0) 1411 break; 1412 1413 // Otherwise take the unions of the known bit sets of the operands, 1414 // taking conservative care to avoid excessive recursion. 1415 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1416 // Skip if every incoming value references to ourself. 1417 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1418 break; 1419 1420 Known.Zero.setAllBits(); 1421 Known.One.setAllBits(); 1422 for (Value *IncValue : P->incoming_values()) { 1423 // Skip direct self references. 1424 if (IncValue == P) continue; 1425 1426 Known2 = KnownBits(BitWidth); 1427 // Recurse, but cap the recursion to one level, because we don't 1428 // want to waste time spinning around in loops. 1429 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1430 Known.Zero &= Known2.Zero; 1431 Known.One &= Known2.One; 1432 // If all bits have been ruled out, there's no need to check 1433 // more operands. 1434 if (!Known.Zero && !Known.One) 1435 break; 1436 } 1437 } 1438 break; 1439 } 1440 case Instruction::Call: 1441 case Instruction::Invoke: 1442 // If range metadata is attached to this call, set known bits from that, 1443 // and then intersect with known bits based on other properties of the 1444 // function. 1445 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1446 computeKnownBitsFromRangeMetadata(*MD, Known); 1447 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1448 computeKnownBits(RV, Known2, Depth + 1, Q); 1449 Known.Zero |= Known2.Zero; 1450 Known.One |= Known2.One; 1451 } 1452 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1453 switch (II->getIntrinsicID()) { 1454 default: break; 1455 case Intrinsic::bitreverse: 1456 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1457 Known.Zero |= Known2.Zero.reverseBits(); 1458 Known.One |= Known2.One.reverseBits(); 1459 break; 1460 case Intrinsic::bswap: 1461 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1462 Known.Zero |= Known2.Zero.byteSwap(); 1463 Known.One |= Known2.One.byteSwap(); 1464 break; 1465 case Intrinsic::ctlz: { 1466 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1467 // If we have a known 1, its position is our upper bound. 1468 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1469 // If this call is undefined for 0, the result will be less than 2^n. 1470 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1471 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1472 unsigned LowBits = Log2_32(PossibleLZ)+1; 1473 Known.Zero.setBitsFrom(LowBits); 1474 break; 1475 } 1476 case Intrinsic::cttz: { 1477 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1478 // If we have a known 1, its position is our upper bound. 1479 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1480 // If this call is undefined for 0, the result will be less than 2^n. 1481 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1482 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1483 unsigned LowBits = Log2_32(PossibleTZ)+1; 1484 Known.Zero.setBitsFrom(LowBits); 1485 break; 1486 } 1487 case Intrinsic::ctpop: { 1488 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1489 // We can bound the space the count needs. Also, bits known to be zero 1490 // can't contribute to the population. 1491 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1492 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1493 Known.Zero.setBitsFrom(LowBits); 1494 // TODO: we could bound KnownOne using the lower bound on the number 1495 // of bits which might be set provided by popcnt KnownOne2. 1496 break; 1497 } 1498 case Intrinsic::x86_sse42_crc32_64_64: 1499 Known.Zero.setBitsFrom(32); 1500 break; 1501 } 1502 } 1503 break; 1504 case Instruction::ExtractElement: 1505 // Look through extract element. At the moment we keep this simple and skip 1506 // tracking the specific element. But at least we might find information 1507 // valid for all elements of the vector (for example if vector is sign 1508 // extended, shifted, etc). 1509 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1510 break; 1511 case Instruction::ExtractValue: 1512 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1513 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1514 if (EVI->getNumIndices() != 1) break; 1515 if (EVI->getIndices()[0] == 0) { 1516 switch (II->getIntrinsicID()) { 1517 default: break; 1518 case Intrinsic::uadd_with_overflow: 1519 case Intrinsic::sadd_with_overflow: 1520 computeKnownBitsAddSub(true, II->getArgOperand(0), 1521 II->getArgOperand(1), false, Known, Known2, 1522 Depth, Q); 1523 break; 1524 case Intrinsic::usub_with_overflow: 1525 case Intrinsic::ssub_with_overflow: 1526 computeKnownBitsAddSub(false, II->getArgOperand(0), 1527 II->getArgOperand(1), false, Known, Known2, 1528 Depth, Q); 1529 break; 1530 case Intrinsic::umul_with_overflow: 1531 case Intrinsic::smul_with_overflow: 1532 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1533 Known, Known2, Depth, Q); 1534 break; 1535 } 1536 } 1537 } 1538 } 1539 } 1540 1541 /// Determine which bits of V are known to be either zero or one and return 1542 /// them. 1543 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1544 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1545 computeKnownBits(V, Known, Depth, Q); 1546 return Known; 1547 } 1548 1549 /// Determine which bits of V are known to be either zero or one and return 1550 /// them in the Known bit set. 1551 /// 1552 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1553 /// we cannot optimize based on the assumption that it is zero without changing 1554 /// it to be an explicit zero. If we don't change it to zero, other code could 1555 /// optimized based on the contradictory assumption that it is non-zero. 1556 /// Because instcombine aggressively folds operations with undef args anyway, 1557 /// this won't lose us code quality. 1558 /// 1559 /// This function is defined on values with integer type, values with pointer 1560 /// type, and vectors of integers. In the case 1561 /// where V is a vector, known zero, and known one values are the 1562 /// same width as the vector element, and the bit is set only if it is true 1563 /// for all of the elements in the vector. 1564 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1565 const Query &Q) { 1566 assert(V && "No Value?"); 1567 assert(Depth <= MaxDepth && "Limit Search Depth"); 1568 unsigned BitWidth = Known.getBitWidth(); 1569 1570 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1571 V->getType()->isPtrOrPtrVectorTy()) && 1572 "Not integer or pointer type!"); 1573 1574 Type *ScalarTy = V->getType()->getScalarType(); 1575 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1576 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1577 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1578 (void)BitWidth; 1579 (void)ExpectedWidth; 1580 1581 const APInt *C; 1582 if (match(V, m_APInt(C))) { 1583 // We know all of the bits for a scalar constant or a splat vector constant! 1584 Known.One = *C; 1585 Known.Zero = ~Known.One; 1586 return; 1587 } 1588 // Null and aggregate-zero are all-zeros. 1589 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1590 Known.setAllZero(); 1591 return; 1592 } 1593 // Handle a constant vector by taking the intersection of the known bits of 1594 // each element. 1595 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1596 // We know that CDS must be a vector of integers. Take the intersection of 1597 // each element. 1598 Known.Zero.setAllBits(); Known.One.setAllBits(); 1599 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1600 APInt Elt = CDS->getElementAsAPInt(i); 1601 Known.Zero &= ~Elt; 1602 Known.One &= Elt; 1603 } 1604 return; 1605 } 1606 1607 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1608 // We know that CV must be a vector of integers. Take the intersection of 1609 // each element. 1610 Known.Zero.setAllBits(); Known.One.setAllBits(); 1611 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1612 Constant *Element = CV->getAggregateElement(i); 1613 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1614 if (!ElementCI) { 1615 Known.resetAll(); 1616 return; 1617 } 1618 const APInt &Elt = ElementCI->getValue(); 1619 Known.Zero &= ~Elt; 1620 Known.One &= Elt; 1621 } 1622 return; 1623 } 1624 1625 // Start out not knowing anything. 1626 Known.resetAll(); 1627 1628 // We can't imply anything about undefs. 1629 if (isa<UndefValue>(V)) 1630 return; 1631 1632 // There's no point in looking through other users of ConstantData for 1633 // assumptions. Confirm that we've handled them all. 1634 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1635 1636 // Limit search depth. 1637 // All recursive calls that increase depth must come after this. 1638 if (Depth == MaxDepth) 1639 return; 1640 1641 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1642 // the bits of its aliasee. 1643 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1644 if (!GA->isInterposable()) 1645 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1646 return; 1647 } 1648 1649 if (const Operator *I = dyn_cast<Operator>(V)) 1650 computeKnownBitsFromOperator(I, Known, Depth, Q); 1651 1652 // Aligned pointers have trailing zeros - refine Known.Zero set 1653 if (V->getType()->isPointerTy()) { 1654 unsigned Align = V->getPointerAlignment(Q.DL); 1655 if (Align) 1656 Known.Zero.setLowBits(countTrailingZeros(Align)); 1657 } 1658 1659 // computeKnownBitsFromAssume strictly refines Known. 1660 // Therefore, we run them after computeKnownBitsFromOperator. 1661 1662 // Check whether a nearby assume intrinsic can determine some known bits. 1663 computeKnownBitsFromAssume(V, Known, Depth, Q); 1664 1665 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1666 } 1667 1668 /// Return true if the given value is known to have exactly one 1669 /// bit set when defined. For vectors return true if every element is known to 1670 /// be a power of two when defined. Supports values with integer or pointer 1671 /// types and vectors of integers. 1672 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1673 const Query &Q) { 1674 assert(Depth <= MaxDepth && "Limit Search Depth"); 1675 1676 // Attempt to match against constants. 1677 if (OrZero && match(V, m_Power2OrZero())) 1678 return true; 1679 if (match(V, m_Power2())) 1680 return true; 1681 1682 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1683 // it is shifted off the end then the result is undefined. 1684 if (match(V, m_Shl(m_One(), m_Value()))) 1685 return true; 1686 1687 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1688 // the bottom. If it is shifted off the bottom then the result is undefined. 1689 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1690 return true; 1691 1692 // The remaining tests are all recursive, so bail out if we hit the limit. 1693 if (Depth++ == MaxDepth) 1694 return false; 1695 1696 Value *X = nullptr, *Y = nullptr; 1697 // A shift left or a logical shift right of a power of two is a power of two 1698 // or zero. 1699 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1700 match(V, m_LShr(m_Value(X), m_Value())))) 1701 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1702 1703 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1704 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1705 1706 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1707 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1708 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1709 1710 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1711 // A power of two and'd with anything is a power of two or zero. 1712 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1713 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1714 return true; 1715 // X & (-X) is always a power of two or zero. 1716 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1717 return true; 1718 return false; 1719 } 1720 1721 // Adding a power-of-two or zero to the same power-of-two or zero yields 1722 // either the original power-of-two, a larger power-of-two or zero. 1723 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1724 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1725 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1726 if (match(X, m_And(m_Specific(Y), m_Value())) || 1727 match(X, m_And(m_Value(), m_Specific(Y)))) 1728 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1729 return true; 1730 if (match(Y, m_And(m_Specific(X), m_Value())) || 1731 match(Y, m_And(m_Value(), m_Specific(X)))) 1732 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1733 return true; 1734 1735 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1736 KnownBits LHSBits(BitWidth); 1737 computeKnownBits(X, LHSBits, Depth, Q); 1738 1739 KnownBits RHSBits(BitWidth); 1740 computeKnownBits(Y, RHSBits, Depth, Q); 1741 // If i8 V is a power of two or zero: 1742 // ZeroBits: 1 1 1 0 1 1 1 1 1743 // ~ZeroBits: 0 0 0 1 0 0 0 0 1744 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1745 // If OrZero isn't set, we cannot give back a zero result. 1746 // Make sure either the LHS or RHS has a bit set. 1747 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1748 return true; 1749 } 1750 } 1751 1752 // An exact divide or right shift can only shift off zero bits, so the result 1753 // is a power of two only if the first operand is a power of two and not 1754 // copying a sign bit (sdiv int_min, 2). 1755 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1756 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1757 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1758 Depth, Q); 1759 } 1760 1761 return false; 1762 } 1763 1764 /// Test whether a GEP's result is known to be non-null. 1765 /// 1766 /// Uses properties inherent in a GEP to try to determine whether it is known 1767 /// to be non-null. 1768 /// 1769 /// Currently this routine does not support vector GEPs. 1770 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1771 const Query &Q) { 1772 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1773 return false; 1774 1775 // FIXME: Support vector-GEPs. 1776 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1777 1778 // If the base pointer is non-null, we cannot walk to a null address with an 1779 // inbounds GEP in address space zero. 1780 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1781 return true; 1782 1783 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1784 // If so, then the GEP cannot produce a null pointer, as doing so would 1785 // inherently violate the inbounds contract within address space zero. 1786 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1787 GTI != GTE; ++GTI) { 1788 // Struct types are easy -- they must always be indexed by a constant. 1789 if (StructType *STy = GTI.getStructTypeOrNull()) { 1790 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1791 unsigned ElementIdx = OpC->getZExtValue(); 1792 const StructLayout *SL = Q.DL.getStructLayout(STy); 1793 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1794 if (ElementOffset > 0) 1795 return true; 1796 continue; 1797 } 1798 1799 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1800 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1801 continue; 1802 1803 // Fast path the constant operand case both for efficiency and so we don't 1804 // increment Depth when just zipping down an all-constant GEP. 1805 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1806 if (!OpC->isZero()) 1807 return true; 1808 continue; 1809 } 1810 1811 // We post-increment Depth here because while isKnownNonZero increments it 1812 // as well, when we pop back up that increment won't persist. We don't want 1813 // to recurse 10k times just because we have 10k GEP operands. We don't 1814 // bail completely out because we want to handle constant GEPs regardless 1815 // of depth. 1816 if (Depth++ >= MaxDepth) 1817 continue; 1818 1819 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1820 return true; 1821 } 1822 1823 return false; 1824 } 1825 1826 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1827 const Instruction *CtxI, 1828 const DominatorTree *DT) { 1829 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1830 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1831 1832 if (!CtxI || !DT) 1833 return false; 1834 1835 unsigned NumUsesExplored = 0; 1836 for (auto *U : V->users()) { 1837 // Avoid massive lists 1838 if (NumUsesExplored >= DomConditionsMaxUses) 1839 break; 1840 NumUsesExplored++; 1841 1842 // If the value is used as an argument to a call or invoke, then argument 1843 // attributes may provide an answer about null-ness. 1844 if (auto CS = ImmutableCallSite(U)) 1845 if (auto *CalledFunc = CS.getCalledFunction()) 1846 for (const Argument &Arg : CalledFunc->args()) 1847 if (CS.getArgOperand(Arg.getArgNo()) == V && 1848 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1849 return true; 1850 1851 // Consider only compare instructions uniquely controlling a branch 1852 CmpInst::Predicate Pred; 1853 if (!match(const_cast<User *>(U), 1854 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1855 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1856 continue; 1857 1858 for (auto *CmpU : U->users()) { 1859 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 1860 assert(BI->isConditional() && "uses a comparison!"); 1861 1862 BasicBlock *NonNullSuccessor = 1863 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1864 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1865 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1866 return true; 1867 } else if (Pred == ICmpInst::ICMP_NE && 1868 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 1869 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 1870 return true; 1871 } 1872 } 1873 } 1874 1875 return false; 1876 } 1877 1878 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1879 /// ensure that the value it's attached to is never Value? 'RangeType' is 1880 /// is the type of the value described by the range. 1881 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1882 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1883 assert(NumRanges >= 1); 1884 for (unsigned i = 0; i < NumRanges; ++i) { 1885 ConstantInt *Lower = 1886 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1887 ConstantInt *Upper = 1888 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1889 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1890 if (Range.contains(Value)) 1891 return false; 1892 } 1893 return true; 1894 } 1895 1896 /// Return true if the given value is known to be non-zero when defined. For 1897 /// vectors, return true if every element is known to be non-zero when 1898 /// defined. For pointers, if the context instruction and dominator tree are 1899 /// specified, perform context-sensitive analysis and return true if the 1900 /// pointer couldn't possibly be null at the specified instruction. 1901 /// Supports values with integer or pointer type and vectors of integers. 1902 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1903 if (auto *C = dyn_cast<Constant>(V)) { 1904 if (C->isNullValue()) 1905 return false; 1906 if (isa<ConstantInt>(C)) 1907 // Must be non-zero due to null test above. 1908 return true; 1909 1910 // For constant vectors, check that all elements are undefined or known 1911 // non-zero to determine that the whole vector is known non-zero. 1912 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1913 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1914 Constant *Elt = C->getAggregateElement(i); 1915 if (!Elt || Elt->isNullValue()) 1916 return false; 1917 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1918 return false; 1919 } 1920 return true; 1921 } 1922 1923 // A global variable in address space 0 is non null unless extern weak 1924 // or an absolute symbol reference. Other address spaces may have null as a 1925 // valid address for a global, so we can't assume anything. 1926 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1927 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1928 GV->getType()->getAddressSpace() == 0) 1929 return true; 1930 } else 1931 return false; 1932 } 1933 1934 if (auto *I = dyn_cast<Instruction>(V)) { 1935 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1936 // If the possible ranges don't contain zero, then the value is 1937 // definitely non-zero. 1938 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1939 const APInt ZeroValue(Ty->getBitWidth(), 0); 1940 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1941 return true; 1942 } 1943 } 1944 } 1945 1946 // Check for pointer simplifications. 1947 if (V->getType()->isPointerTy()) { 1948 // Alloca never returns null, malloc might. 1949 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1950 return true; 1951 1952 // A byval, inalloca, or nonnull argument is never null. 1953 if (const Argument *A = dyn_cast<Argument>(V)) 1954 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1955 return true; 1956 1957 // A Load tagged with nonnull metadata is never null. 1958 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1959 if (LI->getMetadata(LLVMContext::MD_nonnull)) 1960 return true; 1961 1962 if (auto CS = ImmutableCallSite(V)) { 1963 if (CS.isReturnNonNull()) 1964 return true; 1965 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS)) 1966 return isKnownNonZero(RP, Depth + 1, Q); 1967 } 1968 } 1969 1970 // The remaining tests are all recursive, so bail out if we hit the limit. 1971 if (Depth++ >= MaxDepth) 1972 return false; 1973 1974 // Check for recursive pointer simplifications. 1975 if (V->getType()->isPointerTy()) { 1976 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 1977 return true; 1978 1979 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1980 if (isGEPKnownNonNull(GEP, Depth, Q)) 1981 return true; 1982 } 1983 1984 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1985 1986 // X | Y != 0 if X != 0 or Y != 0. 1987 Value *X = nullptr, *Y = nullptr; 1988 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1989 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1990 1991 // ext X != 0 if X != 0. 1992 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1993 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1994 1995 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1996 // if the lowest bit is shifted off the end. 1997 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1998 // shl nuw can't remove any non-zero bits. 1999 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2000 if (BO->hasNoUnsignedWrap()) 2001 return isKnownNonZero(X, Depth, Q); 2002 2003 KnownBits Known(BitWidth); 2004 computeKnownBits(X, Known, Depth, Q); 2005 if (Known.One[0]) 2006 return true; 2007 } 2008 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2009 // defined if the sign bit is shifted off the end. 2010 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2011 // shr exact can only shift out zero bits. 2012 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2013 if (BO->isExact()) 2014 return isKnownNonZero(X, Depth, Q); 2015 2016 KnownBits Known = computeKnownBits(X, Depth, Q); 2017 if (Known.isNegative()) 2018 return true; 2019 2020 // If the shifter operand is a constant, and all of the bits shifted 2021 // out are known to be zero, and X is known non-zero then at least one 2022 // non-zero bit must remain. 2023 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2024 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2025 // Is there a known one in the portion not shifted out? 2026 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2027 return true; 2028 // Are all the bits to be shifted out known zero? 2029 if (Known.countMinTrailingZeros() >= ShiftVal) 2030 return isKnownNonZero(X, Depth, Q); 2031 } 2032 } 2033 // div exact can only produce a zero if the dividend is zero. 2034 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2035 return isKnownNonZero(X, Depth, Q); 2036 } 2037 // X + Y. 2038 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2039 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2040 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2041 2042 // If X and Y are both non-negative (as signed values) then their sum is not 2043 // zero unless both X and Y are zero. 2044 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2045 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2046 return true; 2047 2048 // If X and Y are both negative (as signed values) then their sum is not 2049 // zero unless both X and Y equal INT_MIN. 2050 if (XKnown.isNegative() && YKnown.isNegative()) { 2051 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2052 // The sign bit of X is set. If some other bit is set then X is not equal 2053 // to INT_MIN. 2054 if (XKnown.One.intersects(Mask)) 2055 return true; 2056 // The sign bit of Y is set. If some other bit is set then Y is not equal 2057 // to INT_MIN. 2058 if (YKnown.One.intersects(Mask)) 2059 return true; 2060 } 2061 2062 // The sum of a non-negative number and a power of two is not zero. 2063 if (XKnown.isNonNegative() && 2064 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2065 return true; 2066 if (YKnown.isNonNegative() && 2067 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2068 return true; 2069 } 2070 // X * Y. 2071 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2072 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2073 // If X and Y are non-zero then so is X * Y as long as the multiplication 2074 // does not overflow. 2075 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2076 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2077 return true; 2078 } 2079 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2080 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2081 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2082 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2083 return true; 2084 } 2085 // PHI 2086 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2087 // Try and detect a recurrence that monotonically increases from a 2088 // starting value, as these are common as induction variables. 2089 if (PN->getNumIncomingValues() == 2) { 2090 Value *Start = PN->getIncomingValue(0); 2091 Value *Induction = PN->getIncomingValue(1); 2092 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2093 std::swap(Start, Induction); 2094 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2095 if (!C->isZero() && !C->isNegative()) { 2096 ConstantInt *X; 2097 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2098 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2099 !X->isNegative()) 2100 return true; 2101 } 2102 } 2103 } 2104 // Check if all incoming values are non-zero constant. 2105 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2106 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2107 }); 2108 if (AllNonZeroConstants) 2109 return true; 2110 } 2111 2112 KnownBits Known(BitWidth); 2113 computeKnownBits(V, Known, Depth, Q); 2114 return Known.One != 0; 2115 } 2116 2117 /// Return true if V2 == V1 + X, where X is known non-zero. 2118 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2119 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2120 if (!BO || BO->getOpcode() != Instruction::Add) 2121 return false; 2122 Value *Op = nullptr; 2123 if (V2 == BO->getOperand(0)) 2124 Op = BO->getOperand(1); 2125 else if (V2 == BO->getOperand(1)) 2126 Op = BO->getOperand(0); 2127 else 2128 return false; 2129 return isKnownNonZero(Op, 0, Q); 2130 } 2131 2132 /// Return true if it is known that V1 != V2. 2133 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2134 if (V1 == V2) 2135 return false; 2136 if (V1->getType() != V2->getType()) 2137 // We can't look through casts yet. 2138 return false; 2139 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2140 return true; 2141 2142 if (V1->getType()->isIntOrIntVectorTy()) { 2143 // Are any known bits in V1 contradictory to known bits in V2? If V1 2144 // has a known zero where V2 has a known one, they must not be equal. 2145 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2146 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2147 2148 if (Known1.Zero.intersects(Known2.One) || 2149 Known2.Zero.intersects(Known1.One)) 2150 return true; 2151 } 2152 return false; 2153 } 2154 2155 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2156 /// simplify operations downstream. Mask is known to be zero for bits that V 2157 /// cannot have. 2158 /// 2159 /// This function is defined on values with integer type, values with pointer 2160 /// type, and vectors of integers. In the case 2161 /// where V is a vector, the mask, known zero, and known one values are the 2162 /// same width as the vector element, and the bit is set only if it is true 2163 /// for all of the elements in the vector. 2164 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2165 const Query &Q) { 2166 KnownBits Known(Mask.getBitWidth()); 2167 computeKnownBits(V, Known, Depth, Q); 2168 return Mask.isSubsetOf(Known.Zero); 2169 } 2170 2171 /// For vector constants, loop over the elements and find the constant with the 2172 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2173 /// or if any element was not analyzed; otherwise, return the count for the 2174 /// element with the minimum number of sign bits. 2175 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2176 unsigned TyBits) { 2177 const auto *CV = dyn_cast<Constant>(V); 2178 if (!CV || !CV->getType()->isVectorTy()) 2179 return 0; 2180 2181 unsigned MinSignBits = TyBits; 2182 unsigned NumElts = CV->getType()->getVectorNumElements(); 2183 for (unsigned i = 0; i != NumElts; ++i) { 2184 // If we find a non-ConstantInt, bail out. 2185 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2186 if (!Elt) 2187 return 0; 2188 2189 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2190 } 2191 2192 return MinSignBits; 2193 } 2194 2195 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2196 const Query &Q); 2197 2198 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2199 const Query &Q) { 2200 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2201 assert(Result > 0 && "At least one sign bit needs to be present!"); 2202 return Result; 2203 } 2204 2205 /// Return the number of times the sign bit of the register is replicated into 2206 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2207 /// (itself), but other cases can give us information. For example, immediately 2208 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2209 /// other, so we return 3. For vectors, return the number of sign bits for the 2210 /// vector element with the minimum number of known sign bits. 2211 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2212 const Query &Q) { 2213 assert(Depth <= MaxDepth && "Limit Search Depth"); 2214 2215 // We return the minimum number of sign bits that are guaranteed to be present 2216 // in V, so for undef we have to conservatively return 1. We don't have the 2217 // same behavior for poison though -- that's a FIXME today. 2218 2219 Type *ScalarTy = V->getType()->getScalarType(); 2220 unsigned TyBits = ScalarTy->isPointerTy() ? 2221 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2222 Q.DL.getTypeSizeInBits(ScalarTy); 2223 2224 unsigned Tmp, Tmp2; 2225 unsigned FirstAnswer = 1; 2226 2227 // Note that ConstantInt is handled by the general computeKnownBits case 2228 // below. 2229 2230 if (Depth == MaxDepth) 2231 return 1; // Limit search depth. 2232 2233 const Operator *U = dyn_cast<Operator>(V); 2234 switch (Operator::getOpcode(V)) { 2235 default: break; 2236 case Instruction::SExt: 2237 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2238 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2239 2240 case Instruction::SDiv: { 2241 const APInt *Denominator; 2242 // sdiv X, C -> adds log(C) sign bits. 2243 if (match(U->getOperand(1), m_APInt(Denominator))) { 2244 2245 // Ignore non-positive denominator. 2246 if (!Denominator->isStrictlyPositive()) 2247 break; 2248 2249 // Calculate the incoming numerator bits. 2250 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2251 2252 // Add floor(log(C)) bits to the numerator bits. 2253 return std::min(TyBits, NumBits + Denominator->logBase2()); 2254 } 2255 break; 2256 } 2257 2258 case Instruction::SRem: { 2259 const APInt *Denominator; 2260 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2261 // positive constant. This let us put a lower bound on the number of sign 2262 // bits. 2263 if (match(U->getOperand(1), m_APInt(Denominator))) { 2264 2265 // Ignore non-positive denominator. 2266 if (!Denominator->isStrictlyPositive()) 2267 break; 2268 2269 // Calculate the incoming numerator bits. SRem by a positive constant 2270 // can't lower the number of sign bits. 2271 unsigned NumrBits = 2272 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2273 2274 // Calculate the leading sign bit constraints by examining the 2275 // denominator. Given that the denominator is positive, there are two 2276 // cases: 2277 // 2278 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2279 // (1 << ceilLogBase2(C)). 2280 // 2281 // 2. the numerator is negative. Then the result range is (-C,0] and 2282 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2283 // 2284 // Thus a lower bound on the number of sign bits is `TyBits - 2285 // ceilLogBase2(C)`. 2286 2287 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2288 return std::max(NumrBits, ResBits); 2289 } 2290 break; 2291 } 2292 2293 case Instruction::AShr: { 2294 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2295 // ashr X, C -> adds C sign bits. Vectors too. 2296 const APInt *ShAmt; 2297 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2298 if (ShAmt->uge(TyBits)) 2299 break; // Bad shift. 2300 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2301 Tmp += ShAmtLimited; 2302 if (Tmp > TyBits) Tmp = TyBits; 2303 } 2304 return Tmp; 2305 } 2306 case Instruction::Shl: { 2307 const APInt *ShAmt; 2308 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2309 // shl destroys sign bits. 2310 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2311 if (ShAmt->uge(TyBits) || // Bad shift. 2312 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2313 Tmp2 = ShAmt->getZExtValue(); 2314 return Tmp - Tmp2; 2315 } 2316 break; 2317 } 2318 case Instruction::And: 2319 case Instruction::Or: 2320 case Instruction::Xor: // NOT is handled here. 2321 // Logical binary ops preserve the number of sign bits at the worst. 2322 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2323 if (Tmp != 1) { 2324 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2325 FirstAnswer = std::min(Tmp, Tmp2); 2326 // We computed what we know about the sign bits as our first 2327 // answer. Now proceed to the generic code that uses 2328 // computeKnownBits, and pick whichever answer is better. 2329 } 2330 break; 2331 2332 case Instruction::Select: 2333 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2334 if (Tmp == 1) return 1; // Early out. 2335 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2336 return std::min(Tmp, Tmp2); 2337 2338 case Instruction::Add: 2339 // Add can have at most one carry bit. Thus we know that the output 2340 // is, at worst, one more bit than the inputs. 2341 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2342 if (Tmp == 1) return 1; // Early out. 2343 2344 // Special case decrementing a value (ADD X, -1): 2345 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2346 if (CRHS->isAllOnesValue()) { 2347 KnownBits Known(TyBits); 2348 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2349 2350 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2351 // sign bits set. 2352 if ((Known.Zero | 1).isAllOnesValue()) 2353 return TyBits; 2354 2355 // If we are subtracting one from a positive number, there is no carry 2356 // out of the result. 2357 if (Known.isNonNegative()) 2358 return Tmp; 2359 } 2360 2361 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2362 if (Tmp2 == 1) return 1; 2363 return std::min(Tmp, Tmp2)-1; 2364 2365 case Instruction::Sub: 2366 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2367 if (Tmp2 == 1) return 1; 2368 2369 // Handle NEG. 2370 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2371 if (CLHS->isNullValue()) { 2372 KnownBits Known(TyBits); 2373 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2374 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2375 // sign bits set. 2376 if ((Known.Zero | 1).isAllOnesValue()) 2377 return TyBits; 2378 2379 // If the input is known to be positive (the sign bit is known clear), 2380 // the output of the NEG has the same number of sign bits as the input. 2381 if (Known.isNonNegative()) 2382 return Tmp2; 2383 2384 // Otherwise, we treat this like a SUB. 2385 } 2386 2387 // Sub can have at most one carry bit. Thus we know that the output 2388 // is, at worst, one more bit than the inputs. 2389 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2390 if (Tmp == 1) return 1; // Early out. 2391 return std::min(Tmp, Tmp2)-1; 2392 2393 case Instruction::Mul: { 2394 // The output of the Mul can be at most twice the valid bits in the inputs. 2395 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2396 if (SignBitsOp0 == 1) return 1; // Early out. 2397 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2398 if (SignBitsOp1 == 1) return 1; 2399 unsigned OutValidBits = 2400 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2401 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2402 } 2403 2404 case Instruction::PHI: { 2405 const PHINode *PN = cast<PHINode>(U); 2406 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2407 // Don't analyze large in-degree PHIs. 2408 if (NumIncomingValues > 4) break; 2409 // Unreachable blocks may have zero-operand PHI nodes. 2410 if (NumIncomingValues == 0) break; 2411 2412 // Take the minimum of all incoming values. This can't infinitely loop 2413 // because of our depth threshold. 2414 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2415 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2416 if (Tmp == 1) return Tmp; 2417 Tmp = std::min( 2418 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2419 } 2420 return Tmp; 2421 } 2422 2423 case Instruction::Trunc: 2424 // FIXME: it's tricky to do anything useful for this, but it is an important 2425 // case for targets like X86. 2426 break; 2427 2428 case Instruction::ExtractElement: 2429 // Look through extract element. At the moment we keep this simple and skip 2430 // tracking the specific element. But at least we might find information 2431 // valid for all elements of the vector (for example if vector is sign 2432 // extended, shifted, etc). 2433 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2434 } 2435 2436 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2437 // use this information. 2438 2439 // If we can examine all elements of a vector constant successfully, we're 2440 // done (we can't do any better than that). If not, keep trying. 2441 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2442 return VecSignBits; 2443 2444 KnownBits Known(TyBits); 2445 computeKnownBits(V, Known, Depth, Q); 2446 2447 // If we know that the sign bit is either zero or one, determine the number of 2448 // identical bits in the top of the input value. 2449 return std::max(FirstAnswer, Known.countMinSignBits()); 2450 } 2451 2452 /// This function computes the integer multiple of Base that equals V. 2453 /// If successful, it returns true and returns the multiple in 2454 /// Multiple. If unsuccessful, it returns false. It looks 2455 /// through SExt instructions only if LookThroughSExt is true. 2456 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2457 bool LookThroughSExt, unsigned Depth) { 2458 const unsigned MaxDepth = 6; 2459 2460 assert(V && "No Value?"); 2461 assert(Depth <= MaxDepth && "Limit Search Depth"); 2462 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2463 2464 Type *T = V->getType(); 2465 2466 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2467 2468 if (Base == 0) 2469 return false; 2470 2471 if (Base == 1) { 2472 Multiple = V; 2473 return true; 2474 } 2475 2476 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2477 Constant *BaseVal = ConstantInt::get(T, Base); 2478 if (CO && CO == BaseVal) { 2479 // Multiple is 1. 2480 Multiple = ConstantInt::get(T, 1); 2481 return true; 2482 } 2483 2484 if (CI && CI->getZExtValue() % Base == 0) { 2485 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2486 return true; 2487 } 2488 2489 if (Depth == MaxDepth) return false; // Limit search depth. 2490 2491 Operator *I = dyn_cast<Operator>(V); 2492 if (!I) return false; 2493 2494 switch (I->getOpcode()) { 2495 default: break; 2496 case Instruction::SExt: 2497 if (!LookThroughSExt) return false; 2498 // otherwise fall through to ZExt 2499 LLVM_FALLTHROUGH; 2500 case Instruction::ZExt: 2501 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2502 LookThroughSExt, Depth+1); 2503 case Instruction::Shl: 2504 case Instruction::Mul: { 2505 Value *Op0 = I->getOperand(0); 2506 Value *Op1 = I->getOperand(1); 2507 2508 if (I->getOpcode() == Instruction::Shl) { 2509 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2510 if (!Op1CI) return false; 2511 // Turn Op0 << Op1 into Op0 * 2^Op1 2512 APInt Op1Int = Op1CI->getValue(); 2513 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2514 APInt API(Op1Int.getBitWidth(), 0); 2515 API.setBit(BitToSet); 2516 Op1 = ConstantInt::get(V->getContext(), API); 2517 } 2518 2519 Value *Mul0 = nullptr; 2520 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2521 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2522 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2523 if (Op1C->getType()->getPrimitiveSizeInBits() < 2524 MulC->getType()->getPrimitiveSizeInBits()) 2525 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2526 if (Op1C->getType()->getPrimitiveSizeInBits() > 2527 MulC->getType()->getPrimitiveSizeInBits()) 2528 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2529 2530 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2531 Multiple = ConstantExpr::getMul(MulC, Op1C); 2532 return true; 2533 } 2534 2535 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2536 if (Mul0CI->getValue() == 1) { 2537 // V == Base * Op1, so return Op1 2538 Multiple = Op1; 2539 return true; 2540 } 2541 } 2542 2543 Value *Mul1 = nullptr; 2544 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2545 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2546 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2547 if (Op0C->getType()->getPrimitiveSizeInBits() < 2548 MulC->getType()->getPrimitiveSizeInBits()) 2549 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2550 if (Op0C->getType()->getPrimitiveSizeInBits() > 2551 MulC->getType()->getPrimitiveSizeInBits()) 2552 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2553 2554 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2555 Multiple = ConstantExpr::getMul(MulC, Op0C); 2556 return true; 2557 } 2558 2559 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2560 if (Mul1CI->getValue() == 1) { 2561 // V == Base * Op0, so return Op0 2562 Multiple = Op0; 2563 return true; 2564 } 2565 } 2566 } 2567 } 2568 2569 // We could not determine if V is a multiple of Base. 2570 return false; 2571 } 2572 2573 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2574 const TargetLibraryInfo *TLI) { 2575 const Function *F = ICS.getCalledFunction(); 2576 if (!F) 2577 return Intrinsic::not_intrinsic; 2578 2579 if (F->isIntrinsic()) 2580 return F->getIntrinsicID(); 2581 2582 if (!TLI) 2583 return Intrinsic::not_intrinsic; 2584 2585 LibFunc Func; 2586 // We're going to make assumptions on the semantics of the functions, check 2587 // that the target knows that it's available in this environment and it does 2588 // not have local linkage. 2589 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2590 return Intrinsic::not_intrinsic; 2591 2592 if (!ICS.onlyReadsMemory()) 2593 return Intrinsic::not_intrinsic; 2594 2595 // Otherwise check if we have a call to a function that can be turned into a 2596 // vector intrinsic. 2597 switch (Func) { 2598 default: 2599 break; 2600 case LibFunc_sin: 2601 case LibFunc_sinf: 2602 case LibFunc_sinl: 2603 return Intrinsic::sin; 2604 case LibFunc_cos: 2605 case LibFunc_cosf: 2606 case LibFunc_cosl: 2607 return Intrinsic::cos; 2608 case LibFunc_exp: 2609 case LibFunc_expf: 2610 case LibFunc_expl: 2611 return Intrinsic::exp; 2612 case LibFunc_exp2: 2613 case LibFunc_exp2f: 2614 case LibFunc_exp2l: 2615 return Intrinsic::exp2; 2616 case LibFunc_log: 2617 case LibFunc_logf: 2618 case LibFunc_logl: 2619 return Intrinsic::log; 2620 case LibFunc_log10: 2621 case LibFunc_log10f: 2622 case LibFunc_log10l: 2623 return Intrinsic::log10; 2624 case LibFunc_log2: 2625 case LibFunc_log2f: 2626 case LibFunc_log2l: 2627 return Intrinsic::log2; 2628 case LibFunc_fabs: 2629 case LibFunc_fabsf: 2630 case LibFunc_fabsl: 2631 return Intrinsic::fabs; 2632 case LibFunc_fmin: 2633 case LibFunc_fminf: 2634 case LibFunc_fminl: 2635 return Intrinsic::minnum; 2636 case LibFunc_fmax: 2637 case LibFunc_fmaxf: 2638 case LibFunc_fmaxl: 2639 return Intrinsic::maxnum; 2640 case LibFunc_copysign: 2641 case LibFunc_copysignf: 2642 case LibFunc_copysignl: 2643 return Intrinsic::copysign; 2644 case LibFunc_floor: 2645 case LibFunc_floorf: 2646 case LibFunc_floorl: 2647 return Intrinsic::floor; 2648 case LibFunc_ceil: 2649 case LibFunc_ceilf: 2650 case LibFunc_ceill: 2651 return Intrinsic::ceil; 2652 case LibFunc_trunc: 2653 case LibFunc_truncf: 2654 case LibFunc_truncl: 2655 return Intrinsic::trunc; 2656 case LibFunc_rint: 2657 case LibFunc_rintf: 2658 case LibFunc_rintl: 2659 return Intrinsic::rint; 2660 case LibFunc_nearbyint: 2661 case LibFunc_nearbyintf: 2662 case LibFunc_nearbyintl: 2663 return Intrinsic::nearbyint; 2664 case LibFunc_round: 2665 case LibFunc_roundf: 2666 case LibFunc_roundl: 2667 return Intrinsic::round; 2668 case LibFunc_pow: 2669 case LibFunc_powf: 2670 case LibFunc_powl: 2671 return Intrinsic::pow; 2672 case LibFunc_sqrt: 2673 case LibFunc_sqrtf: 2674 case LibFunc_sqrtl: 2675 return Intrinsic::sqrt; 2676 } 2677 2678 return Intrinsic::not_intrinsic; 2679 } 2680 2681 /// Return true if we can prove that the specified FP value is never equal to 2682 /// -0.0. 2683 /// 2684 /// NOTE: this function will need to be revisited when we support non-default 2685 /// rounding modes! 2686 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2687 unsigned Depth) { 2688 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2689 return !CFP->getValueAPF().isNegZero(); 2690 2691 // Limit search depth. 2692 if (Depth == MaxDepth) 2693 return false; 2694 2695 auto *Op = dyn_cast<Operator>(V); 2696 if (!Op) 2697 return false; 2698 2699 // Check if the nsz fast-math flag is set. 2700 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2701 if (FPO->hasNoSignedZeros()) 2702 return true; 2703 2704 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2705 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2706 return true; 2707 2708 // sitofp and uitofp turn into +0.0 for zero. 2709 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2710 return true; 2711 2712 if (auto *Call = dyn_cast<CallInst>(Op)) { 2713 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2714 switch (IID) { 2715 default: 2716 break; 2717 // sqrt(-0.0) = -0.0, no other negative results are possible. 2718 case Intrinsic::sqrt: 2719 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2720 // fabs(x) != -0.0 2721 case Intrinsic::fabs: 2722 return true; 2723 } 2724 } 2725 2726 return false; 2727 } 2728 2729 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2730 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2731 /// bit despite comparing equal. 2732 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2733 const TargetLibraryInfo *TLI, 2734 bool SignBitOnly, 2735 unsigned Depth) { 2736 // TODO: This function does not do the right thing when SignBitOnly is true 2737 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2738 // which flips the sign bits of NaNs. See 2739 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2740 2741 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2742 return !CFP->getValueAPF().isNegative() || 2743 (!SignBitOnly && CFP->getValueAPF().isZero()); 2744 } 2745 2746 // Handle vector of constants. 2747 if (auto *CV = dyn_cast<Constant>(V)) { 2748 if (CV->getType()->isVectorTy()) { 2749 unsigned NumElts = CV->getType()->getVectorNumElements(); 2750 for (unsigned i = 0; i != NumElts; ++i) { 2751 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2752 if (!CFP) 2753 return false; 2754 if (CFP->getValueAPF().isNegative() && 2755 (SignBitOnly || !CFP->getValueAPF().isZero())) 2756 return false; 2757 } 2758 2759 // All non-negative ConstantFPs. 2760 return true; 2761 } 2762 } 2763 2764 if (Depth == MaxDepth) 2765 return false; // Limit search depth. 2766 2767 const Operator *I = dyn_cast<Operator>(V); 2768 if (!I) 2769 return false; 2770 2771 switch (I->getOpcode()) { 2772 default: 2773 break; 2774 // Unsigned integers are always nonnegative. 2775 case Instruction::UIToFP: 2776 return true; 2777 case Instruction::FMul: 2778 // x*x is always non-negative or a NaN. 2779 if (I->getOperand(0) == I->getOperand(1) && 2780 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2781 return true; 2782 2783 LLVM_FALLTHROUGH; 2784 case Instruction::FAdd: 2785 case Instruction::FDiv: 2786 case Instruction::FRem: 2787 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2788 Depth + 1) && 2789 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2790 Depth + 1); 2791 case Instruction::Select: 2792 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2793 Depth + 1) && 2794 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2795 Depth + 1); 2796 case Instruction::FPExt: 2797 case Instruction::FPTrunc: 2798 // Widening/narrowing never change sign. 2799 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2800 Depth + 1); 2801 case Instruction::ExtractElement: 2802 // Look through extract element. At the moment we keep this simple and skip 2803 // tracking the specific element. But at least we might find information 2804 // valid for all elements of the vector. 2805 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2806 Depth + 1); 2807 case Instruction::Call: 2808 const auto *CI = cast<CallInst>(I); 2809 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2810 switch (IID) { 2811 default: 2812 break; 2813 case Intrinsic::maxnum: 2814 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2815 Depth + 1) || 2816 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2817 Depth + 1); 2818 case Intrinsic::minnum: 2819 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2820 Depth + 1) && 2821 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2822 Depth + 1); 2823 case Intrinsic::exp: 2824 case Intrinsic::exp2: 2825 case Intrinsic::fabs: 2826 return true; 2827 2828 case Intrinsic::sqrt: 2829 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2830 if (!SignBitOnly) 2831 return true; 2832 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2833 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2834 2835 case Intrinsic::powi: 2836 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2837 // powi(x,n) is non-negative if n is even. 2838 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2839 return true; 2840 } 2841 // TODO: This is not correct. Given that exp is an integer, here are the 2842 // ways that pow can return a negative value: 2843 // 2844 // pow(x, exp) --> negative if exp is odd and x is negative. 2845 // pow(-0, exp) --> -inf if exp is negative odd. 2846 // pow(-0, exp) --> -0 if exp is positive odd. 2847 // pow(-inf, exp) --> -0 if exp is negative odd. 2848 // pow(-inf, exp) --> -inf if exp is positive odd. 2849 // 2850 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2851 // but we must return false if x == -0. Unfortunately we do not currently 2852 // have a way of expressing this constraint. See details in 2853 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2854 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2855 Depth + 1); 2856 2857 case Intrinsic::fma: 2858 case Intrinsic::fmuladd: 2859 // x*x+y is non-negative if y is non-negative. 2860 return I->getOperand(0) == I->getOperand(1) && 2861 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2862 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2863 Depth + 1); 2864 } 2865 break; 2866 } 2867 return false; 2868 } 2869 2870 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2871 const TargetLibraryInfo *TLI) { 2872 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2873 } 2874 2875 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2876 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2877 } 2878 2879 bool llvm::isKnownNeverNaN(const Value *V) { 2880 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2881 2882 // If we're told that NaNs won't happen, assume they won't. 2883 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2884 if (FPMathOp->hasNoNaNs()) 2885 return true; 2886 2887 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2888 // functions. For example, the result of sitofp is never NaN. 2889 2890 // Handle scalar constants. 2891 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2892 return !CFP->isNaN(); 2893 2894 // Bail out for constant expressions, but try to handle vector constants. 2895 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2896 return false; 2897 2898 // For vectors, verify that each element is not NaN. 2899 unsigned NumElts = V->getType()->getVectorNumElements(); 2900 for (unsigned i = 0; i != NumElts; ++i) { 2901 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2902 if (!Elt) 2903 return false; 2904 if (isa<UndefValue>(Elt)) 2905 continue; 2906 auto *CElt = dyn_cast<ConstantFP>(Elt); 2907 if (!CElt || CElt->isNaN()) 2908 return false; 2909 } 2910 // All elements were confirmed not-NaN or undefined. 2911 return true; 2912 } 2913 2914 /// If the specified value can be set by repeating the same byte in memory, 2915 /// return the i8 value that it is represented with. This is 2916 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2917 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2918 /// byte store (e.g. i16 0x1234), return null. 2919 Value *llvm::isBytewiseValue(Value *V) { 2920 // All byte-wide stores are splatable, even of arbitrary variables. 2921 if (V->getType()->isIntegerTy(8)) return V; 2922 2923 // Handle 'null' ConstantArrayZero etc. 2924 if (Constant *C = dyn_cast<Constant>(V)) 2925 if (C->isNullValue()) 2926 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2927 2928 // Constant float and double values can be handled as integer values if the 2929 // corresponding integer value is "byteable". An important case is 0.0. 2930 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2931 if (CFP->getType()->isFloatTy()) 2932 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2933 if (CFP->getType()->isDoubleTy()) 2934 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2935 // Don't handle long double formats, which have strange constraints. 2936 } 2937 2938 // We can handle constant integers that are multiple of 8 bits. 2939 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2940 if (CI->getBitWidth() % 8 == 0) { 2941 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2942 2943 if (!CI->getValue().isSplat(8)) 2944 return nullptr; 2945 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2946 } 2947 } 2948 2949 // A ConstantDataArray/Vector is splatable if all its members are equal and 2950 // also splatable. 2951 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2952 Value *Elt = CA->getElementAsConstant(0); 2953 Value *Val = isBytewiseValue(Elt); 2954 if (!Val) 2955 return nullptr; 2956 2957 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2958 if (CA->getElementAsConstant(I) != Elt) 2959 return nullptr; 2960 2961 return Val; 2962 } 2963 2964 // Conceptually, we could handle things like: 2965 // %a = zext i8 %X to i16 2966 // %b = shl i16 %a, 8 2967 // %c = or i16 %a, %b 2968 // but until there is an example that actually needs this, it doesn't seem 2969 // worth worrying about. 2970 return nullptr; 2971 } 2972 2973 // This is the recursive version of BuildSubAggregate. It takes a few different 2974 // arguments. Idxs is the index within the nested struct From that we are 2975 // looking at now (which is of type IndexedType). IdxSkip is the number of 2976 // indices from Idxs that should be left out when inserting into the resulting 2977 // struct. To is the result struct built so far, new insertvalue instructions 2978 // build on that. 2979 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2980 SmallVectorImpl<unsigned> &Idxs, 2981 unsigned IdxSkip, 2982 Instruction *InsertBefore) { 2983 StructType *STy = dyn_cast<StructType>(IndexedType); 2984 if (STy) { 2985 // Save the original To argument so we can modify it 2986 Value *OrigTo = To; 2987 // General case, the type indexed by Idxs is a struct 2988 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2989 // Process each struct element recursively 2990 Idxs.push_back(i); 2991 Value *PrevTo = To; 2992 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2993 InsertBefore); 2994 Idxs.pop_back(); 2995 if (!To) { 2996 // Couldn't find any inserted value for this index? Cleanup 2997 while (PrevTo != OrigTo) { 2998 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2999 PrevTo = Del->getAggregateOperand(); 3000 Del->eraseFromParent(); 3001 } 3002 // Stop processing elements 3003 break; 3004 } 3005 } 3006 // If we successfully found a value for each of our subaggregates 3007 if (To) 3008 return To; 3009 } 3010 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3011 // the struct's elements had a value that was inserted directly. In the latter 3012 // case, perhaps we can't determine each of the subelements individually, but 3013 // we might be able to find the complete struct somewhere. 3014 3015 // Find the value that is at that particular spot 3016 Value *V = FindInsertedValue(From, Idxs); 3017 3018 if (!V) 3019 return nullptr; 3020 3021 // Insert the value in the new (sub) aggregate 3022 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3023 "tmp", InsertBefore); 3024 } 3025 3026 // This helper takes a nested struct and extracts a part of it (which is again a 3027 // struct) into a new value. For example, given the struct: 3028 // { a, { b, { c, d }, e } } 3029 // and the indices "1, 1" this returns 3030 // { c, d }. 3031 // 3032 // It does this by inserting an insertvalue for each element in the resulting 3033 // struct, as opposed to just inserting a single struct. This will only work if 3034 // each of the elements of the substruct are known (ie, inserted into From by an 3035 // insertvalue instruction somewhere). 3036 // 3037 // All inserted insertvalue instructions are inserted before InsertBefore 3038 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3039 Instruction *InsertBefore) { 3040 assert(InsertBefore && "Must have someplace to insert!"); 3041 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3042 idx_range); 3043 Value *To = UndefValue::get(IndexedType); 3044 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3045 unsigned IdxSkip = Idxs.size(); 3046 3047 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3048 } 3049 3050 /// Given an aggregate and a sequence of indices, see if the scalar value 3051 /// indexed is already around as a register, for example if it was inserted 3052 /// directly into the aggregate. 3053 /// 3054 /// If InsertBefore is not null, this function will duplicate (modified) 3055 /// insertvalues when a part of a nested struct is extracted. 3056 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3057 Instruction *InsertBefore) { 3058 // Nothing to index? Just return V then (this is useful at the end of our 3059 // recursion). 3060 if (idx_range.empty()) 3061 return V; 3062 // We have indices, so V should have an indexable type. 3063 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3064 "Not looking at a struct or array?"); 3065 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3066 "Invalid indices for type?"); 3067 3068 if (Constant *C = dyn_cast<Constant>(V)) { 3069 C = C->getAggregateElement(idx_range[0]); 3070 if (!C) return nullptr; 3071 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3072 } 3073 3074 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3075 // Loop the indices for the insertvalue instruction in parallel with the 3076 // requested indices 3077 const unsigned *req_idx = idx_range.begin(); 3078 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3079 i != e; ++i, ++req_idx) { 3080 if (req_idx == idx_range.end()) { 3081 // We can't handle this without inserting insertvalues 3082 if (!InsertBefore) 3083 return nullptr; 3084 3085 // The requested index identifies a part of a nested aggregate. Handle 3086 // this specially. For example, 3087 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3088 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3089 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3090 // This can be changed into 3091 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3092 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3093 // which allows the unused 0,0 element from the nested struct to be 3094 // removed. 3095 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3096 InsertBefore); 3097 } 3098 3099 // This insert value inserts something else than what we are looking for. 3100 // See if the (aggregate) value inserted into has the value we are 3101 // looking for, then. 3102 if (*req_idx != *i) 3103 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3104 InsertBefore); 3105 } 3106 // If we end up here, the indices of the insertvalue match with those 3107 // requested (though possibly only partially). Now we recursively look at 3108 // the inserted value, passing any remaining indices. 3109 return FindInsertedValue(I->getInsertedValueOperand(), 3110 makeArrayRef(req_idx, idx_range.end()), 3111 InsertBefore); 3112 } 3113 3114 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3115 // If we're extracting a value from an aggregate that was extracted from 3116 // something else, we can extract from that something else directly instead. 3117 // However, we will need to chain I's indices with the requested indices. 3118 3119 // Calculate the number of indices required 3120 unsigned size = I->getNumIndices() + idx_range.size(); 3121 // Allocate some space to put the new indices in 3122 SmallVector<unsigned, 5> Idxs; 3123 Idxs.reserve(size); 3124 // Add indices from the extract value instruction 3125 Idxs.append(I->idx_begin(), I->idx_end()); 3126 3127 // Add requested indices 3128 Idxs.append(idx_range.begin(), idx_range.end()); 3129 3130 assert(Idxs.size() == size 3131 && "Number of indices added not correct?"); 3132 3133 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3134 } 3135 // Otherwise, we don't know (such as, extracting from a function return value 3136 // or load instruction) 3137 return nullptr; 3138 } 3139 3140 /// Analyze the specified pointer to see if it can be expressed as a base 3141 /// pointer plus a constant offset. Return the base and offset to the caller. 3142 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3143 const DataLayout &DL) { 3144 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3145 APInt ByteOffset(BitWidth, 0); 3146 3147 // We walk up the defs but use a visited set to handle unreachable code. In 3148 // that case, we stop after accumulating the cycle once (not that it 3149 // matters). 3150 SmallPtrSet<Value *, 16> Visited; 3151 while (Visited.insert(Ptr).second) { 3152 if (Ptr->getType()->isVectorTy()) 3153 break; 3154 3155 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3156 // If one of the values we have visited is an addrspacecast, then 3157 // the pointer type of this GEP may be different from the type 3158 // of the Ptr parameter which was passed to this function. This 3159 // means when we construct GEPOffset, we need to use the size 3160 // of GEP's pointer type rather than the size of the original 3161 // pointer type. 3162 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3163 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3164 break; 3165 3166 ByteOffset += GEPOffset.getSExtValue(); 3167 3168 Ptr = GEP->getPointerOperand(); 3169 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3170 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3171 Ptr = cast<Operator>(Ptr)->getOperand(0); 3172 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3173 if (GA->isInterposable()) 3174 break; 3175 Ptr = GA->getAliasee(); 3176 } else { 3177 break; 3178 } 3179 } 3180 Offset = ByteOffset.getSExtValue(); 3181 return Ptr; 3182 } 3183 3184 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3185 unsigned CharSize) { 3186 // Make sure the GEP has exactly three arguments. 3187 if (GEP->getNumOperands() != 3) 3188 return false; 3189 3190 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3191 // CharSize. 3192 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3193 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3194 return false; 3195 3196 // Check to make sure that the first operand of the GEP is an integer and 3197 // has value 0 so that we are sure we're indexing into the initializer. 3198 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3199 if (!FirstIdx || !FirstIdx->isZero()) 3200 return false; 3201 3202 return true; 3203 } 3204 3205 bool llvm::getConstantDataArrayInfo(const Value *V, 3206 ConstantDataArraySlice &Slice, 3207 unsigned ElementSize, uint64_t Offset) { 3208 assert(V); 3209 3210 // Look through bitcast instructions and geps. 3211 V = V->stripPointerCasts(); 3212 3213 // If the value is a GEP instruction or constant expression, treat it as an 3214 // offset. 3215 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3216 // The GEP operator should be based on a pointer to string constant, and is 3217 // indexing into the string constant. 3218 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3219 return false; 3220 3221 // If the second index isn't a ConstantInt, then this is a variable index 3222 // into the array. If this occurs, we can't say anything meaningful about 3223 // the string. 3224 uint64_t StartIdx = 0; 3225 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3226 StartIdx = CI->getZExtValue(); 3227 else 3228 return false; 3229 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3230 StartIdx + Offset); 3231 } 3232 3233 // The GEP instruction, constant or instruction, must reference a global 3234 // variable that is a constant and is initialized. The referenced constant 3235 // initializer is the array that we'll use for optimization. 3236 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3237 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3238 return false; 3239 3240 const ConstantDataArray *Array; 3241 ArrayType *ArrayTy; 3242 if (GV->getInitializer()->isNullValue()) { 3243 Type *GVTy = GV->getValueType(); 3244 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3245 // A zeroinitializer for the array; there is no ConstantDataArray. 3246 Array = nullptr; 3247 } else { 3248 const DataLayout &DL = GV->getParent()->getDataLayout(); 3249 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3250 uint64_t Length = SizeInBytes / (ElementSize / 8); 3251 if (Length <= Offset) 3252 return false; 3253 3254 Slice.Array = nullptr; 3255 Slice.Offset = 0; 3256 Slice.Length = Length - Offset; 3257 return true; 3258 } 3259 } else { 3260 // This must be a ConstantDataArray. 3261 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3262 if (!Array) 3263 return false; 3264 ArrayTy = Array->getType(); 3265 } 3266 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3267 return false; 3268 3269 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3270 if (Offset > NumElts) 3271 return false; 3272 3273 Slice.Array = Array; 3274 Slice.Offset = Offset; 3275 Slice.Length = NumElts - Offset; 3276 return true; 3277 } 3278 3279 /// This function computes the length of a null-terminated C string pointed to 3280 /// by V. If successful, it returns true and returns the string in Str. 3281 /// If unsuccessful, it returns false. 3282 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3283 uint64_t Offset, bool TrimAtNul) { 3284 ConstantDataArraySlice Slice; 3285 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3286 return false; 3287 3288 if (Slice.Array == nullptr) { 3289 if (TrimAtNul) { 3290 Str = StringRef(); 3291 return true; 3292 } 3293 if (Slice.Length == 1) { 3294 Str = StringRef("", 1); 3295 return true; 3296 } 3297 // We cannot instantiate a StringRef as we do not have an appropriate string 3298 // of 0s at hand. 3299 return false; 3300 } 3301 3302 // Start out with the entire array in the StringRef. 3303 Str = Slice.Array->getAsString(); 3304 // Skip over 'offset' bytes. 3305 Str = Str.substr(Slice.Offset); 3306 3307 if (TrimAtNul) { 3308 // Trim off the \0 and anything after it. If the array is not nul 3309 // terminated, we just return the whole end of string. The client may know 3310 // some other way that the string is length-bound. 3311 Str = Str.substr(0, Str.find('\0')); 3312 } 3313 return true; 3314 } 3315 3316 // These next two are very similar to the above, but also look through PHI 3317 // nodes. 3318 // TODO: See if we can integrate these two together. 3319 3320 /// If we can compute the length of the string pointed to by 3321 /// the specified pointer, return 'len+1'. If we can't, return 0. 3322 static uint64_t GetStringLengthH(const Value *V, 3323 SmallPtrSetImpl<const PHINode*> &PHIs, 3324 unsigned CharSize) { 3325 // Look through noop bitcast instructions. 3326 V = V->stripPointerCasts(); 3327 3328 // If this is a PHI node, there are two cases: either we have already seen it 3329 // or we haven't. 3330 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3331 if (!PHIs.insert(PN).second) 3332 return ~0ULL; // already in the set. 3333 3334 // If it was new, see if all the input strings are the same length. 3335 uint64_t LenSoFar = ~0ULL; 3336 for (Value *IncValue : PN->incoming_values()) { 3337 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3338 if (Len == 0) return 0; // Unknown length -> unknown. 3339 3340 if (Len == ~0ULL) continue; 3341 3342 if (Len != LenSoFar && LenSoFar != ~0ULL) 3343 return 0; // Disagree -> unknown. 3344 LenSoFar = Len; 3345 } 3346 3347 // Success, all agree. 3348 return LenSoFar; 3349 } 3350 3351 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3352 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3353 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3354 if (Len1 == 0) return 0; 3355 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3356 if (Len2 == 0) return 0; 3357 if (Len1 == ~0ULL) return Len2; 3358 if (Len2 == ~0ULL) return Len1; 3359 if (Len1 != Len2) return 0; 3360 return Len1; 3361 } 3362 3363 // Otherwise, see if we can read the string. 3364 ConstantDataArraySlice Slice; 3365 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3366 return 0; 3367 3368 if (Slice.Array == nullptr) 3369 return 1; 3370 3371 // Search for nul characters 3372 unsigned NullIndex = 0; 3373 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3374 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3375 break; 3376 } 3377 3378 return NullIndex + 1; 3379 } 3380 3381 /// If we can compute the length of the string pointed to by 3382 /// the specified pointer, return 'len+1'. If we can't, return 0. 3383 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3384 if (!V->getType()->isPointerTy()) 3385 return 0; 3386 3387 SmallPtrSet<const PHINode*, 32> PHIs; 3388 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3389 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3390 // an empty string as a length. 3391 return Len == ~0ULL ? 1 : Len; 3392 } 3393 3394 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) { 3395 assert(CS && 3396 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite"); 3397 if (const Value *RV = CS.getReturnedArgOperand()) 3398 return RV; 3399 // This can be used only as a aliasing property. 3400 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS)) 3401 return CS.getArgOperand(0); 3402 return nullptr; 3403 } 3404 3405 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3406 ImmutableCallSite CS) { 3407 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group; 3408 } 3409 3410 /// \p PN defines a loop-variant pointer to an object. Check if the 3411 /// previous iteration of the loop was referring to the same object as \p PN. 3412 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3413 const LoopInfo *LI) { 3414 // Find the loop-defined value. 3415 Loop *L = LI->getLoopFor(PN->getParent()); 3416 if (PN->getNumIncomingValues() != 2) 3417 return true; 3418 3419 // Find the value from previous iteration. 3420 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3421 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3422 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3423 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3424 return true; 3425 3426 // If a new pointer is loaded in the loop, the pointer references a different 3427 // object in every iteration. E.g.: 3428 // for (i) 3429 // int *p = a[i]; 3430 // ... 3431 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3432 if (!L->isLoopInvariant(Load->getPointerOperand())) 3433 return false; 3434 return true; 3435 } 3436 3437 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3438 unsigned MaxLookup) { 3439 if (!V->getType()->isPointerTy()) 3440 return V; 3441 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3442 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3443 V = GEP->getPointerOperand(); 3444 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3445 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3446 V = cast<Operator>(V)->getOperand(0); 3447 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3448 if (GA->isInterposable()) 3449 return V; 3450 V = GA->getAliasee(); 3451 } else if (isa<AllocaInst>(V)) { 3452 // An alloca can't be further simplified. 3453 return V; 3454 } else { 3455 if (auto CS = CallSite(V)) { 3456 // Note: getArgumentAliasingToReturnedPointer keeps it in sync with 3457 // CaptureTracking, which is needed for correctness. This is because 3458 // some intrinsics like launder.invariant.group returns pointers that 3459 // are aliasing it's argument, which is known to CaptureTracking. 3460 // If AliasAnalysis does not use the same information, it could assume 3461 // that pointer returned from launder does not alias it's argument 3462 // because launder could not return it if the pointer was not captured. 3463 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { 3464 V = RP; 3465 continue; 3466 } 3467 } 3468 3469 // See if InstructionSimplify knows any relevant tricks. 3470 if (Instruction *I = dyn_cast<Instruction>(V)) 3471 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3472 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3473 V = Simplified; 3474 continue; 3475 } 3476 3477 return V; 3478 } 3479 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3480 } 3481 return V; 3482 } 3483 3484 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3485 const DataLayout &DL, LoopInfo *LI, 3486 unsigned MaxLookup) { 3487 SmallPtrSet<Value *, 4> Visited; 3488 SmallVector<Value *, 4> Worklist; 3489 Worklist.push_back(V); 3490 do { 3491 Value *P = Worklist.pop_back_val(); 3492 P = GetUnderlyingObject(P, DL, MaxLookup); 3493 3494 if (!Visited.insert(P).second) 3495 continue; 3496 3497 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3498 Worklist.push_back(SI->getTrueValue()); 3499 Worklist.push_back(SI->getFalseValue()); 3500 continue; 3501 } 3502 3503 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3504 // If this PHI changes the underlying object in every iteration of the 3505 // loop, don't look through it. Consider: 3506 // int **A; 3507 // for (i) { 3508 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3509 // Curr = A[i]; 3510 // *Prev, *Curr; 3511 // 3512 // Prev is tracking Curr one iteration behind so they refer to different 3513 // underlying objects. 3514 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3515 isSameUnderlyingObjectInLoop(PN, LI)) 3516 for (Value *IncValue : PN->incoming_values()) 3517 Worklist.push_back(IncValue); 3518 continue; 3519 } 3520 3521 Objects.push_back(P); 3522 } while (!Worklist.empty()); 3523 } 3524 3525 /// This is the function that does the work of looking through basic 3526 /// ptrtoint+arithmetic+inttoptr sequences. 3527 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3528 do { 3529 if (const Operator *U = dyn_cast<Operator>(V)) { 3530 // If we find a ptrtoint, we can transfer control back to the 3531 // regular getUnderlyingObjectFromInt. 3532 if (U->getOpcode() == Instruction::PtrToInt) 3533 return U->getOperand(0); 3534 // If we find an add of a constant, a multiplied value, or a phi, it's 3535 // likely that the other operand will lead us to the base 3536 // object. We don't have to worry about the case where the 3537 // object address is somehow being computed by the multiply, 3538 // because our callers only care when the result is an 3539 // identifiable object. 3540 if (U->getOpcode() != Instruction::Add || 3541 (!isa<ConstantInt>(U->getOperand(1)) && 3542 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3543 !isa<PHINode>(U->getOperand(1)))) 3544 return V; 3545 V = U->getOperand(0); 3546 } else { 3547 return V; 3548 } 3549 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3550 } while (true); 3551 } 3552 3553 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3554 /// ptrtoint+arithmetic+inttoptr sequences. 3555 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3556 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3557 SmallVectorImpl<Value *> &Objects, 3558 const DataLayout &DL) { 3559 SmallPtrSet<const Value *, 16> Visited; 3560 SmallVector<const Value *, 4> Working(1, V); 3561 do { 3562 V = Working.pop_back_val(); 3563 3564 SmallVector<Value *, 4> Objs; 3565 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3566 3567 for (Value *V : Objs) { 3568 if (!Visited.insert(V).second) 3569 continue; 3570 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3571 const Value *O = 3572 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3573 if (O->getType()->isPointerTy()) { 3574 Working.push_back(O); 3575 continue; 3576 } 3577 } 3578 // If GetUnderlyingObjects fails to find an identifiable object, 3579 // getUnderlyingObjectsForCodeGen also fails for safety. 3580 if (!isIdentifiedObject(V)) { 3581 Objects.clear(); 3582 return false; 3583 } 3584 Objects.push_back(const_cast<Value *>(V)); 3585 } 3586 } while (!Working.empty()); 3587 return true; 3588 } 3589 3590 /// Return true if the only users of this pointer are lifetime markers. 3591 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3592 for (const User *U : V->users()) { 3593 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3594 if (!II) return false; 3595 3596 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3597 II->getIntrinsicID() != Intrinsic::lifetime_end) 3598 return false; 3599 } 3600 return true; 3601 } 3602 3603 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3604 const Instruction *CtxI, 3605 const DominatorTree *DT) { 3606 const Operator *Inst = dyn_cast<Operator>(V); 3607 if (!Inst) 3608 return false; 3609 3610 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3611 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3612 if (C->canTrap()) 3613 return false; 3614 3615 switch (Inst->getOpcode()) { 3616 default: 3617 return true; 3618 case Instruction::UDiv: 3619 case Instruction::URem: { 3620 // x / y is undefined if y == 0. 3621 const APInt *V; 3622 if (match(Inst->getOperand(1), m_APInt(V))) 3623 return *V != 0; 3624 return false; 3625 } 3626 case Instruction::SDiv: 3627 case Instruction::SRem: { 3628 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3629 const APInt *Numerator, *Denominator; 3630 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3631 return false; 3632 // We cannot hoist this division if the denominator is 0. 3633 if (*Denominator == 0) 3634 return false; 3635 // It's safe to hoist if the denominator is not 0 or -1. 3636 if (*Denominator != -1) 3637 return true; 3638 // At this point we know that the denominator is -1. It is safe to hoist as 3639 // long we know that the numerator is not INT_MIN. 3640 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3641 return !Numerator->isMinSignedValue(); 3642 // The numerator *might* be MinSignedValue. 3643 return false; 3644 } 3645 case Instruction::Load: { 3646 const LoadInst *LI = cast<LoadInst>(Inst); 3647 if (!LI->isUnordered() || 3648 // Speculative load may create a race that did not exist in the source. 3649 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3650 // Speculative load may load data from dirty regions. 3651 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3652 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3653 return false; 3654 const DataLayout &DL = LI->getModule()->getDataLayout(); 3655 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3656 LI->getAlignment(), DL, CtxI, DT); 3657 } 3658 case Instruction::Call: { 3659 auto *CI = cast<const CallInst>(Inst); 3660 const Function *Callee = CI->getCalledFunction(); 3661 3662 // The called function could have undefined behavior or side-effects, even 3663 // if marked readnone nounwind. 3664 return Callee && Callee->isSpeculatable(); 3665 } 3666 case Instruction::VAArg: 3667 case Instruction::Alloca: 3668 case Instruction::Invoke: 3669 case Instruction::PHI: 3670 case Instruction::Store: 3671 case Instruction::Ret: 3672 case Instruction::Br: 3673 case Instruction::IndirectBr: 3674 case Instruction::Switch: 3675 case Instruction::Unreachable: 3676 case Instruction::Fence: 3677 case Instruction::AtomicRMW: 3678 case Instruction::AtomicCmpXchg: 3679 case Instruction::LandingPad: 3680 case Instruction::Resume: 3681 case Instruction::CatchSwitch: 3682 case Instruction::CatchPad: 3683 case Instruction::CatchRet: 3684 case Instruction::CleanupPad: 3685 case Instruction::CleanupRet: 3686 return false; // Misc instructions which have effects 3687 } 3688 } 3689 3690 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3691 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3692 } 3693 3694 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3695 const Value *RHS, 3696 const DataLayout &DL, 3697 AssumptionCache *AC, 3698 const Instruction *CxtI, 3699 const DominatorTree *DT) { 3700 // Multiplying n * m significant bits yields a result of n + m significant 3701 // bits. If the total number of significant bits does not exceed the 3702 // result bit width (minus 1), there is no overflow. 3703 // This means if we have enough leading zero bits in the operands 3704 // we can guarantee that the result does not overflow. 3705 // Ref: "Hacker's Delight" by Henry Warren 3706 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3707 KnownBits LHSKnown(BitWidth); 3708 KnownBits RHSKnown(BitWidth); 3709 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3710 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3711 // Note that underestimating the number of zero bits gives a more 3712 // conservative answer. 3713 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3714 RHSKnown.countMinLeadingZeros(); 3715 // First handle the easy case: if we have enough zero bits there's 3716 // definitely no overflow. 3717 if (ZeroBits >= BitWidth) 3718 return OverflowResult::NeverOverflows; 3719 3720 // Get the largest possible values for each operand. 3721 APInt LHSMax = ~LHSKnown.Zero; 3722 APInt RHSMax = ~RHSKnown.Zero; 3723 3724 // We know the multiply operation doesn't overflow if the maximum values for 3725 // each operand will not overflow after we multiply them together. 3726 bool MaxOverflow; 3727 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3728 if (!MaxOverflow) 3729 return OverflowResult::NeverOverflows; 3730 3731 // We know it always overflows if multiplying the smallest possible values for 3732 // the operands also results in overflow. 3733 bool MinOverflow; 3734 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3735 if (MinOverflow) 3736 return OverflowResult::AlwaysOverflows; 3737 3738 return OverflowResult::MayOverflow; 3739 } 3740 3741 OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS, 3742 const Value *RHS, 3743 const DataLayout &DL, 3744 AssumptionCache *AC, 3745 const Instruction *CxtI, 3746 const DominatorTree *DT) { 3747 // Multiplying n * m significant bits yields a result of n + m significant 3748 // bits. If the total number of significant bits does not exceed the 3749 // result bit width (minus 1), there is no overflow. 3750 // This means if we have enough leading sign bits in the operands 3751 // we can guarantee that the result does not overflow. 3752 // Ref: "Hacker's Delight" by Henry Warren 3753 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3754 3755 // Note that underestimating the number of sign bits gives a more 3756 // conservative answer. 3757 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 3758 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 3759 3760 // First handle the easy case: if we have enough sign bits there's 3761 // definitely no overflow. 3762 if (SignBits > BitWidth + 1) 3763 return OverflowResult::NeverOverflows; 3764 3765 // There are two ambiguous cases where there can be no overflow: 3766 // SignBits == BitWidth + 1 and 3767 // SignBits == BitWidth 3768 // The second case is difficult to check, therefore we only handle the 3769 // first case. 3770 if (SignBits == BitWidth + 1) { 3771 // It overflows only when both arguments are negative and the true 3772 // product is exactly the minimum negative number. 3773 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 3774 // For simplicity we just check if at least one side is not negative. 3775 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3776 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3777 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 3778 return OverflowResult::NeverOverflows; 3779 } 3780 return OverflowResult::MayOverflow; 3781 } 3782 3783 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3784 const Value *RHS, 3785 const DataLayout &DL, 3786 AssumptionCache *AC, 3787 const Instruction *CxtI, 3788 const DominatorTree *DT) { 3789 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3790 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3791 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3792 3793 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3794 // The sign bit is set in both cases: this MUST overflow. 3795 // Create a simple add instruction, and insert it into the struct. 3796 return OverflowResult::AlwaysOverflows; 3797 } 3798 3799 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3800 // The sign bit is clear in both cases: this CANNOT overflow. 3801 // Create a simple add instruction, and insert it into the struct. 3802 return OverflowResult::NeverOverflows; 3803 } 3804 } 3805 3806 return OverflowResult::MayOverflow; 3807 } 3808 3809 /// Return true if we can prove that adding the two values of the 3810 /// knownbits will not overflow. 3811 /// Otherwise return false. 3812 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3813 const KnownBits &RHSKnown) { 3814 // Addition of two 2's complement numbers having opposite signs will never 3815 // overflow. 3816 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3817 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3818 return true; 3819 3820 // If either of the values is known to be non-negative, adding them can only 3821 // overflow if the second is also non-negative, so we can assume that. 3822 // Two non-negative numbers will only overflow if there is a carry to the 3823 // sign bit, so we can check if even when the values are as big as possible 3824 // there is no overflow to the sign bit. 3825 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3826 APInt MaxLHS = ~LHSKnown.Zero; 3827 MaxLHS.clearSignBit(); 3828 APInt MaxRHS = ~RHSKnown.Zero; 3829 MaxRHS.clearSignBit(); 3830 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3831 return Result.isSignBitClear(); 3832 } 3833 3834 // If either of the values is known to be negative, adding them can only 3835 // overflow if the second is also negative, so we can assume that. 3836 // Two negative number will only overflow if there is no carry to the sign 3837 // bit, so we can check if even when the values are as small as possible 3838 // there is overflow to the sign bit. 3839 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3840 APInt MinLHS = LHSKnown.One; 3841 MinLHS.clearSignBit(); 3842 APInt MinRHS = RHSKnown.One; 3843 MinRHS.clearSignBit(); 3844 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3845 return Result.isSignBitSet(); 3846 } 3847 3848 // If we reached here it means that we know nothing about the sign bits. 3849 // In this case we can't know if there will be an overflow, since by 3850 // changing the sign bits any two values can be made to overflow. 3851 return false; 3852 } 3853 3854 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3855 const Value *RHS, 3856 const AddOperator *Add, 3857 const DataLayout &DL, 3858 AssumptionCache *AC, 3859 const Instruction *CxtI, 3860 const DominatorTree *DT) { 3861 if (Add && Add->hasNoSignedWrap()) { 3862 return OverflowResult::NeverOverflows; 3863 } 3864 3865 // If LHS and RHS each have at least two sign bits, the addition will look 3866 // like 3867 // 3868 // XX..... + 3869 // YY..... 3870 // 3871 // If the carry into the most significant position is 0, X and Y can't both 3872 // be 1 and therefore the carry out of the addition is also 0. 3873 // 3874 // If the carry into the most significant position is 1, X and Y can't both 3875 // be 0 and therefore the carry out of the addition is also 1. 3876 // 3877 // Since the carry into the most significant position is always equal to 3878 // the carry out of the addition, there is no signed overflow. 3879 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3880 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3881 return OverflowResult::NeverOverflows; 3882 3883 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3884 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3885 3886 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3887 return OverflowResult::NeverOverflows; 3888 3889 // The remaining code needs Add to be available. Early returns if not so. 3890 if (!Add) 3891 return OverflowResult::MayOverflow; 3892 3893 // If the sign of Add is the same as at least one of the operands, this add 3894 // CANNOT overflow. This is particularly useful when the sum is 3895 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3896 // operands. 3897 bool LHSOrRHSKnownNonNegative = 3898 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3899 bool LHSOrRHSKnownNegative = 3900 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3901 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3902 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3903 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3904 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3905 return OverflowResult::NeverOverflows; 3906 } 3907 } 3908 3909 return OverflowResult::MayOverflow; 3910 } 3911 3912 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 3913 const Value *RHS, 3914 const DataLayout &DL, 3915 AssumptionCache *AC, 3916 const Instruction *CxtI, 3917 const DominatorTree *DT) { 3918 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 3919 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3920 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3921 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 3922 return OverflowResult::NeverOverflows; 3923 3924 return OverflowResult::MayOverflow; 3925 } 3926 3927 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 3928 const Value *RHS, 3929 const DataLayout &DL, 3930 AssumptionCache *AC, 3931 const Instruction *CxtI, 3932 const DominatorTree *DT) { 3933 // If LHS and RHS each have at least two sign bits, the subtraction 3934 // cannot overflow. 3935 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3936 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3937 return OverflowResult::NeverOverflows; 3938 3939 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); 3940 3941 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); 3942 3943 // Subtraction of two 2's complement numbers having identical signs will 3944 // never overflow. 3945 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 3946 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 3947 return OverflowResult::NeverOverflows; 3948 3949 // TODO: implement logic similar to checkRippleForAdd 3950 return OverflowResult::MayOverflow; 3951 } 3952 3953 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3954 const DominatorTree &DT) { 3955 #ifndef NDEBUG 3956 auto IID = II->getIntrinsicID(); 3957 assert((IID == Intrinsic::sadd_with_overflow || 3958 IID == Intrinsic::uadd_with_overflow || 3959 IID == Intrinsic::ssub_with_overflow || 3960 IID == Intrinsic::usub_with_overflow || 3961 IID == Intrinsic::smul_with_overflow || 3962 IID == Intrinsic::umul_with_overflow) && 3963 "Not an overflow intrinsic!"); 3964 #endif 3965 3966 SmallVector<const BranchInst *, 2> GuardingBranches; 3967 SmallVector<const ExtractValueInst *, 2> Results; 3968 3969 for (const User *U : II->users()) { 3970 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3971 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3972 3973 if (EVI->getIndices()[0] == 0) 3974 Results.push_back(EVI); 3975 else { 3976 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3977 3978 for (const auto *U : EVI->users()) 3979 if (const auto *B = dyn_cast<BranchInst>(U)) { 3980 assert(B->isConditional() && "How else is it using an i1?"); 3981 GuardingBranches.push_back(B); 3982 } 3983 } 3984 } else { 3985 // We are using the aggregate directly in a way we don't want to analyze 3986 // here (storing it to a global, say). 3987 return false; 3988 } 3989 } 3990 3991 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3992 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3993 if (!NoWrapEdge.isSingleEdge()) 3994 return false; 3995 3996 // Check if all users of the add are provably no-wrap. 3997 for (const auto *Result : Results) { 3998 // If the extractvalue itself is not executed on overflow, the we don't 3999 // need to check each use separately, since domination is transitive. 4000 if (DT.dominates(NoWrapEdge, Result->getParent())) 4001 continue; 4002 4003 for (auto &RU : Result->uses()) 4004 if (!DT.dominates(NoWrapEdge, RU)) 4005 return false; 4006 } 4007 4008 return true; 4009 }; 4010 4011 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4012 } 4013 4014 4015 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4016 const DataLayout &DL, 4017 AssumptionCache *AC, 4018 const Instruction *CxtI, 4019 const DominatorTree *DT) { 4020 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4021 Add, DL, AC, CxtI, DT); 4022 } 4023 4024 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4025 const Value *RHS, 4026 const DataLayout &DL, 4027 AssumptionCache *AC, 4028 const Instruction *CxtI, 4029 const DominatorTree *DT) { 4030 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4031 } 4032 4033 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4034 // A memory operation returns normally if it isn't volatile. A volatile 4035 // operation is allowed to trap. 4036 // 4037 // An atomic operation isn't guaranteed to return in a reasonable amount of 4038 // time because it's possible for another thread to interfere with it for an 4039 // arbitrary length of time, but programs aren't allowed to rely on that. 4040 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4041 return !LI->isVolatile(); 4042 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4043 return !SI->isVolatile(); 4044 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4045 return !CXI->isVolatile(); 4046 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4047 return !RMWI->isVolatile(); 4048 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4049 return !MII->isVolatile(); 4050 4051 // If there is no successor, then execution can't transfer to it. 4052 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4053 return !CRI->unwindsToCaller(); 4054 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4055 return !CatchSwitch->unwindsToCaller(); 4056 if (isa<ResumeInst>(I)) 4057 return false; 4058 if (isa<ReturnInst>(I)) 4059 return false; 4060 if (isa<UnreachableInst>(I)) 4061 return false; 4062 4063 // Calls can throw, or contain an infinite loop, or kill the process. 4064 if (auto CS = ImmutableCallSite(I)) { 4065 // Call sites that throw have implicit non-local control flow. 4066 if (!CS.doesNotThrow()) 4067 return false; 4068 4069 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4070 // etc. and thus not return. However, LLVM already assumes that 4071 // 4072 // - Thread exiting actions are modeled as writes to memory invisible to 4073 // the program. 4074 // 4075 // - Loops that don't have side effects (side effects are volatile/atomic 4076 // stores and IO) always terminate (see http://llvm.org/PR965). 4077 // Furthermore IO itself is also modeled as writes to memory invisible to 4078 // the program. 4079 // 4080 // We rely on those assumptions here, and use the memory effects of the call 4081 // target as a proxy for checking that it always returns. 4082 4083 // FIXME: This isn't aggressive enough; a call which only writes to a global 4084 // is guaranteed to return. 4085 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4086 match(I, m_Intrinsic<Intrinsic::assume>()) || 4087 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 4088 } 4089 4090 // Other instructions return normally. 4091 return true; 4092 } 4093 4094 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4095 // TODO: This is slightly consdervative for invoke instruction since exiting 4096 // via an exception *is* normal control for them. 4097 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4098 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4099 return false; 4100 return true; 4101 } 4102 4103 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4104 const Loop *L) { 4105 // The loop header is guaranteed to be executed for every iteration. 4106 // 4107 // FIXME: Relax this constraint to cover all basic blocks that are 4108 // guaranteed to be executed at every iteration. 4109 if (I->getParent() != L->getHeader()) return false; 4110 4111 for (const Instruction &LI : *L->getHeader()) { 4112 if (&LI == I) return true; 4113 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4114 } 4115 llvm_unreachable("Instruction not contained in its own parent basic block."); 4116 } 4117 4118 bool llvm::propagatesFullPoison(const Instruction *I) { 4119 switch (I->getOpcode()) { 4120 case Instruction::Add: 4121 case Instruction::Sub: 4122 case Instruction::Xor: 4123 case Instruction::Trunc: 4124 case Instruction::BitCast: 4125 case Instruction::AddrSpaceCast: 4126 case Instruction::Mul: 4127 case Instruction::Shl: 4128 case Instruction::GetElementPtr: 4129 // These operations all propagate poison unconditionally. Note that poison 4130 // is not any particular value, so xor or subtraction of poison with 4131 // itself still yields poison, not zero. 4132 return true; 4133 4134 case Instruction::AShr: 4135 case Instruction::SExt: 4136 // For these operations, one bit of the input is replicated across 4137 // multiple output bits. A replicated poison bit is still poison. 4138 return true; 4139 4140 case Instruction::ICmp: 4141 // Comparing poison with any value yields poison. This is why, for 4142 // instance, x s< (x +nsw 1) can be folded to true. 4143 return true; 4144 4145 default: 4146 return false; 4147 } 4148 } 4149 4150 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4151 switch (I->getOpcode()) { 4152 case Instruction::Store: 4153 return cast<StoreInst>(I)->getPointerOperand(); 4154 4155 case Instruction::Load: 4156 return cast<LoadInst>(I)->getPointerOperand(); 4157 4158 case Instruction::AtomicCmpXchg: 4159 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4160 4161 case Instruction::AtomicRMW: 4162 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4163 4164 case Instruction::UDiv: 4165 case Instruction::SDiv: 4166 case Instruction::URem: 4167 case Instruction::SRem: 4168 return I->getOperand(1); 4169 4170 default: 4171 return nullptr; 4172 } 4173 } 4174 4175 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4176 // We currently only look for uses of poison values within the same basic 4177 // block, as that makes it easier to guarantee that the uses will be 4178 // executed given that PoisonI is executed. 4179 // 4180 // FIXME: Expand this to consider uses beyond the same basic block. To do 4181 // this, look out for the distinction between post-dominance and strong 4182 // post-dominance. 4183 const BasicBlock *BB = PoisonI->getParent(); 4184 4185 // Set of instructions that we have proved will yield poison if PoisonI 4186 // does. 4187 SmallSet<const Value *, 16> YieldsPoison; 4188 SmallSet<const BasicBlock *, 4> Visited; 4189 YieldsPoison.insert(PoisonI); 4190 Visited.insert(PoisonI->getParent()); 4191 4192 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4193 4194 unsigned Iter = 0; 4195 while (Iter++ < MaxDepth) { 4196 for (auto &I : make_range(Begin, End)) { 4197 if (&I != PoisonI) { 4198 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4199 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4200 return true; 4201 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4202 return false; 4203 } 4204 4205 // Mark poison that propagates from I through uses of I. 4206 if (YieldsPoison.count(&I)) { 4207 for (const User *User : I.users()) { 4208 const Instruction *UserI = cast<Instruction>(User); 4209 if (propagatesFullPoison(UserI)) 4210 YieldsPoison.insert(User); 4211 } 4212 } 4213 } 4214 4215 if (auto *NextBB = BB->getSingleSuccessor()) { 4216 if (Visited.insert(NextBB).second) { 4217 BB = NextBB; 4218 Begin = BB->getFirstNonPHI()->getIterator(); 4219 End = BB->end(); 4220 continue; 4221 } 4222 } 4223 4224 break; 4225 } 4226 return false; 4227 } 4228 4229 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4230 if (FMF.noNaNs()) 4231 return true; 4232 4233 if (auto *C = dyn_cast<ConstantFP>(V)) 4234 return !C->isNaN(); 4235 return false; 4236 } 4237 4238 static bool isKnownNonZero(const Value *V) { 4239 if (auto *C = dyn_cast<ConstantFP>(V)) 4240 return !C->isZero(); 4241 return false; 4242 } 4243 4244 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4245 /// Given non-min/max outer cmp/select from the clamp pattern this 4246 /// function recognizes if it can be substitued by a "canonical" min/max 4247 /// pattern. 4248 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4249 Value *CmpLHS, Value *CmpRHS, 4250 Value *TrueVal, Value *FalseVal, 4251 Value *&LHS, Value *&RHS) { 4252 // Try to match 4253 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4254 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4255 // and return description of the outer Max/Min. 4256 4257 // First, check if select has inverse order: 4258 if (CmpRHS == FalseVal) { 4259 std::swap(TrueVal, FalseVal); 4260 Pred = CmpInst::getInversePredicate(Pred); 4261 } 4262 4263 // Assume success now. If there's no match, callers should not use these anyway. 4264 LHS = TrueVal; 4265 RHS = FalseVal; 4266 4267 const APFloat *FC1; 4268 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4269 return {SPF_UNKNOWN, SPNB_NA, false}; 4270 4271 const APFloat *FC2; 4272 switch (Pred) { 4273 case CmpInst::FCMP_OLT: 4274 case CmpInst::FCMP_OLE: 4275 case CmpInst::FCMP_ULT: 4276 case CmpInst::FCMP_ULE: 4277 if (match(FalseVal, 4278 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4279 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4280 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4281 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4282 break; 4283 case CmpInst::FCMP_OGT: 4284 case CmpInst::FCMP_OGE: 4285 case CmpInst::FCMP_UGT: 4286 case CmpInst::FCMP_UGE: 4287 if (match(FalseVal, 4288 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4289 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4290 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4291 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4292 break; 4293 default: 4294 break; 4295 } 4296 4297 return {SPF_UNKNOWN, SPNB_NA, false}; 4298 } 4299 4300 /// Recognize variations of: 4301 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4302 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4303 Value *CmpLHS, Value *CmpRHS, 4304 Value *TrueVal, Value *FalseVal) { 4305 // Swap the select operands and predicate to match the patterns below. 4306 if (CmpRHS != TrueVal) { 4307 Pred = ICmpInst::getSwappedPredicate(Pred); 4308 std::swap(TrueVal, FalseVal); 4309 } 4310 const APInt *C1; 4311 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4312 const APInt *C2; 4313 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4314 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4315 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4316 return {SPF_SMAX, SPNB_NA, false}; 4317 4318 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4319 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4320 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4321 return {SPF_SMIN, SPNB_NA, false}; 4322 4323 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4324 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4325 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4326 return {SPF_UMAX, SPNB_NA, false}; 4327 4328 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4329 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4330 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4331 return {SPF_UMIN, SPNB_NA, false}; 4332 } 4333 return {SPF_UNKNOWN, SPNB_NA, false}; 4334 } 4335 4336 /// Recognize variations of: 4337 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4338 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4339 Value *CmpLHS, Value *CmpRHS, 4340 Value *TVal, Value *FVal, 4341 unsigned Depth) { 4342 // TODO: Allow FP min/max with nnan/nsz. 4343 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4344 4345 Value *A, *B; 4346 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4347 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4348 return {SPF_UNKNOWN, SPNB_NA, false}; 4349 4350 Value *C, *D; 4351 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4352 if (L.Flavor != R.Flavor) 4353 return {SPF_UNKNOWN, SPNB_NA, false}; 4354 4355 // We have something like: x Pred y ? min(a, b) : min(c, d). 4356 // Try to match the compare to the min/max operations of the select operands. 4357 // First, make sure we have the right compare predicate. 4358 switch (L.Flavor) { 4359 case SPF_SMIN: 4360 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4361 Pred = ICmpInst::getSwappedPredicate(Pred); 4362 std::swap(CmpLHS, CmpRHS); 4363 } 4364 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4365 break; 4366 return {SPF_UNKNOWN, SPNB_NA, false}; 4367 case SPF_SMAX: 4368 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4369 Pred = ICmpInst::getSwappedPredicate(Pred); 4370 std::swap(CmpLHS, CmpRHS); 4371 } 4372 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4373 break; 4374 return {SPF_UNKNOWN, SPNB_NA, false}; 4375 case SPF_UMIN: 4376 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4377 Pred = ICmpInst::getSwappedPredicate(Pred); 4378 std::swap(CmpLHS, CmpRHS); 4379 } 4380 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4381 break; 4382 return {SPF_UNKNOWN, SPNB_NA, false}; 4383 case SPF_UMAX: 4384 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4385 Pred = ICmpInst::getSwappedPredicate(Pred); 4386 std::swap(CmpLHS, CmpRHS); 4387 } 4388 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4389 break; 4390 return {SPF_UNKNOWN, SPNB_NA, false}; 4391 default: 4392 return {SPF_UNKNOWN, SPNB_NA, false}; 4393 } 4394 4395 // If there is a common operand in the already matched min/max and the other 4396 // min/max operands match the compare operands (either directly or inverted), 4397 // then this is min/max of the same flavor. 4398 4399 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4400 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4401 if (D == B) { 4402 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4403 match(A, m_Not(m_Specific(CmpRHS))))) 4404 return {L.Flavor, SPNB_NA, false}; 4405 } 4406 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4407 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4408 if (C == B) { 4409 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4410 match(A, m_Not(m_Specific(CmpRHS))))) 4411 return {L.Flavor, SPNB_NA, false}; 4412 } 4413 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4414 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4415 if (D == A) { 4416 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4417 match(B, m_Not(m_Specific(CmpRHS))))) 4418 return {L.Flavor, SPNB_NA, false}; 4419 } 4420 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4421 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4422 if (C == A) { 4423 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4424 match(B, m_Not(m_Specific(CmpRHS))))) 4425 return {L.Flavor, SPNB_NA, false}; 4426 } 4427 4428 return {SPF_UNKNOWN, SPNB_NA, false}; 4429 } 4430 4431 /// Match non-obvious integer minimum and maximum sequences. 4432 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4433 Value *CmpLHS, Value *CmpRHS, 4434 Value *TrueVal, Value *FalseVal, 4435 Value *&LHS, Value *&RHS, 4436 unsigned Depth) { 4437 // Assume success. If there's no match, callers should not use these anyway. 4438 LHS = TrueVal; 4439 RHS = FalseVal; 4440 4441 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4442 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4443 return SPR; 4444 4445 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4446 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4447 return SPR; 4448 4449 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4450 return {SPF_UNKNOWN, SPNB_NA, false}; 4451 4452 // Z = X -nsw Y 4453 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4454 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4455 if (match(TrueVal, m_Zero()) && 4456 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4457 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4458 4459 // Z = X -nsw Y 4460 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4461 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4462 if (match(FalseVal, m_Zero()) && 4463 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4464 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4465 4466 const APInt *C1; 4467 if (!match(CmpRHS, m_APInt(C1))) 4468 return {SPF_UNKNOWN, SPNB_NA, false}; 4469 4470 // An unsigned min/max can be written with a signed compare. 4471 const APInt *C2; 4472 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4473 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4474 // Is the sign bit set? 4475 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4476 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4477 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4478 C2->isMaxSignedValue()) 4479 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4480 4481 // Is the sign bit clear? 4482 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4483 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4484 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4485 C2->isMinSignedValue()) 4486 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4487 } 4488 4489 // Look through 'not' ops to find disguised signed min/max. 4490 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4491 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4492 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4493 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4494 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4495 4496 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4497 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4498 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4499 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4500 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4501 4502 return {SPF_UNKNOWN, SPNB_NA, false}; 4503 } 4504 4505 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4506 FastMathFlags FMF, 4507 Value *CmpLHS, Value *CmpRHS, 4508 Value *TrueVal, Value *FalseVal, 4509 Value *&LHS, Value *&RHS, 4510 unsigned Depth) { 4511 LHS = CmpLHS; 4512 RHS = CmpRHS; 4513 4514 // Signed zero may return inconsistent results between implementations. 4515 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4516 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4517 // Therefore, we behave conservatively and only proceed if at least one of the 4518 // operands is known to not be zero or if we don't care about signed zero. 4519 switch (Pred) { 4520 default: break; 4521 // FIXME: Include OGT/OLT/UGT/ULT. 4522 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4523 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4524 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4525 !isKnownNonZero(CmpRHS)) 4526 return {SPF_UNKNOWN, SPNB_NA, false}; 4527 } 4528 4529 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4530 bool Ordered = false; 4531 4532 // When given one NaN and one non-NaN input: 4533 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4534 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4535 // ordered comparison fails), which could be NaN or non-NaN. 4536 // so here we discover exactly what NaN behavior is required/accepted. 4537 if (CmpInst::isFPPredicate(Pred)) { 4538 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4539 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4540 4541 if (LHSSafe && RHSSafe) { 4542 // Both operands are known non-NaN. 4543 NaNBehavior = SPNB_RETURNS_ANY; 4544 } else if (CmpInst::isOrdered(Pred)) { 4545 // An ordered comparison will return false when given a NaN, so it 4546 // returns the RHS. 4547 Ordered = true; 4548 if (LHSSafe) 4549 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4550 NaNBehavior = SPNB_RETURNS_NAN; 4551 else if (RHSSafe) 4552 NaNBehavior = SPNB_RETURNS_OTHER; 4553 else 4554 // Completely unsafe. 4555 return {SPF_UNKNOWN, SPNB_NA, false}; 4556 } else { 4557 Ordered = false; 4558 // An unordered comparison will return true when given a NaN, so it 4559 // returns the LHS. 4560 if (LHSSafe) 4561 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4562 NaNBehavior = SPNB_RETURNS_OTHER; 4563 else if (RHSSafe) 4564 NaNBehavior = SPNB_RETURNS_NAN; 4565 else 4566 // Completely unsafe. 4567 return {SPF_UNKNOWN, SPNB_NA, false}; 4568 } 4569 } 4570 4571 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4572 std::swap(CmpLHS, CmpRHS); 4573 Pred = CmpInst::getSwappedPredicate(Pred); 4574 if (NaNBehavior == SPNB_RETURNS_NAN) 4575 NaNBehavior = SPNB_RETURNS_OTHER; 4576 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4577 NaNBehavior = SPNB_RETURNS_NAN; 4578 Ordered = !Ordered; 4579 } 4580 4581 // ([if]cmp X, Y) ? X : Y 4582 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4583 switch (Pred) { 4584 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4585 case ICmpInst::ICMP_UGT: 4586 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4587 case ICmpInst::ICMP_SGT: 4588 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4589 case ICmpInst::ICMP_ULT: 4590 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4591 case ICmpInst::ICMP_SLT: 4592 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4593 case FCmpInst::FCMP_UGT: 4594 case FCmpInst::FCMP_UGE: 4595 case FCmpInst::FCMP_OGT: 4596 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4597 case FCmpInst::FCMP_ULT: 4598 case FCmpInst::FCMP_ULE: 4599 case FCmpInst::FCMP_OLT: 4600 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4601 } 4602 } 4603 4604 const APInt *C1; 4605 if (match(CmpRHS, m_APInt(C1))) { 4606 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4607 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4608 // Set RHS to the negate operand. LHS was assigned to CmpLHS earlier. 4609 RHS = (CmpLHS == TrueVal) ? FalseVal : TrueVal; 4610 4611 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4612 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4613 if (Pred == ICmpInst::ICMP_SGT && 4614 (C1->isNullValue() || C1->isAllOnesValue())) { 4615 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4616 } 4617 4618 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4619 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4620 if (Pred == ICmpInst::ICMP_SLT && 4621 (C1->isNullValue() || C1->isOneValue())) { 4622 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4623 } 4624 } 4625 } 4626 4627 if (CmpInst::isIntPredicate(Pred)) 4628 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4629 4630 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4631 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4632 // semantics than minNum. Be conservative in such case. 4633 if (NaNBehavior != SPNB_RETURNS_ANY || 4634 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4635 !isKnownNonZero(CmpRHS))) 4636 return {SPF_UNKNOWN, SPNB_NA, false}; 4637 4638 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4639 } 4640 4641 /// Helps to match a select pattern in case of a type mismatch. 4642 /// 4643 /// The function processes the case when type of true and false values of a 4644 /// select instruction differs from type of the cmp instruction operands because 4645 /// of a cast instruction. The function checks if it is legal to move the cast 4646 /// operation after "select". If yes, it returns the new second value of 4647 /// "select" (with the assumption that cast is moved): 4648 /// 1. As operand of cast instruction when both values of "select" are same cast 4649 /// instructions. 4650 /// 2. As restored constant (by applying reverse cast operation) when the first 4651 /// value of the "select" is a cast operation and the second value is a 4652 /// constant. 4653 /// NOTE: We return only the new second value because the first value could be 4654 /// accessed as operand of cast instruction. 4655 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4656 Instruction::CastOps *CastOp) { 4657 auto *Cast1 = dyn_cast<CastInst>(V1); 4658 if (!Cast1) 4659 return nullptr; 4660 4661 *CastOp = Cast1->getOpcode(); 4662 Type *SrcTy = Cast1->getSrcTy(); 4663 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4664 // If V1 and V2 are both the same cast from the same type, look through V1. 4665 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4666 return Cast2->getOperand(0); 4667 return nullptr; 4668 } 4669 4670 auto *C = dyn_cast<Constant>(V2); 4671 if (!C) 4672 return nullptr; 4673 4674 Constant *CastedTo = nullptr; 4675 switch (*CastOp) { 4676 case Instruction::ZExt: 4677 if (CmpI->isUnsigned()) 4678 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4679 break; 4680 case Instruction::SExt: 4681 if (CmpI->isSigned()) 4682 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4683 break; 4684 case Instruction::Trunc: 4685 Constant *CmpConst; 4686 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4687 CmpConst->getType() == SrcTy) { 4688 // Here we have the following case: 4689 // 4690 // %cond = cmp iN %x, CmpConst 4691 // %tr = trunc iN %x to iK 4692 // %narrowsel = select i1 %cond, iK %t, iK C 4693 // 4694 // We can always move trunc after select operation: 4695 // 4696 // %cond = cmp iN %x, CmpConst 4697 // %widesel = select i1 %cond, iN %x, iN CmpConst 4698 // %tr = trunc iN %widesel to iK 4699 // 4700 // Note that C could be extended in any way because we don't care about 4701 // upper bits after truncation. It can't be abs pattern, because it would 4702 // look like: 4703 // 4704 // select i1 %cond, x, -x. 4705 // 4706 // So only min/max pattern could be matched. Such match requires widened C 4707 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4708 // CmpConst == C is checked below. 4709 CastedTo = CmpConst; 4710 } else { 4711 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4712 } 4713 break; 4714 case Instruction::FPTrunc: 4715 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4716 break; 4717 case Instruction::FPExt: 4718 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4719 break; 4720 case Instruction::FPToUI: 4721 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4722 break; 4723 case Instruction::FPToSI: 4724 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4725 break; 4726 case Instruction::UIToFP: 4727 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4728 break; 4729 case Instruction::SIToFP: 4730 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4731 break; 4732 default: 4733 break; 4734 } 4735 4736 if (!CastedTo) 4737 return nullptr; 4738 4739 // Make sure the cast doesn't lose any information. 4740 Constant *CastedBack = 4741 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4742 if (CastedBack != C) 4743 return nullptr; 4744 4745 return CastedTo; 4746 } 4747 4748 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4749 Instruction::CastOps *CastOp, 4750 unsigned Depth) { 4751 if (Depth >= MaxDepth) 4752 return {SPF_UNKNOWN, SPNB_NA, false}; 4753 4754 SelectInst *SI = dyn_cast<SelectInst>(V); 4755 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4756 4757 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4758 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4759 4760 CmpInst::Predicate Pred = CmpI->getPredicate(); 4761 Value *CmpLHS = CmpI->getOperand(0); 4762 Value *CmpRHS = CmpI->getOperand(1); 4763 Value *TrueVal = SI->getTrueValue(); 4764 Value *FalseVal = SI->getFalseValue(); 4765 FastMathFlags FMF; 4766 if (isa<FPMathOperator>(CmpI)) 4767 FMF = CmpI->getFastMathFlags(); 4768 4769 // Bail out early. 4770 if (CmpI->isEquality()) 4771 return {SPF_UNKNOWN, SPNB_NA, false}; 4772 4773 // Deal with type mismatches. 4774 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4775 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4776 // If this is a potential fmin/fmax with a cast to integer, then ignore 4777 // -0.0 because there is no corresponding integer value. 4778 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4779 FMF.setNoSignedZeros(); 4780 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4781 cast<CastInst>(TrueVal)->getOperand(0), C, 4782 LHS, RHS, Depth); 4783 } 4784 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4785 // If this is a potential fmin/fmax with a cast to integer, then ignore 4786 // -0.0 because there is no corresponding integer value. 4787 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4788 FMF.setNoSignedZeros(); 4789 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4790 C, cast<CastInst>(FalseVal)->getOperand(0), 4791 LHS, RHS, Depth); 4792 } 4793 } 4794 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4795 LHS, RHS, Depth); 4796 } 4797 4798 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 4799 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 4800 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 4801 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 4802 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 4803 if (SPF == SPF_FMINNUM) 4804 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 4805 if (SPF == SPF_FMAXNUM) 4806 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 4807 llvm_unreachable("unhandled!"); 4808 } 4809 4810 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 4811 if (SPF == SPF_SMIN) return SPF_SMAX; 4812 if (SPF == SPF_UMIN) return SPF_UMAX; 4813 if (SPF == SPF_SMAX) return SPF_SMIN; 4814 if (SPF == SPF_UMAX) return SPF_UMIN; 4815 llvm_unreachable("unhandled!"); 4816 } 4817 4818 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 4819 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 4820 } 4821 4822 /// Return true if "icmp Pred LHS RHS" is always true. 4823 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4824 const Value *RHS, const DataLayout &DL, 4825 unsigned Depth) { 4826 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4827 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4828 return true; 4829 4830 switch (Pred) { 4831 default: 4832 return false; 4833 4834 case CmpInst::ICMP_SLE: { 4835 const APInt *C; 4836 4837 // LHS s<= LHS +_{nsw} C if C >= 0 4838 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4839 return !C->isNegative(); 4840 return false; 4841 } 4842 4843 case CmpInst::ICMP_ULE: { 4844 const APInt *C; 4845 4846 // LHS u<= LHS +_{nuw} C for any C 4847 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4848 return true; 4849 4850 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4851 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4852 const Value *&X, 4853 const APInt *&CA, const APInt *&CB) { 4854 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4855 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4856 return true; 4857 4858 // If X & C == 0 then (X | C) == X +_{nuw} C 4859 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4860 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4861 KnownBits Known(CA->getBitWidth()); 4862 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4863 /*CxtI*/ nullptr, /*DT*/ nullptr); 4864 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4865 return true; 4866 } 4867 4868 return false; 4869 }; 4870 4871 const Value *X; 4872 const APInt *CLHS, *CRHS; 4873 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4874 return CLHS->ule(*CRHS); 4875 4876 return false; 4877 } 4878 } 4879 } 4880 4881 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4882 /// ALHS ARHS" is true. Otherwise, return None. 4883 static Optional<bool> 4884 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4885 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4886 const DataLayout &DL, unsigned Depth) { 4887 switch (Pred) { 4888 default: 4889 return None; 4890 4891 case CmpInst::ICMP_SLT: 4892 case CmpInst::ICMP_SLE: 4893 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4894 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4895 return true; 4896 return None; 4897 4898 case CmpInst::ICMP_ULT: 4899 case CmpInst::ICMP_ULE: 4900 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4901 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4902 return true; 4903 return None; 4904 } 4905 } 4906 4907 /// Return true if the operands of the two compares match. IsSwappedOps is true 4908 /// when the operands match, but are swapped. 4909 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4910 const Value *BLHS, const Value *BRHS, 4911 bool &IsSwappedOps) { 4912 4913 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4914 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4915 return IsMatchingOps || IsSwappedOps; 4916 } 4917 4918 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4919 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4920 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4921 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4922 const Value *ALHS, 4923 const Value *ARHS, 4924 CmpInst::Predicate BPred, 4925 const Value *BLHS, 4926 const Value *BRHS, 4927 bool IsSwappedOps) { 4928 // Canonicalize the operands so they're matching. 4929 if (IsSwappedOps) { 4930 std::swap(BLHS, BRHS); 4931 BPred = ICmpInst::getSwappedPredicate(BPred); 4932 } 4933 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4934 return true; 4935 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4936 return false; 4937 4938 return None; 4939 } 4940 4941 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4942 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4943 /// C2" is false. Otherwise, return None if we can't infer anything. 4944 static Optional<bool> 4945 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4946 const ConstantInt *C1, 4947 CmpInst::Predicate BPred, 4948 const Value *BLHS, const ConstantInt *C2) { 4949 assert(ALHS == BLHS && "LHS operands must match."); 4950 ConstantRange DomCR = 4951 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4952 ConstantRange CR = 4953 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4954 ConstantRange Intersection = DomCR.intersectWith(CR); 4955 ConstantRange Difference = DomCR.difference(CR); 4956 if (Intersection.isEmptySet()) 4957 return false; 4958 if (Difference.isEmptySet()) 4959 return true; 4960 return None; 4961 } 4962 4963 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4964 /// false. Otherwise, return None if we can't infer anything. 4965 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4966 const ICmpInst *RHS, 4967 const DataLayout &DL, bool LHSIsTrue, 4968 unsigned Depth) { 4969 Value *ALHS = LHS->getOperand(0); 4970 Value *ARHS = LHS->getOperand(1); 4971 // The rest of the logic assumes the LHS condition is true. If that's not the 4972 // case, invert the predicate to make it so. 4973 ICmpInst::Predicate APred = 4974 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4975 4976 Value *BLHS = RHS->getOperand(0); 4977 Value *BRHS = RHS->getOperand(1); 4978 ICmpInst::Predicate BPred = RHS->getPredicate(); 4979 4980 // Can we infer anything when the two compares have matching operands? 4981 bool IsSwappedOps; 4982 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4983 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4984 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4985 return Implication; 4986 // No amount of additional analysis will infer the second condition, so 4987 // early exit. 4988 return None; 4989 } 4990 4991 // Can we infer anything when the LHS operands match and the RHS operands are 4992 // constants (not necessarily matching)? 4993 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4994 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4995 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4996 cast<ConstantInt>(BRHS))) 4997 return Implication; 4998 // No amount of additional analysis will infer the second condition, so 4999 // early exit. 5000 return None; 5001 } 5002 5003 if (APred == BPred) 5004 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5005 return None; 5006 } 5007 5008 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5009 /// false. Otherwise, return None if we can't infer anything. We expect the 5010 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5011 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5012 const ICmpInst *RHS, 5013 const DataLayout &DL, bool LHSIsTrue, 5014 unsigned Depth) { 5015 // The LHS must be an 'or' or an 'and' instruction. 5016 assert((LHS->getOpcode() == Instruction::And || 5017 LHS->getOpcode() == Instruction::Or) && 5018 "Expected LHS to be 'and' or 'or'."); 5019 5020 assert(Depth <= MaxDepth && "Hit recursion limit"); 5021 5022 // If the result of an 'or' is false, then we know both legs of the 'or' are 5023 // false. Similarly, if the result of an 'and' is true, then we know both 5024 // legs of the 'and' are true. 5025 Value *ALHS, *ARHS; 5026 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5027 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5028 // FIXME: Make this non-recursion. 5029 if (Optional<bool> Implication = 5030 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5031 return Implication; 5032 if (Optional<bool> Implication = 5033 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5034 return Implication; 5035 return None; 5036 } 5037 return None; 5038 } 5039 5040 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5041 const DataLayout &DL, bool LHSIsTrue, 5042 unsigned Depth) { 5043 // Bail out when we hit the limit. 5044 if (Depth == MaxDepth) 5045 return None; 5046 5047 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5048 // example. 5049 if (LHS->getType() != RHS->getType()) 5050 return None; 5051 5052 Type *OpTy = LHS->getType(); 5053 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5054 5055 // LHS ==> RHS by definition 5056 if (LHS == RHS) 5057 return LHSIsTrue; 5058 5059 // FIXME: Extending the code below to handle vectors. 5060 if (OpTy->isVectorTy()) 5061 return None; 5062 5063 assert(OpTy->isIntegerTy(1) && "implied by above"); 5064 5065 // Both LHS and RHS are icmps. 5066 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5067 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5068 if (LHSCmp && RHSCmp) 5069 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5070 5071 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5072 // an icmp. FIXME: Add support for and/or on the RHS. 5073 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5074 if (LHSBO && RHSCmp) { 5075 if ((LHSBO->getOpcode() == Instruction::And || 5076 LHSBO->getOpcode() == Instruction::Or)) 5077 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5078 } 5079 return None; 5080 } 5081