1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known and on return 982 /// contains the known bit of the shift value source. KF is an 983 /// operator-specific function that, given the known-bits and a shift amount, 984 /// compute the implied known-bits of the shift operator's result respectively 985 /// for that shift amount. The results from calling KF are conservatively 986 /// combined for all permitted shift amounts. 987 static void computeKnownBitsFromShiftOperator( 988 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 989 KnownBits &Known2, unsigned Depth, const Query &Q, 990 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 991 unsigned BitWidth = Known.getBitWidth(); 992 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 993 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 994 995 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 996 // BitWidth > 64 and any upper bits are known, we'll end up returning the 997 // limit value (which implies all bits are known). 998 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 999 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1000 bool ShiftAmtIsConstant = Known.isConstant(); 1001 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1002 1003 if (ShiftAmtIsConstant) { 1004 Known = KF(Known2, Known); 1005 1006 // If the known bits conflict, this must be an overflowing left shift, so 1007 // the shift result is poison. We can return anything we want. Choose 0 for 1008 // the best folding opportunity. 1009 if (Known.hasConflict()) 1010 Known.setAllZero(); 1011 1012 return; 1013 } 1014 1015 // If the shift amount could be greater than or equal to the bit-width of the 1016 // LHS, the value could be poison, but bail out because the check below is 1017 // expensive. 1018 // TODO: Should we just carry on? 1019 if (MaxShiftAmtIsOutOfRange) { 1020 Known.resetAll(); 1021 return; 1022 } 1023 1024 // It would be more-clearly correct to use the two temporaries for this 1025 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1026 Known.resetAll(); 1027 1028 // If we know the shifter operand is nonzero, we can sometimes infer more 1029 // known bits. However this is expensive to compute, so be lazy about it and 1030 // only compute it when absolutely necessary. 1031 Optional<bool> ShifterOperandIsNonZero; 1032 1033 // Early exit if we can't constrain any well-defined shift amount. 1034 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1035 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1036 ShifterOperandIsNonZero = 1037 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1038 if (!*ShifterOperandIsNonZero) 1039 return; 1040 } 1041 1042 Known.Zero.setAllBits(); 1043 Known.One.setAllBits(); 1044 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1045 // Combine the shifted known input bits only for those shift amounts 1046 // compatible with its known constraints. 1047 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1048 continue; 1049 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1050 continue; 1051 // If we know the shifter is nonzero, we may be able to infer more known 1052 // bits. This check is sunk down as far as possible to avoid the expensive 1053 // call to isKnownNonZero if the cheaper checks above fail. 1054 if (ShiftAmt == 0) { 1055 if (!ShifterOperandIsNonZero.hasValue()) 1056 ShifterOperandIsNonZero = 1057 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1058 if (*ShifterOperandIsNonZero) 1059 continue; 1060 } 1061 1062 Known = KnownBits::commonBits( 1063 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1064 } 1065 1066 // If the known bits conflict, the result is poison. Return a 0 and hope the 1067 // caller can further optimize that. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 } 1071 1072 static void computeKnownBitsFromOperator(const Operator *I, 1073 const APInt &DemandedElts, 1074 KnownBits &Known, unsigned Depth, 1075 const Query &Q) { 1076 unsigned BitWidth = Known.getBitWidth(); 1077 1078 KnownBits Known2(BitWidth); 1079 switch (I->getOpcode()) { 1080 default: break; 1081 case Instruction::Load: 1082 if (MDNode *MD = 1083 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1084 computeKnownBitsFromRangeMetadata(*MD, Known); 1085 break; 1086 case Instruction::And: { 1087 // If either the LHS or the RHS are Zero, the result is zero. 1088 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1089 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1090 1091 Known &= Known2; 1092 1093 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1094 // here we handle the more general case of adding any odd number by 1095 // matching the form add(x, add(x, y)) where y is odd. 1096 // TODO: This could be generalized to clearing any bit set in y where the 1097 // following bit is known to be unset in y. 1098 Value *X = nullptr, *Y = nullptr; 1099 if (!Known.Zero[0] && !Known.One[0] && 1100 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1101 Known2.resetAll(); 1102 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1103 if (Known2.countMinTrailingOnes() > 0) 1104 Known.Zero.setBit(0); 1105 } 1106 break; 1107 } 1108 case Instruction::Or: 1109 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1111 1112 Known |= Known2; 1113 break; 1114 case Instruction::Xor: 1115 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1116 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1117 1118 Known ^= Known2; 1119 break; 1120 case Instruction::Mul: { 1121 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1122 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1123 Known, Known2, Depth, Q); 1124 break; 1125 } 1126 case Instruction::UDiv: { 1127 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1128 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1129 Known = KnownBits::udiv(Known, Known2); 1130 break; 1131 } 1132 case Instruction::Select: { 1133 const Value *LHS = nullptr, *RHS = nullptr; 1134 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1135 if (SelectPatternResult::isMinOrMax(SPF)) { 1136 computeKnownBits(RHS, Known, Depth + 1, Q); 1137 computeKnownBits(LHS, Known2, Depth + 1, Q); 1138 switch (SPF) { 1139 default: 1140 llvm_unreachable("Unhandled select pattern flavor!"); 1141 case SPF_SMAX: 1142 Known = KnownBits::smax(Known, Known2); 1143 break; 1144 case SPF_SMIN: 1145 Known = KnownBits::smin(Known, Known2); 1146 break; 1147 case SPF_UMAX: 1148 Known = KnownBits::umax(Known, Known2); 1149 break; 1150 case SPF_UMIN: 1151 Known = KnownBits::umin(Known, Known2); 1152 break; 1153 } 1154 break; 1155 } 1156 1157 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1158 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1159 1160 // Only known if known in both the LHS and RHS. 1161 Known = KnownBits::commonBits(Known, Known2); 1162 1163 if (SPF == SPF_ABS) { 1164 // RHS from matchSelectPattern returns the negation part of abs pattern. 1165 // If the negate has an NSW flag we can assume the sign bit of the result 1166 // will be 0 because that makes abs(INT_MIN) undefined. 1167 if (match(RHS, m_Neg(m_Specific(LHS))) && 1168 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1169 Known.Zero.setSignBit(); 1170 } 1171 1172 break; 1173 } 1174 case Instruction::FPTrunc: 1175 case Instruction::FPExt: 1176 case Instruction::FPToUI: 1177 case Instruction::FPToSI: 1178 case Instruction::SIToFP: 1179 case Instruction::UIToFP: 1180 break; // Can't work with floating point. 1181 case Instruction::PtrToInt: 1182 case Instruction::IntToPtr: 1183 // Fall through and handle them the same as zext/trunc. 1184 LLVM_FALLTHROUGH; 1185 case Instruction::ZExt: 1186 case Instruction::Trunc: { 1187 Type *SrcTy = I->getOperand(0)->getType(); 1188 1189 unsigned SrcBitWidth; 1190 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1191 // which fall through here. 1192 Type *ScalarTy = SrcTy->getScalarType(); 1193 SrcBitWidth = ScalarTy->isPointerTy() ? 1194 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1195 Q.DL.getTypeSizeInBits(ScalarTy); 1196 1197 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1198 Known = Known.anyextOrTrunc(SrcBitWidth); 1199 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1200 Known = Known.zextOrTrunc(BitWidth); 1201 break; 1202 } 1203 case Instruction::BitCast: { 1204 Type *SrcTy = I->getOperand(0)->getType(); 1205 if (SrcTy->isIntOrPtrTy() && 1206 // TODO: For now, not handling conversions like: 1207 // (bitcast i64 %x to <2 x i32>) 1208 !I->getType()->isVectorTy()) { 1209 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1210 break; 1211 } 1212 break; 1213 } 1214 case Instruction::SExt: { 1215 // Compute the bits in the result that are not present in the input. 1216 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1217 1218 Known = Known.trunc(SrcBitWidth); 1219 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1220 // If the sign bit of the input is known set or clear, then we know the 1221 // top bits of the result. 1222 Known = Known.sext(BitWidth); 1223 break; 1224 } 1225 case Instruction::Shl: { 1226 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1227 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1228 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1229 // If this shift has "nsw" keyword, then the result is either a poison 1230 // value or has the same sign bit as the first operand. 1231 if (NSW) { 1232 if (KnownVal.Zero.isSignBitSet()) 1233 Result.Zero.setSignBit(); 1234 if (KnownVal.One.isSignBitSet()) 1235 Result.One.setSignBit(); 1236 } 1237 return Result; 1238 }; 1239 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1240 KF); 1241 break; 1242 } 1243 case Instruction::LShr: { 1244 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1245 return KnownBits::lshr(KnownVal, KnownAmt); 1246 }; 1247 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1248 KF); 1249 break; 1250 } 1251 case Instruction::AShr: { 1252 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1253 return KnownBits::ashr(KnownVal, KnownAmt); 1254 }; 1255 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1256 KF); 1257 break; 1258 } 1259 case Instruction::Sub: { 1260 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1261 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1262 DemandedElts, Known, Known2, Depth, Q); 1263 break; 1264 } 1265 case Instruction::Add: { 1266 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1267 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1268 DemandedElts, Known, Known2, Depth, Q); 1269 break; 1270 } 1271 case Instruction::SRem: 1272 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1273 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1274 Known = KnownBits::srem(Known, Known2); 1275 break; 1276 1277 case Instruction::URem: 1278 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1279 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1280 Known = KnownBits::urem(Known, Known2); 1281 break; 1282 case Instruction::Alloca: 1283 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1284 break; 1285 case Instruction::GetElementPtr: { 1286 // Analyze all of the subscripts of this getelementptr instruction 1287 // to determine if we can prove known low zero bits. 1288 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1289 // Accumulate the constant indices in a separate variable 1290 // to minimize the number of calls to computeForAddSub. 1291 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1292 1293 gep_type_iterator GTI = gep_type_begin(I); 1294 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1295 // TrailZ can only become smaller, short-circuit if we hit zero. 1296 if (Known.isUnknown()) 1297 break; 1298 1299 Value *Index = I->getOperand(i); 1300 1301 // Handle case when index is zero. 1302 Constant *CIndex = dyn_cast<Constant>(Index); 1303 if (CIndex && CIndex->isZeroValue()) 1304 continue; 1305 1306 if (StructType *STy = GTI.getStructTypeOrNull()) { 1307 // Handle struct member offset arithmetic. 1308 1309 assert(CIndex && 1310 "Access to structure field must be known at compile time"); 1311 1312 if (CIndex->getType()->isVectorTy()) 1313 Index = CIndex->getSplatValue(); 1314 1315 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1316 const StructLayout *SL = Q.DL.getStructLayout(STy); 1317 uint64_t Offset = SL->getElementOffset(Idx); 1318 AccConstIndices += Offset; 1319 continue; 1320 } 1321 1322 // Handle array index arithmetic. 1323 Type *IndexedTy = GTI.getIndexedType(); 1324 if (!IndexedTy->isSized()) { 1325 Known.resetAll(); 1326 break; 1327 } 1328 1329 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1330 KnownBits IndexBits(IndexBitWidth); 1331 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1332 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1333 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1334 KnownBits ScalingFactor(IndexBitWidth); 1335 // Multiply by current sizeof type. 1336 // &A[i] == A + i * sizeof(*A[i]). 1337 if (IndexTypeSize.isScalable()) { 1338 // For scalable types the only thing we know about sizeof is 1339 // that this is a multiple of the minimum size. 1340 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1341 } else if (IndexBits.isConstant()) { 1342 APInt IndexConst = IndexBits.getConstant(); 1343 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1344 IndexConst *= ScalingFactor; 1345 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1346 continue; 1347 } else { 1348 ScalingFactor.Zero = ~TypeSizeInBytes; 1349 ScalingFactor.One = TypeSizeInBytes; 1350 } 1351 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1352 1353 // If the offsets have a different width from the pointer, according 1354 // to the language reference we need to sign-extend or truncate them 1355 // to the width of the pointer. 1356 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1357 1358 // Note that inbounds does *not* guarantee nsw for the addition, as only 1359 // the offset is signed, while the base address is unsigned. 1360 Known = KnownBits::computeForAddSub( 1361 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1362 } 1363 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1364 KnownBits Index(BitWidth); 1365 Index.Zero = ~AccConstIndices; 1366 Index.One = AccConstIndices; 1367 Known = KnownBits::computeForAddSub( 1368 /*Add=*/true, /*NSW=*/false, Known, Index); 1369 } 1370 break; 1371 } 1372 case Instruction::PHI: { 1373 const PHINode *P = cast<PHINode>(I); 1374 // Handle the case of a simple two-predecessor recurrence PHI. 1375 // There's a lot more that could theoretically be done here, but 1376 // this is sufficient to catch some interesting cases. 1377 if (P->getNumIncomingValues() == 2) { 1378 for (unsigned i = 0; i != 2; ++i) { 1379 Value *L = P->getIncomingValue(i); 1380 Value *R = P->getIncomingValue(!i); 1381 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1382 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1383 Operator *LU = dyn_cast<Operator>(L); 1384 if (!LU) 1385 continue; 1386 unsigned Opcode = LU->getOpcode(); 1387 // Check for operations that have the property that if 1388 // both their operands have low zero bits, the result 1389 // will have low zero bits. 1390 if (Opcode == Instruction::Add || 1391 Opcode == Instruction::Sub || 1392 Opcode == Instruction::And || 1393 Opcode == Instruction::Or || 1394 Opcode == Instruction::Mul) { 1395 Value *LL = LU->getOperand(0); 1396 Value *LR = LU->getOperand(1); 1397 // Find a recurrence. 1398 if (LL == I) 1399 L = LR; 1400 else if (LR == I) 1401 L = LL; 1402 else 1403 continue; // Check for recurrence with L and R flipped. 1404 1405 // Change the context instruction to the "edge" that flows into the 1406 // phi. This is important because that is where the value is actually 1407 // "evaluated" even though it is used later somewhere else. (see also 1408 // D69571). 1409 Query RecQ = Q; 1410 1411 // Ok, we have a PHI of the form L op= R. Check for low 1412 // zero bits. 1413 RecQ.CxtI = RInst; 1414 computeKnownBits(R, Known2, Depth + 1, RecQ); 1415 1416 // We need to take the minimum number of known bits 1417 KnownBits Known3(BitWidth); 1418 RecQ.CxtI = LInst; 1419 computeKnownBits(L, Known3, Depth + 1, RecQ); 1420 1421 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1422 Known3.countMinTrailingZeros())); 1423 1424 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1425 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1426 // If initial value of recurrence is nonnegative, and we are adding 1427 // a nonnegative number with nsw, the result can only be nonnegative 1428 // or poison value regardless of the number of times we execute the 1429 // add in phi recurrence. If initial value is negative and we are 1430 // adding a negative number with nsw, the result can only be 1431 // negative or poison value. Similar arguments apply to sub and mul. 1432 // 1433 // (add non-negative, non-negative) --> non-negative 1434 // (add negative, negative) --> negative 1435 if (Opcode == Instruction::Add) { 1436 if (Known2.isNonNegative() && Known3.isNonNegative()) 1437 Known.makeNonNegative(); 1438 else if (Known2.isNegative() && Known3.isNegative()) 1439 Known.makeNegative(); 1440 } 1441 1442 // (sub nsw non-negative, negative) --> non-negative 1443 // (sub nsw negative, non-negative) --> negative 1444 else if (Opcode == Instruction::Sub && LL == I) { 1445 if (Known2.isNonNegative() && Known3.isNegative()) 1446 Known.makeNonNegative(); 1447 else if (Known2.isNegative() && Known3.isNonNegative()) 1448 Known.makeNegative(); 1449 } 1450 1451 // (mul nsw non-negative, non-negative) --> non-negative 1452 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1453 Known3.isNonNegative()) 1454 Known.makeNonNegative(); 1455 } 1456 1457 break; 1458 } 1459 } 1460 } 1461 1462 // Unreachable blocks may have zero-operand PHI nodes. 1463 if (P->getNumIncomingValues() == 0) 1464 break; 1465 1466 // Otherwise take the unions of the known bit sets of the operands, 1467 // taking conservative care to avoid excessive recursion. 1468 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1469 // Skip if every incoming value references to ourself. 1470 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1471 break; 1472 1473 Known.Zero.setAllBits(); 1474 Known.One.setAllBits(); 1475 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1476 Value *IncValue = P->getIncomingValue(u); 1477 // Skip direct self references. 1478 if (IncValue == P) continue; 1479 1480 // Change the context instruction to the "edge" that flows into the 1481 // phi. This is important because that is where the value is actually 1482 // "evaluated" even though it is used later somewhere else. (see also 1483 // D69571). 1484 Query RecQ = Q; 1485 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1486 1487 Known2 = KnownBits(BitWidth); 1488 // Recurse, but cap the recursion to one level, because we don't 1489 // want to waste time spinning around in loops. 1490 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1491 Known = KnownBits::commonBits(Known, Known2); 1492 // If all bits have been ruled out, there's no need to check 1493 // more operands. 1494 if (Known.isUnknown()) 1495 break; 1496 } 1497 } 1498 break; 1499 } 1500 case Instruction::Call: 1501 case Instruction::Invoke: 1502 // If range metadata is attached to this call, set known bits from that, 1503 // and then intersect with known bits based on other properties of the 1504 // function. 1505 if (MDNode *MD = 1506 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1507 computeKnownBitsFromRangeMetadata(*MD, Known); 1508 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1509 computeKnownBits(RV, Known2, Depth + 1, Q); 1510 Known.Zero |= Known2.Zero; 1511 Known.One |= Known2.One; 1512 } 1513 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1514 switch (II->getIntrinsicID()) { 1515 default: break; 1516 case Intrinsic::abs: { 1517 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1518 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1519 Known = Known2.abs(IntMinIsPoison); 1520 break; 1521 } 1522 case Intrinsic::bitreverse: 1523 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1524 Known.Zero |= Known2.Zero.reverseBits(); 1525 Known.One |= Known2.One.reverseBits(); 1526 break; 1527 case Intrinsic::bswap: 1528 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1529 Known.Zero |= Known2.Zero.byteSwap(); 1530 Known.One |= Known2.One.byteSwap(); 1531 break; 1532 case Intrinsic::ctlz: { 1533 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1534 // If we have a known 1, its position is our upper bound. 1535 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1536 // If this call is undefined for 0, the result will be less than 2^n. 1537 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1538 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1539 unsigned LowBits = Log2_32(PossibleLZ)+1; 1540 Known.Zero.setBitsFrom(LowBits); 1541 break; 1542 } 1543 case Intrinsic::cttz: { 1544 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1545 // If we have a known 1, its position is our upper bound. 1546 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1547 // If this call is undefined for 0, the result will be less than 2^n. 1548 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1549 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1550 unsigned LowBits = Log2_32(PossibleTZ)+1; 1551 Known.Zero.setBitsFrom(LowBits); 1552 break; 1553 } 1554 case Intrinsic::ctpop: { 1555 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1556 // We can bound the space the count needs. Also, bits known to be zero 1557 // can't contribute to the population. 1558 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1559 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1560 Known.Zero.setBitsFrom(LowBits); 1561 // TODO: we could bound KnownOne using the lower bound on the number 1562 // of bits which might be set provided by popcnt KnownOne2. 1563 break; 1564 } 1565 case Intrinsic::fshr: 1566 case Intrinsic::fshl: { 1567 const APInt *SA; 1568 if (!match(I->getOperand(2), m_APInt(SA))) 1569 break; 1570 1571 // Normalize to funnel shift left. 1572 uint64_t ShiftAmt = SA->urem(BitWidth); 1573 if (II->getIntrinsicID() == Intrinsic::fshr) 1574 ShiftAmt = BitWidth - ShiftAmt; 1575 1576 KnownBits Known3(BitWidth); 1577 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1578 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1579 1580 Known.Zero = 1581 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1582 Known.One = 1583 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1584 break; 1585 } 1586 case Intrinsic::uadd_sat: 1587 case Intrinsic::usub_sat: { 1588 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1589 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1590 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1591 1592 // Add: Leading ones of either operand are preserved. 1593 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1594 // as leading zeros in the result. 1595 unsigned LeadingKnown; 1596 if (IsAdd) 1597 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1598 Known2.countMinLeadingOnes()); 1599 else 1600 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1601 Known2.countMinLeadingOnes()); 1602 1603 Known = KnownBits::computeForAddSub( 1604 IsAdd, /* NSW */ false, Known, Known2); 1605 1606 // We select between the operation result and all-ones/zero 1607 // respectively, so we can preserve known ones/zeros. 1608 if (IsAdd) { 1609 Known.One.setHighBits(LeadingKnown); 1610 Known.Zero.clearAllBits(); 1611 } else { 1612 Known.Zero.setHighBits(LeadingKnown); 1613 Known.One.clearAllBits(); 1614 } 1615 break; 1616 } 1617 case Intrinsic::umin: 1618 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1619 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1620 Known = KnownBits::umin(Known, Known2); 1621 break; 1622 case Intrinsic::umax: 1623 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1624 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1625 Known = KnownBits::umax(Known, Known2); 1626 break; 1627 case Intrinsic::smin: 1628 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1629 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1630 Known = KnownBits::smin(Known, Known2); 1631 break; 1632 case Intrinsic::smax: 1633 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1634 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1635 Known = KnownBits::smax(Known, Known2); 1636 break; 1637 case Intrinsic::x86_sse42_crc32_64_64: 1638 Known.Zero.setBitsFrom(32); 1639 break; 1640 } 1641 } 1642 break; 1643 case Instruction::ShuffleVector: { 1644 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1645 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1646 if (!Shuf) { 1647 Known.resetAll(); 1648 return; 1649 } 1650 // For undef elements, we don't know anything about the common state of 1651 // the shuffle result. 1652 APInt DemandedLHS, DemandedRHS; 1653 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1654 Known.resetAll(); 1655 return; 1656 } 1657 Known.One.setAllBits(); 1658 Known.Zero.setAllBits(); 1659 if (!!DemandedLHS) { 1660 const Value *LHS = Shuf->getOperand(0); 1661 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1662 // If we don't know any bits, early out. 1663 if (Known.isUnknown()) 1664 break; 1665 } 1666 if (!!DemandedRHS) { 1667 const Value *RHS = Shuf->getOperand(1); 1668 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1669 Known = KnownBits::commonBits(Known, Known2); 1670 } 1671 break; 1672 } 1673 case Instruction::InsertElement: { 1674 const Value *Vec = I->getOperand(0); 1675 const Value *Elt = I->getOperand(1); 1676 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1677 // Early out if the index is non-constant or out-of-range. 1678 unsigned NumElts = DemandedElts.getBitWidth(); 1679 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1680 Known.resetAll(); 1681 return; 1682 } 1683 Known.One.setAllBits(); 1684 Known.Zero.setAllBits(); 1685 unsigned EltIdx = CIdx->getZExtValue(); 1686 // Do we demand the inserted element? 1687 if (DemandedElts[EltIdx]) { 1688 computeKnownBits(Elt, Known, Depth + 1, Q); 1689 // If we don't know any bits, early out. 1690 if (Known.isUnknown()) 1691 break; 1692 } 1693 // We don't need the base vector element that has been inserted. 1694 APInt DemandedVecElts = DemandedElts; 1695 DemandedVecElts.clearBit(EltIdx); 1696 if (!!DemandedVecElts) { 1697 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1698 Known = KnownBits::commonBits(Known, Known2); 1699 } 1700 break; 1701 } 1702 case Instruction::ExtractElement: { 1703 // Look through extract element. If the index is non-constant or 1704 // out-of-range demand all elements, otherwise just the extracted element. 1705 const Value *Vec = I->getOperand(0); 1706 const Value *Idx = I->getOperand(1); 1707 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1708 if (isa<ScalableVectorType>(Vec->getType())) { 1709 // FIXME: there's probably *something* we can do with scalable vectors 1710 Known.resetAll(); 1711 break; 1712 } 1713 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1714 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1715 if (CIdx && CIdx->getValue().ult(NumElts)) 1716 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1717 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1718 break; 1719 } 1720 case Instruction::ExtractValue: 1721 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1722 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1723 if (EVI->getNumIndices() != 1) break; 1724 if (EVI->getIndices()[0] == 0) { 1725 switch (II->getIntrinsicID()) { 1726 default: break; 1727 case Intrinsic::uadd_with_overflow: 1728 case Intrinsic::sadd_with_overflow: 1729 computeKnownBitsAddSub(true, II->getArgOperand(0), 1730 II->getArgOperand(1), false, DemandedElts, 1731 Known, Known2, Depth, Q); 1732 break; 1733 case Intrinsic::usub_with_overflow: 1734 case Intrinsic::ssub_with_overflow: 1735 computeKnownBitsAddSub(false, II->getArgOperand(0), 1736 II->getArgOperand(1), false, DemandedElts, 1737 Known, Known2, Depth, Q); 1738 break; 1739 case Intrinsic::umul_with_overflow: 1740 case Intrinsic::smul_with_overflow: 1741 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1742 DemandedElts, Known, Known2, Depth, Q); 1743 break; 1744 } 1745 } 1746 } 1747 break; 1748 case Instruction::Freeze: 1749 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1750 Depth + 1)) 1751 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1752 break; 1753 } 1754 } 1755 1756 /// Determine which bits of V are known to be either zero or one and return 1757 /// them. 1758 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1759 unsigned Depth, const Query &Q) { 1760 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1761 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1762 return Known; 1763 } 1764 1765 /// Determine which bits of V are known to be either zero or one and return 1766 /// them. 1767 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1768 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1769 computeKnownBits(V, Known, Depth, Q); 1770 return Known; 1771 } 1772 1773 /// Determine which bits of V are known to be either zero or one and return 1774 /// them in the Known bit set. 1775 /// 1776 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1777 /// we cannot optimize based on the assumption that it is zero without changing 1778 /// it to be an explicit zero. If we don't change it to zero, other code could 1779 /// optimized based on the contradictory assumption that it is non-zero. 1780 /// Because instcombine aggressively folds operations with undef args anyway, 1781 /// this won't lose us code quality. 1782 /// 1783 /// This function is defined on values with integer type, values with pointer 1784 /// type, and vectors of integers. In the case 1785 /// where V is a vector, known zero, and known one values are the 1786 /// same width as the vector element, and the bit is set only if it is true 1787 /// for all of the demanded elements in the vector specified by DemandedElts. 1788 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1789 KnownBits &Known, unsigned Depth, const Query &Q) { 1790 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1791 // No demanded elts or V is a scalable vector, better to assume we don't 1792 // know anything. 1793 Known.resetAll(); 1794 return; 1795 } 1796 1797 assert(V && "No Value?"); 1798 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1799 1800 #ifndef NDEBUG 1801 Type *Ty = V->getType(); 1802 unsigned BitWidth = Known.getBitWidth(); 1803 1804 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1805 "Not integer or pointer type!"); 1806 1807 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1808 assert( 1809 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1810 "DemandedElt width should equal the fixed vector number of elements"); 1811 } else { 1812 assert(DemandedElts == APInt(1, 1) && 1813 "DemandedElt width should be 1 for scalars"); 1814 } 1815 1816 Type *ScalarTy = Ty->getScalarType(); 1817 if (ScalarTy->isPointerTy()) { 1818 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1819 "V and Known should have same BitWidth"); 1820 } else { 1821 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1822 "V and Known should have same BitWidth"); 1823 } 1824 #endif 1825 1826 const APInt *C; 1827 if (match(V, m_APInt(C))) { 1828 // We know all of the bits for a scalar constant or a splat vector constant! 1829 Known.One = *C; 1830 Known.Zero = ~Known.One; 1831 return; 1832 } 1833 // Null and aggregate-zero are all-zeros. 1834 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1835 Known.setAllZero(); 1836 return; 1837 } 1838 // Handle a constant vector by taking the intersection of the known bits of 1839 // each element. 1840 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1841 // We know that CDV must be a vector of integers. Take the intersection of 1842 // each element. 1843 Known.Zero.setAllBits(); Known.One.setAllBits(); 1844 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1845 if (!DemandedElts[i]) 1846 continue; 1847 APInt Elt = CDV->getElementAsAPInt(i); 1848 Known.Zero &= ~Elt; 1849 Known.One &= Elt; 1850 } 1851 return; 1852 } 1853 1854 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1855 // We know that CV must be a vector of integers. Take the intersection of 1856 // each element. 1857 Known.Zero.setAllBits(); Known.One.setAllBits(); 1858 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1859 if (!DemandedElts[i]) 1860 continue; 1861 Constant *Element = CV->getAggregateElement(i); 1862 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1863 if (!ElementCI) { 1864 Known.resetAll(); 1865 return; 1866 } 1867 const APInt &Elt = ElementCI->getValue(); 1868 Known.Zero &= ~Elt; 1869 Known.One &= Elt; 1870 } 1871 return; 1872 } 1873 1874 // Start out not knowing anything. 1875 Known.resetAll(); 1876 1877 // We can't imply anything about undefs. 1878 if (isa<UndefValue>(V)) 1879 return; 1880 1881 // There's no point in looking through other users of ConstantData for 1882 // assumptions. Confirm that we've handled them all. 1883 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1884 1885 // All recursive calls that increase depth must come after this. 1886 if (Depth == MaxAnalysisRecursionDepth) 1887 return; 1888 1889 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1890 // the bits of its aliasee. 1891 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1892 if (!GA->isInterposable()) 1893 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1894 return; 1895 } 1896 1897 if (const Operator *I = dyn_cast<Operator>(V)) 1898 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1899 1900 // Aligned pointers have trailing zeros - refine Known.Zero set 1901 if (isa<PointerType>(V->getType())) { 1902 Align Alignment = V->getPointerAlignment(Q.DL); 1903 Known.Zero.setLowBits(Log2(Alignment)); 1904 } 1905 1906 // computeKnownBitsFromAssume strictly refines Known. 1907 // Therefore, we run them after computeKnownBitsFromOperator. 1908 1909 // Check whether a nearby assume intrinsic can determine some known bits. 1910 computeKnownBitsFromAssume(V, Known, Depth, Q); 1911 1912 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1913 } 1914 1915 /// Return true if the given value is known to have exactly one 1916 /// bit set when defined. For vectors return true if every element is known to 1917 /// be a power of two when defined. Supports values with integer or pointer 1918 /// types and vectors of integers. 1919 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1920 const Query &Q) { 1921 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1922 1923 // Attempt to match against constants. 1924 if (OrZero && match(V, m_Power2OrZero())) 1925 return true; 1926 if (match(V, m_Power2())) 1927 return true; 1928 1929 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1930 // it is shifted off the end then the result is undefined. 1931 if (match(V, m_Shl(m_One(), m_Value()))) 1932 return true; 1933 1934 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1935 // the bottom. If it is shifted off the bottom then the result is undefined. 1936 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1937 return true; 1938 1939 // The remaining tests are all recursive, so bail out if we hit the limit. 1940 if (Depth++ == MaxAnalysisRecursionDepth) 1941 return false; 1942 1943 Value *X = nullptr, *Y = nullptr; 1944 // A shift left or a logical shift right of a power of two is a power of two 1945 // or zero. 1946 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1947 match(V, m_LShr(m_Value(X), m_Value())))) 1948 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1949 1950 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1951 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1952 1953 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1954 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1955 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1956 1957 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1958 // A power of two and'd with anything is a power of two or zero. 1959 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1960 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1961 return true; 1962 // X & (-X) is always a power of two or zero. 1963 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1964 return true; 1965 return false; 1966 } 1967 1968 // Adding a power-of-two or zero to the same power-of-two or zero yields 1969 // either the original power-of-two, a larger power-of-two or zero. 1970 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1971 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1972 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1973 Q.IIQ.hasNoSignedWrap(VOBO)) { 1974 if (match(X, m_And(m_Specific(Y), m_Value())) || 1975 match(X, m_And(m_Value(), m_Specific(Y)))) 1976 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1977 return true; 1978 if (match(Y, m_And(m_Specific(X), m_Value())) || 1979 match(Y, m_And(m_Value(), m_Specific(X)))) 1980 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1981 return true; 1982 1983 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1984 KnownBits LHSBits(BitWidth); 1985 computeKnownBits(X, LHSBits, Depth, Q); 1986 1987 KnownBits RHSBits(BitWidth); 1988 computeKnownBits(Y, RHSBits, Depth, Q); 1989 // If i8 V is a power of two or zero: 1990 // ZeroBits: 1 1 1 0 1 1 1 1 1991 // ~ZeroBits: 0 0 0 1 0 0 0 0 1992 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1993 // If OrZero isn't set, we cannot give back a zero result. 1994 // Make sure either the LHS or RHS has a bit set. 1995 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1996 return true; 1997 } 1998 } 1999 2000 // An exact divide or right shift can only shift off zero bits, so the result 2001 // is a power of two only if the first operand is a power of two and not 2002 // copying a sign bit (sdiv int_min, 2). 2003 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2004 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2005 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2006 Depth, Q); 2007 } 2008 2009 return false; 2010 } 2011 2012 /// Test whether a GEP's result is known to be non-null. 2013 /// 2014 /// Uses properties inherent in a GEP to try to determine whether it is known 2015 /// to be non-null. 2016 /// 2017 /// Currently this routine does not support vector GEPs. 2018 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2019 const Query &Q) { 2020 const Function *F = nullptr; 2021 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2022 F = I->getFunction(); 2023 2024 if (!GEP->isInBounds() || 2025 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2026 return false; 2027 2028 // FIXME: Support vector-GEPs. 2029 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2030 2031 // If the base pointer is non-null, we cannot walk to a null address with an 2032 // inbounds GEP in address space zero. 2033 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2034 return true; 2035 2036 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2037 // If so, then the GEP cannot produce a null pointer, as doing so would 2038 // inherently violate the inbounds contract within address space zero. 2039 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2040 GTI != GTE; ++GTI) { 2041 // Struct types are easy -- they must always be indexed by a constant. 2042 if (StructType *STy = GTI.getStructTypeOrNull()) { 2043 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2044 unsigned ElementIdx = OpC->getZExtValue(); 2045 const StructLayout *SL = Q.DL.getStructLayout(STy); 2046 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2047 if (ElementOffset > 0) 2048 return true; 2049 continue; 2050 } 2051 2052 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2053 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2054 continue; 2055 2056 // Fast path the constant operand case both for efficiency and so we don't 2057 // increment Depth when just zipping down an all-constant GEP. 2058 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2059 if (!OpC->isZero()) 2060 return true; 2061 continue; 2062 } 2063 2064 // We post-increment Depth here because while isKnownNonZero increments it 2065 // as well, when we pop back up that increment won't persist. We don't want 2066 // to recurse 10k times just because we have 10k GEP operands. We don't 2067 // bail completely out because we want to handle constant GEPs regardless 2068 // of depth. 2069 if (Depth++ >= MaxAnalysisRecursionDepth) 2070 continue; 2071 2072 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2073 return true; 2074 } 2075 2076 return false; 2077 } 2078 2079 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2080 const Instruction *CtxI, 2081 const DominatorTree *DT) { 2082 if (isa<Constant>(V)) 2083 return false; 2084 2085 if (!CtxI || !DT) 2086 return false; 2087 2088 unsigned NumUsesExplored = 0; 2089 for (auto *U : V->users()) { 2090 // Avoid massive lists 2091 if (NumUsesExplored >= DomConditionsMaxUses) 2092 break; 2093 NumUsesExplored++; 2094 2095 // If the value is used as an argument to a call or invoke, then argument 2096 // attributes may provide an answer about null-ness. 2097 if (const auto *CB = dyn_cast<CallBase>(U)) 2098 if (auto *CalledFunc = CB->getCalledFunction()) 2099 for (const Argument &Arg : CalledFunc->args()) 2100 if (CB->getArgOperand(Arg.getArgNo()) == V && 2101 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2102 return true; 2103 2104 // If the value is used as a load/store, then the pointer must be non null. 2105 if (V == getLoadStorePointerOperand(U)) { 2106 const Instruction *I = cast<Instruction>(U); 2107 if (!NullPointerIsDefined(I->getFunction(), 2108 V->getType()->getPointerAddressSpace()) && 2109 DT->dominates(I, CtxI)) 2110 return true; 2111 } 2112 2113 // Consider only compare instructions uniquely controlling a branch 2114 CmpInst::Predicate Pred; 2115 if (!match(const_cast<User *>(U), 2116 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2117 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2118 continue; 2119 2120 SmallVector<const User *, 4> WorkList; 2121 SmallPtrSet<const User *, 4> Visited; 2122 for (auto *CmpU : U->users()) { 2123 assert(WorkList.empty() && "Should be!"); 2124 if (Visited.insert(CmpU).second) 2125 WorkList.push_back(CmpU); 2126 2127 while (!WorkList.empty()) { 2128 auto *Curr = WorkList.pop_back_val(); 2129 2130 // If a user is an AND, add all its users to the work list. We only 2131 // propagate "pred != null" condition through AND because it is only 2132 // correct to assume that all conditions of AND are met in true branch. 2133 // TODO: Support similar logic of OR and EQ predicate? 2134 if (Pred == ICmpInst::ICMP_NE) 2135 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2136 if (BO->getOpcode() == Instruction::And) { 2137 for (auto *BOU : BO->users()) 2138 if (Visited.insert(BOU).second) 2139 WorkList.push_back(BOU); 2140 continue; 2141 } 2142 2143 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2144 assert(BI->isConditional() && "uses a comparison!"); 2145 2146 BasicBlock *NonNullSuccessor = 2147 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2148 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2149 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2150 return true; 2151 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2152 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2153 return true; 2154 } 2155 } 2156 } 2157 } 2158 2159 return false; 2160 } 2161 2162 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2163 /// ensure that the value it's attached to is never Value? 'RangeType' is 2164 /// is the type of the value described by the range. 2165 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2166 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2167 assert(NumRanges >= 1); 2168 for (unsigned i = 0; i < NumRanges; ++i) { 2169 ConstantInt *Lower = 2170 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2171 ConstantInt *Upper = 2172 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2173 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2174 if (Range.contains(Value)) 2175 return false; 2176 } 2177 return true; 2178 } 2179 2180 /// Return true if the given value is known to be non-zero when defined. For 2181 /// vectors, return true if every demanded element is known to be non-zero when 2182 /// defined. For pointers, if the context instruction and dominator tree are 2183 /// specified, perform context-sensitive analysis and return true if the 2184 /// pointer couldn't possibly be null at the specified instruction. 2185 /// Supports values with integer or pointer type and vectors of integers. 2186 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2187 const Query &Q) { 2188 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2189 // vector 2190 if (isa<ScalableVectorType>(V->getType())) 2191 return false; 2192 2193 if (auto *C = dyn_cast<Constant>(V)) { 2194 if (C->isNullValue()) 2195 return false; 2196 if (isa<ConstantInt>(C)) 2197 // Must be non-zero due to null test above. 2198 return true; 2199 2200 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2201 // See the comment for IntToPtr/PtrToInt instructions below. 2202 if (CE->getOpcode() == Instruction::IntToPtr || 2203 CE->getOpcode() == Instruction::PtrToInt) 2204 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2205 .getFixedSize() <= 2206 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2207 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2208 } 2209 2210 // For constant vectors, check that all elements are undefined or known 2211 // non-zero to determine that the whole vector is known non-zero. 2212 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2213 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2214 if (!DemandedElts[i]) 2215 continue; 2216 Constant *Elt = C->getAggregateElement(i); 2217 if (!Elt || Elt->isNullValue()) 2218 return false; 2219 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2220 return false; 2221 } 2222 return true; 2223 } 2224 2225 // A global variable in address space 0 is non null unless extern weak 2226 // or an absolute symbol reference. Other address spaces may have null as a 2227 // valid address for a global, so we can't assume anything. 2228 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2229 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2230 GV->getType()->getAddressSpace() == 0) 2231 return true; 2232 } else 2233 return false; 2234 } 2235 2236 if (auto *I = dyn_cast<Instruction>(V)) { 2237 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2238 // If the possible ranges don't contain zero, then the value is 2239 // definitely non-zero. 2240 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2241 const APInt ZeroValue(Ty->getBitWidth(), 0); 2242 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2243 return true; 2244 } 2245 } 2246 } 2247 2248 if (isKnownNonZeroFromAssume(V, Q)) 2249 return true; 2250 2251 // Some of the tests below are recursive, so bail out if we hit the limit. 2252 if (Depth++ >= MaxAnalysisRecursionDepth) 2253 return false; 2254 2255 // Check for pointer simplifications. 2256 2257 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2258 // Alloca never returns null, malloc might. 2259 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2260 return true; 2261 2262 // A byval, inalloca may not be null in a non-default addres space. A 2263 // nonnull argument is assumed never 0. 2264 if (const Argument *A = dyn_cast<Argument>(V)) { 2265 if (((A->hasPassPointeeByValueCopyAttr() && 2266 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2267 A->hasNonNullAttr())) 2268 return true; 2269 } 2270 2271 // A Load tagged with nonnull metadata is never null. 2272 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2273 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2274 return true; 2275 2276 if (const auto *Call = dyn_cast<CallBase>(V)) { 2277 if (Call->isReturnNonNull()) 2278 return true; 2279 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2280 return isKnownNonZero(RP, Depth, Q); 2281 } 2282 } 2283 2284 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2285 return true; 2286 2287 // Check for recursive pointer simplifications. 2288 if (V->getType()->isPointerTy()) { 2289 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2290 // do not alter the value, or at least not the nullness property of the 2291 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2292 // 2293 // Note that we have to take special care to avoid looking through 2294 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2295 // as casts that can alter the value, e.g., AddrSpaceCasts. 2296 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2297 return isGEPKnownNonNull(GEP, Depth, Q); 2298 2299 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2300 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2301 2302 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2303 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2304 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2305 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2306 } 2307 2308 // Similar to int2ptr above, we can look through ptr2int here if the cast 2309 // is a no-op or an extend and not a truncate. 2310 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2311 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2312 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2313 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2314 2315 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2316 2317 // X | Y != 0 if X != 0 or Y != 0. 2318 Value *X = nullptr, *Y = nullptr; 2319 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2320 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2321 isKnownNonZero(Y, DemandedElts, Depth, Q); 2322 2323 // ext X != 0 if X != 0. 2324 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2325 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2326 2327 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2328 // if the lowest bit is shifted off the end. 2329 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2330 // shl nuw can't remove any non-zero bits. 2331 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2332 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2333 return isKnownNonZero(X, Depth, Q); 2334 2335 KnownBits Known(BitWidth); 2336 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2337 if (Known.One[0]) 2338 return true; 2339 } 2340 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2341 // defined if the sign bit is shifted off the end. 2342 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2343 // shr exact can only shift out zero bits. 2344 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2345 if (BO->isExact()) 2346 return isKnownNonZero(X, Depth, Q); 2347 2348 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2349 if (Known.isNegative()) 2350 return true; 2351 2352 // If the shifter operand is a constant, and all of the bits shifted 2353 // out are known to be zero, and X is known non-zero then at least one 2354 // non-zero bit must remain. 2355 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2356 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2357 // Is there a known one in the portion not shifted out? 2358 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2359 return true; 2360 // Are all the bits to be shifted out known zero? 2361 if (Known.countMinTrailingZeros() >= ShiftVal) 2362 return isKnownNonZero(X, DemandedElts, Depth, Q); 2363 } 2364 } 2365 // div exact can only produce a zero if the dividend is zero. 2366 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2367 return isKnownNonZero(X, DemandedElts, Depth, Q); 2368 } 2369 // X + Y. 2370 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2371 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2372 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2373 2374 // If X and Y are both non-negative (as signed values) then their sum is not 2375 // zero unless both X and Y are zero. 2376 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2377 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2378 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2379 return true; 2380 2381 // If X and Y are both negative (as signed values) then their sum is not 2382 // zero unless both X and Y equal INT_MIN. 2383 if (XKnown.isNegative() && YKnown.isNegative()) { 2384 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2385 // The sign bit of X is set. If some other bit is set then X is not equal 2386 // to INT_MIN. 2387 if (XKnown.One.intersects(Mask)) 2388 return true; 2389 // The sign bit of Y is set. If some other bit is set then Y is not equal 2390 // to INT_MIN. 2391 if (YKnown.One.intersects(Mask)) 2392 return true; 2393 } 2394 2395 // The sum of a non-negative number and a power of two is not zero. 2396 if (XKnown.isNonNegative() && 2397 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2398 return true; 2399 if (YKnown.isNonNegative() && 2400 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2401 return true; 2402 } 2403 // X * Y. 2404 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2405 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2406 // If X and Y are non-zero then so is X * Y as long as the multiplication 2407 // does not overflow. 2408 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2409 isKnownNonZero(X, DemandedElts, Depth, Q) && 2410 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2411 return true; 2412 } 2413 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2414 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2415 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2416 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2417 return true; 2418 } 2419 // PHI 2420 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2421 // Try and detect a recurrence that monotonically increases from a 2422 // starting value, as these are common as induction variables. 2423 if (PN->getNumIncomingValues() == 2) { 2424 Value *Start = PN->getIncomingValue(0); 2425 Value *Induction = PN->getIncomingValue(1); 2426 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2427 std::swap(Start, Induction); 2428 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2429 if (!C->isZero() && !C->isNegative()) { 2430 ConstantInt *X; 2431 if (Q.IIQ.UseInstrInfo && 2432 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2433 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2434 !X->isNegative()) 2435 return true; 2436 } 2437 } 2438 } 2439 // Check if all incoming values are non-zero using recursion. 2440 Query RecQ = Q; 2441 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2442 return llvm::all_of(PN->operands(), [&](const Use &U) { 2443 if (U.get() == PN) 2444 return true; 2445 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2446 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2447 }); 2448 } 2449 // ExtractElement 2450 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2451 const Value *Vec = EEI->getVectorOperand(); 2452 const Value *Idx = EEI->getIndexOperand(); 2453 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2454 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2455 unsigned NumElts = VecTy->getNumElements(); 2456 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2457 if (CIdx && CIdx->getValue().ult(NumElts)) 2458 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2459 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2460 } 2461 } 2462 // Freeze 2463 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2464 auto *Op = FI->getOperand(0); 2465 if (isKnownNonZero(Op, Depth, Q) && 2466 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2467 return true; 2468 } 2469 2470 KnownBits Known(BitWidth); 2471 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2472 return Known.One != 0; 2473 } 2474 2475 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2476 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2477 // vector 2478 if (isa<ScalableVectorType>(V->getType())) 2479 return false; 2480 2481 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2482 APInt DemandedElts = 2483 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2484 return isKnownNonZero(V, DemandedElts, Depth, Q); 2485 } 2486 2487 /// Return true if V2 == V1 + X, where X is known non-zero. 2488 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2489 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2490 if (!BO || BO->getOpcode() != Instruction::Add) 2491 return false; 2492 Value *Op = nullptr; 2493 if (V2 == BO->getOperand(0)) 2494 Op = BO->getOperand(1); 2495 else if (V2 == BO->getOperand(1)) 2496 Op = BO->getOperand(0); 2497 else 2498 return false; 2499 return isKnownNonZero(Op, 0, Q); 2500 } 2501 2502 /// Return true if it is known that V1 != V2. 2503 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2504 if (V1 == V2) 2505 return false; 2506 if (V1->getType() != V2->getType()) 2507 // We can't look through casts yet. 2508 return false; 2509 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2510 return true; 2511 2512 if (V1->getType()->isIntOrIntVectorTy()) { 2513 // Are any known bits in V1 contradictory to known bits in V2? If V1 2514 // has a known zero where V2 has a known one, they must not be equal. 2515 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2516 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2517 2518 if (Known1.Zero.intersects(Known2.One) || 2519 Known2.Zero.intersects(Known1.One)) 2520 return true; 2521 } 2522 return false; 2523 } 2524 2525 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2526 /// simplify operations downstream. Mask is known to be zero for bits that V 2527 /// cannot have. 2528 /// 2529 /// This function is defined on values with integer type, values with pointer 2530 /// type, and vectors of integers. In the case 2531 /// where V is a vector, the mask, known zero, and known one values are the 2532 /// same width as the vector element, and the bit is set only if it is true 2533 /// for all of the elements in the vector. 2534 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2535 const Query &Q) { 2536 KnownBits Known(Mask.getBitWidth()); 2537 computeKnownBits(V, Known, Depth, Q); 2538 return Mask.isSubsetOf(Known.Zero); 2539 } 2540 2541 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2542 // Returns the input and lower/upper bounds. 2543 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2544 const APInt *&CLow, const APInt *&CHigh) { 2545 assert(isa<Operator>(Select) && 2546 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2547 "Input should be a Select!"); 2548 2549 const Value *LHS = nullptr, *RHS = nullptr; 2550 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2551 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2552 return false; 2553 2554 if (!match(RHS, m_APInt(CLow))) 2555 return false; 2556 2557 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2558 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2559 if (getInverseMinMaxFlavor(SPF) != SPF2) 2560 return false; 2561 2562 if (!match(RHS2, m_APInt(CHigh))) 2563 return false; 2564 2565 if (SPF == SPF_SMIN) 2566 std::swap(CLow, CHigh); 2567 2568 In = LHS2; 2569 return CLow->sle(*CHigh); 2570 } 2571 2572 /// For vector constants, loop over the elements and find the constant with the 2573 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2574 /// or if any element was not analyzed; otherwise, return the count for the 2575 /// element with the minimum number of sign bits. 2576 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2577 const APInt &DemandedElts, 2578 unsigned TyBits) { 2579 const auto *CV = dyn_cast<Constant>(V); 2580 if (!CV || !isa<FixedVectorType>(CV->getType())) 2581 return 0; 2582 2583 unsigned MinSignBits = TyBits; 2584 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2585 for (unsigned i = 0; i != NumElts; ++i) { 2586 if (!DemandedElts[i]) 2587 continue; 2588 // If we find a non-ConstantInt, bail out. 2589 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2590 if (!Elt) 2591 return 0; 2592 2593 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2594 } 2595 2596 return MinSignBits; 2597 } 2598 2599 static unsigned ComputeNumSignBitsImpl(const Value *V, 2600 const APInt &DemandedElts, 2601 unsigned Depth, const Query &Q); 2602 2603 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2604 unsigned Depth, const Query &Q) { 2605 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2606 assert(Result > 0 && "At least one sign bit needs to be present!"); 2607 return Result; 2608 } 2609 2610 /// Return the number of times the sign bit of the register is replicated into 2611 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2612 /// (itself), but other cases can give us information. For example, immediately 2613 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2614 /// other, so we return 3. For vectors, return the number of sign bits for the 2615 /// vector element with the minimum number of known sign bits of the demanded 2616 /// elements in the vector specified by DemandedElts. 2617 static unsigned ComputeNumSignBitsImpl(const Value *V, 2618 const APInt &DemandedElts, 2619 unsigned Depth, const Query &Q) { 2620 Type *Ty = V->getType(); 2621 2622 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2623 // vector 2624 if (isa<ScalableVectorType>(Ty)) 2625 return 1; 2626 2627 #ifndef NDEBUG 2628 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2629 2630 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2631 assert( 2632 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2633 "DemandedElt width should equal the fixed vector number of elements"); 2634 } else { 2635 assert(DemandedElts == APInt(1, 1) && 2636 "DemandedElt width should be 1 for scalars"); 2637 } 2638 #endif 2639 2640 // We return the minimum number of sign bits that are guaranteed to be present 2641 // in V, so for undef we have to conservatively return 1. We don't have the 2642 // same behavior for poison though -- that's a FIXME today. 2643 2644 Type *ScalarTy = Ty->getScalarType(); 2645 unsigned TyBits = ScalarTy->isPointerTy() ? 2646 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2647 Q.DL.getTypeSizeInBits(ScalarTy); 2648 2649 unsigned Tmp, Tmp2; 2650 unsigned FirstAnswer = 1; 2651 2652 // Note that ConstantInt is handled by the general computeKnownBits case 2653 // below. 2654 2655 if (Depth == MaxAnalysisRecursionDepth) 2656 return 1; 2657 2658 if (auto *U = dyn_cast<Operator>(V)) { 2659 switch (Operator::getOpcode(V)) { 2660 default: break; 2661 case Instruction::SExt: 2662 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2663 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2664 2665 case Instruction::SDiv: { 2666 const APInt *Denominator; 2667 // sdiv X, C -> adds log(C) sign bits. 2668 if (match(U->getOperand(1), m_APInt(Denominator))) { 2669 2670 // Ignore non-positive denominator. 2671 if (!Denominator->isStrictlyPositive()) 2672 break; 2673 2674 // Calculate the incoming numerator bits. 2675 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2676 2677 // Add floor(log(C)) bits to the numerator bits. 2678 return std::min(TyBits, NumBits + Denominator->logBase2()); 2679 } 2680 break; 2681 } 2682 2683 case Instruction::SRem: { 2684 const APInt *Denominator; 2685 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2686 // positive constant. This let us put a lower bound on the number of sign 2687 // bits. 2688 if (match(U->getOperand(1), m_APInt(Denominator))) { 2689 2690 // Ignore non-positive denominator. 2691 if (!Denominator->isStrictlyPositive()) 2692 break; 2693 2694 // Calculate the incoming numerator bits. SRem by a positive constant 2695 // can't lower the number of sign bits. 2696 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2697 2698 // Calculate the leading sign bit constraints by examining the 2699 // denominator. Given that the denominator is positive, there are two 2700 // cases: 2701 // 2702 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2703 // (1 << ceilLogBase2(C)). 2704 // 2705 // 2. the numerator is negative. Then the result range is (-C,0] and 2706 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2707 // 2708 // Thus a lower bound on the number of sign bits is `TyBits - 2709 // ceilLogBase2(C)`. 2710 2711 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2712 return std::max(NumrBits, ResBits); 2713 } 2714 break; 2715 } 2716 2717 case Instruction::AShr: { 2718 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2719 // ashr X, C -> adds C sign bits. Vectors too. 2720 const APInt *ShAmt; 2721 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2722 if (ShAmt->uge(TyBits)) 2723 break; // Bad shift. 2724 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2725 Tmp += ShAmtLimited; 2726 if (Tmp > TyBits) Tmp = TyBits; 2727 } 2728 return Tmp; 2729 } 2730 case Instruction::Shl: { 2731 const APInt *ShAmt; 2732 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2733 // shl destroys sign bits. 2734 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2735 if (ShAmt->uge(TyBits) || // Bad shift. 2736 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2737 Tmp2 = ShAmt->getZExtValue(); 2738 return Tmp - Tmp2; 2739 } 2740 break; 2741 } 2742 case Instruction::And: 2743 case Instruction::Or: 2744 case Instruction::Xor: // NOT is handled here. 2745 // Logical binary ops preserve the number of sign bits at the worst. 2746 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2747 if (Tmp != 1) { 2748 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2749 FirstAnswer = std::min(Tmp, Tmp2); 2750 // We computed what we know about the sign bits as our first 2751 // answer. Now proceed to the generic code that uses 2752 // computeKnownBits, and pick whichever answer is better. 2753 } 2754 break; 2755 2756 case Instruction::Select: { 2757 // If we have a clamp pattern, we know that the number of sign bits will 2758 // be the minimum of the clamp min/max range. 2759 const Value *X; 2760 const APInt *CLow, *CHigh; 2761 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2762 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2763 2764 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2765 if (Tmp == 1) break; 2766 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2767 return std::min(Tmp, Tmp2); 2768 } 2769 2770 case Instruction::Add: 2771 // Add can have at most one carry bit. Thus we know that the output 2772 // is, at worst, one more bit than the inputs. 2773 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2774 if (Tmp == 1) break; 2775 2776 // Special case decrementing a value (ADD X, -1): 2777 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2778 if (CRHS->isAllOnesValue()) { 2779 KnownBits Known(TyBits); 2780 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2781 2782 // If the input is known to be 0 or 1, the output is 0/-1, which is 2783 // all sign bits set. 2784 if ((Known.Zero | 1).isAllOnesValue()) 2785 return TyBits; 2786 2787 // If we are subtracting one from a positive number, there is no carry 2788 // out of the result. 2789 if (Known.isNonNegative()) 2790 return Tmp; 2791 } 2792 2793 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2794 if (Tmp2 == 1) break; 2795 return std::min(Tmp, Tmp2) - 1; 2796 2797 case Instruction::Sub: 2798 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2799 if (Tmp2 == 1) break; 2800 2801 // Handle NEG. 2802 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2803 if (CLHS->isNullValue()) { 2804 KnownBits Known(TyBits); 2805 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2806 // If the input is known to be 0 or 1, the output is 0/-1, which is 2807 // all sign bits set. 2808 if ((Known.Zero | 1).isAllOnesValue()) 2809 return TyBits; 2810 2811 // If the input is known to be positive (the sign bit is known clear), 2812 // the output of the NEG has the same number of sign bits as the 2813 // input. 2814 if (Known.isNonNegative()) 2815 return Tmp2; 2816 2817 // Otherwise, we treat this like a SUB. 2818 } 2819 2820 // Sub can have at most one carry bit. Thus we know that the output 2821 // is, at worst, one more bit than the inputs. 2822 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2823 if (Tmp == 1) break; 2824 return std::min(Tmp, Tmp2) - 1; 2825 2826 case Instruction::Mul: { 2827 // The output of the Mul can be at most twice the valid bits in the 2828 // inputs. 2829 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2830 if (SignBitsOp0 == 1) break; 2831 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2832 if (SignBitsOp1 == 1) break; 2833 unsigned OutValidBits = 2834 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2835 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2836 } 2837 2838 case Instruction::PHI: { 2839 const PHINode *PN = cast<PHINode>(U); 2840 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2841 // Don't analyze large in-degree PHIs. 2842 if (NumIncomingValues > 4) break; 2843 // Unreachable blocks may have zero-operand PHI nodes. 2844 if (NumIncomingValues == 0) break; 2845 2846 // Take the minimum of all incoming values. This can't infinitely loop 2847 // because of our depth threshold. 2848 Query RecQ = Q; 2849 Tmp = TyBits; 2850 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2851 if (Tmp == 1) return Tmp; 2852 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2853 Tmp = std::min( 2854 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2855 } 2856 return Tmp; 2857 } 2858 2859 case Instruction::Trunc: 2860 // FIXME: it's tricky to do anything useful for this, but it is an 2861 // important case for targets like X86. 2862 break; 2863 2864 case Instruction::ExtractElement: 2865 // Look through extract element. At the moment we keep this simple and 2866 // skip tracking the specific element. But at least we might find 2867 // information valid for all elements of the vector (for example if vector 2868 // is sign extended, shifted, etc). 2869 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2870 2871 case Instruction::ShuffleVector: { 2872 // Collect the minimum number of sign bits that are shared by every vector 2873 // element referenced by the shuffle. 2874 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2875 if (!Shuf) { 2876 // FIXME: Add support for shufflevector constant expressions. 2877 return 1; 2878 } 2879 APInt DemandedLHS, DemandedRHS; 2880 // For undef elements, we don't know anything about the common state of 2881 // the shuffle result. 2882 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2883 return 1; 2884 Tmp = std::numeric_limits<unsigned>::max(); 2885 if (!!DemandedLHS) { 2886 const Value *LHS = Shuf->getOperand(0); 2887 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2888 } 2889 // If we don't know anything, early out and try computeKnownBits 2890 // fall-back. 2891 if (Tmp == 1) 2892 break; 2893 if (!!DemandedRHS) { 2894 const Value *RHS = Shuf->getOperand(1); 2895 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2896 Tmp = std::min(Tmp, Tmp2); 2897 } 2898 // If we don't know anything, early out and try computeKnownBits 2899 // fall-back. 2900 if (Tmp == 1) 2901 break; 2902 assert(Tmp <= Ty->getScalarSizeInBits() && 2903 "Failed to determine minimum sign bits"); 2904 return Tmp; 2905 } 2906 case Instruction::Call: { 2907 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2908 switch (II->getIntrinsicID()) { 2909 default: break; 2910 case Intrinsic::abs: 2911 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2912 if (Tmp == 1) break; 2913 2914 // Absolute value reduces number of sign bits by at most 1. 2915 return Tmp - 1; 2916 } 2917 } 2918 } 2919 } 2920 } 2921 2922 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2923 // use this information. 2924 2925 // If we can examine all elements of a vector constant successfully, we're 2926 // done (we can't do any better than that). If not, keep trying. 2927 if (unsigned VecSignBits = 2928 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2929 return VecSignBits; 2930 2931 KnownBits Known(TyBits); 2932 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2933 2934 // If we know that the sign bit is either zero or one, determine the number of 2935 // identical bits in the top of the input value. 2936 return std::max(FirstAnswer, Known.countMinSignBits()); 2937 } 2938 2939 /// This function computes the integer multiple of Base that equals V. 2940 /// If successful, it returns true and returns the multiple in 2941 /// Multiple. If unsuccessful, it returns false. It looks 2942 /// through SExt instructions only if LookThroughSExt is true. 2943 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2944 bool LookThroughSExt, unsigned Depth) { 2945 assert(V && "No Value?"); 2946 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2947 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2948 2949 Type *T = V->getType(); 2950 2951 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2952 2953 if (Base == 0) 2954 return false; 2955 2956 if (Base == 1) { 2957 Multiple = V; 2958 return true; 2959 } 2960 2961 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2962 Constant *BaseVal = ConstantInt::get(T, Base); 2963 if (CO && CO == BaseVal) { 2964 // Multiple is 1. 2965 Multiple = ConstantInt::get(T, 1); 2966 return true; 2967 } 2968 2969 if (CI && CI->getZExtValue() % Base == 0) { 2970 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2971 return true; 2972 } 2973 2974 if (Depth == MaxAnalysisRecursionDepth) return false; 2975 2976 Operator *I = dyn_cast<Operator>(V); 2977 if (!I) return false; 2978 2979 switch (I->getOpcode()) { 2980 default: break; 2981 case Instruction::SExt: 2982 if (!LookThroughSExt) return false; 2983 // otherwise fall through to ZExt 2984 LLVM_FALLTHROUGH; 2985 case Instruction::ZExt: 2986 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2987 LookThroughSExt, Depth+1); 2988 case Instruction::Shl: 2989 case Instruction::Mul: { 2990 Value *Op0 = I->getOperand(0); 2991 Value *Op1 = I->getOperand(1); 2992 2993 if (I->getOpcode() == Instruction::Shl) { 2994 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2995 if (!Op1CI) return false; 2996 // Turn Op0 << Op1 into Op0 * 2^Op1 2997 APInt Op1Int = Op1CI->getValue(); 2998 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2999 APInt API(Op1Int.getBitWidth(), 0); 3000 API.setBit(BitToSet); 3001 Op1 = ConstantInt::get(V->getContext(), API); 3002 } 3003 3004 Value *Mul0 = nullptr; 3005 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3006 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3007 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3008 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3009 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3010 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3011 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3012 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3013 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3014 3015 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3016 Multiple = ConstantExpr::getMul(MulC, Op1C); 3017 return true; 3018 } 3019 3020 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3021 if (Mul0CI->getValue() == 1) { 3022 // V == Base * Op1, so return Op1 3023 Multiple = Op1; 3024 return true; 3025 } 3026 } 3027 3028 Value *Mul1 = nullptr; 3029 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3030 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3031 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3032 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3033 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3034 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3035 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3036 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3037 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3038 3039 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3040 Multiple = ConstantExpr::getMul(MulC, Op0C); 3041 return true; 3042 } 3043 3044 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3045 if (Mul1CI->getValue() == 1) { 3046 // V == Base * Op0, so return Op0 3047 Multiple = Op0; 3048 return true; 3049 } 3050 } 3051 } 3052 } 3053 3054 // We could not determine if V is a multiple of Base. 3055 return false; 3056 } 3057 3058 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3059 const TargetLibraryInfo *TLI) { 3060 const Function *F = CB.getCalledFunction(); 3061 if (!F) 3062 return Intrinsic::not_intrinsic; 3063 3064 if (F->isIntrinsic()) 3065 return F->getIntrinsicID(); 3066 3067 // We are going to infer semantics of a library function based on mapping it 3068 // to an LLVM intrinsic. Check that the library function is available from 3069 // this callbase and in this environment. 3070 LibFunc Func; 3071 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3072 !CB.onlyReadsMemory()) 3073 return Intrinsic::not_intrinsic; 3074 3075 switch (Func) { 3076 default: 3077 break; 3078 case LibFunc_sin: 3079 case LibFunc_sinf: 3080 case LibFunc_sinl: 3081 return Intrinsic::sin; 3082 case LibFunc_cos: 3083 case LibFunc_cosf: 3084 case LibFunc_cosl: 3085 return Intrinsic::cos; 3086 case LibFunc_exp: 3087 case LibFunc_expf: 3088 case LibFunc_expl: 3089 return Intrinsic::exp; 3090 case LibFunc_exp2: 3091 case LibFunc_exp2f: 3092 case LibFunc_exp2l: 3093 return Intrinsic::exp2; 3094 case LibFunc_log: 3095 case LibFunc_logf: 3096 case LibFunc_logl: 3097 return Intrinsic::log; 3098 case LibFunc_log10: 3099 case LibFunc_log10f: 3100 case LibFunc_log10l: 3101 return Intrinsic::log10; 3102 case LibFunc_log2: 3103 case LibFunc_log2f: 3104 case LibFunc_log2l: 3105 return Intrinsic::log2; 3106 case LibFunc_fabs: 3107 case LibFunc_fabsf: 3108 case LibFunc_fabsl: 3109 return Intrinsic::fabs; 3110 case LibFunc_fmin: 3111 case LibFunc_fminf: 3112 case LibFunc_fminl: 3113 return Intrinsic::minnum; 3114 case LibFunc_fmax: 3115 case LibFunc_fmaxf: 3116 case LibFunc_fmaxl: 3117 return Intrinsic::maxnum; 3118 case LibFunc_copysign: 3119 case LibFunc_copysignf: 3120 case LibFunc_copysignl: 3121 return Intrinsic::copysign; 3122 case LibFunc_floor: 3123 case LibFunc_floorf: 3124 case LibFunc_floorl: 3125 return Intrinsic::floor; 3126 case LibFunc_ceil: 3127 case LibFunc_ceilf: 3128 case LibFunc_ceill: 3129 return Intrinsic::ceil; 3130 case LibFunc_trunc: 3131 case LibFunc_truncf: 3132 case LibFunc_truncl: 3133 return Intrinsic::trunc; 3134 case LibFunc_rint: 3135 case LibFunc_rintf: 3136 case LibFunc_rintl: 3137 return Intrinsic::rint; 3138 case LibFunc_nearbyint: 3139 case LibFunc_nearbyintf: 3140 case LibFunc_nearbyintl: 3141 return Intrinsic::nearbyint; 3142 case LibFunc_round: 3143 case LibFunc_roundf: 3144 case LibFunc_roundl: 3145 return Intrinsic::round; 3146 case LibFunc_roundeven: 3147 case LibFunc_roundevenf: 3148 case LibFunc_roundevenl: 3149 return Intrinsic::roundeven; 3150 case LibFunc_pow: 3151 case LibFunc_powf: 3152 case LibFunc_powl: 3153 return Intrinsic::pow; 3154 case LibFunc_sqrt: 3155 case LibFunc_sqrtf: 3156 case LibFunc_sqrtl: 3157 return Intrinsic::sqrt; 3158 } 3159 3160 return Intrinsic::not_intrinsic; 3161 } 3162 3163 /// Return true if we can prove that the specified FP value is never equal to 3164 /// -0.0. 3165 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3166 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3167 /// the same as +0.0 in floating-point ops. 3168 /// 3169 /// NOTE: this function will need to be revisited when we support non-default 3170 /// rounding modes! 3171 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3172 unsigned Depth) { 3173 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3174 return !CFP->getValueAPF().isNegZero(); 3175 3176 if (Depth == MaxAnalysisRecursionDepth) 3177 return false; 3178 3179 auto *Op = dyn_cast<Operator>(V); 3180 if (!Op) 3181 return false; 3182 3183 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3184 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3185 return true; 3186 3187 // sitofp and uitofp turn into +0.0 for zero. 3188 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3189 return true; 3190 3191 if (auto *Call = dyn_cast<CallInst>(Op)) { 3192 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3193 switch (IID) { 3194 default: 3195 break; 3196 // sqrt(-0.0) = -0.0, no other negative results are possible. 3197 case Intrinsic::sqrt: 3198 case Intrinsic::canonicalize: 3199 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3200 // fabs(x) != -0.0 3201 case Intrinsic::fabs: 3202 return true; 3203 } 3204 } 3205 3206 return false; 3207 } 3208 3209 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3210 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3211 /// bit despite comparing equal. 3212 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3213 const TargetLibraryInfo *TLI, 3214 bool SignBitOnly, 3215 unsigned Depth) { 3216 // TODO: This function does not do the right thing when SignBitOnly is true 3217 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3218 // which flips the sign bits of NaNs. See 3219 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3220 3221 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3222 return !CFP->getValueAPF().isNegative() || 3223 (!SignBitOnly && CFP->getValueAPF().isZero()); 3224 } 3225 3226 // Handle vector of constants. 3227 if (auto *CV = dyn_cast<Constant>(V)) { 3228 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3229 unsigned NumElts = CVFVTy->getNumElements(); 3230 for (unsigned i = 0; i != NumElts; ++i) { 3231 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3232 if (!CFP) 3233 return false; 3234 if (CFP->getValueAPF().isNegative() && 3235 (SignBitOnly || !CFP->getValueAPF().isZero())) 3236 return false; 3237 } 3238 3239 // All non-negative ConstantFPs. 3240 return true; 3241 } 3242 } 3243 3244 if (Depth == MaxAnalysisRecursionDepth) 3245 return false; 3246 3247 const Operator *I = dyn_cast<Operator>(V); 3248 if (!I) 3249 return false; 3250 3251 switch (I->getOpcode()) { 3252 default: 3253 break; 3254 // Unsigned integers are always nonnegative. 3255 case Instruction::UIToFP: 3256 return true; 3257 case Instruction::FMul: 3258 case Instruction::FDiv: 3259 // X * X is always non-negative or a NaN. 3260 // X / X is always exactly 1.0 or a NaN. 3261 if (I->getOperand(0) == I->getOperand(1) && 3262 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3263 return true; 3264 3265 LLVM_FALLTHROUGH; 3266 case Instruction::FAdd: 3267 case Instruction::FRem: 3268 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3269 Depth + 1) && 3270 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3271 Depth + 1); 3272 case Instruction::Select: 3273 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3274 Depth + 1) && 3275 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3276 Depth + 1); 3277 case Instruction::FPExt: 3278 case Instruction::FPTrunc: 3279 // Widening/narrowing never change sign. 3280 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3281 Depth + 1); 3282 case Instruction::ExtractElement: 3283 // Look through extract element. At the moment we keep this simple and skip 3284 // tracking the specific element. But at least we might find information 3285 // valid for all elements of the vector. 3286 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3287 Depth + 1); 3288 case Instruction::Call: 3289 const auto *CI = cast<CallInst>(I); 3290 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3291 switch (IID) { 3292 default: 3293 break; 3294 case Intrinsic::maxnum: { 3295 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3296 auto isPositiveNum = [&](Value *V) { 3297 if (SignBitOnly) { 3298 // With SignBitOnly, this is tricky because the result of 3299 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3300 // a constant strictly greater than 0.0. 3301 const APFloat *C; 3302 return match(V, m_APFloat(C)) && 3303 *C > APFloat::getZero(C->getSemantics()); 3304 } 3305 3306 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3307 // maxnum can't be ordered-less-than-zero. 3308 return isKnownNeverNaN(V, TLI) && 3309 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3310 }; 3311 3312 // TODO: This could be improved. We could also check that neither operand 3313 // has its sign bit set (and at least 1 is not-NAN?). 3314 return isPositiveNum(V0) || isPositiveNum(V1); 3315 } 3316 3317 case Intrinsic::maximum: 3318 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3319 Depth + 1) || 3320 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3321 Depth + 1); 3322 case Intrinsic::minnum: 3323 case Intrinsic::minimum: 3324 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3325 Depth + 1) && 3326 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3327 Depth + 1); 3328 case Intrinsic::exp: 3329 case Intrinsic::exp2: 3330 case Intrinsic::fabs: 3331 return true; 3332 3333 case Intrinsic::sqrt: 3334 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3335 if (!SignBitOnly) 3336 return true; 3337 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3338 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3339 3340 case Intrinsic::powi: 3341 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3342 // powi(x,n) is non-negative if n is even. 3343 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3344 return true; 3345 } 3346 // TODO: This is not correct. Given that exp is an integer, here are the 3347 // ways that pow can return a negative value: 3348 // 3349 // pow(x, exp) --> negative if exp is odd and x is negative. 3350 // pow(-0, exp) --> -inf if exp is negative odd. 3351 // pow(-0, exp) --> -0 if exp is positive odd. 3352 // pow(-inf, exp) --> -0 if exp is negative odd. 3353 // pow(-inf, exp) --> -inf if exp is positive odd. 3354 // 3355 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3356 // but we must return false if x == -0. Unfortunately we do not currently 3357 // have a way of expressing this constraint. See details in 3358 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3359 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3360 Depth + 1); 3361 3362 case Intrinsic::fma: 3363 case Intrinsic::fmuladd: 3364 // x*x+y is non-negative if y is non-negative. 3365 return I->getOperand(0) == I->getOperand(1) && 3366 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3367 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3368 Depth + 1); 3369 } 3370 break; 3371 } 3372 return false; 3373 } 3374 3375 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3376 const TargetLibraryInfo *TLI) { 3377 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3378 } 3379 3380 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3381 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3382 } 3383 3384 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3385 unsigned Depth) { 3386 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3387 3388 // If we're told that infinities won't happen, assume they won't. 3389 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3390 if (FPMathOp->hasNoInfs()) 3391 return true; 3392 3393 // Handle scalar constants. 3394 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3395 return !CFP->isInfinity(); 3396 3397 if (Depth == MaxAnalysisRecursionDepth) 3398 return false; 3399 3400 if (auto *Inst = dyn_cast<Instruction>(V)) { 3401 switch (Inst->getOpcode()) { 3402 case Instruction::Select: { 3403 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3404 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3405 } 3406 case Instruction::SIToFP: 3407 case Instruction::UIToFP: { 3408 // Get width of largest magnitude integer (remove a bit if signed). 3409 // This still works for a signed minimum value because the largest FP 3410 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3411 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3412 if (Inst->getOpcode() == Instruction::SIToFP) 3413 --IntSize; 3414 3415 // If the exponent of the largest finite FP value can hold the largest 3416 // integer, the result of the cast must be finite. 3417 Type *FPTy = Inst->getType()->getScalarType(); 3418 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3419 } 3420 default: 3421 break; 3422 } 3423 } 3424 3425 // try to handle fixed width vector constants 3426 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3427 if (VFVTy && isa<Constant>(V)) { 3428 // For vectors, verify that each element is not infinity. 3429 unsigned NumElts = VFVTy->getNumElements(); 3430 for (unsigned i = 0; i != NumElts; ++i) { 3431 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3432 if (!Elt) 3433 return false; 3434 if (isa<UndefValue>(Elt)) 3435 continue; 3436 auto *CElt = dyn_cast<ConstantFP>(Elt); 3437 if (!CElt || CElt->isInfinity()) 3438 return false; 3439 } 3440 // All elements were confirmed non-infinity or undefined. 3441 return true; 3442 } 3443 3444 // was not able to prove that V never contains infinity 3445 return false; 3446 } 3447 3448 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3449 unsigned Depth) { 3450 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3451 3452 // If we're told that NaNs won't happen, assume they won't. 3453 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3454 if (FPMathOp->hasNoNaNs()) 3455 return true; 3456 3457 // Handle scalar constants. 3458 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3459 return !CFP->isNaN(); 3460 3461 if (Depth == MaxAnalysisRecursionDepth) 3462 return false; 3463 3464 if (auto *Inst = dyn_cast<Instruction>(V)) { 3465 switch (Inst->getOpcode()) { 3466 case Instruction::FAdd: 3467 case Instruction::FSub: 3468 // Adding positive and negative infinity produces NaN. 3469 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3470 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3471 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3472 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3473 3474 case Instruction::FMul: 3475 // Zero multiplied with infinity produces NaN. 3476 // FIXME: If neither side can be zero fmul never produces NaN. 3477 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3478 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3479 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3480 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3481 3482 case Instruction::FDiv: 3483 case Instruction::FRem: 3484 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3485 return false; 3486 3487 case Instruction::Select: { 3488 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3489 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3490 } 3491 case Instruction::SIToFP: 3492 case Instruction::UIToFP: 3493 return true; 3494 case Instruction::FPTrunc: 3495 case Instruction::FPExt: 3496 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3497 default: 3498 break; 3499 } 3500 } 3501 3502 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3503 switch (II->getIntrinsicID()) { 3504 case Intrinsic::canonicalize: 3505 case Intrinsic::fabs: 3506 case Intrinsic::copysign: 3507 case Intrinsic::exp: 3508 case Intrinsic::exp2: 3509 case Intrinsic::floor: 3510 case Intrinsic::ceil: 3511 case Intrinsic::trunc: 3512 case Intrinsic::rint: 3513 case Intrinsic::nearbyint: 3514 case Intrinsic::round: 3515 case Intrinsic::roundeven: 3516 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3517 case Intrinsic::sqrt: 3518 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3519 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3520 case Intrinsic::minnum: 3521 case Intrinsic::maxnum: 3522 // If either operand is not NaN, the result is not NaN. 3523 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3524 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3525 default: 3526 return false; 3527 } 3528 } 3529 3530 // Try to handle fixed width vector constants 3531 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3532 if (VFVTy && isa<Constant>(V)) { 3533 // For vectors, verify that each element is not NaN. 3534 unsigned NumElts = VFVTy->getNumElements(); 3535 for (unsigned i = 0; i != NumElts; ++i) { 3536 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3537 if (!Elt) 3538 return false; 3539 if (isa<UndefValue>(Elt)) 3540 continue; 3541 auto *CElt = dyn_cast<ConstantFP>(Elt); 3542 if (!CElt || CElt->isNaN()) 3543 return false; 3544 } 3545 // All elements were confirmed not-NaN or undefined. 3546 return true; 3547 } 3548 3549 // Was not able to prove that V never contains NaN 3550 return false; 3551 } 3552 3553 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3554 3555 // All byte-wide stores are splatable, even of arbitrary variables. 3556 if (V->getType()->isIntegerTy(8)) 3557 return V; 3558 3559 LLVMContext &Ctx = V->getContext(); 3560 3561 // Undef don't care. 3562 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3563 if (isa<UndefValue>(V)) 3564 return UndefInt8; 3565 3566 // Return Undef for zero-sized type. 3567 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3568 return UndefInt8; 3569 3570 Constant *C = dyn_cast<Constant>(V); 3571 if (!C) { 3572 // Conceptually, we could handle things like: 3573 // %a = zext i8 %X to i16 3574 // %b = shl i16 %a, 8 3575 // %c = or i16 %a, %b 3576 // but until there is an example that actually needs this, it doesn't seem 3577 // worth worrying about. 3578 return nullptr; 3579 } 3580 3581 // Handle 'null' ConstantArrayZero etc. 3582 if (C->isNullValue()) 3583 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3584 3585 // Constant floating-point values can be handled as integer values if the 3586 // corresponding integer value is "byteable". An important case is 0.0. 3587 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3588 Type *Ty = nullptr; 3589 if (CFP->getType()->isHalfTy()) 3590 Ty = Type::getInt16Ty(Ctx); 3591 else if (CFP->getType()->isFloatTy()) 3592 Ty = Type::getInt32Ty(Ctx); 3593 else if (CFP->getType()->isDoubleTy()) 3594 Ty = Type::getInt64Ty(Ctx); 3595 // Don't handle long double formats, which have strange constraints. 3596 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3597 : nullptr; 3598 } 3599 3600 // We can handle constant integers that are multiple of 8 bits. 3601 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3602 if (CI->getBitWidth() % 8 == 0) { 3603 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3604 if (!CI->getValue().isSplat(8)) 3605 return nullptr; 3606 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3607 } 3608 } 3609 3610 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3611 if (CE->getOpcode() == Instruction::IntToPtr) { 3612 auto PS = DL.getPointerSizeInBits( 3613 cast<PointerType>(CE->getType())->getAddressSpace()); 3614 return isBytewiseValue( 3615 ConstantExpr::getIntegerCast(CE->getOperand(0), 3616 Type::getIntNTy(Ctx, PS), false), 3617 DL); 3618 } 3619 } 3620 3621 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3622 if (LHS == RHS) 3623 return LHS; 3624 if (!LHS || !RHS) 3625 return nullptr; 3626 if (LHS == UndefInt8) 3627 return RHS; 3628 if (RHS == UndefInt8) 3629 return LHS; 3630 return nullptr; 3631 }; 3632 3633 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3634 Value *Val = UndefInt8; 3635 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3636 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3637 return nullptr; 3638 return Val; 3639 } 3640 3641 if (isa<ConstantAggregate>(C)) { 3642 Value *Val = UndefInt8; 3643 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3644 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3645 return nullptr; 3646 return Val; 3647 } 3648 3649 // Don't try to handle the handful of other constants. 3650 return nullptr; 3651 } 3652 3653 // This is the recursive version of BuildSubAggregate. It takes a few different 3654 // arguments. Idxs is the index within the nested struct From that we are 3655 // looking at now (which is of type IndexedType). IdxSkip is the number of 3656 // indices from Idxs that should be left out when inserting into the resulting 3657 // struct. To is the result struct built so far, new insertvalue instructions 3658 // build on that. 3659 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3660 SmallVectorImpl<unsigned> &Idxs, 3661 unsigned IdxSkip, 3662 Instruction *InsertBefore) { 3663 StructType *STy = dyn_cast<StructType>(IndexedType); 3664 if (STy) { 3665 // Save the original To argument so we can modify it 3666 Value *OrigTo = To; 3667 // General case, the type indexed by Idxs is a struct 3668 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3669 // Process each struct element recursively 3670 Idxs.push_back(i); 3671 Value *PrevTo = To; 3672 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3673 InsertBefore); 3674 Idxs.pop_back(); 3675 if (!To) { 3676 // Couldn't find any inserted value for this index? Cleanup 3677 while (PrevTo != OrigTo) { 3678 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3679 PrevTo = Del->getAggregateOperand(); 3680 Del->eraseFromParent(); 3681 } 3682 // Stop processing elements 3683 break; 3684 } 3685 } 3686 // If we successfully found a value for each of our subaggregates 3687 if (To) 3688 return To; 3689 } 3690 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3691 // the struct's elements had a value that was inserted directly. In the latter 3692 // case, perhaps we can't determine each of the subelements individually, but 3693 // we might be able to find the complete struct somewhere. 3694 3695 // Find the value that is at that particular spot 3696 Value *V = FindInsertedValue(From, Idxs); 3697 3698 if (!V) 3699 return nullptr; 3700 3701 // Insert the value in the new (sub) aggregate 3702 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3703 "tmp", InsertBefore); 3704 } 3705 3706 // This helper takes a nested struct and extracts a part of it (which is again a 3707 // struct) into a new value. For example, given the struct: 3708 // { a, { b, { c, d }, e } } 3709 // and the indices "1, 1" this returns 3710 // { c, d }. 3711 // 3712 // It does this by inserting an insertvalue for each element in the resulting 3713 // struct, as opposed to just inserting a single struct. This will only work if 3714 // each of the elements of the substruct are known (ie, inserted into From by an 3715 // insertvalue instruction somewhere). 3716 // 3717 // All inserted insertvalue instructions are inserted before InsertBefore 3718 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3719 Instruction *InsertBefore) { 3720 assert(InsertBefore && "Must have someplace to insert!"); 3721 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3722 idx_range); 3723 Value *To = UndefValue::get(IndexedType); 3724 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3725 unsigned IdxSkip = Idxs.size(); 3726 3727 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3728 } 3729 3730 /// Given an aggregate and a sequence of indices, see if the scalar value 3731 /// indexed is already around as a register, for example if it was inserted 3732 /// directly into the aggregate. 3733 /// 3734 /// If InsertBefore is not null, this function will duplicate (modified) 3735 /// insertvalues when a part of a nested struct is extracted. 3736 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3737 Instruction *InsertBefore) { 3738 // Nothing to index? Just return V then (this is useful at the end of our 3739 // recursion). 3740 if (idx_range.empty()) 3741 return V; 3742 // We have indices, so V should have an indexable type. 3743 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3744 "Not looking at a struct or array?"); 3745 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3746 "Invalid indices for type?"); 3747 3748 if (Constant *C = dyn_cast<Constant>(V)) { 3749 C = C->getAggregateElement(idx_range[0]); 3750 if (!C) return nullptr; 3751 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3752 } 3753 3754 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3755 // Loop the indices for the insertvalue instruction in parallel with the 3756 // requested indices 3757 const unsigned *req_idx = idx_range.begin(); 3758 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3759 i != e; ++i, ++req_idx) { 3760 if (req_idx == idx_range.end()) { 3761 // We can't handle this without inserting insertvalues 3762 if (!InsertBefore) 3763 return nullptr; 3764 3765 // The requested index identifies a part of a nested aggregate. Handle 3766 // this specially. For example, 3767 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3768 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3769 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3770 // This can be changed into 3771 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3772 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3773 // which allows the unused 0,0 element from the nested struct to be 3774 // removed. 3775 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3776 InsertBefore); 3777 } 3778 3779 // This insert value inserts something else than what we are looking for. 3780 // See if the (aggregate) value inserted into has the value we are 3781 // looking for, then. 3782 if (*req_idx != *i) 3783 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3784 InsertBefore); 3785 } 3786 // If we end up here, the indices of the insertvalue match with those 3787 // requested (though possibly only partially). Now we recursively look at 3788 // the inserted value, passing any remaining indices. 3789 return FindInsertedValue(I->getInsertedValueOperand(), 3790 makeArrayRef(req_idx, idx_range.end()), 3791 InsertBefore); 3792 } 3793 3794 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3795 // If we're extracting a value from an aggregate that was extracted from 3796 // something else, we can extract from that something else directly instead. 3797 // However, we will need to chain I's indices with the requested indices. 3798 3799 // Calculate the number of indices required 3800 unsigned size = I->getNumIndices() + idx_range.size(); 3801 // Allocate some space to put the new indices in 3802 SmallVector<unsigned, 5> Idxs; 3803 Idxs.reserve(size); 3804 // Add indices from the extract value instruction 3805 Idxs.append(I->idx_begin(), I->idx_end()); 3806 3807 // Add requested indices 3808 Idxs.append(idx_range.begin(), idx_range.end()); 3809 3810 assert(Idxs.size() == size 3811 && "Number of indices added not correct?"); 3812 3813 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3814 } 3815 // Otherwise, we don't know (such as, extracting from a function return value 3816 // or load instruction) 3817 return nullptr; 3818 } 3819 3820 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3821 unsigned CharSize) { 3822 // Make sure the GEP has exactly three arguments. 3823 if (GEP->getNumOperands() != 3) 3824 return false; 3825 3826 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3827 // CharSize. 3828 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3829 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3830 return false; 3831 3832 // Check to make sure that the first operand of the GEP is an integer and 3833 // has value 0 so that we are sure we're indexing into the initializer. 3834 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3835 if (!FirstIdx || !FirstIdx->isZero()) 3836 return false; 3837 3838 return true; 3839 } 3840 3841 bool llvm::getConstantDataArrayInfo(const Value *V, 3842 ConstantDataArraySlice &Slice, 3843 unsigned ElementSize, uint64_t Offset) { 3844 assert(V); 3845 3846 // Look through bitcast instructions and geps. 3847 V = V->stripPointerCasts(); 3848 3849 // If the value is a GEP instruction or constant expression, treat it as an 3850 // offset. 3851 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3852 // The GEP operator should be based on a pointer to string constant, and is 3853 // indexing into the string constant. 3854 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3855 return false; 3856 3857 // If the second index isn't a ConstantInt, then this is a variable index 3858 // into the array. If this occurs, we can't say anything meaningful about 3859 // the string. 3860 uint64_t StartIdx = 0; 3861 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3862 StartIdx = CI->getZExtValue(); 3863 else 3864 return false; 3865 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3866 StartIdx + Offset); 3867 } 3868 3869 // The GEP instruction, constant or instruction, must reference a global 3870 // variable that is a constant and is initialized. The referenced constant 3871 // initializer is the array that we'll use for optimization. 3872 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3873 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3874 return false; 3875 3876 const ConstantDataArray *Array; 3877 ArrayType *ArrayTy; 3878 if (GV->getInitializer()->isNullValue()) { 3879 Type *GVTy = GV->getValueType(); 3880 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3881 // A zeroinitializer for the array; there is no ConstantDataArray. 3882 Array = nullptr; 3883 } else { 3884 const DataLayout &DL = GV->getParent()->getDataLayout(); 3885 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3886 uint64_t Length = SizeInBytes / (ElementSize / 8); 3887 if (Length <= Offset) 3888 return false; 3889 3890 Slice.Array = nullptr; 3891 Slice.Offset = 0; 3892 Slice.Length = Length - Offset; 3893 return true; 3894 } 3895 } else { 3896 // This must be a ConstantDataArray. 3897 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3898 if (!Array) 3899 return false; 3900 ArrayTy = Array->getType(); 3901 } 3902 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3903 return false; 3904 3905 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3906 if (Offset > NumElts) 3907 return false; 3908 3909 Slice.Array = Array; 3910 Slice.Offset = Offset; 3911 Slice.Length = NumElts - Offset; 3912 return true; 3913 } 3914 3915 /// This function computes the length of a null-terminated C string pointed to 3916 /// by V. If successful, it returns true and returns the string in Str. 3917 /// If unsuccessful, it returns false. 3918 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3919 uint64_t Offset, bool TrimAtNul) { 3920 ConstantDataArraySlice Slice; 3921 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3922 return false; 3923 3924 if (Slice.Array == nullptr) { 3925 if (TrimAtNul) { 3926 Str = StringRef(); 3927 return true; 3928 } 3929 if (Slice.Length == 1) { 3930 Str = StringRef("", 1); 3931 return true; 3932 } 3933 // We cannot instantiate a StringRef as we do not have an appropriate string 3934 // of 0s at hand. 3935 return false; 3936 } 3937 3938 // Start out with the entire array in the StringRef. 3939 Str = Slice.Array->getAsString(); 3940 // Skip over 'offset' bytes. 3941 Str = Str.substr(Slice.Offset); 3942 3943 if (TrimAtNul) { 3944 // Trim off the \0 and anything after it. If the array is not nul 3945 // terminated, we just return the whole end of string. The client may know 3946 // some other way that the string is length-bound. 3947 Str = Str.substr(0, Str.find('\0')); 3948 } 3949 return true; 3950 } 3951 3952 // These next two are very similar to the above, but also look through PHI 3953 // nodes. 3954 // TODO: See if we can integrate these two together. 3955 3956 /// If we can compute the length of the string pointed to by 3957 /// the specified pointer, return 'len+1'. If we can't, return 0. 3958 static uint64_t GetStringLengthH(const Value *V, 3959 SmallPtrSetImpl<const PHINode*> &PHIs, 3960 unsigned CharSize) { 3961 // Look through noop bitcast instructions. 3962 V = V->stripPointerCasts(); 3963 3964 // If this is a PHI node, there are two cases: either we have already seen it 3965 // or we haven't. 3966 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3967 if (!PHIs.insert(PN).second) 3968 return ~0ULL; // already in the set. 3969 3970 // If it was new, see if all the input strings are the same length. 3971 uint64_t LenSoFar = ~0ULL; 3972 for (Value *IncValue : PN->incoming_values()) { 3973 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3974 if (Len == 0) return 0; // Unknown length -> unknown. 3975 3976 if (Len == ~0ULL) continue; 3977 3978 if (Len != LenSoFar && LenSoFar != ~0ULL) 3979 return 0; // Disagree -> unknown. 3980 LenSoFar = Len; 3981 } 3982 3983 // Success, all agree. 3984 return LenSoFar; 3985 } 3986 3987 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3988 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3989 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3990 if (Len1 == 0) return 0; 3991 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3992 if (Len2 == 0) return 0; 3993 if (Len1 == ~0ULL) return Len2; 3994 if (Len2 == ~0ULL) return Len1; 3995 if (Len1 != Len2) return 0; 3996 return Len1; 3997 } 3998 3999 // Otherwise, see if we can read the string. 4000 ConstantDataArraySlice Slice; 4001 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4002 return 0; 4003 4004 if (Slice.Array == nullptr) 4005 return 1; 4006 4007 // Search for nul characters 4008 unsigned NullIndex = 0; 4009 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4010 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4011 break; 4012 } 4013 4014 return NullIndex + 1; 4015 } 4016 4017 /// If we can compute the length of the string pointed to by 4018 /// the specified pointer, return 'len+1'. If we can't, return 0. 4019 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4020 if (!V->getType()->isPointerTy()) 4021 return 0; 4022 4023 SmallPtrSet<const PHINode*, 32> PHIs; 4024 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4025 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4026 // an empty string as a length. 4027 return Len == ~0ULL ? 1 : Len; 4028 } 4029 4030 const Value * 4031 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4032 bool MustPreserveNullness) { 4033 assert(Call && 4034 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4035 if (const Value *RV = Call->getReturnedArgOperand()) 4036 return RV; 4037 // This can be used only as a aliasing property. 4038 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4039 Call, MustPreserveNullness)) 4040 return Call->getArgOperand(0); 4041 return nullptr; 4042 } 4043 4044 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4045 const CallBase *Call, bool MustPreserveNullness) { 4046 switch (Call->getIntrinsicID()) { 4047 case Intrinsic::launder_invariant_group: 4048 case Intrinsic::strip_invariant_group: 4049 case Intrinsic::aarch64_irg: 4050 case Intrinsic::aarch64_tagp: 4051 return true; 4052 case Intrinsic::ptrmask: 4053 return !MustPreserveNullness; 4054 default: 4055 return false; 4056 } 4057 } 4058 4059 /// \p PN defines a loop-variant pointer to an object. Check if the 4060 /// previous iteration of the loop was referring to the same object as \p PN. 4061 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4062 const LoopInfo *LI) { 4063 // Find the loop-defined value. 4064 Loop *L = LI->getLoopFor(PN->getParent()); 4065 if (PN->getNumIncomingValues() != 2) 4066 return true; 4067 4068 // Find the value from previous iteration. 4069 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4070 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4071 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4072 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4073 return true; 4074 4075 // If a new pointer is loaded in the loop, the pointer references a different 4076 // object in every iteration. E.g.: 4077 // for (i) 4078 // int *p = a[i]; 4079 // ... 4080 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4081 if (!L->isLoopInvariant(Load->getPointerOperand())) 4082 return false; 4083 return true; 4084 } 4085 4086 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4087 if (!V->getType()->isPointerTy()) 4088 return V; 4089 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4090 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4091 V = GEP->getPointerOperand(); 4092 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4093 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4094 V = cast<Operator>(V)->getOperand(0); 4095 if (!V->getType()->isPointerTy()) 4096 return V; 4097 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4098 if (GA->isInterposable()) 4099 return V; 4100 V = GA->getAliasee(); 4101 } else { 4102 if (auto *PHI = dyn_cast<PHINode>(V)) { 4103 // Look through single-arg phi nodes created by LCSSA. 4104 if (PHI->getNumIncomingValues() == 1) { 4105 V = PHI->getIncomingValue(0); 4106 continue; 4107 } 4108 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4109 // CaptureTracking can know about special capturing properties of some 4110 // intrinsics like launder.invariant.group, that can't be expressed with 4111 // the attributes, but have properties like returning aliasing pointer. 4112 // Because some analysis may assume that nocaptured pointer is not 4113 // returned from some special intrinsic (because function would have to 4114 // be marked with returns attribute), it is crucial to use this function 4115 // because it should be in sync with CaptureTracking. Not using it may 4116 // cause weird miscompilations where 2 aliasing pointers are assumed to 4117 // noalias. 4118 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4119 V = RP; 4120 continue; 4121 } 4122 } 4123 4124 return V; 4125 } 4126 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4127 } 4128 return V; 4129 } 4130 4131 void llvm::getUnderlyingObjects(const Value *V, 4132 SmallVectorImpl<const Value *> &Objects, 4133 LoopInfo *LI, unsigned MaxLookup) { 4134 SmallPtrSet<const Value *, 4> Visited; 4135 SmallVector<const Value *, 4> Worklist; 4136 Worklist.push_back(V); 4137 do { 4138 const Value *P = Worklist.pop_back_val(); 4139 P = getUnderlyingObject(P, MaxLookup); 4140 4141 if (!Visited.insert(P).second) 4142 continue; 4143 4144 if (auto *SI = dyn_cast<SelectInst>(P)) { 4145 Worklist.push_back(SI->getTrueValue()); 4146 Worklist.push_back(SI->getFalseValue()); 4147 continue; 4148 } 4149 4150 if (auto *PN = dyn_cast<PHINode>(P)) { 4151 // If this PHI changes the underlying object in every iteration of the 4152 // loop, don't look through it. Consider: 4153 // int **A; 4154 // for (i) { 4155 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4156 // Curr = A[i]; 4157 // *Prev, *Curr; 4158 // 4159 // Prev is tracking Curr one iteration behind so they refer to different 4160 // underlying objects. 4161 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4162 isSameUnderlyingObjectInLoop(PN, LI)) 4163 for (Value *IncValue : PN->incoming_values()) 4164 Worklist.push_back(IncValue); 4165 continue; 4166 } 4167 4168 Objects.push_back(P); 4169 } while (!Worklist.empty()); 4170 } 4171 4172 /// This is the function that does the work of looking through basic 4173 /// ptrtoint+arithmetic+inttoptr sequences. 4174 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4175 do { 4176 if (const Operator *U = dyn_cast<Operator>(V)) { 4177 // If we find a ptrtoint, we can transfer control back to the 4178 // regular getUnderlyingObjectFromInt. 4179 if (U->getOpcode() == Instruction::PtrToInt) 4180 return U->getOperand(0); 4181 // If we find an add of a constant, a multiplied value, or a phi, it's 4182 // likely that the other operand will lead us to the base 4183 // object. We don't have to worry about the case where the 4184 // object address is somehow being computed by the multiply, 4185 // because our callers only care when the result is an 4186 // identifiable object. 4187 if (U->getOpcode() != Instruction::Add || 4188 (!isa<ConstantInt>(U->getOperand(1)) && 4189 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4190 !isa<PHINode>(U->getOperand(1)))) 4191 return V; 4192 V = U->getOperand(0); 4193 } else { 4194 return V; 4195 } 4196 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4197 } while (true); 4198 } 4199 4200 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4201 /// ptrtoint+arithmetic+inttoptr sequences. 4202 /// It returns false if unidentified object is found in getUnderlyingObjects. 4203 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4204 SmallVectorImpl<Value *> &Objects) { 4205 SmallPtrSet<const Value *, 16> Visited; 4206 SmallVector<const Value *, 4> Working(1, V); 4207 do { 4208 V = Working.pop_back_val(); 4209 4210 SmallVector<const Value *, 4> Objs; 4211 getUnderlyingObjects(V, Objs); 4212 4213 for (const Value *V : Objs) { 4214 if (!Visited.insert(V).second) 4215 continue; 4216 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4217 const Value *O = 4218 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4219 if (O->getType()->isPointerTy()) { 4220 Working.push_back(O); 4221 continue; 4222 } 4223 } 4224 // If getUnderlyingObjects fails to find an identifiable object, 4225 // getUnderlyingObjectsForCodeGen also fails for safety. 4226 if (!isIdentifiedObject(V)) { 4227 Objects.clear(); 4228 return false; 4229 } 4230 Objects.push_back(const_cast<Value *>(V)); 4231 } 4232 } while (!Working.empty()); 4233 return true; 4234 } 4235 4236 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4237 AllocaInst *Result = nullptr; 4238 SmallPtrSet<Value *, 4> Visited; 4239 SmallVector<Value *, 4> Worklist; 4240 4241 auto AddWork = [&](Value *V) { 4242 if (Visited.insert(V).second) 4243 Worklist.push_back(V); 4244 }; 4245 4246 AddWork(V); 4247 do { 4248 V = Worklist.pop_back_val(); 4249 assert(Visited.count(V)); 4250 4251 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4252 if (Result && Result != AI) 4253 return nullptr; 4254 Result = AI; 4255 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4256 AddWork(CI->getOperand(0)); 4257 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4258 for (Value *IncValue : PN->incoming_values()) 4259 AddWork(IncValue); 4260 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4261 AddWork(SI->getTrueValue()); 4262 AddWork(SI->getFalseValue()); 4263 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4264 if (OffsetZero && !GEP->hasAllZeroIndices()) 4265 return nullptr; 4266 AddWork(GEP->getPointerOperand()); 4267 } else { 4268 return nullptr; 4269 } 4270 } while (!Worklist.empty()); 4271 4272 return Result; 4273 } 4274 4275 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4276 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4277 for (const User *U : V->users()) { 4278 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4279 if (!II) 4280 return false; 4281 4282 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4283 continue; 4284 4285 if (AllowDroppable && II->isDroppable()) 4286 continue; 4287 4288 return false; 4289 } 4290 return true; 4291 } 4292 4293 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4294 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4295 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4296 } 4297 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4298 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4299 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4300 } 4301 4302 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4303 if (!LI.isUnordered()) 4304 return true; 4305 const Function &F = *LI.getFunction(); 4306 // Speculative load may create a race that did not exist in the source. 4307 return F.hasFnAttribute(Attribute::SanitizeThread) || 4308 // Speculative load may load data from dirty regions. 4309 F.hasFnAttribute(Attribute::SanitizeAddress) || 4310 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4311 } 4312 4313 4314 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4315 const Instruction *CtxI, 4316 const DominatorTree *DT) { 4317 const Operator *Inst = dyn_cast<Operator>(V); 4318 if (!Inst) 4319 return false; 4320 4321 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4322 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4323 if (C->canTrap()) 4324 return false; 4325 4326 switch (Inst->getOpcode()) { 4327 default: 4328 return true; 4329 case Instruction::UDiv: 4330 case Instruction::URem: { 4331 // x / y is undefined if y == 0. 4332 const APInt *V; 4333 if (match(Inst->getOperand(1), m_APInt(V))) 4334 return *V != 0; 4335 return false; 4336 } 4337 case Instruction::SDiv: 4338 case Instruction::SRem: { 4339 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4340 const APInt *Numerator, *Denominator; 4341 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4342 return false; 4343 // We cannot hoist this division if the denominator is 0. 4344 if (*Denominator == 0) 4345 return false; 4346 // It's safe to hoist if the denominator is not 0 or -1. 4347 if (*Denominator != -1) 4348 return true; 4349 // At this point we know that the denominator is -1. It is safe to hoist as 4350 // long we know that the numerator is not INT_MIN. 4351 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4352 return !Numerator->isMinSignedValue(); 4353 // The numerator *might* be MinSignedValue. 4354 return false; 4355 } 4356 case Instruction::Load: { 4357 const LoadInst *LI = cast<LoadInst>(Inst); 4358 if (mustSuppressSpeculation(*LI)) 4359 return false; 4360 const DataLayout &DL = LI->getModule()->getDataLayout(); 4361 return isDereferenceableAndAlignedPointer( 4362 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4363 DL, CtxI, DT); 4364 } 4365 case Instruction::Call: { 4366 auto *CI = cast<const CallInst>(Inst); 4367 const Function *Callee = CI->getCalledFunction(); 4368 4369 // The called function could have undefined behavior or side-effects, even 4370 // if marked readnone nounwind. 4371 return Callee && Callee->isSpeculatable(); 4372 } 4373 case Instruction::VAArg: 4374 case Instruction::Alloca: 4375 case Instruction::Invoke: 4376 case Instruction::CallBr: 4377 case Instruction::PHI: 4378 case Instruction::Store: 4379 case Instruction::Ret: 4380 case Instruction::Br: 4381 case Instruction::IndirectBr: 4382 case Instruction::Switch: 4383 case Instruction::Unreachable: 4384 case Instruction::Fence: 4385 case Instruction::AtomicRMW: 4386 case Instruction::AtomicCmpXchg: 4387 case Instruction::LandingPad: 4388 case Instruction::Resume: 4389 case Instruction::CatchSwitch: 4390 case Instruction::CatchPad: 4391 case Instruction::CatchRet: 4392 case Instruction::CleanupPad: 4393 case Instruction::CleanupRet: 4394 return false; // Misc instructions which have effects 4395 } 4396 } 4397 4398 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4399 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4400 } 4401 4402 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4403 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4404 switch (OR) { 4405 case ConstantRange::OverflowResult::MayOverflow: 4406 return OverflowResult::MayOverflow; 4407 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4408 return OverflowResult::AlwaysOverflowsLow; 4409 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4410 return OverflowResult::AlwaysOverflowsHigh; 4411 case ConstantRange::OverflowResult::NeverOverflows: 4412 return OverflowResult::NeverOverflows; 4413 } 4414 llvm_unreachable("Unknown OverflowResult"); 4415 } 4416 4417 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4418 static ConstantRange computeConstantRangeIncludingKnownBits( 4419 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4420 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4421 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4422 KnownBits Known = computeKnownBits( 4423 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4424 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4425 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4426 ConstantRange::PreferredRangeType RangeType = 4427 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4428 return CR1.intersectWith(CR2, RangeType); 4429 } 4430 4431 OverflowResult llvm::computeOverflowForUnsignedMul( 4432 const Value *LHS, const Value *RHS, const DataLayout &DL, 4433 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4434 bool UseInstrInfo) { 4435 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4436 nullptr, UseInstrInfo); 4437 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4438 nullptr, UseInstrInfo); 4439 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4440 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4441 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4442 } 4443 4444 OverflowResult 4445 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4446 const DataLayout &DL, AssumptionCache *AC, 4447 const Instruction *CxtI, 4448 const DominatorTree *DT, bool UseInstrInfo) { 4449 // Multiplying n * m significant bits yields a result of n + m significant 4450 // bits. If the total number of significant bits does not exceed the 4451 // result bit width (minus 1), there is no overflow. 4452 // This means if we have enough leading sign bits in the operands 4453 // we can guarantee that the result does not overflow. 4454 // Ref: "Hacker's Delight" by Henry Warren 4455 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4456 4457 // Note that underestimating the number of sign bits gives a more 4458 // conservative answer. 4459 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4460 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4461 4462 // First handle the easy case: if we have enough sign bits there's 4463 // definitely no overflow. 4464 if (SignBits > BitWidth + 1) 4465 return OverflowResult::NeverOverflows; 4466 4467 // There are two ambiguous cases where there can be no overflow: 4468 // SignBits == BitWidth + 1 and 4469 // SignBits == BitWidth 4470 // The second case is difficult to check, therefore we only handle the 4471 // first case. 4472 if (SignBits == BitWidth + 1) { 4473 // It overflows only when both arguments are negative and the true 4474 // product is exactly the minimum negative number. 4475 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4476 // For simplicity we just check if at least one side is not negative. 4477 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4478 nullptr, UseInstrInfo); 4479 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4480 nullptr, UseInstrInfo); 4481 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4482 return OverflowResult::NeverOverflows; 4483 } 4484 return OverflowResult::MayOverflow; 4485 } 4486 4487 OverflowResult llvm::computeOverflowForUnsignedAdd( 4488 const Value *LHS, const Value *RHS, const DataLayout &DL, 4489 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4490 bool UseInstrInfo) { 4491 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4492 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4493 nullptr, UseInstrInfo); 4494 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4495 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4496 nullptr, UseInstrInfo); 4497 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4498 } 4499 4500 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4501 const Value *RHS, 4502 const AddOperator *Add, 4503 const DataLayout &DL, 4504 AssumptionCache *AC, 4505 const Instruction *CxtI, 4506 const DominatorTree *DT) { 4507 if (Add && Add->hasNoSignedWrap()) { 4508 return OverflowResult::NeverOverflows; 4509 } 4510 4511 // If LHS and RHS each have at least two sign bits, the addition will look 4512 // like 4513 // 4514 // XX..... + 4515 // YY..... 4516 // 4517 // If the carry into the most significant position is 0, X and Y can't both 4518 // be 1 and therefore the carry out of the addition is also 0. 4519 // 4520 // If the carry into the most significant position is 1, X and Y can't both 4521 // be 0 and therefore the carry out of the addition is also 1. 4522 // 4523 // Since the carry into the most significant position is always equal to 4524 // the carry out of the addition, there is no signed overflow. 4525 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4526 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4527 return OverflowResult::NeverOverflows; 4528 4529 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4530 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4531 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4532 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4533 OverflowResult OR = 4534 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4535 if (OR != OverflowResult::MayOverflow) 4536 return OR; 4537 4538 // The remaining code needs Add to be available. Early returns if not so. 4539 if (!Add) 4540 return OverflowResult::MayOverflow; 4541 4542 // If the sign of Add is the same as at least one of the operands, this add 4543 // CANNOT overflow. If this can be determined from the known bits of the 4544 // operands the above signedAddMayOverflow() check will have already done so. 4545 // The only other way to improve on the known bits is from an assumption, so 4546 // call computeKnownBitsFromAssume() directly. 4547 bool LHSOrRHSKnownNonNegative = 4548 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4549 bool LHSOrRHSKnownNegative = 4550 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4551 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4552 KnownBits AddKnown(LHSRange.getBitWidth()); 4553 computeKnownBitsFromAssume( 4554 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4555 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4556 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4557 return OverflowResult::NeverOverflows; 4558 } 4559 4560 return OverflowResult::MayOverflow; 4561 } 4562 4563 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4564 const Value *RHS, 4565 const DataLayout &DL, 4566 AssumptionCache *AC, 4567 const Instruction *CxtI, 4568 const DominatorTree *DT) { 4569 // Checking for conditions implied by dominating conditions may be expensive. 4570 // Limit it to usub_with_overflow calls for now. 4571 if (match(CxtI, 4572 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4573 if (auto C = 4574 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4575 if (*C) 4576 return OverflowResult::NeverOverflows; 4577 return OverflowResult::AlwaysOverflowsLow; 4578 } 4579 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4580 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4581 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4582 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4583 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4584 } 4585 4586 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4587 const Value *RHS, 4588 const DataLayout &DL, 4589 AssumptionCache *AC, 4590 const Instruction *CxtI, 4591 const DominatorTree *DT) { 4592 // If LHS and RHS each have at least two sign bits, the subtraction 4593 // cannot overflow. 4594 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4595 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4596 return OverflowResult::NeverOverflows; 4597 4598 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4599 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4600 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4601 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4602 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4603 } 4604 4605 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4606 const DominatorTree &DT) { 4607 SmallVector<const BranchInst *, 2> GuardingBranches; 4608 SmallVector<const ExtractValueInst *, 2> Results; 4609 4610 for (const User *U : WO->users()) { 4611 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4612 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4613 4614 if (EVI->getIndices()[0] == 0) 4615 Results.push_back(EVI); 4616 else { 4617 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4618 4619 for (const auto *U : EVI->users()) 4620 if (const auto *B = dyn_cast<BranchInst>(U)) { 4621 assert(B->isConditional() && "How else is it using an i1?"); 4622 GuardingBranches.push_back(B); 4623 } 4624 } 4625 } else { 4626 // We are using the aggregate directly in a way we don't want to analyze 4627 // here (storing it to a global, say). 4628 return false; 4629 } 4630 } 4631 4632 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4633 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4634 if (!NoWrapEdge.isSingleEdge()) 4635 return false; 4636 4637 // Check if all users of the add are provably no-wrap. 4638 for (const auto *Result : Results) { 4639 // If the extractvalue itself is not executed on overflow, the we don't 4640 // need to check each use separately, since domination is transitive. 4641 if (DT.dominates(NoWrapEdge, Result->getParent())) 4642 continue; 4643 4644 for (auto &RU : Result->uses()) 4645 if (!DT.dominates(NoWrapEdge, RU)) 4646 return false; 4647 } 4648 4649 return true; 4650 }; 4651 4652 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4653 } 4654 4655 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4656 // See whether I has flags that may create poison 4657 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4658 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4659 return true; 4660 } 4661 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4662 if (ExactOp->isExact()) 4663 return true; 4664 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4665 auto FMF = FP->getFastMathFlags(); 4666 if (FMF.noNaNs() || FMF.noInfs()) 4667 return true; 4668 } 4669 4670 unsigned Opcode = Op->getOpcode(); 4671 4672 // Check whether opcode is a poison/undef-generating operation 4673 switch (Opcode) { 4674 case Instruction::Shl: 4675 case Instruction::AShr: 4676 case Instruction::LShr: { 4677 // Shifts return poison if shiftwidth is larger than the bitwidth. 4678 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4679 SmallVector<Constant *, 4> ShiftAmounts; 4680 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4681 unsigned NumElts = FVTy->getNumElements(); 4682 for (unsigned i = 0; i < NumElts; ++i) 4683 ShiftAmounts.push_back(C->getAggregateElement(i)); 4684 } else if (isa<ScalableVectorType>(C->getType())) 4685 return true; // Can't tell, just return true to be safe 4686 else 4687 ShiftAmounts.push_back(C); 4688 4689 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4690 auto *CI = dyn_cast<ConstantInt>(C); 4691 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4692 }); 4693 return !Safe; 4694 } 4695 return true; 4696 } 4697 case Instruction::FPToSI: 4698 case Instruction::FPToUI: 4699 // fptosi/ui yields poison if the resulting value does not fit in the 4700 // destination type. 4701 return true; 4702 case Instruction::Call: 4703 case Instruction::CallBr: 4704 case Instruction::Invoke: { 4705 const auto *CB = cast<CallBase>(Op); 4706 return !CB->hasRetAttr(Attribute::NoUndef); 4707 } 4708 case Instruction::InsertElement: 4709 case Instruction::ExtractElement: { 4710 // If index exceeds the length of the vector, it returns poison 4711 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4712 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4713 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4714 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4715 return true; 4716 return false; 4717 } 4718 case Instruction::ShuffleVector: { 4719 // shufflevector may return undef. 4720 if (PoisonOnly) 4721 return false; 4722 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4723 ? cast<ConstantExpr>(Op)->getShuffleMask() 4724 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4725 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4726 } 4727 case Instruction::FNeg: 4728 case Instruction::PHI: 4729 case Instruction::Select: 4730 case Instruction::URem: 4731 case Instruction::SRem: 4732 case Instruction::ExtractValue: 4733 case Instruction::InsertValue: 4734 case Instruction::Freeze: 4735 case Instruction::ICmp: 4736 case Instruction::FCmp: 4737 return false; 4738 case Instruction::GetElementPtr: { 4739 const auto *GEP = cast<GEPOperator>(Op); 4740 return GEP->isInBounds(); 4741 } 4742 default: { 4743 const auto *CE = dyn_cast<ConstantExpr>(Op); 4744 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4745 return false; 4746 else if (Instruction::isBinaryOp(Opcode)) 4747 return false; 4748 // Be conservative and return true. 4749 return true; 4750 } 4751 } 4752 } 4753 4754 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4755 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4756 } 4757 4758 bool llvm::canCreatePoison(const Operator *Op) { 4759 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4760 } 4761 4762 static bool programUndefinedIfUndefOrPoison(const Value *V, 4763 bool PoisonOnly); 4764 4765 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4766 AssumptionCache *AC, 4767 const Instruction *CtxI, 4768 const DominatorTree *DT, 4769 unsigned Depth, bool PoisonOnly) { 4770 if (Depth >= MaxAnalysisRecursionDepth) 4771 return false; 4772 4773 if (isa<MetadataAsValue>(V)) 4774 return false; 4775 4776 if (const auto *A = dyn_cast<Argument>(V)) { 4777 if (A->hasAttribute(Attribute::NoUndef)) 4778 return true; 4779 } 4780 4781 if (auto *C = dyn_cast<Constant>(V)) { 4782 if (isa<UndefValue>(C)) 4783 return PoisonOnly; 4784 4785 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4786 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4787 return true; 4788 4789 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4790 return (PoisonOnly || !C->containsUndefElement()) && 4791 !C->containsConstantExpression(); 4792 } 4793 4794 // Strip cast operations from a pointer value. 4795 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4796 // inbounds with zero offset. To guarantee that the result isn't poison, the 4797 // stripped pointer is checked as it has to be pointing into an allocated 4798 // object or be null `null` to ensure `inbounds` getelement pointers with a 4799 // zero offset could not produce poison. 4800 // It can strip off addrspacecast that do not change bit representation as 4801 // well. We believe that such addrspacecast is equivalent to no-op. 4802 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4803 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4804 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4805 return true; 4806 4807 auto OpCheck = [&](const Value *V) { 4808 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4809 PoisonOnly); 4810 }; 4811 4812 if (auto *Opr = dyn_cast<Operator>(V)) { 4813 // If the value is a freeze instruction, then it can never 4814 // be undef or poison. 4815 if (isa<FreezeInst>(V)) 4816 return true; 4817 4818 if (const auto *CB = dyn_cast<CallBase>(V)) { 4819 if (CB->hasRetAttr(Attribute::NoUndef)) 4820 return true; 4821 } 4822 4823 if (const auto *PN = dyn_cast<PHINode>(V)) { 4824 unsigned Num = PN->getNumIncomingValues(); 4825 bool IsWellDefined = true; 4826 for (unsigned i = 0; i < Num; ++i) { 4827 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4828 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4829 DT, Depth + 1, PoisonOnly)) { 4830 IsWellDefined = false; 4831 break; 4832 } 4833 } 4834 if (IsWellDefined) 4835 return true; 4836 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4837 return true; 4838 } 4839 4840 if (auto *I = dyn_cast<LoadInst>(V)) 4841 if (I->getMetadata(LLVMContext::MD_noundef)) 4842 return true; 4843 4844 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4845 return true; 4846 4847 // CxtI may be null or a cloned instruction. 4848 if (!CtxI || !CtxI->getParent() || !DT) 4849 return false; 4850 4851 auto *DNode = DT->getNode(CtxI->getParent()); 4852 if (!DNode) 4853 // Unreachable block 4854 return false; 4855 4856 // If V is used as a branch condition before reaching CtxI, V cannot be 4857 // undef or poison. 4858 // br V, BB1, BB2 4859 // BB1: 4860 // CtxI ; V cannot be undef or poison here 4861 auto *Dominator = DNode->getIDom(); 4862 while (Dominator) { 4863 auto *TI = Dominator->getBlock()->getTerminator(); 4864 4865 Value *Cond = nullptr; 4866 if (auto BI = dyn_cast<BranchInst>(TI)) { 4867 if (BI->isConditional()) 4868 Cond = BI->getCondition(); 4869 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4870 Cond = SI->getCondition(); 4871 } 4872 4873 if (Cond) { 4874 if (Cond == V) 4875 return true; 4876 else if (PoisonOnly && isa<Operator>(Cond)) { 4877 // For poison, we can analyze further 4878 auto *Opr = cast<Operator>(Cond); 4879 if (propagatesPoison(Opr) && 4880 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4881 return true; 4882 } 4883 } 4884 4885 Dominator = Dominator->getIDom(); 4886 } 4887 4888 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4889 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4890 return true; 4891 4892 return false; 4893 } 4894 4895 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4896 const Instruction *CtxI, 4897 const DominatorTree *DT, 4898 unsigned Depth) { 4899 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4900 } 4901 4902 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4903 const Instruction *CtxI, 4904 const DominatorTree *DT, unsigned Depth) { 4905 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4906 } 4907 4908 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4909 const DataLayout &DL, 4910 AssumptionCache *AC, 4911 const Instruction *CxtI, 4912 const DominatorTree *DT) { 4913 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4914 Add, DL, AC, CxtI, DT); 4915 } 4916 4917 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4918 const Value *RHS, 4919 const DataLayout &DL, 4920 AssumptionCache *AC, 4921 const Instruction *CxtI, 4922 const DominatorTree *DT) { 4923 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4924 } 4925 4926 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4927 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4928 // of time because it's possible for another thread to interfere with it for an 4929 // arbitrary length of time, but programs aren't allowed to rely on that. 4930 4931 // If there is no successor, then execution can't transfer to it. 4932 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4933 return !CRI->unwindsToCaller(); 4934 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4935 return !CatchSwitch->unwindsToCaller(); 4936 if (isa<ResumeInst>(I)) 4937 return false; 4938 if (isa<ReturnInst>(I)) 4939 return false; 4940 if (isa<UnreachableInst>(I)) 4941 return false; 4942 4943 // Calls can throw, or contain an infinite loop, or kill the process. 4944 if (const auto *CB = dyn_cast<CallBase>(I)) { 4945 // Call sites that throw have implicit non-local control flow. 4946 if (!CB->doesNotThrow()) 4947 return false; 4948 4949 // A function which doens't throw and has "willreturn" attribute will 4950 // always return. 4951 if (CB->hasFnAttr(Attribute::WillReturn)) 4952 return true; 4953 4954 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4955 // etc. and thus not return. However, LLVM already assumes that 4956 // 4957 // - Thread exiting actions are modeled as writes to memory invisible to 4958 // the program. 4959 // 4960 // - Loops that don't have side effects (side effects are volatile/atomic 4961 // stores and IO) always terminate (see http://llvm.org/PR965). 4962 // Furthermore IO itself is also modeled as writes to memory invisible to 4963 // the program. 4964 // 4965 // We rely on those assumptions here, and use the memory effects of the call 4966 // target as a proxy for checking that it always returns. 4967 4968 // FIXME: This isn't aggressive enough; a call which only writes to a global 4969 // is guaranteed to return. 4970 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4971 } 4972 4973 // Other instructions return normally. 4974 return true; 4975 } 4976 4977 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4978 // TODO: This is slightly conservative for invoke instruction since exiting 4979 // via an exception *is* normal control for them. 4980 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4981 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4982 return false; 4983 return true; 4984 } 4985 4986 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4987 const Loop *L) { 4988 // The loop header is guaranteed to be executed for every iteration. 4989 // 4990 // FIXME: Relax this constraint to cover all basic blocks that are 4991 // guaranteed to be executed at every iteration. 4992 if (I->getParent() != L->getHeader()) return false; 4993 4994 for (const Instruction &LI : *L->getHeader()) { 4995 if (&LI == I) return true; 4996 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4997 } 4998 llvm_unreachable("Instruction not contained in its own parent basic block."); 4999 } 5000 5001 bool llvm::propagatesPoison(const Operator *I) { 5002 switch (I->getOpcode()) { 5003 case Instruction::Freeze: 5004 case Instruction::Select: 5005 case Instruction::PHI: 5006 case Instruction::Call: 5007 case Instruction::Invoke: 5008 return false; 5009 case Instruction::ICmp: 5010 case Instruction::FCmp: 5011 case Instruction::GetElementPtr: 5012 return true; 5013 default: 5014 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5015 return true; 5016 5017 // Be conservative and return false. 5018 return false; 5019 } 5020 } 5021 5022 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5023 SmallPtrSetImpl<const Value *> &Operands) { 5024 switch (I->getOpcode()) { 5025 case Instruction::Store: 5026 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5027 break; 5028 5029 case Instruction::Load: 5030 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5031 break; 5032 5033 case Instruction::AtomicCmpXchg: 5034 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5035 break; 5036 5037 case Instruction::AtomicRMW: 5038 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5039 break; 5040 5041 case Instruction::UDiv: 5042 case Instruction::SDiv: 5043 case Instruction::URem: 5044 case Instruction::SRem: 5045 Operands.insert(I->getOperand(1)); 5046 break; 5047 5048 case Instruction::Call: 5049 case Instruction::Invoke: { 5050 const CallBase *CB = cast<CallBase>(I); 5051 if (CB->isIndirectCall()) 5052 Operands.insert(CB->getCalledOperand()); 5053 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5054 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5055 Operands.insert(CB->getArgOperand(i)); 5056 } 5057 break; 5058 } 5059 5060 default: 5061 break; 5062 } 5063 } 5064 5065 bool llvm::mustTriggerUB(const Instruction *I, 5066 const SmallSet<const Value *, 16>& KnownPoison) { 5067 SmallPtrSet<const Value *, 4> NonPoisonOps; 5068 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5069 5070 for (const auto *V : NonPoisonOps) 5071 if (KnownPoison.count(V)) 5072 return true; 5073 5074 return false; 5075 } 5076 5077 static bool programUndefinedIfUndefOrPoison(const Value *V, 5078 bool PoisonOnly) { 5079 // We currently only look for uses of values within the same basic 5080 // block, as that makes it easier to guarantee that the uses will be 5081 // executed given that Inst is executed. 5082 // 5083 // FIXME: Expand this to consider uses beyond the same basic block. To do 5084 // this, look out for the distinction between post-dominance and strong 5085 // post-dominance. 5086 const BasicBlock *BB = nullptr; 5087 BasicBlock::const_iterator Begin; 5088 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5089 BB = Inst->getParent(); 5090 Begin = Inst->getIterator(); 5091 Begin++; 5092 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5093 BB = &Arg->getParent()->getEntryBlock(); 5094 Begin = BB->begin(); 5095 } else { 5096 return false; 5097 } 5098 5099 BasicBlock::const_iterator End = BB->end(); 5100 5101 if (!PoisonOnly) { 5102 // Be conservative & just check whether a value is passed to a noundef 5103 // argument. 5104 // Instructions that raise UB with a poison operand are well-defined 5105 // or have unclear semantics when the input is partially undef. 5106 // For example, 'udiv x, (undef | 1)' isn't UB. 5107 5108 for (auto &I : make_range(Begin, End)) { 5109 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5110 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5111 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5112 CB->getArgOperand(i) == V) 5113 return true; 5114 } 5115 } 5116 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5117 break; 5118 } 5119 return false; 5120 } 5121 5122 // Set of instructions that we have proved will yield poison if Inst 5123 // does. 5124 SmallSet<const Value *, 16> YieldsPoison; 5125 SmallSet<const BasicBlock *, 4> Visited; 5126 5127 YieldsPoison.insert(V); 5128 auto Propagate = [&](const User *User) { 5129 if (propagatesPoison(cast<Operator>(User))) 5130 YieldsPoison.insert(User); 5131 }; 5132 for_each(V->users(), Propagate); 5133 Visited.insert(BB); 5134 5135 unsigned Iter = 0; 5136 while (Iter++ < MaxAnalysisRecursionDepth) { 5137 for (auto &I : make_range(Begin, End)) { 5138 if (mustTriggerUB(&I, YieldsPoison)) 5139 return true; 5140 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5141 return false; 5142 5143 // Mark poison that propagates from I through uses of I. 5144 if (YieldsPoison.count(&I)) 5145 for_each(I.users(), Propagate); 5146 } 5147 5148 if (auto *NextBB = BB->getSingleSuccessor()) { 5149 if (Visited.insert(NextBB).second) { 5150 BB = NextBB; 5151 Begin = BB->getFirstNonPHI()->getIterator(); 5152 End = BB->end(); 5153 continue; 5154 } 5155 } 5156 5157 break; 5158 } 5159 return false; 5160 } 5161 5162 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5163 return ::programUndefinedIfUndefOrPoison(Inst, false); 5164 } 5165 5166 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5167 return ::programUndefinedIfUndefOrPoison(Inst, true); 5168 } 5169 5170 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5171 if (FMF.noNaNs()) 5172 return true; 5173 5174 if (auto *C = dyn_cast<ConstantFP>(V)) 5175 return !C->isNaN(); 5176 5177 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5178 if (!C->getElementType()->isFloatingPointTy()) 5179 return false; 5180 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5181 if (C->getElementAsAPFloat(I).isNaN()) 5182 return false; 5183 } 5184 return true; 5185 } 5186 5187 if (isa<ConstantAggregateZero>(V)) 5188 return true; 5189 5190 return false; 5191 } 5192 5193 static bool isKnownNonZero(const Value *V) { 5194 if (auto *C = dyn_cast<ConstantFP>(V)) 5195 return !C->isZero(); 5196 5197 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5198 if (!C->getElementType()->isFloatingPointTy()) 5199 return false; 5200 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5201 if (C->getElementAsAPFloat(I).isZero()) 5202 return false; 5203 } 5204 return true; 5205 } 5206 5207 return false; 5208 } 5209 5210 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5211 /// Given non-min/max outer cmp/select from the clamp pattern this 5212 /// function recognizes if it can be substitued by a "canonical" min/max 5213 /// pattern. 5214 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5215 Value *CmpLHS, Value *CmpRHS, 5216 Value *TrueVal, Value *FalseVal, 5217 Value *&LHS, Value *&RHS) { 5218 // Try to match 5219 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5220 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5221 // and return description of the outer Max/Min. 5222 5223 // First, check if select has inverse order: 5224 if (CmpRHS == FalseVal) { 5225 std::swap(TrueVal, FalseVal); 5226 Pred = CmpInst::getInversePredicate(Pred); 5227 } 5228 5229 // Assume success now. If there's no match, callers should not use these anyway. 5230 LHS = TrueVal; 5231 RHS = FalseVal; 5232 5233 const APFloat *FC1; 5234 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5235 return {SPF_UNKNOWN, SPNB_NA, false}; 5236 5237 const APFloat *FC2; 5238 switch (Pred) { 5239 case CmpInst::FCMP_OLT: 5240 case CmpInst::FCMP_OLE: 5241 case CmpInst::FCMP_ULT: 5242 case CmpInst::FCMP_ULE: 5243 if (match(FalseVal, 5244 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5245 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5246 *FC1 < *FC2) 5247 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5248 break; 5249 case CmpInst::FCMP_OGT: 5250 case CmpInst::FCMP_OGE: 5251 case CmpInst::FCMP_UGT: 5252 case CmpInst::FCMP_UGE: 5253 if (match(FalseVal, 5254 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5255 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5256 *FC1 > *FC2) 5257 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5258 break; 5259 default: 5260 break; 5261 } 5262 5263 return {SPF_UNKNOWN, SPNB_NA, false}; 5264 } 5265 5266 /// Recognize variations of: 5267 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5268 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5269 Value *CmpLHS, Value *CmpRHS, 5270 Value *TrueVal, Value *FalseVal) { 5271 // Swap the select operands and predicate to match the patterns below. 5272 if (CmpRHS != TrueVal) { 5273 Pred = ICmpInst::getSwappedPredicate(Pred); 5274 std::swap(TrueVal, FalseVal); 5275 } 5276 const APInt *C1; 5277 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5278 const APInt *C2; 5279 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5280 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5281 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5282 return {SPF_SMAX, SPNB_NA, false}; 5283 5284 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5285 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5286 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5287 return {SPF_SMIN, SPNB_NA, false}; 5288 5289 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5290 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5291 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5292 return {SPF_UMAX, SPNB_NA, false}; 5293 5294 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5295 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5296 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5297 return {SPF_UMIN, SPNB_NA, false}; 5298 } 5299 return {SPF_UNKNOWN, SPNB_NA, false}; 5300 } 5301 5302 /// Recognize variations of: 5303 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5304 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5305 Value *CmpLHS, Value *CmpRHS, 5306 Value *TVal, Value *FVal, 5307 unsigned Depth) { 5308 // TODO: Allow FP min/max with nnan/nsz. 5309 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5310 5311 Value *A = nullptr, *B = nullptr; 5312 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5313 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5314 return {SPF_UNKNOWN, SPNB_NA, false}; 5315 5316 Value *C = nullptr, *D = nullptr; 5317 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5318 if (L.Flavor != R.Flavor) 5319 return {SPF_UNKNOWN, SPNB_NA, false}; 5320 5321 // We have something like: x Pred y ? min(a, b) : min(c, d). 5322 // Try to match the compare to the min/max operations of the select operands. 5323 // First, make sure we have the right compare predicate. 5324 switch (L.Flavor) { 5325 case SPF_SMIN: 5326 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5327 Pred = ICmpInst::getSwappedPredicate(Pred); 5328 std::swap(CmpLHS, CmpRHS); 5329 } 5330 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5331 break; 5332 return {SPF_UNKNOWN, SPNB_NA, false}; 5333 case SPF_SMAX: 5334 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5335 Pred = ICmpInst::getSwappedPredicate(Pred); 5336 std::swap(CmpLHS, CmpRHS); 5337 } 5338 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5339 break; 5340 return {SPF_UNKNOWN, SPNB_NA, false}; 5341 case SPF_UMIN: 5342 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5343 Pred = ICmpInst::getSwappedPredicate(Pred); 5344 std::swap(CmpLHS, CmpRHS); 5345 } 5346 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5347 break; 5348 return {SPF_UNKNOWN, SPNB_NA, false}; 5349 case SPF_UMAX: 5350 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5351 Pred = ICmpInst::getSwappedPredicate(Pred); 5352 std::swap(CmpLHS, CmpRHS); 5353 } 5354 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5355 break; 5356 return {SPF_UNKNOWN, SPNB_NA, false}; 5357 default: 5358 return {SPF_UNKNOWN, SPNB_NA, false}; 5359 } 5360 5361 // If there is a common operand in the already matched min/max and the other 5362 // min/max operands match the compare operands (either directly or inverted), 5363 // then this is min/max of the same flavor. 5364 5365 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5366 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5367 if (D == B) { 5368 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5369 match(A, m_Not(m_Specific(CmpRHS))))) 5370 return {L.Flavor, SPNB_NA, false}; 5371 } 5372 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5373 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5374 if (C == B) { 5375 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5376 match(A, m_Not(m_Specific(CmpRHS))))) 5377 return {L.Flavor, SPNB_NA, false}; 5378 } 5379 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5380 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5381 if (D == A) { 5382 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5383 match(B, m_Not(m_Specific(CmpRHS))))) 5384 return {L.Flavor, SPNB_NA, false}; 5385 } 5386 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5387 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5388 if (C == A) { 5389 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5390 match(B, m_Not(m_Specific(CmpRHS))))) 5391 return {L.Flavor, SPNB_NA, false}; 5392 } 5393 5394 return {SPF_UNKNOWN, SPNB_NA, false}; 5395 } 5396 5397 /// If the input value is the result of a 'not' op, constant integer, or vector 5398 /// splat of a constant integer, return the bitwise-not source value. 5399 /// TODO: This could be extended to handle non-splat vector integer constants. 5400 static Value *getNotValue(Value *V) { 5401 Value *NotV; 5402 if (match(V, m_Not(m_Value(NotV)))) 5403 return NotV; 5404 5405 const APInt *C; 5406 if (match(V, m_APInt(C))) 5407 return ConstantInt::get(V->getType(), ~(*C)); 5408 5409 return nullptr; 5410 } 5411 5412 /// Match non-obvious integer minimum and maximum sequences. 5413 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5414 Value *CmpLHS, Value *CmpRHS, 5415 Value *TrueVal, Value *FalseVal, 5416 Value *&LHS, Value *&RHS, 5417 unsigned Depth) { 5418 // Assume success. If there's no match, callers should not use these anyway. 5419 LHS = TrueVal; 5420 RHS = FalseVal; 5421 5422 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5423 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5424 return SPR; 5425 5426 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5427 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5428 return SPR; 5429 5430 // Look through 'not' ops to find disguised min/max. 5431 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5432 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5433 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5434 switch (Pred) { 5435 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5436 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5437 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5438 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5439 default: break; 5440 } 5441 } 5442 5443 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5444 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5445 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5446 switch (Pred) { 5447 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5448 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5449 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5450 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5451 default: break; 5452 } 5453 } 5454 5455 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5456 return {SPF_UNKNOWN, SPNB_NA, false}; 5457 5458 // Z = X -nsw Y 5459 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5460 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5461 if (match(TrueVal, m_Zero()) && 5462 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5463 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5464 5465 // Z = X -nsw Y 5466 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5467 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5468 if (match(FalseVal, m_Zero()) && 5469 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5470 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5471 5472 const APInt *C1; 5473 if (!match(CmpRHS, m_APInt(C1))) 5474 return {SPF_UNKNOWN, SPNB_NA, false}; 5475 5476 // An unsigned min/max can be written with a signed compare. 5477 const APInt *C2; 5478 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5479 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5480 // Is the sign bit set? 5481 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5482 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5483 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5484 C2->isMaxSignedValue()) 5485 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5486 5487 // Is the sign bit clear? 5488 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5489 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5490 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5491 C2->isMinSignedValue()) 5492 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5493 } 5494 5495 return {SPF_UNKNOWN, SPNB_NA, false}; 5496 } 5497 5498 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5499 assert(X && Y && "Invalid operand"); 5500 5501 // X = sub (0, Y) || X = sub nsw (0, Y) 5502 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5503 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5504 return true; 5505 5506 // Y = sub (0, X) || Y = sub nsw (0, X) 5507 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5508 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5509 return true; 5510 5511 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5512 Value *A, *B; 5513 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5514 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5515 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5516 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5517 } 5518 5519 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5520 FastMathFlags FMF, 5521 Value *CmpLHS, Value *CmpRHS, 5522 Value *TrueVal, Value *FalseVal, 5523 Value *&LHS, Value *&RHS, 5524 unsigned Depth) { 5525 if (CmpInst::isFPPredicate(Pred)) { 5526 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5527 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5528 // purpose of identifying min/max. Disregard vector constants with undefined 5529 // elements because those can not be back-propagated for analysis. 5530 Value *OutputZeroVal = nullptr; 5531 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5532 !cast<Constant>(TrueVal)->containsUndefElement()) 5533 OutputZeroVal = TrueVal; 5534 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5535 !cast<Constant>(FalseVal)->containsUndefElement()) 5536 OutputZeroVal = FalseVal; 5537 5538 if (OutputZeroVal) { 5539 if (match(CmpLHS, m_AnyZeroFP())) 5540 CmpLHS = OutputZeroVal; 5541 if (match(CmpRHS, m_AnyZeroFP())) 5542 CmpRHS = OutputZeroVal; 5543 } 5544 } 5545 5546 LHS = CmpLHS; 5547 RHS = CmpRHS; 5548 5549 // Signed zero may return inconsistent results between implementations. 5550 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5551 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5552 // Therefore, we behave conservatively and only proceed if at least one of the 5553 // operands is known to not be zero or if we don't care about signed zero. 5554 switch (Pred) { 5555 default: break; 5556 // FIXME: Include OGT/OLT/UGT/ULT. 5557 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5558 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5559 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5560 !isKnownNonZero(CmpRHS)) 5561 return {SPF_UNKNOWN, SPNB_NA, false}; 5562 } 5563 5564 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5565 bool Ordered = false; 5566 5567 // When given one NaN and one non-NaN input: 5568 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5569 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5570 // ordered comparison fails), which could be NaN or non-NaN. 5571 // so here we discover exactly what NaN behavior is required/accepted. 5572 if (CmpInst::isFPPredicate(Pred)) { 5573 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5574 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5575 5576 if (LHSSafe && RHSSafe) { 5577 // Both operands are known non-NaN. 5578 NaNBehavior = SPNB_RETURNS_ANY; 5579 } else if (CmpInst::isOrdered(Pred)) { 5580 // An ordered comparison will return false when given a NaN, so it 5581 // returns the RHS. 5582 Ordered = true; 5583 if (LHSSafe) 5584 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5585 NaNBehavior = SPNB_RETURNS_NAN; 5586 else if (RHSSafe) 5587 NaNBehavior = SPNB_RETURNS_OTHER; 5588 else 5589 // Completely unsafe. 5590 return {SPF_UNKNOWN, SPNB_NA, false}; 5591 } else { 5592 Ordered = false; 5593 // An unordered comparison will return true when given a NaN, so it 5594 // returns the LHS. 5595 if (LHSSafe) 5596 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5597 NaNBehavior = SPNB_RETURNS_OTHER; 5598 else if (RHSSafe) 5599 NaNBehavior = SPNB_RETURNS_NAN; 5600 else 5601 // Completely unsafe. 5602 return {SPF_UNKNOWN, SPNB_NA, false}; 5603 } 5604 } 5605 5606 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5607 std::swap(CmpLHS, CmpRHS); 5608 Pred = CmpInst::getSwappedPredicate(Pred); 5609 if (NaNBehavior == SPNB_RETURNS_NAN) 5610 NaNBehavior = SPNB_RETURNS_OTHER; 5611 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5612 NaNBehavior = SPNB_RETURNS_NAN; 5613 Ordered = !Ordered; 5614 } 5615 5616 // ([if]cmp X, Y) ? X : Y 5617 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5618 switch (Pred) { 5619 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5620 case ICmpInst::ICMP_UGT: 5621 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5622 case ICmpInst::ICMP_SGT: 5623 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5624 case ICmpInst::ICMP_ULT: 5625 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5626 case ICmpInst::ICMP_SLT: 5627 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5628 case FCmpInst::FCMP_UGT: 5629 case FCmpInst::FCMP_UGE: 5630 case FCmpInst::FCMP_OGT: 5631 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5632 case FCmpInst::FCMP_ULT: 5633 case FCmpInst::FCMP_ULE: 5634 case FCmpInst::FCMP_OLT: 5635 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5636 } 5637 } 5638 5639 if (isKnownNegation(TrueVal, FalseVal)) { 5640 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5641 // match against either LHS or sext(LHS). 5642 auto MaybeSExtCmpLHS = 5643 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5644 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5645 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5646 if (match(TrueVal, MaybeSExtCmpLHS)) { 5647 // Set the return values. If the compare uses the negated value (-X >s 0), 5648 // swap the return values because the negated value is always 'RHS'. 5649 LHS = TrueVal; 5650 RHS = FalseVal; 5651 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5652 std::swap(LHS, RHS); 5653 5654 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5655 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5656 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5657 return {SPF_ABS, SPNB_NA, false}; 5658 5659 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5660 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5661 return {SPF_ABS, SPNB_NA, false}; 5662 5663 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5664 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5665 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5666 return {SPF_NABS, SPNB_NA, false}; 5667 } 5668 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5669 // Set the return values. If the compare uses the negated value (-X >s 0), 5670 // swap the return values because the negated value is always 'RHS'. 5671 LHS = FalseVal; 5672 RHS = TrueVal; 5673 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5674 std::swap(LHS, RHS); 5675 5676 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5677 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5678 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5679 return {SPF_NABS, SPNB_NA, false}; 5680 5681 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5682 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5683 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5684 return {SPF_ABS, SPNB_NA, false}; 5685 } 5686 } 5687 5688 if (CmpInst::isIntPredicate(Pred)) 5689 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5690 5691 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5692 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5693 // semantics than minNum. Be conservative in such case. 5694 if (NaNBehavior != SPNB_RETURNS_ANY || 5695 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5696 !isKnownNonZero(CmpRHS))) 5697 return {SPF_UNKNOWN, SPNB_NA, false}; 5698 5699 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5700 } 5701 5702 /// Helps to match a select pattern in case of a type mismatch. 5703 /// 5704 /// The function processes the case when type of true and false values of a 5705 /// select instruction differs from type of the cmp instruction operands because 5706 /// of a cast instruction. The function checks if it is legal to move the cast 5707 /// operation after "select". If yes, it returns the new second value of 5708 /// "select" (with the assumption that cast is moved): 5709 /// 1. As operand of cast instruction when both values of "select" are same cast 5710 /// instructions. 5711 /// 2. As restored constant (by applying reverse cast operation) when the first 5712 /// value of the "select" is a cast operation and the second value is a 5713 /// constant. 5714 /// NOTE: We return only the new second value because the first value could be 5715 /// accessed as operand of cast instruction. 5716 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5717 Instruction::CastOps *CastOp) { 5718 auto *Cast1 = dyn_cast<CastInst>(V1); 5719 if (!Cast1) 5720 return nullptr; 5721 5722 *CastOp = Cast1->getOpcode(); 5723 Type *SrcTy = Cast1->getSrcTy(); 5724 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5725 // If V1 and V2 are both the same cast from the same type, look through V1. 5726 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5727 return Cast2->getOperand(0); 5728 return nullptr; 5729 } 5730 5731 auto *C = dyn_cast<Constant>(V2); 5732 if (!C) 5733 return nullptr; 5734 5735 Constant *CastedTo = nullptr; 5736 switch (*CastOp) { 5737 case Instruction::ZExt: 5738 if (CmpI->isUnsigned()) 5739 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5740 break; 5741 case Instruction::SExt: 5742 if (CmpI->isSigned()) 5743 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5744 break; 5745 case Instruction::Trunc: 5746 Constant *CmpConst; 5747 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5748 CmpConst->getType() == SrcTy) { 5749 // Here we have the following case: 5750 // 5751 // %cond = cmp iN %x, CmpConst 5752 // %tr = trunc iN %x to iK 5753 // %narrowsel = select i1 %cond, iK %t, iK C 5754 // 5755 // We can always move trunc after select operation: 5756 // 5757 // %cond = cmp iN %x, CmpConst 5758 // %widesel = select i1 %cond, iN %x, iN CmpConst 5759 // %tr = trunc iN %widesel to iK 5760 // 5761 // Note that C could be extended in any way because we don't care about 5762 // upper bits after truncation. It can't be abs pattern, because it would 5763 // look like: 5764 // 5765 // select i1 %cond, x, -x. 5766 // 5767 // So only min/max pattern could be matched. Such match requires widened C 5768 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5769 // CmpConst == C is checked below. 5770 CastedTo = CmpConst; 5771 } else { 5772 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5773 } 5774 break; 5775 case Instruction::FPTrunc: 5776 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5777 break; 5778 case Instruction::FPExt: 5779 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5780 break; 5781 case Instruction::FPToUI: 5782 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5783 break; 5784 case Instruction::FPToSI: 5785 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5786 break; 5787 case Instruction::UIToFP: 5788 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5789 break; 5790 case Instruction::SIToFP: 5791 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5792 break; 5793 default: 5794 break; 5795 } 5796 5797 if (!CastedTo) 5798 return nullptr; 5799 5800 // Make sure the cast doesn't lose any information. 5801 Constant *CastedBack = 5802 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5803 if (CastedBack != C) 5804 return nullptr; 5805 5806 return CastedTo; 5807 } 5808 5809 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5810 Instruction::CastOps *CastOp, 5811 unsigned Depth) { 5812 if (Depth >= MaxAnalysisRecursionDepth) 5813 return {SPF_UNKNOWN, SPNB_NA, false}; 5814 5815 SelectInst *SI = dyn_cast<SelectInst>(V); 5816 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5817 5818 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5819 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5820 5821 Value *TrueVal = SI->getTrueValue(); 5822 Value *FalseVal = SI->getFalseValue(); 5823 5824 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5825 CastOp, Depth); 5826 } 5827 5828 SelectPatternResult llvm::matchDecomposedSelectPattern( 5829 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5830 Instruction::CastOps *CastOp, unsigned Depth) { 5831 CmpInst::Predicate Pred = CmpI->getPredicate(); 5832 Value *CmpLHS = CmpI->getOperand(0); 5833 Value *CmpRHS = CmpI->getOperand(1); 5834 FastMathFlags FMF; 5835 if (isa<FPMathOperator>(CmpI)) 5836 FMF = CmpI->getFastMathFlags(); 5837 5838 // Bail out early. 5839 if (CmpI->isEquality()) 5840 return {SPF_UNKNOWN, SPNB_NA, false}; 5841 5842 // Deal with type mismatches. 5843 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5844 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5845 // If this is a potential fmin/fmax with a cast to integer, then ignore 5846 // -0.0 because there is no corresponding integer value. 5847 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5848 FMF.setNoSignedZeros(); 5849 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5850 cast<CastInst>(TrueVal)->getOperand(0), C, 5851 LHS, RHS, Depth); 5852 } 5853 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5854 // If this is a potential fmin/fmax with a cast to integer, then ignore 5855 // -0.0 because there is no corresponding integer value. 5856 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5857 FMF.setNoSignedZeros(); 5858 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5859 C, cast<CastInst>(FalseVal)->getOperand(0), 5860 LHS, RHS, Depth); 5861 } 5862 } 5863 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5864 LHS, RHS, Depth); 5865 } 5866 5867 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5868 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5869 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5870 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5871 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5872 if (SPF == SPF_FMINNUM) 5873 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5874 if (SPF == SPF_FMAXNUM) 5875 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5876 llvm_unreachable("unhandled!"); 5877 } 5878 5879 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5880 if (SPF == SPF_SMIN) return SPF_SMAX; 5881 if (SPF == SPF_UMIN) return SPF_UMAX; 5882 if (SPF == SPF_SMAX) return SPF_SMIN; 5883 if (SPF == SPF_UMAX) return SPF_UMIN; 5884 llvm_unreachable("unhandled!"); 5885 } 5886 5887 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5888 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5889 } 5890 5891 std::pair<Intrinsic::ID, bool> 5892 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5893 // Check if VL contains select instructions that can be folded into a min/max 5894 // vector intrinsic and return the intrinsic if it is possible. 5895 // TODO: Support floating point min/max. 5896 bool AllCmpSingleUse = true; 5897 SelectPatternResult SelectPattern; 5898 SelectPattern.Flavor = SPF_UNKNOWN; 5899 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5900 Value *LHS, *RHS; 5901 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5902 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5903 CurrentPattern.Flavor == SPF_FMINNUM || 5904 CurrentPattern.Flavor == SPF_FMAXNUM || 5905 !I->getType()->isIntOrIntVectorTy()) 5906 return false; 5907 if (SelectPattern.Flavor != SPF_UNKNOWN && 5908 SelectPattern.Flavor != CurrentPattern.Flavor) 5909 return false; 5910 SelectPattern = CurrentPattern; 5911 AllCmpSingleUse &= 5912 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5913 return true; 5914 })) { 5915 switch (SelectPattern.Flavor) { 5916 case SPF_SMIN: 5917 return {Intrinsic::smin, AllCmpSingleUse}; 5918 case SPF_UMIN: 5919 return {Intrinsic::umin, AllCmpSingleUse}; 5920 case SPF_SMAX: 5921 return {Intrinsic::smax, AllCmpSingleUse}; 5922 case SPF_UMAX: 5923 return {Intrinsic::umax, AllCmpSingleUse}; 5924 default: 5925 llvm_unreachable("unexpected select pattern flavor"); 5926 } 5927 } 5928 return {Intrinsic::not_intrinsic, false}; 5929 } 5930 5931 /// Return true if "icmp Pred LHS RHS" is always true. 5932 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5933 const Value *RHS, const DataLayout &DL, 5934 unsigned Depth) { 5935 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5936 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5937 return true; 5938 5939 switch (Pred) { 5940 default: 5941 return false; 5942 5943 case CmpInst::ICMP_SLE: { 5944 const APInt *C; 5945 5946 // LHS s<= LHS +_{nsw} C if C >= 0 5947 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5948 return !C->isNegative(); 5949 return false; 5950 } 5951 5952 case CmpInst::ICMP_ULE: { 5953 const APInt *C; 5954 5955 // LHS u<= LHS +_{nuw} C for any C 5956 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5957 return true; 5958 5959 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5960 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5961 const Value *&X, 5962 const APInt *&CA, const APInt *&CB) { 5963 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5964 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5965 return true; 5966 5967 // If X & C == 0 then (X | C) == X +_{nuw} C 5968 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5969 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5970 KnownBits Known(CA->getBitWidth()); 5971 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5972 /*CxtI*/ nullptr, /*DT*/ nullptr); 5973 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5974 return true; 5975 } 5976 5977 return false; 5978 }; 5979 5980 const Value *X; 5981 const APInt *CLHS, *CRHS; 5982 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5983 return CLHS->ule(*CRHS); 5984 5985 return false; 5986 } 5987 } 5988 } 5989 5990 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5991 /// ALHS ARHS" is true. Otherwise, return None. 5992 static Optional<bool> 5993 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5994 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5995 const DataLayout &DL, unsigned Depth) { 5996 switch (Pred) { 5997 default: 5998 return None; 5999 6000 case CmpInst::ICMP_SLT: 6001 case CmpInst::ICMP_SLE: 6002 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6003 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6004 return true; 6005 return None; 6006 6007 case CmpInst::ICMP_ULT: 6008 case CmpInst::ICMP_ULE: 6009 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6010 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6011 return true; 6012 return None; 6013 } 6014 } 6015 6016 /// Return true if the operands of the two compares match. IsSwappedOps is true 6017 /// when the operands match, but are swapped. 6018 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6019 const Value *BLHS, const Value *BRHS, 6020 bool &IsSwappedOps) { 6021 6022 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6023 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6024 return IsMatchingOps || IsSwappedOps; 6025 } 6026 6027 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6028 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6029 /// Otherwise, return None if we can't infer anything. 6030 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6031 CmpInst::Predicate BPred, 6032 bool AreSwappedOps) { 6033 // Canonicalize the predicate as if the operands were not commuted. 6034 if (AreSwappedOps) 6035 BPred = ICmpInst::getSwappedPredicate(BPred); 6036 6037 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6038 return true; 6039 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6040 return false; 6041 6042 return None; 6043 } 6044 6045 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6046 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6047 /// Otherwise, return None if we can't infer anything. 6048 static Optional<bool> 6049 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6050 const ConstantInt *C1, 6051 CmpInst::Predicate BPred, 6052 const ConstantInt *C2) { 6053 ConstantRange DomCR = 6054 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6055 ConstantRange CR = 6056 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6057 ConstantRange Intersection = DomCR.intersectWith(CR); 6058 ConstantRange Difference = DomCR.difference(CR); 6059 if (Intersection.isEmptySet()) 6060 return false; 6061 if (Difference.isEmptySet()) 6062 return true; 6063 return None; 6064 } 6065 6066 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6067 /// false. Otherwise, return None if we can't infer anything. 6068 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6069 CmpInst::Predicate BPred, 6070 const Value *BLHS, const Value *BRHS, 6071 const DataLayout &DL, bool LHSIsTrue, 6072 unsigned Depth) { 6073 Value *ALHS = LHS->getOperand(0); 6074 Value *ARHS = LHS->getOperand(1); 6075 6076 // The rest of the logic assumes the LHS condition is true. If that's not the 6077 // case, invert the predicate to make it so. 6078 CmpInst::Predicate APred = 6079 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6080 6081 // Can we infer anything when the two compares have matching operands? 6082 bool AreSwappedOps; 6083 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6084 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6085 APred, BPred, AreSwappedOps)) 6086 return Implication; 6087 // No amount of additional analysis will infer the second condition, so 6088 // early exit. 6089 return None; 6090 } 6091 6092 // Can we infer anything when the LHS operands match and the RHS operands are 6093 // constants (not necessarily matching)? 6094 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6095 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6096 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6097 return Implication; 6098 // No amount of additional analysis will infer the second condition, so 6099 // early exit. 6100 return None; 6101 } 6102 6103 if (APred == BPred) 6104 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6105 return None; 6106 } 6107 6108 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6109 /// false. Otherwise, return None if we can't infer anything. We expect the 6110 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6111 static Optional<bool> 6112 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6113 const Value *RHSOp0, const Value *RHSOp1, 6114 6115 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6116 // The LHS must be an 'or' or an 'and' instruction. 6117 assert((LHS->getOpcode() == Instruction::And || 6118 LHS->getOpcode() == Instruction::Or) && 6119 "Expected LHS to be 'and' or 'or'."); 6120 6121 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6122 6123 // If the result of an 'or' is false, then we know both legs of the 'or' are 6124 // false. Similarly, if the result of an 'and' is true, then we know both 6125 // legs of the 'and' are true. 6126 Value *ALHS, *ARHS; 6127 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6128 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6129 // FIXME: Make this non-recursion. 6130 if (Optional<bool> Implication = isImpliedCondition( 6131 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6132 return Implication; 6133 if (Optional<bool> Implication = isImpliedCondition( 6134 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6135 return Implication; 6136 return None; 6137 } 6138 return None; 6139 } 6140 6141 Optional<bool> 6142 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6143 const Value *RHSOp0, const Value *RHSOp1, 6144 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6145 // Bail out when we hit the limit. 6146 if (Depth == MaxAnalysisRecursionDepth) 6147 return None; 6148 6149 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6150 // example. 6151 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6152 return None; 6153 6154 Type *OpTy = LHS->getType(); 6155 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6156 6157 // FIXME: Extending the code below to handle vectors. 6158 if (OpTy->isVectorTy()) 6159 return None; 6160 6161 assert(OpTy->isIntegerTy(1) && "implied by above"); 6162 6163 // Both LHS and RHS are icmps. 6164 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6165 if (LHSCmp) 6166 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6167 Depth); 6168 6169 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6170 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6171 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6172 if (LHSBO) { 6173 if ((LHSBO->getOpcode() == Instruction::And || 6174 LHSBO->getOpcode() == Instruction::Or)) 6175 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6176 Depth); 6177 } 6178 return None; 6179 } 6180 6181 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6182 const DataLayout &DL, bool LHSIsTrue, 6183 unsigned Depth) { 6184 // LHS ==> RHS by definition 6185 if (LHS == RHS) 6186 return LHSIsTrue; 6187 6188 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6189 if (RHSCmp) 6190 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6191 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6192 LHSIsTrue, Depth); 6193 return None; 6194 } 6195 6196 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6197 // condition dominating ContextI or nullptr, if no condition is found. 6198 static std::pair<Value *, bool> 6199 getDomPredecessorCondition(const Instruction *ContextI) { 6200 if (!ContextI || !ContextI->getParent()) 6201 return {nullptr, false}; 6202 6203 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6204 // dominator tree (eg, from a SimplifyQuery) instead? 6205 const BasicBlock *ContextBB = ContextI->getParent(); 6206 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6207 if (!PredBB) 6208 return {nullptr, false}; 6209 6210 // We need a conditional branch in the predecessor. 6211 Value *PredCond; 6212 BasicBlock *TrueBB, *FalseBB; 6213 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6214 return {nullptr, false}; 6215 6216 // The branch should get simplified. Don't bother simplifying this condition. 6217 if (TrueBB == FalseBB) 6218 return {nullptr, false}; 6219 6220 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6221 "Predecessor block does not point to successor?"); 6222 6223 // Is this condition implied by the predecessor condition? 6224 return {PredCond, TrueBB == ContextBB}; 6225 } 6226 6227 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6228 const Instruction *ContextI, 6229 const DataLayout &DL) { 6230 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6231 auto PredCond = getDomPredecessorCondition(ContextI); 6232 if (PredCond.first) 6233 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6234 return None; 6235 } 6236 6237 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6238 const Value *LHS, const Value *RHS, 6239 const Instruction *ContextI, 6240 const DataLayout &DL) { 6241 auto PredCond = getDomPredecessorCondition(ContextI); 6242 if (PredCond.first) 6243 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6244 PredCond.second); 6245 return None; 6246 } 6247 6248 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6249 APInt &Upper, const InstrInfoQuery &IIQ) { 6250 unsigned Width = Lower.getBitWidth(); 6251 const APInt *C; 6252 switch (BO.getOpcode()) { 6253 case Instruction::Add: 6254 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6255 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6256 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6257 // 'add nuw x, C' produces [C, UINT_MAX]. 6258 Lower = *C; 6259 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6260 if (C->isNegative()) { 6261 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6262 Lower = APInt::getSignedMinValue(Width); 6263 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6264 } else { 6265 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6266 Lower = APInt::getSignedMinValue(Width) + *C; 6267 Upper = APInt::getSignedMaxValue(Width) + 1; 6268 } 6269 } 6270 } 6271 break; 6272 6273 case Instruction::And: 6274 if (match(BO.getOperand(1), m_APInt(C))) 6275 // 'and x, C' produces [0, C]. 6276 Upper = *C + 1; 6277 break; 6278 6279 case Instruction::Or: 6280 if (match(BO.getOperand(1), m_APInt(C))) 6281 // 'or x, C' produces [C, UINT_MAX]. 6282 Lower = *C; 6283 break; 6284 6285 case Instruction::AShr: 6286 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6287 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6288 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6289 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6290 } else if (match(BO.getOperand(0), m_APInt(C))) { 6291 unsigned ShiftAmount = Width - 1; 6292 if (!C->isNullValue() && IIQ.isExact(&BO)) 6293 ShiftAmount = C->countTrailingZeros(); 6294 if (C->isNegative()) { 6295 // 'ashr C, x' produces [C, C >> (Width-1)] 6296 Lower = *C; 6297 Upper = C->ashr(ShiftAmount) + 1; 6298 } else { 6299 // 'ashr C, x' produces [C >> (Width-1), C] 6300 Lower = C->ashr(ShiftAmount); 6301 Upper = *C + 1; 6302 } 6303 } 6304 break; 6305 6306 case Instruction::LShr: 6307 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6308 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6309 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6310 } else if (match(BO.getOperand(0), m_APInt(C))) { 6311 // 'lshr C, x' produces [C >> (Width-1), C]. 6312 unsigned ShiftAmount = Width - 1; 6313 if (!C->isNullValue() && IIQ.isExact(&BO)) 6314 ShiftAmount = C->countTrailingZeros(); 6315 Lower = C->lshr(ShiftAmount); 6316 Upper = *C + 1; 6317 } 6318 break; 6319 6320 case Instruction::Shl: 6321 if (match(BO.getOperand(0), m_APInt(C))) { 6322 if (IIQ.hasNoUnsignedWrap(&BO)) { 6323 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6324 Lower = *C; 6325 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6326 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6327 if (C->isNegative()) { 6328 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6329 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6330 Lower = C->shl(ShiftAmount); 6331 Upper = *C + 1; 6332 } else { 6333 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6334 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6335 Lower = *C; 6336 Upper = C->shl(ShiftAmount) + 1; 6337 } 6338 } 6339 } 6340 break; 6341 6342 case Instruction::SDiv: 6343 if (match(BO.getOperand(1), m_APInt(C))) { 6344 APInt IntMin = APInt::getSignedMinValue(Width); 6345 APInt IntMax = APInt::getSignedMaxValue(Width); 6346 if (C->isAllOnesValue()) { 6347 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6348 // where C != -1 and C != 0 and C != 1 6349 Lower = IntMin + 1; 6350 Upper = IntMax + 1; 6351 } else if (C->countLeadingZeros() < Width - 1) { 6352 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6353 // where C != -1 and C != 0 and C != 1 6354 Lower = IntMin.sdiv(*C); 6355 Upper = IntMax.sdiv(*C); 6356 if (Lower.sgt(Upper)) 6357 std::swap(Lower, Upper); 6358 Upper = Upper + 1; 6359 assert(Upper != Lower && "Upper part of range has wrapped!"); 6360 } 6361 } else if (match(BO.getOperand(0), m_APInt(C))) { 6362 if (C->isMinSignedValue()) { 6363 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6364 Lower = *C; 6365 Upper = Lower.lshr(1) + 1; 6366 } else { 6367 // 'sdiv C, x' produces [-|C|, |C|]. 6368 Upper = C->abs() + 1; 6369 Lower = (-Upper) + 1; 6370 } 6371 } 6372 break; 6373 6374 case Instruction::UDiv: 6375 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6376 // 'udiv x, C' produces [0, UINT_MAX / C]. 6377 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6378 } else if (match(BO.getOperand(0), m_APInt(C))) { 6379 // 'udiv C, x' produces [0, C]. 6380 Upper = *C + 1; 6381 } 6382 break; 6383 6384 case Instruction::SRem: 6385 if (match(BO.getOperand(1), m_APInt(C))) { 6386 // 'srem x, C' produces (-|C|, |C|). 6387 Upper = C->abs(); 6388 Lower = (-Upper) + 1; 6389 } 6390 break; 6391 6392 case Instruction::URem: 6393 if (match(BO.getOperand(1), m_APInt(C))) 6394 // 'urem x, C' produces [0, C). 6395 Upper = *C; 6396 break; 6397 6398 default: 6399 break; 6400 } 6401 } 6402 6403 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6404 APInt &Upper) { 6405 unsigned Width = Lower.getBitWidth(); 6406 const APInt *C; 6407 switch (II.getIntrinsicID()) { 6408 case Intrinsic::ctpop: 6409 case Intrinsic::ctlz: 6410 case Intrinsic::cttz: 6411 // Maximum of set/clear bits is the bit width. 6412 assert(Lower == 0 && "Expected lower bound to be zero"); 6413 Upper = Width + 1; 6414 break; 6415 case Intrinsic::uadd_sat: 6416 // uadd.sat(x, C) produces [C, UINT_MAX]. 6417 if (match(II.getOperand(0), m_APInt(C)) || 6418 match(II.getOperand(1), m_APInt(C))) 6419 Lower = *C; 6420 break; 6421 case Intrinsic::sadd_sat: 6422 if (match(II.getOperand(0), m_APInt(C)) || 6423 match(II.getOperand(1), m_APInt(C))) { 6424 if (C->isNegative()) { 6425 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6426 Lower = APInt::getSignedMinValue(Width); 6427 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6428 } else { 6429 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6430 Lower = APInt::getSignedMinValue(Width) + *C; 6431 Upper = APInt::getSignedMaxValue(Width) + 1; 6432 } 6433 } 6434 break; 6435 case Intrinsic::usub_sat: 6436 // usub.sat(C, x) produces [0, C]. 6437 if (match(II.getOperand(0), m_APInt(C))) 6438 Upper = *C + 1; 6439 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6440 else if (match(II.getOperand(1), m_APInt(C))) 6441 Upper = APInt::getMaxValue(Width) - *C + 1; 6442 break; 6443 case Intrinsic::ssub_sat: 6444 if (match(II.getOperand(0), m_APInt(C))) { 6445 if (C->isNegative()) { 6446 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6447 Lower = APInt::getSignedMinValue(Width); 6448 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6449 } else { 6450 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6451 Lower = *C - APInt::getSignedMaxValue(Width); 6452 Upper = APInt::getSignedMaxValue(Width) + 1; 6453 } 6454 } else if (match(II.getOperand(1), m_APInt(C))) { 6455 if (C->isNegative()) { 6456 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6457 Lower = APInt::getSignedMinValue(Width) - *C; 6458 Upper = APInt::getSignedMaxValue(Width) + 1; 6459 } else { 6460 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6461 Lower = APInt::getSignedMinValue(Width); 6462 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6463 } 6464 } 6465 break; 6466 case Intrinsic::umin: 6467 case Intrinsic::umax: 6468 case Intrinsic::smin: 6469 case Intrinsic::smax: 6470 if (!match(II.getOperand(0), m_APInt(C)) && 6471 !match(II.getOperand(1), m_APInt(C))) 6472 break; 6473 6474 switch (II.getIntrinsicID()) { 6475 case Intrinsic::umin: 6476 Upper = *C + 1; 6477 break; 6478 case Intrinsic::umax: 6479 Lower = *C; 6480 break; 6481 case Intrinsic::smin: 6482 Lower = APInt::getSignedMinValue(Width); 6483 Upper = *C + 1; 6484 break; 6485 case Intrinsic::smax: 6486 Lower = *C; 6487 Upper = APInt::getSignedMaxValue(Width) + 1; 6488 break; 6489 default: 6490 llvm_unreachable("Must be min/max intrinsic"); 6491 } 6492 break; 6493 case Intrinsic::abs: 6494 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6495 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6496 if (match(II.getOperand(1), m_One())) 6497 Upper = APInt::getSignedMaxValue(Width) + 1; 6498 else 6499 Upper = APInt::getSignedMinValue(Width) + 1; 6500 break; 6501 default: 6502 break; 6503 } 6504 } 6505 6506 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6507 APInt &Upper, const InstrInfoQuery &IIQ) { 6508 const Value *LHS = nullptr, *RHS = nullptr; 6509 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6510 if (R.Flavor == SPF_UNKNOWN) 6511 return; 6512 6513 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6514 6515 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6516 // If the negation part of the abs (in RHS) has the NSW flag, 6517 // then the result of abs(X) is [0..SIGNED_MAX], 6518 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6519 Lower = APInt::getNullValue(BitWidth); 6520 if (match(RHS, m_Neg(m_Specific(LHS))) && 6521 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6522 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6523 else 6524 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6525 return; 6526 } 6527 6528 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6529 // The result of -abs(X) is <= 0. 6530 Lower = APInt::getSignedMinValue(BitWidth); 6531 Upper = APInt(BitWidth, 1); 6532 return; 6533 } 6534 6535 const APInt *C; 6536 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6537 return; 6538 6539 switch (R.Flavor) { 6540 case SPF_UMIN: 6541 Upper = *C + 1; 6542 break; 6543 case SPF_UMAX: 6544 Lower = *C; 6545 break; 6546 case SPF_SMIN: 6547 Lower = APInt::getSignedMinValue(BitWidth); 6548 Upper = *C + 1; 6549 break; 6550 case SPF_SMAX: 6551 Lower = *C; 6552 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6553 break; 6554 default: 6555 break; 6556 } 6557 } 6558 6559 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6560 AssumptionCache *AC, 6561 const Instruction *CtxI, 6562 unsigned Depth) { 6563 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6564 6565 if (Depth == MaxAnalysisRecursionDepth) 6566 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6567 6568 const APInt *C; 6569 if (match(V, m_APInt(C))) 6570 return ConstantRange(*C); 6571 6572 InstrInfoQuery IIQ(UseInstrInfo); 6573 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6574 APInt Lower = APInt(BitWidth, 0); 6575 APInt Upper = APInt(BitWidth, 0); 6576 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6577 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6578 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6579 setLimitsForIntrinsic(*II, Lower, Upper); 6580 else if (auto *SI = dyn_cast<SelectInst>(V)) 6581 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6582 6583 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6584 6585 if (auto *I = dyn_cast<Instruction>(V)) 6586 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6587 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6588 6589 if (CtxI && AC) { 6590 // Try to restrict the range based on information from assumptions. 6591 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6592 if (!AssumeVH) 6593 continue; 6594 CallInst *I = cast<CallInst>(AssumeVH); 6595 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6596 "Got assumption for the wrong function!"); 6597 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6598 "must be an assume intrinsic"); 6599 6600 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6601 continue; 6602 Value *Arg = I->getArgOperand(0); 6603 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6604 // Currently we just use information from comparisons. 6605 if (!Cmp || Cmp->getOperand(0) != V) 6606 continue; 6607 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6608 AC, I, Depth + 1); 6609 CR = CR.intersectWith( 6610 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6611 } 6612 } 6613 6614 return CR; 6615 } 6616 6617 static Optional<int64_t> 6618 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6619 // Skip over the first indices. 6620 gep_type_iterator GTI = gep_type_begin(GEP); 6621 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6622 /*skip along*/; 6623 6624 // Compute the offset implied by the rest of the indices. 6625 int64_t Offset = 0; 6626 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6627 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6628 if (!OpC) 6629 return None; 6630 if (OpC->isZero()) 6631 continue; // No offset. 6632 6633 // Handle struct indices, which add their field offset to the pointer. 6634 if (StructType *STy = GTI.getStructTypeOrNull()) { 6635 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6636 continue; 6637 } 6638 6639 // Otherwise, we have a sequential type like an array or fixed-length 6640 // vector. Multiply the index by the ElementSize. 6641 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6642 if (Size.isScalable()) 6643 return None; 6644 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6645 } 6646 6647 return Offset; 6648 } 6649 6650 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6651 const DataLayout &DL) { 6652 Ptr1 = Ptr1->stripPointerCasts(); 6653 Ptr2 = Ptr2->stripPointerCasts(); 6654 6655 // Handle the trivial case first. 6656 if (Ptr1 == Ptr2) { 6657 return 0; 6658 } 6659 6660 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6661 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6662 6663 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6664 // as in "P" and "gep P, 1". 6665 // Also do this iteratively to handle the the following case: 6666 // Ptr_t1 = GEP Ptr1, c1 6667 // Ptr_t2 = GEP Ptr_t1, c2 6668 // Ptr2 = GEP Ptr_t2, c3 6669 // where we will return c1+c2+c3. 6670 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6671 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6672 // are the same, and return the difference between offsets. 6673 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6674 const Value *Ptr) -> Optional<int64_t> { 6675 const GEPOperator *GEP_T = GEP; 6676 int64_t OffsetVal = 0; 6677 bool HasSameBase = false; 6678 while (GEP_T) { 6679 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6680 if (!Offset) 6681 return None; 6682 OffsetVal += *Offset; 6683 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6684 if (Op0 == Ptr) { 6685 HasSameBase = true; 6686 break; 6687 } 6688 GEP_T = dyn_cast<GEPOperator>(Op0); 6689 } 6690 if (!HasSameBase) 6691 return None; 6692 return OffsetVal; 6693 }; 6694 6695 if (GEP1) { 6696 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6697 if (Offset) 6698 return -*Offset; 6699 } 6700 if (GEP2) { 6701 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6702 if (Offset) 6703 return Offset; 6704 } 6705 6706 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6707 // base. After that base, they may have some number of common (and 6708 // potentially variable) indices. After that they handle some constant 6709 // offset, which determines their offset from each other. At this point, we 6710 // handle no other case. 6711 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6712 return None; 6713 6714 // Skip any common indices and track the GEP types. 6715 unsigned Idx = 1; 6716 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6717 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6718 break; 6719 6720 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6721 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6722 if (!Offset1 || !Offset2) 6723 return None; 6724 return *Offset2 - *Offset1; 6725 } 6726