1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Metadata.h" 24 #include "llvm/Operator.h" 25 #include "llvm/DataLayout.h" 26 #include "llvm/Support/ConstantRange.h" 27 #include "llvm/Support/GetElementPtrTypeIterator.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/PatternMatch.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include <cstring> 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 const unsigned MaxDepth = 6; 36 37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 38 /// unknown returns 0). For vector types, returns the element type's bitwidth. 39 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 40 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 41 return BitWidth; 42 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 43 return TD ? 44 TD->getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace()) : 0; 45 } 46 47 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 48 APInt &KnownZero, APInt &KnownOne, 49 APInt &KnownZero2, APInt &KnownOne2, 50 const DataLayout *TD, unsigned Depth) { 51 if (!Add) { 52 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 53 // We know that the top bits of C-X are clear if X contains less bits 54 // than C (i.e. no wrap-around can happen). For example, 20-X is 55 // positive if we can prove that X is >= 0 and < 16. 56 if (!CLHS->getValue().isNegative()) { 57 unsigned BitWidth = KnownZero.getBitWidth(); 58 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 59 // NLZ can't be BitWidth with no sign bit 60 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 61 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 62 63 // If all of the MaskV bits are known to be zero, then we know the 64 // output top bits are zero, because we now know that the output is 65 // from [0-C]. 66 if ((KnownZero2 & MaskV) == MaskV) { 67 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 68 // Top bits known zero. 69 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 70 } 71 } 72 } 73 } 74 75 unsigned BitWidth = KnownZero.getBitWidth(); 76 77 // If one of the operands has trailing zeros, then the bits that the 78 // other operand has in those bit positions will be preserved in the 79 // result. For an add, this works with either operand. For a subtract, 80 // this only works if the known zeros are in the right operand. 81 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 82 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 83 assert((LHSKnownZero & LHSKnownOne) == 0 && 84 "Bits known to be one AND zero?"); 85 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 86 87 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 88 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 89 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 90 91 // Determine which operand has more trailing zeros, and use that 92 // many bits from the other operand. 93 if (LHSKnownZeroOut > RHSKnownZeroOut) { 94 if (Add) { 95 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 96 KnownZero |= KnownZero2 & Mask; 97 KnownOne |= KnownOne2 & Mask; 98 } else { 99 // If the known zeros are in the left operand for a subtract, 100 // fall back to the minimum known zeros in both operands. 101 KnownZero |= APInt::getLowBitsSet(BitWidth, 102 std::min(LHSKnownZeroOut, 103 RHSKnownZeroOut)); 104 } 105 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 106 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 107 KnownZero |= LHSKnownZero & Mask; 108 KnownOne |= LHSKnownOne & Mask; 109 } 110 111 // Are we still trying to solve for the sign bit? 112 if (!KnownZero.isNegative() && !KnownOne.isNegative()) { 113 if (NSW) { 114 if (Add) { 115 // Adding two positive numbers can't wrap into negative 116 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 117 KnownZero |= APInt::getSignBit(BitWidth); 118 // and adding two negative numbers can't wrap into positive. 119 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 120 KnownOne |= APInt::getSignBit(BitWidth); 121 } else { 122 // Subtracting a negative number from a positive one can't wrap 123 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 124 KnownZero |= APInt::getSignBit(BitWidth); 125 // neither can subtracting a positive number from a negative one. 126 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 127 KnownOne |= APInt::getSignBit(BitWidth); 128 } 129 } 130 } 131 } 132 133 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, 134 APInt &KnownZero, APInt &KnownOne, 135 APInt &KnownZero2, APInt &KnownOne2, 136 const DataLayout *TD, unsigned Depth) { 137 unsigned BitWidth = KnownZero.getBitWidth(); 138 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1); 139 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 140 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 141 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 142 143 bool isKnownNegative = false; 144 bool isKnownNonNegative = false; 145 // If the multiplication is known not to overflow, compute the sign bit. 146 if (NSW) { 147 if (Op0 == Op1) { 148 // The product of a number with itself is non-negative. 149 isKnownNonNegative = true; 150 } else { 151 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 152 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 153 bool isKnownNegativeOp1 = KnownOne.isNegative(); 154 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 155 // The product of two numbers with the same sign is non-negative. 156 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 157 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 158 // The product of a negative number and a non-negative number is either 159 // negative or zero. 160 if (!isKnownNonNegative) 161 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 162 isKnownNonZero(Op0, TD, Depth)) || 163 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 164 isKnownNonZero(Op1, TD, Depth)); 165 } 166 } 167 168 // If low bits are zero in either operand, output low known-0 bits. 169 // Also compute a conserative estimate for high known-0 bits. 170 // More trickiness is possible, but this is sufficient for the 171 // interesting case of alignment computation. 172 KnownOne.clearAllBits(); 173 unsigned TrailZ = KnownZero.countTrailingOnes() + 174 KnownZero2.countTrailingOnes(); 175 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 176 KnownZero2.countLeadingOnes(), 177 BitWidth) - BitWidth; 178 179 TrailZ = std::min(TrailZ, BitWidth); 180 LeadZ = std::min(LeadZ, BitWidth); 181 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 182 APInt::getHighBitsSet(BitWidth, LeadZ); 183 184 // Only make use of no-wrap flags if we failed to compute the sign bit 185 // directly. This matters if the multiplication always overflows, in 186 // which case we prefer to follow the result of the direct computation, 187 // though as the program is invoking undefined behaviour we can choose 188 // whatever we like here. 189 if (isKnownNonNegative && !KnownOne.isNegative()) 190 KnownZero.setBit(BitWidth - 1); 191 else if (isKnownNegative && !KnownZero.isNegative()) 192 KnownOne.setBit(BitWidth - 1); 193 } 194 195 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) { 196 unsigned BitWidth = KnownZero.getBitWidth(); 197 unsigned NumRanges = Ranges.getNumOperands() / 2; 198 assert(NumRanges >= 1); 199 200 // Use the high end of the ranges to find leading zeros. 201 unsigned MinLeadingZeros = BitWidth; 202 for (unsigned i = 0; i < NumRanges; ++i) { 203 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 204 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 205 ConstantRange Range(Lower->getValue(), Upper->getValue()); 206 if (Range.isWrappedSet()) 207 MinLeadingZeros = 0; // -1 has no zeros 208 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 209 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 210 } 211 212 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 213 } 214 /// ComputeMaskedBits - Determine which of the bits are known to be either zero 215 /// or one and return them in the KnownZero/KnownOne bit sets. 216 /// 217 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 218 /// we cannot optimize based on the assumption that it is zero without changing 219 /// it to be an explicit zero. If we don't change it to zero, other code could 220 /// optimized based on the contradictory assumption that it is non-zero. 221 /// Because instcombine aggressively folds operations with undef args anyway, 222 /// this won't lose us code quality. 223 /// 224 /// This function is defined on values with integer type, values with pointer 225 /// type (but only if TD is non-null), and vectors of integers. In the case 226 /// where V is a vector, known zero, and known one values are the 227 /// same width as the vector element, and the bit is set only if it is true 228 /// for all of the elements in the vector. 229 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, 230 const DataLayout *TD, unsigned Depth) { 231 assert(V && "No Value?"); 232 assert(Depth <= MaxDepth && "Limit Search Depth"); 233 unsigned BitWidth = KnownZero.getBitWidth(); 234 235 assert((V->getType()->isIntOrIntVectorTy() || 236 V->getType()->getScalarType()->isPointerTy()) && 237 "Not integer or pointer type!"); 238 assert((!TD || 239 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 240 (!V->getType()->isIntOrIntVectorTy() || 241 V->getType()->getScalarSizeInBits() == BitWidth) && 242 KnownZero.getBitWidth() == BitWidth && 243 KnownOne.getBitWidth() == BitWidth && 244 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 245 246 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 247 // We know all of the bits for a constant! 248 KnownOne = CI->getValue(); 249 KnownZero = ~KnownOne; 250 return; 251 } 252 // Null and aggregate-zero are all-zeros. 253 if (isa<ConstantPointerNull>(V) || 254 isa<ConstantAggregateZero>(V)) { 255 KnownOne.clearAllBits(); 256 KnownZero = APInt::getAllOnesValue(BitWidth); 257 return; 258 } 259 // Handle a constant vector by taking the intersection of the known bits of 260 // each element. There is no real need to handle ConstantVector here, because 261 // we don't handle undef in any particularly useful way. 262 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 263 // We know that CDS must be a vector of integers. Take the intersection of 264 // each element. 265 KnownZero.setAllBits(); KnownOne.setAllBits(); 266 APInt Elt(KnownZero.getBitWidth(), 0); 267 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 268 Elt = CDS->getElementAsInteger(i); 269 KnownZero &= ~Elt; 270 KnownOne &= Elt; 271 } 272 return; 273 } 274 275 // The address of an aligned GlobalValue has trailing zeros. 276 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 277 unsigned Align = GV->getAlignment(); 278 if (Align == 0 && TD) { 279 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 280 Type *ObjectType = GVar->getType()->getElementType(); 281 if (ObjectType->isSized()) { 282 // If the object is defined in the current Module, we'll be giving 283 // it the preferred alignment. Otherwise, we have to assume that it 284 // may only have the minimum ABI alignment. 285 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 286 Align = TD->getPreferredAlignment(GVar); 287 else 288 Align = TD->getABITypeAlignment(ObjectType); 289 } 290 } 291 } 292 if (Align > 0) 293 KnownZero = APInt::getLowBitsSet(BitWidth, 294 CountTrailingZeros_32(Align)); 295 else 296 KnownZero.clearAllBits(); 297 KnownOne.clearAllBits(); 298 return; 299 } 300 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 301 // the bits of its aliasee. 302 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 303 if (GA->mayBeOverridden()) { 304 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 305 } else { 306 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 307 } 308 return; 309 } 310 311 if (Argument *A = dyn_cast<Argument>(V)) { 312 unsigned Align = 0; 313 314 if (A->hasByValAttr()) { 315 // Get alignment information off byval arguments if specified in the IR. 316 Align = A->getParamAlignment(); 317 } else if (TD && A->hasStructRetAttr()) { 318 // An sret parameter has at least the ABI alignment of the return type. 319 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 320 if (EltTy->isSized()) 321 Align = TD->getABITypeAlignment(EltTy); 322 } 323 324 if (Align) 325 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); 326 return; 327 } 328 329 // Start out not knowing anything. 330 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 331 332 if (Depth == MaxDepth) 333 return; // Limit search depth. 334 335 Operator *I = dyn_cast<Operator>(V); 336 if (!I) return; 337 338 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 339 switch (I->getOpcode()) { 340 default: break; 341 case Instruction::Load: 342 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 343 computeMaskedBitsLoad(*MD, KnownZero); 344 return; 345 case Instruction::And: { 346 // If either the LHS or the RHS are Zero, the result is zero. 347 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 348 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 349 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 350 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 351 352 // Output known-1 bits are only known if set in both the LHS & RHS. 353 KnownOne &= KnownOne2; 354 // Output known-0 are known to be clear if zero in either the LHS | RHS. 355 KnownZero |= KnownZero2; 356 return; 357 } 358 case Instruction::Or: { 359 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 360 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 361 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 362 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 363 364 // Output known-0 bits are only known if clear in both the LHS & RHS. 365 KnownZero &= KnownZero2; 366 // Output known-1 are known to be set if set in either the LHS | RHS. 367 KnownOne |= KnownOne2; 368 return; 369 } 370 case Instruction::Xor: { 371 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 372 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 373 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 374 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 375 376 // Output known-0 bits are known if clear or set in both the LHS & RHS. 377 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 378 // Output known-1 are known to be set if set in only one of the LHS, RHS. 379 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 380 KnownZero = KnownZeroOut; 381 return; 382 } 383 case Instruction::Mul: { 384 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 385 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW, 386 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 387 break; 388 } 389 case Instruction::UDiv: { 390 // For the purposes of computing leading zeros we can conservatively 391 // treat a udiv as a logical right shift by the power of 2 known to 392 // be less than the denominator. 393 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 394 unsigned LeadZ = KnownZero2.countLeadingOnes(); 395 396 KnownOne2.clearAllBits(); 397 KnownZero2.clearAllBits(); 398 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 399 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 400 if (RHSUnknownLeadingOnes != BitWidth) 401 LeadZ = std::min(BitWidth, 402 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 403 404 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 405 return; 406 } 407 case Instruction::Select: 408 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 409 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 410 Depth+1); 411 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 412 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 413 414 // Only known if known in both the LHS and RHS. 415 KnownOne &= KnownOne2; 416 KnownZero &= KnownZero2; 417 return; 418 case Instruction::FPTrunc: 419 case Instruction::FPExt: 420 case Instruction::FPToUI: 421 case Instruction::FPToSI: 422 case Instruction::SIToFP: 423 case Instruction::UIToFP: 424 return; // Can't work with floating point. 425 case Instruction::PtrToInt: 426 case Instruction::IntToPtr: 427 // We can't handle these if we don't know the pointer size. 428 if (!TD) return; 429 // FALL THROUGH and handle them the same as zext/trunc. 430 case Instruction::ZExt: 431 case Instruction::Trunc: { 432 Type *SrcTy = I->getOperand(0)->getType(); 433 434 unsigned SrcBitWidth; 435 // Note that we handle pointer operands here because of inttoptr/ptrtoint 436 // which fall through here. 437 if (SrcTy->isPointerTy()) 438 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 439 else 440 SrcBitWidth = SrcTy->getScalarSizeInBits(); 441 442 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 443 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 444 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 445 KnownZero = KnownZero.zextOrTrunc(BitWidth); 446 KnownOne = KnownOne.zextOrTrunc(BitWidth); 447 // Any top bits are known to be zero. 448 if (BitWidth > SrcBitWidth) 449 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 450 return; 451 } 452 case Instruction::BitCast: { 453 Type *SrcTy = I->getOperand(0)->getType(); 454 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 455 // TODO: For now, not handling conversions like: 456 // (bitcast i64 %x to <2 x i32>) 457 !I->getType()->isVectorTy()) { 458 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 459 return; 460 } 461 break; 462 } 463 case Instruction::SExt: { 464 // Compute the bits in the result that are not present in the input. 465 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 466 467 KnownZero = KnownZero.trunc(SrcBitWidth); 468 KnownOne = KnownOne.trunc(SrcBitWidth); 469 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 470 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 471 KnownZero = KnownZero.zext(BitWidth); 472 KnownOne = KnownOne.zext(BitWidth); 473 474 // If the sign bit of the input is known set or clear, then we know the 475 // top bits of the result. 476 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 477 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 478 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 479 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 480 return; 481 } 482 case Instruction::Shl: 483 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 484 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 485 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 486 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 487 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 488 KnownZero <<= ShiftAmt; 489 KnownOne <<= ShiftAmt; 490 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 491 return; 492 } 493 break; 494 case Instruction::LShr: 495 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 496 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 497 // Compute the new bits that are at the top now. 498 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 499 500 // Unsigned shift right. 501 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 502 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 503 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 504 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 505 // high bits known zero. 506 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 507 return; 508 } 509 break; 510 case Instruction::AShr: 511 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 512 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 513 // Compute the new bits that are at the top now. 514 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 515 516 // Signed shift right. 517 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 518 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 519 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 520 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 521 522 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 523 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 524 KnownZero |= HighBits; 525 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 526 KnownOne |= HighBits; 527 return; 528 } 529 break; 530 case Instruction::Sub: { 531 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 532 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 533 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 534 Depth); 535 break; 536 } 537 case Instruction::Add: { 538 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 539 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 540 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 541 Depth); 542 break; 543 } 544 case Instruction::SRem: 545 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 546 APInt RA = Rem->getValue().abs(); 547 if (RA.isPowerOf2()) { 548 APInt LowBits = RA - 1; 549 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 550 551 // The low bits of the first operand are unchanged by the srem. 552 KnownZero = KnownZero2 & LowBits; 553 KnownOne = KnownOne2 & LowBits; 554 555 // If the first operand is non-negative or has all low bits zero, then 556 // the upper bits are all zero. 557 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 558 KnownZero |= ~LowBits; 559 560 // If the first operand is negative and not all low bits are zero, then 561 // the upper bits are all one. 562 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 563 KnownOne |= ~LowBits; 564 565 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 566 } 567 } 568 569 // The sign bit is the LHS's sign bit, except when the result of the 570 // remainder is zero. 571 if (KnownZero.isNonNegative()) { 572 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 573 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 574 Depth+1); 575 // If it's known zero, our sign bit is also zero. 576 if (LHSKnownZero.isNegative()) 577 KnownZero.setBit(BitWidth - 1); 578 } 579 580 break; 581 case Instruction::URem: { 582 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 583 APInt RA = Rem->getValue(); 584 if (RA.isPowerOf2()) { 585 APInt LowBits = (RA - 1); 586 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, 587 Depth+1); 588 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 589 KnownZero |= ~LowBits; 590 KnownOne &= LowBits; 591 break; 592 } 593 } 594 595 // Since the result is less than or equal to either operand, any leading 596 // zero bits in either operand must also exist in the result. 597 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 598 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 599 600 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 601 KnownZero2.countLeadingOnes()); 602 KnownOne.clearAllBits(); 603 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 604 break; 605 } 606 607 case Instruction::Alloca: { 608 AllocaInst *AI = cast<AllocaInst>(V); 609 unsigned Align = AI->getAlignment(); 610 if (Align == 0 && TD) 611 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 612 613 if (Align > 0) 614 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); 615 break; 616 } 617 case Instruction::GetElementPtr: { 618 // Analyze all of the subscripts of this getelementptr instruction 619 // to determine if we can prove known low zero bits. 620 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 621 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 622 Depth+1); 623 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 624 625 gep_type_iterator GTI = gep_type_begin(I); 626 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 627 Value *Index = I->getOperand(i); 628 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 629 // Handle struct member offset arithmetic. 630 if (!TD) return; 631 const StructLayout *SL = TD->getStructLayout(STy); 632 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 633 uint64_t Offset = SL->getElementOffset(Idx); 634 TrailZ = std::min(TrailZ, 635 CountTrailingZeros_64(Offset)); 636 } else { 637 // Handle array index arithmetic. 638 Type *IndexedTy = GTI.getIndexedType(); 639 if (!IndexedTy->isSized()) return; 640 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 641 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 642 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 643 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 644 TrailZ = std::min(TrailZ, 645 unsigned(CountTrailingZeros_64(TypeSize) + 646 LocalKnownZero.countTrailingOnes())); 647 } 648 } 649 650 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 651 break; 652 } 653 case Instruction::PHI: { 654 PHINode *P = cast<PHINode>(I); 655 // Handle the case of a simple two-predecessor recurrence PHI. 656 // There's a lot more that could theoretically be done here, but 657 // this is sufficient to catch some interesting cases. 658 if (P->getNumIncomingValues() == 2) { 659 for (unsigned i = 0; i != 2; ++i) { 660 Value *L = P->getIncomingValue(i); 661 Value *R = P->getIncomingValue(!i); 662 Operator *LU = dyn_cast<Operator>(L); 663 if (!LU) 664 continue; 665 unsigned Opcode = LU->getOpcode(); 666 // Check for operations that have the property that if 667 // both their operands have low zero bits, the result 668 // will have low zero bits. 669 if (Opcode == Instruction::Add || 670 Opcode == Instruction::Sub || 671 Opcode == Instruction::And || 672 Opcode == Instruction::Or || 673 Opcode == Instruction::Mul) { 674 Value *LL = LU->getOperand(0); 675 Value *LR = LU->getOperand(1); 676 // Find a recurrence. 677 if (LL == I) 678 L = LR; 679 else if (LR == I) 680 L = LL; 681 else 682 break; 683 // Ok, we have a PHI of the form L op= R. Check for low 684 // zero bits. 685 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1); 686 687 // We need to take the minimum number of known bits 688 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 689 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1); 690 691 KnownZero = APInt::getLowBitsSet(BitWidth, 692 std::min(KnownZero2.countTrailingOnes(), 693 KnownZero3.countTrailingOnes())); 694 break; 695 } 696 } 697 } 698 699 // Unreachable blocks may have zero-operand PHI nodes. 700 if (P->getNumIncomingValues() == 0) 701 return; 702 703 // Otherwise take the unions of the known bit sets of the operands, 704 // taking conservative care to avoid excessive recursion. 705 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 706 // Skip if every incoming value references to ourself. 707 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 708 break; 709 710 KnownZero = APInt::getAllOnesValue(BitWidth); 711 KnownOne = APInt::getAllOnesValue(BitWidth); 712 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 713 // Skip direct self references. 714 if (P->getIncomingValue(i) == P) continue; 715 716 KnownZero2 = APInt(BitWidth, 0); 717 KnownOne2 = APInt(BitWidth, 0); 718 // Recurse, but cap the recursion to one level, because we don't 719 // want to waste time spinning around in loops. 720 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 721 MaxDepth-1); 722 KnownZero &= KnownZero2; 723 KnownOne &= KnownOne2; 724 // If all bits have been ruled out, there's no need to check 725 // more operands. 726 if (!KnownZero && !KnownOne) 727 break; 728 } 729 } 730 break; 731 } 732 case Instruction::Call: 733 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 734 switch (II->getIntrinsicID()) { 735 default: break; 736 case Intrinsic::ctlz: 737 case Intrinsic::cttz: { 738 unsigned LowBits = Log2_32(BitWidth)+1; 739 // If this call is undefined for 0, the result will be less than 2^n. 740 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 741 LowBits -= 1; 742 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 743 break; 744 } 745 case Intrinsic::ctpop: { 746 unsigned LowBits = Log2_32(BitWidth)+1; 747 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 748 break; 749 } 750 case Intrinsic::x86_sse42_crc32_64_8: 751 case Intrinsic::x86_sse42_crc32_64_64: 752 KnownZero = APInt::getHighBitsSet(64, 32); 753 break; 754 } 755 } 756 break; 757 case Instruction::ExtractValue: 758 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 759 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 760 if (EVI->getNumIndices() != 1) break; 761 if (EVI->getIndices()[0] == 0) { 762 switch (II->getIntrinsicID()) { 763 default: break; 764 case Intrinsic::uadd_with_overflow: 765 case Intrinsic::sadd_with_overflow: 766 ComputeMaskedBitsAddSub(true, II->getArgOperand(0), 767 II->getArgOperand(1), false, KnownZero, 768 KnownOne, KnownZero2, KnownOne2, TD, Depth); 769 break; 770 case Intrinsic::usub_with_overflow: 771 case Intrinsic::ssub_with_overflow: 772 ComputeMaskedBitsAddSub(false, II->getArgOperand(0), 773 II->getArgOperand(1), false, KnownZero, 774 KnownOne, KnownZero2, KnownOne2, TD, Depth); 775 break; 776 case Intrinsic::umul_with_overflow: 777 case Intrinsic::smul_with_overflow: 778 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1), 779 false, KnownZero, KnownOne, 780 KnownZero2, KnownOne2, TD, Depth); 781 break; 782 } 783 } 784 } 785 } 786 } 787 788 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 789 /// one. Convenience wrapper around ComputeMaskedBits. 790 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 791 const DataLayout *TD, unsigned Depth) { 792 unsigned BitWidth = getBitWidth(V->getType(), TD); 793 if (!BitWidth) { 794 KnownZero = false; 795 KnownOne = false; 796 return; 797 } 798 APInt ZeroBits(BitWidth, 0); 799 APInt OneBits(BitWidth, 0); 800 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth); 801 KnownOne = OneBits[BitWidth - 1]; 802 KnownZero = ZeroBits[BitWidth - 1]; 803 } 804 805 /// isPowerOfTwo - Return true if the given value is known to have exactly one 806 /// bit set when defined. For vectors return true if every element is known to 807 /// be a power of two when defined. Supports values with integer or pointer 808 /// types and vectors of integers. 809 bool llvm::isPowerOfTwo(Value *V, const DataLayout *TD, bool OrZero, 810 unsigned Depth) { 811 if (Constant *C = dyn_cast<Constant>(V)) { 812 if (C->isNullValue()) 813 return OrZero; 814 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 815 return CI->getValue().isPowerOf2(); 816 // TODO: Handle vector constants. 817 } 818 819 // 1 << X is clearly a power of two if the one is not shifted off the end. If 820 // it is shifted off the end then the result is undefined. 821 if (match(V, m_Shl(m_One(), m_Value()))) 822 return true; 823 824 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 825 // bottom. If it is shifted off the bottom then the result is undefined. 826 if (match(V, m_LShr(m_SignBit(), m_Value()))) 827 return true; 828 829 // The remaining tests are all recursive, so bail out if we hit the limit. 830 if (Depth++ == MaxDepth) 831 return false; 832 833 Value *X = 0, *Y = 0; 834 // A shift of a power of two is a power of two or zero. 835 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 836 match(V, m_Shr(m_Value(X), m_Value())))) 837 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth); 838 839 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 840 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth); 841 842 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 843 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) && 844 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth); 845 846 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 847 // A power of two and'd with anything is a power of two or zero. 848 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) || 849 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth)) 850 return true; 851 // X & (-X) is always a power of two or zero. 852 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 853 return true; 854 return false; 855 } 856 857 // An exact divide or right shift can only shift off zero bits, so the result 858 // is a power of two only if the first operand is a power of two and not 859 // copying a sign bit (sdiv int_min, 2). 860 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 861 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 862 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth); 863 } 864 865 return false; 866 } 867 868 /// isKnownNonZero - Return true if the given value is known to be non-zero 869 /// when defined. For vectors return true if every element is known to be 870 /// non-zero when defined. Supports values with integer or pointer type and 871 /// vectors of integers. 872 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 873 if (Constant *C = dyn_cast<Constant>(V)) { 874 if (C->isNullValue()) 875 return false; 876 if (isa<ConstantInt>(C)) 877 // Must be non-zero due to null test above. 878 return true; 879 // TODO: Handle vectors 880 return false; 881 } 882 883 // The remaining tests are all recursive, so bail out if we hit the limit. 884 if (Depth++ >= MaxDepth) 885 return false; 886 887 unsigned BitWidth = getBitWidth(V->getType(), TD); 888 889 // X | Y != 0 if X != 0 or Y != 0. 890 Value *X = 0, *Y = 0; 891 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 892 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 893 894 // ext X != 0 if X != 0. 895 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 896 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 897 898 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 899 // if the lowest bit is shifted off the end. 900 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 901 // shl nuw can't remove any non-zero bits. 902 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 903 if (BO->hasNoUnsignedWrap()) 904 return isKnownNonZero(X, TD, Depth); 905 906 APInt KnownZero(BitWidth, 0); 907 APInt KnownOne(BitWidth, 0); 908 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); 909 if (KnownOne[0]) 910 return true; 911 } 912 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 913 // defined if the sign bit is shifted off the end. 914 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 915 // shr exact can only shift out zero bits. 916 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 917 if (BO->isExact()) 918 return isKnownNonZero(X, TD, Depth); 919 920 bool XKnownNonNegative, XKnownNegative; 921 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 922 if (XKnownNegative) 923 return true; 924 } 925 // div exact can only produce a zero if the dividend is zero. 926 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 927 return isKnownNonZero(X, TD, Depth); 928 } 929 // X + Y. 930 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 931 bool XKnownNonNegative, XKnownNegative; 932 bool YKnownNonNegative, YKnownNegative; 933 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 934 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 935 936 // If X and Y are both non-negative (as signed values) then their sum is not 937 // zero unless both X and Y are zero. 938 if (XKnownNonNegative && YKnownNonNegative) 939 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 940 return true; 941 942 // If X and Y are both negative (as signed values) then their sum is not 943 // zero unless both X and Y equal INT_MIN. 944 if (BitWidth && XKnownNegative && YKnownNegative) { 945 APInt KnownZero(BitWidth, 0); 946 APInt KnownOne(BitWidth, 0); 947 APInt Mask = APInt::getSignedMaxValue(BitWidth); 948 // The sign bit of X is set. If some other bit is set then X is not equal 949 // to INT_MIN. 950 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); 951 if ((KnownOne & Mask) != 0) 952 return true; 953 // The sign bit of Y is set. If some other bit is set then Y is not equal 954 // to INT_MIN. 955 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth); 956 if ((KnownOne & Mask) != 0) 957 return true; 958 } 959 960 // The sum of a non-negative number and a power of two is not zero. 961 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth)) 962 return true; 963 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) 964 return true; 965 } 966 // X * Y. 967 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 968 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 969 // If X and Y are non-zero then so is X * Y as long as the multiplication 970 // does not overflow. 971 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 972 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 973 return true; 974 } 975 // (C ? X : Y) != 0 if X != 0 and Y != 0. 976 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 977 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 978 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 979 return true; 980 } 981 982 if (!BitWidth) return false; 983 APInt KnownZero(BitWidth, 0); 984 APInt KnownOne(BitWidth, 0); 985 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 986 return KnownOne != 0; 987 } 988 989 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 990 /// this predicate to simplify operations downstream. Mask is known to be zero 991 /// for bits that V cannot have. 992 /// 993 /// This function is defined on values with integer type, values with pointer 994 /// type (but only if TD is non-null), and vectors of integers. In the case 995 /// where V is a vector, the mask, known zero, and known one values are the 996 /// same width as the vector element, and the bit is set only if it is true 997 /// for all of the elements in the vector. 998 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 999 const DataLayout *TD, unsigned Depth) { 1000 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1001 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1002 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1003 return (KnownZero & Mask) == Mask; 1004 } 1005 1006 1007 1008 /// ComputeNumSignBits - Return the number of times the sign bit of the 1009 /// register is replicated into the other bits. We know that at least 1 bit 1010 /// is always equal to the sign bit (itself), but other cases can give us 1011 /// information. For example, immediately after an "ashr X, 2", we know that 1012 /// the top 3 bits are all equal to each other, so we return 3. 1013 /// 1014 /// 'Op' must have a scalar integer type. 1015 /// 1016 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1017 unsigned Depth) { 1018 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1019 "ComputeNumSignBits requires a DataLayout object to operate " 1020 "on non-integer values!"); 1021 Type *Ty = V->getType(); 1022 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1023 Ty->getScalarSizeInBits(); 1024 unsigned Tmp, Tmp2; 1025 unsigned FirstAnswer = 1; 1026 1027 // Note that ConstantInt is handled by the general ComputeMaskedBits case 1028 // below. 1029 1030 if (Depth == 6) 1031 return 1; // Limit search depth. 1032 1033 Operator *U = dyn_cast<Operator>(V); 1034 switch (Operator::getOpcode(V)) { 1035 default: break; 1036 case Instruction::SExt: 1037 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1038 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1039 1040 case Instruction::AShr: { 1041 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1042 // ashr X, C -> adds C sign bits. Vectors too. 1043 const APInt *ShAmt; 1044 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1045 Tmp += ShAmt->getZExtValue(); 1046 if (Tmp > TyBits) Tmp = TyBits; 1047 } 1048 return Tmp; 1049 } 1050 case Instruction::Shl: { 1051 const APInt *ShAmt; 1052 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1053 // shl destroys sign bits. 1054 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1055 Tmp2 = ShAmt->getZExtValue(); 1056 if (Tmp2 >= TyBits || // Bad shift. 1057 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1058 return Tmp - Tmp2; 1059 } 1060 break; 1061 } 1062 case Instruction::And: 1063 case Instruction::Or: 1064 case Instruction::Xor: // NOT is handled here. 1065 // Logical binary ops preserve the number of sign bits at the worst. 1066 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1067 if (Tmp != 1) { 1068 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1069 FirstAnswer = std::min(Tmp, Tmp2); 1070 // We computed what we know about the sign bits as our first 1071 // answer. Now proceed to the generic code that uses 1072 // ComputeMaskedBits, and pick whichever answer is better. 1073 } 1074 break; 1075 1076 case Instruction::Select: 1077 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1078 if (Tmp == 1) return 1; // Early out. 1079 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1080 return std::min(Tmp, Tmp2); 1081 1082 case Instruction::Add: 1083 // Add can have at most one carry bit. Thus we know that the output 1084 // is, at worst, one more bit than the inputs. 1085 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1086 if (Tmp == 1) return 1; // Early out. 1087 1088 // Special case decrementing a value (ADD X, -1): 1089 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1090 if (CRHS->isAllOnesValue()) { 1091 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1092 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1093 1094 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1095 // sign bits set. 1096 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1097 return TyBits; 1098 1099 // If we are subtracting one from a positive number, there is no carry 1100 // out of the result. 1101 if (KnownZero.isNegative()) 1102 return Tmp; 1103 } 1104 1105 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1106 if (Tmp2 == 1) return 1; 1107 return std::min(Tmp, Tmp2)-1; 1108 1109 case Instruction::Sub: 1110 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1111 if (Tmp2 == 1) return 1; 1112 1113 // Handle NEG. 1114 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1115 if (CLHS->isNullValue()) { 1116 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1117 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1118 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1119 // sign bits set. 1120 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1121 return TyBits; 1122 1123 // If the input is known to be positive (the sign bit is known clear), 1124 // the output of the NEG has the same number of sign bits as the input. 1125 if (KnownZero.isNegative()) 1126 return Tmp2; 1127 1128 // Otherwise, we treat this like a SUB. 1129 } 1130 1131 // Sub can have at most one carry bit. Thus we know that the output 1132 // is, at worst, one more bit than the inputs. 1133 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1134 if (Tmp == 1) return 1; // Early out. 1135 return std::min(Tmp, Tmp2)-1; 1136 1137 case Instruction::PHI: { 1138 PHINode *PN = cast<PHINode>(U); 1139 // Don't analyze large in-degree PHIs. 1140 if (PN->getNumIncomingValues() > 4) break; 1141 1142 // Take the minimum of all incoming values. This can't infinitely loop 1143 // because of our depth threshold. 1144 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1145 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1146 if (Tmp == 1) return Tmp; 1147 Tmp = std::min(Tmp, 1148 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1149 } 1150 return Tmp; 1151 } 1152 1153 case Instruction::Trunc: 1154 // FIXME: it's tricky to do anything useful for this, but it is an important 1155 // case for targets like X86. 1156 break; 1157 } 1158 1159 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1160 // use this information. 1161 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1162 APInt Mask; 1163 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1164 1165 if (KnownZero.isNegative()) { // sign bit is 0 1166 Mask = KnownZero; 1167 } else if (KnownOne.isNegative()) { // sign bit is 1; 1168 Mask = KnownOne; 1169 } else { 1170 // Nothing known. 1171 return FirstAnswer; 1172 } 1173 1174 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1175 // the number of identical bits in the top of the input value. 1176 Mask = ~Mask; 1177 Mask <<= Mask.getBitWidth()-TyBits; 1178 // Return # leading zeros. We use 'min' here in case Val was zero before 1179 // shifting. We don't want to return '64' as for an i32 "0". 1180 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1181 } 1182 1183 /// ComputeMultiple - This function computes the integer multiple of Base that 1184 /// equals V. If successful, it returns true and returns the multiple in 1185 /// Multiple. If unsuccessful, it returns false. It looks 1186 /// through SExt instructions only if LookThroughSExt is true. 1187 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1188 bool LookThroughSExt, unsigned Depth) { 1189 const unsigned MaxDepth = 6; 1190 1191 assert(V && "No Value?"); 1192 assert(Depth <= MaxDepth && "Limit Search Depth"); 1193 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1194 1195 Type *T = V->getType(); 1196 1197 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1198 1199 if (Base == 0) 1200 return false; 1201 1202 if (Base == 1) { 1203 Multiple = V; 1204 return true; 1205 } 1206 1207 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1208 Constant *BaseVal = ConstantInt::get(T, Base); 1209 if (CO && CO == BaseVal) { 1210 // Multiple is 1. 1211 Multiple = ConstantInt::get(T, 1); 1212 return true; 1213 } 1214 1215 if (CI && CI->getZExtValue() % Base == 0) { 1216 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1217 return true; 1218 } 1219 1220 if (Depth == MaxDepth) return false; // Limit search depth. 1221 1222 Operator *I = dyn_cast<Operator>(V); 1223 if (!I) return false; 1224 1225 switch (I->getOpcode()) { 1226 default: break; 1227 case Instruction::SExt: 1228 if (!LookThroughSExt) return false; 1229 // otherwise fall through to ZExt 1230 case Instruction::ZExt: 1231 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1232 LookThroughSExt, Depth+1); 1233 case Instruction::Shl: 1234 case Instruction::Mul: { 1235 Value *Op0 = I->getOperand(0); 1236 Value *Op1 = I->getOperand(1); 1237 1238 if (I->getOpcode() == Instruction::Shl) { 1239 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1240 if (!Op1CI) return false; 1241 // Turn Op0 << Op1 into Op0 * 2^Op1 1242 APInt Op1Int = Op1CI->getValue(); 1243 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1244 APInt API(Op1Int.getBitWidth(), 0); 1245 API.setBit(BitToSet); 1246 Op1 = ConstantInt::get(V->getContext(), API); 1247 } 1248 1249 Value *Mul0 = NULL; 1250 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1251 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1252 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1253 if (Op1C->getType()->getPrimitiveSizeInBits() < 1254 MulC->getType()->getPrimitiveSizeInBits()) 1255 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1256 if (Op1C->getType()->getPrimitiveSizeInBits() > 1257 MulC->getType()->getPrimitiveSizeInBits()) 1258 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1259 1260 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1261 Multiple = ConstantExpr::getMul(MulC, Op1C); 1262 return true; 1263 } 1264 1265 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1266 if (Mul0CI->getValue() == 1) { 1267 // V == Base * Op1, so return Op1 1268 Multiple = Op1; 1269 return true; 1270 } 1271 } 1272 1273 Value *Mul1 = NULL; 1274 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1275 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1276 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1277 if (Op0C->getType()->getPrimitiveSizeInBits() < 1278 MulC->getType()->getPrimitiveSizeInBits()) 1279 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1280 if (Op0C->getType()->getPrimitiveSizeInBits() > 1281 MulC->getType()->getPrimitiveSizeInBits()) 1282 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1283 1284 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1285 Multiple = ConstantExpr::getMul(MulC, Op0C); 1286 return true; 1287 } 1288 1289 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1290 if (Mul1CI->getValue() == 1) { 1291 // V == Base * Op0, so return Op0 1292 Multiple = Op0; 1293 return true; 1294 } 1295 } 1296 } 1297 } 1298 1299 // We could not determine if V is a multiple of Base. 1300 return false; 1301 } 1302 1303 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1304 /// value is never equal to -0.0. 1305 /// 1306 /// NOTE: this function will need to be revisited when we support non-default 1307 /// rounding modes! 1308 /// 1309 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1310 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1311 return !CFP->getValueAPF().isNegZero(); 1312 1313 if (Depth == 6) 1314 return 1; // Limit search depth. 1315 1316 const Operator *I = dyn_cast<Operator>(V); 1317 if (I == 0) return false; 1318 1319 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1320 if (I->getOpcode() == Instruction::FAdd && 1321 isa<ConstantFP>(I->getOperand(1)) && 1322 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1323 return true; 1324 1325 // sitofp and uitofp turn into +0.0 for zero. 1326 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1327 return true; 1328 1329 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1330 // sqrt(-0.0) = -0.0, no other negative results are possible. 1331 if (II->getIntrinsicID() == Intrinsic::sqrt) 1332 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1333 1334 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1335 if (const Function *F = CI->getCalledFunction()) { 1336 if (F->isDeclaration()) { 1337 // abs(x) != -0.0 1338 if (F->getName() == "abs") return true; 1339 // fabs[lf](x) != -0.0 1340 if (F->getName() == "fabs") return true; 1341 if (F->getName() == "fabsf") return true; 1342 if (F->getName() == "fabsl") return true; 1343 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1344 F->getName() == "sqrtl") 1345 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1346 } 1347 } 1348 1349 return false; 1350 } 1351 1352 /// isBytewiseValue - If the specified value can be set by repeating the same 1353 /// byte in memory, return the i8 value that it is represented with. This is 1354 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1355 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1356 /// byte store (e.g. i16 0x1234), return null. 1357 Value *llvm::isBytewiseValue(Value *V) { 1358 // All byte-wide stores are splatable, even of arbitrary variables. 1359 if (V->getType()->isIntegerTy(8)) return V; 1360 1361 // Handle 'null' ConstantArrayZero etc. 1362 if (Constant *C = dyn_cast<Constant>(V)) 1363 if (C->isNullValue()) 1364 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1365 1366 // Constant float and double values can be handled as integer values if the 1367 // corresponding integer value is "byteable". An important case is 0.0. 1368 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1369 if (CFP->getType()->isFloatTy()) 1370 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1371 if (CFP->getType()->isDoubleTy()) 1372 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1373 // Don't handle long double formats, which have strange constraints. 1374 } 1375 1376 // We can handle constant integers that are power of two in size and a 1377 // multiple of 8 bits. 1378 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1379 unsigned Width = CI->getBitWidth(); 1380 if (isPowerOf2_32(Width) && Width > 8) { 1381 // We can handle this value if the recursive binary decomposition is the 1382 // same at all levels. 1383 APInt Val = CI->getValue(); 1384 APInt Val2; 1385 while (Val.getBitWidth() != 8) { 1386 unsigned NextWidth = Val.getBitWidth()/2; 1387 Val2 = Val.lshr(NextWidth); 1388 Val2 = Val2.trunc(Val.getBitWidth()/2); 1389 Val = Val.trunc(Val.getBitWidth()/2); 1390 1391 // If the top/bottom halves aren't the same, reject it. 1392 if (Val != Val2) 1393 return 0; 1394 } 1395 return ConstantInt::get(V->getContext(), Val); 1396 } 1397 } 1398 1399 // A ConstantDataArray/Vector is splatable if all its members are equal and 1400 // also splatable. 1401 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1402 Value *Elt = CA->getElementAsConstant(0); 1403 Value *Val = isBytewiseValue(Elt); 1404 if (!Val) 1405 return 0; 1406 1407 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1408 if (CA->getElementAsConstant(I) != Elt) 1409 return 0; 1410 1411 return Val; 1412 } 1413 1414 // Conceptually, we could handle things like: 1415 // %a = zext i8 %X to i16 1416 // %b = shl i16 %a, 8 1417 // %c = or i16 %a, %b 1418 // but until there is an example that actually needs this, it doesn't seem 1419 // worth worrying about. 1420 return 0; 1421 } 1422 1423 1424 // This is the recursive version of BuildSubAggregate. It takes a few different 1425 // arguments. Idxs is the index within the nested struct From that we are 1426 // looking at now (which is of type IndexedType). IdxSkip is the number of 1427 // indices from Idxs that should be left out when inserting into the resulting 1428 // struct. To is the result struct built so far, new insertvalue instructions 1429 // build on that. 1430 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1431 SmallVector<unsigned, 10> &Idxs, 1432 unsigned IdxSkip, 1433 Instruction *InsertBefore) { 1434 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1435 if (STy) { 1436 // Save the original To argument so we can modify it 1437 Value *OrigTo = To; 1438 // General case, the type indexed by Idxs is a struct 1439 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1440 // Process each struct element recursively 1441 Idxs.push_back(i); 1442 Value *PrevTo = To; 1443 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1444 InsertBefore); 1445 Idxs.pop_back(); 1446 if (!To) { 1447 // Couldn't find any inserted value for this index? Cleanup 1448 while (PrevTo != OrigTo) { 1449 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1450 PrevTo = Del->getAggregateOperand(); 1451 Del->eraseFromParent(); 1452 } 1453 // Stop processing elements 1454 break; 1455 } 1456 } 1457 // If we successfully found a value for each of our subaggregates 1458 if (To) 1459 return To; 1460 } 1461 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1462 // the struct's elements had a value that was inserted directly. In the latter 1463 // case, perhaps we can't determine each of the subelements individually, but 1464 // we might be able to find the complete struct somewhere. 1465 1466 // Find the value that is at that particular spot 1467 Value *V = FindInsertedValue(From, Idxs); 1468 1469 if (!V) 1470 return NULL; 1471 1472 // Insert the value in the new (sub) aggregrate 1473 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1474 "tmp", InsertBefore); 1475 } 1476 1477 // This helper takes a nested struct and extracts a part of it (which is again a 1478 // struct) into a new value. For example, given the struct: 1479 // { a, { b, { c, d }, e } } 1480 // and the indices "1, 1" this returns 1481 // { c, d }. 1482 // 1483 // It does this by inserting an insertvalue for each element in the resulting 1484 // struct, as opposed to just inserting a single struct. This will only work if 1485 // each of the elements of the substruct are known (ie, inserted into From by an 1486 // insertvalue instruction somewhere). 1487 // 1488 // All inserted insertvalue instructions are inserted before InsertBefore 1489 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1490 Instruction *InsertBefore) { 1491 assert(InsertBefore && "Must have someplace to insert!"); 1492 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1493 idx_range); 1494 Value *To = UndefValue::get(IndexedType); 1495 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1496 unsigned IdxSkip = Idxs.size(); 1497 1498 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1499 } 1500 1501 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1502 /// the scalar value indexed is already around as a register, for example if it 1503 /// were inserted directly into the aggregrate. 1504 /// 1505 /// If InsertBefore is not null, this function will duplicate (modified) 1506 /// insertvalues when a part of a nested struct is extracted. 1507 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1508 Instruction *InsertBefore) { 1509 // Nothing to index? Just return V then (this is useful at the end of our 1510 // recursion). 1511 if (idx_range.empty()) 1512 return V; 1513 // We have indices, so V should have an indexable type. 1514 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1515 "Not looking at a struct or array?"); 1516 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1517 "Invalid indices for type?"); 1518 1519 if (Constant *C = dyn_cast<Constant>(V)) { 1520 C = C->getAggregateElement(idx_range[0]); 1521 if (C == 0) return 0; 1522 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1523 } 1524 1525 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1526 // Loop the indices for the insertvalue instruction in parallel with the 1527 // requested indices 1528 const unsigned *req_idx = idx_range.begin(); 1529 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1530 i != e; ++i, ++req_idx) { 1531 if (req_idx == idx_range.end()) { 1532 // We can't handle this without inserting insertvalues 1533 if (!InsertBefore) 1534 return 0; 1535 1536 // The requested index identifies a part of a nested aggregate. Handle 1537 // this specially. For example, 1538 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1539 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1540 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1541 // This can be changed into 1542 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1543 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1544 // which allows the unused 0,0 element from the nested struct to be 1545 // removed. 1546 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1547 InsertBefore); 1548 } 1549 1550 // This insert value inserts something else than what we are looking for. 1551 // See if the (aggregrate) value inserted into has the value we are 1552 // looking for, then. 1553 if (*req_idx != *i) 1554 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1555 InsertBefore); 1556 } 1557 // If we end up here, the indices of the insertvalue match with those 1558 // requested (though possibly only partially). Now we recursively look at 1559 // the inserted value, passing any remaining indices. 1560 return FindInsertedValue(I->getInsertedValueOperand(), 1561 makeArrayRef(req_idx, idx_range.end()), 1562 InsertBefore); 1563 } 1564 1565 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1566 // If we're extracting a value from an aggregrate that was extracted from 1567 // something else, we can extract from that something else directly instead. 1568 // However, we will need to chain I's indices with the requested indices. 1569 1570 // Calculate the number of indices required 1571 unsigned size = I->getNumIndices() + idx_range.size(); 1572 // Allocate some space to put the new indices in 1573 SmallVector<unsigned, 5> Idxs; 1574 Idxs.reserve(size); 1575 // Add indices from the extract value instruction 1576 Idxs.append(I->idx_begin(), I->idx_end()); 1577 1578 // Add requested indices 1579 Idxs.append(idx_range.begin(), idx_range.end()); 1580 1581 assert(Idxs.size() == size 1582 && "Number of indices added not correct?"); 1583 1584 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1585 } 1586 // Otherwise, we don't know (such as, extracting from a function return value 1587 // or load instruction) 1588 return 0; 1589 } 1590 1591 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1592 /// it can be expressed as a base pointer plus a constant offset. Return the 1593 /// base and offset to the caller. 1594 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1595 const DataLayout &TD) { 1596 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1597 if (PtrOp == 0 || Ptr->getType()->isVectorTy()) 1598 return Ptr; 1599 1600 // Just look through bitcasts. 1601 if (PtrOp->getOpcode() == Instruction::BitCast) 1602 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1603 1604 // If this is a GEP with constant indices, we can look through it. 1605 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1606 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1607 1608 gep_type_iterator GTI = gep_type_begin(GEP); 1609 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1610 ++I, ++GTI) { 1611 ConstantInt *OpC = cast<ConstantInt>(*I); 1612 if (OpC->isZero()) continue; 1613 1614 // Handle a struct and array indices which add their offset to the pointer. 1615 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1616 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1617 } else { 1618 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1619 Offset += OpC->getSExtValue()*Size; 1620 } 1621 } 1622 1623 // Re-sign extend from the pointer size if needed to get overflow edge cases 1624 // right. 1625 unsigned AS = GEP->getPointerAddressSpace(); 1626 unsigned PtrSize = TD.getPointerSizeInBits(AS); 1627 if (PtrSize < 64) 1628 Offset = SignExtend64(Offset, PtrSize); 1629 1630 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1631 } 1632 1633 1634 /// getConstantStringInfo - This function computes the length of a 1635 /// null-terminated C string pointed to by V. If successful, it returns true 1636 /// and returns the string in Str. If unsuccessful, it returns false. 1637 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1638 uint64_t Offset, bool TrimAtNul) { 1639 assert(V); 1640 1641 // Look through bitcast instructions and geps. 1642 V = V->stripPointerCasts(); 1643 1644 // If the value is a GEP instructionor constant expression, treat it as an 1645 // offset. 1646 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1647 // Make sure the GEP has exactly three arguments. 1648 if (GEP->getNumOperands() != 3) 1649 return false; 1650 1651 // Make sure the index-ee is a pointer to array of i8. 1652 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1653 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1654 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1655 return false; 1656 1657 // Check to make sure that the first operand of the GEP is an integer and 1658 // has value 0 so that we are sure we're indexing into the initializer. 1659 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1660 if (FirstIdx == 0 || !FirstIdx->isZero()) 1661 return false; 1662 1663 // If the second index isn't a ConstantInt, then this is a variable index 1664 // into the array. If this occurs, we can't say anything meaningful about 1665 // the string. 1666 uint64_t StartIdx = 0; 1667 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1668 StartIdx = CI->getZExtValue(); 1669 else 1670 return false; 1671 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1672 } 1673 1674 // The GEP instruction, constant or instruction, must reference a global 1675 // variable that is a constant and is initialized. The referenced constant 1676 // initializer is the array that we'll use for optimization. 1677 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1678 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1679 return false; 1680 1681 // Handle the all-zeros case 1682 if (GV->getInitializer()->isNullValue()) { 1683 // This is a degenerate case. The initializer is constant zero so the 1684 // length of the string must be zero. 1685 Str = ""; 1686 return true; 1687 } 1688 1689 // Must be a Constant Array 1690 const ConstantDataArray *Array = 1691 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1692 if (Array == 0 || !Array->isString()) 1693 return false; 1694 1695 // Get the number of elements in the array 1696 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1697 1698 // Start out with the entire array in the StringRef. 1699 Str = Array->getAsString(); 1700 1701 if (Offset > NumElts) 1702 return false; 1703 1704 // Skip over 'offset' bytes. 1705 Str = Str.substr(Offset); 1706 1707 if (TrimAtNul) { 1708 // Trim off the \0 and anything after it. If the array is not nul 1709 // terminated, we just return the whole end of string. The client may know 1710 // some other way that the string is length-bound. 1711 Str = Str.substr(0, Str.find('\0')); 1712 } 1713 return true; 1714 } 1715 1716 // These next two are very similar to the above, but also look through PHI 1717 // nodes. 1718 // TODO: See if we can integrate these two together. 1719 1720 /// GetStringLengthH - If we can compute the length of the string pointed to by 1721 /// the specified pointer, return 'len+1'. If we can't, return 0. 1722 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1723 // Look through noop bitcast instructions. 1724 V = V->stripPointerCasts(); 1725 1726 // If this is a PHI node, there are two cases: either we have already seen it 1727 // or we haven't. 1728 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1729 if (!PHIs.insert(PN)) 1730 return ~0ULL; // already in the set. 1731 1732 // If it was new, see if all the input strings are the same length. 1733 uint64_t LenSoFar = ~0ULL; 1734 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1735 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1736 if (Len == 0) return 0; // Unknown length -> unknown. 1737 1738 if (Len == ~0ULL) continue; 1739 1740 if (Len != LenSoFar && LenSoFar != ~0ULL) 1741 return 0; // Disagree -> unknown. 1742 LenSoFar = Len; 1743 } 1744 1745 // Success, all agree. 1746 return LenSoFar; 1747 } 1748 1749 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1750 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1751 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1752 if (Len1 == 0) return 0; 1753 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1754 if (Len2 == 0) return 0; 1755 if (Len1 == ~0ULL) return Len2; 1756 if (Len2 == ~0ULL) return Len1; 1757 if (Len1 != Len2) return 0; 1758 return Len1; 1759 } 1760 1761 // Otherwise, see if we can read the string. 1762 StringRef StrData; 1763 if (!getConstantStringInfo(V, StrData)) 1764 return 0; 1765 1766 return StrData.size()+1; 1767 } 1768 1769 /// GetStringLength - If we can compute the length of the string pointed to by 1770 /// the specified pointer, return 'len+1'. If we can't, return 0. 1771 uint64_t llvm::GetStringLength(Value *V) { 1772 if (!V->getType()->isPointerTy()) return 0; 1773 1774 SmallPtrSet<PHINode*, 32> PHIs; 1775 uint64_t Len = GetStringLengthH(V, PHIs); 1776 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1777 // an empty string as a length. 1778 return Len == ~0ULL ? 1 : Len; 1779 } 1780 1781 Value * 1782 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1783 if (!V->getType()->isPointerTy()) 1784 return V; 1785 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1786 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1787 V = GEP->getPointerOperand(); 1788 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1789 V = cast<Operator>(V)->getOperand(0); 1790 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1791 if (GA->mayBeOverridden()) 1792 return V; 1793 V = GA->getAliasee(); 1794 } else { 1795 // See if InstructionSimplify knows any relevant tricks. 1796 if (Instruction *I = dyn_cast<Instruction>(V)) 1797 // TODO: Acquire a DominatorTree and use it. 1798 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1799 V = Simplified; 1800 continue; 1801 } 1802 1803 return V; 1804 } 1805 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1806 } 1807 return V; 1808 } 1809 1810 void 1811 llvm::GetUnderlyingObjects(Value *V, 1812 SmallVectorImpl<Value *> &Objects, 1813 const DataLayout *TD, 1814 unsigned MaxLookup) { 1815 SmallPtrSet<Value *, 4> Visited; 1816 SmallVector<Value *, 4> Worklist; 1817 Worklist.push_back(V); 1818 do { 1819 Value *P = Worklist.pop_back_val(); 1820 P = GetUnderlyingObject(P, TD, MaxLookup); 1821 1822 if (!Visited.insert(P)) 1823 continue; 1824 1825 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1826 Worklist.push_back(SI->getTrueValue()); 1827 Worklist.push_back(SI->getFalseValue()); 1828 continue; 1829 } 1830 1831 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1832 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1833 Worklist.push_back(PN->getIncomingValue(i)); 1834 continue; 1835 } 1836 1837 Objects.push_back(P); 1838 } while (!Worklist.empty()); 1839 } 1840 1841 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1842 /// are lifetime markers. 1843 /// 1844 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1845 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1846 UI != UE; ++UI) { 1847 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1848 if (!II) return false; 1849 1850 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1851 II->getIntrinsicID() != Intrinsic::lifetime_end) 1852 return false; 1853 } 1854 return true; 1855 } 1856 1857 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1858 const DataLayout *TD) { 1859 const Operator *Inst = dyn_cast<Operator>(V); 1860 if (!Inst) 1861 return false; 1862 1863 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1864 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1865 if (C->canTrap()) 1866 return false; 1867 1868 switch (Inst->getOpcode()) { 1869 default: 1870 return true; 1871 case Instruction::UDiv: 1872 case Instruction::URem: 1873 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1874 return isKnownNonZero(Inst->getOperand(1), TD); 1875 case Instruction::SDiv: 1876 case Instruction::SRem: { 1877 Value *Op = Inst->getOperand(1); 1878 // x / y is undefined if y == 0 1879 if (!isKnownNonZero(Op, TD)) 1880 return false; 1881 // x / y might be undefined if y == -1 1882 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1883 if (BitWidth == 0) 1884 return false; 1885 APInt KnownZero(BitWidth, 0); 1886 APInt KnownOne(BitWidth, 0); 1887 ComputeMaskedBits(Op, KnownZero, KnownOne, TD); 1888 return !!KnownZero; 1889 } 1890 case Instruction::Load: { 1891 const LoadInst *LI = cast<LoadInst>(Inst); 1892 if (!LI->isUnordered()) 1893 return false; 1894 return LI->getPointerOperand()->isDereferenceablePointer(); 1895 } 1896 case Instruction::Call: { 1897 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1898 switch (II->getIntrinsicID()) { 1899 // These synthetic intrinsics have no side-effects, and just mark 1900 // information about their operands. 1901 // FIXME: There are other no-op synthetic instructions that potentially 1902 // should be considered at least *safe* to speculate... 1903 case Intrinsic::dbg_declare: 1904 case Intrinsic::dbg_value: 1905 return true; 1906 1907 case Intrinsic::bswap: 1908 case Intrinsic::ctlz: 1909 case Intrinsic::ctpop: 1910 case Intrinsic::cttz: 1911 case Intrinsic::objectsize: 1912 case Intrinsic::sadd_with_overflow: 1913 case Intrinsic::smul_with_overflow: 1914 case Intrinsic::ssub_with_overflow: 1915 case Intrinsic::uadd_with_overflow: 1916 case Intrinsic::umul_with_overflow: 1917 case Intrinsic::usub_with_overflow: 1918 return true; 1919 // TODO: some fp intrinsics are marked as having the same error handling 1920 // as libm. They're safe to speculate when they won't error. 1921 // TODO: are convert_{from,to}_fp16 safe? 1922 // TODO: can we list target-specific intrinsics here? 1923 default: break; 1924 } 1925 } 1926 return false; // The called function could have undefined behavior or 1927 // side-effects, even if marked readnone nounwind. 1928 } 1929 case Instruction::VAArg: 1930 case Instruction::Alloca: 1931 case Instruction::Invoke: 1932 case Instruction::PHI: 1933 case Instruction::Store: 1934 case Instruction::Ret: 1935 case Instruction::Br: 1936 case Instruction::IndirectBr: 1937 case Instruction::Switch: 1938 case Instruction::Unreachable: 1939 case Instruction::Fence: 1940 case Instruction::LandingPad: 1941 case Instruction::AtomicRMW: 1942 case Instruction::AtomicCmpXchg: 1943 case Instruction::Resume: 1944 return false; // Misc instructions which have effects 1945 } 1946 } 1947