1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/MathExtras.h" 39 #include <cstring> 40 using namespace llvm; 41 using namespace llvm::PatternMatch; 42 43 const unsigned MaxDepth = 6; 44 45 /// Enable an experimental feature to leverage information about dominating 46 /// conditions to compute known bits. The individual options below control how 47 /// hard we search. The defaults are chosen to be fairly aggressive. If you 48 /// run into compile time problems when testing, scale them back and report 49 /// your findings. 50 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 51 cl::Hidden, cl::init(false)); 52 53 // This is expensive, so we only do it for the top level query value. 54 // (TODO: evaluate cost vs profit, consider higher thresholds) 55 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 56 cl::Hidden, cl::init(1)); 57 58 /// How many dominating blocks should be scanned looking for dominating 59 /// conditions? 60 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 61 cl::Hidden, 62 cl::init(20)); 63 64 // Controls the number of uses of the value searched for possible 65 // dominating comparisons. 66 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 67 cl::Hidden, cl::init(20)); 68 69 // If true, don't consider only compares whose only use is a branch. 70 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 71 cl::Hidden, cl::init(false)); 72 73 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 74 /// 0). For vector types, returns the element type's bitwidth. 75 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 76 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 77 return BitWidth; 78 79 return DL.getPointerTypeSizeInBits(Ty); 80 } 81 82 // Many of these functions have internal versions that take an assumption 83 // exclusion set. This is because of the potential for mutual recursion to 84 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 85 // classic case of this is assume(x = y), which will attempt to determine 86 // bits in x from bits in y, which will attempt to determine bits in y from 87 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 88 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 89 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 90 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 91 92 namespace { 93 // Simplifying using an assume can only be done in a particular control-flow 94 // context (the context instruction provides that context). If an assume and 95 // the context instruction are not in the same block then the DT helps in 96 // figuring out if we can use it. 97 struct Query { 98 ExclInvsSet ExclInvs; 99 AssumptionCache *AC; 100 const Instruction *CxtI; 101 const DominatorTree *DT; 102 103 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 104 const DominatorTree *DT = nullptr) 105 : AC(AC), CxtI(CxtI), DT(DT) {} 106 107 Query(const Query &Q, const Value *NewExcl) 108 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 109 ExclInvs.insert(NewExcl); 110 } 111 }; 112 } // end anonymous namespace 113 114 // Given the provided Value and, potentially, a context instruction, return 115 // the preferred context instruction (if any). 116 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 117 // If we've been provided with a context instruction, then use that (provided 118 // it has been inserted). 119 if (CxtI && CxtI->getParent()) 120 return CxtI; 121 122 // If the value is really an already-inserted instruction, then use that. 123 CxtI = dyn_cast<Instruction>(V); 124 if (CxtI && CxtI->getParent()) 125 return CxtI; 126 127 return nullptr; 128 } 129 130 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 131 const DataLayout &DL, unsigned Depth, 132 const Query &Q); 133 134 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 135 const DataLayout &DL, unsigned Depth, 136 AssumptionCache *AC, const Instruction *CxtI, 137 const DominatorTree *DT) { 138 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 139 Query(AC, safeCxtI(V, CxtI), DT)); 140 } 141 142 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 143 AssumptionCache *AC, const Instruction *CxtI, 144 const DominatorTree *DT) { 145 assert(LHS->getType() == RHS->getType() && 146 "LHS and RHS should have the same type"); 147 assert(LHS->getType()->isIntOrIntVectorTy() && 148 "LHS and RHS should be integers"); 149 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 150 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 151 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 152 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 153 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 154 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 155 } 156 157 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 158 const DataLayout &DL, unsigned Depth, 159 const Query &Q); 160 161 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 162 const DataLayout &DL, unsigned Depth, 163 AssumptionCache *AC, const Instruction *CxtI, 164 const DominatorTree *DT) { 165 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 166 Query(AC, safeCxtI(V, CxtI), DT)); 167 } 168 169 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 170 const Query &Q, const DataLayout &DL); 171 172 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 173 unsigned Depth, AssumptionCache *AC, 174 const Instruction *CxtI, 175 const DominatorTree *DT) { 176 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 177 Query(AC, safeCxtI(V, CxtI), DT), DL); 178 } 179 180 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 181 const Query &Q); 182 183 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 184 AssumptionCache *AC, const Instruction *CxtI, 185 const DominatorTree *DT) { 186 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 187 } 188 189 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 190 AssumptionCache *AC, const Instruction *CxtI, 191 const DominatorTree *DT) { 192 bool NonNegative, Negative; 193 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 194 return NonNegative; 195 } 196 197 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 198 const Query &Q); 199 200 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 201 AssumptionCache *AC, const Instruction *CxtI, 202 const DominatorTree *DT) { 203 return ::isKnownNonEqual(V1, V2, DL, Query(AC, 204 safeCxtI(V1, safeCxtI(V2, CxtI)), 205 DT)); 206 } 207 208 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 209 unsigned Depth, const Query &Q); 210 211 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 212 unsigned Depth, AssumptionCache *AC, 213 const Instruction *CxtI, const DominatorTree *DT) { 214 return ::MaskedValueIsZero(V, Mask, DL, Depth, 215 Query(AC, safeCxtI(V, CxtI), DT)); 216 } 217 218 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 219 unsigned Depth, const Query &Q); 220 221 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 222 unsigned Depth, AssumptionCache *AC, 223 const Instruction *CxtI, 224 const DominatorTree *DT) { 225 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 226 } 227 228 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 229 APInt &KnownZero, APInt &KnownOne, 230 APInt &KnownZero2, APInt &KnownOne2, 231 const DataLayout &DL, unsigned Depth, 232 const Query &Q) { 233 if (!Add) { 234 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 235 // We know that the top bits of C-X are clear if X contains less bits 236 // than C (i.e. no wrap-around can happen). For example, 20-X is 237 // positive if we can prove that X is >= 0 and < 16. 238 if (!CLHS->getValue().isNegative()) { 239 unsigned BitWidth = KnownZero.getBitWidth(); 240 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 241 // NLZ can't be BitWidth with no sign bit 242 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 243 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 244 245 // If all of the MaskV bits are known to be zero, then we know the 246 // output top bits are zero, because we now know that the output is 247 // from [0-C]. 248 if ((KnownZero2 & MaskV) == MaskV) { 249 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 250 // Top bits known zero. 251 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 252 } 253 } 254 } 255 } 256 257 unsigned BitWidth = KnownZero.getBitWidth(); 258 259 // If an initial sequence of bits in the result is not needed, the 260 // corresponding bits in the operands are not needed. 261 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 262 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 263 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 264 265 // Carry in a 1 for a subtract, rather than a 0. 266 APInt CarryIn(BitWidth, 0); 267 if (!Add) { 268 // Sum = LHS + ~RHS + 1 269 std::swap(KnownZero2, KnownOne2); 270 CarryIn.setBit(0); 271 } 272 273 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 274 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 275 276 // Compute known bits of the carry. 277 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 278 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 279 280 // Compute set of known bits (where all three relevant bits are known). 281 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 282 APInt RHSKnown = KnownZero2 | KnownOne2; 283 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 284 APInt Known = LHSKnown & RHSKnown & CarryKnown; 285 286 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 287 "known bits of sum differ"); 288 289 // Compute known bits of the result. 290 KnownZero = ~PossibleSumOne & Known; 291 KnownOne = PossibleSumOne & Known; 292 293 // Are we still trying to solve for the sign bit? 294 if (!Known.isNegative()) { 295 if (NSW) { 296 // Adding two non-negative numbers, or subtracting a negative number from 297 // a non-negative one, can't wrap into negative. 298 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 299 KnownZero |= APInt::getSignBit(BitWidth); 300 // Adding two negative numbers, or subtracting a non-negative number from 301 // a negative one, can't wrap into non-negative. 302 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 303 KnownOne |= APInt::getSignBit(BitWidth); 304 } 305 } 306 } 307 308 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 309 APInt &KnownZero, APInt &KnownOne, 310 APInt &KnownZero2, APInt &KnownOne2, 311 const DataLayout &DL, unsigned Depth, 312 const Query &Q) { 313 unsigned BitWidth = KnownZero.getBitWidth(); 314 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 315 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 316 317 bool isKnownNegative = false; 318 bool isKnownNonNegative = false; 319 // If the multiplication is known not to overflow, compute the sign bit. 320 if (NSW) { 321 if (Op0 == Op1) { 322 // The product of a number with itself is non-negative. 323 isKnownNonNegative = true; 324 } else { 325 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 327 bool isKnownNegativeOp1 = KnownOne.isNegative(); 328 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 329 // The product of two numbers with the same sign is non-negative. 330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 332 // The product of a negative number and a non-negative number is either 333 // negative or zero. 334 if (!isKnownNonNegative) 335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 336 isKnownNonZero(Op0, DL, Depth, Q)) || 337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 338 isKnownNonZero(Op1, DL, Depth, Q)); 339 } 340 } 341 342 // If low bits are zero in either operand, output low known-0 bits. 343 // Also compute a conservative estimate for high known-0 bits. 344 // More trickiness is possible, but this is sufficient for the 345 // interesting case of alignment computation. 346 KnownOne.clearAllBits(); 347 unsigned TrailZ = KnownZero.countTrailingOnes() + 348 KnownZero2.countTrailingOnes(); 349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 350 KnownZero2.countLeadingOnes(), 351 BitWidth) - BitWidth; 352 353 TrailZ = std::min(TrailZ, BitWidth); 354 LeadZ = std::min(LeadZ, BitWidth); 355 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 356 APInt::getHighBitsSet(BitWidth, LeadZ); 357 358 // Only make use of no-wrap flags if we failed to compute the sign bit 359 // directly. This matters if the multiplication always overflows, in 360 // which case we prefer to follow the result of the direct computation, 361 // though as the program is invoking undefined behaviour we can choose 362 // whatever we like here. 363 if (isKnownNonNegative && !KnownOne.isNegative()) 364 KnownZero.setBit(BitWidth - 1); 365 else if (isKnownNegative && !KnownZero.isNegative()) 366 KnownOne.setBit(BitWidth - 1); 367 } 368 369 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 370 APInt &KnownZero, 371 APInt &KnownOne) { 372 unsigned BitWidth = KnownZero.getBitWidth(); 373 unsigned NumRanges = Ranges.getNumOperands() / 2; 374 assert(NumRanges >= 1); 375 376 KnownZero.setAllBits(); 377 KnownOne.setAllBits(); 378 379 for (unsigned i = 0; i < NumRanges; ++i) { 380 ConstantInt *Lower = 381 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 382 ConstantInt *Upper = 383 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 384 ConstantRange Range(Lower->getValue(), Upper->getValue()); 385 386 // The first CommonPrefixBits of all values in Range are equal. 387 unsigned CommonPrefixBits = 388 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 389 390 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 391 KnownOne &= Range.getUnsignedMax() & Mask; 392 KnownZero &= ~Range.getUnsignedMax() & Mask; 393 } 394 } 395 396 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 397 SmallVector<const Value *, 16> WorkSet(1, I); 398 SmallPtrSet<const Value *, 32> Visited; 399 SmallPtrSet<const Value *, 16> EphValues; 400 401 // The instruction defining an assumption's condition itself is always 402 // considered ephemeral to that assumption (even if it has other 403 // non-ephemeral users). See r246696's test case for an example. 404 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 405 return true; 406 407 while (!WorkSet.empty()) { 408 const Value *V = WorkSet.pop_back_val(); 409 if (!Visited.insert(V).second) 410 continue; 411 412 // If all uses of this value are ephemeral, then so is this value. 413 if (std::all_of(V->user_begin(), V->user_end(), 414 [&](const User *U) { return EphValues.count(U); })) { 415 if (V == E) 416 return true; 417 418 EphValues.insert(V); 419 if (const User *U = dyn_cast<User>(V)) 420 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 421 J != JE; ++J) { 422 if (isSafeToSpeculativelyExecute(*J)) 423 WorkSet.push_back(*J); 424 } 425 } 426 } 427 428 return false; 429 } 430 431 // Is this an intrinsic that cannot be speculated but also cannot trap? 432 static bool isAssumeLikeIntrinsic(const Instruction *I) { 433 if (const CallInst *CI = dyn_cast<CallInst>(I)) 434 if (Function *F = CI->getCalledFunction()) 435 switch (F->getIntrinsicID()) { 436 default: break; 437 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 438 case Intrinsic::assume: 439 case Intrinsic::dbg_declare: 440 case Intrinsic::dbg_value: 441 case Intrinsic::invariant_start: 442 case Intrinsic::invariant_end: 443 case Intrinsic::lifetime_start: 444 case Intrinsic::lifetime_end: 445 case Intrinsic::objectsize: 446 case Intrinsic::ptr_annotation: 447 case Intrinsic::var_annotation: 448 return true; 449 } 450 451 return false; 452 } 453 454 static bool isValidAssumeForContext(Value *V, const Query &Q) { 455 Instruction *Inv = cast<Instruction>(V); 456 457 // There are two restrictions on the use of an assume: 458 // 1. The assume must dominate the context (or the control flow must 459 // reach the assume whenever it reaches the context). 460 // 2. The context must not be in the assume's set of ephemeral values 461 // (otherwise we will use the assume to prove that the condition 462 // feeding the assume is trivially true, thus causing the removal of 463 // the assume). 464 465 if (Q.DT) { 466 if (Q.DT->dominates(Inv, Q.CxtI)) { 467 return true; 468 } else if (Inv->getParent() == Q.CxtI->getParent()) { 469 // The context comes first, but they're both in the same block. Make sure 470 // there is nothing in between that might interrupt the control flow. 471 for (BasicBlock::const_iterator I = 472 std::next(BasicBlock::const_iterator(Q.CxtI)), 473 IE(Inv); I != IE; ++I) 474 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 475 return false; 476 477 return !isEphemeralValueOf(Inv, Q.CxtI); 478 } 479 480 return false; 481 } 482 483 // When we don't have a DT, we do a limited search... 484 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 485 return true; 486 } else if (Inv->getParent() == Q.CxtI->getParent()) { 487 // Search forward from the assume until we reach the context (or the end 488 // of the block); the common case is that the assume will come first. 489 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 490 IE = Inv->getParent()->end(); I != IE; ++I) 491 if (&*I == Q.CxtI) 492 return true; 493 494 // The context must come first... 495 for (BasicBlock::const_iterator I = 496 std::next(BasicBlock::const_iterator(Q.CxtI)), 497 IE(Inv); I != IE; ++I) 498 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 499 return false; 500 501 return !isEphemeralValueOf(Inv, Q.CxtI); 502 } 503 504 return false; 505 } 506 507 bool llvm::isValidAssumeForContext(const Instruction *I, 508 const Instruction *CxtI, 509 const DominatorTree *DT) { 510 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 511 Query(nullptr, CxtI, DT)); 512 } 513 514 template<typename LHS, typename RHS> 515 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 516 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 517 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 518 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 519 } 520 521 template<typename LHS, typename RHS> 522 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 523 BinaryOp_match<RHS, LHS, Instruction::And>> 524 m_c_And(const LHS &L, const RHS &R) { 525 return m_CombineOr(m_And(L, R), m_And(R, L)); 526 } 527 528 template<typename LHS, typename RHS> 529 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 530 BinaryOp_match<RHS, LHS, Instruction::Or>> 531 m_c_Or(const LHS &L, const RHS &R) { 532 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 533 } 534 535 template<typename LHS, typename RHS> 536 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 537 BinaryOp_match<RHS, LHS, Instruction::Xor>> 538 m_c_Xor(const LHS &L, const RHS &R) { 539 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 540 } 541 542 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 543 /// true (at the context instruction.) This is mostly a utility function for 544 /// the prototype dominating conditions reasoning below. 545 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 546 APInt &KnownZero, 547 APInt &KnownOne, 548 const DataLayout &DL, 549 unsigned Depth, const Query &Q) { 550 Value *LHS = Cmp->getOperand(0); 551 Value *RHS = Cmp->getOperand(1); 552 // TODO: We could potentially be more aggressive here. This would be worth 553 // evaluating. If we can, explore commoning this code with the assume 554 // handling logic. 555 if (LHS != V && RHS != V) 556 return; 557 558 const unsigned BitWidth = KnownZero.getBitWidth(); 559 560 switch (Cmp->getPredicate()) { 561 default: 562 // We know nothing from this condition 563 break; 564 // TODO: implement unsigned bound from below (known one bits) 565 // TODO: common condition check implementations with assumes 566 // TODO: implement other patterns from assume (e.g. V & B == A) 567 case ICmpInst::ICMP_SGT: 568 if (LHS == V) { 569 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 570 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 571 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 572 // We know that the sign bit is zero. 573 KnownZero |= APInt::getSignBit(BitWidth); 574 } 575 } 576 break; 577 case ICmpInst::ICMP_EQ: 578 { 579 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 580 if (LHS == V) 581 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 582 else if (RHS == V) 583 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 584 else 585 llvm_unreachable("missing use?"); 586 KnownZero |= KnownZeroTemp; 587 KnownOne |= KnownOneTemp; 588 } 589 break; 590 case ICmpInst::ICMP_ULE: 591 if (LHS == V) { 592 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 593 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 594 // The known zero bits carry over 595 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 596 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 597 } 598 break; 599 case ICmpInst::ICMP_ULT: 600 if (LHS == V) { 601 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 602 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 603 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 604 // power of 2, then one more). 605 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 606 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 607 SignBits++; 608 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 609 } 610 break; 611 }; 612 } 613 614 /// Compute known bits in 'V' from conditions which are known to be true along 615 /// all paths leading to the context instruction. In particular, look for 616 /// cases where one branch of an interesting condition dominates the context 617 /// instruction. This does not do general dataflow. 618 /// NOTE: This code is EXPERIMENTAL and currently off by default. 619 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 620 APInt &KnownOne, 621 const DataLayout &DL, 622 unsigned Depth, 623 const Query &Q) { 624 // Need both the dominator tree and the query location to do anything useful 625 if (!Q.DT || !Q.CxtI) 626 return; 627 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 628 // The context instruction might be in a statically unreachable block. If 629 // so, asking dominator queries may yield suprising results. (e.g. the block 630 // may not have a dom tree node) 631 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 632 return; 633 634 // Avoid useless work 635 if (auto VI = dyn_cast<Instruction>(V)) 636 if (VI->getParent() == Cxt->getParent()) 637 return; 638 639 // Note: We currently implement two options. It's not clear which of these 640 // will survive long term, we need data for that. 641 // Option 1 - Try walking the dominator tree looking for conditions which 642 // might apply. This works well for local conditions (loop guards, etc..), 643 // but not as well for things far from the context instruction (presuming a 644 // low max blocks explored). If we can set an high enough limit, this would 645 // be all we need. 646 // Option 2 - We restrict out search to those conditions which are uses of 647 // the value we're interested in. This is independent of dom structure, 648 // but is slightly less powerful without looking through lots of use chains. 649 // It does handle conditions far from the context instruction (e.g. early 650 // function exits on entry) really well though. 651 652 // Option 1 - Search the dom tree 653 unsigned NumBlocksExplored = 0; 654 BasicBlock *Current = Cxt->getParent(); 655 while (true) { 656 // Stop searching if we've gone too far up the chain 657 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 658 break; 659 NumBlocksExplored++; 660 661 if (!Q.DT->getNode(Current)->getIDom()) 662 break; 663 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 664 if (!Current) 665 // found function entry 666 break; 667 668 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 669 if (!BI || BI->isUnconditional()) 670 continue; 671 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 672 if (!Cmp) 673 continue; 674 675 // We're looking for conditions that are guaranteed to hold at the context 676 // instruction. Finding a condition where one path dominates the context 677 // isn't enough because both the true and false cases could merge before 678 // the context instruction we're actually interested in. Instead, we need 679 // to ensure that the taken *edge* dominates the context instruction. We 680 // know that the edge must be reachable since we started from a reachable 681 // block. 682 BasicBlock *BB0 = BI->getSuccessor(0); 683 BasicBlockEdge Edge(BI->getParent(), BB0); 684 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 685 continue; 686 687 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 688 Q); 689 } 690 691 // Option 2 - Search the other uses of V 692 unsigned NumUsesExplored = 0; 693 for (auto U : V->users()) { 694 // Avoid massive lists 695 if (NumUsesExplored >= DomConditionsMaxUses) 696 break; 697 NumUsesExplored++; 698 // Consider only compare instructions uniquely controlling a branch 699 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 700 if (!Cmp) 701 continue; 702 703 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 704 continue; 705 706 for (auto *CmpU : Cmp->users()) { 707 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 708 if (!BI || BI->isUnconditional()) 709 continue; 710 // We're looking for conditions that are guaranteed to hold at the 711 // context instruction. Finding a condition where one path dominates 712 // the context isn't enough because both the true and false cases could 713 // merge before the context instruction we're actually interested in. 714 // Instead, we need to ensure that the taken *edge* dominates the context 715 // instruction. 716 BasicBlock *BB0 = BI->getSuccessor(0); 717 BasicBlockEdge Edge(BI->getParent(), BB0); 718 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 719 continue; 720 721 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 722 Q); 723 } 724 } 725 } 726 727 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 728 APInt &KnownOne, const DataLayout &DL, 729 unsigned Depth, const Query &Q) { 730 // Use of assumptions is context-sensitive. If we don't have a context, we 731 // cannot use them! 732 if (!Q.AC || !Q.CxtI) 733 return; 734 735 unsigned BitWidth = KnownZero.getBitWidth(); 736 737 for (auto &AssumeVH : Q.AC->assumptions()) { 738 if (!AssumeVH) 739 continue; 740 CallInst *I = cast<CallInst>(AssumeVH); 741 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 742 "Got assumption for the wrong function!"); 743 if (Q.ExclInvs.count(I)) 744 continue; 745 746 // Warning: This loop can end up being somewhat performance sensetive. 747 // We're running this loop for once for each value queried resulting in a 748 // runtime of ~O(#assumes * #values). 749 750 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 751 "must be an assume intrinsic"); 752 753 Value *Arg = I->getArgOperand(0); 754 755 if (Arg == V && isValidAssumeForContext(I, Q)) { 756 assert(BitWidth == 1 && "assume operand is not i1?"); 757 KnownZero.clearAllBits(); 758 KnownOne.setAllBits(); 759 return; 760 } 761 762 // The remaining tests are all recursive, so bail out if we hit the limit. 763 if (Depth == MaxDepth) 764 continue; 765 766 Value *A, *B; 767 auto m_V = m_CombineOr(m_Specific(V), 768 m_CombineOr(m_PtrToInt(m_Specific(V)), 769 m_BitCast(m_Specific(V)))); 770 771 CmpInst::Predicate Pred; 772 ConstantInt *C; 773 // assume(v = a) 774 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 775 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 776 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 777 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 778 KnownZero |= RHSKnownZero; 779 KnownOne |= RHSKnownOne; 780 // assume(v & b = a) 781 } else if (match(Arg, 782 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 783 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 786 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 787 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 788 789 // For those bits in the mask that are known to be one, we can propagate 790 // known bits from the RHS to V. 791 KnownZero |= RHSKnownZero & MaskKnownOne; 792 KnownOne |= RHSKnownOne & MaskKnownOne; 793 // assume(~(v & b) = a) 794 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 795 m_Value(A))) && 796 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 797 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 798 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 799 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 800 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 801 802 // For those bits in the mask that are known to be one, we can propagate 803 // inverted known bits from the RHS to V. 804 KnownZero |= RHSKnownOne & MaskKnownOne; 805 KnownOne |= RHSKnownZero & MaskKnownOne; 806 // assume(v | b = a) 807 } else if (match(Arg, 808 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 809 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 810 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 811 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 812 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 813 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 814 815 // For those bits in B that are known to be zero, we can propagate known 816 // bits from the RHS to V. 817 KnownZero |= RHSKnownZero & BKnownZero; 818 KnownOne |= RHSKnownOne & BKnownZero; 819 // assume(~(v | b) = a) 820 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 821 m_Value(A))) && 822 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 823 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 824 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 825 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 826 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 827 828 // For those bits in B that are known to be zero, we can propagate 829 // inverted known bits from the RHS to V. 830 KnownZero |= RHSKnownOne & BKnownZero; 831 KnownOne |= RHSKnownZero & BKnownZero; 832 // assume(v ^ b = a) 833 } else if (match(Arg, 834 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 840 841 // For those bits in B that are known to be zero, we can propagate known 842 // bits from the RHS to V. For those bits in B that are known to be one, 843 // we can propagate inverted known bits from the RHS to V. 844 KnownZero |= RHSKnownZero & BKnownZero; 845 KnownOne |= RHSKnownOne & BKnownZero; 846 KnownZero |= RHSKnownOne & BKnownOne; 847 KnownOne |= RHSKnownZero & BKnownOne; 848 // assume(~(v ^ b) = a) 849 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 850 m_Value(A))) && 851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 854 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 855 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 856 857 // For those bits in B that are known to be zero, we can propagate 858 // inverted known bits from the RHS to V. For those bits in B that are 859 // known to be one, we can propagate known bits from the RHS to V. 860 KnownZero |= RHSKnownOne & BKnownZero; 861 KnownOne |= RHSKnownZero & BKnownZero; 862 KnownZero |= RHSKnownZero & BKnownOne; 863 KnownOne |= RHSKnownOne & BKnownOne; 864 // assume(v << c = a) 865 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 866 m_Value(A))) && 867 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 868 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 869 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 870 // For those bits in RHS that are known, we can propagate them to known 871 // bits in V shifted to the right by C. 872 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 873 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 874 // assume(~(v << c) = a) 875 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 876 m_Value(A))) && 877 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 878 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 879 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 880 // For those bits in RHS that are known, we can propagate them inverted 881 // to known bits in V shifted to the right by C. 882 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 883 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 884 // assume(v >> c = a) 885 } else if (match(Arg, 886 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 887 m_AShr(m_V, m_ConstantInt(C))), 888 m_Value(A))) && 889 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 890 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 891 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 892 // For those bits in RHS that are known, we can propagate them to known 893 // bits in V shifted to the right by C. 894 KnownZero |= RHSKnownZero << C->getZExtValue(); 895 KnownOne |= RHSKnownOne << C->getZExtValue(); 896 // assume(~(v >> c) = a) 897 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 898 m_LShr(m_V, m_ConstantInt(C)), 899 m_AShr(m_V, m_ConstantInt(C)))), 900 m_Value(A))) && 901 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 902 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 903 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 904 // For those bits in RHS that are known, we can propagate them inverted 905 // to known bits in V shifted to the right by C. 906 KnownZero |= RHSKnownOne << C->getZExtValue(); 907 KnownOne |= RHSKnownZero << C->getZExtValue(); 908 // assume(v >=_s c) where c is non-negative 909 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 910 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 911 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 912 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 913 914 if (RHSKnownZero.isNegative()) { 915 // We know that the sign bit is zero. 916 KnownZero |= APInt::getSignBit(BitWidth); 917 } 918 // assume(v >_s c) where c is at least -1. 919 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 920 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 921 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 922 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 923 924 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 925 // We know that the sign bit is zero. 926 KnownZero |= APInt::getSignBit(BitWidth); 927 } 928 // assume(v <=_s c) where c is negative 929 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 930 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 931 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 932 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 933 934 if (RHSKnownOne.isNegative()) { 935 // We know that the sign bit is one. 936 KnownOne |= APInt::getSignBit(BitWidth); 937 } 938 // assume(v <_s c) where c is non-positive 939 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 940 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 941 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 942 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 943 944 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 945 // We know that the sign bit is one. 946 KnownOne |= APInt::getSignBit(BitWidth); 947 } 948 // assume(v <=_u c) 949 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 950 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 951 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 952 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 953 954 // Whatever high bits in c are zero are known to be zero. 955 KnownZero |= 956 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 957 // assume(v <_u c) 958 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 959 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 960 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 961 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 962 963 // Whatever high bits in c are zero are known to be zero (if c is a power 964 // of 2, then one more). 965 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 966 KnownZero |= 967 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 968 else 969 KnownZero |= 970 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 971 } 972 } 973 } 974 975 // Compute known bits from a shift operator, including those with a 976 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 977 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 978 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 979 // functors that, given the known-zero or known-one bits respectively, and a 980 // shift amount, compute the implied known-zero or known-one bits of the shift 981 // operator's result respectively for that shift amount. The results from calling 982 // KZF and KOF are conservatively combined for all permitted shift amounts. 983 template <typename KZFunctor, typename KOFunctor> 984 static void computeKnownBitsFromShiftOperator(Operator *I, 985 APInt &KnownZero, APInt &KnownOne, 986 APInt &KnownZero2, APInt &KnownOne2, 987 const DataLayout &DL, unsigned Depth, const Query &Q, 988 KZFunctor KZF, KOFunctor KOF) { 989 unsigned BitWidth = KnownZero.getBitWidth(); 990 991 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 992 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 993 994 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 995 KnownZero = KZF(KnownZero, ShiftAmt); 996 KnownOne = KOF(KnownOne, ShiftAmt); 997 return; 998 } 999 1000 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1001 1002 // Note: We cannot use KnownZero.getLimitedValue() here, because if 1003 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1004 // limit value (which implies all bits are known). 1005 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 1006 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 1007 1008 // It would be more-clearly correct to use the two temporaries for this 1009 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1010 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1011 1012 // If we know the shifter operand is nonzero, we can sometimes infer more 1013 // known bits. However this is expensive to compute, so be lazy about it and 1014 // only compute it when absolutely necessary. 1015 Optional<bool> ShifterOperandIsNonZero; 1016 1017 // Early exit if we can't constrain any well-defined shift amount. 1018 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 1019 ShifterOperandIsNonZero = 1020 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q); 1021 if (!*ShifterOperandIsNonZero) 1022 return; 1023 } 1024 1025 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1026 1027 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 1028 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1029 // Combine the shifted known input bits only for those shift amounts 1030 // compatible with its known constraints. 1031 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1032 continue; 1033 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1034 continue; 1035 // If we know the shifter is nonzero, we may be able to infer more known 1036 // bits. This check is sunk down as far as possible to avoid the expensive 1037 // call to isKnownNonZero if the cheaper checks above fail. 1038 if (ShiftAmt == 0) { 1039 if (!ShifterOperandIsNonZero.hasValue()) 1040 ShifterOperandIsNonZero = 1041 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q); 1042 if (*ShifterOperandIsNonZero) 1043 continue; 1044 } 1045 1046 KnownZero &= KZF(KnownZero2, ShiftAmt); 1047 KnownOne &= KOF(KnownOne2, ShiftAmt); 1048 } 1049 1050 // If there are no compatible shift amounts, then we've proven that the shift 1051 // amount must be >= the BitWidth, and the result is undefined. We could 1052 // return anything we'd like, but we need to make sure the sets of known bits 1053 // stay disjoint (it should be better for some other code to actually 1054 // propagate the undef than to pick a value here using known bits). 1055 if ((KnownZero & KnownOne) != 0) 1056 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1057 } 1058 1059 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 1060 APInt &KnownOne, const DataLayout &DL, 1061 unsigned Depth, const Query &Q) { 1062 unsigned BitWidth = KnownZero.getBitWidth(); 1063 1064 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 1065 switch (I->getOpcode()) { 1066 default: break; 1067 case Instruction::Load: 1068 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 1069 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1070 break; 1071 case Instruction::And: { 1072 // If either the LHS or the RHS are Zero, the result is zero. 1073 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1074 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1075 1076 // Output known-1 bits are only known if set in both the LHS & RHS. 1077 KnownOne &= KnownOne2; 1078 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1079 KnownZero |= KnownZero2; 1080 break; 1081 } 1082 case Instruction::Or: { 1083 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1084 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1085 1086 // Output known-0 bits are only known if clear in both the LHS & RHS. 1087 KnownZero &= KnownZero2; 1088 // Output known-1 are known to be set if set in either the LHS | RHS. 1089 KnownOne |= KnownOne2; 1090 break; 1091 } 1092 case Instruction::Xor: { 1093 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1094 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1095 1096 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1097 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1098 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1099 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1100 KnownZero = KnownZeroOut; 1101 break; 1102 } 1103 case Instruction::Mul: { 1104 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1105 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1106 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1107 break; 1108 } 1109 case Instruction::UDiv: { 1110 // For the purposes of computing leading zeros we can conservatively 1111 // treat a udiv as a logical right shift by the power of 2 known to 1112 // be less than the denominator. 1113 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1114 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1115 1116 KnownOne2.clearAllBits(); 1117 KnownZero2.clearAllBits(); 1118 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1119 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1120 if (RHSUnknownLeadingOnes != BitWidth) 1121 LeadZ = std::min(BitWidth, 1122 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1123 1124 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1125 break; 1126 } 1127 case Instruction::Select: 1128 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1129 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1130 1131 // Only known if known in both the LHS and RHS. 1132 KnownOne &= KnownOne2; 1133 KnownZero &= KnownZero2; 1134 break; 1135 case Instruction::FPTrunc: 1136 case Instruction::FPExt: 1137 case Instruction::FPToUI: 1138 case Instruction::FPToSI: 1139 case Instruction::SIToFP: 1140 case Instruction::UIToFP: 1141 break; // Can't work with floating point. 1142 case Instruction::PtrToInt: 1143 case Instruction::IntToPtr: 1144 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1145 // FALL THROUGH and handle them the same as zext/trunc. 1146 case Instruction::ZExt: 1147 case Instruction::Trunc: { 1148 Type *SrcTy = I->getOperand(0)->getType(); 1149 1150 unsigned SrcBitWidth; 1151 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1152 // which fall through here. 1153 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1154 1155 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1156 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1157 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1158 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1159 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1160 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1161 // Any top bits are known to be zero. 1162 if (BitWidth > SrcBitWidth) 1163 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1164 break; 1165 } 1166 case Instruction::BitCast: { 1167 Type *SrcTy = I->getOperand(0)->getType(); 1168 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1169 SrcTy->isFloatingPointTy()) && 1170 // TODO: For now, not handling conversions like: 1171 // (bitcast i64 %x to <2 x i32>) 1172 !I->getType()->isVectorTy()) { 1173 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1174 break; 1175 } 1176 break; 1177 } 1178 case Instruction::SExt: { 1179 // Compute the bits in the result that are not present in the input. 1180 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1181 1182 KnownZero = KnownZero.trunc(SrcBitWidth); 1183 KnownOne = KnownOne.trunc(SrcBitWidth); 1184 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1185 KnownZero = KnownZero.zext(BitWidth); 1186 KnownOne = KnownOne.zext(BitWidth); 1187 1188 // If the sign bit of the input is known set or clear, then we know the 1189 // top bits of the result. 1190 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1191 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1192 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1193 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1194 break; 1195 } 1196 case Instruction::Shl: { 1197 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1198 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1199 return (KnownZero << ShiftAmt) | 1200 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1201 }; 1202 1203 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1204 return KnownOne << ShiftAmt; 1205 }; 1206 1207 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1208 KnownZero2, KnownOne2, DL, Depth, Q, 1209 KZF, KOF); 1210 break; 1211 } 1212 case Instruction::LShr: { 1213 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1214 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1215 return APIntOps::lshr(KnownZero, ShiftAmt) | 1216 // High bits known zero. 1217 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1218 }; 1219 1220 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1221 return APIntOps::lshr(KnownOne, ShiftAmt); 1222 }; 1223 1224 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1225 KnownZero2, KnownOne2, DL, Depth, Q, 1226 KZF, KOF); 1227 break; 1228 } 1229 case Instruction::AShr: { 1230 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1231 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1232 return APIntOps::ashr(KnownZero, ShiftAmt); 1233 }; 1234 1235 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1236 return APIntOps::ashr(KnownOne, ShiftAmt); 1237 }; 1238 1239 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1240 KnownZero2, KnownOne2, DL, Depth, Q, 1241 KZF, KOF); 1242 break; 1243 } 1244 case Instruction::Sub: { 1245 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1246 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1247 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1248 Depth, Q); 1249 break; 1250 } 1251 case Instruction::Add: { 1252 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1253 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1254 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1255 Depth, Q); 1256 break; 1257 } 1258 case Instruction::SRem: 1259 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1260 APInt RA = Rem->getValue().abs(); 1261 if (RA.isPowerOf2()) { 1262 APInt LowBits = RA - 1; 1263 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1264 Q); 1265 1266 // The low bits of the first operand are unchanged by the srem. 1267 KnownZero = KnownZero2 & LowBits; 1268 KnownOne = KnownOne2 & LowBits; 1269 1270 // If the first operand is non-negative or has all low bits zero, then 1271 // the upper bits are all zero. 1272 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1273 KnownZero |= ~LowBits; 1274 1275 // If the first operand is negative and not all low bits are zero, then 1276 // the upper bits are all one. 1277 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1278 KnownOne |= ~LowBits; 1279 1280 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1281 } 1282 } 1283 1284 // The sign bit is the LHS's sign bit, except when the result of the 1285 // remainder is zero. 1286 if (KnownZero.isNonNegative()) { 1287 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1288 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1289 Depth + 1, Q); 1290 // If it's known zero, our sign bit is also zero. 1291 if (LHSKnownZero.isNegative()) 1292 KnownZero.setBit(BitWidth - 1); 1293 } 1294 1295 break; 1296 case Instruction::URem: { 1297 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1298 APInt RA = Rem->getValue(); 1299 if (RA.isPowerOf2()) { 1300 APInt LowBits = (RA - 1); 1301 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1302 Q); 1303 KnownZero |= ~LowBits; 1304 KnownOne &= LowBits; 1305 break; 1306 } 1307 } 1308 1309 // Since the result is less than or equal to either operand, any leading 1310 // zero bits in either operand must also exist in the result. 1311 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1312 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1313 1314 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1315 KnownZero2.countLeadingOnes()); 1316 KnownOne.clearAllBits(); 1317 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1318 break; 1319 } 1320 1321 case Instruction::Alloca: { 1322 AllocaInst *AI = cast<AllocaInst>(I); 1323 unsigned Align = AI->getAlignment(); 1324 if (Align == 0) 1325 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1326 1327 if (Align > 0) 1328 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1329 break; 1330 } 1331 case Instruction::GetElementPtr: { 1332 // Analyze all of the subscripts of this getelementptr instruction 1333 // to determine if we can prove known low zero bits. 1334 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1335 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1336 Depth + 1, Q); 1337 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1338 1339 gep_type_iterator GTI = gep_type_begin(I); 1340 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1341 Value *Index = I->getOperand(i); 1342 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1343 // Handle struct member offset arithmetic. 1344 1345 // Handle case when index is vector zeroinitializer 1346 Constant *CIndex = cast<Constant>(Index); 1347 if (CIndex->isZeroValue()) 1348 continue; 1349 1350 if (CIndex->getType()->isVectorTy()) 1351 Index = CIndex->getSplatValue(); 1352 1353 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1354 const StructLayout *SL = DL.getStructLayout(STy); 1355 uint64_t Offset = SL->getElementOffset(Idx); 1356 TrailZ = std::min<unsigned>(TrailZ, 1357 countTrailingZeros(Offset)); 1358 } else { 1359 // Handle array index arithmetic. 1360 Type *IndexedTy = GTI.getIndexedType(); 1361 if (!IndexedTy->isSized()) { 1362 TrailZ = 0; 1363 break; 1364 } 1365 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1366 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1367 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1368 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1369 Q); 1370 TrailZ = std::min(TrailZ, 1371 unsigned(countTrailingZeros(TypeSize) + 1372 LocalKnownZero.countTrailingOnes())); 1373 } 1374 } 1375 1376 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1377 break; 1378 } 1379 case Instruction::PHI: { 1380 PHINode *P = cast<PHINode>(I); 1381 // Handle the case of a simple two-predecessor recurrence PHI. 1382 // There's a lot more that could theoretically be done here, but 1383 // this is sufficient to catch some interesting cases. 1384 if (P->getNumIncomingValues() == 2) { 1385 for (unsigned i = 0; i != 2; ++i) { 1386 Value *L = P->getIncomingValue(i); 1387 Value *R = P->getIncomingValue(!i); 1388 Operator *LU = dyn_cast<Operator>(L); 1389 if (!LU) 1390 continue; 1391 unsigned Opcode = LU->getOpcode(); 1392 // Check for operations that have the property that if 1393 // both their operands have low zero bits, the result 1394 // will have low zero bits. 1395 if (Opcode == Instruction::Add || 1396 Opcode == Instruction::Sub || 1397 Opcode == Instruction::And || 1398 Opcode == Instruction::Or || 1399 Opcode == Instruction::Mul) { 1400 Value *LL = LU->getOperand(0); 1401 Value *LR = LU->getOperand(1); 1402 // Find a recurrence. 1403 if (LL == I) 1404 L = LR; 1405 else if (LR == I) 1406 L = LL; 1407 else 1408 break; 1409 // Ok, we have a PHI of the form L op= R. Check for low 1410 // zero bits. 1411 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1412 1413 // We need to take the minimum number of known bits 1414 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1415 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1416 1417 KnownZero = APInt::getLowBitsSet(BitWidth, 1418 std::min(KnownZero2.countTrailingOnes(), 1419 KnownZero3.countTrailingOnes())); 1420 break; 1421 } 1422 } 1423 } 1424 1425 // Unreachable blocks may have zero-operand PHI nodes. 1426 if (P->getNumIncomingValues() == 0) 1427 break; 1428 1429 // Otherwise take the unions of the known bit sets of the operands, 1430 // taking conservative care to avoid excessive recursion. 1431 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1432 // Skip if every incoming value references to ourself. 1433 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1434 break; 1435 1436 KnownZero = APInt::getAllOnesValue(BitWidth); 1437 KnownOne = APInt::getAllOnesValue(BitWidth); 1438 for (Value *IncValue : P->incoming_values()) { 1439 // Skip direct self references. 1440 if (IncValue == P) continue; 1441 1442 KnownZero2 = APInt(BitWidth, 0); 1443 KnownOne2 = APInt(BitWidth, 0); 1444 // Recurse, but cap the recursion to one level, because we don't 1445 // want to waste time spinning around in loops. 1446 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, 1447 MaxDepth - 1, Q); 1448 KnownZero &= KnownZero2; 1449 KnownOne &= KnownOne2; 1450 // If all bits have been ruled out, there's no need to check 1451 // more operands. 1452 if (!KnownZero && !KnownOne) 1453 break; 1454 } 1455 } 1456 break; 1457 } 1458 case Instruction::Call: 1459 case Instruction::Invoke: 1460 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1461 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1462 // If a range metadata is attached to this IntrinsicInst, intersect the 1463 // explicit range specified by the metadata and the implicit range of 1464 // the intrinsic. 1465 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1466 switch (II->getIntrinsicID()) { 1467 default: break; 1468 case Intrinsic::bswap: 1469 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1470 Depth + 1, Q); 1471 KnownZero |= KnownZero2.byteSwap(); 1472 KnownOne |= KnownOne2.byteSwap(); 1473 break; 1474 case Intrinsic::ctlz: 1475 case Intrinsic::cttz: { 1476 unsigned LowBits = Log2_32(BitWidth)+1; 1477 // If this call is undefined for 0, the result will be less than 2^n. 1478 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1479 LowBits -= 1; 1480 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1481 break; 1482 } 1483 case Intrinsic::ctpop: { 1484 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1485 Depth + 1, Q); 1486 // We can bound the space the count needs. Also, bits known to be zero 1487 // can't contribute to the population. 1488 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1489 unsigned LeadingZeros = 1490 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1491 assert(LeadingZeros <= BitWidth); 1492 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1493 KnownOne &= ~KnownZero; 1494 // TODO: we could bound KnownOne using the lower bound on the number 1495 // of bits which might be set provided by popcnt KnownOne2. 1496 break; 1497 } 1498 case Intrinsic::fabs: { 1499 Type *Ty = II->getType(); 1500 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1501 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1502 break; 1503 } 1504 case Intrinsic::x86_sse42_crc32_64_64: 1505 KnownZero |= APInt::getHighBitsSet(64, 32); 1506 break; 1507 } 1508 } 1509 break; 1510 case Instruction::ExtractValue: 1511 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1512 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1513 if (EVI->getNumIndices() != 1) break; 1514 if (EVI->getIndices()[0] == 0) { 1515 switch (II->getIntrinsicID()) { 1516 default: break; 1517 case Intrinsic::uadd_with_overflow: 1518 case Intrinsic::sadd_with_overflow: 1519 computeKnownBitsAddSub(true, II->getArgOperand(0), 1520 II->getArgOperand(1), false, KnownZero, 1521 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1522 break; 1523 case Intrinsic::usub_with_overflow: 1524 case Intrinsic::ssub_with_overflow: 1525 computeKnownBitsAddSub(false, II->getArgOperand(0), 1526 II->getArgOperand(1), false, KnownZero, 1527 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1528 break; 1529 case Intrinsic::umul_with_overflow: 1530 case Intrinsic::smul_with_overflow: 1531 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1532 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1533 Depth, Q); 1534 break; 1535 } 1536 } 1537 } 1538 } 1539 } 1540 1541 static unsigned getAlignment(const Value *V, const DataLayout &DL) { 1542 unsigned Align = 0; 1543 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1544 Align = GO->getAlignment(); 1545 if (Align == 0) { 1546 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1547 Type *ObjectType = GVar->getType()->getElementType(); 1548 if (ObjectType->isSized()) { 1549 // If the object is defined in the current Module, we'll be giving 1550 // it the preferred alignment. Otherwise, we have to assume that it 1551 // may only have the minimum ABI alignment. 1552 if (GVar->isStrongDefinitionForLinker()) 1553 Align = DL.getPreferredAlignment(GVar); 1554 else 1555 Align = DL.getABITypeAlignment(ObjectType); 1556 } 1557 } 1558 } 1559 } else if (const Argument *A = dyn_cast<Argument>(V)) { 1560 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1561 1562 if (!Align && A->hasStructRetAttr()) { 1563 // An sret parameter has at least the ABI alignment of the return type. 1564 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1565 if (EltTy->isSized()) 1566 Align = DL.getABITypeAlignment(EltTy); 1567 } 1568 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1569 Align = AI->getAlignment(); 1570 else if (auto CS = ImmutableCallSite(V)) 1571 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 1572 else if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1573 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 1574 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 1575 Align = CI->getLimitedValue(); 1576 } 1577 1578 return Align; 1579 } 1580 1581 /// Determine which bits of V are known to be either zero or one and return 1582 /// them in the KnownZero/KnownOne bit sets. 1583 /// 1584 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1585 /// we cannot optimize based on the assumption that it is zero without changing 1586 /// it to be an explicit zero. If we don't change it to zero, other code could 1587 /// optimized based on the contradictory assumption that it is non-zero. 1588 /// Because instcombine aggressively folds operations with undef args anyway, 1589 /// this won't lose us code quality. 1590 /// 1591 /// This function is defined on values with integer type, values with pointer 1592 /// type, and vectors of integers. In the case 1593 /// where V is a vector, known zero, and known one values are the 1594 /// same width as the vector element, and the bit is set only if it is true 1595 /// for all of the elements in the vector. 1596 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1597 const DataLayout &DL, unsigned Depth, const Query &Q) { 1598 assert(V && "No Value?"); 1599 assert(Depth <= MaxDepth && "Limit Search Depth"); 1600 unsigned BitWidth = KnownZero.getBitWidth(); 1601 1602 assert((V->getType()->isIntOrIntVectorTy() || 1603 V->getType()->isFPOrFPVectorTy() || 1604 V->getType()->getScalarType()->isPointerTy()) && 1605 "Not integer, floating point, or pointer type!"); 1606 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1607 (!V->getType()->isIntOrIntVectorTy() || 1608 V->getType()->getScalarSizeInBits() == BitWidth) && 1609 KnownZero.getBitWidth() == BitWidth && 1610 KnownOne.getBitWidth() == BitWidth && 1611 "V, KnownOne and KnownZero should have same BitWidth"); 1612 1613 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1614 // We know all of the bits for a constant! 1615 KnownOne = CI->getValue(); 1616 KnownZero = ~KnownOne; 1617 return; 1618 } 1619 // Null and aggregate-zero are all-zeros. 1620 if (isa<ConstantPointerNull>(V) || 1621 isa<ConstantAggregateZero>(V)) { 1622 KnownOne.clearAllBits(); 1623 KnownZero = APInt::getAllOnesValue(BitWidth); 1624 return; 1625 } 1626 // Handle a constant vector by taking the intersection of the known bits of 1627 // each element. There is no real need to handle ConstantVector here, because 1628 // we don't handle undef in any particularly useful way. 1629 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1630 // We know that CDS must be a vector of integers. Take the intersection of 1631 // each element. 1632 KnownZero.setAllBits(); KnownOne.setAllBits(); 1633 APInt Elt(KnownZero.getBitWidth(), 0); 1634 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1635 Elt = CDS->getElementAsInteger(i); 1636 KnownZero &= ~Elt; 1637 KnownOne &= Elt; 1638 } 1639 return; 1640 } 1641 1642 // Start out not knowing anything. 1643 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1644 1645 // Limit search depth. 1646 // All recursive calls that increase depth must come after this. 1647 if (Depth == MaxDepth) 1648 return; 1649 1650 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1651 // the bits of its aliasee. 1652 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1653 if (!GA->mayBeOverridden()) 1654 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1655 return; 1656 } 1657 1658 if (Operator *I = dyn_cast<Operator>(V)) 1659 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); 1660 1661 // Aligned pointers have trailing zeros - refine KnownZero set 1662 if (V->getType()->isPointerTy()) { 1663 unsigned Align = getAlignment(V, DL); 1664 if (Align) 1665 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1666 } 1667 1668 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1669 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1670 // computeKnownBitsFromOperator. 1671 1672 // Check whether a nearby assume intrinsic can determine some known bits. 1673 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1674 1675 // Check whether there's a dominating condition which implies something about 1676 // this value at the given context. 1677 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1678 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1679 Q); 1680 1681 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1682 } 1683 1684 /// Determine whether the sign bit is known to be zero or one. 1685 /// Convenience wrapper around computeKnownBits. 1686 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1687 const DataLayout &DL, unsigned Depth, const Query &Q) { 1688 unsigned BitWidth = getBitWidth(V->getType(), DL); 1689 if (!BitWidth) { 1690 KnownZero = false; 1691 KnownOne = false; 1692 return; 1693 } 1694 APInt ZeroBits(BitWidth, 0); 1695 APInt OneBits(BitWidth, 0); 1696 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1697 KnownOne = OneBits[BitWidth - 1]; 1698 KnownZero = ZeroBits[BitWidth - 1]; 1699 } 1700 1701 /// Return true if the given value is known to have exactly one 1702 /// bit set when defined. For vectors return true if every element is known to 1703 /// be a power of two when defined. Supports values with integer or pointer 1704 /// types and vectors of integers. 1705 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1706 const Query &Q, const DataLayout &DL) { 1707 if (Constant *C = dyn_cast<Constant>(V)) { 1708 if (C->isNullValue()) 1709 return OrZero; 1710 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1711 return CI->getValue().isPowerOf2(); 1712 // TODO: Handle vector constants. 1713 } 1714 1715 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1716 // it is shifted off the end then the result is undefined. 1717 if (match(V, m_Shl(m_One(), m_Value()))) 1718 return true; 1719 1720 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1721 // bottom. If it is shifted off the bottom then the result is undefined. 1722 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1723 return true; 1724 1725 // The remaining tests are all recursive, so bail out if we hit the limit. 1726 if (Depth++ == MaxDepth) 1727 return false; 1728 1729 Value *X = nullptr, *Y = nullptr; 1730 // A shift of a power of two is a power of two or zero. 1731 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1732 match(V, m_Shr(m_Value(X), m_Value())))) 1733 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1734 1735 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1736 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1737 1738 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1739 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1740 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1741 1742 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1743 // A power of two and'd with anything is a power of two or zero. 1744 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1745 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1746 return true; 1747 // X & (-X) is always a power of two or zero. 1748 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1749 return true; 1750 return false; 1751 } 1752 1753 // Adding a power-of-two or zero to the same power-of-two or zero yields 1754 // either the original power-of-two, a larger power-of-two or zero. 1755 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1756 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1757 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1758 if (match(X, m_And(m_Specific(Y), m_Value())) || 1759 match(X, m_And(m_Value(), m_Specific(Y)))) 1760 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1761 return true; 1762 if (match(Y, m_And(m_Specific(X), m_Value())) || 1763 match(Y, m_And(m_Value(), m_Specific(X)))) 1764 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1765 return true; 1766 1767 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1768 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1769 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1770 1771 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1772 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1773 // If i8 V is a power of two or zero: 1774 // ZeroBits: 1 1 1 0 1 1 1 1 1775 // ~ZeroBits: 0 0 0 1 0 0 0 0 1776 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1777 // If OrZero isn't set, we cannot give back a zero result. 1778 // Make sure either the LHS or RHS has a bit set. 1779 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1780 return true; 1781 } 1782 } 1783 1784 // An exact divide or right shift can only shift off zero bits, so the result 1785 // is a power of two only if the first operand is a power of two and not 1786 // copying a sign bit (sdiv int_min, 2). 1787 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1788 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1789 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1790 Depth, Q, DL); 1791 } 1792 1793 return false; 1794 } 1795 1796 /// \brief Test whether a GEP's result is known to be non-null. 1797 /// 1798 /// Uses properties inherent in a GEP to try to determine whether it is known 1799 /// to be non-null. 1800 /// 1801 /// Currently this routine does not support vector GEPs. 1802 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1803 unsigned Depth, const Query &Q) { 1804 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1805 return false; 1806 1807 // FIXME: Support vector-GEPs. 1808 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1809 1810 // If the base pointer is non-null, we cannot walk to a null address with an 1811 // inbounds GEP in address space zero. 1812 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1813 return true; 1814 1815 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1816 // If so, then the GEP cannot produce a null pointer, as doing so would 1817 // inherently violate the inbounds contract within address space zero. 1818 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1819 GTI != GTE; ++GTI) { 1820 // Struct types are easy -- they must always be indexed by a constant. 1821 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1822 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1823 unsigned ElementIdx = OpC->getZExtValue(); 1824 const StructLayout *SL = DL.getStructLayout(STy); 1825 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1826 if (ElementOffset > 0) 1827 return true; 1828 continue; 1829 } 1830 1831 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1832 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1833 continue; 1834 1835 // Fast path the constant operand case both for efficiency and so we don't 1836 // increment Depth when just zipping down an all-constant GEP. 1837 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1838 if (!OpC->isZero()) 1839 return true; 1840 continue; 1841 } 1842 1843 // We post-increment Depth here because while isKnownNonZero increments it 1844 // as well, when we pop back up that increment won't persist. We don't want 1845 // to recurse 10k times just because we have 10k GEP operands. We don't 1846 // bail completely out because we want to handle constant GEPs regardless 1847 // of depth. 1848 if (Depth++ >= MaxDepth) 1849 continue; 1850 1851 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1852 return true; 1853 } 1854 1855 return false; 1856 } 1857 1858 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1859 /// ensure that the value it's attached to is never Value? 'RangeType' is 1860 /// is the type of the value described by the range. 1861 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1862 const APInt& Value) { 1863 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1864 assert(NumRanges >= 1); 1865 for (unsigned i = 0; i < NumRanges; ++i) { 1866 ConstantInt *Lower = 1867 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1868 ConstantInt *Upper = 1869 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1870 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1871 if (Range.contains(Value)) 1872 return false; 1873 } 1874 return true; 1875 } 1876 1877 /// Return true if the given value is known to be non-zero when defined. 1878 /// For vectors return true if every element is known to be non-zero when 1879 /// defined. Supports values with integer or pointer type and vectors of 1880 /// integers. 1881 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1882 const Query &Q) { 1883 if (Constant *C = dyn_cast<Constant>(V)) { 1884 if (C->isNullValue()) 1885 return false; 1886 if (isa<ConstantInt>(C)) 1887 // Must be non-zero due to null test above. 1888 return true; 1889 // TODO: Handle vectors 1890 return false; 1891 } 1892 1893 if (Instruction* I = dyn_cast<Instruction>(V)) { 1894 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1895 // If the possible ranges don't contain zero, then the value is 1896 // definitely non-zero. 1897 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1898 const APInt ZeroValue(Ty->getBitWidth(), 0); 1899 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1900 return true; 1901 } 1902 } 1903 } 1904 1905 // The remaining tests are all recursive, so bail out if we hit the limit. 1906 if (Depth++ >= MaxDepth) 1907 return false; 1908 1909 // Check for pointer simplifications. 1910 if (V->getType()->isPointerTy()) { 1911 if (isKnownNonNull(V)) 1912 return true; 1913 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1914 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1915 return true; 1916 } 1917 1918 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1919 1920 // X | Y != 0 if X != 0 or Y != 0. 1921 Value *X = nullptr, *Y = nullptr; 1922 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1923 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1924 1925 // ext X != 0 if X != 0. 1926 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1927 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1928 1929 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1930 // if the lowest bit is shifted off the end. 1931 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1932 // shl nuw can't remove any non-zero bits. 1933 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1934 if (BO->hasNoUnsignedWrap()) 1935 return isKnownNonZero(X, DL, Depth, Q); 1936 1937 APInt KnownZero(BitWidth, 0); 1938 APInt KnownOne(BitWidth, 0); 1939 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1940 if (KnownOne[0]) 1941 return true; 1942 } 1943 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1944 // defined if the sign bit is shifted off the end. 1945 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1946 // shr exact can only shift out zero bits. 1947 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1948 if (BO->isExact()) 1949 return isKnownNonZero(X, DL, Depth, Q); 1950 1951 bool XKnownNonNegative, XKnownNegative; 1952 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1953 if (XKnownNegative) 1954 return true; 1955 1956 // If the shifter operand is a constant, and all of the bits shifted 1957 // out are known to be zero, and X is known non-zero then at least one 1958 // non-zero bit must remain. 1959 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1960 APInt KnownZero(BitWidth, 0); 1961 APInt KnownOne(BitWidth, 0); 1962 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1963 1964 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1965 // Is there a known one in the portion not shifted out? 1966 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1967 return true; 1968 // Are all the bits to be shifted out known zero? 1969 if (KnownZero.countTrailingOnes() >= ShiftVal) 1970 return isKnownNonZero(X, DL, Depth, Q); 1971 } 1972 } 1973 // div exact can only produce a zero if the dividend is zero. 1974 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1975 return isKnownNonZero(X, DL, Depth, Q); 1976 } 1977 // X + Y. 1978 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1979 bool XKnownNonNegative, XKnownNegative; 1980 bool YKnownNonNegative, YKnownNegative; 1981 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1982 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 1983 1984 // If X and Y are both non-negative (as signed values) then their sum is not 1985 // zero unless both X and Y are zero. 1986 if (XKnownNonNegative && YKnownNonNegative) 1987 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 1988 return true; 1989 1990 // If X and Y are both negative (as signed values) then their sum is not 1991 // zero unless both X and Y equal INT_MIN. 1992 if (BitWidth && XKnownNegative && YKnownNegative) { 1993 APInt KnownZero(BitWidth, 0); 1994 APInt KnownOne(BitWidth, 0); 1995 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1996 // The sign bit of X is set. If some other bit is set then X is not equal 1997 // to INT_MIN. 1998 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1999 if ((KnownOne & Mask) != 0) 2000 return true; 2001 // The sign bit of Y is set. If some other bit is set then Y is not equal 2002 // to INT_MIN. 2003 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 2004 if ((KnownOne & Mask) != 0) 2005 return true; 2006 } 2007 2008 // The sum of a non-negative number and a power of two is not zero. 2009 if (XKnownNonNegative && 2010 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 2011 return true; 2012 if (YKnownNonNegative && 2013 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 2014 return true; 2015 } 2016 // X * Y. 2017 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2018 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2019 // If X and Y are non-zero then so is X * Y as long as the multiplication 2020 // does not overflow. 2021 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2022 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 2023 return true; 2024 } 2025 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2026 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2027 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 2028 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 2029 return true; 2030 } 2031 // PHI 2032 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2033 // Try and detect a recurrence that monotonically increases from a 2034 // starting value, as these are common as induction variables. 2035 if (PN->getNumIncomingValues() == 2) { 2036 Value *Start = PN->getIncomingValue(0); 2037 Value *Induction = PN->getIncomingValue(1); 2038 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2039 std::swap(Start, Induction); 2040 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2041 if (!C->isZero() && !C->isNegative()) { 2042 ConstantInt *X; 2043 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2044 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2045 !X->isNegative()) 2046 return true; 2047 } 2048 } 2049 } 2050 } 2051 2052 if (!BitWidth) return false; 2053 APInt KnownZero(BitWidth, 0); 2054 APInt KnownOne(BitWidth, 0); 2055 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2056 return KnownOne != 0; 2057 } 2058 2059 /// Return true if V2 == V1 + X, where X is known non-zero. 2060 static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL, 2061 const Query &Q) { 2062 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2063 if (!BO || BO->getOpcode() != Instruction::Add) 2064 return false; 2065 Value *Op = nullptr; 2066 if (V2 == BO->getOperand(0)) 2067 Op = BO->getOperand(1); 2068 else if (V2 == BO->getOperand(1)) 2069 Op = BO->getOperand(0); 2070 else 2071 return false; 2072 return isKnownNonZero(Op, DL, 0, Q); 2073 } 2074 2075 /// Return true if it is known that V1 != V2. 2076 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 2077 const Query &Q) { 2078 if (V1->getType()->isVectorTy() || V1 == V2) 2079 return false; 2080 if (V1->getType() != V2->getType()) 2081 // We can't look through casts yet. 2082 return false; 2083 if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q)) 2084 return true; 2085 2086 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2087 // Are any known bits in V1 contradictory to known bits in V2? If V1 2088 // has a known zero where V2 has a known one, they must not be equal. 2089 auto BitWidth = Ty->getBitWidth(); 2090 APInt KnownZero1(BitWidth, 0); 2091 APInt KnownOne1(BitWidth, 0); 2092 computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q); 2093 APInt KnownZero2(BitWidth, 0); 2094 APInt KnownOne2(BitWidth, 0); 2095 computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q); 2096 2097 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2098 if (OppositeBits.getBoolValue()) 2099 return true; 2100 } 2101 return false; 2102 } 2103 2104 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2105 /// simplify operations downstream. Mask is known to be zero for bits that V 2106 /// cannot have. 2107 /// 2108 /// This function is defined on values with integer type, values with pointer 2109 /// type, and vectors of integers. In the case 2110 /// where V is a vector, the mask, known zero, and known one values are the 2111 /// same width as the vector element, and the bit is set only if it is true 2112 /// for all of the elements in the vector. 2113 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 2114 unsigned Depth, const Query &Q) { 2115 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2116 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2117 return (KnownZero & Mask) == Mask; 2118 } 2119 2120 2121 2122 /// Return the number of times the sign bit of the register is replicated into 2123 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2124 /// (itself), but other cases can give us information. For example, immediately 2125 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2126 /// other, so we return 3. 2127 /// 2128 /// 'Op' must have a scalar integer type. 2129 /// 2130 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 2131 const Query &Q) { 2132 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 2133 unsigned Tmp, Tmp2; 2134 unsigned FirstAnswer = 1; 2135 2136 // Note that ConstantInt is handled by the general computeKnownBits case 2137 // below. 2138 2139 if (Depth == 6) 2140 return 1; // Limit search depth. 2141 2142 Operator *U = dyn_cast<Operator>(V); 2143 switch (Operator::getOpcode(V)) { 2144 default: break; 2145 case Instruction::SExt: 2146 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2147 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 2148 2149 case Instruction::SDiv: { 2150 const APInt *Denominator; 2151 // sdiv X, C -> adds log(C) sign bits. 2152 if (match(U->getOperand(1), m_APInt(Denominator))) { 2153 2154 // Ignore non-positive denominator. 2155 if (!Denominator->isStrictlyPositive()) 2156 break; 2157 2158 // Calculate the incoming numerator bits. 2159 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2160 2161 // Add floor(log(C)) bits to the numerator bits. 2162 return std::min(TyBits, NumBits + Denominator->logBase2()); 2163 } 2164 break; 2165 } 2166 2167 case Instruction::SRem: { 2168 const APInt *Denominator; 2169 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2170 // positive constant. This let us put a lower bound on the number of sign 2171 // bits. 2172 if (match(U->getOperand(1), m_APInt(Denominator))) { 2173 2174 // Ignore non-positive denominator. 2175 if (!Denominator->isStrictlyPositive()) 2176 break; 2177 2178 // Calculate the incoming numerator bits. SRem by a positive constant 2179 // can't lower the number of sign bits. 2180 unsigned NumrBits = 2181 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2182 2183 // Calculate the leading sign bit constraints by examining the 2184 // denominator. Given that the denominator is positive, there are two 2185 // cases: 2186 // 2187 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2188 // (1 << ceilLogBase2(C)). 2189 // 2190 // 2. the numerator is negative. Then the result range is (-C,0] and 2191 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2192 // 2193 // Thus a lower bound on the number of sign bits is `TyBits - 2194 // ceilLogBase2(C)`. 2195 2196 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2197 return std::max(NumrBits, ResBits); 2198 } 2199 break; 2200 } 2201 2202 case Instruction::AShr: { 2203 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2204 // ashr X, C -> adds C sign bits. Vectors too. 2205 const APInt *ShAmt; 2206 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2207 Tmp += ShAmt->getZExtValue(); 2208 if (Tmp > TyBits) Tmp = TyBits; 2209 } 2210 return Tmp; 2211 } 2212 case Instruction::Shl: { 2213 const APInt *ShAmt; 2214 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2215 // shl destroys sign bits. 2216 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2217 Tmp2 = ShAmt->getZExtValue(); 2218 if (Tmp2 >= TyBits || // Bad shift. 2219 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2220 return Tmp - Tmp2; 2221 } 2222 break; 2223 } 2224 case Instruction::And: 2225 case Instruction::Or: 2226 case Instruction::Xor: // NOT is handled here. 2227 // Logical binary ops preserve the number of sign bits at the worst. 2228 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2229 if (Tmp != 1) { 2230 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2231 FirstAnswer = std::min(Tmp, Tmp2); 2232 // We computed what we know about the sign bits as our first 2233 // answer. Now proceed to the generic code that uses 2234 // computeKnownBits, and pick whichever answer is better. 2235 } 2236 break; 2237 2238 case Instruction::Select: 2239 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2240 if (Tmp == 1) return 1; // Early out. 2241 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 2242 return std::min(Tmp, Tmp2); 2243 2244 case Instruction::Add: 2245 // Add can have at most one carry bit. Thus we know that the output 2246 // is, at worst, one more bit than the inputs. 2247 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2248 if (Tmp == 1) return 1; // Early out. 2249 2250 // Special case decrementing a value (ADD X, -1): 2251 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2252 if (CRHS->isAllOnesValue()) { 2253 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2254 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2255 Q); 2256 2257 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2258 // sign bits set. 2259 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2260 return TyBits; 2261 2262 // If we are subtracting one from a positive number, there is no carry 2263 // out of the result. 2264 if (KnownZero.isNegative()) 2265 return Tmp; 2266 } 2267 2268 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2269 if (Tmp2 == 1) return 1; 2270 return std::min(Tmp, Tmp2)-1; 2271 2272 case Instruction::Sub: 2273 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2274 if (Tmp2 == 1) return 1; 2275 2276 // Handle NEG. 2277 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2278 if (CLHS->isNullValue()) { 2279 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2280 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2281 Q); 2282 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2283 // sign bits set. 2284 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2285 return TyBits; 2286 2287 // If the input is known to be positive (the sign bit is known clear), 2288 // the output of the NEG has the same number of sign bits as the input. 2289 if (KnownZero.isNegative()) 2290 return Tmp2; 2291 2292 // Otherwise, we treat this like a SUB. 2293 } 2294 2295 // Sub can have at most one carry bit. Thus we know that the output 2296 // is, at worst, one more bit than the inputs. 2297 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2298 if (Tmp == 1) return 1; // Early out. 2299 return std::min(Tmp, Tmp2)-1; 2300 2301 case Instruction::PHI: { 2302 PHINode *PN = cast<PHINode>(U); 2303 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2304 // Don't analyze large in-degree PHIs. 2305 if (NumIncomingValues > 4) break; 2306 // Unreachable blocks may have zero-operand PHI nodes. 2307 if (NumIncomingValues == 0) break; 2308 2309 // Take the minimum of all incoming values. This can't infinitely loop 2310 // because of our depth threshold. 2311 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2312 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2313 if (Tmp == 1) return Tmp; 2314 Tmp = std::min( 2315 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2316 } 2317 return Tmp; 2318 } 2319 2320 case Instruction::Trunc: 2321 // FIXME: it's tricky to do anything useful for this, but it is an important 2322 // case for targets like X86. 2323 break; 2324 } 2325 2326 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2327 // use this information. 2328 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2329 APInt Mask; 2330 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2331 2332 if (KnownZero.isNegative()) { // sign bit is 0 2333 Mask = KnownZero; 2334 } else if (KnownOne.isNegative()) { // sign bit is 1; 2335 Mask = KnownOne; 2336 } else { 2337 // Nothing known. 2338 return FirstAnswer; 2339 } 2340 2341 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2342 // the number of identical bits in the top of the input value. 2343 Mask = ~Mask; 2344 Mask <<= Mask.getBitWidth()-TyBits; 2345 // Return # leading zeros. We use 'min' here in case Val was zero before 2346 // shifting. We don't want to return '64' as for an i32 "0". 2347 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2348 } 2349 2350 /// This function computes the integer multiple of Base that equals V. 2351 /// If successful, it returns true and returns the multiple in 2352 /// Multiple. If unsuccessful, it returns false. It looks 2353 /// through SExt instructions only if LookThroughSExt is true. 2354 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2355 bool LookThroughSExt, unsigned Depth) { 2356 const unsigned MaxDepth = 6; 2357 2358 assert(V && "No Value?"); 2359 assert(Depth <= MaxDepth && "Limit Search Depth"); 2360 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2361 2362 Type *T = V->getType(); 2363 2364 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2365 2366 if (Base == 0) 2367 return false; 2368 2369 if (Base == 1) { 2370 Multiple = V; 2371 return true; 2372 } 2373 2374 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2375 Constant *BaseVal = ConstantInt::get(T, Base); 2376 if (CO && CO == BaseVal) { 2377 // Multiple is 1. 2378 Multiple = ConstantInt::get(T, 1); 2379 return true; 2380 } 2381 2382 if (CI && CI->getZExtValue() % Base == 0) { 2383 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2384 return true; 2385 } 2386 2387 if (Depth == MaxDepth) return false; // Limit search depth. 2388 2389 Operator *I = dyn_cast<Operator>(V); 2390 if (!I) return false; 2391 2392 switch (I->getOpcode()) { 2393 default: break; 2394 case Instruction::SExt: 2395 if (!LookThroughSExt) return false; 2396 // otherwise fall through to ZExt 2397 case Instruction::ZExt: 2398 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2399 LookThroughSExt, Depth+1); 2400 case Instruction::Shl: 2401 case Instruction::Mul: { 2402 Value *Op0 = I->getOperand(0); 2403 Value *Op1 = I->getOperand(1); 2404 2405 if (I->getOpcode() == Instruction::Shl) { 2406 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2407 if (!Op1CI) return false; 2408 // Turn Op0 << Op1 into Op0 * 2^Op1 2409 APInt Op1Int = Op1CI->getValue(); 2410 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2411 APInt API(Op1Int.getBitWidth(), 0); 2412 API.setBit(BitToSet); 2413 Op1 = ConstantInt::get(V->getContext(), API); 2414 } 2415 2416 Value *Mul0 = nullptr; 2417 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2418 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2419 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2420 if (Op1C->getType()->getPrimitiveSizeInBits() < 2421 MulC->getType()->getPrimitiveSizeInBits()) 2422 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2423 if (Op1C->getType()->getPrimitiveSizeInBits() > 2424 MulC->getType()->getPrimitiveSizeInBits()) 2425 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2426 2427 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2428 Multiple = ConstantExpr::getMul(MulC, Op1C); 2429 return true; 2430 } 2431 2432 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2433 if (Mul0CI->getValue() == 1) { 2434 // V == Base * Op1, so return Op1 2435 Multiple = Op1; 2436 return true; 2437 } 2438 } 2439 2440 Value *Mul1 = nullptr; 2441 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2442 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2443 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2444 if (Op0C->getType()->getPrimitiveSizeInBits() < 2445 MulC->getType()->getPrimitiveSizeInBits()) 2446 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2447 if (Op0C->getType()->getPrimitiveSizeInBits() > 2448 MulC->getType()->getPrimitiveSizeInBits()) 2449 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2450 2451 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2452 Multiple = ConstantExpr::getMul(MulC, Op0C); 2453 return true; 2454 } 2455 2456 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2457 if (Mul1CI->getValue() == 1) { 2458 // V == Base * Op0, so return Op0 2459 Multiple = Op0; 2460 return true; 2461 } 2462 } 2463 } 2464 } 2465 2466 // We could not determine if V is a multiple of Base. 2467 return false; 2468 } 2469 2470 /// Return true if we can prove that the specified FP value is never equal to 2471 /// -0.0. 2472 /// 2473 /// NOTE: this function will need to be revisited when we support non-default 2474 /// rounding modes! 2475 /// 2476 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2477 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2478 return !CFP->getValueAPF().isNegZero(); 2479 2480 // FIXME: Magic number! At the least, this should be given a name because it's 2481 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2482 // expose it as a parameter, so it can be used for testing / experimenting. 2483 if (Depth == 6) 2484 return false; // Limit search depth. 2485 2486 const Operator *I = dyn_cast<Operator>(V); 2487 if (!I) return false; 2488 2489 // Check if the nsz fast-math flag is set 2490 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2491 if (FPO->hasNoSignedZeros()) 2492 return true; 2493 2494 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2495 if (I->getOpcode() == Instruction::FAdd) 2496 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2497 if (CFP->isNullValue()) 2498 return true; 2499 2500 // sitofp and uitofp turn into +0.0 for zero. 2501 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2502 return true; 2503 2504 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2505 // sqrt(-0.0) = -0.0, no other negative results are possible. 2506 if (II->getIntrinsicID() == Intrinsic::sqrt) 2507 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2508 2509 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2510 if (const Function *F = CI->getCalledFunction()) { 2511 if (F->isDeclaration()) { 2512 // abs(x) != -0.0 2513 if (F->getName() == "abs") return true; 2514 // fabs[lf](x) != -0.0 2515 if (F->getName() == "fabs") return true; 2516 if (F->getName() == "fabsf") return true; 2517 if (F->getName() == "fabsl") return true; 2518 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2519 F->getName() == "sqrtl") 2520 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2521 } 2522 } 2523 2524 return false; 2525 } 2526 2527 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2528 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2529 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2530 2531 // FIXME: Magic number! At the least, this should be given a name because it's 2532 // used similarly in CannotBeNegativeZero(). A better fix may be to 2533 // expose it as a parameter, so it can be used for testing / experimenting. 2534 if (Depth == 6) 2535 return false; // Limit search depth. 2536 2537 const Operator *I = dyn_cast<Operator>(V); 2538 if (!I) return false; 2539 2540 switch (I->getOpcode()) { 2541 default: break; 2542 case Instruction::FMul: 2543 // x*x is always non-negative or a NaN. 2544 if (I->getOperand(0) == I->getOperand(1)) 2545 return true; 2546 // Fall through 2547 case Instruction::FAdd: 2548 case Instruction::FDiv: 2549 case Instruction::FRem: 2550 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2551 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2552 case Instruction::FPExt: 2553 case Instruction::FPTrunc: 2554 // Widening/narrowing never change sign. 2555 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2556 case Instruction::Call: 2557 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2558 switch (II->getIntrinsicID()) { 2559 default: break; 2560 case Intrinsic::exp: 2561 case Intrinsic::exp2: 2562 case Intrinsic::fabs: 2563 case Intrinsic::sqrt: 2564 return true; 2565 case Intrinsic::powi: 2566 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2567 // powi(x,n) is non-negative if n is even. 2568 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2569 return true; 2570 } 2571 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2572 case Intrinsic::fma: 2573 case Intrinsic::fmuladd: 2574 // x*x+y is non-negative if y is non-negative. 2575 return I->getOperand(0) == I->getOperand(1) && 2576 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2577 } 2578 break; 2579 } 2580 return false; 2581 } 2582 2583 /// If the specified value can be set by repeating the same byte in memory, 2584 /// return the i8 value that it is represented with. This is 2585 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2586 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2587 /// byte store (e.g. i16 0x1234), return null. 2588 Value *llvm::isBytewiseValue(Value *V) { 2589 // All byte-wide stores are splatable, even of arbitrary variables. 2590 if (V->getType()->isIntegerTy(8)) return V; 2591 2592 // Handle 'null' ConstantArrayZero etc. 2593 if (Constant *C = dyn_cast<Constant>(V)) 2594 if (C->isNullValue()) 2595 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2596 2597 // Constant float and double values can be handled as integer values if the 2598 // corresponding integer value is "byteable". An important case is 0.0. 2599 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2600 if (CFP->getType()->isFloatTy()) 2601 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2602 if (CFP->getType()->isDoubleTy()) 2603 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2604 // Don't handle long double formats, which have strange constraints. 2605 } 2606 2607 // We can handle constant integers that are multiple of 8 bits. 2608 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2609 if (CI->getBitWidth() % 8 == 0) { 2610 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2611 2612 if (!CI->getValue().isSplat(8)) 2613 return nullptr; 2614 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2615 } 2616 } 2617 2618 // A ConstantDataArray/Vector is splatable if all its members are equal and 2619 // also splatable. 2620 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2621 Value *Elt = CA->getElementAsConstant(0); 2622 Value *Val = isBytewiseValue(Elt); 2623 if (!Val) 2624 return nullptr; 2625 2626 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2627 if (CA->getElementAsConstant(I) != Elt) 2628 return nullptr; 2629 2630 return Val; 2631 } 2632 2633 // Conceptually, we could handle things like: 2634 // %a = zext i8 %X to i16 2635 // %b = shl i16 %a, 8 2636 // %c = or i16 %a, %b 2637 // but until there is an example that actually needs this, it doesn't seem 2638 // worth worrying about. 2639 return nullptr; 2640 } 2641 2642 2643 // This is the recursive version of BuildSubAggregate. It takes a few different 2644 // arguments. Idxs is the index within the nested struct From that we are 2645 // looking at now (which is of type IndexedType). IdxSkip is the number of 2646 // indices from Idxs that should be left out when inserting into the resulting 2647 // struct. To is the result struct built so far, new insertvalue instructions 2648 // build on that. 2649 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2650 SmallVectorImpl<unsigned> &Idxs, 2651 unsigned IdxSkip, 2652 Instruction *InsertBefore) { 2653 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2654 if (STy) { 2655 // Save the original To argument so we can modify it 2656 Value *OrigTo = To; 2657 // General case, the type indexed by Idxs is a struct 2658 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2659 // Process each struct element recursively 2660 Idxs.push_back(i); 2661 Value *PrevTo = To; 2662 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2663 InsertBefore); 2664 Idxs.pop_back(); 2665 if (!To) { 2666 // Couldn't find any inserted value for this index? Cleanup 2667 while (PrevTo != OrigTo) { 2668 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2669 PrevTo = Del->getAggregateOperand(); 2670 Del->eraseFromParent(); 2671 } 2672 // Stop processing elements 2673 break; 2674 } 2675 } 2676 // If we successfully found a value for each of our subaggregates 2677 if (To) 2678 return To; 2679 } 2680 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2681 // the struct's elements had a value that was inserted directly. In the latter 2682 // case, perhaps we can't determine each of the subelements individually, but 2683 // we might be able to find the complete struct somewhere. 2684 2685 // Find the value that is at that particular spot 2686 Value *V = FindInsertedValue(From, Idxs); 2687 2688 if (!V) 2689 return nullptr; 2690 2691 // Insert the value in the new (sub) aggregrate 2692 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2693 "tmp", InsertBefore); 2694 } 2695 2696 // This helper takes a nested struct and extracts a part of it (which is again a 2697 // struct) into a new value. For example, given the struct: 2698 // { a, { b, { c, d }, e } } 2699 // and the indices "1, 1" this returns 2700 // { c, d }. 2701 // 2702 // It does this by inserting an insertvalue for each element in the resulting 2703 // struct, as opposed to just inserting a single struct. This will only work if 2704 // each of the elements of the substruct are known (ie, inserted into From by an 2705 // insertvalue instruction somewhere). 2706 // 2707 // All inserted insertvalue instructions are inserted before InsertBefore 2708 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2709 Instruction *InsertBefore) { 2710 assert(InsertBefore && "Must have someplace to insert!"); 2711 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2712 idx_range); 2713 Value *To = UndefValue::get(IndexedType); 2714 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2715 unsigned IdxSkip = Idxs.size(); 2716 2717 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2718 } 2719 2720 /// Given an aggregrate and an sequence of indices, see if 2721 /// the scalar value indexed is already around as a register, for example if it 2722 /// were inserted directly into the aggregrate. 2723 /// 2724 /// If InsertBefore is not null, this function will duplicate (modified) 2725 /// insertvalues when a part of a nested struct is extracted. 2726 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2727 Instruction *InsertBefore) { 2728 // Nothing to index? Just return V then (this is useful at the end of our 2729 // recursion). 2730 if (idx_range.empty()) 2731 return V; 2732 // We have indices, so V should have an indexable type. 2733 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2734 "Not looking at a struct or array?"); 2735 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2736 "Invalid indices for type?"); 2737 2738 if (Constant *C = dyn_cast<Constant>(V)) { 2739 C = C->getAggregateElement(idx_range[0]); 2740 if (!C) return nullptr; 2741 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2742 } 2743 2744 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2745 // Loop the indices for the insertvalue instruction in parallel with the 2746 // requested indices 2747 const unsigned *req_idx = idx_range.begin(); 2748 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2749 i != e; ++i, ++req_idx) { 2750 if (req_idx == idx_range.end()) { 2751 // We can't handle this without inserting insertvalues 2752 if (!InsertBefore) 2753 return nullptr; 2754 2755 // The requested index identifies a part of a nested aggregate. Handle 2756 // this specially. For example, 2757 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2758 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2759 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2760 // This can be changed into 2761 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2762 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2763 // which allows the unused 0,0 element from the nested struct to be 2764 // removed. 2765 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2766 InsertBefore); 2767 } 2768 2769 // This insert value inserts something else than what we are looking for. 2770 // See if the (aggregate) value inserted into has the value we are 2771 // looking for, then. 2772 if (*req_idx != *i) 2773 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2774 InsertBefore); 2775 } 2776 // If we end up here, the indices of the insertvalue match with those 2777 // requested (though possibly only partially). Now we recursively look at 2778 // the inserted value, passing any remaining indices. 2779 return FindInsertedValue(I->getInsertedValueOperand(), 2780 makeArrayRef(req_idx, idx_range.end()), 2781 InsertBefore); 2782 } 2783 2784 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2785 // If we're extracting a value from an aggregate that was extracted from 2786 // something else, we can extract from that something else directly instead. 2787 // However, we will need to chain I's indices with the requested indices. 2788 2789 // Calculate the number of indices required 2790 unsigned size = I->getNumIndices() + idx_range.size(); 2791 // Allocate some space to put the new indices in 2792 SmallVector<unsigned, 5> Idxs; 2793 Idxs.reserve(size); 2794 // Add indices from the extract value instruction 2795 Idxs.append(I->idx_begin(), I->idx_end()); 2796 2797 // Add requested indices 2798 Idxs.append(idx_range.begin(), idx_range.end()); 2799 2800 assert(Idxs.size() == size 2801 && "Number of indices added not correct?"); 2802 2803 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2804 } 2805 // Otherwise, we don't know (such as, extracting from a function return value 2806 // or load instruction) 2807 return nullptr; 2808 } 2809 2810 /// Analyze the specified pointer to see if it can be expressed as a base 2811 /// pointer plus a constant offset. Return the base and offset to the caller. 2812 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2813 const DataLayout &DL) { 2814 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2815 APInt ByteOffset(BitWidth, 0); 2816 while (1) { 2817 if (Ptr->getType()->isVectorTy()) 2818 break; 2819 2820 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2821 APInt GEPOffset(BitWidth, 0); 2822 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2823 break; 2824 2825 ByteOffset += GEPOffset; 2826 2827 Ptr = GEP->getPointerOperand(); 2828 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2829 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2830 Ptr = cast<Operator>(Ptr)->getOperand(0); 2831 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2832 if (GA->mayBeOverridden()) 2833 break; 2834 Ptr = GA->getAliasee(); 2835 } else { 2836 break; 2837 } 2838 } 2839 Offset = ByteOffset.getSExtValue(); 2840 return Ptr; 2841 } 2842 2843 2844 /// This function computes the length of a null-terminated C string pointed to 2845 /// by V. If successful, it returns true and returns the string in Str. 2846 /// If unsuccessful, it returns false. 2847 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2848 uint64_t Offset, bool TrimAtNul) { 2849 assert(V); 2850 2851 // Look through bitcast instructions and geps. 2852 V = V->stripPointerCasts(); 2853 2854 // If the value is a GEP instruction or constant expression, treat it as an 2855 // offset. 2856 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2857 // Make sure the GEP has exactly three arguments. 2858 if (GEP->getNumOperands() != 3) 2859 return false; 2860 2861 // Make sure the index-ee is a pointer to array of i8. 2862 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2863 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2864 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2865 return false; 2866 2867 // Check to make sure that the first operand of the GEP is an integer and 2868 // has value 0 so that we are sure we're indexing into the initializer. 2869 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2870 if (!FirstIdx || !FirstIdx->isZero()) 2871 return false; 2872 2873 // If the second index isn't a ConstantInt, then this is a variable index 2874 // into the array. If this occurs, we can't say anything meaningful about 2875 // the string. 2876 uint64_t StartIdx = 0; 2877 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2878 StartIdx = CI->getZExtValue(); 2879 else 2880 return false; 2881 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2882 TrimAtNul); 2883 } 2884 2885 // The GEP instruction, constant or instruction, must reference a global 2886 // variable that is a constant and is initialized. The referenced constant 2887 // initializer is the array that we'll use for optimization. 2888 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2889 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2890 return false; 2891 2892 // Handle the all-zeros case 2893 if (GV->getInitializer()->isNullValue()) { 2894 // This is a degenerate case. The initializer is constant zero so the 2895 // length of the string must be zero. 2896 Str = ""; 2897 return true; 2898 } 2899 2900 // Must be a Constant Array 2901 const ConstantDataArray *Array = 2902 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2903 if (!Array || !Array->isString()) 2904 return false; 2905 2906 // Get the number of elements in the array 2907 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2908 2909 // Start out with the entire array in the StringRef. 2910 Str = Array->getAsString(); 2911 2912 if (Offset > NumElts) 2913 return false; 2914 2915 // Skip over 'offset' bytes. 2916 Str = Str.substr(Offset); 2917 2918 if (TrimAtNul) { 2919 // Trim off the \0 and anything after it. If the array is not nul 2920 // terminated, we just return the whole end of string. The client may know 2921 // some other way that the string is length-bound. 2922 Str = Str.substr(0, Str.find('\0')); 2923 } 2924 return true; 2925 } 2926 2927 // These next two are very similar to the above, but also look through PHI 2928 // nodes. 2929 // TODO: See if we can integrate these two together. 2930 2931 /// If we can compute the length of the string pointed to by 2932 /// the specified pointer, return 'len+1'. If we can't, return 0. 2933 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2934 // Look through noop bitcast instructions. 2935 V = V->stripPointerCasts(); 2936 2937 // If this is a PHI node, there are two cases: either we have already seen it 2938 // or we haven't. 2939 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2940 if (!PHIs.insert(PN).second) 2941 return ~0ULL; // already in the set. 2942 2943 // If it was new, see if all the input strings are the same length. 2944 uint64_t LenSoFar = ~0ULL; 2945 for (Value *IncValue : PN->incoming_values()) { 2946 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2947 if (Len == 0) return 0; // Unknown length -> unknown. 2948 2949 if (Len == ~0ULL) continue; 2950 2951 if (Len != LenSoFar && LenSoFar != ~0ULL) 2952 return 0; // Disagree -> unknown. 2953 LenSoFar = Len; 2954 } 2955 2956 // Success, all agree. 2957 return LenSoFar; 2958 } 2959 2960 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2961 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2962 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2963 if (Len1 == 0) return 0; 2964 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2965 if (Len2 == 0) return 0; 2966 if (Len1 == ~0ULL) return Len2; 2967 if (Len2 == ~0ULL) return Len1; 2968 if (Len1 != Len2) return 0; 2969 return Len1; 2970 } 2971 2972 // Otherwise, see if we can read the string. 2973 StringRef StrData; 2974 if (!getConstantStringInfo(V, StrData)) 2975 return 0; 2976 2977 return StrData.size()+1; 2978 } 2979 2980 /// If we can compute the length of the string pointed to by 2981 /// the specified pointer, return 'len+1'. If we can't, return 0. 2982 uint64_t llvm::GetStringLength(Value *V) { 2983 if (!V->getType()->isPointerTy()) return 0; 2984 2985 SmallPtrSet<PHINode*, 32> PHIs; 2986 uint64_t Len = GetStringLengthH(V, PHIs); 2987 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2988 // an empty string as a length. 2989 return Len == ~0ULL ? 1 : Len; 2990 } 2991 2992 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2993 /// previous iteration of the loop was referring to the same object as \p PN. 2994 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2995 // Find the loop-defined value. 2996 Loop *L = LI->getLoopFor(PN->getParent()); 2997 if (PN->getNumIncomingValues() != 2) 2998 return true; 2999 3000 // Find the value from previous iteration. 3001 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3002 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3003 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3004 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3005 return true; 3006 3007 // If a new pointer is loaded in the loop, the pointer references a different 3008 // object in every iteration. E.g.: 3009 // for (i) 3010 // int *p = a[i]; 3011 // ... 3012 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3013 if (!L->isLoopInvariant(Load->getPointerOperand())) 3014 return false; 3015 return true; 3016 } 3017 3018 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3019 unsigned MaxLookup) { 3020 if (!V->getType()->isPointerTy()) 3021 return V; 3022 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3023 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3024 V = GEP->getPointerOperand(); 3025 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3026 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3027 V = cast<Operator>(V)->getOperand(0); 3028 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3029 if (GA->mayBeOverridden()) 3030 return V; 3031 V = GA->getAliasee(); 3032 } else { 3033 // See if InstructionSimplify knows any relevant tricks. 3034 if (Instruction *I = dyn_cast<Instruction>(V)) 3035 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3036 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3037 V = Simplified; 3038 continue; 3039 } 3040 3041 return V; 3042 } 3043 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3044 } 3045 return V; 3046 } 3047 3048 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3049 const DataLayout &DL, LoopInfo *LI, 3050 unsigned MaxLookup) { 3051 SmallPtrSet<Value *, 4> Visited; 3052 SmallVector<Value *, 4> Worklist; 3053 Worklist.push_back(V); 3054 do { 3055 Value *P = Worklist.pop_back_val(); 3056 P = GetUnderlyingObject(P, DL, MaxLookup); 3057 3058 if (!Visited.insert(P).second) 3059 continue; 3060 3061 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3062 Worklist.push_back(SI->getTrueValue()); 3063 Worklist.push_back(SI->getFalseValue()); 3064 continue; 3065 } 3066 3067 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3068 // If this PHI changes the underlying object in every iteration of the 3069 // loop, don't look through it. Consider: 3070 // int **A; 3071 // for (i) { 3072 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3073 // Curr = A[i]; 3074 // *Prev, *Curr; 3075 // 3076 // Prev is tracking Curr one iteration behind so they refer to different 3077 // underlying objects. 3078 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3079 isSameUnderlyingObjectInLoop(PN, LI)) 3080 for (Value *IncValue : PN->incoming_values()) 3081 Worklist.push_back(IncValue); 3082 continue; 3083 } 3084 3085 Objects.push_back(P); 3086 } while (!Worklist.empty()); 3087 } 3088 3089 /// Return true if the only users of this pointer are lifetime markers. 3090 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3091 for (const User *U : V->users()) { 3092 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3093 if (!II) return false; 3094 3095 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3096 II->getIntrinsicID() != Intrinsic::lifetime_end) 3097 return false; 3098 } 3099 return true; 3100 } 3101 3102 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 3103 Type *Ty, const DataLayout &DL, 3104 const Instruction *CtxI, 3105 const DominatorTree *DT, 3106 const TargetLibraryInfo *TLI) { 3107 assert(Offset.isNonNegative() && "offset can't be negative"); 3108 assert(Ty->isSized() && "must be sized"); 3109 3110 APInt DerefBytes(Offset.getBitWidth(), 0); 3111 bool CheckForNonNull = false; 3112 if (const Argument *A = dyn_cast<Argument>(BV)) { 3113 DerefBytes = A->getDereferenceableBytes(); 3114 if (!DerefBytes.getBoolValue()) { 3115 DerefBytes = A->getDereferenceableOrNullBytes(); 3116 CheckForNonNull = true; 3117 } 3118 } else if (auto CS = ImmutableCallSite(BV)) { 3119 DerefBytes = CS.getDereferenceableBytes(0); 3120 if (!DerefBytes.getBoolValue()) { 3121 DerefBytes = CS.getDereferenceableOrNullBytes(0); 3122 CheckForNonNull = true; 3123 } 3124 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 3125 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 3126 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3127 DerefBytes = CI->getLimitedValue(); 3128 } 3129 if (!DerefBytes.getBoolValue()) { 3130 if (MDNode *MD = 3131 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 3132 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3133 DerefBytes = CI->getLimitedValue(); 3134 } 3135 CheckForNonNull = true; 3136 } 3137 } 3138 3139 if (DerefBytes.getBoolValue()) 3140 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 3141 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 3142 return true; 3143 3144 return false; 3145 } 3146 3147 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 3148 const Instruction *CtxI, 3149 const DominatorTree *DT, 3150 const TargetLibraryInfo *TLI) { 3151 Type *VTy = V->getType(); 3152 Type *Ty = VTy->getPointerElementType(); 3153 if (!Ty->isSized()) 3154 return false; 3155 3156 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3157 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 3158 } 3159 3160 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 3161 const DataLayout &DL) { 3162 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); 3163 3164 if (!BaseAlign) { 3165 Type *Ty = Base->getType()->getPointerElementType(); 3166 BaseAlign = DL.getABITypeAlignment(Ty); 3167 } 3168 3169 APInt Alignment(Offset.getBitWidth(), Align); 3170 3171 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3172 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3173 } 3174 3175 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3176 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0); 3177 return isAligned(Base, Offset, Align, DL); 3178 } 3179 3180 /// Test if V is always a pointer to allocated and suitably aligned memory for 3181 /// a simple load or store. 3182 static bool isDereferenceableAndAlignedPointer( 3183 const Value *V, unsigned Align, const DataLayout &DL, 3184 const Instruction *CtxI, const DominatorTree *DT, 3185 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3186 // Note that it is not safe to speculate into a malloc'd region because 3187 // malloc may return null. 3188 3189 // These are obviously ok if aligned. 3190 if (isa<AllocaInst>(V)) 3191 return isAligned(V, Align, DL); 3192 3193 // It's not always safe to follow a bitcast, for example: 3194 // bitcast i8* (alloca i8) to i32* 3195 // would result in a 4-byte load from a 1-byte alloca. However, 3196 // if we're casting from a pointer from a type of larger size 3197 // to a type of smaller size (or the same size), and the alignment 3198 // is at least as large as for the resulting pointer type, then 3199 // we can look through the bitcast. 3200 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3201 Type *STy = BC->getSrcTy()->getPointerElementType(), 3202 *DTy = BC->getDestTy()->getPointerElementType(); 3203 if (STy->isSized() && DTy->isSized() && 3204 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3205 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3206 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3207 CtxI, DT, TLI, Visited); 3208 } 3209 3210 // Global variables which can't collapse to null are ok. 3211 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3212 if (!GV->hasExternalWeakLinkage()) 3213 return isAligned(V, Align, DL); 3214 3215 // byval arguments are okay. 3216 if (const Argument *A = dyn_cast<Argument>(V)) 3217 if (A->hasByValAttr()) 3218 return isAligned(V, Align, DL); 3219 3220 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3221 return isAligned(V, Align, DL); 3222 3223 // For GEPs, determine if the indexing lands within the allocated object. 3224 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3225 Type *VTy = GEP->getType(); 3226 Type *Ty = VTy->getPointerElementType(); 3227 const Value *Base = GEP->getPointerOperand(); 3228 3229 // Conservatively require that the base pointer be fully dereferenceable 3230 // and aligned. 3231 if (!Visited.insert(Base).second) 3232 return false; 3233 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3234 Visited)) 3235 return false; 3236 3237 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); 3238 if (!GEP->accumulateConstantOffset(DL, Offset)) 3239 return false; 3240 3241 // Check if the load is within the bounds of the underlying object 3242 // and offset is aligned. 3243 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3244 Type *BaseType = Base->getType()->getPointerElementType(); 3245 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3246 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3247 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3248 } 3249 3250 // For gc.relocate, look through relocations 3251 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V)) 3252 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) { 3253 GCRelocateOperands RelocateInst(I); 3254 return isDereferenceableAndAlignedPointer( 3255 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3256 } 3257 3258 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3259 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3260 CtxI, DT, TLI, Visited); 3261 3262 // If we don't know, assume the worst. 3263 return false; 3264 } 3265 3266 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3267 const DataLayout &DL, 3268 const Instruction *CtxI, 3269 const DominatorTree *DT, 3270 const TargetLibraryInfo *TLI) { 3271 // When dereferenceability information is provided by a dereferenceable 3272 // attribute, we know exactly how many bytes are dereferenceable. If we can 3273 // determine the exact offset to the attributed variable, we can use that 3274 // information here. 3275 Type *VTy = V->getType(); 3276 Type *Ty = VTy->getPointerElementType(); 3277 3278 // Require ABI alignment for loads without alignment specification 3279 if (Align == 0) 3280 Align = DL.getABITypeAlignment(Ty); 3281 3282 if (Ty->isSized()) { 3283 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3284 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3285 3286 if (Offset.isNonNegative()) 3287 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3288 isAligned(BV, Offset, Align, DL)) 3289 return true; 3290 } 3291 3292 SmallPtrSet<const Value *, 32> Visited; 3293 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3294 Visited); 3295 } 3296 3297 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3298 const Instruction *CtxI, 3299 const DominatorTree *DT, 3300 const TargetLibraryInfo *TLI) { 3301 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3302 } 3303 3304 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3305 const Instruction *CtxI, 3306 const DominatorTree *DT, 3307 const TargetLibraryInfo *TLI) { 3308 const Operator *Inst = dyn_cast<Operator>(V); 3309 if (!Inst) 3310 return false; 3311 3312 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3313 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3314 if (C->canTrap()) 3315 return false; 3316 3317 switch (Inst->getOpcode()) { 3318 default: 3319 return true; 3320 case Instruction::UDiv: 3321 case Instruction::URem: { 3322 // x / y is undefined if y == 0. 3323 const APInt *V; 3324 if (match(Inst->getOperand(1), m_APInt(V))) 3325 return *V != 0; 3326 return false; 3327 } 3328 case Instruction::SDiv: 3329 case Instruction::SRem: { 3330 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3331 const APInt *Numerator, *Denominator; 3332 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3333 return false; 3334 // We cannot hoist this division if the denominator is 0. 3335 if (*Denominator == 0) 3336 return false; 3337 // It's safe to hoist if the denominator is not 0 or -1. 3338 if (*Denominator != -1) 3339 return true; 3340 // At this point we know that the denominator is -1. It is safe to hoist as 3341 // long we know that the numerator is not INT_MIN. 3342 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3343 return !Numerator->isMinSignedValue(); 3344 // The numerator *might* be MinSignedValue. 3345 return false; 3346 } 3347 case Instruction::Load: { 3348 const LoadInst *LI = cast<LoadInst>(Inst); 3349 if (!LI->isUnordered() || 3350 // Speculative load may create a race that did not exist in the source. 3351 LI->getParent()->getParent()->hasFnAttribute( 3352 Attribute::SanitizeThread) || 3353 // Speculative load may load data from dirty regions. 3354 LI->getParent()->getParent()->hasFnAttribute( 3355 Attribute::SanitizeAddress)) 3356 return false; 3357 const DataLayout &DL = LI->getModule()->getDataLayout(); 3358 return isDereferenceableAndAlignedPointer( 3359 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3360 } 3361 case Instruction::Call: { 3362 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3363 switch (II->getIntrinsicID()) { 3364 // These synthetic intrinsics have no side-effects and just mark 3365 // information about their operands. 3366 // FIXME: There are other no-op synthetic instructions that potentially 3367 // should be considered at least *safe* to speculate... 3368 case Intrinsic::dbg_declare: 3369 case Intrinsic::dbg_value: 3370 return true; 3371 3372 case Intrinsic::bswap: 3373 case Intrinsic::ctlz: 3374 case Intrinsic::ctpop: 3375 case Intrinsic::cttz: 3376 case Intrinsic::objectsize: 3377 case Intrinsic::sadd_with_overflow: 3378 case Intrinsic::smul_with_overflow: 3379 case Intrinsic::ssub_with_overflow: 3380 case Intrinsic::uadd_with_overflow: 3381 case Intrinsic::umul_with_overflow: 3382 case Intrinsic::usub_with_overflow: 3383 return true; 3384 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3385 // errno like libm sqrt would. 3386 case Intrinsic::sqrt: 3387 case Intrinsic::fma: 3388 case Intrinsic::fmuladd: 3389 case Intrinsic::fabs: 3390 case Intrinsic::minnum: 3391 case Intrinsic::maxnum: 3392 return true; 3393 // TODO: some fp intrinsics are marked as having the same error handling 3394 // as libm. They're safe to speculate when they won't error. 3395 // TODO: are convert_{from,to}_fp16 safe? 3396 // TODO: can we list target-specific intrinsics here? 3397 default: break; 3398 } 3399 } 3400 return false; // The called function could have undefined behavior or 3401 // side-effects, even if marked readnone nounwind. 3402 } 3403 case Instruction::VAArg: 3404 case Instruction::Alloca: 3405 case Instruction::Invoke: 3406 case Instruction::PHI: 3407 case Instruction::Store: 3408 case Instruction::Ret: 3409 case Instruction::Br: 3410 case Instruction::IndirectBr: 3411 case Instruction::Switch: 3412 case Instruction::Unreachable: 3413 case Instruction::Fence: 3414 case Instruction::AtomicRMW: 3415 case Instruction::AtomicCmpXchg: 3416 case Instruction::LandingPad: 3417 case Instruction::Resume: 3418 case Instruction::CatchPad: 3419 case Instruction::CatchEndPad: 3420 case Instruction::CatchRet: 3421 case Instruction::CleanupPad: 3422 case Instruction::CleanupEndPad: 3423 case Instruction::CleanupRet: 3424 case Instruction::TerminatePad: 3425 return false; // Misc instructions which have effects 3426 } 3427 } 3428 3429 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3430 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3431 } 3432 3433 /// Return true if we know that the specified value is never null. 3434 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3435 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3436 3437 // Alloca never returns null, malloc might. 3438 if (isa<AllocaInst>(V)) return true; 3439 3440 // A byval, inalloca, or nonnull argument is never null. 3441 if (const Argument *A = dyn_cast<Argument>(V)) 3442 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3443 3444 // A global variable in address space 0 is non null unless extern weak. 3445 // Other address spaces may have null as a valid address for a global, 3446 // so we can't assume anything. 3447 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3448 return !GV->hasExternalWeakLinkage() && 3449 GV->getType()->getAddressSpace() == 0; 3450 3451 // A Load tagged w/nonnull metadata is never null. 3452 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3453 return LI->getMetadata(LLVMContext::MD_nonnull); 3454 3455 if (auto CS = ImmutableCallSite(V)) 3456 if (CS.isReturnNonNull()) 3457 return true; 3458 3459 // operator new never returns null. 3460 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 3461 return true; 3462 3463 return false; 3464 } 3465 3466 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3467 const Instruction *CtxI, 3468 const DominatorTree *DT) { 3469 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3470 3471 unsigned NumUsesExplored = 0; 3472 for (auto U : V->users()) { 3473 // Avoid massive lists 3474 if (NumUsesExplored >= DomConditionsMaxUses) 3475 break; 3476 NumUsesExplored++; 3477 // Consider only compare instructions uniquely controlling a branch 3478 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3479 if (!Cmp) 3480 continue; 3481 3482 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3483 continue; 3484 3485 for (auto *CmpU : Cmp->users()) { 3486 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3487 if (!BI) 3488 continue; 3489 3490 assert(BI->isConditional() && "uses a comparison!"); 3491 3492 BasicBlock *NonNullSuccessor = nullptr; 3493 CmpInst::Predicate Pred; 3494 3495 if (match(const_cast<ICmpInst*>(Cmp), 3496 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3497 if (Pred == ICmpInst::ICMP_EQ) 3498 NonNullSuccessor = BI->getSuccessor(1); 3499 else if (Pred == ICmpInst::ICMP_NE) 3500 NonNullSuccessor = BI->getSuccessor(0); 3501 } 3502 3503 if (NonNullSuccessor) { 3504 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3505 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3506 return true; 3507 } 3508 } 3509 } 3510 3511 return false; 3512 } 3513 3514 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3515 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3516 if (isKnownNonNull(V, TLI)) 3517 return true; 3518 3519 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3520 } 3521 3522 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3523 const DataLayout &DL, 3524 AssumptionCache *AC, 3525 const Instruction *CxtI, 3526 const DominatorTree *DT) { 3527 // Multiplying n * m significant bits yields a result of n + m significant 3528 // bits. If the total number of significant bits does not exceed the 3529 // result bit width (minus 1), there is no overflow. 3530 // This means if we have enough leading zero bits in the operands 3531 // we can guarantee that the result does not overflow. 3532 // Ref: "Hacker's Delight" by Henry Warren 3533 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3534 APInt LHSKnownZero(BitWidth, 0); 3535 APInt LHSKnownOne(BitWidth, 0); 3536 APInt RHSKnownZero(BitWidth, 0); 3537 APInt RHSKnownOne(BitWidth, 0); 3538 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3539 DT); 3540 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3541 DT); 3542 // Note that underestimating the number of zero bits gives a more 3543 // conservative answer. 3544 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3545 RHSKnownZero.countLeadingOnes(); 3546 // First handle the easy case: if we have enough zero bits there's 3547 // definitely no overflow. 3548 if (ZeroBits >= BitWidth) 3549 return OverflowResult::NeverOverflows; 3550 3551 // Get the largest possible values for each operand. 3552 APInt LHSMax = ~LHSKnownZero; 3553 APInt RHSMax = ~RHSKnownZero; 3554 3555 // We know the multiply operation doesn't overflow if the maximum values for 3556 // each operand will not overflow after we multiply them together. 3557 bool MaxOverflow; 3558 LHSMax.umul_ov(RHSMax, MaxOverflow); 3559 if (!MaxOverflow) 3560 return OverflowResult::NeverOverflows; 3561 3562 // We know it always overflows if multiplying the smallest possible values for 3563 // the operands also results in overflow. 3564 bool MinOverflow; 3565 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3566 if (MinOverflow) 3567 return OverflowResult::AlwaysOverflows; 3568 3569 return OverflowResult::MayOverflow; 3570 } 3571 3572 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3573 const DataLayout &DL, 3574 AssumptionCache *AC, 3575 const Instruction *CxtI, 3576 const DominatorTree *DT) { 3577 bool LHSKnownNonNegative, LHSKnownNegative; 3578 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3579 AC, CxtI, DT); 3580 if (LHSKnownNonNegative || LHSKnownNegative) { 3581 bool RHSKnownNonNegative, RHSKnownNegative; 3582 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3583 AC, CxtI, DT); 3584 3585 if (LHSKnownNegative && RHSKnownNegative) { 3586 // The sign bit is set in both cases: this MUST overflow. 3587 // Create a simple add instruction, and insert it into the struct. 3588 return OverflowResult::AlwaysOverflows; 3589 } 3590 3591 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3592 // The sign bit is clear in both cases: this CANNOT overflow. 3593 // Create a simple add instruction, and insert it into the struct. 3594 return OverflowResult::NeverOverflows; 3595 } 3596 } 3597 3598 return OverflowResult::MayOverflow; 3599 } 3600 3601 static OverflowResult computeOverflowForSignedAdd( 3602 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3603 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3604 if (Add && Add->hasNoSignedWrap()) { 3605 return OverflowResult::NeverOverflows; 3606 } 3607 3608 bool LHSKnownNonNegative, LHSKnownNegative; 3609 bool RHSKnownNonNegative, RHSKnownNegative; 3610 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3611 AC, CxtI, DT); 3612 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3613 AC, CxtI, DT); 3614 3615 if ((LHSKnownNonNegative && RHSKnownNegative) || 3616 (LHSKnownNegative && RHSKnownNonNegative)) { 3617 // The sign bits are opposite: this CANNOT overflow. 3618 return OverflowResult::NeverOverflows; 3619 } 3620 3621 // The remaining code needs Add to be available. Early returns if not so. 3622 if (!Add) 3623 return OverflowResult::MayOverflow; 3624 3625 // If the sign of Add is the same as at least one of the operands, this add 3626 // CANNOT overflow. This is particularly useful when the sum is 3627 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3628 // operands. 3629 bool LHSOrRHSKnownNonNegative = 3630 (LHSKnownNonNegative || RHSKnownNonNegative); 3631 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3632 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3633 bool AddKnownNonNegative, AddKnownNegative; 3634 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3635 /*Depth=*/0, AC, CxtI, DT); 3636 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3637 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3638 return OverflowResult::NeverOverflows; 3639 } 3640 } 3641 3642 return OverflowResult::MayOverflow; 3643 } 3644 3645 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3646 const DataLayout &DL, 3647 AssumptionCache *AC, 3648 const Instruction *CxtI, 3649 const DominatorTree *DT) { 3650 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3651 Add, DL, AC, CxtI, DT); 3652 } 3653 3654 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3655 const DataLayout &DL, 3656 AssumptionCache *AC, 3657 const Instruction *CxtI, 3658 const DominatorTree *DT) { 3659 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3660 } 3661 3662 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3663 // FIXME: This conservative implementation can be relaxed. E.g. most 3664 // atomic operations are guaranteed to terminate on most platforms 3665 // and most functions terminate. 3666 3667 return !I->isAtomic() && // atomics may never succeed on some platforms 3668 !isa<CallInst>(I) && // could throw and might not terminate 3669 !isa<InvokeInst>(I) && // might not terminate and could throw to 3670 // non-successor (see bug 24185 for details). 3671 !isa<ResumeInst>(I) && // has no successors 3672 !isa<ReturnInst>(I); // has no successors 3673 } 3674 3675 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3676 const Loop *L) { 3677 // The loop header is guaranteed to be executed for every iteration. 3678 // 3679 // FIXME: Relax this constraint to cover all basic blocks that are 3680 // guaranteed to be executed at every iteration. 3681 if (I->getParent() != L->getHeader()) return false; 3682 3683 for (const Instruction &LI : *L->getHeader()) { 3684 if (&LI == I) return true; 3685 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3686 } 3687 llvm_unreachable("Instruction not contained in its own parent basic block."); 3688 } 3689 3690 bool llvm::propagatesFullPoison(const Instruction *I) { 3691 switch (I->getOpcode()) { 3692 case Instruction::Add: 3693 case Instruction::Sub: 3694 case Instruction::Xor: 3695 case Instruction::Trunc: 3696 case Instruction::BitCast: 3697 case Instruction::AddrSpaceCast: 3698 // These operations all propagate poison unconditionally. Note that poison 3699 // is not any particular value, so xor or subtraction of poison with 3700 // itself still yields poison, not zero. 3701 return true; 3702 3703 case Instruction::AShr: 3704 case Instruction::SExt: 3705 // For these operations, one bit of the input is replicated across 3706 // multiple output bits. A replicated poison bit is still poison. 3707 return true; 3708 3709 case Instruction::Shl: { 3710 // Left shift *by* a poison value is poison. The number of 3711 // positions to shift is unsigned, so no negative values are 3712 // possible there. Left shift by zero places preserves poison. So 3713 // it only remains to consider left shift of poison by a positive 3714 // number of places. 3715 // 3716 // A left shift by a positive number of places leaves the lowest order bit 3717 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3718 // make the poison operand violate that flag, yielding a fresh full-poison 3719 // value. 3720 auto *OBO = cast<OverflowingBinaryOperator>(I); 3721 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3722 } 3723 3724 case Instruction::Mul: { 3725 // A multiplication by zero yields a non-poison zero result, so we need to 3726 // rule out zero as an operand. Conservatively, multiplication by a 3727 // non-zero constant is not multiplication by zero. 3728 // 3729 // Multiplication by a non-zero constant can leave some bits 3730 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3731 // order bit unpoisoned. So we need to consider that. 3732 // 3733 // Multiplication by 1 preserves poison. If the multiplication has a 3734 // no-wrap flag, then we can make the poison operand violate that flag 3735 // when multiplied by any integer other than 0 and 1. 3736 auto *OBO = cast<OverflowingBinaryOperator>(I); 3737 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3738 for (Value *V : OBO->operands()) { 3739 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3740 // A ConstantInt cannot yield poison, so we can assume that it is 3741 // the other operand that is poison. 3742 return !CI->isZero(); 3743 } 3744 } 3745 } 3746 return false; 3747 } 3748 3749 case Instruction::GetElementPtr: 3750 // A GEP implicitly represents a sequence of additions, subtractions, 3751 // truncations, sign extensions and multiplications. The multiplications 3752 // are by the non-zero sizes of some set of types, so we do not have to be 3753 // concerned with multiplication by zero. If the GEP is in-bounds, then 3754 // these operations are implicitly no-signed-wrap so poison is propagated 3755 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3756 return cast<GEPOperator>(I)->isInBounds(); 3757 3758 default: 3759 return false; 3760 } 3761 } 3762 3763 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3764 switch (I->getOpcode()) { 3765 case Instruction::Store: 3766 return cast<StoreInst>(I)->getPointerOperand(); 3767 3768 case Instruction::Load: 3769 return cast<LoadInst>(I)->getPointerOperand(); 3770 3771 case Instruction::AtomicCmpXchg: 3772 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3773 3774 case Instruction::AtomicRMW: 3775 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3776 3777 case Instruction::UDiv: 3778 case Instruction::SDiv: 3779 case Instruction::URem: 3780 case Instruction::SRem: 3781 return I->getOperand(1); 3782 3783 default: 3784 return nullptr; 3785 } 3786 } 3787 3788 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3789 // We currently only look for uses of poison values within the same basic 3790 // block, as that makes it easier to guarantee that the uses will be 3791 // executed given that PoisonI is executed. 3792 // 3793 // FIXME: Expand this to consider uses beyond the same basic block. To do 3794 // this, look out for the distinction between post-dominance and strong 3795 // post-dominance. 3796 const BasicBlock *BB = PoisonI->getParent(); 3797 3798 // Set of instructions that we have proved will yield poison if PoisonI 3799 // does. 3800 SmallSet<const Value *, 16> YieldsPoison; 3801 YieldsPoison.insert(PoisonI); 3802 3803 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3804 I != E; ++I) { 3805 if (&*I != PoisonI) { 3806 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3807 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3808 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3809 return false; 3810 } 3811 3812 // Mark poison that propagates from I through uses of I. 3813 if (YieldsPoison.count(&*I)) { 3814 for (const User *User : I->users()) { 3815 const Instruction *UserI = cast<Instruction>(User); 3816 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3817 YieldsPoison.insert(User); 3818 } 3819 } 3820 } 3821 return false; 3822 } 3823 3824 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3825 if (FMF.noNaNs()) 3826 return true; 3827 3828 if (auto *C = dyn_cast<ConstantFP>(V)) 3829 return !C->isNaN(); 3830 return false; 3831 } 3832 3833 static bool isKnownNonZero(Value *V) { 3834 if (auto *C = dyn_cast<ConstantFP>(V)) 3835 return !C->isZero(); 3836 return false; 3837 } 3838 3839 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3840 FastMathFlags FMF, 3841 Value *CmpLHS, Value *CmpRHS, 3842 Value *TrueVal, Value *FalseVal, 3843 Value *&LHS, Value *&RHS) { 3844 LHS = CmpLHS; 3845 RHS = CmpRHS; 3846 3847 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3848 // return inconsistent results between implementations. 3849 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3850 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3851 // Therefore we behave conservatively and only proceed if at least one of the 3852 // operands is known to not be zero, or if we don't care about signed zeroes. 3853 switch (Pred) { 3854 default: break; 3855 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3856 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3857 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3858 !isKnownNonZero(CmpRHS)) 3859 return {SPF_UNKNOWN, SPNB_NA, false}; 3860 } 3861 3862 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3863 bool Ordered = false; 3864 3865 // When given one NaN and one non-NaN input: 3866 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3867 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3868 // ordered comparison fails), which could be NaN or non-NaN. 3869 // so here we discover exactly what NaN behavior is required/accepted. 3870 if (CmpInst::isFPPredicate(Pred)) { 3871 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3872 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3873 3874 if (LHSSafe && RHSSafe) { 3875 // Both operands are known non-NaN. 3876 NaNBehavior = SPNB_RETURNS_ANY; 3877 } else if (CmpInst::isOrdered(Pred)) { 3878 // An ordered comparison will return false when given a NaN, so it 3879 // returns the RHS. 3880 Ordered = true; 3881 if (LHSSafe) 3882 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3883 NaNBehavior = SPNB_RETURNS_NAN; 3884 else if (RHSSafe) 3885 NaNBehavior = SPNB_RETURNS_OTHER; 3886 else 3887 // Completely unsafe. 3888 return {SPF_UNKNOWN, SPNB_NA, false}; 3889 } else { 3890 Ordered = false; 3891 // An unordered comparison will return true when given a NaN, so it 3892 // returns the LHS. 3893 if (LHSSafe) 3894 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3895 NaNBehavior = SPNB_RETURNS_OTHER; 3896 else if (RHSSafe) 3897 NaNBehavior = SPNB_RETURNS_NAN; 3898 else 3899 // Completely unsafe. 3900 return {SPF_UNKNOWN, SPNB_NA, false}; 3901 } 3902 } 3903 3904 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3905 std::swap(CmpLHS, CmpRHS); 3906 Pred = CmpInst::getSwappedPredicate(Pred); 3907 if (NaNBehavior == SPNB_RETURNS_NAN) 3908 NaNBehavior = SPNB_RETURNS_OTHER; 3909 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3910 NaNBehavior = SPNB_RETURNS_NAN; 3911 Ordered = !Ordered; 3912 } 3913 3914 // ([if]cmp X, Y) ? X : Y 3915 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3916 switch (Pred) { 3917 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3918 case ICmpInst::ICMP_UGT: 3919 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3920 case ICmpInst::ICMP_SGT: 3921 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3922 case ICmpInst::ICMP_ULT: 3923 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3924 case ICmpInst::ICMP_SLT: 3925 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3926 case FCmpInst::FCMP_UGT: 3927 case FCmpInst::FCMP_UGE: 3928 case FCmpInst::FCMP_OGT: 3929 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3930 case FCmpInst::FCMP_ULT: 3931 case FCmpInst::FCMP_ULE: 3932 case FCmpInst::FCMP_OLT: 3933 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3934 } 3935 } 3936 3937 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3938 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3939 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3940 3941 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3942 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3943 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3944 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3945 } 3946 3947 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3948 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3949 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3950 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3951 } 3952 } 3953 3954 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3955 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3956 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3957 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3958 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3959 LHS = TrueVal; 3960 RHS = FalseVal; 3961 return {SPF_SMIN, SPNB_NA, false}; 3962 } 3963 } 3964 } 3965 3966 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3967 3968 return {SPF_UNKNOWN, SPNB_NA, false}; 3969 } 3970 3971 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3972 Instruction::CastOps *CastOp) { 3973 CastInst *CI = dyn_cast<CastInst>(V1); 3974 Constant *C = dyn_cast<Constant>(V2); 3975 CastInst *CI2 = dyn_cast<CastInst>(V2); 3976 if (!CI) 3977 return nullptr; 3978 *CastOp = CI->getOpcode(); 3979 3980 if (CI2) { 3981 // If V1 and V2 are both the same cast from the same type, we can look 3982 // through V1. 3983 if (CI2->getOpcode() == CI->getOpcode() && 3984 CI2->getSrcTy() == CI->getSrcTy()) 3985 return CI2->getOperand(0); 3986 return nullptr; 3987 } else if (!C) { 3988 return nullptr; 3989 } 3990 3991 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3992 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3993 // This is only valid if the truncated value can be sign-extended 3994 // back to the original value. 3995 if (ConstantExpr::getSExt(T, C->getType()) == C) 3996 return T; 3997 return nullptr; 3998 } 3999 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 4000 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 4001 4002 if (isa<TruncInst>(CI)) 4003 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 4004 4005 if (isa<FPToUIInst>(CI)) 4006 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4007 4008 if (isa<FPToSIInst>(CI)) 4009 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4010 4011 if (isa<UIToFPInst>(CI)) 4012 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4013 4014 if (isa<SIToFPInst>(CI)) 4015 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4016 4017 if (isa<FPTruncInst>(CI)) 4018 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4019 4020 if (isa<FPExtInst>(CI)) 4021 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4022 4023 return nullptr; 4024 } 4025 4026 SelectPatternResult llvm::matchSelectPattern(Value *V, 4027 Value *&LHS, Value *&RHS, 4028 Instruction::CastOps *CastOp) { 4029 SelectInst *SI = dyn_cast<SelectInst>(V); 4030 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4031 4032 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4033 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4034 4035 CmpInst::Predicate Pred = CmpI->getPredicate(); 4036 Value *CmpLHS = CmpI->getOperand(0); 4037 Value *CmpRHS = CmpI->getOperand(1); 4038 Value *TrueVal = SI->getTrueValue(); 4039 Value *FalseVal = SI->getFalseValue(); 4040 FastMathFlags FMF; 4041 if (isa<FPMathOperator>(CmpI)) 4042 FMF = CmpI->getFastMathFlags(); 4043 4044 // Bail out early. 4045 if (CmpI->isEquality()) 4046 return {SPF_UNKNOWN, SPNB_NA, false}; 4047 4048 // Deal with type mismatches. 4049 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4050 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4051 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4052 cast<CastInst>(TrueVal)->getOperand(0), C, 4053 LHS, RHS); 4054 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4055 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4056 C, cast<CastInst>(FalseVal)->getOperand(0), 4057 LHS, RHS); 4058 } 4059 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4060 LHS, RHS); 4061 } 4062 4063 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 4064 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4065 assert(NumRanges >= 1 && "Must have at least one range!"); 4066 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4067 4068 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4069 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4070 4071 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4072 4073 for (unsigned i = 1; i < NumRanges; ++i) { 4074 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4075 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4076 4077 // Note: unionWith will potentially create a range that contains values not 4078 // contained in any of the original N ranges. 4079 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4080 } 4081 4082 return CR; 4083 } 4084 4085 /// Return true if "icmp Pred LHS RHS" is always true. 4086 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 4087 const DataLayout &DL, unsigned Depth, 4088 AssumptionCache *AC, const Instruction *CxtI, 4089 const DominatorTree *DT) { 4090 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4091 return true; 4092 4093 switch (Pred) { 4094 default: 4095 return false; 4096 4097 case CmpInst::ICMP_SLT: 4098 case CmpInst::ICMP_SLE: { 4099 ConstantInt *CI; 4100 4101 // LHS s< LHS +_{nsw} C if C > 0 4102 // LHS s<= LHS +_{nsw} C if C >= 0 4103 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_ConstantInt(CI)))) { 4104 if (Pred == CmpInst::ICMP_SLT) 4105 return CI->getValue().isStrictlyPositive(); 4106 return !CI->isNegative(); 4107 } 4108 return false; 4109 } 4110 4111 case CmpInst::ICMP_ULT: 4112 case CmpInst::ICMP_ULE: { 4113 ConstantInt *CI; 4114 4115 // LHS u< LHS +_{nuw} C if C != 0 4116 // LHS u<= LHS +_{nuw} C 4117 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_ConstantInt(CI)))) { 4118 if (Pred == CmpInst::ICMP_ULT) 4119 return !CI->isZero(); 4120 return true; 4121 } 4122 return false; 4123 } 4124 } 4125 } 4126 4127 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4128 /// ALHS ARHS" is true. 4129 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, 4130 Value *ARHS, Value *BLHS, Value *BRHS, 4131 const DataLayout &DL, unsigned Depth, 4132 AssumptionCache *AC, const Instruction *CxtI, 4133 const DominatorTree *DT) { 4134 switch (Pred) { 4135 default: 4136 return false; 4137 4138 case CmpInst::ICMP_SLT: 4139 case CmpInst::ICMP_SLE: 4140 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4141 DT) && 4142 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, 4143 DT); 4144 4145 case CmpInst::ICMP_ULT: 4146 case CmpInst::ICMP_ULE: 4147 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4148 DT) && 4149 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, 4150 DT); 4151 } 4152 } 4153 4154 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, 4155 unsigned Depth, AssumptionCache *AC, 4156 const Instruction *CxtI, 4157 const DominatorTree *DT) { 4158 assert(LHS->getType() == RHS->getType() && "mismatched type"); 4159 Type *OpTy = LHS->getType(); 4160 assert(OpTy->getScalarType()->isIntegerTy(1)); 4161 4162 // LHS ==> RHS by definition 4163 if (LHS == RHS) return true; 4164 4165 if (OpTy->isVectorTy()) 4166 // TODO: extending the code below to handle vectors 4167 return false; 4168 assert(OpTy->isIntegerTy(1) && "implied by above"); 4169 4170 ICmpInst::Predicate APred, BPred; 4171 Value *ALHS, *ARHS; 4172 Value *BLHS, *BRHS; 4173 4174 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4175 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4176 return false; 4177 4178 if (APred == BPred) 4179 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4180 CxtI, DT); 4181 4182 return false; 4183 } 4184