1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getIndexTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static void computeKnownBits(const Value *V, KnownBits &Known, 167 unsigned Depth, const Query &Q); 168 169 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 170 const DataLayout &DL, unsigned Depth, 171 AssumptionCache *AC, const Instruction *CxtI, 172 const DominatorTree *DT, 173 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 174 ::computeKnownBits(V, Known, Depth, 175 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 176 } 177 178 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 179 const Query &Q); 180 181 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 182 unsigned Depth, AssumptionCache *AC, 183 const Instruction *CxtI, 184 const DominatorTree *DT, 185 OptimizationRemarkEmitter *ORE, 186 bool UseInstrInfo) { 187 return ::computeKnownBits( 188 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 189 } 190 191 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 192 const DataLayout &DL, AssumptionCache *AC, 193 const Instruction *CxtI, const DominatorTree *DT, 194 bool UseInstrInfo) { 195 assert(LHS->getType() == RHS->getType() && 196 "LHS and RHS should have the same type"); 197 assert(LHS->getType()->isIntOrIntVectorTy() && 198 "LHS and RHS should be integers"); 199 // Look for an inverted mask: (X & ~M) op (Y & M). 200 Value *M; 201 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 202 match(RHS, m_c_And(m_Specific(M), m_Value()))) 203 return true; 204 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 205 match(LHS, m_c_And(m_Specific(M), m_Value()))) 206 return true; 207 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 208 KnownBits LHSKnown(IT->getBitWidth()); 209 KnownBits RHSKnown(IT->getBitWidth()); 210 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 211 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 212 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 213 } 214 215 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 216 for (const User *U : CxtI->users()) { 217 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 218 if (IC->isEquality()) 219 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 220 if (C->isNullValue()) 221 continue; 222 return false; 223 } 224 return true; 225 } 226 227 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 228 const Query &Q); 229 230 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 231 bool OrZero, unsigned Depth, 232 AssumptionCache *AC, const Instruction *CxtI, 233 const DominatorTree *DT, bool UseInstrInfo) { 234 return ::isKnownToBeAPowerOfTwo( 235 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 236 } 237 238 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 239 240 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 241 AssumptionCache *AC, const Instruction *CxtI, 242 const DominatorTree *DT, bool UseInstrInfo) { 243 return ::isKnownNonZero(V, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 245 } 246 247 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 248 unsigned Depth, AssumptionCache *AC, 249 const Instruction *CxtI, const DominatorTree *DT, 250 bool UseInstrInfo) { 251 KnownBits Known = 252 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 253 return Known.isNonNegative(); 254 } 255 256 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 257 AssumptionCache *AC, const Instruction *CxtI, 258 const DominatorTree *DT, bool UseInstrInfo) { 259 if (auto *CI = dyn_cast<ConstantInt>(V)) 260 return CI->getValue().isStrictlyPositive(); 261 262 // TODO: We'd doing two recursive queries here. We should factor this such 263 // that only a single query is needed. 264 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 265 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 266 } 267 268 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 269 AssumptionCache *AC, const Instruction *CxtI, 270 const DominatorTree *DT, bool UseInstrInfo) { 271 KnownBits Known = 272 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 273 return Known.isNegative(); 274 } 275 276 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 277 278 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 279 const DataLayout &DL, AssumptionCache *AC, 280 const Instruction *CxtI, const DominatorTree *DT, 281 bool UseInstrInfo) { 282 return ::isKnownNonEqual(V1, V2, 283 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 284 UseInstrInfo, /*ORE=*/nullptr)); 285 } 286 287 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 288 const Query &Q); 289 290 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 291 const DataLayout &DL, unsigned Depth, 292 AssumptionCache *AC, const Instruction *CxtI, 293 const DominatorTree *DT, bool UseInstrInfo) { 294 return ::MaskedValueIsZero( 295 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 296 } 297 298 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 299 const Query &Q); 300 301 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 302 unsigned Depth, AssumptionCache *AC, 303 const Instruction *CxtI, 304 const DominatorTree *DT, bool UseInstrInfo) { 305 return ::ComputeNumSignBits( 306 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 307 } 308 309 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 310 bool NSW, 311 KnownBits &KnownOut, KnownBits &Known2, 312 unsigned Depth, const Query &Q) { 313 unsigned BitWidth = KnownOut.getBitWidth(); 314 315 // If an initial sequence of bits in the result is not needed, the 316 // corresponding bits in the operands are not needed. 317 KnownBits LHSKnown(BitWidth); 318 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 319 computeKnownBits(Op1, Known2, Depth + 1, Q); 320 321 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 322 } 323 324 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 325 KnownBits &Known, KnownBits &Known2, 326 unsigned Depth, const Query &Q) { 327 unsigned BitWidth = Known.getBitWidth(); 328 computeKnownBits(Op1, Known, Depth + 1, Q); 329 computeKnownBits(Op0, Known2, Depth + 1, Q); 330 331 bool isKnownNegative = false; 332 bool isKnownNonNegative = false; 333 // If the multiplication is known not to overflow, compute the sign bit. 334 if (NSW) { 335 if (Op0 == Op1) { 336 // The product of a number with itself is non-negative. 337 isKnownNonNegative = true; 338 } else { 339 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 340 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 341 bool isKnownNegativeOp1 = Known.isNegative(); 342 bool isKnownNegativeOp0 = Known2.isNegative(); 343 // The product of two numbers with the same sign is non-negative. 344 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 345 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 346 // The product of a negative number and a non-negative number is either 347 // negative or zero. 348 if (!isKnownNonNegative) 349 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 350 isKnownNonZero(Op0, Depth, Q)) || 351 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 352 isKnownNonZero(Op1, Depth, Q)); 353 } 354 } 355 356 assert(!Known.hasConflict() && !Known2.hasConflict()); 357 // Compute a conservative estimate for high known-0 bits. 358 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 359 Known2.countMinLeadingZeros(), 360 BitWidth) - BitWidth; 361 LeadZ = std::min(LeadZ, BitWidth); 362 363 // The result of the bottom bits of an integer multiply can be 364 // inferred by looking at the bottom bits of both operands and 365 // multiplying them together. 366 // We can infer at least the minimum number of known trailing bits 367 // of both operands. Depending on number of trailing zeros, we can 368 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 369 // a and b are divisible by m and n respectively. 370 // We then calculate how many of those bits are inferrable and set 371 // the output. For example, the i8 mul: 372 // a = XXXX1100 (12) 373 // b = XXXX1110 (14) 374 // We know the bottom 3 bits are zero since the first can be divided by 375 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 376 // Applying the multiplication to the trimmed arguments gets: 377 // XX11 (3) 378 // X111 (7) 379 // ------- 380 // XX11 381 // XX11 382 // XX11 383 // XX11 384 // ------- 385 // XXXXX01 386 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 387 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 388 // The proof for this can be described as: 389 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 390 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 391 // umin(countTrailingZeros(C2), C6) + 392 // umin(C5 - umin(countTrailingZeros(C1), C5), 393 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 394 // %aa = shl i8 %a, C5 395 // %bb = shl i8 %b, C6 396 // %aaa = or i8 %aa, C1 397 // %bbb = or i8 %bb, C2 398 // %mul = mul i8 %aaa, %bbb 399 // %mask = and i8 %mul, C7 400 // => 401 // %mask = i8 ((C1*C2)&C7) 402 // Where C5, C6 describe the known bits of %a, %b 403 // C1, C2 describe the known bottom bits of %a, %b. 404 // C7 describes the mask of the known bits of the result. 405 APInt Bottom0 = Known.One; 406 APInt Bottom1 = Known2.One; 407 408 // How many times we'd be able to divide each argument by 2 (shr by 1). 409 // This gives us the number of trailing zeros on the multiplication result. 410 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 411 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 412 unsigned TrailZero0 = Known.countMinTrailingZeros(); 413 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 414 unsigned TrailZ = TrailZero0 + TrailZero1; 415 416 // Figure out the fewest known-bits operand. 417 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 418 TrailBitsKnown1 - TrailZero1); 419 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 420 421 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 422 Bottom1.getLoBits(TrailBitsKnown1); 423 424 Known.resetAll(); 425 Known.Zero.setHighBits(LeadZ); 426 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 427 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 428 429 // Only make use of no-wrap flags if we failed to compute the sign bit 430 // directly. This matters if the multiplication always overflows, in 431 // which case we prefer to follow the result of the direct computation, 432 // though as the program is invoking undefined behaviour we can choose 433 // whatever we like here. 434 if (isKnownNonNegative && !Known.isNegative()) 435 Known.makeNonNegative(); 436 else if (isKnownNegative && !Known.isNonNegative()) 437 Known.makeNegative(); 438 } 439 440 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 441 KnownBits &Known) { 442 unsigned BitWidth = Known.getBitWidth(); 443 unsigned NumRanges = Ranges.getNumOperands() / 2; 444 assert(NumRanges >= 1); 445 446 Known.Zero.setAllBits(); 447 Known.One.setAllBits(); 448 449 for (unsigned i = 0; i < NumRanges; ++i) { 450 ConstantInt *Lower = 451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 452 ConstantInt *Upper = 453 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 454 ConstantRange Range(Lower->getValue(), Upper->getValue()); 455 456 // The first CommonPrefixBits of all values in Range are equal. 457 unsigned CommonPrefixBits = 458 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 459 460 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 461 Known.One &= Range.getUnsignedMax() & Mask; 462 Known.Zero &= ~Range.getUnsignedMax() & Mask; 463 } 464 } 465 466 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 467 SmallVector<const Value *, 16> WorkSet(1, I); 468 SmallPtrSet<const Value *, 32> Visited; 469 SmallPtrSet<const Value *, 16> EphValues; 470 471 // The instruction defining an assumption's condition itself is always 472 // considered ephemeral to that assumption (even if it has other 473 // non-ephemeral users). See r246696's test case for an example. 474 if (is_contained(I->operands(), E)) 475 return true; 476 477 while (!WorkSet.empty()) { 478 const Value *V = WorkSet.pop_back_val(); 479 if (!Visited.insert(V).second) 480 continue; 481 482 // If all uses of this value are ephemeral, then so is this value. 483 if (llvm::all_of(V->users(), [&](const User *U) { 484 return EphValues.count(U); 485 })) { 486 if (V == E) 487 return true; 488 489 if (V == I || isSafeToSpeculativelyExecute(V)) { 490 EphValues.insert(V); 491 if (const User *U = dyn_cast<User>(V)) 492 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 493 J != JE; ++J) 494 WorkSet.push_back(*J); 495 } 496 } 497 } 498 499 return false; 500 } 501 502 // Is this an intrinsic that cannot be speculated but also cannot trap? 503 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 504 if (const CallInst *CI = dyn_cast<CallInst>(I)) 505 if (Function *F = CI->getCalledFunction()) 506 switch (F->getIntrinsicID()) { 507 default: break; 508 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 509 case Intrinsic::assume: 510 case Intrinsic::sideeffect: 511 case Intrinsic::dbg_declare: 512 case Intrinsic::dbg_value: 513 case Intrinsic::dbg_label: 514 case Intrinsic::invariant_start: 515 case Intrinsic::invariant_end: 516 case Intrinsic::lifetime_start: 517 case Intrinsic::lifetime_end: 518 case Intrinsic::objectsize: 519 case Intrinsic::ptr_annotation: 520 case Intrinsic::var_annotation: 521 return true; 522 } 523 524 return false; 525 } 526 527 bool llvm::isValidAssumeForContext(const Instruction *Inv, 528 const Instruction *CxtI, 529 const DominatorTree *DT) { 530 // There are two restrictions on the use of an assume: 531 // 1. The assume must dominate the context (or the control flow must 532 // reach the assume whenever it reaches the context). 533 // 2. The context must not be in the assume's set of ephemeral values 534 // (otherwise we will use the assume to prove that the condition 535 // feeding the assume is trivially true, thus causing the removal of 536 // the assume). 537 538 if (DT) { 539 if (DT->dominates(Inv, CxtI)) 540 return true; 541 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 542 // We don't have a DT, but this trivially dominates. 543 return true; 544 } 545 546 // With or without a DT, the only remaining case we will check is if the 547 // instructions are in the same BB. Give up if that is not the case. 548 if (Inv->getParent() != CxtI->getParent()) 549 return false; 550 551 // If we have a dom tree, then we now know that the assume doesn't dominate 552 // the other instruction. If we don't have a dom tree then we can check if 553 // the assume is first in the BB. 554 if (!DT) { 555 // Search forward from the assume until we reach the context (or the end 556 // of the block); the common case is that the assume will come first. 557 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 558 IE = Inv->getParent()->end(); I != IE; ++I) 559 if (&*I == CxtI) 560 return true; 561 } 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. Make sure 570 // there is nothing in between that might interrupt the control flow. 571 for (BasicBlock::const_iterator I = 572 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 573 I != IE; ++I) 574 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 575 return false; 576 577 return !isEphemeralValueOf(Inv, CxtI); 578 } 579 580 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 581 unsigned Depth, const Query &Q) { 582 // Use of assumptions is context-sensitive. If we don't have a context, we 583 // cannot use them! 584 if (!Q.AC || !Q.CxtI) 585 return; 586 587 unsigned BitWidth = Known.getBitWidth(); 588 589 // Note that the patterns below need to be kept in sync with the code 590 // in AssumptionCache::updateAffectedValues. 591 592 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 593 if (!AssumeVH) 594 continue; 595 CallInst *I = cast<CallInst>(AssumeVH); 596 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 597 "Got assumption for the wrong function!"); 598 if (Q.isExcluded(I)) 599 continue; 600 601 // Warning: This loop can end up being somewhat performance sensitive. 602 // We're running this loop for once for each value queried resulting in a 603 // runtime of ~O(#assumes * #values). 604 605 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 606 "must be an assume intrinsic"); 607 608 Value *Arg = I->getArgOperand(0); 609 610 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 611 assert(BitWidth == 1 && "assume operand is not i1?"); 612 Known.setAllOnes(); 613 return; 614 } 615 if (match(Arg, m_Not(m_Specific(V))) && 616 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 617 assert(BitWidth == 1 && "assume operand is not i1?"); 618 Known.setAllZero(); 619 return; 620 } 621 622 // The remaining tests are all recursive, so bail out if we hit the limit. 623 if (Depth == MaxDepth) 624 continue; 625 626 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 627 if (!Cmp) 628 continue; 629 630 Value *A, *B; 631 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 632 633 CmpInst::Predicate Pred; 634 uint64_t C; 635 switch (Cmp->getPredicate()) { 636 default: 637 break; 638 case ICmpInst::ICMP_EQ: 639 // assume(v = a) 640 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 641 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 642 KnownBits RHSKnown(BitWidth); 643 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 644 Known.Zero |= RHSKnown.Zero; 645 Known.One |= RHSKnown.One; 646 // assume(v & b = a) 647 } else if (match(Cmp, 648 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 650 KnownBits RHSKnown(BitWidth); 651 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 652 KnownBits MaskKnown(BitWidth); 653 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 654 655 // For those bits in the mask that are known to be one, we can propagate 656 // known bits from the RHS to V. 657 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 658 Known.One |= RHSKnown.One & MaskKnown.One; 659 // assume(~(v & b) = a) 660 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 661 m_Value(A))) && 662 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 663 KnownBits RHSKnown(BitWidth); 664 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 665 KnownBits MaskKnown(BitWidth); 666 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 667 668 // For those bits in the mask that are known to be one, we can propagate 669 // inverted known bits from the RHS to V. 670 Known.Zero |= RHSKnown.One & MaskKnown.One; 671 Known.One |= RHSKnown.Zero & MaskKnown.One; 672 // assume(v | b = a) 673 } else if (match(Cmp, 674 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 675 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 676 KnownBits RHSKnown(BitWidth); 677 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 678 KnownBits BKnown(BitWidth); 679 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 680 681 // For those bits in B that are known to be zero, we can propagate known 682 // bits from the RHS to V. 683 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 684 Known.One |= RHSKnown.One & BKnown.Zero; 685 // assume(~(v | b) = a) 686 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 687 m_Value(A))) && 688 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 689 KnownBits RHSKnown(BitWidth); 690 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 691 KnownBits BKnown(BitWidth); 692 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 693 694 // For those bits in B that are known to be zero, we can propagate 695 // inverted known bits from the RHS to V. 696 Known.Zero |= RHSKnown.One & BKnown.Zero; 697 Known.One |= RHSKnown.Zero & BKnown.Zero; 698 // assume(v ^ b = a) 699 } else if (match(Cmp, 700 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 701 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 702 KnownBits RHSKnown(BitWidth); 703 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 704 KnownBits BKnown(BitWidth); 705 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 706 707 // For those bits in B that are known to be zero, we can propagate known 708 // bits from the RHS to V. For those bits in B that are known to be one, 709 // we can propagate inverted known bits from the RHS to V. 710 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 711 Known.One |= RHSKnown.One & BKnown.Zero; 712 Known.Zero |= RHSKnown.One & BKnown.One; 713 Known.One |= RHSKnown.Zero & BKnown.One; 714 // assume(~(v ^ b) = a) 715 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 716 m_Value(A))) && 717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 718 KnownBits RHSKnown(BitWidth); 719 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 720 KnownBits BKnown(BitWidth); 721 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 722 723 // For those bits in B that are known to be zero, we can propagate 724 // inverted known bits from the RHS to V. For those bits in B that are 725 // known to be one, we can propagate known bits from the RHS to V. 726 Known.Zero |= RHSKnown.One & BKnown.Zero; 727 Known.One |= RHSKnown.Zero & BKnown.Zero; 728 Known.Zero |= RHSKnown.Zero & BKnown.One; 729 Known.One |= RHSKnown.One & BKnown.One; 730 // assume(v << c = a) 731 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 732 m_Value(A))) && 733 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 734 KnownBits RHSKnown(BitWidth); 735 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 736 // For those bits in RHS that are known, we can propagate them to known 737 // bits in V shifted to the right by C. 738 RHSKnown.Zero.lshrInPlace(C); 739 Known.Zero |= RHSKnown.Zero; 740 RHSKnown.One.lshrInPlace(C); 741 Known.One |= RHSKnown.One; 742 // assume(~(v << c) = a) 743 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 744 m_Value(A))) && 745 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 746 KnownBits RHSKnown(BitWidth); 747 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 748 // For those bits in RHS that are known, we can propagate them inverted 749 // to known bits in V shifted to the right by C. 750 RHSKnown.One.lshrInPlace(C); 751 Known.Zero |= RHSKnown.One; 752 RHSKnown.Zero.lshrInPlace(C); 753 Known.One |= RHSKnown.Zero; 754 // assume(v >> c = a) 755 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 756 m_Value(A))) && 757 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 758 KnownBits RHSKnown(BitWidth); 759 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 760 // For those bits in RHS that are known, we can propagate them to known 761 // bits in V shifted to the right by C. 762 Known.Zero |= RHSKnown.Zero << C; 763 Known.One |= RHSKnown.One << C; 764 // assume(~(v >> c) = a) 765 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 766 m_Value(A))) && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 768 KnownBits RHSKnown(BitWidth); 769 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 770 // For those bits in RHS that are known, we can propagate them inverted 771 // to known bits in V shifted to the right by C. 772 Known.Zero |= RHSKnown.One << C; 773 Known.One |= RHSKnown.Zero << C; 774 } 775 break; 776 case ICmpInst::ICMP_SGE: 777 // assume(v >=_s c) where c is non-negative 778 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 779 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 780 KnownBits RHSKnown(BitWidth); 781 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 782 783 if (RHSKnown.isNonNegative()) { 784 // We know that the sign bit is zero. 785 Known.makeNonNegative(); 786 } 787 } 788 break; 789 case ICmpInst::ICMP_SGT: 790 // assume(v >_s c) where c is at least -1. 791 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 792 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 793 KnownBits RHSKnown(BitWidth); 794 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 795 796 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 797 // We know that the sign bit is zero. 798 Known.makeNonNegative(); 799 } 800 } 801 break; 802 case ICmpInst::ICMP_SLE: 803 // assume(v <=_s c) where c is negative 804 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 805 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 806 KnownBits RHSKnown(BitWidth); 807 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 808 809 if (RHSKnown.isNegative()) { 810 // We know that the sign bit is one. 811 Known.makeNegative(); 812 } 813 } 814 break; 815 case ICmpInst::ICMP_SLT: 816 // assume(v <_s c) where c is non-positive 817 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 818 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 819 KnownBits RHSKnown(BitWidth); 820 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 821 822 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 823 // We know that the sign bit is one. 824 Known.makeNegative(); 825 } 826 } 827 break; 828 case ICmpInst::ICMP_ULE: 829 // assume(v <=_u c) 830 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 831 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 832 KnownBits RHSKnown(BitWidth); 833 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 834 835 // Whatever high bits in c are zero are known to be zero. 836 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 837 } 838 break; 839 case ICmpInst::ICMP_ULT: 840 // assume(v <_u c) 841 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 842 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 843 KnownBits RHSKnown(BitWidth); 844 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 845 846 // If the RHS is known zero, then this assumption must be wrong (nothing 847 // is unsigned less than zero). Signal a conflict and get out of here. 848 if (RHSKnown.isZero()) { 849 Known.Zero.setAllBits(); 850 Known.One.setAllBits(); 851 break; 852 } 853 854 // Whatever high bits in c are zero are known to be zero (if c is a power 855 // of 2, then one more). 856 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 857 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 858 else 859 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 860 } 861 break; 862 } 863 } 864 865 // If assumptions conflict with each other or previous known bits, then we 866 // have a logical fallacy. It's possible that the assumption is not reachable, 867 // so this isn't a real bug. On the other hand, the program may have undefined 868 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 869 // clear out the known bits, try to warn the user, and hope for the best. 870 if (Known.Zero.intersects(Known.One)) { 871 Known.resetAll(); 872 873 if (Q.ORE) 874 Q.ORE->emit([&]() { 875 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 876 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 877 CxtI) 878 << "Detected conflicting code assumptions. Program may " 879 "have undefined behavior, or compiler may have " 880 "internal error."; 881 }); 882 } 883 } 884 885 /// Compute known bits from a shift operator, including those with a 886 /// non-constant shift amount. Known is the output of this function. Known2 is a 887 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 888 /// operator-specific functions that, given the known-zero or known-one bits 889 /// respectively, and a shift amount, compute the implied known-zero or 890 /// known-one bits of the shift operator's result respectively for that shift 891 /// amount. The results from calling KZF and KOF are conservatively combined for 892 /// all permitted shift amounts. 893 static void computeKnownBitsFromShiftOperator( 894 const Operator *I, KnownBits &Known, KnownBits &Known2, 895 unsigned Depth, const Query &Q, 896 function_ref<APInt(const APInt &, unsigned)> KZF, 897 function_ref<APInt(const APInt &, unsigned)> KOF) { 898 unsigned BitWidth = Known.getBitWidth(); 899 900 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 901 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 902 903 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 904 Known.Zero = KZF(Known.Zero, ShiftAmt); 905 Known.One = KOF(Known.One, ShiftAmt); 906 // If the known bits conflict, this must be an overflowing left shift, so 907 // the shift result is poison. We can return anything we want. Choose 0 for 908 // the best folding opportunity. 909 if (Known.hasConflict()) 910 Known.setAllZero(); 911 912 return; 913 } 914 915 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 916 917 // If the shift amount could be greater than or equal to the bit-width of the 918 // LHS, the value could be poison, but bail out because the check below is 919 // expensive. TODO: Should we just carry on? 920 if (Known.getMaxValue().uge(BitWidth)) { 921 Known.resetAll(); 922 return; 923 } 924 925 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 926 // BitWidth > 64 and any upper bits are known, we'll end up returning the 927 // limit value (which implies all bits are known). 928 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 929 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 930 931 // It would be more-clearly correct to use the two temporaries for this 932 // calculation. Reusing the APInts here to prevent unnecessary allocations. 933 Known.resetAll(); 934 935 // If we know the shifter operand is nonzero, we can sometimes infer more 936 // known bits. However this is expensive to compute, so be lazy about it and 937 // only compute it when absolutely necessary. 938 Optional<bool> ShifterOperandIsNonZero; 939 940 // Early exit if we can't constrain any well-defined shift amount. 941 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 942 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 943 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 944 if (!*ShifterOperandIsNonZero) 945 return; 946 } 947 948 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 949 950 Known.Zero.setAllBits(); 951 Known.One.setAllBits(); 952 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 953 // Combine the shifted known input bits only for those shift amounts 954 // compatible with its known constraints. 955 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 956 continue; 957 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 958 continue; 959 // If we know the shifter is nonzero, we may be able to infer more known 960 // bits. This check is sunk down as far as possible to avoid the expensive 961 // call to isKnownNonZero if the cheaper checks above fail. 962 if (ShiftAmt == 0) { 963 if (!ShifterOperandIsNonZero.hasValue()) 964 ShifterOperandIsNonZero = 965 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 966 if (*ShifterOperandIsNonZero) 967 continue; 968 } 969 970 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 971 Known.One &= KOF(Known2.One, ShiftAmt); 972 } 973 974 // If the known bits conflict, the result is poison. Return a 0 and hope the 975 // caller can further optimize that. 976 if (Known.hasConflict()) 977 Known.setAllZero(); 978 } 979 980 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 981 unsigned Depth, const Query &Q) { 982 unsigned BitWidth = Known.getBitWidth(); 983 984 KnownBits Known2(Known); 985 switch (I->getOpcode()) { 986 default: break; 987 case Instruction::Load: 988 if (MDNode *MD = 989 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 990 computeKnownBitsFromRangeMetadata(*MD, Known); 991 break; 992 case Instruction::And: { 993 // If either the LHS or the RHS are Zero, the result is zero. 994 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 995 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 996 997 // Output known-1 bits are only known if set in both the LHS & RHS. 998 Known.One &= Known2.One; 999 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1000 Known.Zero |= Known2.Zero; 1001 1002 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1003 // here we handle the more general case of adding any odd number by 1004 // matching the form add(x, add(x, y)) where y is odd. 1005 // TODO: This could be generalized to clearing any bit set in y where the 1006 // following bit is known to be unset in y. 1007 Value *X = nullptr, *Y = nullptr; 1008 if (!Known.Zero[0] && !Known.One[0] && 1009 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1010 Known2.resetAll(); 1011 computeKnownBits(Y, Known2, Depth + 1, Q); 1012 if (Known2.countMinTrailingOnes() > 0) 1013 Known.Zero.setBit(0); 1014 } 1015 break; 1016 } 1017 case Instruction::Or: 1018 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1019 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1020 1021 // Output known-0 bits are only known if clear in both the LHS & RHS. 1022 Known.Zero &= Known2.Zero; 1023 // Output known-1 are known to be set if set in either the LHS | RHS. 1024 Known.One |= Known2.One; 1025 break; 1026 case Instruction::Xor: { 1027 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1028 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1029 1030 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1031 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1032 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1033 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1034 Known.Zero = std::move(KnownZeroOut); 1035 break; 1036 } 1037 case Instruction::Mul: { 1038 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1039 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1040 Known2, Depth, Q); 1041 break; 1042 } 1043 case Instruction::UDiv: { 1044 // For the purposes of computing leading zeros we can conservatively 1045 // treat a udiv as a logical right shift by the power of 2 known to 1046 // be less than the denominator. 1047 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1048 unsigned LeadZ = Known2.countMinLeadingZeros(); 1049 1050 Known2.resetAll(); 1051 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1052 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1053 if (RHSMaxLeadingZeros != BitWidth) 1054 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1055 1056 Known.Zero.setHighBits(LeadZ); 1057 break; 1058 } 1059 case Instruction::Select: { 1060 const Value *LHS = nullptr, *RHS = nullptr; 1061 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1062 if (SelectPatternResult::isMinOrMax(SPF)) { 1063 computeKnownBits(RHS, Known, Depth + 1, Q); 1064 computeKnownBits(LHS, Known2, Depth + 1, Q); 1065 } else { 1066 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1067 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1068 } 1069 1070 unsigned MaxHighOnes = 0; 1071 unsigned MaxHighZeros = 0; 1072 if (SPF == SPF_SMAX) { 1073 // If both sides are negative, the result is negative. 1074 if (Known.isNegative() && Known2.isNegative()) 1075 // We can derive a lower bound on the result by taking the max of the 1076 // leading one bits. 1077 MaxHighOnes = 1078 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1079 // If either side is non-negative, the result is non-negative. 1080 else if (Known.isNonNegative() || Known2.isNonNegative()) 1081 MaxHighZeros = 1; 1082 } else if (SPF == SPF_SMIN) { 1083 // If both sides are non-negative, the result is non-negative. 1084 if (Known.isNonNegative() && Known2.isNonNegative()) 1085 // We can derive an upper bound on the result by taking the max of the 1086 // leading zero bits. 1087 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1088 Known2.countMinLeadingZeros()); 1089 // If either side is negative, the result is negative. 1090 else if (Known.isNegative() || Known2.isNegative()) 1091 MaxHighOnes = 1; 1092 } else if (SPF == SPF_UMAX) { 1093 // We can derive a lower bound on the result by taking the max of the 1094 // leading one bits. 1095 MaxHighOnes = 1096 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1097 } else if (SPF == SPF_UMIN) { 1098 // We can derive an upper bound on the result by taking the max of the 1099 // leading zero bits. 1100 MaxHighZeros = 1101 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1102 } else if (SPF == SPF_ABS) { 1103 // RHS from matchSelectPattern returns the negation part of abs pattern. 1104 // If the negate has an NSW flag we can assume the sign bit of the result 1105 // will be 0 because that makes abs(INT_MIN) undefined. 1106 if (match(RHS, m_Neg(m_Specific(LHS))) && 1107 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1108 MaxHighZeros = 1; 1109 } 1110 1111 // Only known if known in both the LHS and RHS. 1112 Known.One &= Known2.One; 1113 Known.Zero &= Known2.Zero; 1114 if (MaxHighOnes > 0) 1115 Known.One.setHighBits(MaxHighOnes); 1116 if (MaxHighZeros > 0) 1117 Known.Zero.setHighBits(MaxHighZeros); 1118 break; 1119 } 1120 case Instruction::FPTrunc: 1121 case Instruction::FPExt: 1122 case Instruction::FPToUI: 1123 case Instruction::FPToSI: 1124 case Instruction::SIToFP: 1125 case Instruction::UIToFP: 1126 break; // Can't work with floating point. 1127 case Instruction::PtrToInt: 1128 case Instruction::IntToPtr: 1129 // Fall through and handle them the same as zext/trunc. 1130 LLVM_FALLTHROUGH; 1131 case Instruction::ZExt: 1132 case Instruction::Trunc: { 1133 Type *SrcTy = I->getOperand(0)->getType(); 1134 1135 unsigned SrcBitWidth; 1136 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1137 // which fall through here. 1138 Type *ScalarTy = SrcTy->getScalarType(); 1139 SrcBitWidth = ScalarTy->isPointerTy() ? 1140 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1141 Q.DL.getTypeSizeInBits(ScalarTy); 1142 1143 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1144 Known = Known.zextOrTrunc(SrcBitWidth, false); 1145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1146 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); 1147 break; 1148 } 1149 case Instruction::BitCast: { 1150 Type *SrcTy = I->getOperand(0)->getType(); 1151 if (SrcTy->isIntOrPtrTy() && 1152 // TODO: For now, not handling conversions like: 1153 // (bitcast i64 %x to <2 x i32>) 1154 !I->getType()->isVectorTy()) { 1155 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1156 break; 1157 } 1158 break; 1159 } 1160 case Instruction::SExt: { 1161 // Compute the bits in the result that are not present in the input. 1162 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1163 1164 Known = Known.trunc(SrcBitWidth); 1165 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1166 // If the sign bit of the input is known set or clear, then we know the 1167 // top bits of the result. 1168 Known = Known.sext(BitWidth); 1169 break; 1170 } 1171 case Instruction::Shl: { 1172 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1173 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1174 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1175 APInt KZResult = KnownZero << ShiftAmt; 1176 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1177 // If this shift has "nsw" keyword, then the result is either a poison 1178 // value or has the same sign bit as the first operand. 1179 if (NSW && KnownZero.isSignBitSet()) 1180 KZResult.setSignBit(); 1181 return KZResult; 1182 }; 1183 1184 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1185 APInt KOResult = KnownOne << ShiftAmt; 1186 if (NSW && KnownOne.isSignBitSet()) 1187 KOResult.setSignBit(); 1188 return KOResult; 1189 }; 1190 1191 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1192 break; 1193 } 1194 case Instruction::LShr: { 1195 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1196 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1197 APInt KZResult = KnownZero.lshr(ShiftAmt); 1198 // High bits known zero. 1199 KZResult.setHighBits(ShiftAmt); 1200 return KZResult; 1201 }; 1202 1203 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1204 return KnownOne.lshr(ShiftAmt); 1205 }; 1206 1207 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1208 break; 1209 } 1210 case Instruction::AShr: { 1211 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1212 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1213 return KnownZero.ashr(ShiftAmt); 1214 }; 1215 1216 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1217 return KnownOne.ashr(ShiftAmt); 1218 }; 1219 1220 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1221 break; 1222 } 1223 case Instruction::Sub: { 1224 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1225 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1226 Known, Known2, Depth, Q); 1227 break; 1228 } 1229 case Instruction::Add: { 1230 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1231 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1232 Known, Known2, Depth, Q); 1233 break; 1234 } 1235 case Instruction::SRem: 1236 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1237 APInt RA = Rem->getValue().abs(); 1238 if (RA.isPowerOf2()) { 1239 APInt LowBits = RA - 1; 1240 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1241 1242 // The low bits of the first operand are unchanged by the srem. 1243 Known.Zero = Known2.Zero & LowBits; 1244 Known.One = Known2.One & LowBits; 1245 1246 // If the first operand is non-negative or has all low bits zero, then 1247 // the upper bits are all zero. 1248 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1249 Known.Zero |= ~LowBits; 1250 1251 // If the first operand is negative and not all low bits are zero, then 1252 // the upper bits are all one. 1253 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1254 Known.One |= ~LowBits; 1255 1256 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1257 break; 1258 } 1259 } 1260 1261 // The sign bit is the LHS's sign bit, except when the result of the 1262 // remainder is zero. 1263 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1264 // If it's known zero, our sign bit is also zero. 1265 if (Known2.isNonNegative()) 1266 Known.makeNonNegative(); 1267 1268 break; 1269 case Instruction::URem: { 1270 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1271 const APInt &RA = Rem->getValue(); 1272 if (RA.isPowerOf2()) { 1273 APInt LowBits = (RA - 1); 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 Known.Zero |= ~LowBits; 1276 Known.One &= LowBits; 1277 break; 1278 } 1279 } 1280 1281 // Since the result is less than or equal to either operand, any leading 1282 // zero bits in either operand must also exist in the result. 1283 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1284 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1285 1286 unsigned Leaders = 1287 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1288 Known.resetAll(); 1289 Known.Zero.setHighBits(Leaders); 1290 break; 1291 } 1292 1293 case Instruction::Alloca: { 1294 const AllocaInst *AI = cast<AllocaInst>(I); 1295 unsigned Align = AI->getAlignment(); 1296 if (Align == 0) 1297 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1298 1299 if (Align > 0) 1300 Known.Zero.setLowBits(countTrailingZeros(Align)); 1301 break; 1302 } 1303 case Instruction::GetElementPtr: { 1304 // Analyze all of the subscripts of this getelementptr instruction 1305 // to determine if we can prove known low zero bits. 1306 KnownBits LocalKnown(BitWidth); 1307 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1308 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1309 1310 gep_type_iterator GTI = gep_type_begin(I); 1311 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1312 Value *Index = I->getOperand(i); 1313 if (StructType *STy = GTI.getStructTypeOrNull()) { 1314 // Handle struct member offset arithmetic. 1315 1316 // Handle case when index is vector zeroinitializer 1317 Constant *CIndex = cast<Constant>(Index); 1318 if (CIndex->isZeroValue()) 1319 continue; 1320 1321 if (CIndex->getType()->isVectorTy()) 1322 Index = CIndex->getSplatValue(); 1323 1324 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1325 const StructLayout *SL = Q.DL.getStructLayout(STy); 1326 uint64_t Offset = SL->getElementOffset(Idx); 1327 TrailZ = std::min<unsigned>(TrailZ, 1328 countTrailingZeros(Offset)); 1329 } else { 1330 // Handle array index arithmetic. 1331 Type *IndexedTy = GTI.getIndexedType(); 1332 if (!IndexedTy->isSized()) { 1333 TrailZ = 0; 1334 break; 1335 } 1336 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1337 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1338 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1339 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1340 TrailZ = std::min(TrailZ, 1341 unsigned(countTrailingZeros(TypeSize) + 1342 LocalKnown.countMinTrailingZeros())); 1343 } 1344 } 1345 1346 Known.Zero.setLowBits(TrailZ); 1347 break; 1348 } 1349 case Instruction::PHI: { 1350 const PHINode *P = cast<PHINode>(I); 1351 // Handle the case of a simple two-predecessor recurrence PHI. 1352 // There's a lot more that could theoretically be done here, but 1353 // this is sufficient to catch some interesting cases. 1354 if (P->getNumIncomingValues() == 2) { 1355 for (unsigned i = 0; i != 2; ++i) { 1356 Value *L = P->getIncomingValue(i); 1357 Value *R = P->getIncomingValue(!i); 1358 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1359 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1360 Operator *LU = dyn_cast<Operator>(L); 1361 if (!LU) 1362 continue; 1363 unsigned Opcode = LU->getOpcode(); 1364 // Check for operations that have the property that if 1365 // both their operands have low zero bits, the result 1366 // will have low zero bits. 1367 if (Opcode == Instruction::Add || 1368 Opcode == Instruction::Sub || 1369 Opcode == Instruction::And || 1370 Opcode == Instruction::Or || 1371 Opcode == Instruction::Mul) { 1372 Value *LL = LU->getOperand(0); 1373 Value *LR = LU->getOperand(1); 1374 // Find a recurrence. 1375 if (LL == I) 1376 L = LR; 1377 else if (LR == I) 1378 L = LL; 1379 else 1380 continue; // Check for recurrence with L and R flipped. 1381 1382 // Change the context instruction to the "edge" that flows into the 1383 // phi. This is important because that is where the value is actually 1384 // "evaluated" even though it is used later somewhere else. (see also 1385 // D69571). 1386 Query RecQ = Q; 1387 1388 // Ok, we have a PHI of the form L op= R. Check for low 1389 // zero bits. 1390 RecQ.CxtI = RInst; 1391 computeKnownBits(R, Known2, Depth + 1, RecQ); 1392 1393 // We need to take the minimum number of known bits 1394 KnownBits Known3(Known); 1395 RecQ.CxtI = LInst; 1396 computeKnownBits(L, Known3, Depth + 1, RecQ); 1397 1398 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1399 Known3.countMinTrailingZeros())); 1400 1401 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1402 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1403 // If initial value of recurrence is nonnegative, and we are adding 1404 // a nonnegative number with nsw, the result can only be nonnegative 1405 // or poison value regardless of the number of times we execute the 1406 // add in phi recurrence. If initial value is negative and we are 1407 // adding a negative number with nsw, the result can only be 1408 // negative or poison value. Similar arguments apply to sub and mul. 1409 // 1410 // (add non-negative, non-negative) --> non-negative 1411 // (add negative, negative) --> negative 1412 if (Opcode == Instruction::Add) { 1413 if (Known2.isNonNegative() && Known3.isNonNegative()) 1414 Known.makeNonNegative(); 1415 else if (Known2.isNegative() && Known3.isNegative()) 1416 Known.makeNegative(); 1417 } 1418 1419 // (sub nsw non-negative, negative) --> non-negative 1420 // (sub nsw negative, non-negative) --> negative 1421 else if (Opcode == Instruction::Sub && LL == I) { 1422 if (Known2.isNonNegative() && Known3.isNegative()) 1423 Known.makeNonNegative(); 1424 else if (Known2.isNegative() && Known3.isNonNegative()) 1425 Known.makeNegative(); 1426 } 1427 1428 // (mul nsw non-negative, non-negative) --> non-negative 1429 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1430 Known3.isNonNegative()) 1431 Known.makeNonNegative(); 1432 } 1433 1434 break; 1435 } 1436 } 1437 } 1438 1439 // Unreachable blocks may have zero-operand PHI nodes. 1440 if (P->getNumIncomingValues() == 0) 1441 break; 1442 1443 // Otherwise take the unions of the known bit sets of the operands, 1444 // taking conservative care to avoid excessive recursion. 1445 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1446 // Skip if every incoming value references to ourself. 1447 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1448 break; 1449 1450 Known.Zero.setAllBits(); 1451 Known.One.setAllBits(); 1452 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1453 Value *IncValue = P->getIncomingValue(u); 1454 // Skip direct self references. 1455 if (IncValue == P) continue; 1456 1457 // Change the context instruction to the "edge" that flows into the 1458 // phi. This is important because that is where the value is actually 1459 // "evaluated" even though it is used later somewhere else. (see also 1460 // D69571). 1461 Query RecQ = Q; 1462 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1463 1464 Known2 = KnownBits(BitWidth); 1465 // Recurse, but cap the recursion to one level, because we don't 1466 // want to waste time spinning around in loops. 1467 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1468 Known.Zero &= Known2.Zero; 1469 Known.One &= Known2.One; 1470 // If all bits have been ruled out, there's no need to check 1471 // more operands. 1472 if (!Known.Zero && !Known.One) 1473 break; 1474 } 1475 } 1476 break; 1477 } 1478 case Instruction::Call: 1479 case Instruction::Invoke: 1480 // If range metadata is attached to this call, set known bits from that, 1481 // and then intersect with known bits based on other properties of the 1482 // function. 1483 if (MDNode *MD = 1484 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1485 computeKnownBitsFromRangeMetadata(*MD, Known); 1486 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1487 computeKnownBits(RV, Known2, Depth + 1, Q); 1488 Known.Zero |= Known2.Zero; 1489 Known.One |= Known2.One; 1490 } 1491 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1492 switch (II->getIntrinsicID()) { 1493 default: break; 1494 case Intrinsic::bitreverse: 1495 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1496 Known.Zero |= Known2.Zero.reverseBits(); 1497 Known.One |= Known2.One.reverseBits(); 1498 break; 1499 case Intrinsic::bswap: 1500 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1501 Known.Zero |= Known2.Zero.byteSwap(); 1502 Known.One |= Known2.One.byteSwap(); 1503 break; 1504 case Intrinsic::ctlz: { 1505 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1506 // If we have a known 1, its position is our upper bound. 1507 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1508 // If this call is undefined for 0, the result will be less than 2^n. 1509 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1510 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1511 unsigned LowBits = Log2_32(PossibleLZ)+1; 1512 Known.Zero.setBitsFrom(LowBits); 1513 break; 1514 } 1515 case Intrinsic::cttz: { 1516 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1517 // If we have a known 1, its position is our upper bound. 1518 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1519 // If this call is undefined for 0, the result will be less than 2^n. 1520 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1521 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1522 unsigned LowBits = Log2_32(PossibleTZ)+1; 1523 Known.Zero.setBitsFrom(LowBits); 1524 break; 1525 } 1526 case Intrinsic::ctpop: { 1527 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1528 // We can bound the space the count needs. Also, bits known to be zero 1529 // can't contribute to the population. 1530 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1531 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1532 Known.Zero.setBitsFrom(LowBits); 1533 // TODO: we could bound KnownOne using the lower bound on the number 1534 // of bits which might be set provided by popcnt KnownOne2. 1535 break; 1536 } 1537 case Intrinsic::fshr: 1538 case Intrinsic::fshl: { 1539 const APInt *SA; 1540 if (!match(I->getOperand(2), m_APInt(SA))) 1541 break; 1542 1543 // Normalize to funnel shift left. 1544 uint64_t ShiftAmt = SA->urem(BitWidth); 1545 if (II->getIntrinsicID() == Intrinsic::fshr) 1546 ShiftAmt = BitWidth - ShiftAmt; 1547 1548 KnownBits Known3(Known); 1549 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1550 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1551 1552 Known.Zero = 1553 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1554 Known.One = 1555 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1556 break; 1557 } 1558 case Intrinsic::uadd_sat: 1559 case Intrinsic::usub_sat: { 1560 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1561 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1562 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1563 1564 // Add: Leading ones of either operand are preserved. 1565 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1566 // as leading zeros in the result. 1567 unsigned LeadingKnown; 1568 if (IsAdd) 1569 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1570 Known2.countMinLeadingOnes()); 1571 else 1572 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1573 Known2.countMinLeadingOnes()); 1574 1575 Known = KnownBits::computeForAddSub( 1576 IsAdd, /* NSW */ false, Known, Known2); 1577 1578 // We select between the operation result and all-ones/zero 1579 // respectively, so we can preserve known ones/zeros. 1580 if (IsAdd) { 1581 Known.One.setHighBits(LeadingKnown); 1582 Known.Zero.clearAllBits(); 1583 } else { 1584 Known.Zero.setHighBits(LeadingKnown); 1585 Known.One.clearAllBits(); 1586 } 1587 break; 1588 } 1589 case Intrinsic::x86_sse42_crc32_64_64: 1590 Known.Zero.setBitsFrom(32); 1591 break; 1592 } 1593 } 1594 break; 1595 case Instruction::ExtractElement: 1596 // Look through extract element. At the moment we keep this simple and skip 1597 // tracking the specific element. But at least we might find information 1598 // valid for all elements of the vector (for example if vector is sign 1599 // extended, shifted, etc). 1600 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1601 break; 1602 case Instruction::ExtractValue: 1603 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1604 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1605 if (EVI->getNumIndices() != 1) break; 1606 if (EVI->getIndices()[0] == 0) { 1607 switch (II->getIntrinsicID()) { 1608 default: break; 1609 case Intrinsic::uadd_with_overflow: 1610 case Intrinsic::sadd_with_overflow: 1611 computeKnownBitsAddSub(true, II->getArgOperand(0), 1612 II->getArgOperand(1), false, Known, Known2, 1613 Depth, Q); 1614 break; 1615 case Intrinsic::usub_with_overflow: 1616 case Intrinsic::ssub_with_overflow: 1617 computeKnownBitsAddSub(false, II->getArgOperand(0), 1618 II->getArgOperand(1), false, Known, Known2, 1619 Depth, Q); 1620 break; 1621 case Intrinsic::umul_with_overflow: 1622 case Intrinsic::smul_with_overflow: 1623 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1624 Known, Known2, Depth, Q); 1625 break; 1626 } 1627 } 1628 } 1629 } 1630 } 1631 1632 /// Determine which bits of V are known to be either zero or one and return 1633 /// them. 1634 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1635 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1636 computeKnownBits(V, Known, Depth, Q); 1637 return Known; 1638 } 1639 1640 /// Determine which bits of V are known to be either zero or one and return 1641 /// them in the Known bit set. 1642 /// 1643 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1644 /// we cannot optimize based on the assumption that it is zero without changing 1645 /// it to be an explicit zero. If we don't change it to zero, other code could 1646 /// optimized based on the contradictory assumption that it is non-zero. 1647 /// Because instcombine aggressively folds operations with undef args anyway, 1648 /// this won't lose us code quality. 1649 /// 1650 /// This function is defined on values with integer type, values with pointer 1651 /// type, and vectors of integers. In the case 1652 /// where V is a vector, known zero, and known one values are the 1653 /// same width as the vector element, and the bit is set only if it is true 1654 /// for all of the elements in the vector. 1655 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1656 const Query &Q) { 1657 assert(V && "No Value?"); 1658 assert(Depth <= MaxDepth && "Limit Search Depth"); 1659 unsigned BitWidth = Known.getBitWidth(); 1660 1661 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1662 V->getType()->isPtrOrPtrVectorTy()) && 1663 "Not integer or pointer type!"); 1664 1665 Type *ScalarTy = V->getType()->getScalarType(); 1666 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1667 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1668 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1669 (void)BitWidth; 1670 (void)ExpectedWidth; 1671 1672 const APInt *C; 1673 if (match(V, m_APInt(C))) { 1674 // We know all of the bits for a scalar constant or a splat vector constant! 1675 Known.One = *C; 1676 Known.Zero = ~Known.One; 1677 return; 1678 } 1679 // Null and aggregate-zero are all-zeros. 1680 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1681 Known.setAllZero(); 1682 return; 1683 } 1684 // Handle a constant vector by taking the intersection of the known bits of 1685 // each element. 1686 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1687 // We know that CDS must be a vector of integers. Take the intersection of 1688 // each element. 1689 Known.Zero.setAllBits(); Known.One.setAllBits(); 1690 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1691 APInt Elt = CDS->getElementAsAPInt(i); 1692 Known.Zero &= ~Elt; 1693 Known.One &= Elt; 1694 } 1695 return; 1696 } 1697 1698 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1699 // We know that CV must be a vector of integers. Take the intersection of 1700 // each element. 1701 Known.Zero.setAllBits(); Known.One.setAllBits(); 1702 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1703 Constant *Element = CV->getAggregateElement(i); 1704 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1705 if (!ElementCI) { 1706 Known.resetAll(); 1707 return; 1708 } 1709 const APInt &Elt = ElementCI->getValue(); 1710 Known.Zero &= ~Elt; 1711 Known.One &= Elt; 1712 } 1713 return; 1714 } 1715 1716 // Start out not knowing anything. 1717 Known.resetAll(); 1718 1719 // We can't imply anything about undefs. 1720 if (isa<UndefValue>(V)) 1721 return; 1722 1723 // There's no point in looking through other users of ConstantData for 1724 // assumptions. Confirm that we've handled them all. 1725 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1726 1727 // Limit search depth. 1728 // All recursive calls that increase depth must come after this. 1729 if (Depth == MaxDepth) 1730 return; 1731 1732 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1733 // the bits of its aliasee. 1734 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1735 if (!GA->isInterposable()) 1736 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1737 return; 1738 } 1739 1740 if (const Operator *I = dyn_cast<Operator>(V)) 1741 computeKnownBitsFromOperator(I, Known, Depth, Q); 1742 1743 // Aligned pointers have trailing zeros - refine Known.Zero set 1744 if (V->getType()->isPointerTy()) { 1745 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1746 if (Align) 1747 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1748 } 1749 1750 // computeKnownBitsFromAssume strictly refines Known. 1751 // Therefore, we run them after computeKnownBitsFromOperator. 1752 1753 // Check whether a nearby assume intrinsic can determine some known bits. 1754 computeKnownBitsFromAssume(V, Known, Depth, Q); 1755 1756 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1757 } 1758 1759 /// Return true if the given value is known to have exactly one 1760 /// bit set when defined. For vectors return true if every element is known to 1761 /// be a power of two when defined. Supports values with integer or pointer 1762 /// types and vectors of integers. 1763 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1764 const Query &Q) { 1765 assert(Depth <= MaxDepth && "Limit Search Depth"); 1766 1767 // Attempt to match against constants. 1768 if (OrZero && match(V, m_Power2OrZero())) 1769 return true; 1770 if (match(V, m_Power2())) 1771 return true; 1772 1773 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1774 // it is shifted off the end then the result is undefined. 1775 if (match(V, m_Shl(m_One(), m_Value()))) 1776 return true; 1777 1778 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1779 // the bottom. If it is shifted off the bottom then the result is undefined. 1780 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1781 return true; 1782 1783 // The remaining tests are all recursive, so bail out if we hit the limit. 1784 if (Depth++ == MaxDepth) 1785 return false; 1786 1787 Value *X = nullptr, *Y = nullptr; 1788 // A shift left or a logical shift right of a power of two is a power of two 1789 // or zero. 1790 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1791 match(V, m_LShr(m_Value(X), m_Value())))) 1792 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1793 1794 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1795 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1796 1797 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1798 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1799 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1800 1801 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1802 // A power of two and'd with anything is a power of two or zero. 1803 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1804 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1805 return true; 1806 // X & (-X) is always a power of two or zero. 1807 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1808 return true; 1809 return false; 1810 } 1811 1812 // Adding a power-of-two or zero to the same power-of-two or zero yields 1813 // either the original power-of-two, a larger power-of-two or zero. 1814 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1815 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1816 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1817 Q.IIQ.hasNoSignedWrap(VOBO)) { 1818 if (match(X, m_And(m_Specific(Y), m_Value())) || 1819 match(X, m_And(m_Value(), m_Specific(Y)))) 1820 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1821 return true; 1822 if (match(Y, m_And(m_Specific(X), m_Value())) || 1823 match(Y, m_And(m_Value(), m_Specific(X)))) 1824 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1825 return true; 1826 1827 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1828 KnownBits LHSBits(BitWidth); 1829 computeKnownBits(X, LHSBits, Depth, Q); 1830 1831 KnownBits RHSBits(BitWidth); 1832 computeKnownBits(Y, RHSBits, Depth, Q); 1833 // If i8 V is a power of two or zero: 1834 // ZeroBits: 1 1 1 0 1 1 1 1 1835 // ~ZeroBits: 0 0 0 1 0 0 0 0 1836 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1837 // If OrZero isn't set, we cannot give back a zero result. 1838 // Make sure either the LHS or RHS has a bit set. 1839 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1840 return true; 1841 } 1842 } 1843 1844 // An exact divide or right shift can only shift off zero bits, so the result 1845 // is a power of two only if the first operand is a power of two and not 1846 // copying a sign bit (sdiv int_min, 2). 1847 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1848 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1849 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1850 Depth, Q); 1851 } 1852 1853 return false; 1854 } 1855 1856 /// Test whether a GEP's result is known to be non-null. 1857 /// 1858 /// Uses properties inherent in a GEP to try to determine whether it is known 1859 /// to be non-null. 1860 /// 1861 /// Currently this routine does not support vector GEPs. 1862 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1863 const Query &Q) { 1864 const Function *F = nullptr; 1865 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1866 F = I->getFunction(); 1867 1868 if (!GEP->isInBounds() || 1869 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1870 return false; 1871 1872 // FIXME: Support vector-GEPs. 1873 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1874 1875 // If the base pointer is non-null, we cannot walk to a null address with an 1876 // inbounds GEP in address space zero. 1877 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1878 return true; 1879 1880 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1881 // If so, then the GEP cannot produce a null pointer, as doing so would 1882 // inherently violate the inbounds contract within address space zero. 1883 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1884 GTI != GTE; ++GTI) { 1885 // Struct types are easy -- they must always be indexed by a constant. 1886 if (StructType *STy = GTI.getStructTypeOrNull()) { 1887 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1888 unsigned ElementIdx = OpC->getZExtValue(); 1889 const StructLayout *SL = Q.DL.getStructLayout(STy); 1890 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1891 if (ElementOffset > 0) 1892 return true; 1893 continue; 1894 } 1895 1896 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1897 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1898 continue; 1899 1900 // Fast path the constant operand case both for efficiency and so we don't 1901 // increment Depth when just zipping down an all-constant GEP. 1902 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1903 if (!OpC->isZero()) 1904 return true; 1905 continue; 1906 } 1907 1908 // We post-increment Depth here because while isKnownNonZero increments it 1909 // as well, when we pop back up that increment won't persist. We don't want 1910 // to recurse 10k times just because we have 10k GEP operands. We don't 1911 // bail completely out because we want to handle constant GEPs regardless 1912 // of depth. 1913 if (Depth++ >= MaxDepth) 1914 continue; 1915 1916 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1917 return true; 1918 } 1919 1920 return false; 1921 } 1922 1923 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1924 const Instruction *CtxI, 1925 const DominatorTree *DT) { 1926 if (isa<Constant>(V)) 1927 return false; 1928 1929 if (!CtxI || !DT) 1930 return false; 1931 1932 unsigned NumUsesExplored = 0; 1933 for (auto *U : V->users()) { 1934 // Avoid massive lists 1935 if (NumUsesExplored >= DomConditionsMaxUses) 1936 break; 1937 NumUsesExplored++; 1938 1939 // If the value is used as an argument to a call or invoke, then argument 1940 // attributes may provide an answer about null-ness. 1941 if (auto CS = ImmutableCallSite(U)) 1942 if (auto *CalledFunc = CS.getCalledFunction()) 1943 for (const Argument &Arg : CalledFunc->args()) 1944 if (CS.getArgOperand(Arg.getArgNo()) == V && 1945 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1946 return true; 1947 1948 // If the value is used as a load/store, then the pointer must be non null. 1949 if (V == getLoadStorePointerOperand(U)) { 1950 const Instruction *I = cast<Instruction>(U); 1951 if (!NullPointerIsDefined(I->getFunction(), 1952 V->getType()->getPointerAddressSpace()) && 1953 DT->dominates(I, CtxI)) 1954 return true; 1955 } 1956 1957 // Consider only compare instructions uniquely controlling a branch 1958 CmpInst::Predicate Pred; 1959 if (!match(const_cast<User *>(U), 1960 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1961 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1962 continue; 1963 1964 SmallVector<const User *, 4> WorkList; 1965 SmallPtrSet<const User *, 4> Visited; 1966 for (auto *CmpU : U->users()) { 1967 assert(WorkList.empty() && "Should be!"); 1968 if (Visited.insert(CmpU).second) 1969 WorkList.push_back(CmpU); 1970 1971 while (!WorkList.empty()) { 1972 auto *Curr = WorkList.pop_back_val(); 1973 1974 // If a user is an AND, add all its users to the work list. We only 1975 // propagate "pred != null" condition through AND because it is only 1976 // correct to assume that all conditions of AND are met in true branch. 1977 // TODO: Support similar logic of OR and EQ predicate? 1978 if (Pred == ICmpInst::ICMP_NE) 1979 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1980 if (BO->getOpcode() == Instruction::And) { 1981 for (auto *BOU : BO->users()) 1982 if (Visited.insert(BOU).second) 1983 WorkList.push_back(BOU); 1984 continue; 1985 } 1986 1987 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1988 assert(BI->isConditional() && "uses a comparison!"); 1989 1990 BasicBlock *NonNullSuccessor = 1991 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1992 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1993 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1994 return true; 1995 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 1996 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1997 return true; 1998 } 1999 } 2000 } 2001 } 2002 2003 return false; 2004 } 2005 2006 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2007 /// ensure that the value it's attached to is never Value? 'RangeType' is 2008 /// is the type of the value described by the range. 2009 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2010 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2011 assert(NumRanges >= 1); 2012 for (unsigned i = 0; i < NumRanges; ++i) { 2013 ConstantInt *Lower = 2014 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2015 ConstantInt *Upper = 2016 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2017 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2018 if (Range.contains(Value)) 2019 return false; 2020 } 2021 return true; 2022 } 2023 2024 /// Return true if the given value is known to be non-zero when defined. For 2025 /// vectors, return true if every element is known to be non-zero when 2026 /// defined. For pointers, if the context instruction and dominator tree are 2027 /// specified, perform context-sensitive analysis and return true if the 2028 /// pointer couldn't possibly be null at the specified instruction. 2029 /// Supports values with integer or pointer type and vectors of integers. 2030 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2031 if (auto *C = dyn_cast<Constant>(V)) { 2032 if (C->isNullValue()) 2033 return false; 2034 if (isa<ConstantInt>(C)) 2035 // Must be non-zero due to null test above. 2036 return true; 2037 2038 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2039 // See the comment for IntToPtr/PtrToInt instructions below. 2040 if (CE->getOpcode() == Instruction::IntToPtr || 2041 CE->getOpcode() == Instruction::PtrToInt) 2042 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2043 Q.DL.getTypeSizeInBits(CE->getType())) 2044 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2045 } 2046 2047 // For constant vectors, check that all elements are undefined or known 2048 // non-zero to determine that the whole vector is known non-zero. 2049 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2050 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2051 Constant *Elt = C->getAggregateElement(i); 2052 if (!Elt || Elt->isNullValue()) 2053 return false; 2054 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2055 return false; 2056 } 2057 return true; 2058 } 2059 2060 // A global variable in address space 0 is non null unless extern weak 2061 // or an absolute symbol reference. Other address spaces may have null as a 2062 // valid address for a global, so we can't assume anything. 2063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2064 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2065 GV->getType()->getAddressSpace() == 0) 2066 return true; 2067 } else 2068 return false; 2069 } 2070 2071 if (auto *I = dyn_cast<Instruction>(V)) { 2072 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2073 // If the possible ranges don't contain zero, then the value is 2074 // definitely non-zero. 2075 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2076 const APInt ZeroValue(Ty->getBitWidth(), 0); 2077 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2078 return true; 2079 } 2080 } 2081 } 2082 2083 // Some of the tests below are recursive, so bail out if we hit the limit. 2084 if (Depth++ >= MaxDepth) 2085 return false; 2086 2087 // Check for pointer simplifications. 2088 if (V->getType()->isPointerTy()) { 2089 // Alloca never returns null, malloc might. 2090 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2091 return true; 2092 2093 // A byval, inalloca, or nonnull argument is never null. 2094 if (const Argument *A = dyn_cast<Argument>(V)) 2095 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2096 return true; 2097 2098 // A Load tagged with nonnull metadata is never null. 2099 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2100 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2101 return true; 2102 2103 if (const auto *Call = dyn_cast<CallBase>(V)) { 2104 if (Call->isReturnNonNull()) 2105 return true; 2106 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2107 return isKnownNonZero(RP, Depth, Q); 2108 } 2109 } 2110 2111 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2112 return true; 2113 2114 // Check for recursive pointer simplifications. 2115 if (V->getType()->isPointerTy()) { 2116 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2117 // do not alter the value, or at least not the nullness property of the 2118 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2119 // 2120 // Note that we have to take special care to avoid looking through 2121 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2122 // as casts that can alter the value, e.g., AddrSpaceCasts. 2123 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2124 if (isGEPKnownNonNull(GEP, Depth, Q)) 2125 return true; 2126 2127 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2128 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2129 2130 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2131 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2132 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2133 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2134 } 2135 2136 // Similar to int2ptr above, we can look through ptr2int here if the cast 2137 // is a no-op or an extend and not a truncate. 2138 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2139 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2140 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2141 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2142 2143 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2144 2145 // X | Y != 0 if X != 0 or Y != 0. 2146 Value *X = nullptr, *Y = nullptr; 2147 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2148 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2149 2150 // ext X != 0 if X != 0. 2151 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2152 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2153 2154 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2155 // if the lowest bit is shifted off the end. 2156 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2157 // shl nuw can't remove any non-zero bits. 2158 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2159 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2160 return isKnownNonZero(X, Depth, Q); 2161 2162 KnownBits Known(BitWidth); 2163 computeKnownBits(X, Known, Depth, Q); 2164 if (Known.One[0]) 2165 return true; 2166 } 2167 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2168 // defined if the sign bit is shifted off the end. 2169 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2170 // shr exact can only shift out zero bits. 2171 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2172 if (BO->isExact()) 2173 return isKnownNonZero(X, Depth, Q); 2174 2175 KnownBits Known = computeKnownBits(X, Depth, Q); 2176 if (Known.isNegative()) 2177 return true; 2178 2179 // If the shifter operand is a constant, and all of the bits shifted 2180 // out are known to be zero, and X is known non-zero then at least one 2181 // non-zero bit must remain. 2182 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2183 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2184 // Is there a known one in the portion not shifted out? 2185 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2186 return true; 2187 // Are all the bits to be shifted out known zero? 2188 if (Known.countMinTrailingZeros() >= ShiftVal) 2189 return isKnownNonZero(X, Depth, Q); 2190 } 2191 } 2192 // div exact can only produce a zero if the dividend is zero. 2193 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2194 return isKnownNonZero(X, Depth, Q); 2195 } 2196 // X + Y. 2197 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2198 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2199 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2200 2201 // If X and Y are both non-negative (as signed values) then their sum is not 2202 // zero unless both X and Y are zero. 2203 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2204 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2205 return true; 2206 2207 // If X and Y are both negative (as signed values) then their sum is not 2208 // zero unless both X and Y equal INT_MIN. 2209 if (XKnown.isNegative() && YKnown.isNegative()) { 2210 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2211 // The sign bit of X is set. If some other bit is set then X is not equal 2212 // to INT_MIN. 2213 if (XKnown.One.intersects(Mask)) 2214 return true; 2215 // The sign bit of Y is set. If some other bit is set then Y is not equal 2216 // to INT_MIN. 2217 if (YKnown.One.intersects(Mask)) 2218 return true; 2219 } 2220 2221 // The sum of a non-negative number and a power of two is not zero. 2222 if (XKnown.isNonNegative() && 2223 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2224 return true; 2225 if (YKnown.isNonNegative() && 2226 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2227 return true; 2228 } 2229 // X * Y. 2230 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2231 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2232 // If X and Y are non-zero then so is X * Y as long as the multiplication 2233 // does not overflow. 2234 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2235 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2236 return true; 2237 } 2238 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2239 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2240 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2241 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2242 return true; 2243 } 2244 // PHI 2245 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2246 // Try and detect a recurrence that monotonically increases from a 2247 // starting value, as these are common as induction variables. 2248 if (PN->getNumIncomingValues() == 2) { 2249 Value *Start = PN->getIncomingValue(0); 2250 Value *Induction = PN->getIncomingValue(1); 2251 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2252 std::swap(Start, Induction); 2253 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2254 if (!C->isZero() && !C->isNegative()) { 2255 ConstantInt *X; 2256 if (Q.IIQ.UseInstrInfo && 2257 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2258 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2259 !X->isNegative()) 2260 return true; 2261 } 2262 } 2263 } 2264 // Check if all incoming values are non-zero constant. 2265 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2266 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2267 }); 2268 if (AllNonZeroConstants) 2269 return true; 2270 } 2271 2272 KnownBits Known(BitWidth); 2273 computeKnownBits(V, Known, Depth, Q); 2274 return Known.One != 0; 2275 } 2276 2277 /// Return true if V2 == V1 + X, where X is known non-zero. 2278 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2279 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2280 if (!BO || BO->getOpcode() != Instruction::Add) 2281 return false; 2282 Value *Op = nullptr; 2283 if (V2 == BO->getOperand(0)) 2284 Op = BO->getOperand(1); 2285 else if (V2 == BO->getOperand(1)) 2286 Op = BO->getOperand(0); 2287 else 2288 return false; 2289 return isKnownNonZero(Op, 0, Q); 2290 } 2291 2292 /// Return true if it is known that V1 != V2. 2293 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2294 if (V1 == V2) 2295 return false; 2296 if (V1->getType() != V2->getType()) 2297 // We can't look through casts yet. 2298 return false; 2299 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2300 return true; 2301 2302 if (V1->getType()->isIntOrIntVectorTy()) { 2303 // Are any known bits in V1 contradictory to known bits in V2? If V1 2304 // has a known zero where V2 has a known one, they must not be equal. 2305 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2306 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2307 2308 if (Known1.Zero.intersects(Known2.One) || 2309 Known2.Zero.intersects(Known1.One)) 2310 return true; 2311 } 2312 return false; 2313 } 2314 2315 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2316 /// simplify operations downstream. Mask is known to be zero for bits that V 2317 /// cannot have. 2318 /// 2319 /// This function is defined on values with integer type, values with pointer 2320 /// type, and vectors of integers. In the case 2321 /// where V is a vector, the mask, known zero, and known one values are the 2322 /// same width as the vector element, and the bit is set only if it is true 2323 /// for all of the elements in the vector. 2324 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2325 const Query &Q) { 2326 KnownBits Known(Mask.getBitWidth()); 2327 computeKnownBits(V, Known, Depth, Q); 2328 return Mask.isSubsetOf(Known.Zero); 2329 } 2330 2331 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2332 // Returns the input and lower/upper bounds. 2333 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2334 const APInt *&CLow, const APInt *&CHigh) { 2335 assert(isa<Operator>(Select) && 2336 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2337 "Input should be a Select!"); 2338 2339 const Value *LHS = nullptr, *RHS = nullptr; 2340 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2341 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2342 return false; 2343 2344 if (!match(RHS, m_APInt(CLow))) 2345 return false; 2346 2347 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2348 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2349 if (getInverseMinMaxFlavor(SPF) != SPF2) 2350 return false; 2351 2352 if (!match(RHS2, m_APInt(CHigh))) 2353 return false; 2354 2355 if (SPF == SPF_SMIN) 2356 std::swap(CLow, CHigh); 2357 2358 In = LHS2; 2359 return CLow->sle(*CHigh); 2360 } 2361 2362 /// For vector constants, loop over the elements and find the constant with the 2363 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2364 /// or if any element was not analyzed; otherwise, return the count for the 2365 /// element with the minimum number of sign bits. 2366 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2367 unsigned TyBits) { 2368 const auto *CV = dyn_cast<Constant>(V); 2369 if (!CV || !CV->getType()->isVectorTy()) 2370 return 0; 2371 2372 unsigned MinSignBits = TyBits; 2373 unsigned NumElts = CV->getType()->getVectorNumElements(); 2374 for (unsigned i = 0; i != NumElts; ++i) { 2375 // If we find a non-ConstantInt, bail out. 2376 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2377 if (!Elt) 2378 return 0; 2379 2380 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2381 } 2382 2383 return MinSignBits; 2384 } 2385 2386 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2387 const Query &Q); 2388 2389 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2390 const Query &Q) { 2391 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2392 assert(Result > 0 && "At least one sign bit needs to be present!"); 2393 return Result; 2394 } 2395 2396 /// Return the number of times the sign bit of the register is replicated into 2397 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2398 /// (itself), but other cases can give us information. For example, immediately 2399 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2400 /// other, so we return 3. For vectors, return the number of sign bits for the 2401 /// vector element with the minimum number of known sign bits. 2402 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2403 const Query &Q) { 2404 assert(Depth <= MaxDepth && "Limit Search Depth"); 2405 2406 // We return the minimum number of sign bits that are guaranteed to be present 2407 // in V, so for undef we have to conservatively return 1. We don't have the 2408 // same behavior for poison though -- that's a FIXME today. 2409 2410 Type *ScalarTy = V->getType()->getScalarType(); 2411 unsigned TyBits = ScalarTy->isPointerTy() ? 2412 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2413 Q.DL.getTypeSizeInBits(ScalarTy); 2414 2415 unsigned Tmp, Tmp2; 2416 unsigned FirstAnswer = 1; 2417 2418 // Note that ConstantInt is handled by the general computeKnownBits case 2419 // below. 2420 2421 if (Depth == MaxDepth) 2422 return 1; // Limit search depth. 2423 2424 if (auto *U = dyn_cast<Operator>(V)) { 2425 switch (Operator::getOpcode(V)) { 2426 default: break; 2427 case Instruction::SExt: 2428 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2429 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2430 2431 case Instruction::SDiv: { 2432 const APInt *Denominator; 2433 // sdiv X, C -> adds log(C) sign bits. 2434 if (match(U->getOperand(1), m_APInt(Denominator))) { 2435 2436 // Ignore non-positive denominator. 2437 if (!Denominator->isStrictlyPositive()) 2438 break; 2439 2440 // Calculate the incoming numerator bits. 2441 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2442 2443 // Add floor(log(C)) bits to the numerator bits. 2444 return std::min(TyBits, NumBits + Denominator->logBase2()); 2445 } 2446 break; 2447 } 2448 2449 case Instruction::SRem: { 2450 const APInt *Denominator; 2451 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2452 // positive constant. This let us put a lower bound on the number of sign 2453 // bits. 2454 if (match(U->getOperand(1), m_APInt(Denominator))) { 2455 2456 // Ignore non-positive denominator. 2457 if (!Denominator->isStrictlyPositive()) 2458 break; 2459 2460 // Calculate the incoming numerator bits. SRem by a positive constant 2461 // can't lower the number of sign bits. 2462 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2463 2464 // Calculate the leading sign bit constraints by examining the 2465 // denominator. Given that the denominator is positive, there are two 2466 // cases: 2467 // 2468 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2469 // (1 << ceilLogBase2(C)). 2470 // 2471 // 2. the numerator is negative. Then the result range is (-C,0] and 2472 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2473 // 2474 // Thus a lower bound on the number of sign bits is `TyBits - 2475 // ceilLogBase2(C)`. 2476 2477 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2478 return std::max(NumrBits, ResBits); 2479 } 2480 break; 2481 } 2482 2483 case Instruction::AShr: { 2484 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2485 // ashr X, C -> adds C sign bits. Vectors too. 2486 const APInt *ShAmt; 2487 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2488 if (ShAmt->uge(TyBits)) 2489 break; // Bad shift. 2490 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2491 Tmp += ShAmtLimited; 2492 if (Tmp > TyBits) Tmp = TyBits; 2493 } 2494 return Tmp; 2495 } 2496 case Instruction::Shl: { 2497 const APInt *ShAmt; 2498 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2499 // shl destroys sign bits. 2500 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2501 if (ShAmt->uge(TyBits) || // Bad shift. 2502 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2503 Tmp2 = ShAmt->getZExtValue(); 2504 return Tmp - Tmp2; 2505 } 2506 break; 2507 } 2508 case Instruction::And: 2509 case Instruction::Or: 2510 case Instruction::Xor: // NOT is handled here. 2511 // Logical binary ops preserve the number of sign bits at the worst. 2512 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2513 if (Tmp != 1) { 2514 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2515 FirstAnswer = std::min(Tmp, Tmp2); 2516 // We computed what we know about the sign bits as our first 2517 // answer. Now proceed to the generic code that uses 2518 // computeKnownBits, and pick whichever answer is better. 2519 } 2520 break; 2521 2522 case Instruction::Select: { 2523 // If we have a clamp pattern, we know that the number of sign bits will 2524 // be the minimum of the clamp min/max range. 2525 const Value *X; 2526 const APInt *CLow, *CHigh; 2527 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2528 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2529 2530 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2531 if (Tmp == 1) break; 2532 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2533 return std::min(Tmp, Tmp2); 2534 } 2535 2536 case Instruction::Add: 2537 // Add can have at most one carry bit. Thus we know that the output 2538 // is, at worst, one more bit than the inputs. 2539 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2540 if (Tmp == 1) break; 2541 2542 // Special case decrementing a value (ADD X, -1): 2543 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2544 if (CRHS->isAllOnesValue()) { 2545 KnownBits Known(TyBits); 2546 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2547 2548 // If the input is known to be 0 or 1, the output is 0/-1, which is 2549 // all sign bits set. 2550 if ((Known.Zero | 1).isAllOnesValue()) 2551 return TyBits; 2552 2553 // If we are subtracting one from a positive number, there is no carry 2554 // out of the result. 2555 if (Known.isNonNegative()) 2556 return Tmp; 2557 } 2558 2559 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2560 if (Tmp2 == 1) break; 2561 return std::min(Tmp, Tmp2) - 1; 2562 2563 case Instruction::Sub: 2564 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2565 if (Tmp2 == 1) break; 2566 2567 // Handle NEG. 2568 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2569 if (CLHS->isNullValue()) { 2570 KnownBits Known(TyBits); 2571 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2572 // If the input is known to be 0 or 1, the output is 0/-1, which is 2573 // all sign bits set. 2574 if ((Known.Zero | 1).isAllOnesValue()) 2575 return TyBits; 2576 2577 // If the input is known to be positive (the sign bit is known clear), 2578 // the output of the NEG has the same number of sign bits as the 2579 // input. 2580 if (Known.isNonNegative()) 2581 return Tmp2; 2582 2583 // Otherwise, we treat this like a SUB. 2584 } 2585 2586 // Sub can have at most one carry bit. Thus we know that the output 2587 // is, at worst, one more bit than the inputs. 2588 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2589 if (Tmp == 1) break; 2590 return std::min(Tmp, Tmp2) - 1; 2591 2592 case Instruction::Mul: { 2593 // The output of the Mul can be at most twice the valid bits in the 2594 // inputs. 2595 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2596 if (SignBitsOp0 == 1) break; 2597 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2598 if (SignBitsOp1 == 1) break; 2599 unsigned OutValidBits = 2600 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2601 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2602 } 2603 2604 case Instruction::PHI: { 2605 const PHINode *PN = cast<PHINode>(U); 2606 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2607 // Don't analyze large in-degree PHIs. 2608 if (NumIncomingValues > 4) break; 2609 // Unreachable blocks may have zero-operand PHI nodes. 2610 if (NumIncomingValues == 0) break; 2611 2612 // Take the minimum of all incoming values. This can't infinitely loop 2613 // because of our depth threshold. 2614 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2615 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2616 if (Tmp == 1) return Tmp; 2617 Tmp = std::min( 2618 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2619 } 2620 return Tmp; 2621 } 2622 2623 case Instruction::Trunc: 2624 // FIXME: it's tricky to do anything useful for this, but it is an 2625 // important case for targets like X86. 2626 break; 2627 2628 case Instruction::ExtractElement: 2629 // Look through extract element. At the moment we keep this simple and 2630 // skip tracking the specific element. But at least we might find 2631 // information valid for all elements of the vector (for example if vector 2632 // is sign extended, shifted, etc). 2633 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2634 2635 case Instruction::ShuffleVector: { 2636 // TODO: This is copied almost directly from the SelectionDAG version of 2637 // ComputeNumSignBits. It would be better if we could share common 2638 // code. If not, make sure that changes are translated to the DAG. 2639 2640 // Collect the minimum number of sign bits that are shared by every vector 2641 // element referenced by the shuffle. 2642 auto *Shuf = cast<ShuffleVectorInst>(U); 2643 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 2644 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 2645 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2646 for (int i = 0; i != NumMaskElts; ++i) { 2647 int M = Shuf->getMaskValue(i); 2648 assert(M < NumElts * 2 && "Invalid shuffle mask constant"); 2649 // For undef elements, we don't know anything about the common state of 2650 // the shuffle result. 2651 if (M == -1) 2652 return 1; 2653 if (M < NumElts) 2654 DemandedLHS.setBit(M % NumElts); 2655 else 2656 DemandedRHS.setBit(M % NumElts); 2657 } 2658 Tmp = std::numeric_limits<unsigned>::max(); 2659 if (!!DemandedLHS) 2660 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); 2661 if (!!DemandedRHS) { 2662 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); 2663 Tmp = std::min(Tmp, Tmp2); 2664 } 2665 // If we don't know anything, early out and try computeKnownBits 2666 // fall-back. 2667 if (Tmp == 1) 2668 break; 2669 assert(Tmp <= V->getType()->getScalarSizeInBits() && 2670 "Failed to determine minimum sign bits"); 2671 return Tmp; 2672 } 2673 } 2674 } 2675 2676 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2677 // use this information. 2678 2679 // If we can examine all elements of a vector constant successfully, we're 2680 // done (we can't do any better than that). If not, keep trying. 2681 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2682 return VecSignBits; 2683 2684 KnownBits Known(TyBits); 2685 computeKnownBits(V, Known, Depth, Q); 2686 2687 // If we know that the sign bit is either zero or one, determine the number of 2688 // identical bits in the top of the input value. 2689 return std::max(FirstAnswer, Known.countMinSignBits()); 2690 } 2691 2692 /// This function computes the integer multiple of Base that equals V. 2693 /// If successful, it returns true and returns the multiple in 2694 /// Multiple. If unsuccessful, it returns false. It looks 2695 /// through SExt instructions only if LookThroughSExt is true. 2696 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2697 bool LookThroughSExt, unsigned Depth) { 2698 assert(V && "No Value?"); 2699 assert(Depth <= MaxDepth && "Limit Search Depth"); 2700 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2701 2702 Type *T = V->getType(); 2703 2704 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2705 2706 if (Base == 0) 2707 return false; 2708 2709 if (Base == 1) { 2710 Multiple = V; 2711 return true; 2712 } 2713 2714 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2715 Constant *BaseVal = ConstantInt::get(T, Base); 2716 if (CO && CO == BaseVal) { 2717 // Multiple is 1. 2718 Multiple = ConstantInt::get(T, 1); 2719 return true; 2720 } 2721 2722 if (CI && CI->getZExtValue() % Base == 0) { 2723 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2724 return true; 2725 } 2726 2727 if (Depth == MaxDepth) return false; // Limit search depth. 2728 2729 Operator *I = dyn_cast<Operator>(V); 2730 if (!I) return false; 2731 2732 switch (I->getOpcode()) { 2733 default: break; 2734 case Instruction::SExt: 2735 if (!LookThroughSExt) return false; 2736 // otherwise fall through to ZExt 2737 LLVM_FALLTHROUGH; 2738 case Instruction::ZExt: 2739 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2740 LookThroughSExt, Depth+1); 2741 case Instruction::Shl: 2742 case Instruction::Mul: { 2743 Value *Op0 = I->getOperand(0); 2744 Value *Op1 = I->getOperand(1); 2745 2746 if (I->getOpcode() == Instruction::Shl) { 2747 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2748 if (!Op1CI) return false; 2749 // Turn Op0 << Op1 into Op0 * 2^Op1 2750 APInt Op1Int = Op1CI->getValue(); 2751 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2752 APInt API(Op1Int.getBitWidth(), 0); 2753 API.setBit(BitToSet); 2754 Op1 = ConstantInt::get(V->getContext(), API); 2755 } 2756 2757 Value *Mul0 = nullptr; 2758 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2759 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2760 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2761 if (Op1C->getType()->getPrimitiveSizeInBits() < 2762 MulC->getType()->getPrimitiveSizeInBits()) 2763 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2764 if (Op1C->getType()->getPrimitiveSizeInBits() > 2765 MulC->getType()->getPrimitiveSizeInBits()) 2766 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2767 2768 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2769 Multiple = ConstantExpr::getMul(MulC, Op1C); 2770 return true; 2771 } 2772 2773 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2774 if (Mul0CI->getValue() == 1) { 2775 // V == Base * Op1, so return Op1 2776 Multiple = Op1; 2777 return true; 2778 } 2779 } 2780 2781 Value *Mul1 = nullptr; 2782 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2783 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2784 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2785 if (Op0C->getType()->getPrimitiveSizeInBits() < 2786 MulC->getType()->getPrimitiveSizeInBits()) 2787 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2788 if (Op0C->getType()->getPrimitiveSizeInBits() > 2789 MulC->getType()->getPrimitiveSizeInBits()) 2790 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2791 2792 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2793 Multiple = ConstantExpr::getMul(MulC, Op0C); 2794 return true; 2795 } 2796 2797 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2798 if (Mul1CI->getValue() == 1) { 2799 // V == Base * Op0, so return Op0 2800 Multiple = Op0; 2801 return true; 2802 } 2803 } 2804 } 2805 } 2806 2807 // We could not determine if V is a multiple of Base. 2808 return false; 2809 } 2810 2811 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2812 const TargetLibraryInfo *TLI) { 2813 const Function *F = ICS.getCalledFunction(); 2814 if (!F) 2815 return Intrinsic::not_intrinsic; 2816 2817 if (F->isIntrinsic()) 2818 return F->getIntrinsicID(); 2819 2820 if (!TLI) 2821 return Intrinsic::not_intrinsic; 2822 2823 LibFunc Func; 2824 // We're going to make assumptions on the semantics of the functions, check 2825 // that the target knows that it's available in this environment and it does 2826 // not have local linkage. 2827 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2828 return Intrinsic::not_intrinsic; 2829 2830 if (!ICS.onlyReadsMemory()) 2831 return Intrinsic::not_intrinsic; 2832 2833 // Otherwise check if we have a call to a function that can be turned into a 2834 // vector intrinsic. 2835 switch (Func) { 2836 default: 2837 break; 2838 case LibFunc_sin: 2839 case LibFunc_sinf: 2840 case LibFunc_sinl: 2841 return Intrinsic::sin; 2842 case LibFunc_cos: 2843 case LibFunc_cosf: 2844 case LibFunc_cosl: 2845 return Intrinsic::cos; 2846 case LibFunc_exp: 2847 case LibFunc_expf: 2848 case LibFunc_expl: 2849 return Intrinsic::exp; 2850 case LibFunc_exp2: 2851 case LibFunc_exp2f: 2852 case LibFunc_exp2l: 2853 return Intrinsic::exp2; 2854 case LibFunc_log: 2855 case LibFunc_logf: 2856 case LibFunc_logl: 2857 return Intrinsic::log; 2858 case LibFunc_log10: 2859 case LibFunc_log10f: 2860 case LibFunc_log10l: 2861 return Intrinsic::log10; 2862 case LibFunc_log2: 2863 case LibFunc_log2f: 2864 case LibFunc_log2l: 2865 return Intrinsic::log2; 2866 case LibFunc_fabs: 2867 case LibFunc_fabsf: 2868 case LibFunc_fabsl: 2869 return Intrinsic::fabs; 2870 case LibFunc_fmin: 2871 case LibFunc_fminf: 2872 case LibFunc_fminl: 2873 return Intrinsic::minnum; 2874 case LibFunc_fmax: 2875 case LibFunc_fmaxf: 2876 case LibFunc_fmaxl: 2877 return Intrinsic::maxnum; 2878 case LibFunc_copysign: 2879 case LibFunc_copysignf: 2880 case LibFunc_copysignl: 2881 return Intrinsic::copysign; 2882 case LibFunc_floor: 2883 case LibFunc_floorf: 2884 case LibFunc_floorl: 2885 return Intrinsic::floor; 2886 case LibFunc_ceil: 2887 case LibFunc_ceilf: 2888 case LibFunc_ceill: 2889 return Intrinsic::ceil; 2890 case LibFunc_trunc: 2891 case LibFunc_truncf: 2892 case LibFunc_truncl: 2893 return Intrinsic::trunc; 2894 case LibFunc_rint: 2895 case LibFunc_rintf: 2896 case LibFunc_rintl: 2897 return Intrinsic::rint; 2898 case LibFunc_nearbyint: 2899 case LibFunc_nearbyintf: 2900 case LibFunc_nearbyintl: 2901 return Intrinsic::nearbyint; 2902 case LibFunc_round: 2903 case LibFunc_roundf: 2904 case LibFunc_roundl: 2905 return Intrinsic::round; 2906 case LibFunc_pow: 2907 case LibFunc_powf: 2908 case LibFunc_powl: 2909 return Intrinsic::pow; 2910 case LibFunc_sqrt: 2911 case LibFunc_sqrtf: 2912 case LibFunc_sqrtl: 2913 return Intrinsic::sqrt; 2914 } 2915 2916 return Intrinsic::not_intrinsic; 2917 } 2918 2919 /// Return true if we can prove that the specified FP value is never equal to 2920 /// -0.0. 2921 /// 2922 /// NOTE: this function will need to be revisited when we support non-default 2923 /// rounding modes! 2924 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2925 unsigned Depth) { 2926 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2927 return !CFP->getValueAPF().isNegZero(); 2928 2929 // Limit search depth. 2930 if (Depth == MaxDepth) 2931 return false; 2932 2933 auto *Op = dyn_cast<Operator>(V); 2934 if (!Op) 2935 return false; 2936 2937 // Check if the nsz fast-math flag is set. 2938 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2939 if (FPO->hasNoSignedZeros()) 2940 return true; 2941 2942 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2943 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2944 return true; 2945 2946 // sitofp and uitofp turn into +0.0 for zero. 2947 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2948 return true; 2949 2950 if (auto *Call = dyn_cast<CallInst>(Op)) { 2951 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2952 switch (IID) { 2953 default: 2954 break; 2955 // sqrt(-0.0) = -0.0, no other negative results are possible. 2956 case Intrinsic::sqrt: 2957 case Intrinsic::canonicalize: 2958 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2959 // fabs(x) != -0.0 2960 case Intrinsic::fabs: 2961 return true; 2962 } 2963 } 2964 2965 return false; 2966 } 2967 2968 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2969 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2970 /// bit despite comparing equal. 2971 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2972 const TargetLibraryInfo *TLI, 2973 bool SignBitOnly, 2974 unsigned Depth) { 2975 // TODO: This function does not do the right thing when SignBitOnly is true 2976 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2977 // which flips the sign bits of NaNs. See 2978 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2979 2980 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2981 return !CFP->getValueAPF().isNegative() || 2982 (!SignBitOnly && CFP->getValueAPF().isZero()); 2983 } 2984 2985 // Handle vector of constants. 2986 if (auto *CV = dyn_cast<Constant>(V)) { 2987 if (CV->getType()->isVectorTy()) { 2988 unsigned NumElts = CV->getType()->getVectorNumElements(); 2989 for (unsigned i = 0; i != NumElts; ++i) { 2990 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2991 if (!CFP) 2992 return false; 2993 if (CFP->getValueAPF().isNegative() && 2994 (SignBitOnly || !CFP->getValueAPF().isZero())) 2995 return false; 2996 } 2997 2998 // All non-negative ConstantFPs. 2999 return true; 3000 } 3001 } 3002 3003 if (Depth == MaxDepth) 3004 return false; // Limit search depth. 3005 3006 const Operator *I = dyn_cast<Operator>(V); 3007 if (!I) 3008 return false; 3009 3010 switch (I->getOpcode()) { 3011 default: 3012 break; 3013 // Unsigned integers are always nonnegative. 3014 case Instruction::UIToFP: 3015 return true; 3016 case Instruction::FMul: 3017 // x*x is always non-negative or a NaN. 3018 if (I->getOperand(0) == I->getOperand(1) && 3019 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3020 return true; 3021 3022 LLVM_FALLTHROUGH; 3023 case Instruction::FAdd: 3024 case Instruction::FDiv: 3025 case Instruction::FRem: 3026 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3027 Depth + 1) && 3028 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3029 Depth + 1); 3030 case Instruction::Select: 3031 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3032 Depth + 1) && 3033 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3034 Depth + 1); 3035 case Instruction::FPExt: 3036 case Instruction::FPTrunc: 3037 // Widening/narrowing never change sign. 3038 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3039 Depth + 1); 3040 case Instruction::ExtractElement: 3041 // Look through extract element. At the moment we keep this simple and skip 3042 // tracking the specific element. But at least we might find information 3043 // valid for all elements of the vector. 3044 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3045 Depth + 1); 3046 case Instruction::Call: 3047 const auto *CI = cast<CallInst>(I); 3048 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3049 switch (IID) { 3050 default: 3051 break; 3052 case Intrinsic::maxnum: 3053 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3054 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3055 SignBitOnly, Depth + 1)) || 3056 (isKnownNeverNaN(I->getOperand(1), TLI) && 3057 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3058 SignBitOnly, Depth + 1)); 3059 3060 case Intrinsic::maximum: 3061 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3062 Depth + 1) || 3063 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3064 Depth + 1); 3065 case Intrinsic::minnum: 3066 case Intrinsic::minimum: 3067 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3068 Depth + 1) && 3069 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3070 Depth + 1); 3071 case Intrinsic::exp: 3072 case Intrinsic::exp2: 3073 case Intrinsic::fabs: 3074 return true; 3075 3076 case Intrinsic::sqrt: 3077 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3078 if (!SignBitOnly) 3079 return true; 3080 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3081 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3082 3083 case Intrinsic::powi: 3084 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3085 // powi(x,n) is non-negative if n is even. 3086 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3087 return true; 3088 } 3089 // TODO: This is not correct. Given that exp is an integer, here are the 3090 // ways that pow can return a negative value: 3091 // 3092 // pow(x, exp) --> negative if exp is odd and x is negative. 3093 // pow(-0, exp) --> -inf if exp is negative odd. 3094 // pow(-0, exp) --> -0 if exp is positive odd. 3095 // pow(-inf, exp) --> -0 if exp is negative odd. 3096 // pow(-inf, exp) --> -inf if exp is positive odd. 3097 // 3098 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3099 // but we must return false if x == -0. Unfortunately we do not currently 3100 // have a way of expressing this constraint. See details in 3101 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3102 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3103 Depth + 1); 3104 3105 case Intrinsic::fma: 3106 case Intrinsic::fmuladd: 3107 // x*x+y is non-negative if y is non-negative. 3108 return I->getOperand(0) == I->getOperand(1) && 3109 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3110 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3111 Depth + 1); 3112 } 3113 break; 3114 } 3115 return false; 3116 } 3117 3118 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3119 const TargetLibraryInfo *TLI) { 3120 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3121 } 3122 3123 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3124 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3125 } 3126 3127 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3128 unsigned Depth) { 3129 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3130 3131 // If we're told that infinities won't happen, assume they won't. 3132 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3133 if (FPMathOp->hasNoInfs()) 3134 return true; 3135 3136 // Handle scalar constants. 3137 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3138 return !CFP->isInfinity(); 3139 3140 if (Depth == MaxDepth) 3141 return false; 3142 3143 if (auto *Inst = dyn_cast<Instruction>(V)) { 3144 switch (Inst->getOpcode()) { 3145 case Instruction::Select: { 3146 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3147 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3148 } 3149 case Instruction::UIToFP: 3150 // If the input type fits into the floating type the result is finite. 3151 return ilogb(APFloat::getLargest( 3152 Inst->getType()->getScalarType()->getFltSemantics())) >= 3153 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3154 default: 3155 break; 3156 } 3157 } 3158 3159 // Bail out for constant expressions, but try to handle vector constants. 3160 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3161 return false; 3162 3163 // For vectors, verify that each element is not infinity. 3164 unsigned NumElts = V->getType()->getVectorNumElements(); 3165 for (unsigned i = 0; i != NumElts; ++i) { 3166 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3167 if (!Elt) 3168 return false; 3169 if (isa<UndefValue>(Elt)) 3170 continue; 3171 auto *CElt = dyn_cast<ConstantFP>(Elt); 3172 if (!CElt || CElt->isInfinity()) 3173 return false; 3174 } 3175 // All elements were confirmed non-infinity or undefined. 3176 return true; 3177 } 3178 3179 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3180 unsigned Depth) { 3181 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3182 3183 // If we're told that NaNs won't happen, assume they won't. 3184 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3185 if (FPMathOp->hasNoNaNs()) 3186 return true; 3187 3188 // Handle scalar constants. 3189 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3190 return !CFP->isNaN(); 3191 3192 if (Depth == MaxDepth) 3193 return false; 3194 3195 if (auto *Inst = dyn_cast<Instruction>(V)) { 3196 switch (Inst->getOpcode()) { 3197 case Instruction::FAdd: 3198 case Instruction::FSub: 3199 // Adding positive and negative infinity produces NaN. 3200 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3201 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3202 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3203 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3204 3205 case Instruction::FMul: 3206 // Zero multiplied with infinity produces NaN. 3207 // FIXME: If neither side can be zero fmul never produces NaN. 3208 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3209 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3210 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3211 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3212 3213 case Instruction::FDiv: 3214 case Instruction::FRem: 3215 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3216 return false; 3217 3218 case Instruction::Select: { 3219 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3220 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3221 } 3222 case Instruction::SIToFP: 3223 case Instruction::UIToFP: 3224 return true; 3225 case Instruction::FPTrunc: 3226 case Instruction::FPExt: 3227 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3228 default: 3229 break; 3230 } 3231 } 3232 3233 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3234 switch (II->getIntrinsicID()) { 3235 case Intrinsic::canonicalize: 3236 case Intrinsic::fabs: 3237 case Intrinsic::copysign: 3238 case Intrinsic::exp: 3239 case Intrinsic::exp2: 3240 case Intrinsic::floor: 3241 case Intrinsic::ceil: 3242 case Intrinsic::trunc: 3243 case Intrinsic::rint: 3244 case Intrinsic::nearbyint: 3245 case Intrinsic::round: 3246 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3247 case Intrinsic::sqrt: 3248 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3249 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3250 case Intrinsic::minnum: 3251 case Intrinsic::maxnum: 3252 // If either operand is not NaN, the result is not NaN. 3253 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3254 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3255 default: 3256 return false; 3257 } 3258 } 3259 3260 // Bail out for constant expressions, but try to handle vector constants. 3261 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3262 return false; 3263 3264 // For vectors, verify that each element is not NaN. 3265 unsigned NumElts = V->getType()->getVectorNumElements(); 3266 for (unsigned i = 0; i != NumElts; ++i) { 3267 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3268 if (!Elt) 3269 return false; 3270 if (isa<UndefValue>(Elt)) 3271 continue; 3272 auto *CElt = dyn_cast<ConstantFP>(Elt); 3273 if (!CElt || CElt->isNaN()) 3274 return false; 3275 } 3276 // All elements were confirmed not-NaN or undefined. 3277 return true; 3278 } 3279 3280 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3281 3282 // All byte-wide stores are splatable, even of arbitrary variables. 3283 if (V->getType()->isIntegerTy(8)) 3284 return V; 3285 3286 LLVMContext &Ctx = V->getContext(); 3287 3288 // Undef don't care. 3289 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3290 if (isa<UndefValue>(V)) 3291 return UndefInt8; 3292 3293 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3294 if (!Size) 3295 return UndefInt8; 3296 3297 Constant *C = dyn_cast<Constant>(V); 3298 if (!C) { 3299 // Conceptually, we could handle things like: 3300 // %a = zext i8 %X to i16 3301 // %b = shl i16 %a, 8 3302 // %c = or i16 %a, %b 3303 // but until there is an example that actually needs this, it doesn't seem 3304 // worth worrying about. 3305 return nullptr; 3306 } 3307 3308 // Handle 'null' ConstantArrayZero etc. 3309 if (C->isNullValue()) 3310 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3311 3312 // Constant floating-point values can be handled as integer values if the 3313 // corresponding integer value is "byteable". An important case is 0.0. 3314 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3315 Type *Ty = nullptr; 3316 if (CFP->getType()->isHalfTy()) 3317 Ty = Type::getInt16Ty(Ctx); 3318 else if (CFP->getType()->isFloatTy()) 3319 Ty = Type::getInt32Ty(Ctx); 3320 else if (CFP->getType()->isDoubleTy()) 3321 Ty = Type::getInt64Ty(Ctx); 3322 // Don't handle long double formats, which have strange constraints. 3323 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3324 : nullptr; 3325 } 3326 3327 // We can handle constant integers that are multiple of 8 bits. 3328 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3329 if (CI->getBitWidth() % 8 == 0) { 3330 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3331 if (!CI->getValue().isSplat(8)) 3332 return nullptr; 3333 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3334 } 3335 } 3336 3337 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3338 if (CE->getOpcode() == Instruction::IntToPtr) { 3339 auto PS = DL.getPointerSizeInBits( 3340 cast<PointerType>(CE->getType())->getAddressSpace()); 3341 return isBytewiseValue( 3342 ConstantExpr::getIntegerCast(CE->getOperand(0), 3343 Type::getIntNTy(Ctx, PS), false), 3344 DL); 3345 } 3346 } 3347 3348 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3349 if (LHS == RHS) 3350 return LHS; 3351 if (!LHS || !RHS) 3352 return nullptr; 3353 if (LHS == UndefInt8) 3354 return RHS; 3355 if (RHS == UndefInt8) 3356 return LHS; 3357 return nullptr; 3358 }; 3359 3360 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3361 Value *Val = UndefInt8; 3362 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3363 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3364 return nullptr; 3365 return Val; 3366 } 3367 3368 if (isa<ConstantAggregate>(C)) { 3369 Value *Val = UndefInt8; 3370 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3371 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3372 return nullptr; 3373 return Val; 3374 } 3375 3376 // Don't try to handle the handful of other constants. 3377 return nullptr; 3378 } 3379 3380 // This is the recursive version of BuildSubAggregate. It takes a few different 3381 // arguments. Idxs is the index within the nested struct From that we are 3382 // looking at now (which is of type IndexedType). IdxSkip is the number of 3383 // indices from Idxs that should be left out when inserting into the resulting 3384 // struct. To is the result struct built so far, new insertvalue instructions 3385 // build on that. 3386 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3387 SmallVectorImpl<unsigned> &Idxs, 3388 unsigned IdxSkip, 3389 Instruction *InsertBefore) { 3390 StructType *STy = dyn_cast<StructType>(IndexedType); 3391 if (STy) { 3392 // Save the original To argument so we can modify it 3393 Value *OrigTo = To; 3394 // General case, the type indexed by Idxs is a struct 3395 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3396 // Process each struct element recursively 3397 Idxs.push_back(i); 3398 Value *PrevTo = To; 3399 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3400 InsertBefore); 3401 Idxs.pop_back(); 3402 if (!To) { 3403 // Couldn't find any inserted value for this index? Cleanup 3404 while (PrevTo != OrigTo) { 3405 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3406 PrevTo = Del->getAggregateOperand(); 3407 Del->eraseFromParent(); 3408 } 3409 // Stop processing elements 3410 break; 3411 } 3412 } 3413 // If we successfully found a value for each of our subaggregates 3414 if (To) 3415 return To; 3416 } 3417 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3418 // the struct's elements had a value that was inserted directly. In the latter 3419 // case, perhaps we can't determine each of the subelements individually, but 3420 // we might be able to find the complete struct somewhere. 3421 3422 // Find the value that is at that particular spot 3423 Value *V = FindInsertedValue(From, Idxs); 3424 3425 if (!V) 3426 return nullptr; 3427 3428 // Insert the value in the new (sub) aggregate 3429 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3430 "tmp", InsertBefore); 3431 } 3432 3433 // This helper takes a nested struct and extracts a part of it (which is again a 3434 // struct) into a new value. For example, given the struct: 3435 // { a, { b, { c, d }, e } } 3436 // and the indices "1, 1" this returns 3437 // { c, d }. 3438 // 3439 // It does this by inserting an insertvalue for each element in the resulting 3440 // struct, as opposed to just inserting a single struct. This will only work if 3441 // each of the elements of the substruct are known (ie, inserted into From by an 3442 // insertvalue instruction somewhere). 3443 // 3444 // All inserted insertvalue instructions are inserted before InsertBefore 3445 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3446 Instruction *InsertBefore) { 3447 assert(InsertBefore && "Must have someplace to insert!"); 3448 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3449 idx_range); 3450 Value *To = UndefValue::get(IndexedType); 3451 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3452 unsigned IdxSkip = Idxs.size(); 3453 3454 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3455 } 3456 3457 /// Given an aggregate and a sequence of indices, see if the scalar value 3458 /// indexed is already around as a register, for example if it was inserted 3459 /// directly into the aggregate. 3460 /// 3461 /// If InsertBefore is not null, this function will duplicate (modified) 3462 /// insertvalues when a part of a nested struct is extracted. 3463 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3464 Instruction *InsertBefore) { 3465 // Nothing to index? Just return V then (this is useful at the end of our 3466 // recursion). 3467 if (idx_range.empty()) 3468 return V; 3469 // We have indices, so V should have an indexable type. 3470 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3471 "Not looking at a struct or array?"); 3472 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3473 "Invalid indices for type?"); 3474 3475 if (Constant *C = dyn_cast<Constant>(V)) { 3476 C = C->getAggregateElement(idx_range[0]); 3477 if (!C) return nullptr; 3478 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3479 } 3480 3481 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3482 // Loop the indices for the insertvalue instruction in parallel with the 3483 // requested indices 3484 const unsigned *req_idx = idx_range.begin(); 3485 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3486 i != e; ++i, ++req_idx) { 3487 if (req_idx == idx_range.end()) { 3488 // We can't handle this without inserting insertvalues 3489 if (!InsertBefore) 3490 return nullptr; 3491 3492 // The requested index identifies a part of a nested aggregate. Handle 3493 // this specially. For example, 3494 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3495 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3496 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3497 // This can be changed into 3498 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3499 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3500 // which allows the unused 0,0 element from the nested struct to be 3501 // removed. 3502 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3503 InsertBefore); 3504 } 3505 3506 // This insert value inserts something else than what we are looking for. 3507 // See if the (aggregate) value inserted into has the value we are 3508 // looking for, then. 3509 if (*req_idx != *i) 3510 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3511 InsertBefore); 3512 } 3513 // If we end up here, the indices of the insertvalue match with those 3514 // requested (though possibly only partially). Now we recursively look at 3515 // the inserted value, passing any remaining indices. 3516 return FindInsertedValue(I->getInsertedValueOperand(), 3517 makeArrayRef(req_idx, idx_range.end()), 3518 InsertBefore); 3519 } 3520 3521 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3522 // If we're extracting a value from an aggregate that was extracted from 3523 // something else, we can extract from that something else directly instead. 3524 // However, we will need to chain I's indices with the requested indices. 3525 3526 // Calculate the number of indices required 3527 unsigned size = I->getNumIndices() + idx_range.size(); 3528 // Allocate some space to put the new indices in 3529 SmallVector<unsigned, 5> Idxs; 3530 Idxs.reserve(size); 3531 // Add indices from the extract value instruction 3532 Idxs.append(I->idx_begin(), I->idx_end()); 3533 3534 // Add requested indices 3535 Idxs.append(idx_range.begin(), idx_range.end()); 3536 3537 assert(Idxs.size() == size 3538 && "Number of indices added not correct?"); 3539 3540 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3541 } 3542 // Otherwise, we don't know (such as, extracting from a function return value 3543 // or load instruction) 3544 return nullptr; 3545 } 3546 3547 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3548 unsigned CharSize) { 3549 // Make sure the GEP has exactly three arguments. 3550 if (GEP->getNumOperands() != 3) 3551 return false; 3552 3553 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3554 // CharSize. 3555 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3556 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3557 return false; 3558 3559 // Check to make sure that the first operand of the GEP is an integer and 3560 // has value 0 so that we are sure we're indexing into the initializer. 3561 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3562 if (!FirstIdx || !FirstIdx->isZero()) 3563 return false; 3564 3565 return true; 3566 } 3567 3568 bool llvm::getConstantDataArrayInfo(const Value *V, 3569 ConstantDataArraySlice &Slice, 3570 unsigned ElementSize, uint64_t Offset) { 3571 assert(V); 3572 3573 // Look through bitcast instructions and geps. 3574 V = V->stripPointerCasts(); 3575 3576 // If the value is a GEP instruction or constant expression, treat it as an 3577 // offset. 3578 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3579 // The GEP operator should be based on a pointer to string constant, and is 3580 // indexing into the string constant. 3581 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3582 return false; 3583 3584 // If the second index isn't a ConstantInt, then this is a variable index 3585 // into the array. If this occurs, we can't say anything meaningful about 3586 // the string. 3587 uint64_t StartIdx = 0; 3588 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3589 StartIdx = CI->getZExtValue(); 3590 else 3591 return false; 3592 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3593 StartIdx + Offset); 3594 } 3595 3596 // The GEP instruction, constant or instruction, must reference a global 3597 // variable that is a constant and is initialized. The referenced constant 3598 // initializer is the array that we'll use for optimization. 3599 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3600 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3601 return false; 3602 3603 const ConstantDataArray *Array; 3604 ArrayType *ArrayTy; 3605 if (GV->getInitializer()->isNullValue()) { 3606 Type *GVTy = GV->getValueType(); 3607 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3608 // A zeroinitializer for the array; there is no ConstantDataArray. 3609 Array = nullptr; 3610 } else { 3611 const DataLayout &DL = GV->getParent()->getDataLayout(); 3612 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3613 uint64_t Length = SizeInBytes / (ElementSize / 8); 3614 if (Length <= Offset) 3615 return false; 3616 3617 Slice.Array = nullptr; 3618 Slice.Offset = 0; 3619 Slice.Length = Length - Offset; 3620 return true; 3621 } 3622 } else { 3623 // This must be a ConstantDataArray. 3624 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3625 if (!Array) 3626 return false; 3627 ArrayTy = Array->getType(); 3628 } 3629 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3630 return false; 3631 3632 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3633 if (Offset > NumElts) 3634 return false; 3635 3636 Slice.Array = Array; 3637 Slice.Offset = Offset; 3638 Slice.Length = NumElts - Offset; 3639 return true; 3640 } 3641 3642 /// This function computes the length of a null-terminated C string pointed to 3643 /// by V. If successful, it returns true and returns the string in Str. 3644 /// If unsuccessful, it returns false. 3645 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3646 uint64_t Offset, bool TrimAtNul) { 3647 ConstantDataArraySlice Slice; 3648 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3649 return false; 3650 3651 if (Slice.Array == nullptr) { 3652 if (TrimAtNul) { 3653 Str = StringRef(); 3654 return true; 3655 } 3656 if (Slice.Length == 1) { 3657 Str = StringRef("", 1); 3658 return true; 3659 } 3660 // We cannot instantiate a StringRef as we do not have an appropriate string 3661 // of 0s at hand. 3662 return false; 3663 } 3664 3665 // Start out with the entire array in the StringRef. 3666 Str = Slice.Array->getAsString(); 3667 // Skip over 'offset' bytes. 3668 Str = Str.substr(Slice.Offset); 3669 3670 if (TrimAtNul) { 3671 // Trim off the \0 and anything after it. If the array is not nul 3672 // terminated, we just return the whole end of string. The client may know 3673 // some other way that the string is length-bound. 3674 Str = Str.substr(0, Str.find('\0')); 3675 } 3676 return true; 3677 } 3678 3679 // These next two are very similar to the above, but also look through PHI 3680 // nodes. 3681 // TODO: See if we can integrate these two together. 3682 3683 /// If we can compute the length of the string pointed to by 3684 /// the specified pointer, return 'len+1'. If we can't, return 0. 3685 static uint64_t GetStringLengthH(const Value *V, 3686 SmallPtrSetImpl<const PHINode*> &PHIs, 3687 unsigned CharSize) { 3688 // Look through noop bitcast instructions. 3689 V = V->stripPointerCasts(); 3690 3691 // If this is a PHI node, there are two cases: either we have already seen it 3692 // or we haven't. 3693 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3694 if (!PHIs.insert(PN).second) 3695 return ~0ULL; // already in the set. 3696 3697 // If it was new, see if all the input strings are the same length. 3698 uint64_t LenSoFar = ~0ULL; 3699 for (Value *IncValue : PN->incoming_values()) { 3700 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3701 if (Len == 0) return 0; // Unknown length -> unknown. 3702 3703 if (Len == ~0ULL) continue; 3704 3705 if (Len != LenSoFar && LenSoFar != ~0ULL) 3706 return 0; // Disagree -> unknown. 3707 LenSoFar = Len; 3708 } 3709 3710 // Success, all agree. 3711 return LenSoFar; 3712 } 3713 3714 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3715 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3716 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3717 if (Len1 == 0) return 0; 3718 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3719 if (Len2 == 0) return 0; 3720 if (Len1 == ~0ULL) return Len2; 3721 if (Len2 == ~0ULL) return Len1; 3722 if (Len1 != Len2) return 0; 3723 return Len1; 3724 } 3725 3726 // Otherwise, see if we can read the string. 3727 ConstantDataArraySlice Slice; 3728 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3729 return 0; 3730 3731 if (Slice.Array == nullptr) 3732 return 1; 3733 3734 // Search for nul characters 3735 unsigned NullIndex = 0; 3736 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3737 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3738 break; 3739 } 3740 3741 return NullIndex + 1; 3742 } 3743 3744 /// If we can compute the length of the string pointed to by 3745 /// the specified pointer, return 'len+1'. If we can't, return 0. 3746 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3747 if (!V->getType()->isPointerTy()) 3748 return 0; 3749 3750 SmallPtrSet<const PHINode*, 32> PHIs; 3751 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3752 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3753 // an empty string as a length. 3754 return Len == ~0ULL ? 1 : Len; 3755 } 3756 3757 const Value * 3758 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3759 bool MustPreserveNullness) { 3760 assert(Call && 3761 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3762 if (const Value *RV = Call->getReturnedArgOperand()) 3763 return RV; 3764 // This can be used only as a aliasing property. 3765 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3766 Call, MustPreserveNullness)) 3767 return Call->getArgOperand(0); 3768 return nullptr; 3769 } 3770 3771 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3772 const CallBase *Call, bool MustPreserveNullness) { 3773 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3774 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3775 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3776 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3777 (!MustPreserveNullness && 3778 Call->getIntrinsicID() == Intrinsic::ptrmask); 3779 } 3780 3781 /// \p PN defines a loop-variant pointer to an object. Check if the 3782 /// previous iteration of the loop was referring to the same object as \p PN. 3783 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3784 const LoopInfo *LI) { 3785 // Find the loop-defined value. 3786 Loop *L = LI->getLoopFor(PN->getParent()); 3787 if (PN->getNumIncomingValues() != 2) 3788 return true; 3789 3790 // Find the value from previous iteration. 3791 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3792 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3793 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3794 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3795 return true; 3796 3797 // If a new pointer is loaded in the loop, the pointer references a different 3798 // object in every iteration. E.g.: 3799 // for (i) 3800 // int *p = a[i]; 3801 // ... 3802 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3803 if (!L->isLoopInvariant(Load->getPointerOperand())) 3804 return false; 3805 return true; 3806 } 3807 3808 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3809 unsigned MaxLookup) { 3810 if (!V->getType()->isPointerTy()) 3811 return V; 3812 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3813 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3814 V = GEP->getPointerOperand(); 3815 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3816 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3817 V = cast<Operator>(V)->getOperand(0); 3818 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3819 if (GA->isInterposable()) 3820 return V; 3821 V = GA->getAliasee(); 3822 } else if (isa<AllocaInst>(V)) { 3823 // An alloca can't be further simplified. 3824 return V; 3825 } else { 3826 if (auto *Call = dyn_cast<CallBase>(V)) { 3827 // CaptureTracking can know about special capturing properties of some 3828 // intrinsics like launder.invariant.group, that can't be expressed with 3829 // the attributes, but have properties like returning aliasing pointer. 3830 // Because some analysis may assume that nocaptured pointer is not 3831 // returned from some special intrinsic (because function would have to 3832 // be marked with returns attribute), it is crucial to use this function 3833 // because it should be in sync with CaptureTracking. Not using it may 3834 // cause weird miscompilations where 2 aliasing pointers are assumed to 3835 // noalias. 3836 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 3837 V = RP; 3838 continue; 3839 } 3840 } 3841 3842 // See if InstructionSimplify knows any relevant tricks. 3843 if (Instruction *I = dyn_cast<Instruction>(V)) 3844 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3845 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3846 V = Simplified; 3847 continue; 3848 } 3849 3850 return V; 3851 } 3852 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3853 } 3854 return V; 3855 } 3856 3857 void llvm::GetUnderlyingObjects(const Value *V, 3858 SmallVectorImpl<const Value *> &Objects, 3859 const DataLayout &DL, LoopInfo *LI, 3860 unsigned MaxLookup) { 3861 SmallPtrSet<const Value *, 4> Visited; 3862 SmallVector<const Value *, 4> Worklist; 3863 Worklist.push_back(V); 3864 do { 3865 const Value *P = Worklist.pop_back_val(); 3866 P = GetUnderlyingObject(P, DL, MaxLookup); 3867 3868 if (!Visited.insert(P).second) 3869 continue; 3870 3871 if (auto *SI = dyn_cast<SelectInst>(P)) { 3872 Worklist.push_back(SI->getTrueValue()); 3873 Worklist.push_back(SI->getFalseValue()); 3874 continue; 3875 } 3876 3877 if (auto *PN = dyn_cast<PHINode>(P)) { 3878 // If this PHI changes the underlying object in every iteration of the 3879 // loop, don't look through it. Consider: 3880 // int **A; 3881 // for (i) { 3882 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3883 // Curr = A[i]; 3884 // *Prev, *Curr; 3885 // 3886 // Prev is tracking Curr one iteration behind so they refer to different 3887 // underlying objects. 3888 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3889 isSameUnderlyingObjectInLoop(PN, LI)) 3890 for (Value *IncValue : PN->incoming_values()) 3891 Worklist.push_back(IncValue); 3892 continue; 3893 } 3894 3895 Objects.push_back(P); 3896 } while (!Worklist.empty()); 3897 } 3898 3899 /// This is the function that does the work of looking through basic 3900 /// ptrtoint+arithmetic+inttoptr sequences. 3901 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3902 do { 3903 if (const Operator *U = dyn_cast<Operator>(V)) { 3904 // If we find a ptrtoint, we can transfer control back to the 3905 // regular getUnderlyingObjectFromInt. 3906 if (U->getOpcode() == Instruction::PtrToInt) 3907 return U->getOperand(0); 3908 // If we find an add of a constant, a multiplied value, or a phi, it's 3909 // likely that the other operand will lead us to the base 3910 // object. We don't have to worry about the case where the 3911 // object address is somehow being computed by the multiply, 3912 // because our callers only care when the result is an 3913 // identifiable object. 3914 if (U->getOpcode() != Instruction::Add || 3915 (!isa<ConstantInt>(U->getOperand(1)) && 3916 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3917 !isa<PHINode>(U->getOperand(1)))) 3918 return V; 3919 V = U->getOperand(0); 3920 } else { 3921 return V; 3922 } 3923 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3924 } while (true); 3925 } 3926 3927 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3928 /// ptrtoint+arithmetic+inttoptr sequences. 3929 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3930 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3931 SmallVectorImpl<Value *> &Objects, 3932 const DataLayout &DL) { 3933 SmallPtrSet<const Value *, 16> Visited; 3934 SmallVector<const Value *, 4> Working(1, V); 3935 do { 3936 V = Working.pop_back_val(); 3937 3938 SmallVector<const Value *, 4> Objs; 3939 GetUnderlyingObjects(V, Objs, DL); 3940 3941 for (const Value *V : Objs) { 3942 if (!Visited.insert(V).second) 3943 continue; 3944 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3945 const Value *O = 3946 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3947 if (O->getType()->isPointerTy()) { 3948 Working.push_back(O); 3949 continue; 3950 } 3951 } 3952 // If GetUnderlyingObjects fails to find an identifiable object, 3953 // getUnderlyingObjectsForCodeGen also fails for safety. 3954 if (!isIdentifiedObject(V)) { 3955 Objects.clear(); 3956 return false; 3957 } 3958 Objects.push_back(const_cast<Value *>(V)); 3959 } 3960 } while (!Working.empty()); 3961 return true; 3962 } 3963 3964 /// Return true if the only users of this pointer are lifetime markers. 3965 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3966 for (const User *U : V->users()) { 3967 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3968 if (!II) return false; 3969 3970 if (!II->isLifetimeStartOrEnd()) 3971 return false; 3972 } 3973 return true; 3974 } 3975 3976 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 3977 if (!LI.isUnordered()) 3978 return true; 3979 const Function &F = *LI.getFunction(); 3980 // Speculative load may create a race that did not exist in the source. 3981 return F.hasFnAttribute(Attribute::SanitizeThread) || 3982 // Speculative load may load data from dirty regions. 3983 F.hasFnAttribute(Attribute::SanitizeAddress) || 3984 F.hasFnAttribute(Attribute::SanitizeHWAddress); 3985 } 3986 3987 3988 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3989 const Instruction *CtxI, 3990 const DominatorTree *DT) { 3991 const Operator *Inst = dyn_cast<Operator>(V); 3992 if (!Inst) 3993 return false; 3994 3995 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3996 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3997 if (C->canTrap()) 3998 return false; 3999 4000 switch (Inst->getOpcode()) { 4001 default: 4002 return true; 4003 case Instruction::UDiv: 4004 case Instruction::URem: { 4005 // x / y is undefined if y == 0. 4006 const APInt *V; 4007 if (match(Inst->getOperand(1), m_APInt(V))) 4008 return *V != 0; 4009 return false; 4010 } 4011 case Instruction::SDiv: 4012 case Instruction::SRem: { 4013 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4014 const APInt *Numerator, *Denominator; 4015 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4016 return false; 4017 // We cannot hoist this division if the denominator is 0. 4018 if (*Denominator == 0) 4019 return false; 4020 // It's safe to hoist if the denominator is not 0 or -1. 4021 if (*Denominator != -1) 4022 return true; 4023 // At this point we know that the denominator is -1. It is safe to hoist as 4024 // long we know that the numerator is not INT_MIN. 4025 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4026 return !Numerator->isMinSignedValue(); 4027 // The numerator *might* be MinSignedValue. 4028 return false; 4029 } 4030 case Instruction::Load: { 4031 const LoadInst *LI = cast<LoadInst>(Inst); 4032 if (mustSuppressSpeculation(*LI)) 4033 return false; 4034 const DataLayout &DL = LI->getModule()->getDataLayout(); 4035 return isDereferenceableAndAlignedPointer( 4036 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4037 DL, CtxI, DT); 4038 } 4039 case Instruction::Call: { 4040 auto *CI = cast<const CallInst>(Inst); 4041 const Function *Callee = CI->getCalledFunction(); 4042 4043 // The called function could have undefined behavior or side-effects, even 4044 // if marked readnone nounwind. 4045 return Callee && Callee->isSpeculatable(); 4046 } 4047 case Instruction::VAArg: 4048 case Instruction::Alloca: 4049 case Instruction::Invoke: 4050 case Instruction::CallBr: 4051 case Instruction::PHI: 4052 case Instruction::Store: 4053 case Instruction::Ret: 4054 case Instruction::Br: 4055 case Instruction::IndirectBr: 4056 case Instruction::Switch: 4057 case Instruction::Unreachable: 4058 case Instruction::Fence: 4059 case Instruction::AtomicRMW: 4060 case Instruction::AtomicCmpXchg: 4061 case Instruction::LandingPad: 4062 case Instruction::Resume: 4063 case Instruction::CatchSwitch: 4064 case Instruction::CatchPad: 4065 case Instruction::CatchRet: 4066 case Instruction::CleanupPad: 4067 case Instruction::CleanupRet: 4068 return false; // Misc instructions which have effects 4069 } 4070 } 4071 4072 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4073 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4074 } 4075 4076 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4077 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4078 switch (OR) { 4079 case ConstantRange::OverflowResult::MayOverflow: 4080 return OverflowResult::MayOverflow; 4081 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4082 return OverflowResult::AlwaysOverflowsLow; 4083 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4084 return OverflowResult::AlwaysOverflowsHigh; 4085 case ConstantRange::OverflowResult::NeverOverflows: 4086 return OverflowResult::NeverOverflows; 4087 } 4088 llvm_unreachable("Unknown OverflowResult"); 4089 } 4090 4091 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4092 static ConstantRange computeConstantRangeIncludingKnownBits( 4093 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4094 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4095 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4096 KnownBits Known = computeKnownBits( 4097 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4098 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4099 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4100 ConstantRange::PreferredRangeType RangeType = 4101 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4102 return CR1.intersectWith(CR2, RangeType); 4103 } 4104 4105 OverflowResult llvm::computeOverflowForUnsignedMul( 4106 const Value *LHS, const Value *RHS, const DataLayout &DL, 4107 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4108 bool UseInstrInfo) { 4109 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4110 nullptr, UseInstrInfo); 4111 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4112 nullptr, UseInstrInfo); 4113 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4114 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4115 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4116 } 4117 4118 OverflowResult 4119 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4120 const DataLayout &DL, AssumptionCache *AC, 4121 const Instruction *CxtI, 4122 const DominatorTree *DT, bool UseInstrInfo) { 4123 // Multiplying n * m significant bits yields a result of n + m significant 4124 // bits. If the total number of significant bits does not exceed the 4125 // result bit width (minus 1), there is no overflow. 4126 // This means if we have enough leading sign bits in the operands 4127 // we can guarantee that the result does not overflow. 4128 // Ref: "Hacker's Delight" by Henry Warren 4129 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4130 4131 // Note that underestimating the number of sign bits gives a more 4132 // conservative answer. 4133 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4134 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4135 4136 // First handle the easy case: if we have enough sign bits there's 4137 // definitely no overflow. 4138 if (SignBits > BitWidth + 1) 4139 return OverflowResult::NeverOverflows; 4140 4141 // There are two ambiguous cases where there can be no overflow: 4142 // SignBits == BitWidth + 1 and 4143 // SignBits == BitWidth 4144 // The second case is difficult to check, therefore we only handle the 4145 // first case. 4146 if (SignBits == BitWidth + 1) { 4147 // It overflows only when both arguments are negative and the true 4148 // product is exactly the minimum negative number. 4149 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4150 // For simplicity we just check if at least one side is not negative. 4151 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4152 nullptr, UseInstrInfo); 4153 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4154 nullptr, UseInstrInfo); 4155 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4156 return OverflowResult::NeverOverflows; 4157 } 4158 return OverflowResult::MayOverflow; 4159 } 4160 4161 OverflowResult llvm::computeOverflowForUnsignedAdd( 4162 const Value *LHS, const Value *RHS, const DataLayout &DL, 4163 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4164 bool UseInstrInfo) { 4165 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4166 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4167 nullptr, UseInstrInfo); 4168 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4169 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4170 nullptr, UseInstrInfo); 4171 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4172 } 4173 4174 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4175 const Value *RHS, 4176 const AddOperator *Add, 4177 const DataLayout &DL, 4178 AssumptionCache *AC, 4179 const Instruction *CxtI, 4180 const DominatorTree *DT) { 4181 if (Add && Add->hasNoSignedWrap()) { 4182 return OverflowResult::NeverOverflows; 4183 } 4184 4185 // If LHS and RHS each have at least two sign bits, the addition will look 4186 // like 4187 // 4188 // XX..... + 4189 // YY..... 4190 // 4191 // If the carry into the most significant position is 0, X and Y can't both 4192 // be 1 and therefore the carry out of the addition is also 0. 4193 // 4194 // If the carry into the most significant position is 1, X and Y can't both 4195 // be 0 and therefore the carry out of the addition is also 1. 4196 // 4197 // Since the carry into the most significant position is always equal to 4198 // the carry out of the addition, there is no signed overflow. 4199 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4200 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4201 return OverflowResult::NeverOverflows; 4202 4203 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4204 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4205 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4206 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4207 OverflowResult OR = 4208 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4209 if (OR != OverflowResult::MayOverflow) 4210 return OR; 4211 4212 // The remaining code needs Add to be available. Early returns if not so. 4213 if (!Add) 4214 return OverflowResult::MayOverflow; 4215 4216 // If the sign of Add is the same as at least one of the operands, this add 4217 // CANNOT overflow. If this can be determined from the known bits of the 4218 // operands the above signedAddMayOverflow() check will have already done so. 4219 // The only other way to improve on the known bits is from an assumption, so 4220 // call computeKnownBitsFromAssume() directly. 4221 bool LHSOrRHSKnownNonNegative = 4222 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4223 bool LHSOrRHSKnownNegative = 4224 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4225 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4226 KnownBits AddKnown(LHSRange.getBitWidth()); 4227 computeKnownBitsFromAssume( 4228 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4229 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4230 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4231 return OverflowResult::NeverOverflows; 4232 } 4233 4234 return OverflowResult::MayOverflow; 4235 } 4236 4237 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4238 const Value *RHS, 4239 const DataLayout &DL, 4240 AssumptionCache *AC, 4241 const Instruction *CxtI, 4242 const DominatorTree *DT) { 4243 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4244 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4245 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4246 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4247 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4248 } 4249 4250 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4251 const Value *RHS, 4252 const DataLayout &DL, 4253 AssumptionCache *AC, 4254 const Instruction *CxtI, 4255 const DominatorTree *DT) { 4256 // If LHS and RHS each have at least two sign bits, the subtraction 4257 // cannot overflow. 4258 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4259 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4260 return OverflowResult::NeverOverflows; 4261 4262 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4263 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4264 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4265 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4266 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4267 } 4268 4269 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4270 const DominatorTree &DT) { 4271 SmallVector<const BranchInst *, 2> GuardingBranches; 4272 SmallVector<const ExtractValueInst *, 2> Results; 4273 4274 for (const User *U : WO->users()) { 4275 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4276 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4277 4278 if (EVI->getIndices()[0] == 0) 4279 Results.push_back(EVI); 4280 else { 4281 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4282 4283 for (const auto *U : EVI->users()) 4284 if (const auto *B = dyn_cast<BranchInst>(U)) { 4285 assert(B->isConditional() && "How else is it using an i1?"); 4286 GuardingBranches.push_back(B); 4287 } 4288 } 4289 } else { 4290 // We are using the aggregate directly in a way we don't want to analyze 4291 // here (storing it to a global, say). 4292 return false; 4293 } 4294 } 4295 4296 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4297 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4298 if (!NoWrapEdge.isSingleEdge()) 4299 return false; 4300 4301 // Check if all users of the add are provably no-wrap. 4302 for (const auto *Result : Results) { 4303 // If the extractvalue itself is not executed on overflow, the we don't 4304 // need to check each use separately, since domination is transitive. 4305 if (DT.dominates(NoWrapEdge, Result->getParent())) 4306 continue; 4307 4308 for (auto &RU : Result->uses()) 4309 if (!DT.dominates(NoWrapEdge, RU)) 4310 return false; 4311 } 4312 4313 return true; 4314 }; 4315 4316 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4317 } 4318 4319 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V) { 4320 // If the value is a freeze instruction, then it can never 4321 // be undef or poison. 4322 if (isa<FreezeInst>(V)) 4323 return true; 4324 // TODO: Some instructions are guaranteed to return neither undef 4325 // nor poison if their arguments are not poison/undef. 4326 4327 // TODO: Deal with other Constant subclasses. 4328 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4329 return true; 4330 4331 return false; 4332 } 4333 4334 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4335 const DataLayout &DL, 4336 AssumptionCache *AC, 4337 const Instruction *CxtI, 4338 const DominatorTree *DT) { 4339 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4340 Add, DL, AC, CxtI, DT); 4341 } 4342 4343 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4344 const Value *RHS, 4345 const DataLayout &DL, 4346 AssumptionCache *AC, 4347 const Instruction *CxtI, 4348 const DominatorTree *DT) { 4349 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4350 } 4351 4352 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4353 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4354 // of time because it's possible for another thread to interfere with it for an 4355 // arbitrary length of time, but programs aren't allowed to rely on that. 4356 4357 // If there is no successor, then execution can't transfer to it. 4358 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4359 return !CRI->unwindsToCaller(); 4360 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4361 return !CatchSwitch->unwindsToCaller(); 4362 if (isa<ResumeInst>(I)) 4363 return false; 4364 if (isa<ReturnInst>(I)) 4365 return false; 4366 if (isa<UnreachableInst>(I)) 4367 return false; 4368 4369 // Calls can throw, or contain an infinite loop, or kill the process. 4370 if (auto CS = ImmutableCallSite(I)) { 4371 // Call sites that throw have implicit non-local control flow. 4372 if (!CS.doesNotThrow()) 4373 return false; 4374 4375 // A function which doens't throw and has "willreturn" attribute will 4376 // always return. 4377 if (CS.hasFnAttr(Attribute::WillReturn)) 4378 return true; 4379 4380 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4381 // etc. and thus not return. However, LLVM already assumes that 4382 // 4383 // - Thread exiting actions are modeled as writes to memory invisible to 4384 // the program. 4385 // 4386 // - Loops that don't have side effects (side effects are volatile/atomic 4387 // stores and IO) always terminate (see http://llvm.org/PR965). 4388 // Furthermore IO itself is also modeled as writes to memory invisible to 4389 // the program. 4390 // 4391 // We rely on those assumptions here, and use the memory effects of the call 4392 // target as a proxy for checking that it always returns. 4393 4394 // FIXME: This isn't aggressive enough; a call which only writes to a global 4395 // is guaranteed to return. 4396 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4397 } 4398 4399 // Other instructions return normally. 4400 return true; 4401 } 4402 4403 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4404 // TODO: This is slightly conservative for invoke instruction since exiting 4405 // via an exception *is* normal control for them. 4406 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4407 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4408 return false; 4409 return true; 4410 } 4411 4412 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4413 const Loop *L) { 4414 // The loop header is guaranteed to be executed for every iteration. 4415 // 4416 // FIXME: Relax this constraint to cover all basic blocks that are 4417 // guaranteed to be executed at every iteration. 4418 if (I->getParent() != L->getHeader()) return false; 4419 4420 for (const Instruction &LI : *L->getHeader()) { 4421 if (&LI == I) return true; 4422 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4423 } 4424 llvm_unreachable("Instruction not contained in its own parent basic block."); 4425 } 4426 4427 bool llvm::propagatesFullPoison(const Instruction *I) { 4428 // TODO: This should include all instructions apart from phis, selects and 4429 // call-like instructions. 4430 switch (I->getOpcode()) { 4431 case Instruction::Add: 4432 case Instruction::Sub: 4433 case Instruction::Xor: 4434 case Instruction::Trunc: 4435 case Instruction::BitCast: 4436 case Instruction::AddrSpaceCast: 4437 case Instruction::Mul: 4438 case Instruction::Shl: 4439 case Instruction::GetElementPtr: 4440 // These operations all propagate poison unconditionally. Note that poison 4441 // is not any particular value, so xor or subtraction of poison with 4442 // itself still yields poison, not zero. 4443 return true; 4444 4445 case Instruction::AShr: 4446 case Instruction::SExt: 4447 // For these operations, one bit of the input is replicated across 4448 // multiple output bits. A replicated poison bit is still poison. 4449 return true; 4450 4451 case Instruction::ICmp: 4452 // Comparing poison with any value yields poison. This is why, for 4453 // instance, x s< (x +nsw 1) can be folded to true. 4454 return true; 4455 4456 default: 4457 return false; 4458 } 4459 } 4460 4461 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4462 switch (I->getOpcode()) { 4463 case Instruction::Store: 4464 return cast<StoreInst>(I)->getPointerOperand(); 4465 4466 case Instruction::Load: 4467 return cast<LoadInst>(I)->getPointerOperand(); 4468 4469 case Instruction::AtomicCmpXchg: 4470 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4471 4472 case Instruction::AtomicRMW: 4473 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4474 4475 case Instruction::UDiv: 4476 case Instruction::SDiv: 4477 case Instruction::URem: 4478 case Instruction::SRem: 4479 return I->getOperand(1); 4480 4481 default: 4482 // Note: It's really tempting to think that a conditional branch or 4483 // switch should be listed here, but that's incorrect. It's not 4484 // branching off of poison which is UB, it is executing a side effecting 4485 // instruction which follows the branch. 4486 return nullptr; 4487 } 4488 } 4489 4490 bool llvm::mustTriggerUB(const Instruction *I, 4491 const SmallSet<const Value *, 16>& KnownPoison) { 4492 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4493 return (NotPoison && KnownPoison.count(NotPoison)); 4494 } 4495 4496 4497 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4498 // We currently only look for uses of poison values within the same basic 4499 // block, as that makes it easier to guarantee that the uses will be 4500 // executed given that PoisonI is executed. 4501 // 4502 // FIXME: Expand this to consider uses beyond the same basic block. To do 4503 // this, look out for the distinction between post-dominance and strong 4504 // post-dominance. 4505 const BasicBlock *BB = PoisonI->getParent(); 4506 4507 // Set of instructions that we have proved will yield poison if PoisonI 4508 // does. 4509 SmallSet<const Value *, 16> YieldsPoison; 4510 SmallSet<const BasicBlock *, 4> Visited; 4511 YieldsPoison.insert(PoisonI); 4512 Visited.insert(PoisonI->getParent()); 4513 4514 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4515 4516 unsigned Iter = 0; 4517 while (Iter++ < MaxDepth) { 4518 for (auto &I : make_range(Begin, End)) { 4519 if (&I != PoisonI) { 4520 if (mustTriggerUB(&I, YieldsPoison)) 4521 return true; 4522 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4523 return false; 4524 } 4525 4526 // Mark poison that propagates from I through uses of I. 4527 if (YieldsPoison.count(&I)) { 4528 for (const User *User : I.users()) { 4529 const Instruction *UserI = cast<Instruction>(User); 4530 if (propagatesFullPoison(UserI)) 4531 YieldsPoison.insert(User); 4532 } 4533 } 4534 } 4535 4536 if (auto *NextBB = BB->getSingleSuccessor()) { 4537 if (Visited.insert(NextBB).second) { 4538 BB = NextBB; 4539 Begin = BB->getFirstNonPHI()->getIterator(); 4540 End = BB->end(); 4541 continue; 4542 } 4543 } 4544 4545 break; 4546 } 4547 return false; 4548 } 4549 4550 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4551 if (FMF.noNaNs()) 4552 return true; 4553 4554 if (auto *C = dyn_cast<ConstantFP>(V)) 4555 return !C->isNaN(); 4556 4557 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4558 if (!C->getElementType()->isFloatingPointTy()) 4559 return false; 4560 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4561 if (C->getElementAsAPFloat(I).isNaN()) 4562 return false; 4563 } 4564 return true; 4565 } 4566 4567 return false; 4568 } 4569 4570 static bool isKnownNonZero(const Value *V) { 4571 if (auto *C = dyn_cast<ConstantFP>(V)) 4572 return !C->isZero(); 4573 4574 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4575 if (!C->getElementType()->isFloatingPointTy()) 4576 return false; 4577 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4578 if (C->getElementAsAPFloat(I).isZero()) 4579 return false; 4580 } 4581 return true; 4582 } 4583 4584 return false; 4585 } 4586 4587 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4588 /// Given non-min/max outer cmp/select from the clamp pattern this 4589 /// function recognizes if it can be substitued by a "canonical" min/max 4590 /// pattern. 4591 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4592 Value *CmpLHS, Value *CmpRHS, 4593 Value *TrueVal, Value *FalseVal, 4594 Value *&LHS, Value *&RHS) { 4595 // Try to match 4596 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4597 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4598 // and return description of the outer Max/Min. 4599 4600 // First, check if select has inverse order: 4601 if (CmpRHS == FalseVal) { 4602 std::swap(TrueVal, FalseVal); 4603 Pred = CmpInst::getInversePredicate(Pred); 4604 } 4605 4606 // Assume success now. If there's no match, callers should not use these anyway. 4607 LHS = TrueVal; 4608 RHS = FalseVal; 4609 4610 const APFloat *FC1; 4611 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4612 return {SPF_UNKNOWN, SPNB_NA, false}; 4613 4614 const APFloat *FC2; 4615 switch (Pred) { 4616 case CmpInst::FCMP_OLT: 4617 case CmpInst::FCMP_OLE: 4618 case CmpInst::FCMP_ULT: 4619 case CmpInst::FCMP_ULE: 4620 if (match(FalseVal, 4621 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4622 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4623 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4624 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4625 break; 4626 case CmpInst::FCMP_OGT: 4627 case CmpInst::FCMP_OGE: 4628 case CmpInst::FCMP_UGT: 4629 case CmpInst::FCMP_UGE: 4630 if (match(FalseVal, 4631 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4632 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4633 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4634 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4635 break; 4636 default: 4637 break; 4638 } 4639 4640 return {SPF_UNKNOWN, SPNB_NA, false}; 4641 } 4642 4643 /// Recognize variations of: 4644 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4645 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4646 Value *CmpLHS, Value *CmpRHS, 4647 Value *TrueVal, Value *FalseVal) { 4648 // Swap the select operands and predicate to match the patterns below. 4649 if (CmpRHS != TrueVal) { 4650 Pred = ICmpInst::getSwappedPredicate(Pred); 4651 std::swap(TrueVal, FalseVal); 4652 } 4653 const APInt *C1; 4654 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4655 const APInt *C2; 4656 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4657 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4658 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4659 return {SPF_SMAX, SPNB_NA, false}; 4660 4661 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4662 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4663 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4664 return {SPF_SMIN, SPNB_NA, false}; 4665 4666 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4667 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4668 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4669 return {SPF_UMAX, SPNB_NA, false}; 4670 4671 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4672 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4673 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4674 return {SPF_UMIN, SPNB_NA, false}; 4675 } 4676 return {SPF_UNKNOWN, SPNB_NA, false}; 4677 } 4678 4679 /// Recognize variations of: 4680 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4681 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4682 Value *CmpLHS, Value *CmpRHS, 4683 Value *TVal, Value *FVal, 4684 unsigned Depth) { 4685 // TODO: Allow FP min/max with nnan/nsz. 4686 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4687 4688 Value *A = nullptr, *B = nullptr; 4689 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4690 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4691 return {SPF_UNKNOWN, SPNB_NA, false}; 4692 4693 Value *C = nullptr, *D = nullptr; 4694 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4695 if (L.Flavor != R.Flavor) 4696 return {SPF_UNKNOWN, SPNB_NA, false}; 4697 4698 // We have something like: x Pred y ? min(a, b) : min(c, d). 4699 // Try to match the compare to the min/max operations of the select operands. 4700 // First, make sure we have the right compare predicate. 4701 switch (L.Flavor) { 4702 case SPF_SMIN: 4703 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4704 Pred = ICmpInst::getSwappedPredicate(Pred); 4705 std::swap(CmpLHS, CmpRHS); 4706 } 4707 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4708 break; 4709 return {SPF_UNKNOWN, SPNB_NA, false}; 4710 case SPF_SMAX: 4711 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4712 Pred = ICmpInst::getSwappedPredicate(Pred); 4713 std::swap(CmpLHS, CmpRHS); 4714 } 4715 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4716 break; 4717 return {SPF_UNKNOWN, SPNB_NA, false}; 4718 case SPF_UMIN: 4719 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4720 Pred = ICmpInst::getSwappedPredicate(Pred); 4721 std::swap(CmpLHS, CmpRHS); 4722 } 4723 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4724 break; 4725 return {SPF_UNKNOWN, SPNB_NA, false}; 4726 case SPF_UMAX: 4727 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4728 Pred = ICmpInst::getSwappedPredicate(Pred); 4729 std::swap(CmpLHS, CmpRHS); 4730 } 4731 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4732 break; 4733 return {SPF_UNKNOWN, SPNB_NA, false}; 4734 default: 4735 return {SPF_UNKNOWN, SPNB_NA, false}; 4736 } 4737 4738 // If there is a common operand in the already matched min/max and the other 4739 // min/max operands match the compare operands (either directly or inverted), 4740 // then this is min/max of the same flavor. 4741 4742 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4743 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4744 if (D == B) { 4745 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4746 match(A, m_Not(m_Specific(CmpRHS))))) 4747 return {L.Flavor, SPNB_NA, false}; 4748 } 4749 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4750 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4751 if (C == B) { 4752 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4753 match(A, m_Not(m_Specific(CmpRHS))))) 4754 return {L.Flavor, SPNB_NA, false}; 4755 } 4756 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4757 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4758 if (D == A) { 4759 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4760 match(B, m_Not(m_Specific(CmpRHS))))) 4761 return {L.Flavor, SPNB_NA, false}; 4762 } 4763 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4764 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4765 if (C == A) { 4766 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4767 match(B, m_Not(m_Specific(CmpRHS))))) 4768 return {L.Flavor, SPNB_NA, false}; 4769 } 4770 4771 return {SPF_UNKNOWN, SPNB_NA, false}; 4772 } 4773 4774 /// Match non-obvious integer minimum and maximum sequences. 4775 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4776 Value *CmpLHS, Value *CmpRHS, 4777 Value *TrueVal, Value *FalseVal, 4778 Value *&LHS, Value *&RHS, 4779 unsigned Depth) { 4780 // Assume success. If there's no match, callers should not use these anyway. 4781 LHS = TrueVal; 4782 RHS = FalseVal; 4783 4784 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4785 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4786 return SPR; 4787 4788 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4789 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4790 return SPR; 4791 4792 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4793 return {SPF_UNKNOWN, SPNB_NA, false}; 4794 4795 // Z = X -nsw Y 4796 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4797 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4798 if (match(TrueVal, m_Zero()) && 4799 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4800 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4801 4802 // Z = X -nsw Y 4803 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4804 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4805 if (match(FalseVal, m_Zero()) && 4806 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4807 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4808 4809 const APInt *C1; 4810 if (!match(CmpRHS, m_APInt(C1))) 4811 return {SPF_UNKNOWN, SPNB_NA, false}; 4812 4813 // An unsigned min/max can be written with a signed compare. 4814 const APInt *C2; 4815 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4816 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4817 // Is the sign bit set? 4818 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4819 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4820 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4821 C2->isMaxSignedValue()) 4822 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4823 4824 // Is the sign bit clear? 4825 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4826 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4827 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4828 C2->isMinSignedValue()) 4829 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4830 } 4831 4832 // Look through 'not' ops to find disguised signed min/max. 4833 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4834 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4835 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4836 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4837 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4838 4839 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4840 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4841 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4842 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4843 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4844 4845 return {SPF_UNKNOWN, SPNB_NA, false}; 4846 } 4847 4848 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4849 assert(X && Y && "Invalid operand"); 4850 4851 // X = sub (0, Y) || X = sub nsw (0, Y) 4852 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4853 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4854 return true; 4855 4856 // Y = sub (0, X) || Y = sub nsw (0, X) 4857 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4858 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4859 return true; 4860 4861 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4862 Value *A, *B; 4863 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4864 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4865 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4866 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4867 } 4868 4869 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4870 FastMathFlags FMF, 4871 Value *CmpLHS, Value *CmpRHS, 4872 Value *TrueVal, Value *FalseVal, 4873 Value *&LHS, Value *&RHS, 4874 unsigned Depth) { 4875 if (CmpInst::isFPPredicate(Pred)) { 4876 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 4877 // 0.0 operand, set the compare's 0.0 operands to that same value for the 4878 // purpose of identifying min/max. Disregard vector constants with undefined 4879 // elements because those can not be back-propagated for analysis. 4880 Value *OutputZeroVal = nullptr; 4881 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 4882 !cast<Constant>(TrueVal)->containsUndefElement()) 4883 OutputZeroVal = TrueVal; 4884 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 4885 !cast<Constant>(FalseVal)->containsUndefElement()) 4886 OutputZeroVal = FalseVal; 4887 4888 if (OutputZeroVal) { 4889 if (match(CmpLHS, m_AnyZeroFP())) 4890 CmpLHS = OutputZeroVal; 4891 if (match(CmpRHS, m_AnyZeroFP())) 4892 CmpRHS = OutputZeroVal; 4893 } 4894 } 4895 4896 LHS = CmpLHS; 4897 RHS = CmpRHS; 4898 4899 // Signed zero may return inconsistent results between implementations. 4900 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4901 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4902 // Therefore, we behave conservatively and only proceed if at least one of the 4903 // operands is known to not be zero or if we don't care about signed zero. 4904 switch (Pred) { 4905 default: break; 4906 // FIXME: Include OGT/OLT/UGT/ULT. 4907 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4908 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4909 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4910 !isKnownNonZero(CmpRHS)) 4911 return {SPF_UNKNOWN, SPNB_NA, false}; 4912 } 4913 4914 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4915 bool Ordered = false; 4916 4917 // When given one NaN and one non-NaN input: 4918 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4919 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4920 // ordered comparison fails), which could be NaN or non-NaN. 4921 // so here we discover exactly what NaN behavior is required/accepted. 4922 if (CmpInst::isFPPredicate(Pred)) { 4923 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4924 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4925 4926 if (LHSSafe && RHSSafe) { 4927 // Both operands are known non-NaN. 4928 NaNBehavior = SPNB_RETURNS_ANY; 4929 } else if (CmpInst::isOrdered(Pred)) { 4930 // An ordered comparison will return false when given a NaN, so it 4931 // returns the RHS. 4932 Ordered = true; 4933 if (LHSSafe) 4934 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4935 NaNBehavior = SPNB_RETURNS_NAN; 4936 else if (RHSSafe) 4937 NaNBehavior = SPNB_RETURNS_OTHER; 4938 else 4939 // Completely unsafe. 4940 return {SPF_UNKNOWN, SPNB_NA, false}; 4941 } else { 4942 Ordered = false; 4943 // An unordered comparison will return true when given a NaN, so it 4944 // returns the LHS. 4945 if (LHSSafe) 4946 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4947 NaNBehavior = SPNB_RETURNS_OTHER; 4948 else if (RHSSafe) 4949 NaNBehavior = SPNB_RETURNS_NAN; 4950 else 4951 // Completely unsafe. 4952 return {SPF_UNKNOWN, SPNB_NA, false}; 4953 } 4954 } 4955 4956 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4957 std::swap(CmpLHS, CmpRHS); 4958 Pred = CmpInst::getSwappedPredicate(Pred); 4959 if (NaNBehavior == SPNB_RETURNS_NAN) 4960 NaNBehavior = SPNB_RETURNS_OTHER; 4961 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4962 NaNBehavior = SPNB_RETURNS_NAN; 4963 Ordered = !Ordered; 4964 } 4965 4966 // ([if]cmp X, Y) ? X : Y 4967 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4968 switch (Pred) { 4969 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4970 case ICmpInst::ICMP_UGT: 4971 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4972 case ICmpInst::ICMP_SGT: 4973 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4974 case ICmpInst::ICMP_ULT: 4975 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4976 case ICmpInst::ICMP_SLT: 4977 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4978 case FCmpInst::FCMP_UGT: 4979 case FCmpInst::FCMP_UGE: 4980 case FCmpInst::FCMP_OGT: 4981 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4982 case FCmpInst::FCMP_ULT: 4983 case FCmpInst::FCMP_ULE: 4984 case FCmpInst::FCMP_OLT: 4985 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4986 } 4987 } 4988 4989 if (isKnownNegation(TrueVal, FalseVal)) { 4990 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4991 // match against either LHS or sext(LHS). 4992 auto MaybeSExtCmpLHS = 4993 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4994 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4995 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4996 if (match(TrueVal, MaybeSExtCmpLHS)) { 4997 // Set the return values. If the compare uses the negated value (-X >s 0), 4998 // swap the return values because the negated value is always 'RHS'. 4999 LHS = TrueVal; 5000 RHS = FalseVal; 5001 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5002 std::swap(LHS, RHS); 5003 5004 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5005 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5006 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5007 return {SPF_ABS, SPNB_NA, false}; 5008 5009 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5010 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5011 return {SPF_ABS, SPNB_NA, false}; 5012 5013 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5014 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5015 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5016 return {SPF_NABS, SPNB_NA, false}; 5017 } 5018 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5019 // Set the return values. If the compare uses the negated value (-X >s 0), 5020 // swap the return values because the negated value is always 'RHS'. 5021 LHS = FalseVal; 5022 RHS = TrueVal; 5023 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5024 std::swap(LHS, RHS); 5025 5026 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5027 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5028 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5029 return {SPF_NABS, SPNB_NA, false}; 5030 5031 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5032 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5033 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5034 return {SPF_ABS, SPNB_NA, false}; 5035 } 5036 } 5037 5038 if (CmpInst::isIntPredicate(Pred)) 5039 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5040 5041 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5042 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5043 // semantics than minNum. Be conservative in such case. 5044 if (NaNBehavior != SPNB_RETURNS_ANY || 5045 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5046 !isKnownNonZero(CmpRHS))) 5047 return {SPF_UNKNOWN, SPNB_NA, false}; 5048 5049 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5050 } 5051 5052 /// Helps to match a select pattern in case of a type mismatch. 5053 /// 5054 /// The function processes the case when type of true and false values of a 5055 /// select instruction differs from type of the cmp instruction operands because 5056 /// of a cast instruction. The function checks if it is legal to move the cast 5057 /// operation after "select". If yes, it returns the new second value of 5058 /// "select" (with the assumption that cast is moved): 5059 /// 1. As operand of cast instruction when both values of "select" are same cast 5060 /// instructions. 5061 /// 2. As restored constant (by applying reverse cast operation) when the first 5062 /// value of the "select" is a cast operation and the second value is a 5063 /// constant. 5064 /// NOTE: We return only the new second value because the first value could be 5065 /// accessed as operand of cast instruction. 5066 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5067 Instruction::CastOps *CastOp) { 5068 auto *Cast1 = dyn_cast<CastInst>(V1); 5069 if (!Cast1) 5070 return nullptr; 5071 5072 *CastOp = Cast1->getOpcode(); 5073 Type *SrcTy = Cast1->getSrcTy(); 5074 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5075 // If V1 and V2 are both the same cast from the same type, look through V1. 5076 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5077 return Cast2->getOperand(0); 5078 return nullptr; 5079 } 5080 5081 auto *C = dyn_cast<Constant>(V2); 5082 if (!C) 5083 return nullptr; 5084 5085 Constant *CastedTo = nullptr; 5086 switch (*CastOp) { 5087 case Instruction::ZExt: 5088 if (CmpI->isUnsigned()) 5089 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5090 break; 5091 case Instruction::SExt: 5092 if (CmpI->isSigned()) 5093 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5094 break; 5095 case Instruction::Trunc: 5096 Constant *CmpConst; 5097 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5098 CmpConst->getType() == SrcTy) { 5099 // Here we have the following case: 5100 // 5101 // %cond = cmp iN %x, CmpConst 5102 // %tr = trunc iN %x to iK 5103 // %narrowsel = select i1 %cond, iK %t, iK C 5104 // 5105 // We can always move trunc after select operation: 5106 // 5107 // %cond = cmp iN %x, CmpConst 5108 // %widesel = select i1 %cond, iN %x, iN CmpConst 5109 // %tr = trunc iN %widesel to iK 5110 // 5111 // Note that C could be extended in any way because we don't care about 5112 // upper bits after truncation. It can't be abs pattern, because it would 5113 // look like: 5114 // 5115 // select i1 %cond, x, -x. 5116 // 5117 // So only min/max pattern could be matched. Such match requires widened C 5118 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5119 // CmpConst == C is checked below. 5120 CastedTo = CmpConst; 5121 } else { 5122 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5123 } 5124 break; 5125 case Instruction::FPTrunc: 5126 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5127 break; 5128 case Instruction::FPExt: 5129 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5130 break; 5131 case Instruction::FPToUI: 5132 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5133 break; 5134 case Instruction::FPToSI: 5135 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5136 break; 5137 case Instruction::UIToFP: 5138 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5139 break; 5140 case Instruction::SIToFP: 5141 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5142 break; 5143 default: 5144 break; 5145 } 5146 5147 if (!CastedTo) 5148 return nullptr; 5149 5150 // Make sure the cast doesn't lose any information. 5151 Constant *CastedBack = 5152 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5153 if (CastedBack != C) 5154 return nullptr; 5155 5156 return CastedTo; 5157 } 5158 5159 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5160 Instruction::CastOps *CastOp, 5161 unsigned Depth) { 5162 if (Depth >= MaxDepth) 5163 return {SPF_UNKNOWN, SPNB_NA, false}; 5164 5165 SelectInst *SI = dyn_cast<SelectInst>(V); 5166 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5167 5168 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5169 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5170 5171 Value *TrueVal = SI->getTrueValue(); 5172 Value *FalseVal = SI->getFalseValue(); 5173 5174 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5175 CastOp, Depth); 5176 } 5177 5178 SelectPatternResult llvm::matchDecomposedSelectPattern( 5179 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5180 Instruction::CastOps *CastOp, unsigned Depth) { 5181 CmpInst::Predicate Pred = CmpI->getPredicate(); 5182 Value *CmpLHS = CmpI->getOperand(0); 5183 Value *CmpRHS = CmpI->getOperand(1); 5184 FastMathFlags FMF; 5185 if (isa<FPMathOperator>(CmpI)) 5186 FMF = CmpI->getFastMathFlags(); 5187 5188 // Bail out early. 5189 if (CmpI->isEquality()) 5190 return {SPF_UNKNOWN, SPNB_NA, false}; 5191 5192 // Deal with type mismatches. 5193 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5194 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5195 // If this is a potential fmin/fmax with a cast to integer, then ignore 5196 // -0.0 because there is no corresponding integer value. 5197 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5198 FMF.setNoSignedZeros(); 5199 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5200 cast<CastInst>(TrueVal)->getOperand(0), C, 5201 LHS, RHS, Depth); 5202 } 5203 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5204 // If this is a potential fmin/fmax with a cast to integer, then ignore 5205 // -0.0 because there is no corresponding integer value. 5206 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5207 FMF.setNoSignedZeros(); 5208 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5209 C, cast<CastInst>(FalseVal)->getOperand(0), 5210 LHS, RHS, Depth); 5211 } 5212 } 5213 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5214 LHS, RHS, Depth); 5215 } 5216 5217 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5218 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5219 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5220 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5221 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5222 if (SPF == SPF_FMINNUM) 5223 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5224 if (SPF == SPF_FMAXNUM) 5225 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5226 llvm_unreachable("unhandled!"); 5227 } 5228 5229 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5230 if (SPF == SPF_SMIN) return SPF_SMAX; 5231 if (SPF == SPF_UMIN) return SPF_UMAX; 5232 if (SPF == SPF_SMAX) return SPF_SMIN; 5233 if (SPF == SPF_UMAX) return SPF_UMIN; 5234 llvm_unreachable("unhandled!"); 5235 } 5236 5237 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5238 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5239 } 5240 5241 /// Return true if "icmp Pred LHS RHS" is always true. 5242 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5243 const Value *RHS, const DataLayout &DL, 5244 unsigned Depth) { 5245 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5246 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5247 return true; 5248 5249 switch (Pred) { 5250 default: 5251 return false; 5252 5253 case CmpInst::ICMP_SLE: { 5254 const APInt *C; 5255 5256 // LHS s<= LHS +_{nsw} C if C >= 0 5257 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5258 return !C->isNegative(); 5259 return false; 5260 } 5261 5262 case CmpInst::ICMP_ULE: { 5263 const APInt *C; 5264 5265 // LHS u<= LHS +_{nuw} C for any C 5266 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5267 return true; 5268 5269 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5270 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5271 const Value *&X, 5272 const APInt *&CA, const APInt *&CB) { 5273 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5274 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5275 return true; 5276 5277 // If X & C == 0 then (X | C) == X +_{nuw} C 5278 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5279 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5280 KnownBits Known(CA->getBitWidth()); 5281 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5282 /*CxtI*/ nullptr, /*DT*/ nullptr); 5283 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5284 return true; 5285 } 5286 5287 return false; 5288 }; 5289 5290 const Value *X; 5291 const APInt *CLHS, *CRHS; 5292 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5293 return CLHS->ule(*CRHS); 5294 5295 return false; 5296 } 5297 } 5298 } 5299 5300 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5301 /// ALHS ARHS" is true. Otherwise, return None. 5302 static Optional<bool> 5303 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5304 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5305 const DataLayout &DL, unsigned Depth) { 5306 switch (Pred) { 5307 default: 5308 return None; 5309 5310 case CmpInst::ICMP_SLT: 5311 case CmpInst::ICMP_SLE: 5312 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5313 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5314 return true; 5315 return None; 5316 5317 case CmpInst::ICMP_ULT: 5318 case CmpInst::ICMP_ULE: 5319 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5320 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5321 return true; 5322 return None; 5323 } 5324 } 5325 5326 /// Return true if the operands of the two compares match. IsSwappedOps is true 5327 /// when the operands match, but are swapped. 5328 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5329 const Value *BLHS, const Value *BRHS, 5330 bool &IsSwappedOps) { 5331 5332 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5333 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5334 return IsMatchingOps || IsSwappedOps; 5335 } 5336 5337 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5338 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5339 /// Otherwise, return None if we can't infer anything. 5340 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5341 CmpInst::Predicate BPred, 5342 bool AreSwappedOps) { 5343 // Canonicalize the predicate as if the operands were not commuted. 5344 if (AreSwappedOps) 5345 BPred = ICmpInst::getSwappedPredicate(BPred); 5346 5347 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5348 return true; 5349 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5350 return false; 5351 5352 return None; 5353 } 5354 5355 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5356 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5357 /// Otherwise, return None if we can't infer anything. 5358 static Optional<bool> 5359 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5360 const ConstantInt *C1, 5361 CmpInst::Predicate BPred, 5362 const ConstantInt *C2) { 5363 ConstantRange DomCR = 5364 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5365 ConstantRange CR = 5366 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5367 ConstantRange Intersection = DomCR.intersectWith(CR); 5368 ConstantRange Difference = DomCR.difference(CR); 5369 if (Intersection.isEmptySet()) 5370 return false; 5371 if (Difference.isEmptySet()) 5372 return true; 5373 return None; 5374 } 5375 5376 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5377 /// false. Otherwise, return None if we can't infer anything. 5378 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5379 const ICmpInst *RHS, 5380 const DataLayout &DL, bool LHSIsTrue, 5381 unsigned Depth) { 5382 Value *ALHS = LHS->getOperand(0); 5383 Value *ARHS = LHS->getOperand(1); 5384 // The rest of the logic assumes the LHS condition is true. If that's not the 5385 // case, invert the predicate to make it so. 5386 ICmpInst::Predicate APred = 5387 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5388 5389 Value *BLHS = RHS->getOperand(0); 5390 Value *BRHS = RHS->getOperand(1); 5391 ICmpInst::Predicate BPred = RHS->getPredicate(); 5392 5393 // Can we infer anything when the two compares have matching operands? 5394 bool AreSwappedOps; 5395 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5396 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5397 APred, BPred, AreSwappedOps)) 5398 return Implication; 5399 // No amount of additional analysis will infer the second condition, so 5400 // early exit. 5401 return None; 5402 } 5403 5404 // Can we infer anything when the LHS operands match and the RHS operands are 5405 // constants (not necessarily matching)? 5406 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5407 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5408 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5409 return Implication; 5410 // No amount of additional analysis will infer the second condition, so 5411 // early exit. 5412 return None; 5413 } 5414 5415 if (APred == BPred) 5416 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5417 return None; 5418 } 5419 5420 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5421 /// false. Otherwise, return None if we can't infer anything. We expect the 5422 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5423 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5424 const ICmpInst *RHS, 5425 const DataLayout &DL, bool LHSIsTrue, 5426 unsigned Depth) { 5427 // The LHS must be an 'or' or an 'and' instruction. 5428 assert((LHS->getOpcode() == Instruction::And || 5429 LHS->getOpcode() == Instruction::Or) && 5430 "Expected LHS to be 'and' or 'or'."); 5431 5432 assert(Depth <= MaxDepth && "Hit recursion limit"); 5433 5434 // If the result of an 'or' is false, then we know both legs of the 'or' are 5435 // false. Similarly, if the result of an 'and' is true, then we know both 5436 // legs of the 'and' are true. 5437 Value *ALHS, *ARHS; 5438 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5439 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5440 // FIXME: Make this non-recursion. 5441 if (Optional<bool> Implication = 5442 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5443 return Implication; 5444 if (Optional<bool> Implication = 5445 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5446 return Implication; 5447 return None; 5448 } 5449 return None; 5450 } 5451 5452 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5453 const DataLayout &DL, bool LHSIsTrue, 5454 unsigned Depth) { 5455 // Bail out when we hit the limit. 5456 if (Depth == MaxDepth) 5457 return None; 5458 5459 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5460 // example. 5461 if (LHS->getType() != RHS->getType()) 5462 return None; 5463 5464 Type *OpTy = LHS->getType(); 5465 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5466 5467 // LHS ==> RHS by definition 5468 if (LHS == RHS) 5469 return LHSIsTrue; 5470 5471 // FIXME: Extending the code below to handle vectors. 5472 if (OpTy->isVectorTy()) 5473 return None; 5474 5475 assert(OpTy->isIntegerTy(1) && "implied by above"); 5476 5477 // Both LHS and RHS are icmps. 5478 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5479 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5480 if (LHSCmp && RHSCmp) 5481 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5482 5483 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5484 // an icmp. FIXME: Add support for and/or on the RHS. 5485 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5486 if (LHSBO && RHSCmp) { 5487 if ((LHSBO->getOpcode() == Instruction::And || 5488 LHSBO->getOpcode() == Instruction::Or)) 5489 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5490 } 5491 return None; 5492 } 5493 5494 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5495 const Instruction *ContextI, 5496 const DataLayout &DL) { 5497 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5498 if (!ContextI || !ContextI->getParent()) 5499 return None; 5500 5501 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5502 // dominator tree (eg, from a SimplifyQuery) instead? 5503 const BasicBlock *ContextBB = ContextI->getParent(); 5504 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5505 if (!PredBB) 5506 return None; 5507 5508 // We need a conditional branch in the predecessor. 5509 Value *PredCond; 5510 BasicBlock *TrueBB, *FalseBB; 5511 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5512 return None; 5513 5514 // The branch should get simplified. Don't bother simplifying this condition. 5515 if (TrueBB == FalseBB) 5516 return None; 5517 5518 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5519 "Predecessor block does not point to successor?"); 5520 5521 // Is this condition implied by the predecessor condition? 5522 bool CondIsTrue = TrueBB == ContextBB; 5523 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5524 } 5525 5526 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5527 APInt &Upper, const InstrInfoQuery &IIQ) { 5528 unsigned Width = Lower.getBitWidth(); 5529 const APInt *C; 5530 switch (BO.getOpcode()) { 5531 case Instruction::Add: 5532 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5533 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5534 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5535 // 'add nuw x, C' produces [C, UINT_MAX]. 5536 Lower = *C; 5537 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5538 if (C->isNegative()) { 5539 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5540 Lower = APInt::getSignedMinValue(Width); 5541 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5542 } else { 5543 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5544 Lower = APInt::getSignedMinValue(Width) + *C; 5545 Upper = APInt::getSignedMaxValue(Width) + 1; 5546 } 5547 } 5548 } 5549 break; 5550 5551 case Instruction::And: 5552 if (match(BO.getOperand(1), m_APInt(C))) 5553 // 'and x, C' produces [0, C]. 5554 Upper = *C + 1; 5555 break; 5556 5557 case Instruction::Or: 5558 if (match(BO.getOperand(1), m_APInt(C))) 5559 // 'or x, C' produces [C, UINT_MAX]. 5560 Lower = *C; 5561 break; 5562 5563 case Instruction::AShr: 5564 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5565 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5566 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5567 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5568 } else if (match(BO.getOperand(0), m_APInt(C))) { 5569 unsigned ShiftAmount = Width - 1; 5570 if (!C->isNullValue() && IIQ.isExact(&BO)) 5571 ShiftAmount = C->countTrailingZeros(); 5572 if (C->isNegative()) { 5573 // 'ashr C, x' produces [C, C >> (Width-1)] 5574 Lower = *C; 5575 Upper = C->ashr(ShiftAmount) + 1; 5576 } else { 5577 // 'ashr C, x' produces [C >> (Width-1), C] 5578 Lower = C->ashr(ShiftAmount); 5579 Upper = *C + 1; 5580 } 5581 } 5582 break; 5583 5584 case Instruction::LShr: 5585 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5586 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5587 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5588 } else if (match(BO.getOperand(0), m_APInt(C))) { 5589 // 'lshr C, x' produces [C >> (Width-1), C]. 5590 unsigned ShiftAmount = Width - 1; 5591 if (!C->isNullValue() && IIQ.isExact(&BO)) 5592 ShiftAmount = C->countTrailingZeros(); 5593 Lower = C->lshr(ShiftAmount); 5594 Upper = *C + 1; 5595 } 5596 break; 5597 5598 case Instruction::Shl: 5599 if (match(BO.getOperand(0), m_APInt(C))) { 5600 if (IIQ.hasNoUnsignedWrap(&BO)) { 5601 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5602 Lower = *C; 5603 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5604 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5605 if (C->isNegative()) { 5606 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5607 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5608 Lower = C->shl(ShiftAmount); 5609 Upper = *C + 1; 5610 } else { 5611 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5612 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5613 Lower = *C; 5614 Upper = C->shl(ShiftAmount) + 1; 5615 } 5616 } 5617 } 5618 break; 5619 5620 case Instruction::SDiv: 5621 if (match(BO.getOperand(1), m_APInt(C))) { 5622 APInt IntMin = APInt::getSignedMinValue(Width); 5623 APInt IntMax = APInt::getSignedMaxValue(Width); 5624 if (C->isAllOnesValue()) { 5625 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5626 // where C != -1 and C != 0 and C != 1 5627 Lower = IntMin + 1; 5628 Upper = IntMax + 1; 5629 } else if (C->countLeadingZeros() < Width - 1) { 5630 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5631 // where C != -1 and C != 0 and C != 1 5632 Lower = IntMin.sdiv(*C); 5633 Upper = IntMax.sdiv(*C); 5634 if (Lower.sgt(Upper)) 5635 std::swap(Lower, Upper); 5636 Upper = Upper + 1; 5637 assert(Upper != Lower && "Upper part of range has wrapped!"); 5638 } 5639 } else if (match(BO.getOperand(0), m_APInt(C))) { 5640 if (C->isMinSignedValue()) { 5641 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5642 Lower = *C; 5643 Upper = Lower.lshr(1) + 1; 5644 } else { 5645 // 'sdiv C, x' produces [-|C|, |C|]. 5646 Upper = C->abs() + 1; 5647 Lower = (-Upper) + 1; 5648 } 5649 } 5650 break; 5651 5652 case Instruction::UDiv: 5653 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5654 // 'udiv x, C' produces [0, UINT_MAX / C]. 5655 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5656 } else if (match(BO.getOperand(0), m_APInt(C))) { 5657 // 'udiv C, x' produces [0, C]. 5658 Upper = *C + 1; 5659 } 5660 break; 5661 5662 case Instruction::SRem: 5663 if (match(BO.getOperand(1), m_APInt(C))) { 5664 // 'srem x, C' produces (-|C|, |C|). 5665 Upper = C->abs(); 5666 Lower = (-Upper) + 1; 5667 } 5668 break; 5669 5670 case Instruction::URem: 5671 if (match(BO.getOperand(1), m_APInt(C))) 5672 // 'urem x, C' produces [0, C). 5673 Upper = *C; 5674 break; 5675 5676 default: 5677 break; 5678 } 5679 } 5680 5681 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5682 APInt &Upper) { 5683 unsigned Width = Lower.getBitWidth(); 5684 const APInt *C; 5685 switch (II.getIntrinsicID()) { 5686 case Intrinsic::uadd_sat: 5687 // uadd.sat(x, C) produces [C, UINT_MAX]. 5688 if (match(II.getOperand(0), m_APInt(C)) || 5689 match(II.getOperand(1), m_APInt(C))) 5690 Lower = *C; 5691 break; 5692 case Intrinsic::sadd_sat: 5693 if (match(II.getOperand(0), m_APInt(C)) || 5694 match(II.getOperand(1), m_APInt(C))) { 5695 if (C->isNegative()) { 5696 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5697 Lower = APInt::getSignedMinValue(Width); 5698 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5699 } else { 5700 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5701 Lower = APInt::getSignedMinValue(Width) + *C; 5702 Upper = APInt::getSignedMaxValue(Width) + 1; 5703 } 5704 } 5705 break; 5706 case Intrinsic::usub_sat: 5707 // usub.sat(C, x) produces [0, C]. 5708 if (match(II.getOperand(0), m_APInt(C))) 5709 Upper = *C + 1; 5710 // usub.sat(x, C) produces [0, UINT_MAX - C]. 5711 else if (match(II.getOperand(1), m_APInt(C))) 5712 Upper = APInt::getMaxValue(Width) - *C + 1; 5713 break; 5714 case Intrinsic::ssub_sat: 5715 if (match(II.getOperand(0), m_APInt(C))) { 5716 if (C->isNegative()) { 5717 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 5718 Lower = APInt::getSignedMinValue(Width); 5719 Upper = *C - APInt::getSignedMinValue(Width) + 1; 5720 } else { 5721 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 5722 Lower = *C - APInt::getSignedMaxValue(Width); 5723 Upper = APInt::getSignedMaxValue(Width) + 1; 5724 } 5725 } else if (match(II.getOperand(1), m_APInt(C))) { 5726 if (C->isNegative()) { 5727 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 5728 Lower = APInt::getSignedMinValue(Width) - *C; 5729 Upper = APInt::getSignedMaxValue(Width) + 1; 5730 } else { 5731 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 5732 Lower = APInt::getSignedMinValue(Width); 5733 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 5734 } 5735 } 5736 break; 5737 default: 5738 break; 5739 } 5740 } 5741 5742 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 5743 APInt &Upper, const InstrInfoQuery &IIQ) { 5744 const Value *LHS = nullptr, *RHS = nullptr; 5745 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 5746 if (R.Flavor == SPF_UNKNOWN) 5747 return; 5748 5749 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 5750 5751 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 5752 // If the negation part of the abs (in RHS) has the NSW flag, 5753 // then the result of abs(X) is [0..SIGNED_MAX], 5754 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 5755 Lower = APInt::getNullValue(BitWidth); 5756 if (match(RHS, m_Neg(m_Specific(LHS))) && 5757 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 5758 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5759 else 5760 Upper = APInt::getSignedMinValue(BitWidth) + 1; 5761 return; 5762 } 5763 5764 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 5765 // The result of -abs(X) is <= 0. 5766 Lower = APInt::getSignedMinValue(BitWidth); 5767 Upper = APInt(BitWidth, 1); 5768 return; 5769 } 5770 5771 const APInt *C; 5772 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 5773 return; 5774 5775 switch (R.Flavor) { 5776 case SPF_UMIN: 5777 Upper = *C + 1; 5778 break; 5779 case SPF_UMAX: 5780 Lower = *C; 5781 break; 5782 case SPF_SMIN: 5783 Lower = APInt::getSignedMinValue(BitWidth); 5784 Upper = *C + 1; 5785 break; 5786 case SPF_SMAX: 5787 Lower = *C; 5788 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5789 break; 5790 default: 5791 break; 5792 } 5793 } 5794 5795 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 5796 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 5797 5798 const APInt *C; 5799 if (match(V, m_APInt(C))) 5800 return ConstantRange(*C); 5801 5802 InstrInfoQuery IIQ(UseInstrInfo); 5803 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 5804 APInt Lower = APInt(BitWidth, 0); 5805 APInt Upper = APInt(BitWidth, 0); 5806 if (auto *BO = dyn_cast<BinaryOperator>(V)) 5807 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 5808 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 5809 setLimitsForIntrinsic(*II, Lower, Upper); 5810 else if (auto *SI = dyn_cast<SelectInst>(V)) 5811 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 5812 5813 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 5814 5815 if (auto *I = dyn_cast<Instruction>(V)) 5816 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 5817 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 5818 5819 return CR; 5820 } 5821 5822 static Optional<int64_t> 5823 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 5824 // Skip over the first indices. 5825 gep_type_iterator GTI = gep_type_begin(GEP); 5826 for (unsigned i = 1; i != Idx; ++i, ++GTI) 5827 /*skip along*/; 5828 5829 // Compute the offset implied by the rest of the indices. 5830 int64_t Offset = 0; 5831 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 5832 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 5833 if (!OpC) 5834 return None; 5835 if (OpC->isZero()) 5836 continue; // No offset. 5837 5838 // Handle struct indices, which add their field offset to the pointer. 5839 if (StructType *STy = GTI.getStructTypeOrNull()) { 5840 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 5841 continue; 5842 } 5843 5844 // Otherwise, we have a sequential type like an array or vector. Multiply 5845 // the index by the ElementSize. 5846 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 5847 Offset += Size * OpC->getSExtValue(); 5848 } 5849 5850 return Offset; 5851 } 5852 5853 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 5854 const DataLayout &DL) { 5855 Ptr1 = Ptr1->stripPointerCasts(); 5856 Ptr2 = Ptr2->stripPointerCasts(); 5857 5858 // Handle the trivial case first. 5859 if (Ptr1 == Ptr2) { 5860 return 0; 5861 } 5862 5863 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 5864 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 5865 5866 // If one pointer is a GEP see if the GEP is a constant offset from the base, 5867 // as in "P" and "gep P, 1". 5868 // Also do this iteratively to handle the the following case: 5869 // Ptr_t1 = GEP Ptr1, c1 5870 // Ptr_t2 = GEP Ptr_t1, c2 5871 // Ptr2 = GEP Ptr_t2, c3 5872 // where we will return c1+c2+c3. 5873 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 5874 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 5875 // are the same, and return the difference between offsets. 5876 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 5877 const Value *Ptr) -> Optional<int64_t> { 5878 const GEPOperator *GEP_T = GEP; 5879 int64_t OffsetVal = 0; 5880 bool HasSameBase = false; 5881 while (GEP_T) { 5882 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 5883 if (!Offset) 5884 return None; 5885 OffsetVal += *Offset; 5886 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 5887 if (Op0 == Ptr) { 5888 HasSameBase = true; 5889 break; 5890 } 5891 GEP_T = dyn_cast<GEPOperator>(Op0); 5892 } 5893 if (!HasSameBase) 5894 return None; 5895 return OffsetVal; 5896 }; 5897 5898 if (GEP1) { 5899 auto Offset = getOffsetFromBase(GEP1, Ptr2); 5900 if (Offset) 5901 return -*Offset; 5902 } 5903 if (GEP2) { 5904 auto Offset = getOffsetFromBase(GEP2, Ptr1); 5905 if (Offset) 5906 return Offset; 5907 } 5908 5909 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 5910 // base. After that base, they may have some number of common (and 5911 // potentially variable) indices. After that they handle some constant 5912 // offset, which determines their offset from each other. At this point, we 5913 // handle no other case. 5914 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 5915 return None; 5916 5917 // Skip any common indices and track the GEP types. 5918 unsigned Idx = 1; 5919 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 5920 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 5921 break; 5922 5923 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 5924 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 5925 if (!Offset1 || !Offset2) 5926 return None; 5927 return *Offset2 - *Offset1; 5928 } 5929