1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Statepoint.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/KnownBits.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <algorithm> 45 #include <array> 46 #include <cstring> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 const unsigned MaxDepth = 6; 51 52 // Controls the number of uses of the value searched for possible 53 // dominating comparisons. 54 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 55 cl::Hidden, cl::init(20)); 56 57 // This optimization is known to cause performance regressions is some cases, 58 // keep it under a temporary flag for now. 59 static cl::opt<bool> 60 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 61 cl::Hidden, cl::init(true)); 62 63 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 64 /// returns the element type's bitwidth. 65 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 66 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 67 return BitWidth; 68 69 return DL.getPointerTypeSizeInBits(Ty); 70 } 71 72 namespace { 73 // Simplifying using an assume can only be done in a particular control-flow 74 // context (the context instruction provides that context). If an assume and 75 // the context instruction are not in the same block then the DT helps in 76 // figuring out if we can use it. 77 struct Query { 78 const DataLayout &DL; 79 AssumptionCache *AC; 80 const Instruction *CxtI; 81 const DominatorTree *DT; 82 // Unlike the other analyses, this may be a nullptr because not all clients 83 // provide it currently. 84 OptimizationRemarkEmitter *ORE; 85 86 /// Set of assumptions that should be excluded from further queries. 87 /// This is because of the potential for mutual recursion to cause 88 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 89 /// classic case of this is assume(x = y), which will attempt to determine 90 /// bits in x from bits in y, which will attempt to determine bits in y from 91 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 92 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 93 /// (all of which can call computeKnownBits), and so on. 94 std::array<const Value *, MaxDepth> Excluded; 95 unsigned NumExcluded; 96 97 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 98 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 99 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 100 101 Query(const Query &Q, const Value *NewExcl) 102 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 103 NumExcluded(Q.NumExcluded) { 104 Excluded = Q.Excluded; 105 Excluded[NumExcluded++] = NewExcl; 106 assert(NumExcluded <= Excluded.size()); 107 } 108 109 bool isExcluded(const Value *Value) const { 110 if (NumExcluded == 0) 111 return false; 112 auto End = Excluded.begin() + NumExcluded; 113 return std::find(Excluded.begin(), End, Value) != End; 114 } 115 }; 116 } // end anonymous namespace 117 118 // Given the provided Value and, potentially, a context instruction, return 119 // the preferred context instruction (if any). 120 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 121 // If we've been provided with a context instruction, then use that (provided 122 // it has been inserted). 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 // If the value is really an already-inserted instruction, then use that. 127 CxtI = dyn_cast<Instruction>(V); 128 if (CxtI && CxtI->getParent()) 129 return CxtI; 130 131 return nullptr; 132 } 133 134 static void computeKnownBits(const Value *V, KnownBits &Known, 135 unsigned Depth, const Query &Q); 136 137 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 138 const DataLayout &DL, unsigned Depth, 139 AssumptionCache *AC, const Instruction *CxtI, 140 const DominatorTree *DT, 141 OptimizationRemarkEmitter *ORE) { 142 ::computeKnownBits(V, Known, Depth, 143 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 144 } 145 146 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 147 const Query &Q); 148 149 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 150 unsigned Depth, AssumptionCache *AC, 151 const Instruction *CxtI, 152 const DominatorTree *DT, 153 OptimizationRemarkEmitter *ORE) { 154 return ::computeKnownBits(V, Depth, 155 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 156 } 157 158 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 159 const DataLayout &DL, 160 AssumptionCache *AC, const Instruction *CxtI, 161 const DominatorTree *DT) { 162 assert(LHS->getType() == RHS->getType() && 163 "LHS and RHS should have the same type"); 164 assert(LHS->getType()->isIntOrIntVectorTy() && 165 "LHS and RHS should be integers"); 166 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 167 KnownBits LHSKnown(IT->getBitWidth()); 168 KnownBits RHSKnown(IT->getBitWidth()); 169 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 170 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 171 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 172 } 173 174 175 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 176 for (const User *U : CxtI->users()) { 177 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 178 if (IC->isEquality()) 179 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 180 if (C->isNullValue()) 181 continue; 182 return false; 183 } 184 return true; 185 } 186 187 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 188 const Query &Q); 189 190 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 191 bool OrZero, 192 unsigned Depth, AssumptionCache *AC, 193 const Instruction *CxtI, 194 const DominatorTree *DT) { 195 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 196 Query(DL, AC, safeCxtI(V, CxtI), DT)); 197 } 198 199 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 200 201 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 205 } 206 207 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 208 unsigned Depth, 209 AssumptionCache *AC, const Instruction *CxtI, 210 const DominatorTree *DT) { 211 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 212 return Known.isNonNegative(); 213 } 214 215 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 216 AssumptionCache *AC, const Instruction *CxtI, 217 const DominatorTree *DT) { 218 if (auto *CI = dyn_cast<ConstantInt>(V)) 219 return CI->getValue().isStrictlyPositive(); 220 221 // TODO: We'd doing two recursive queries here. We should factor this such 222 // that only a single query is needed. 223 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 224 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 225 } 226 227 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 228 AssumptionCache *AC, const Instruction *CxtI, 229 const DominatorTree *DT) { 230 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 231 return Known.isNegative(); 232 } 233 234 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 235 236 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 237 const DataLayout &DL, 238 AssumptionCache *AC, const Instruction *CxtI, 239 const DominatorTree *DT) { 240 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 241 safeCxtI(V1, safeCxtI(V2, CxtI)), 242 DT)); 243 } 244 245 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 246 const Query &Q); 247 248 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 249 const DataLayout &DL, 250 unsigned Depth, AssumptionCache *AC, 251 const Instruction *CxtI, const DominatorTree *DT) { 252 return ::MaskedValueIsZero(V, Mask, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT)); 254 } 255 256 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 257 const Query &Q); 258 259 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 260 unsigned Depth, AssumptionCache *AC, 261 const Instruction *CxtI, 262 const DominatorTree *DT) { 263 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 264 } 265 266 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 267 bool NSW, 268 KnownBits &KnownOut, KnownBits &Known2, 269 unsigned Depth, const Query &Q) { 270 unsigned BitWidth = KnownOut.getBitWidth(); 271 272 // If an initial sequence of bits in the result is not needed, the 273 // corresponding bits in the operands are not needed. 274 KnownBits LHSKnown(BitWidth); 275 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 276 computeKnownBits(Op1, Known2, Depth + 1, Q); 277 278 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 279 } 280 281 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 282 KnownBits &Known, KnownBits &Known2, 283 unsigned Depth, const Query &Q) { 284 unsigned BitWidth = Known.getBitWidth(); 285 computeKnownBits(Op1, Known, Depth + 1, Q); 286 computeKnownBits(Op0, Known2, Depth + 1, Q); 287 288 bool isKnownNegative = false; 289 bool isKnownNonNegative = false; 290 // If the multiplication is known not to overflow, compute the sign bit. 291 if (NSW) { 292 if (Op0 == Op1) { 293 // The product of a number with itself is non-negative. 294 isKnownNonNegative = true; 295 } else { 296 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 297 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 298 bool isKnownNegativeOp1 = Known.isNegative(); 299 bool isKnownNegativeOp0 = Known2.isNegative(); 300 // The product of two numbers with the same sign is non-negative. 301 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 302 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 303 // The product of a negative number and a non-negative number is either 304 // negative or zero. 305 if (!isKnownNonNegative) 306 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 307 isKnownNonZero(Op0, Depth, Q)) || 308 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 309 isKnownNonZero(Op1, Depth, Q)); 310 } 311 } 312 313 // If low bits are zero in either operand, output low known-0 bits. 314 // Also compute a conservative estimate for high known-0 bits. 315 // More trickiness is possible, but this is sufficient for the 316 // interesting case of alignment computation. 317 unsigned TrailZ = Known.countMinTrailingZeros() + 318 Known2.countMinTrailingZeros(); 319 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 320 Known2.countMinLeadingZeros(), 321 BitWidth) - BitWidth; 322 323 TrailZ = std::min(TrailZ, BitWidth); 324 LeadZ = std::min(LeadZ, BitWidth); 325 Known.resetAll(); 326 Known.Zero.setLowBits(TrailZ); 327 Known.Zero.setHighBits(LeadZ); 328 329 // Only make use of no-wrap flags if we failed to compute the sign bit 330 // directly. This matters if the multiplication always overflows, in 331 // which case we prefer to follow the result of the direct computation, 332 // though as the program is invoking undefined behaviour we can choose 333 // whatever we like here. 334 if (isKnownNonNegative && !Known.isNegative()) 335 Known.makeNonNegative(); 336 else if (isKnownNegative && !Known.isNonNegative()) 337 Known.makeNegative(); 338 } 339 340 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 341 KnownBits &Known) { 342 unsigned BitWidth = Known.getBitWidth(); 343 unsigned NumRanges = Ranges.getNumOperands() / 2; 344 assert(NumRanges >= 1); 345 346 Known.Zero.setAllBits(); 347 Known.One.setAllBits(); 348 349 for (unsigned i = 0; i < NumRanges; ++i) { 350 ConstantInt *Lower = 351 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 352 ConstantInt *Upper = 353 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 354 ConstantRange Range(Lower->getValue(), Upper->getValue()); 355 356 // The first CommonPrefixBits of all values in Range are equal. 357 unsigned CommonPrefixBits = 358 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 359 360 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 361 Known.One &= Range.getUnsignedMax() & Mask; 362 Known.Zero &= ~Range.getUnsignedMax() & Mask; 363 } 364 } 365 366 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 367 SmallVector<const Value *, 16> WorkSet(1, I); 368 SmallPtrSet<const Value *, 32> Visited; 369 SmallPtrSet<const Value *, 16> EphValues; 370 371 // The instruction defining an assumption's condition itself is always 372 // considered ephemeral to that assumption (even if it has other 373 // non-ephemeral users). See r246696's test case for an example. 374 if (is_contained(I->operands(), E)) 375 return true; 376 377 while (!WorkSet.empty()) { 378 const Value *V = WorkSet.pop_back_val(); 379 if (!Visited.insert(V).second) 380 continue; 381 382 // If all uses of this value are ephemeral, then so is this value. 383 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 384 if (V == E) 385 return true; 386 387 if (V == I || isSafeToSpeculativelyExecute(V)) { 388 EphValues.insert(V); 389 if (const User *U = dyn_cast<User>(V)) 390 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 391 J != JE; ++J) 392 WorkSet.push_back(*J); 393 } 394 } 395 } 396 397 return false; 398 } 399 400 // Is this an intrinsic that cannot be speculated but also cannot trap? 401 static bool isAssumeLikeIntrinsic(const Instruction *I) { 402 if (const CallInst *CI = dyn_cast<CallInst>(I)) 403 if (Function *F = CI->getCalledFunction()) 404 switch (F->getIntrinsicID()) { 405 default: break; 406 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 407 case Intrinsic::assume: 408 case Intrinsic::dbg_declare: 409 case Intrinsic::dbg_value: 410 case Intrinsic::invariant_start: 411 case Intrinsic::invariant_end: 412 case Intrinsic::lifetime_start: 413 case Intrinsic::lifetime_end: 414 case Intrinsic::objectsize: 415 case Intrinsic::ptr_annotation: 416 case Intrinsic::var_annotation: 417 return true; 418 } 419 420 return false; 421 } 422 423 bool llvm::isValidAssumeForContext(const Instruction *Inv, 424 const Instruction *CxtI, 425 const DominatorTree *DT) { 426 427 // There are two restrictions on the use of an assume: 428 // 1. The assume must dominate the context (or the control flow must 429 // reach the assume whenever it reaches the context). 430 // 2. The context must not be in the assume's set of ephemeral values 431 // (otherwise we will use the assume to prove that the condition 432 // feeding the assume is trivially true, thus causing the removal of 433 // the assume). 434 435 if (DT) { 436 if (DT->dominates(Inv, CxtI)) 437 return true; 438 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 439 // We don't have a DT, but this trivially dominates. 440 return true; 441 } 442 443 // With or without a DT, the only remaining case we will check is if the 444 // instructions are in the same BB. Give up if that is not the case. 445 if (Inv->getParent() != CxtI->getParent()) 446 return false; 447 448 // If we have a dom tree, then we now know that the assume doens't dominate 449 // the other instruction. If we don't have a dom tree then we can check if 450 // the assume is first in the BB. 451 if (!DT) { 452 // Search forward from the assume until we reach the context (or the end 453 // of the block); the common case is that the assume will come first. 454 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 455 IE = Inv->getParent()->end(); I != IE; ++I) 456 if (&*I == CxtI) 457 return true; 458 } 459 460 // The context comes first, but they're both in the same block. Make sure 461 // there is nothing in between that might interrupt the control flow. 462 for (BasicBlock::const_iterator I = 463 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 464 I != IE; ++I) 465 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 466 return false; 467 468 return !isEphemeralValueOf(Inv, CxtI); 469 } 470 471 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 472 unsigned Depth, const Query &Q) { 473 // Use of assumptions is context-sensitive. If we don't have a context, we 474 // cannot use them! 475 if (!Q.AC || !Q.CxtI) 476 return; 477 478 unsigned BitWidth = Known.getBitWidth(); 479 480 // Note that the patterns below need to be kept in sync with the code 481 // in AssumptionCache::updateAffectedValues. 482 483 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 484 if (!AssumeVH) 485 continue; 486 CallInst *I = cast<CallInst>(AssumeVH); 487 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 488 "Got assumption for the wrong function!"); 489 if (Q.isExcluded(I)) 490 continue; 491 492 // Warning: This loop can end up being somewhat performance sensetive. 493 // We're running this loop for once for each value queried resulting in a 494 // runtime of ~O(#assumes * #values). 495 496 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 497 "must be an assume intrinsic"); 498 499 Value *Arg = I->getArgOperand(0); 500 501 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 502 assert(BitWidth == 1 && "assume operand is not i1?"); 503 Known.setAllOnes(); 504 return; 505 } 506 if (match(Arg, m_Not(m_Specific(V))) && 507 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 508 assert(BitWidth == 1 && "assume operand is not i1?"); 509 Known.setAllZero(); 510 return; 511 } 512 513 // The remaining tests are all recursive, so bail out if we hit the limit. 514 if (Depth == MaxDepth) 515 continue; 516 517 Value *A, *B; 518 auto m_V = m_CombineOr(m_Specific(V), 519 m_CombineOr(m_PtrToInt(m_Specific(V)), 520 m_BitCast(m_Specific(V)))); 521 522 CmpInst::Predicate Pred; 523 ConstantInt *C; 524 // assume(v = a) 525 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 526 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 527 KnownBits RHSKnown(BitWidth); 528 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 529 Known.Zero |= RHSKnown.Zero; 530 Known.One |= RHSKnown.One; 531 // assume(v & b = a) 532 } else if (match(Arg, 533 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 534 Pred == ICmpInst::ICMP_EQ && 535 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 536 KnownBits RHSKnown(BitWidth); 537 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 538 KnownBits MaskKnown(BitWidth); 539 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 540 541 // For those bits in the mask that are known to be one, we can propagate 542 // known bits from the RHS to V. 543 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 544 Known.One |= RHSKnown.One & MaskKnown.One; 545 // assume(~(v & b) = a) 546 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 547 m_Value(A))) && 548 Pred == ICmpInst::ICMP_EQ && 549 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 550 KnownBits RHSKnown(BitWidth); 551 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 552 KnownBits MaskKnown(BitWidth); 553 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 554 555 // For those bits in the mask that are known to be one, we can propagate 556 // inverted known bits from the RHS to V. 557 Known.Zero |= RHSKnown.One & MaskKnown.One; 558 Known.One |= RHSKnown.Zero & MaskKnown.One; 559 // assume(v | b = a) 560 } else if (match(Arg, 561 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 562 Pred == ICmpInst::ICMP_EQ && 563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 564 KnownBits RHSKnown(BitWidth); 565 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 566 KnownBits BKnown(BitWidth); 567 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 568 569 // For those bits in B that are known to be zero, we can propagate known 570 // bits from the RHS to V. 571 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 572 Known.One |= RHSKnown.One & BKnown.Zero; 573 // assume(~(v | b) = a) 574 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 575 m_Value(A))) && 576 Pred == ICmpInst::ICMP_EQ && 577 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 578 KnownBits RHSKnown(BitWidth); 579 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 580 KnownBits BKnown(BitWidth); 581 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 582 583 // For those bits in B that are known to be zero, we can propagate 584 // inverted known bits from the RHS to V. 585 Known.Zero |= RHSKnown.One & BKnown.Zero; 586 Known.One |= RHSKnown.Zero & BKnown.Zero; 587 // assume(v ^ b = a) 588 } else if (match(Arg, 589 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 590 Pred == ICmpInst::ICMP_EQ && 591 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 592 KnownBits RHSKnown(BitWidth); 593 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 594 KnownBits BKnown(BitWidth); 595 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 596 597 // For those bits in B that are known to be zero, we can propagate known 598 // bits from the RHS to V. For those bits in B that are known to be one, 599 // we can propagate inverted known bits from the RHS to V. 600 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 601 Known.One |= RHSKnown.One & BKnown.Zero; 602 Known.Zero |= RHSKnown.One & BKnown.One; 603 Known.One |= RHSKnown.Zero & BKnown.One; 604 // assume(~(v ^ b) = a) 605 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 606 m_Value(A))) && 607 Pred == ICmpInst::ICMP_EQ && 608 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 609 KnownBits RHSKnown(BitWidth); 610 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 611 KnownBits BKnown(BitWidth); 612 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 613 614 // For those bits in B that are known to be zero, we can propagate 615 // inverted known bits from the RHS to V. For those bits in B that are 616 // known to be one, we can propagate known bits from the RHS to V. 617 Known.Zero |= RHSKnown.One & BKnown.Zero; 618 Known.One |= RHSKnown.Zero & BKnown.Zero; 619 Known.Zero |= RHSKnown.Zero & BKnown.One; 620 Known.One |= RHSKnown.One & BKnown.One; 621 // assume(v << c = a) 622 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 623 m_Value(A))) && 624 Pred == ICmpInst::ICMP_EQ && 625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 626 KnownBits RHSKnown(BitWidth); 627 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 628 // For those bits in RHS that are known, we can propagate them to known 629 // bits in V shifted to the right by C. 630 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 631 Known.Zero |= RHSKnown.Zero; 632 RHSKnown.One.lshrInPlace(C->getZExtValue()); 633 Known.One |= RHSKnown.One; 634 // assume(~(v << c) = a) 635 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 636 m_Value(A))) && 637 Pred == ICmpInst::ICMP_EQ && 638 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 639 KnownBits RHSKnown(BitWidth); 640 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 641 // For those bits in RHS that are known, we can propagate them inverted 642 // to known bits in V shifted to the right by C. 643 RHSKnown.One.lshrInPlace(C->getZExtValue()); 644 Known.Zero |= RHSKnown.One; 645 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 646 Known.One |= RHSKnown.Zero; 647 // assume(v >> c = a) 648 } else if (match(Arg, 649 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 650 m_Value(A))) && 651 Pred == ICmpInst::ICMP_EQ && 652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 653 KnownBits RHSKnown(BitWidth); 654 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 655 // For those bits in RHS that are known, we can propagate them to known 656 // bits in V shifted to the right by C. 657 Known.Zero |= RHSKnown.Zero << C->getZExtValue(); 658 Known.One |= RHSKnown.One << C->getZExtValue(); 659 // assume(~(v >> c) = a) 660 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 661 m_Value(A))) && 662 Pred == ICmpInst::ICMP_EQ && 663 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 664 KnownBits RHSKnown(BitWidth); 665 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 666 // For those bits in RHS that are known, we can propagate them inverted 667 // to known bits in V shifted to the right by C. 668 Known.Zero |= RHSKnown.One << C->getZExtValue(); 669 Known.One |= RHSKnown.Zero << C->getZExtValue(); 670 // assume(v >=_s c) where c is non-negative 671 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 672 Pred == ICmpInst::ICMP_SGE && 673 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 674 KnownBits RHSKnown(BitWidth); 675 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 676 677 if (RHSKnown.isNonNegative()) { 678 // We know that the sign bit is zero. 679 Known.makeNonNegative(); 680 } 681 // assume(v >_s c) where c is at least -1. 682 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 683 Pred == ICmpInst::ICMP_SGT && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 KnownBits RHSKnown(BitWidth); 686 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 687 688 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 689 // We know that the sign bit is zero. 690 Known.makeNonNegative(); 691 } 692 // assume(v <=_s c) where c is negative 693 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 694 Pred == ICmpInst::ICMP_SLE && 695 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 696 KnownBits RHSKnown(BitWidth); 697 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 698 699 if (RHSKnown.isNegative()) { 700 // We know that the sign bit is one. 701 Known.makeNegative(); 702 } 703 // assume(v <_s c) where c is non-positive 704 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 705 Pred == ICmpInst::ICMP_SLT && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 KnownBits RHSKnown(BitWidth); 708 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 709 710 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 711 // We know that the sign bit is one. 712 Known.makeNegative(); 713 } 714 // assume(v <=_u c) 715 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 716 Pred == ICmpInst::ICMP_ULE && 717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 718 KnownBits RHSKnown(BitWidth); 719 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 720 721 // Whatever high bits in c are zero are known to be zero. 722 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 723 // assume(v <_u c) 724 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 725 Pred == ICmpInst::ICMP_ULT && 726 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 727 KnownBits RHSKnown(BitWidth); 728 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 729 730 // Whatever high bits in c are zero are known to be zero (if c is a power 731 // of 2, then one more). 732 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 733 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 734 else 735 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 736 } 737 } 738 739 // If assumptions conflict with each other or previous known bits, then we 740 // have a logical fallacy. It's possible that the assumption is not reachable, 741 // so this isn't a real bug. On the other hand, the program may have undefined 742 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 743 // clear out the known bits, try to warn the user, and hope for the best. 744 if (Known.Zero.intersects(Known.One)) { 745 Known.resetAll(); 746 747 if (Q.ORE) { 748 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 749 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 750 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 751 "have undefined behavior, or compiler may have " 752 "internal error."); 753 } 754 } 755 } 756 757 // Compute known bits from a shift operator, including those with a 758 // non-constant shift amount. Known is the outputs of this function. Known2 is a 759 // pre-allocated temporary with the/ same bit width as Known. KZF and KOF are 760 // operator-specific functors that, given the known-zero or known-one bits 761 // respectively, and a shift amount, compute the implied known-zero or known-one 762 // bits of the shift operator's result respectively for that shift amount. The 763 // results from calling KZF and KOF are conservatively combined for all 764 // permitted shift amounts. 765 static void computeKnownBitsFromShiftOperator( 766 const Operator *I, KnownBits &Known, KnownBits &Known2, 767 unsigned Depth, const Query &Q, 768 function_ref<APInt(const APInt &, unsigned)> KZF, 769 function_ref<APInt(const APInt &, unsigned)> KOF) { 770 unsigned BitWidth = Known.getBitWidth(); 771 772 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 773 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 774 775 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 776 Known.Zero = KZF(Known.Zero, ShiftAmt); 777 Known.One = KOF(Known.One, ShiftAmt); 778 // If there is conflict between Known.Zero and Known.One, this must be an 779 // overflowing left shift, so the shift result is undefined. Clear Known 780 // bits so that other code could propagate this undef. 781 if ((Known.Zero & Known.One) != 0) 782 Known.resetAll(); 783 784 return; 785 } 786 787 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 788 789 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 790 // value could be undef, so we don't know anything about it. 791 if ((~Known.Zero).uge(BitWidth)) { 792 Known.resetAll(); 793 return; 794 } 795 796 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 797 // BitWidth > 64 and any upper bits are known, we'll end up returning the 798 // limit value (which implies all bits are known). 799 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 800 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 801 802 // It would be more-clearly correct to use the two temporaries for this 803 // calculation. Reusing the APInts here to prevent unnecessary allocations. 804 Known.resetAll(); 805 806 // If we know the shifter operand is nonzero, we can sometimes infer more 807 // known bits. However this is expensive to compute, so be lazy about it and 808 // only compute it when absolutely necessary. 809 Optional<bool> ShifterOperandIsNonZero; 810 811 // Early exit if we can't constrain any well-defined shift amount. 812 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 813 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 814 ShifterOperandIsNonZero = 815 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 816 if (!*ShifterOperandIsNonZero) 817 return; 818 } 819 820 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 821 822 Known.Zero.setAllBits(); 823 Known.One.setAllBits(); 824 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 825 // Combine the shifted known input bits only for those shift amounts 826 // compatible with its known constraints. 827 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 828 continue; 829 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 830 continue; 831 // If we know the shifter is nonzero, we may be able to infer more known 832 // bits. This check is sunk down as far as possible to avoid the expensive 833 // call to isKnownNonZero if the cheaper checks above fail. 834 if (ShiftAmt == 0) { 835 if (!ShifterOperandIsNonZero.hasValue()) 836 ShifterOperandIsNonZero = 837 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 838 if (*ShifterOperandIsNonZero) 839 continue; 840 } 841 842 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 843 Known.One &= KOF(Known2.One, ShiftAmt); 844 } 845 846 // If there are no compatible shift amounts, then we've proven that the shift 847 // amount must be >= the BitWidth, and the result is undefined. We could 848 // return anything we'd like, but we need to make sure the sets of known bits 849 // stay disjoint (it should be better for some other code to actually 850 // propagate the undef than to pick a value here using known bits). 851 if (Known.Zero.intersects(Known.One)) 852 Known.resetAll(); 853 } 854 855 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 856 unsigned Depth, const Query &Q) { 857 unsigned BitWidth = Known.getBitWidth(); 858 859 KnownBits Known2(Known); 860 switch (I->getOpcode()) { 861 default: break; 862 case Instruction::Load: 863 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 864 computeKnownBitsFromRangeMetadata(*MD, Known); 865 break; 866 case Instruction::And: { 867 // If either the LHS or the RHS are Zero, the result is zero. 868 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 869 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 870 871 // Output known-1 bits are only known if set in both the LHS & RHS. 872 Known.One &= Known2.One; 873 // Output known-0 are known to be clear if zero in either the LHS | RHS. 874 Known.Zero |= Known2.Zero; 875 876 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 877 // here we handle the more general case of adding any odd number by 878 // matching the form add(x, add(x, y)) where y is odd. 879 // TODO: This could be generalized to clearing any bit set in y where the 880 // following bit is known to be unset in y. 881 Value *Y = nullptr; 882 if (!Known.Zero[0] && !Known.One[0] && 883 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 884 m_Value(Y))) || 885 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 886 m_Value(Y))))) { 887 Known2.resetAll(); 888 computeKnownBits(Y, Known2, Depth + 1, Q); 889 if (Known2.countMinTrailingOnes() > 0) 890 Known.Zero.setBit(0); 891 } 892 break; 893 } 894 case Instruction::Or: { 895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 896 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 897 898 // Output known-0 bits are only known if clear in both the LHS & RHS. 899 Known.Zero &= Known2.Zero; 900 // Output known-1 are known to be set if set in either the LHS | RHS. 901 Known.One |= Known2.One; 902 break; 903 } 904 case Instruction::Xor: { 905 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 906 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 907 908 // Output known-0 bits are known if clear or set in both the LHS & RHS. 909 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 910 // Output known-1 are known to be set if set in only one of the LHS, RHS. 911 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 912 Known.Zero = std::move(KnownZeroOut); 913 break; 914 } 915 case Instruction::Mul: { 916 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 917 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 918 Known2, Depth, Q); 919 break; 920 } 921 case Instruction::UDiv: { 922 // For the purposes of computing leading zeros we can conservatively 923 // treat a udiv as a logical right shift by the power of 2 known to 924 // be less than the denominator. 925 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 926 unsigned LeadZ = Known2.countMinLeadingZeros(); 927 928 Known2.resetAll(); 929 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 930 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 931 if (RHSMaxLeadingZeros != BitWidth) 932 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 933 934 Known.Zero.setHighBits(LeadZ); 935 break; 936 } 937 case Instruction::Select: { 938 const Value *LHS, *RHS; 939 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 940 if (SelectPatternResult::isMinOrMax(SPF)) { 941 computeKnownBits(RHS, Known, Depth + 1, Q); 942 computeKnownBits(LHS, Known2, Depth + 1, Q); 943 } else { 944 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 945 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 946 } 947 948 unsigned MaxHighOnes = 0; 949 unsigned MaxHighZeros = 0; 950 if (SPF == SPF_SMAX) { 951 // If both sides are negative, the result is negative. 952 if (Known.isNegative() && Known2.isNegative()) 953 // We can derive a lower bound on the result by taking the max of the 954 // leading one bits. 955 MaxHighOnes = 956 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 957 // If either side is non-negative, the result is non-negative. 958 else if (Known.isNonNegative() || Known2.isNonNegative()) 959 MaxHighZeros = 1; 960 } else if (SPF == SPF_SMIN) { 961 // If both sides are non-negative, the result is non-negative. 962 if (Known.isNonNegative() && Known2.isNonNegative()) 963 // We can derive an upper bound on the result by taking the max of the 964 // leading zero bits. 965 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 966 Known2.countMinLeadingZeros()); 967 // If either side is negative, the result is negative. 968 else if (Known.isNegative() || Known2.isNegative()) 969 MaxHighOnes = 1; 970 } else if (SPF == SPF_UMAX) { 971 // We can derive a lower bound on the result by taking the max of the 972 // leading one bits. 973 MaxHighOnes = 974 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 975 } else if (SPF == SPF_UMIN) { 976 // We can derive an upper bound on the result by taking the max of the 977 // leading zero bits. 978 MaxHighZeros = 979 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 980 } 981 982 // Only known if known in both the LHS and RHS. 983 Known.One &= Known2.One; 984 Known.Zero &= Known2.Zero; 985 if (MaxHighOnes > 0) 986 Known.One.setHighBits(MaxHighOnes); 987 if (MaxHighZeros > 0) 988 Known.Zero.setHighBits(MaxHighZeros); 989 break; 990 } 991 case Instruction::FPTrunc: 992 case Instruction::FPExt: 993 case Instruction::FPToUI: 994 case Instruction::FPToSI: 995 case Instruction::SIToFP: 996 case Instruction::UIToFP: 997 break; // Can't work with floating point. 998 case Instruction::PtrToInt: 999 case Instruction::IntToPtr: 1000 // Fall through and handle them the same as zext/trunc. 1001 LLVM_FALLTHROUGH; 1002 case Instruction::ZExt: 1003 case Instruction::Trunc: { 1004 Type *SrcTy = I->getOperand(0)->getType(); 1005 1006 unsigned SrcBitWidth; 1007 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1008 // which fall through here. 1009 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1010 1011 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1012 Known = Known.zextOrTrunc(SrcBitWidth); 1013 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1014 Known = Known.zextOrTrunc(BitWidth); 1015 // Any top bits are known to be zero. 1016 if (BitWidth > SrcBitWidth) 1017 Known.Zero.setBitsFrom(SrcBitWidth); 1018 break; 1019 } 1020 case Instruction::BitCast: { 1021 Type *SrcTy = I->getOperand(0)->getType(); 1022 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1023 // TODO: For now, not handling conversions like: 1024 // (bitcast i64 %x to <2 x i32>) 1025 !I->getType()->isVectorTy()) { 1026 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1027 break; 1028 } 1029 break; 1030 } 1031 case Instruction::SExt: { 1032 // Compute the bits in the result that are not present in the input. 1033 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1034 1035 Known = Known.trunc(SrcBitWidth); 1036 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1037 // If the sign bit of the input is known set or clear, then we know the 1038 // top bits of the result. 1039 Known = Known.sext(BitWidth); 1040 break; 1041 } 1042 case Instruction::Shl: { 1043 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1044 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1045 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1046 APInt KZResult = KnownZero << ShiftAmt; 1047 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1048 // If this shift has "nsw" keyword, then the result is either a poison 1049 // value or has the same sign bit as the first operand. 1050 if (NSW && KnownZero.isSignBitSet()) 1051 KZResult.setSignBit(); 1052 return KZResult; 1053 }; 1054 1055 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1056 APInt KOResult = KnownOne << ShiftAmt; 1057 if (NSW && KnownOne.isSignBitSet()) 1058 KOResult.setSignBit(); 1059 return KOResult; 1060 }; 1061 1062 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1063 break; 1064 } 1065 case Instruction::LShr: { 1066 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1067 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1068 APInt KZResult = KnownZero.lshr(ShiftAmt); 1069 // High bits known zero. 1070 KZResult.setHighBits(ShiftAmt); 1071 return KZResult; 1072 }; 1073 1074 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1075 return KnownOne.lshr(ShiftAmt); 1076 }; 1077 1078 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1079 break; 1080 } 1081 case Instruction::AShr: { 1082 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1083 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1084 return KnownZero.ashr(ShiftAmt); 1085 }; 1086 1087 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1088 return KnownOne.ashr(ShiftAmt); 1089 }; 1090 1091 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1092 break; 1093 } 1094 case Instruction::Sub: { 1095 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1096 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1097 Known, Known2, Depth, Q); 1098 break; 1099 } 1100 case Instruction::Add: { 1101 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1102 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1103 Known, Known2, Depth, Q); 1104 break; 1105 } 1106 case Instruction::SRem: 1107 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1108 APInt RA = Rem->getValue().abs(); 1109 if (RA.isPowerOf2()) { 1110 APInt LowBits = RA - 1; 1111 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1112 1113 // The low bits of the first operand are unchanged by the srem. 1114 Known.Zero = Known2.Zero & LowBits; 1115 Known.One = Known2.One & LowBits; 1116 1117 // If the first operand is non-negative or has all low bits zero, then 1118 // the upper bits are all zero. 1119 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1120 Known.Zero |= ~LowBits; 1121 1122 // If the first operand is negative and not all low bits are zero, then 1123 // the upper bits are all one. 1124 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1125 Known.One |= ~LowBits; 1126 1127 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1128 break; 1129 } 1130 } 1131 1132 // The sign bit is the LHS's sign bit, except when the result of the 1133 // remainder is zero. 1134 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1135 // If it's known zero, our sign bit is also zero. 1136 if (Known2.isNonNegative()) 1137 Known.makeNonNegative(); 1138 1139 break; 1140 case Instruction::URem: { 1141 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1142 const APInt &RA = Rem->getValue(); 1143 if (RA.isPowerOf2()) { 1144 APInt LowBits = (RA - 1); 1145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1146 Known.Zero |= ~LowBits; 1147 Known.One &= LowBits; 1148 break; 1149 } 1150 } 1151 1152 // Since the result is less than or equal to either operand, any leading 1153 // zero bits in either operand must also exist in the result. 1154 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1155 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1156 1157 unsigned Leaders = 1158 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1159 Known.resetAll(); 1160 Known.Zero.setHighBits(Leaders); 1161 break; 1162 } 1163 1164 case Instruction::Alloca: { 1165 const AllocaInst *AI = cast<AllocaInst>(I); 1166 unsigned Align = AI->getAlignment(); 1167 if (Align == 0) 1168 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1169 1170 if (Align > 0) 1171 Known.Zero.setLowBits(countTrailingZeros(Align)); 1172 break; 1173 } 1174 case Instruction::GetElementPtr: { 1175 // Analyze all of the subscripts of this getelementptr instruction 1176 // to determine if we can prove known low zero bits. 1177 KnownBits LocalKnown(BitWidth); 1178 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1179 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1180 1181 gep_type_iterator GTI = gep_type_begin(I); 1182 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1183 Value *Index = I->getOperand(i); 1184 if (StructType *STy = GTI.getStructTypeOrNull()) { 1185 // Handle struct member offset arithmetic. 1186 1187 // Handle case when index is vector zeroinitializer 1188 Constant *CIndex = cast<Constant>(Index); 1189 if (CIndex->isZeroValue()) 1190 continue; 1191 1192 if (CIndex->getType()->isVectorTy()) 1193 Index = CIndex->getSplatValue(); 1194 1195 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1196 const StructLayout *SL = Q.DL.getStructLayout(STy); 1197 uint64_t Offset = SL->getElementOffset(Idx); 1198 TrailZ = std::min<unsigned>(TrailZ, 1199 countTrailingZeros(Offset)); 1200 } else { 1201 // Handle array index arithmetic. 1202 Type *IndexedTy = GTI.getIndexedType(); 1203 if (!IndexedTy->isSized()) { 1204 TrailZ = 0; 1205 break; 1206 } 1207 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1208 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1209 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1210 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1211 TrailZ = std::min(TrailZ, 1212 unsigned(countTrailingZeros(TypeSize) + 1213 LocalKnown.countMinTrailingZeros())); 1214 } 1215 } 1216 1217 Known.Zero.setLowBits(TrailZ); 1218 break; 1219 } 1220 case Instruction::PHI: { 1221 const PHINode *P = cast<PHINode>(I); 1222 // Handle the case of a simple two-predecessor recurrence PHI. 1223 // There's a lot more that could theoretically be done here, but 1224 // this is sufficient to catch some interesting cases. 1225 if (P->getNumIncomingValues() == 2) { 1226 for (unsigned i = 0; i != 2; ++i) { 1227 Value *L = P->getIncomingValue(i); 1228 Value *R = P->getIncomingValue(!i); 1229 Operator *LU = dyn_cast<Operator>(L); 1230 if (!LU) 1231 continue; 1232 unsigned Opcode = LU->getOpcode(); 1233 // Check for operations that have the property that if 1234 // both their operands have low zero bits, the result 1235 // will have low zero bits. 1236 if (Opcode == Instruction::Add || 1237 Opcode == Instruction::Sub || 1238 Opcode == Instruction::And || 1239 Opcode == Instruction::Or || 1240 Opcode == Instruction::Mul) { 1241 Value *LL = LU->getOperand(0); 1242 Value *LR = LU->getOperand(1); 1243 // Find a recurrence. 1244 if (LL == I) 1245 L = LR; 1246 else if (LR == I) 1247 L = LL; 1248 else 1249 break; 1250 // Ok, we have a PHI of the form L op= R. Check for low 1251 // zero bits. 1252 computeKnownBits(R, Known2, Depth + 1, Q); 1253 1254 // We need to take the minimum number of known bits 1255 KnownBits Known3(Known); 1256 computeKnownBits(L, Known3, Depth + 1, Q); 1257 1258 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1259 Known3.countMinTrailingZeros())); 1260 1261 if (DontImproveNonNegativePhiBits) 1262 break; 1263 1264 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1265 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1266 // If initial value of recurrence is nonnegative, and we are adding 1267 // a nonnegative number with nsw, the result can only be nonnegative 1268 // or poison value regardless of the number of times we execute the 1269 // add in phi recurrence. If initial value is negative and we are 1270 // adding a negative number with nsw, the result can only be 1271 // negative or poison value. Similar arguments apply to sub and mul. 1272 // 1273 // (add non-negative, non-negative) --> non-negative 1274 // (add negative, negative) --> negative 1275 if (Opcode == Instruction::Add) { 1276 if (Known2.isNonNegative() && Known3.isNonNegative()) 1277 Known.makeNonNegative(); 1278 else if (Known2.isNegative() && Known3.isNegative()) 1279 Known.makeNegative(); 1280 } 1281 1282 // (sub nsw non-negative, negative) --> non-negative 1283 // (sub nsw negative, non-negative) --> negative 1284 else if (Opcode == Instruction::Sub && LL == I) { 1285 if (Known2.isNonNegative() && Known3.isNegative()) 1286 Known.makeNonNegative(); 1287 else if (Known2.isNegative() && Known3.isNonNegative()) 1288 Known.makeNegative(); 1289 } 1290 1291 // (mul nsw non-negative, non-negative) --> non-negative 1292 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1293 Known3.isNonNegative()) 1294 Known.makeNonNegative(); 1295 } 1296 1297 break; 1298 } 1299 } 1300 } 1301 1302 // Unreachable blocks may have zero-operand PHI nodes. 1303 if (P->getNumIncomingValues() == 0) 1304 break; 1305 1306 // Otherwise take the unions of the known bit sets of the operands, 1307 // taking conservative care to avoid excessive recursion. 1308 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1309 // Skip if every incoming value references to ourself. 1310 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1311 break; 1312 1313 Known.Zero.setAllBits(); 1314 Known.One.setAllBits(); 1315 for (Value *IncValue : P->incoming_values()) { 1316 // Skip direct self references. 1317 if (IncValue == P) continue; 1318 1319 Known2 = KnownBits(BitWidth); 1320 // Recurse, but cap the recursion to one level, because we don't 1321 // want to waste time spinning around in loops. 1322 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1323 Known.Zero &= Known2.Zero; 1324 Known.One &= Known2.One; 1325 // If all bits have been ruled out, there's no need to check 1326 // more operands. 1327 if (!Known.Zero && !Known.One) 1328 break; 1329 } 1330 } 1331 break; 1332 } 1333 case Instruction::Call: 1334 case Instruction::Invoke: 1335 // If range metadata is attached to this call, set known bits from that, 1336 // and then intersect with known bits based on other properties of the 1337 // function. 1338 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1339 computeKnownBitsFromRangeMetadata(*MD, Known); 1340 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1341 computeKnownBits(RV, Known2, Depth + 1, Q); 1342 Known.Zero |= Known2.Zero; 1343 Known.One |= Known2.One; 1344 } 1345 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1346 switch (II->getIntrinsicID()) { 1347 default: break; 1348 case Intrinsic::bitreverse: 1349 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1350 Known.Zero |= Known2.Zero.reverseBits(); 1351 Known.One |= Known2.One.reverseBits(); 1352 break; 1353 case Intrinsic::bswap: 1354 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1355 Known.Zero |= Known2.Zero.byteSwap(); 1356 Known.One |= Known2.One.byteSwap(); 1357 break; 1358 case Intrinsic::ctlz: { 1359 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1360 // If we have a known 1, its position is our upper bound. 1361 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1362 // If this call is undefined for 0, the result will be less than 2^n. 1363 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1364 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1365 unsigned LowBits = Log2_32(PossibleLZ)+1; 1366 Known.Zero.setBitsFrom(LowBits); 1367 break; 1368 } 1369 case Intrinsic::cttz: { 1370 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1371 // If we have a known 1, its position is our upper bound. 1372 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1373 // If this call is undefined for 0, the result will be less than 2^n. 1374 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1375 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1376 unsigned LowBits = Log2_32(PossibleTZ)+1; 1377 Known.Zero.setBitsFrom(LowBits); 1378 break; 1379 } 1380 case Intrinsic::ctpop: { 1381 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1382 // We can bound the space the count needs. Also, bits known to be zero 1383 // can't contribute to the population. 1384 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1385 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1386 Known.Zero.setBitsFrom(LowBits); 1387 // TODO: we could bound KnownOne using the lower bound on the number 1388 // of bits which might be set provided by popcnt KnownOne2. 1389 break; 1390 } 1391 case Intrinsic::x86_sse42_crc32_64_64: 1392 Known.Zero.setBitsFrom(32); 1393 break; 1394 } 1395 } 1396 break; 1397 case Instruction::ExtractElement: 1398 // Look through extract element. At the moment we keep this simple and skip 1399 // tracking the specific element. But at least we might find information 1400 // valid for all elements of the vector (for example if vector is sign 1401 // extended, shifted, etc). 1402 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1403 break; 1404 case Instruction::ExtractValue: 1405 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1406 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1407 if (EVI->getNumIndices() != 1) break; 1408 if (EVI->getIndices()[0] == 0) { 1409 switch (II->getIntrinsicID()) { 1410 default: break; 1411 case Intrinsic::uadd_with_overflow: 1412 case Intrinsic::sadd_with_overflow: 1413 computeKnownBitsAddSub(true, II->getArgOperand(0), 1414 II->getArgOperand(1), false, Known, Known2, 1415 Depth, Q); 1416 break; 1417 case Intrinsic::usub_with_overflow: 1418 case Intrinsic::ssub_with_overflow: 1419 computeKnownBitsAddSub(false, II->getArgOperand(0), 1420 II->getArgOperand(1), false, Known, Known2, 1421 Depth, Q); 1422 break; 1423 case Intrinsic::umul_with_overflow: 1424 case Intrinsic::smul_with_overflow: 1425 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1426 Known, Known2, Depth, Q); 1427 break; 1428 } 1429 } 1430 } 1431 } 1432 } 1433 1434 /// Determine which bits of V are known to be either zero or one and return 1435 /// them. 1436 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1437 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1438 computeKnownBits(V, Known, Depth, Q); 1439 return Known; 1440 } 1441 1442 /// Determine which bits of V are known to be either zero or one and return 1443 /// them in the Known bit set. 1444 /// 1445 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1446 /// we cannot optimize based on the assumption that it is zero without changing 1447 /// it to be an explicit zero. If we don't change it to zero, other code could 1448 /// optimized based on the contradictory assumption that it is non-zero. 1449 /// Because instcombine aggressively folds operations with undef args anyway, 1450 /// this won't lose us code quality. 1451 /// 1452 /// This function is defined on values with integer type, values with pointer 1453 /// type, and vectors of integers. In the case 1454 /// where V is a vector, known zero, and known one values are the 1455 /// same width as the vector element, and the bit is set only if it is true 1456 /// for all of the elements in the vector. 1457 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1458 const Query &Q) { 1459 assert(V && "No Value?"); 1460 assert(Depth <= MaxDepth && "Limit Search Depth"); 1461 unsigned BitWidth = Known.getBitWidth(); 1462 1463 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1464 V->getType()->isPtrOrPtrVectorTy()) && 1465 "Not integer or pointer type!"); 1466 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth && 1467 "V and Known should have same BitWidth"); 1468 (void)BitWidth; 1469 1470 const APInt *C; 1471 if (match(V, m_APInt(C))) { 1472 // We know all of the bits for a scalar constant or a splat vector constant! 1473 Known.One = *C; 1474 Known.Zero = ~Known.One; 1475 return; 1476 } 1477 // Null and aggregate-zero are all-zeros. 1478 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1479 Known.setAllZero(); 1480 return; 1481 } 1482 // Handle a constant vector by taking the intersection of the known bits of 1483 // each element. 1484 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1485 // We know that CDS must be a vector of integers. Take the intersection of 1486 // each element. 1487 Known.Zero.setAllBits(); Known.One.setAllBits(); 1488 APInt Elt(BitWidth, 0); 1489 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1490 Elt = CDS->getElementAsInteger(i); 1491 Known.Zero &= ~Elt; 1492 Known.One &= Elt; 1493 } 1494 return; 1495 } 1496 1497 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1498 // We know that CV must be a vector of integers. Take the intersection of 1499 // each element. 1500 Known.Zero.setAllBits(); Known.One.setAllBits(); 1501 APInt Elt(BitWidth, 0); 1502 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1503 Constant *Element = CV->getAggregateElement(i); 1504 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1505 if (!ElementCI) { 1506 Known.resetAll(); 1507 return; 1508 } 1509 Elt = ElementCI->getValue(); 1510 Known.Zero &= ~Elt; 1511 Known.One &= Elt; 1512 } 1513 return; 1514 } 1515 1516 // Start out not knowing anything. 1517 Known.resetAll(); 1518 1519 // We can't imply anything about undefs. 1520 if (isa<UndefValue>(V)) 1521 return; 1522 1523 // There's no point in looking through other users of ConstantData for 1524 // assumptions. Confirm that we've handled them all. 1525 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1526 1527 // Limit search depth. 1528 // All recursive calls that increase depth must come after this. 1529 if (Depth == MaxDepth) 1530 return; 1531 1532 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1533 // the bits of its aliasee. 1534 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1535 if (!GA->isInterposable()) 1536 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1537 return; 1538 } 1539 1540 if (const Operator *I = dyn_cast<Operator>(V)) 1541 computeKnownBitsFromOperator(I, Known, Depth, Q); 1542 1543 // Aligned pointers have trailing zeros - refine Known.Zero set 1544 if (V->getType()->isPointerTy()) { 1545 unsigned Align = V->getPointerAlignment(Q.DL); 1546 if (Align) 1547 Known.Zero.setLowBits(countTrailingZeros(Align)); 1548 } 1549 1550 // computeKnownBitsFromAssume strictly refines Known. 1551 // Therefore, we run them after computeKnownBitsFromOperator. 1552 1553 // Check whether a nearby assume intrinsic can determine some known bits. 1554 computeKnownBitsFromAssume(V, Known, Depth, Q); 1555 1556 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1557 } 1558 1559 /// Return true if the given value is known to have exactly one 1560 /// bit set when defined. For vectors return true if every element is known to 1561 /// be a power of two when defined. Supports values with integer or pointer 1562 /// types and vectors of integers. 1563 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1564 const Query &Q) { 1565 assert(Depth <= MaxDepth && "Limit Search Depth"); 1566 1567 if (const Constant *C = dyn_cast<Constant>(V)) { 1568 if (C->isNullValue()) 1569 return OrZero; 1570 1571 const APInt *ConstIntOrConstSplatInt; 1572 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1573 return ConstIntOrConstSplatInt->isPowerOf2(); 1574 } 1575 1576 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1577 // it is shifted off the end then the result is undefined. 1578 if (match(V, m_Shl(m_One(), m_Value()))) 1579 return true; 1580 1581 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1582 // the bottom. If it is shifted off the bottom then the result is undefined. 1583 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1584 return true; 1585 1586 // The remaining tests are all recursive, so bail out if we hit the limit. 1587 if (Depth++ == MaxDepth) 1588 return false; 1589 1590 Value *X = nullptr, *Y = nullptr; 1591 // A shift left or a logical shift right of a power of two is a power of two 1592 // or zero. 1593 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1594 match(V, m_LShr(m_Value(X), m_Value())))) 1595 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1596 1597 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1598 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1599 1600 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1601 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1602 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1603 1604 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1605 // A power of two and'd with anything is a power of two or zero. 1606 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1607 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1608 return true; 1609 // X & (-X) is always a power of two or zero. 1610 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1611 return true; 1612 return false; 1613 } 1614 1615 // Adding a power-of-two or zero to the same power-of-two or zero yields 1616 // either the original power-of-two, a larger power-of-two or zero. 1617 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1618 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1619 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1620 if (match(X, m_And(m_Specific(Y), m_Value())) || 1621 match(X, m_And(m_Value(), m_Specific(Y)))) 1622 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1623 return true; 1624 if (match(Y, m_And(m_Specific(X), m_Value())) || 1625 match(Y, m_And(m_Value(), m_Specific(X)))) 1626 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1627 return true; 1628 1629 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1630 KnownBits LHSBits(BitWidth); 1631 computeKnownBits(X, LHSBits, Depth, Q); 1632 1633 KnownBits RHSBits(BitWidth); 1634 computeKnownBits(Y, RHSBits, Depth, Q); 1635 // If i8 V is a power of two or zero: 1636 // ZeroBits: 1 1 1 0 1 1 1 1 1637 // ~ZeroBits: 0 0 0 1 0 0 0 0 1638 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1639 // If OrZero isn't set, we cannot give back a zero result. 1640 // Make sure either the LHS or RHS has a bit set. 1641 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1642 return true; 1643 } 1644 } 1645 1646 // An exact divide or right shift can only shift off zero bits, so the result 1647 // is a power of two only if the first operand is a power of two and not 1648 // copying a sign bit (sdiv int_min, 2). 1649 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1650 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1651 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1652 Depth, Q); 1653 } 1654 1655 return false; 1656 } 1657 1658 /// \brief Test whether a GEP's result is known to be non-null. 1659 /// 1660 /// Uses properties inherent in a GEP to try to determine whether it is known 1661 /// to be non-null. 1662 /// 1663 /// Currently this routine does not support vector GEPs. 1664 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1665 const Query &Q) { 1666 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1667 return false; 1668 1669 // FIXME: Support vector-GEPs. 1670 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1671 1672 // If the base pointer is non-null, we cannot walk to a null address with an 1673 // inbounds GEP in address space zero. 1674 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1675 return true; 1676 1677 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1678 // If so, then the GEP cannot produce a null pointer, as doing so would 1679 // inherently violate the inbounds contract within address space zero. 1680 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1681 GTI != GTE; ++GTI) { 1682 // Struct types are easy -- they must always be indexed by a constant. 1683 if (StructType *STy = GTI.getStructTypeOrNull()) { 1684 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1685 unsigned ElementIdx = OpC->getZExtValue(); 1686 const StructLayout *SL = Q.DL.getStructLayout(STy); 1687 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1688 if (ElementOffset > 0) 1689 return true; 1690 continue; 1691 } 1692 1693 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1694 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1695 continue; 1696 1697 // Fast path the constant operand case both for efficiency and so we don't 1698 // increment Depth when just zipping down an all-constant GEP. 1699 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1700 if (!OpC->isZero()) 1701 return true; 1702 continue; 1703 } 1704 1705 // We post-increment Depth here because while isKnownNonZero increments it 1706 // as well, when we pop back up that increment won't persist. We don't want 1707 // to recurse 10k times just because we have 10k GEP operands. We don't 1708 // bail completely out because we want to handle constant GEPs regardless 1709 // of depth. 1710 if (Depth++ >= MaxDepth) 1711 continue; 1712 1713 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1714 return true; 1715 } 1716 1717 return false; 1718 } 1719 1720 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1721 /// ensure that the value it's attached to is never Value? 'RangeType' is 1722 /// is the type of the value described by the range. 1723 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1724 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1725 assert(NumRanges >= 1); 1726 for (unsigned i = 0; i < NumRanges; ++i) { 1727 ConstantInt *Lower = 1728 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1729 ConstantInt *Upper = 1730 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1731 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1732 if (Range.contains(Value)) 1733 return false; 1734 } 1735 return true; 1736 } 1737 1738 /// Return true if the given value is known to be non-zero when defined. For 1739 /// vectors, return true if every element is known to be non-zero when 1740 /// defined. For pointers, if the context instruction and dominator tree are 1741 /// specified, perform context-sensitive analysis and return true if the 1742 /// pointer couldn't possibly be null at the specified instruction. 1743 /// Supports values with integer or pointer type and vectors of integers. 1744 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1745 if (auto *C = dyn_cast<Constant>(V)) { 1746 if (C->isNullValue()) 1747 return false; 1748 if (isa<ConstantInt>(C)) 1749 // Must be non-zero due to null test above. 1750 return true; 1751 1752 // For constant vectors, check that all elements are undefined or known 1753 // non-zero to determine that the whole vector is known non-zero. 1754 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1755 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1756 Constant *Elt = C->getAggregateElement(i); 1757 if (!Elt || Elt->isNullValue()) 1758 return false; 1759 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1760 return false; 1761 } 1762 return true; 1763 } 1764 1765 return false; 1766 } 1767 1768 if (auto *I = dyn_cast<Instruction>(V)) { 1769 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1770 // If the possible ranges don't contain zero, then the value is 1771 // definitely non-zero. 1772 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1773 const APInt ZeroValue(Ty->getBitWidth(), 0); 1774 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1775 return true; 1776 } 1777 } 1778 } 1779 1780 // The remaining tests are all recursive, so bail out if we hit the limit. 1781 if (Depth++ >= MaxDepth) 1782 return false; 1783 1784 // Check for pointer simplifications. 1785 if (V->getType()->isPointerTy()) { 1786 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1787 return true; 1788 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1789 if (isGEPKnownNonNull(GEP, Depth, Q)) 1790 return true; 1791 } 1792 1793 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1794 1795 // X | Y != 0 if X != 0 or Y != 0. 1796 Value *X = nullptr, *Y = nullptr; 1797 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1798 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1799 1800 // ext X != 0 if X != 0. 1801 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1802 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1803 1804 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1805 // if the lowest bit is shifted off the end. 1806 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1807 // shl nuw can't remove any non-zero bits. 1808 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1809 if (BO->hasNoUnsignedWrap()) 1810 return isKnownNonZero(X, Depth, Q); 1811 1812 KnownBits Known(BitWidth); 1813 computeKnownBits(X, Known, Depth, Q); 1814 if (Known.One[0]) 1815 return true; 1816 } 1817 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1818 // defined if the sign bit is shifted off the end. 1819 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1820 // shr exact can only shift out zero bits. 1821 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1822 if (BO->isExact()) 1823 return isKnownNonZero(X, Depth, Q); 1824 1825 KnownBits Known = computeKnownBits(X, Depth, Q); 1826 if (Known.isNegative()) 1827 return true; 1828 1829 // If the shifter operand is a constant, and all of the bits shifted 1830 // out are known to be zero, and X is known non-zero then at least one 1831 // non-zero bit must remain. 1832 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1833 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1834 // Is there a known one in the portion not shifted out? 1835 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 1836 return true; 1837 // Are all the bits to be shifted out known zero? 1838 if (Known.countMinTrailingZeros() >= ShiftVal) 1839 return isKnownNonZero(X, Depth, Q); 1840 } 1841 } 1842 // div exact can only produce a zero if the dividend is zero. 1843 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1844 return isKnownNonZero(X, Depth, Q); 1845 } 1846 // X + Y. 1847 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1848 KnownBits XKnown = computeKnownBits(X, Depth, Q); 1849 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 1850 1851 // If X and Y are both non-negative (as signed values) then their sum is not 1852 // zero unless both X and Y are zero. 1853 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 1854 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1855 return true; 1856 1857 // If X and Y are both negative (as signed values) then their sum is not 1858 // zero unless both X and Y equal INT_MIN. 1859 if (XKnown.isNegative() && YKnown.isNegative()) { 1860 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1861 // The sign bit of X is set. If some other bit is set then X is not equal 1862 // to INT_MIN. 1863 if (XKnown.One.intersects(Mask)) 1864 return true; 1865 // The sign bit of Y is set. If some other bit is set then Y is not equal 1866 // to INT_MIN. 1867 if (YKnown.One.intersects(Mask)) 1868 return true; 1869 } 1870 1871 // The sum of a non-negative number and a power of two is not zero. 1872 if (XKnown.isNonNegative() && 1873 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1874 return true; 1875 if (YKnown.isNonNegative() && 1876 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1877 return true; 1878 } 1879 // X * Y. 1880 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1881 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1882 // If X and Y are non-zero then so is X * Y as long as the multiplication 1883 // does not overflow. 1884 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1885 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1886 return true; 1887 } 1888 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1889 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1890 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1891 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1892 return true; 1893 } 1894 // PHI 1895 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1896 // Try and detect a recurrence that monotonically increases from a 1897 // starting value, as these are common as induction variables. 1898 if (PN->getNumIncomingValues() == 2) { 1899 Value *Start = PN->getIncomingValue(0); 1900 Value *Induction = PN->getIncomingValue(1); 1901 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1902 std::swap(Start, Induction); 1903 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1904 if (!C->isZero() && !C->isNegative()) { 1905 ConstantInt *X; 1906 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1907 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1908 !X->isNegative()) 1909 return true; 1910 } 1911 } 1912 } 1913 // Check if all incoming values are non-zero constant. 1914 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1915 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 1916 }); 1917 if (AllNonZeroConstants) 1918 return true; 1919 } 1920 1921 KnownBits Known(BitWidth); 1922 computeKnownBits(V, Known, Depth, Q); 1923 return Known.One != 0; 1924 } 1925 1926 /// Return true if V2 == V1 + X, where X is known non-zero. 1927 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1928 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1929 if (!BO || BO->getOpcode() != Instruction::Add) 1930 return false; 1931 Value *Op = nullptr; 1932 if (V2 == BO->getOperand(0)) 1933 Op = BO->getOperand(1); 1934 else if (V2 == BO->getOperand(1)) 1935 Op = BO->getOperand(0); 1936 else 1937 return false; 1938 return isKnownNonZero(Op, 0, Q); 1939 } 1940 1941 /// Return true if it is known that V1 != V2. 1942 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1943 if (V1 == V2) 1944 return false; 1945 if (V1->getType() != V2->getType()) 1946 // We can't look through casts yet. 1947 return false; 1948 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1949 return true; 1950 1951 if (V1->getType()->isIntOrIntVectorTy()) { 1952 // Are any known bits in V1 contradictory to known bits in V2? If V1 1953 // has a known zero where V2 has a known one, they must not be equal. 1954 KnownBits Known1 = computeKnownBits(V1, 0, Q); 1955 KnownBits Known2 = computeKnownBits(V2, 0, Q); 1956 1957 if (Known1.Zero.intersects(Known2.One) || 1958 Known2.Zero.intersects(Known1.One)) 1959 return true; 1960 } 1961 return false; 1962 } 1963 1964 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1965 /// simplify operations downstream. Mask is known to be zero for bits that V 1966 /// cannot have. 1967 /// 1968 /// This function is defined on values with integer type, values with pointer 1969 /// type, and vectors of integers. In the case 1970 /// where V is a vector, the mask, known zero, and known one values are the 1971 /// same width as the vector element, and the bit is set only if it is true 1972 /// for all of the elements in the vector. 1973 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 1974 const Query &Q) { 1975 KnownBits Known(Mask.getBitWidth()); 1976 computeKnownBits(V, Known, Depth, Q); 1977 return Mask.isSubsetOf(Known.Zero); 1978 } 1979 1980 /// For vector constants, loop over the elements and find the constant with the 1981 /// minimum number of sign bits. Return 0 if the value is not a vector constant 1982 /// or if any element was not analyzed; otherwise, return the count for the 1983 /// element with the minimum number of sign bits. 1984 static unsigned computeNumSignBitsVectorConstant(const Value *V, 1985 unsigned TyBits) { 1986 const auto *CV = dyn_cast<Constant>(V); 1987 if (!CV || !CV->getType()->isVectorTy()) 1988 return 0; 1989 1990 unsigned MinSignBits = TyBits; 1991 unsigned NumElts = CV->getType()->getVectorNumElements(); 1992 for (unsigned i = 0; i != NumElts; ++i) { 1993 // If we find a non-ConstantInt, bail out. 1994 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 1995 if (!Elt) 1996 return 0; 1997 1998 // If the sign bit is 1, flip the bits, so we always count leading zeros. 1999 APInt EltVal = Elt->getValue(); 2000 if (EltVal.isNegative()) 2001 EltVal = ~EltVal; 2002 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2003 } 2004 2005 return MinSignBits; 2006 } 2007 2008 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2009 const Query &Q); 2010 2011 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2012 const Query &Q) { 2013 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2014 assert(Result > 0 && "At least one sign bit needs to be present!"); 2015 return Result; 2016 } 2017 2018 /// Return the number of times the sign bit of the register is replicated into 2019 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2020 /// (itself), but other cases can give us information. For example, immediately 2021 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2022 /// other, so we return 3. For vectors, return the number of sign bits for the 2023 /// vector element with the mininum number of known sign bits. 2024 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2025 const Query &Q) { 2026 assert(Depth <= MaxDepth && "Limit Search Depth"); 2027 2028 // We return the minimum number of sign bits that are guaranteed to be present 2029 // in V, so for undef we have to conservatively return 1. We don't have the 2030 // same behavior for poison though -- that's a FIXME today. 2031 2032 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2033 unsigned Tmp, Tmp2; 2034 unsigned FirstAnswer = 1; 2035 2036 // Note that ConstantInt is handled by the general computeKnownBits case 2037 // below. 2038 2039 if (Depth == MaxDepth) 2040 return 1; // Limit search depth. 2041 2042 const Operator *U = dyn_cast<Operator>(V); 2043 switch (Operator::getOpcode(V)) { 2044 default: break; 2045 case Instruction::SExt: 2046 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2047 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2048 2049 case Instruction::SDiv: { 2050 const APInt *Denominator; 2051 // sdiv X, C -> adds log(C) sign bits. 2052 if (match(U->getOperand(1), m_APInt(Denominator))) { 2053 2054 // Ignore non-positive denominator. 2055 if (!Denominator->isStrictlyPositive()) 2056 break; 2057 2058 // Calculate the incoming numerator bits. 2059 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2060 2061 // Add floor(log(C)) bits to the numerator bits. 2062 return std::min(TyBits, NumBits + Denominator->logBase2()); 2063 } 2064 break; 2065 } 2066 2067 case Instruction::SRem: { 2068 const APInt *Denominator; 2069 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2070 // positive constant. This let us put a lower bound on the number of sign 2071 // bits. 2072 if (match(U->getOperand(1), m_APInt(Denominator))) { 2073 2074 // Ignore non-positive denominator. 2075 if (!Denominator->isStrictlyPositive()) 2076 break; 2077 2078 // Calculate the incoming numerator bits. SRem by a positive constant 2079 // can't lower the number of sign bits. 2080 unsigned NumrBits = 2081 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2082 2083 // Calculate the leading sign bit constraints by examining the 2084 // denominator. Given that the denominator is positive, there are two 2085 // cases: 2086 // 2087 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2088 // (1 << ceilLogBase2(C)). 2089 // 2090 // 2. the numerator is negative. Then the result range is (-C,0] and 2091 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2092 // 2093 // Thus a lower bound on the number of sign bits is `TyBits - 2094 // ceilLogBase2(C)`. 2095 2096 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2097 return std::max(NumrBits, ResBits); 2098 } 2099 break; 2100 } 2101 2102 case Instruction::AShr: { 2103 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2104 // ashr X, C -> adds C sign bits. Vectors too. 2105 const APInt *ShAmt; 2106 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2107 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2108 if (ShAmtLimited >= TyBits) 2109 break; // Bad shift. 2110 Tmp += ShAmtLimited; 2111 if (Tmp > TyBits) Tmp = TyBits; 2112 } 2113 return Tmp; 2114 } 2115 case Instruction::Shl: { 2116 const APInt *ShAmt; 2117 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2118 // shl destroys sign bits. 2119 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2120 Tmp2 = ShAmt->getZExtValue(); 2121 if (Tmp2 >= TyBits || // Bad shift. 2122 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2123 return Tmp - Tmp2; 2124 } 2125 break; 2126 } 2127 case Instruction::And: 2128 case Instruction::Or: 2129 case Instruction::Xor: // NOT is handled here. 2130 // Logical binary ops preserve the number of sign bits at the worst. 2131 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2132 if (Tmp != 1) { 2133 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2134 FirstAnswer = std::min(Tmp, Tmp2); 2135 // We computed what we know about the sign bits as our first 2136 // answer. Now proceed to the generic code that uses 2137 // computeKnownBits, and pick whichever answer is better. 2138 } 2139 break; 2140 2141 case Instruction::Select: 2142 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2143 if (Tmp == 1) return 1; // Early out. 2144 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2145 return std::min(Tmp, Tmp2); 2146 2147 case Instruction::Add: 2148 // Add can have at most one carry bit. Thus we know that the output 2149 // is, at worst, one more bit than the inputs. 2150 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2151 if (Tmp == 1) return 1; // Early out. 2152 2153 // Special case decrementing a value (ADD X, -1): 2154 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2155 if (CRHS->isAllOnesValue()) { 2156 KnownBits Known(TyBits); 2157 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2158 2159 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2160 // sign bits set. 2161 if ((Known.Zero | 1).isAllOnesValue()) 2162 return TyBits; 2163 2164 // If we are subtracting one from a positive number, there is no carry 2165 // out of the result. 2166 if (Known.isNonNegative()) 2167 return Tmp; 2168 } 2169 2170 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2171 if (Tmp2 == 1) return 1; 2172 return std::min(Tmp, Tmp2)-1; 2173 2174 case Instruction::Sub: 2175 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2176 if (Tmp2 == 1) return 1; 2177 2178 // Handle NEG. 2179 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2180 if (CLHS->isNullValue()) { 2181 KnownBits Known(TyBits); 2182 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2183 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2184 // sign bits set. 2185 if ((Known.Zero | 1).isAllOnesValue()) 2186 return TyBits; 2187 2188 // If the input is known to be positive (the sign bit is known clear), 2189 // the output of the NEG has the same number of sign bits as the input. 2190 if (Known.isNonNegative()) 2191 return Tmp2; 2192 2193 // Otherwise, we treat this like a SUB. 2194 } 2195 2196 // Sub can have at most one carry bit. Thus we know that the output 2197 // is, at worst, one more bit than the inputs. 2198 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2199 if (Tmp == 1) return 1; // Early out. 2200 return std::min(Tmp, Tmp2)-1; 2201 2202 case Instruction::Mul: { 2203 // The output of the Mul can be at most twice the valid bits in the inputs. 2204 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2205 if (SignBitsOp0 == 1) return 1; // Early out. 2206 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2207 if (SignBitsOp1 == 1) return 1; 2208 unsigned OutValidBits = 2209 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2210 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2211 } 2212 2213 case Instruction::PHI: { 2214 const PHINode *PN = cast<PHINode>(U); 2215 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2216 // Don't analyze large in-degree PHIs. 2217 if (NumIncomingValues > 4) break; 2218 // Unreachable blocks may have zero-operand PHI nodes. 2219 if (NumIncomingValues == 0) break; 2220 2221 // Take the minimum of all incoming values. This can't infinitely loop 2222 // because of our depth threshold. 2223 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2224 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2225 if (Tmp == 1) return Tmp; 2226 Tmp = std::min( 2227 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2228 } 2229 return Tmp; 2230 } 2231 2232 case Instruction::Trunc: 2233 // FIXME: it's tricky to do anything useful for this, but it is an important 2234 // case for targets like X86. 2235 break; 2236 2237 case Instruction::ExtractElement: 2238 // Look through extract element. At the moment we keep this simple and skip 2239 // tracking the specific element. But at least we might find information 2240 // valid for all elements of the vector (for example if vector is sign 2241 // extended, shifted, etc). 2242 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2243 } 2244 2245 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2246 // use this information. 2247 2248 // If we can examine all elements of a vector constant successfully, we're 2249 // done (we can't do any better than that). If not, keep trying. 2250 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2251 return VecSignBits; 2252 2253 KnownBits Known(TyBits); 2254 computeKnownBits(V, Known, Depth, Q); 2255 2256 // If we know that the sign bit is either zero or one, determine the number of 2257 // identical bits in the top of the input value. 2258 return std::max(FirstAnswer, Known.countMinSignBits()); 2259 } 2260 2261 /// This function computes the integer multiple of Base that equals V. 2262 /// If successful, it returns true and returns the multiple in 2263 /// Multiple. If unsuccessful, it returns false. It looks 2264 /// through SExt instructions only if LookThroughSExt is true. 2265 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2266 bool LookThroughSExt, unsigned Depth) { 2267 const unsigned MaxDepth = 6; 2268 2269 assert(V && "No Value?"); 2270 assert(Depth <= MaxDepth && "Limit Search Depth"); 2271 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2272 2273 Type *T = V->getType(); 2274 2275 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2276 2277 if (Base == 0) 2278 return false; 2279 2280 if (Base == 1) { 2281 Multiple = V; 2282 return true; 2283 } 2284 2285 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2286 Constant *BaseVal = ConstantInt::get(T, Base); 2287 if (CO && CO == BaseVal) { 2288 // Multiple is 1. 2289 Multiple = ConstantInt::get(T, 1); 2290 return true; 2291 } 2292 2293 if (CI && CI->getZExtValue() % Base == 0) { 2294 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2295 return true; 2296 } 2297 2298 if (Depth == MaxDepth) return false; // Limit search depth. 2299 2300 Operator *I = dyn_cast<Operator>(V); 2301 if (!I) return false; 2302 2303 switch (I->getOpcode()) { 2304 default: break; 2305 case Instruction::SExt: 2306 if (!LookThroughSExt) return false; 2307 // otherwise fall through to ZExt 2308 LLVM_FALLTHROUGH; 2309 case Instruction::ZExt: 2310 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2311 LookThroughSExt, Depth+1); 2312 case Instruction::Shl: 2313 case Instruction::Mul: { 2314 Value *Op0 = I->getOperand(0); 2315 Value *Op1 = I->getOperand(1); 2316 2317 if (I->getOpcode() == Instruction::Shl) { 2318 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2319 if (!Op1CI) return false; 2320 // Turn Op0 << Op1 into Op0 * 2^Op1 2321 APInt Op1Int = Op1CI->getValue(); 2322 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2323 APInt API(Op1Int.getBitWidth(), 0); 2324 API.setBit(BitToSet); 2325 Op1 = ConstantInt::get(V->getContext(), API); 2326 } 2327 2328 Value *Mul0 = nullptr; 2329 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2330 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2331 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2332 if (Op1C->getType()->getPrimitiveSizeInBits() < 2333 MulC->getType()->getPrimitiveSizeInBits()) 2334 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2335 if (Op1C->getType()->getPrimitiveSizeInBits() > 2336 MulC->getType()->getPrimitiveSizeInBits()) 2337 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2338 2339 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2340 Multiple = ConstantExpr::getMul(MulC, Op1C); 2341 return true; 2342 } 2343 2344 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2345 if (Mul0CI->getValue() == 1) { 2346 // V == Base * Op1, so return Op1 2347 Multiple = Op1; 2348 return true; 2349 } 2350 } 2351 2352 Value *Mul1 = nullptr; 2353 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2354 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2355 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2356 if (Op0C->getType()->getPrimitiveSizeInBits() < 2357 MulC->getType()->getPrimitiveSizeInBits()) 2358 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2359 if (Op0C->getType()->getPrimitiveSizeInBits() > 2360 MulC->getType()->getPrimitiveSizeInBits()) 2361 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2362 2363 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2364 Multiple = ConstantExpr::getMul(MulC, Op0C); 2365 return true; 2366 } 2367 2368 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2369 if (Mul1CI->getValue() == 1) { 2370 // V == Base * Op0, so return Op0 2371 Multiple = Op0; 2372 return true; 2373 } 2374 } 2375 } 2376 } 2377 2378 // We could not determine if V is a multiple of Base. 2379 return false; 2380 } 2381 2382 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2383 const TargetLibraryInfo *TLI) { 2384 const Function *F = ICS.getCalledFunction(); 2385 if (!F) 2386 return Intrinsic::not_intrinsic; 2387 2388 if (F->isIntrinsic()) 2389 return F->getIntrinsicID(); 2390 2391 if (!TLI) 2392 return Intrinsic::not_intrinsic; 2393 2394 LibFunc Func; 2395 // We're going to make assumptions on the semantics of the functions, check 2396 // that the target knows that it's available in this environment and it does 2397 // not have local linkage. 2398 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2399 return Intrinsic::not_intrinsic; 2400 2401 if (!ICS.onlyReadsMemory()) 2402 return Intrinsic::not_intrinsic; 2403 2404 // Otherwise check if we have a call to a function that can be turned into a 2405 // vector intrinsic. 2406 switch (Func) { 2407 default: 2408 break; 2409 case LibFunc_sin: 2410 case LibFunc_sinf: 2411 case LibFunc_sinl: 2412 return Intrinsic::sin; 2413 case LibFunc_cos: 2414 case LibFunc_cosf: 2415 case LibFunc_cosl: 2416 return Intrinsic::cos; 2417 case LibFunc_exp: 2418 case LibFunc_expf: 2419 case LibFunc_expl: 2420 return Intrinsic::exp; 2421 case LibFunc_exp2: 2422 case LibFunc_exp2f: 2423 case LibFunc_exp2l: 2424 return Intrinsic::exp2; 2425 case LibFunc_log: 2426 case LibFunc_logf: 2427 case LibFunc_logl: 2428 return Intrinsic::log; 2429 case LibFunc_log10: 2430 case LibFunc_log10f: 2431 case LibFunc_log10l: 2432 return Intrinsic::log10; 2433 case LibFunc_log2: 2434 case LibFunc_log2f: 2435 case LibFunc_log2l: 2436 return Intrinsic::log2; 2437 case LibFunc_fabs: 2438 case LibFunc_fabsf: 2439 case LibFunc_fabsl: 2440 return Intrinsic::fabs; 2441 case LibFunc_fmin: 2442 case LibFunc_fminf: 2443 case LibFunc_fminl: 2444 return Intrinsic::minnum; 2445 case LibFunc_fmax: 2446 case LibFunc_fmaxf: 2447 case LibFunc_fmaxl: 2448 return Intrinsic::maxnum; 2449 case LibFunc_copysign: 2450 case LibFunc_copysignf: 2451 case LibFunc_copysignl: 2452 return Intrinsic::copysign; 2453 case LibFunc_floor: 2454 case LibFunc_floorf: 2455 case LibFunc_floorl: 2456 return Intrinsic::floor; 2457 case LibFunc_ceil: 2458 case LibFunc_ceilf: 2459 case LibFunc_ceill: 2460 return Intrinsic::ceil; 2461 case LibFunc_trunc: 2462 case LibFunc_truncf: 2463 case LibFunc_truncl: 2464 return Intrinsic::trunc; 2465 case LibFunc_rint: 2466 case LibFunc_rintf: 2467 case LibFunc_rintl: 2468 return Intrinsic::rint; 2469 case LibFunc_nearbyint: 2470 case LibFunc_nearbyintf: 2471 case LibFunc_nearbyintl: 2472 return Intrinsic::nearbyint; 2473 case LibFunc_round: 2474 case LibFunc_roundf: 2475 case LibFunc_roundl: 2476 return Intrinsic::round; 2477 case LibFunc_pow: 2478 case LibFunc_powf: 2479 case LibFunc_powl: 2480 return Intrinsic::pow; 2481 case LibFunc_sqrt: 2482 case LibFunc_sqrtf: 2483 case LibFunc_sqrtl: 2484 if (ICS->hasNoNaNs()) 2485 return Intrinsic::sqrt; 2486 return Intrinsic::not_intrinsic; 2487 } 2488 2489 return Intrinsic::not_intrinsic; 2490 } 2491 2492 /// Return true if we can prove that the specified FP value is never equal to 2493 /// -0.0. 2494 /// 2495 /// NOTE: this function will need to be revisited when we support non-default 2496 /// rounding modes! 2497 /// 2498 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2499 unsigned Depth) { 2500 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2501 return !CFP->getValueAPF().isNegZero(); 2502 2503 if (Depth == MaxDepth) 2504 return false; // Limit search depth. 2505 2506 const Operator *I = dyn_cast<Operator>(V); 2507 if (!I) return false; 2508 2509 // Check if the nsz fast-math flag is set 2510 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2511 if (FPO->hasNoSignedZeros()) 2512 return true; 2513 2514 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2515 if (I->getOpcode() == Instruction::FAdd) 2516 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2517 if (CFP->isNullValue()) 2518 return true; 2519 2520 // sitofp and uitofp turn into +0.0 for zero. 2521 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2522 return true; 2523 2524 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2525 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2526 switch (IID) { 2527 default: 2528 break; 2529 // sqrt(-0.0) = -0.0, no other negative results are possible. 2530 case Intrinsic::sqrt: 2531 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2532 // fabs(x) != -0.0 2533 case Intrinsic::fabs: 2534 return true; 2535 } 2536 } 2537 2538 return false; 2539 } 2540 2541 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2542 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2543 /// bit despite comparing equal. 2544 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2545 const TargetLibraryInfo *TLI, 2546 bool SignBitOnly, 2547 unsigned Depth) { 2548 // TODO: This function does not do the right thing when SignBitOnly is true 2549 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2550 // which flips the sign bits of NaNs. See 2551 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2552 2553 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2554 return !CFP->getValueAPF().isNegative() || 2555 (!SignBitOnly && CFP->getValueAPF().isZero()); 2556 } 2557 2558 if (Depth == MaxDepth) 2559 return false; // Limit search depth. 2560 2561 const Operator *I = dyn_cast<Operator>(V); 2562 if (!I) 2563 return false; 2564 2565 switch (I->getOpcode()) { 2566 default: 2567 break; 2568 // Unsigned integers are always nonnegative. 2569 case Instruction::UIToFP: 2570 return true; 2571 case Instruction::FMul: 2572 // x*x is always non-negative or a NaN. 2573 if (I->getOperand(0) == I->getOperand(1) && 2574 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2575 return true; 2576 2577 LLVM_FALLTHROUGH; 2578 case Instruction::FAdd: 2579 case Instruction::FDiv: 2580 case Instruction::FRem: 2581 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2582 Depth + 1) && 2583 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2584 Depth + 1); 2585 case Instruction::Select: 2586 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2587 Depth + 1) && 2588 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2589 Depth + 1); 2590 case Instruction::FPExt: 2591 case Instruction::FPTrunc: 2592 // Widening/narrowing never change sign. 2593 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2594 Depth + 1); 2595 case Instruction::Call: 2596 const auto *CI = cast<CallInst>(I); 2597 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2598 switch (IID) { 2599 default: 2600 break; 2601 case Intrinsic::maxnum: 2602 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2603 Depth + 1) || 2604 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2605 Depth + 1); 2606 case Intrinsic::minnum: 2607 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2608 Depth + 1) && 2609 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2610 Depth + 1); 2611 case Intrinsic::exp: 2612 case Intrinsic::exp2: 2613 case Intrinsic::fabs: 2614 return true; 2615 2616 case Intrinsic::sqrt: 2617 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2618 if (!SignBitOnly) 2619 return true; 2620 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2621 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2622 2623 case Intrinsic::powi: 2624 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2625 // powi(x,n) is non-negative if n is even. 2626 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2627 return true; 2628 } 2629 // TODO: This is not correct. Given that exp is an integer, here are the 2630 // ways that pow can return a negative value: 2631 // 2632 // pow(x, exp) --> negative if exp is odd and x is negative. 2633 // pow(-0, exp) --> -inf if exp is negative odd. 2634 // pow(-0, exp) --> -0 if exp is positive odd. 2635 // pow(-inf, exp) --> -0 if exp is negative odd. 2636 // pow(-inf, exp) --> -inf if exp is positive odd. 2637 // 2638 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2639 // but we must return false if x == -0. Unfortunately we do not currently 2640 // have a way of expressing this constraint. See details in 2641 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2642 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2643 Depth + 1); 2644 2645 case Intrinsic::fma: 2646 case Intrinsic::fmuladd: 2647 // x*x+y is non-negative if y is non-negative. 2648 return I->getOperand(0) == I->getOperand(1) && 2649 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2650 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2651 Depth + 1); 2652 } 2653 break; 2654 } 2655 return false; 2656 } 2657 2658 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2659 const TargetLibraryInfo *TLI) { 2660 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2661 } 2662 2663 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2664 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2665 } 2666 2667 /// If the specified value can be set by repeating the same byte in memory, 2668 /// return the i8 value that it is represented with. This is 2669 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2670 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2671 /// byte store (e.g. i16 0x1234), return null. 2672 Value *llvm::isBytewiseValue(Value *V) { 2673 // All byte-wide stores are splatable, even of arbitrary variables. 2674 if (V->getType()->isIntegerTy(8)) return V; 2675 2676 // Handle 'null' ConstantArrayZero etc. 2677 if (Constant *C = dyn_cast<Constant>(V)) 2678 if (C->isNullValue()) 2679 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2680 2681 // Constant float and double values can be handled as integer values if the 2682 // corresponding integer value is "byteable". An important case is 0.0. 2683 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2684 if (CFP->getType()->isFloatTy()) 2685 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2686 if (CFP->getType()->isDoubleTy()) 2687 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2688 // Don't handle long double formats, which have strange constraints. 2689 } 2690 2691 // We can handle constant integers that are multiple of 8 bits. 2692 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2693 if (CI->getBitWidth() % 8 == 0) { 2694 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2695 2696 if (!CI->getValue().isSplat(8)) 2697 return nullptr; 2698 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2699 } 2700 } 2701 2702 // A ConstantDataArray/Vector is splatable if all its members are equal and 2703 // also splatable. 2704 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2705 Value *Elt = CA->getElementAsConstant(0); 2706 Value *Val = isBytewiseValue(Elt); 2707 if (!Val) 2708 return nullptr; 2709 2710 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2711 if (CA->getElementAsConstant(I) != Elt) 2712 return nullptr; 2713 2714 return Val; 2715 } 2716 2717 // Conceptually, we could handle things like: 2718 // %a = zext i8 %X to i16 2719 // %b = shl i16 %a, 8 2720 // %c = or i16 %a, %b 2721 // but until there is an example that actually needs this, it doesn't seem 2722 // worth worrying about. 2723 return nullptr; 2724 } 2725 2726 2727 // This is the recursive version of BuildSubAggregate. It takes a few different 2728 // arguments. Idxs is the index within the nested struct From that we are 2729 // looking at now (which is of type IndexedType). IdxSkip is the number of 2730 // indices from Idxs that should be left out when inserting into the resulting 2731 // struct. To is the result struct built so far, new insertvalue instructions 2732 // build on that. 2733 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2734 SmallVectorImpl<unsigned> &Idxs, 2735 unsigned IdxSkip, 2736 Instruction *InsertBefore) { 2737 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2738 if (STy) { 2739 // Save the original To argument so we can modify it 2740 Value *OrigTo = To; 2741 // General case, the type indexed by Idxs is a struct 2742 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2743 // Process each struct element recursively 2744 Idxs.push_back(i); 2745 Value *PrevTo = To; 2746 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2747 InsertBefore); 2748 Idxs.pop_back(); 2749 if (!To) { 2750 // Couldn't find any inserted value for this index? Cleanup 2751 while (PrevTo != OrigTo) { 2752 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2753 PrevTo = Del->getAggregateOperand(); 2754 Del->eraseFromParent(); 2755 } 2756 // Stop processing elements 2757 break; 2758 } 2759 } 2760 // If we successfully found a value for each of our subaggregates 2761 if (To) 2762 return To; 2763 } 2764 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2765 // the struct's elements had a value that was inserted directly. In the latter 2766 // case, perhaps we can't determine each of the subelements individually, but 2767 // we might be able to find the complete struct somewhere. 2768 2769 // Find the value that is at that particular spot 2770 Value *V = FindInsertedValue(From, Idxs); 2771 2772 if (!V) 2773 return nullptr; 2774 2775 // Insert the value in the new (sub) aggregrate 2776 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2777 "tmp", InsertBefore); 2778 } 2779 2780 // This helper takes a nested struct and extracts a part of it (which is again a 2781 // struct) into a new value. For example, given the struct: 2782 // { a, { b, { c, d }, e } } 2783 // and the indices "1, 1" this returns 2784 // { c, d }. 2785 // 2786 // It does this by inserting an insertvalue for each element in the resulting 2787 // struct, as opposed to just inserting a single struct. This will only work if 2788 // each of the elements of the substruct are known (ie, inserted into From by an 2789 // insertvalue instruction somewhere). 2790 // 2791 // All inserted insertvalue instructions are inserted before InsertBefore 2792 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2793 Instruction *InsertBefore) { 2794 assert(InsertBefore && "Must have someplace to insert!"); 2795 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2796 idx_range); 2797 Value *To = UndefValue::get(IndexedType); 2798 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2799 unsigned IdxSkip = Idxs.size(); 2800 2801 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2802 } 2803 2804 /// Given an aggregrate and an sequence of indices, see if 2805 /// the scalar value indexed is already around as a register, for example if it 2806 /// were inserted directly into the aggregrate. 2807 /// 2808 /// If InsertBefore is not null, this function will duplicate (modified) 2809 /// insertvalues when a part of a nested struct is extracted. 2810 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2811 Instruction *InsertBefore) { 2812 // Nothing to index? Just return V then (this is useful at the end of our 2813 // recursion). 2814 if (idx_range.empty()) 2815 return V; 2816 // We have indices, so V should have an indexable type. 2817 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2818 "Not looking at a struct or array?"); 2819 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2820 "Invalid indices for type?"); 2821 2822 if (Constant *C = dyn_cast<Constant>(V)) { 2823 C = C->getAggregateElement(idx_range[0]); 2824 if (!C) return nullptr; 2825 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2826 } 2827 2828 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2829 // Loop the indices for the insertvalue instruction in parallel with the 2830 // requested indices 2831 const unsigned *req_idx = idx_range.begin(); 2832 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2833 i != e; ++i, ++req_idx) { 2834 if (req_idx == idx_range.end()) { 2835 // We can't handle this without inserting insertvalues 2836 if (!InsertBefore) 2837 return nullptr; 2838 2839 // The requested index identifies a part of a nested aggregate. Handle 2840 // this specially. For example, 2841 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2842 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2843 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2844 // This can be changed into 2845 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2846 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2847 // which allows the unused 0,0 element from the nested struct to be 2848 // removed. 2849 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2850 InsertBefore); 2851 } 2852 2853 // This insert value inserts something else than what we are looking for. 2854 // See if the (aggregate) value inserted into has the value we are 2855 // looking for, then. 2856 if (*req_idx != *i) 2857 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2858 InsertBefore); 2859 } 2860 // If we end up here, the indices of the insertvalue match with those 2861 // requested (though possibly only partially). Now we recursively look at 2862 // the inserted value, passing any remaining indices. 2863 return FindInsertedValue(I->getInsertedValueOperand(), 2864 makeArrayRef(req_idx, idx_range.end()), 2865 InsertBefore); 2866 } 2867 2868 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2869 // If we're extracting a value from an aggregate that was extracted from 2870 // something else, we can extract from that something else directly instead. 2871 // However, we will need to chain I's indices with the requested indices. 2872 2873 // Calculate the number of indices required 2874 unsigned size = I->getNumIndices() + idx_range.size(); 2875 // Allocate some space to put the new indices in 2876 SmallVector<unsigned, 5> Idxs; 2877 Idxs.reserve(size); 2878 // Add indices from the extract value instruction 2879 Idxs.append(I->idx_begin(), I->idx_end()); 2880 2881 // Add requested indices 2882 Idxs.append(idx_range.begin(), idx_range.end()); 2883 2884 assert(Idxs.size() == size 2885 && "Number of indices added not correct?"); 2886 2887 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2888 } 2889 // Otherwise, we don't know (such as, extracting from a function return value 2890 // or load instruction) 2891 return nullptr; 2892 } 2893 2894 /// Analyze the specified pointer to see if it can be expressed as a base 2895 /// pointer plus a constant offset. Return the base and offset to the caller. 2896 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2897 const DataLayout &DL) { 2898 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2899 APInt ByteOffset(BitWidth, 0); 2900 2901 // We walk up the defs but use a visited set to handle unreachable code. In 2902 // that case, we stop after accumulating the cycle once (not that it 2903 // matters). 2904 SmallPtrSet<Value *, 16> Visited; 2905 while (Visited.insert(Ptr).second) { 2906 if (Ptr->getType()->isVectorTy()) 2907 break; 2908 2909 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2910 // If one of the values we have visited is an addrspacecast, then 2911 // the pointer type of this GEP may be different from the type 2912 // of the Ptr parameter which was passed to this function. This 2913 // means when we construct GEPOffset, we need to use the size 2914 // of GEP's pointer type rather than the size of the original 2915 // pointer type. 2916 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2917 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2918 break; 2919 2920 ByteOffset += GEPOffset.getSExtValue(); 2921 2922 Ptr = GEP->getPointerOperand(); 2923 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2924 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2925 Ptr = cast<Operator>(Ptr)->getOperand(0); 2926 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2927 if (GA->isInterposable()) 2928 break; 2929 Ptr = GA->getAliasee(); 2930 } else { 2931 break; 2932 } 2933 } 2934 Offset = ByteOffset.getSExtValue(); 2935 return Ptr; 2936 } 2937 2938 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 2939 unsigned CharSize) { 2940 // Make sure the GEP has exactly three arguments. 2941 if (GEP->getNumOperands() != 3) 2942 return false; 2943 2944 // Make sure the index-ee is a pointer to array of \p CharSize integers. 2945 // CharSize. 2946 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2947 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 2948 return false; 2949 2950 // Check to make sure that the first operand of the GEP is an integer and 2951 // has value 0 so that we are sure we're indexing into the initializer. 2952 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2953 if (!FirstIdx || !FirstIdx->isZero()) 2954 return false; 2955 2956 return true; 2957 } 2958 2959 bool llvm::getConstantDataArrayInfo(const Value *V, 2960 ConstantDataArraySlice &Slice, 2961 unsigned ElementSize, uint64_t Offset) { 2962 assert(V); 2963 2964 // Look through bitcast instructions and geps. 2965 V = V->stripPointerCasts(); 2966 2967 // If the value is a GEP instruction or constant expression, treat it as an 2968 // offset. 2969 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2970 // The GEP operator should be based on a pointer to string constant, and is 2971 // indexing into the string constant. 2972 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 2973 return false; 2974 2975 // If the second index isn't a ConstantInt, then this is a variable index 2976 // into the array. If this occurs, we can't say anything meaningful about 2977 // the string. 2978 uint64_t StartIdx = 0; 2979 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2980 StartIdx = CI->getZExtValue(); 2981 else 2982 return false; 2983 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 2984 StartIdx + Offset); 2985 } 2986 2987 // The GEP instruction, constant or instruction, must reference a global 2988 // variable that is a constant and is initialized. The referenced constant 2989 // initializer is the array that we'll use for optimization. 2990 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2991 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2992 return false; 2993 2994 const ConstantDataArray *Array; 2995 ArrayType *ArrayTy; 2996 if (GV->getInitializer()->isNullValue()) { 2997 Type *GVTy = GV->getValueType(); 2998 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 2999 // A zeroinitializer for the array; there is no ConstantDataArray. 3000 Array = nullptr; 3001 } else { 3002 const DataLayout &DL = GV->getParent()->getDataLayout(); 3003 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3004 uint64_t Length = SizeInBytes / (ElementSize / 8); 3005 if (Length <= Offset) 3006 return false; 3007 3008 Slice.Array = nullptr; 3009 Slice.Offset = 0; 3010 Slice.Length = Length - Offset; 3011 return true; 3012 } 3013 } else { 3014 // This must be a ConstantDataArray. 3015 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3016 if (!Array) 3017 return false; 3018 ArrayTy = Array->getType(); 3019 } 3020 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3021 return false; 3022 3023 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3024 if (Offset > NumElts) 3025 return false; 3026 3027 Slice.Array = Array; 3028 Slice.Offset = Offset; 3029 Slice.Length = NumElts - Offset; 3030 return true; 3031 } 3032 3033 /// This function computes the length of a null-terminated C string pointed to 3034 /// by V. If successful, it returns true and returns the string in Str. 3035 /// If unsuccessful, it returns false. 3036 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3037 uint64_t Offset, bool TrimAtNul) { 3038 ConstantDataArraySlice Slice; 3039 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3040 return false; 3041 3042 if (Slice.Array == nullptr) { 3043 if (TrimAtNul) { 3044 Str = StringRef(); 3045 return true; 3046 } 3047 if (Slice.Length == 1) { 3048 Str = StringRef("", 1); 3049 return true; 3050 } 3051 // We cannot instantiate a StringRef as we do not have an appropriate string 3052 // of 0s at hand. 3053 return false; 3054 } 3055 3056 // Start out with the entire array in the StringRef. 3057 Str = Slice.Array->getAsString(); 3058 // Skip over 'offset' bytes. 3059 Str = Str.substr(Slice.Offset); 3060 3061 if (TrimAtNul) { 3062 // Trim off the \0 and anything after it. If the array is not nul 3063 // terminated, we just return the whole end of string. The client may know 3064 // some other way that the string is length-bound. 3065 Str = Str.substr(0, Str.find('\0')); 3066 } 3067 return true; 3068 } 3069 3070 // These next two are very similar to the above, but also look through PHI 3071 // nodes. 3072 // TODO: See if we can integrate these two together. 3073 3074 /// If we can compute the length of the string pointed to by 3075 /// the specified pointer, return 'len+1'. If we can't, return 0. 3076 static uint64_t GetStringLengthH(const Value *V, 3077 SmallPtrSetImpl<const PHINode*> &PHIs, 3078 unsigned CharSize) { 3079 // Look through noop bitcast instructions. 3080 V = V->stripPointerCasts(); 3081 3082 // If this is a PHI node, there are two cases: either we have already seen it 3083 // or we haven't. 3084 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3085 if (!PHIs.insert(PN).second) 3086 return ~0ULL; // already in the set. 3087 3088 // If it was new, see if all the input strings are the same length. 3089 uint64_t LenSoFar = ~0ULL; 3090 for (Value *IncValue : PN->incoming_values()) { 3091 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3092 if (Len == 0) return 0; // Unknown length -> unknown. 3093 3094 if (Len == ~0ULL) continue; 3095 3096 if (Len != LenSoFar && LenSoFar != ~0ULL) 3097 return 0; // Disagree -> unknown. 3098 LenSoFar = Len; 3099 } 3100 3101 // Success, all agree. 3102 return LenSoFar; 3103 } 3104 3105 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3106 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3107 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3108 if (Len1 == 0) return 0; 3109 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3110 if (Len2 == 0) return 0; 3111 if (Len1 == ~0ULL) return Len2; 3112 if (Len2 == ~0ULL) return Len1; 3113 if (Len1 != Len2) return 0; 3114 return Len1; 3115 } 3116 3117 // Otherwise, see if we can read the string. 3118 ConstantDataArraySlice Slice; 3119 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3120 return 0; 3121 3122 if (Slice.Array == nullptr) 3123 return 1; 3124 3125 // Search for nul characters 3126 unsigned NullIndex = 0; 3127 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3128 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3129 break; 3130 } 3131 3132 return NullIndex + 1; 3133 } 3134 3135 /// If we can compute the length of the string pointed to by 3136 /// the specified pointer, return 'len+1'. If we can't, return 0. 3137 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3138 if (!V->getType()->isPointerTy()) return 0; 3139 3140 SmallPtrSet<const PHINode*, 32> PHIs; 3141 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3142 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3143 // an empty string as a length. 3144 return Len == ~0ULL ? 1 : Len; 3145 } 3146 3147 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3148 /// previous iteration of the loop was referring to the same object as \p PN. 3149 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3150 const LoopInfo *LI) { 3151 // Find the loop-defined value. 3152 Loop *L = LI->getLoopFor(PN->getParent()); 3153 if (PN->getNumIncomingValues() != 2) 3154 return true; 3155 3156 // Find the value from previous iteration. 3157 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3158 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3159 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3160 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3161 return true; 3162 3163 // If a new pointer is loaded in the loop, the pointer references a different 3164 // object in every iteration. E.g.: 3165 // for (i) 3166 // int *p = a[i]; 3167 // ... 3168 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3169 if (!L->isLoopInvariant(Load->getPointerOperand())) 3170 return false; 3171 return true; 3172 } 3173 3174 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3175 unsigned MaxLookup) { 3176 if (!V->getType()->isPointerTy()) 3177 return V; 3178 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3179 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3180 V = GEP->getPointerOperand(); 3181 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3182 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3183 V = cast<Operator>(V)->getOperand(0); 3184 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3185 if (GA->isInterposable()) 3186 return V; 3187 V = GA->getAliasee(); 3188 } else if (isa<AllocaInst>(V)) { 3189 // An alloca can't be further simplified. 3190 return V; 3191 } else { 3192 if (auto CS = CallSite(V)) 3193 if (Value *RV = CS.getReturnedArgOperand()) { 3194 V = RV; 3195 continue; 3196 } 3197 3198 // See if InstructionSimplify knows any relevant tricks. 3199 if (Instruction *I = dyn_cast<Instruction>(V)) 3200 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3201 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3202 V = Simplified; 3203 continue; 3204 } 3205 3206 return V; 3207 } 3208 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3209 } 3210 return V; 3211 } 3212 3213 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3214 const DataLayout &DL, LoopInfo *LI, 3215 unsigned MaxLookup) { 3216 SmallPtrSet<Value *, 4> Visited; 3217 SmallVector<Value *, 4> Worklist; 3218 Worklist.push_back(V); 3219 do { 3220 Value *P = Worklist.pop_back_val(); 3221 P = GetUnderlyingObject(P, DL, MaxLookup); 3222 3223 if (!Visited.insert(P).second) 3224 continue; 3225 3226 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3227 Worklist.push_back(SI->getTrueValue()); 3228 Worklist.push_back(SI->getFalseValue()); 3229 continue; 3230 } 3231 3232 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3233 // If this PHI changes the underlying object in every iteration of the 3234 // loop, don't look through it. Consider: 3235 // int **A; 3236 // for (i) { 3237 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3238 // Curr = A[i]; 3239 // *Prev, *Curr; 3240 // 3241 // Prev is tracking Curr one iteration behind so they refer to different 3242 // underlying objects. 3243 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3244 isSameUnderlyingObjectInLoop(PN, LI)) 3245 for (Value *IncValue : PN->incoming_values()) 3246 Worklist.push_back(IncValue); 3247 continue; 3248 } 3249 3250 Objects.push_back(P); 3251 } while (!Worklist.empty()); 3252 } 3253 3254 /// This is the function that does the work of looking through basic 3255 /// ptrtoint+arithmetic+inttoptr sequences. 3256 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3257 do { 3258 if (const Operator *U = dyn_cast<Operator>(V)) { 3259 // If we find a ptrtoint, we can transfer control back to the 3260 // regular getUnderlyingObjectFromInt. 3261 if (U->getOpcode() == Instruction::PtrToInt) 3262 return U->getOperand(0); 3263 // If we find an add of a constant, a multiplied value, or a phi, it's 3264 // likely that the other operand will lead us to the base 3265 // object. We don't have to worry about the case where the 3266 // object address is somehow being computed by the multiply, 3267 // because our callers only care when the result is an 3268 // identifiable object. 3269 if (U->getOpcode() != Instruction::Add || 3270 (!isa<ConstantInt>(U->getOperand(1)) && 3271 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3272 !isa<PHINode>(U->getOperand(1)))) 3273 return V; 3274 V = U->getOperand(0); 3275 } else { 3276 return V; 3277 } 3278 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3279 } while (true); 3280 } 3281 3282 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3283 /// ptrtoint+arithmetic+inttoptr sequences. 3284 void llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3285 SmallVectorImpl<Value *> &Objects, 3286 const DataLayout &DL) { 3287 SmallPtrSet<const Value *, 16> Visited; 3288 SmallVector<const Value *, 4> Working(1, V); 3289 do { 3290 V = Working.pop_back_val(); 3291 3292 SmallVector<Value *, 4> Objs; 3293 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3294 3295 for (Value *V : Objs) { 3296 if (!Visited.insert(V).second) 3297 continue; 3298 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3299 const Value *O = 3300 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3301 if (O->getType()->isPointerTy()) { 3302 Working.push_back(O); 3303 continue; 3304 } 3305 } 3306 // If GetUnderlyingObjects fails to find an identifiable object, 3307 // getUnderlyingObjectsForCodeGen also fails for safety. 3308 if (!isIdentifiedObject(V)) { 3309 Objects.clear(); 3310 return; 3311 } 3312 Objects.push_back(const_cast<Value *>(V)); 3313 } 3314 } while (!Working.empty()); 3315 } 3316 3317 /// Return true if the only users of this pointer are lifetime markers. 3318 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3319 for (const User *U : V->users()) { 3320 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3321 if (!II) return false; 3322 3323 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3324 II->getIntrinsicID() != Intrinsic::lifetime_end) 3325 return false; 3326 } 3327 return true; 3328 } 3329 3330 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3331 const Instruction *CtxI, 3332 const DominatorTree *DT) { 3333 const Operator *Inst = dyn_cast<Operator>(V); 3334 if (!Inst) 3335 return false; 3336 3337 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3338 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3339 if (C->canTrap()) 3340 return false; 3341 3342 switch (Inst->getOpcode()) { 3343 default: 3344 return true; 3345 case Instruction::UDiv: 3346 case Instruction::URem: { 3347 // x / y is undefined if y == 0. 3348 const APInt *V; 3349 if (match(Inst->getOperand(1), m_APInt(V))) 3350 return *V != 0; 3351 return false; 3352 } 3353 case Instruction::SDiv: 3354 case Instruction::SRem: { 3355 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3356 const APInt *Numerator, *Denominator; 3357 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3358 return false; 3359 // We cannot hoist this division if the denominator is 0. 3360 if (*Denominator == 0) 3361 return false; 3362 // It's safe to hoist if the denominator is not 0 or -1. 3363 if (*Denominator != -1) 3364 return true; 3365 // At this point we know that the denominator is -1. It is safe to hoist as 3366 // long we know that the numerator is not INT_MIN. 3367 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3368 return !Numerator->isMinSignedValue(); 3369 // The numerator *might* be MinSignedValue. 3370 return false; 3371 } 3372 case Instruction::Load: { 3373 const LoadInst *LI = cast<LoadInst>(Inst); 3374 if (!LI->isUnordered() || 3375 // Speculative load may create a race that did not exist in the source. 3376 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3377 // Speculative load may load data from dirty regions. 3378 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3379 return false; 3380 const DataLayout &DL = LI->getModule()->getDataLayout(); 3381 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3382 LI->getAlignment(), DL, CtxI, DT); 3383 } 3384 case Instruction::Call: { 3385 auto *CI = cast<const CallInst>(Inst); 3386 const Function *Callee = CI->getCalledFunction(); 3387 3388 // The called function could have undefined behavior or side-effects, even 3389 // if marked readnone nounwind. 3390 return Callee && Callee->isSpeculatable(); 3391 } 3392 case Instruction::VAArg: 3393 case Instruction::Alloca: 3394 case Instruction::Invoke: 3395 case Instruction::PHI: 3396 case Instruction::Store: 3397 case Instruction::Ret: 3398 case Instruction::Br: 3399 case Instruction::IndirectBr: 3400 case Instruction::Switch: 3401 case Instruction::Unreachable: 3402 case Instruction::Fence: 3403 case Instruction::AtomicRMW: 3404 case Instruction::AtomicCmpXchg: 3405 case Instruction::LandingPad: 3406 case Instruction::Resume: 3407 case Instruction::CatchSwitch: 3408 case Instruction::CatchPad: 3409 case Instruction::CatchRet: 3410 case Instruction::CleanupPad: 3411 case Instruction::CleanupRet: 3412 return false; // Misc instructions which have effects 3413 } 3414 } 3415 3416 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3417 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3418 } 3419 3420 /// Return true if we know that the specified value is never null. 3421 bool llvm::isKnownNonNull(const Value *V) { 3422 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3423 3424 // Alloca never returns null, malloc might. 3425 if (isa<AllocaInst>(V)) return true; 3426 3427 // A byval, inalloca, or nonnull argument is never null. 3428 if (const Argument *A = dyn_cast<Argument>(V)) 3429 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3430 3431 // A global variable in address space 0 is non null unless extern weak 3432 // or an absolute symbol reference. Other address spaces may have null as a 3433 // valid address for a global, so we can't assume anything. 3434 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3435 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3436 GV->getType()->getAddressSpace() == 0; 3437 3438 // A Load tagged with nonnull metadata is never null. 3439 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3440 return LI->getMetadata(LLVMContext::MD_nonnull); 3441 3442 if (auto CS = ImmutableCallSite(V)) 3443 if (CS.isReturnNonNull()) 3444 return true; 3445 3446 return false; 3447 } 3448 3449 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3450 const Instruction *CtxI, 3451 const DominatorTree *DT) { 3452 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3453 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3454 assert(CtxI && "Context instruction required for analysis"); 3455 assert(DT && "Dominator tree required for analysis"); 3456 3457 unsigned NumUsesExplored = 0; 3458 for (auto *U : V->users()) { 3459 // Avoid massive lists 3460 if (NumUsesExplored >= DomConditionsMaxUses) 3461 break; 3462 NumUsesExplored++; 3463 3464 // If the value is used as an argument to a call or invoke, then argument 3465 // attributes may provide an answer about null-ness. 3466 if (auto CS = ImmutableCallSite(U)) 3467 if (auto *CalledFunc = CS.getCalledFunction()) 3468 for (const Argument &Arg : CalledFunc->args()) 3469 if (CS.getArgOperand(Arg.getArgNo()) == V && 3470 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3471 return true; 3472 3473 // Consider only compare instructions uniquely controlling a branch 3474 CmpInst::Predicate Pred; 3475 if (!match(const_cast<User *>(U), 3476 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3477 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3478 continue; 3479 3480 for (auto *CmpU : U->users()) { 3481 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3482 assert(BI->isConditional() && "uses a comparison!"); 3483 3484 BasicBlock *NonNullSuccessor = 3485 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3486 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3487 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3488 return true; 3489 } else if (Pred == ICmpInst::ICMP_NE && 3490 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3491 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3492 return true; 3493 } 3494 } 3495 } 3496 3497 return false; 3498 } 3499 3500 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3501 const DominatorTree *DT) { 3502 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3503 return false; 3504 3505 if (isKnownNonNull(V)) 3506 return true; 3507 3508 if (!CtxI || !DT) 3509 return false; 3510 3511 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3512 } 3513 3514 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3515 const Value *RHS, 3516 const DataLayout &DL, 3517 AssumptionCache *AC, 3518 const Instruction *CxtI, 3519 const DominatorTree *DT) { 3520 // Multiplying n * m significant bits yields a result of n + m significant 3521 // bits. If the total number of significant bits does not exceed the 3522 // result bit width (minus 1), there is no overflow. 3523 // This means if we have enough leading zero bits in the operands 3524 // we can guarantee that the result does not overflow. 3525 // Ref: "Hacker's Delight" by Henry Warren 3526 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3527 KnownBits LHSKnown(BitWidth); 3528 KnownBits RHSKnown(BitWidth); 3529 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3530 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3531 // Note that underestimating the number of zero bits gives a more 3532 // conservative answer. 3533 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3534 RHSKnown.countMinLeadingZeros(); 3535 // First handle the easy case: if we have enough zero bits there's 3536 // definitely no overflow. 3537 if (ZeroBits >= BitWidth) 3538 return OverflowResult::NeverOverflows; 3539 3540 // Get the largest possible values for each operand. 3541 APInt LHSMax = ~LHSKnown.Zero; 3542 APInt RHSMax = ~RHSKnown.Zero; 3543 3544 // We know the multiply operation doesn't overflow if the maximum values for 3545 // each operand will not overflow after we multiply them together. 3546 bool MaxOverflow; 3547 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3548 if (!MaxOverflow) 3549 return OverflowResult::NeverOverflows; 3550 3551 // We know it always overflows if multiplying the smallest possible values for 3552 // the operands also results in overflow. 3553 bool MinOverflow; 3554 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3555 if (MinOverflow) 3556 return OverflowResult::AlwaysOverflows; 3557 3558 return OverflowResult::MayOverflow; 3559 } 3560 3561 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3562 const Value *RHS, 3563 const DataLayout &DL, 3564 AssumptionCache *AC, 3565 const Instruction *CxtI, 3566 const DominatorTree *DT) { 3567 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3568 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3569 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3570 3571 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3572 // The sign bit is set in both cases: this MUST overflow. 3573 // Create a simple add instruction, and insert it into the struct. 3574 return OverflowResult::AlwaysOverflows; 3575 } 3576 3577 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3578 // The sign bit is clear in both cases: this CANNOT overflow. 3579 // Create a simple add instruction, and insert it into the struct. 3580 return OverflowResult::NeverOverflows; 3581 } 3582 } 3583 3584 return OverflowResult::MayOverflow; 3585 } 3586 3587 /// \brief Return true if we can prove that adding the two values of the 3588 /// knownbits will not overflow. 3589 /// Otherwise return false. 3590 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3591 const KnownBits &RHSKnown) { 3592 // Addition of two 2's complement numbers having opposite signs will never 3593 // overflow. 3594 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3595 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3596 return true; 3597 3598 // If either of the values is known to be non-negative, adding them can only 3599 // overflow if the second is also non-negative, so we can assume that. 3600 // Two non-negative numbers will only overflow if there is a carry to the 3601 // sign bit, so we can check if even when the values are as big as possible 3602 // there is no overflow to the sign bit. 3603 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3604 APInt MaxLHS = ~LHSKnown.Zero; 3605 MaxLHS.clearSignBit(); 3606 APInt MaxRHS = ~RHSKnown.Zero; 3607 MaxRHS.clearSignBit(); 3608 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3609 return Result.isSignBitClear(); 3610 } 3611 3612 // If either of the values is known to be negative, adding them can only 3613 // overflow if the second is also negative, so we can assume that. 3614 // Two negative number will only overflow if there is no carry to the sign 3615 // bit, so we can check if even when the values are as small as possible 3616 // there is overflow to the sign bit. 3617 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3618 APInt MinLHS = LHSKnown.One; 3619 MinLHS.clearSignBit(); 3620 APInt MinRHS = RHSKnown.One; 3621 MinRHS.clearSignBit(); 3622 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3623 return Result.isSignBitSet(); 3624 } 3625 3626 // If we reached here it means that we know nothing about the sign bits. 3627 // In this case we can't know if there will be an overflow, since by 3628 // changing the sign bits any two values can be made to overflow. 3629 return false; 3630 } 3631 3632 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3633 const Value *RHS, 3634 const AddOperator *Add, 3635 const DataLayout &DL, 3636 AssumptionCache *AC, 3637 const Instruction *CxtI, 3638 const DominatorTree *DT) { 3639 if (Add && Add->hasNoSignedWrap()) { 3640 return OverflowResult::NeverOverflows; 3641 } 3642 3643 // If LHS and RHS each have at least two sign bits, the addition will look 3644 // like 3645 // 3646 // XX..... + 3647 // YY..... 3648 // 3649 // If the carry into the most significant position is 0, X and Y can't both 3650 // be 1 and therefore the carry out of the addition is also 0. 3651 // 3652 // If the carry into the most significant position is 1, X and Y can't both 3653 // be 0 and therefore the carry out of the addition is also 1. 3654 // 3655 // Since the carry into the most significant position is always equal to 3656 // the carry out of the addition, there is no signed overflow. 3657 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3658 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3659 return OverflowResult::NeverOverflows; 3660 3661 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3662 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3663 3664 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3665 return OverflowResult::NeverOverflows; 3666 3667 // The remaining code needs Add to be available. Early returns if not so. 3668 if (!Add) 3669 return OverflowResult::MayOverflow; 3670 3671 // If the sign of Add is the same as at least one of the operands, this add 3672 // CANNOT overflow. This is particularly useful when the sum is 3673 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3674 // operands. 3675 bool LHSOrRHSKnownNonNegative = 3676 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3677 bool LHSOrRHSKnownNegative = 3678 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3679 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3680 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3681 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3682 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3683 return OverflowResult::NeverOverflows; 3684 } 3685 } 3686 3687 return OverflowResult::MayOverflow; 3688 } 3689 3690 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3691 const DominatorTree &DT) { 3692 #ifndef NDEBUG 3693 auto IID = II->getIntrinsicID(); 3694 assert((IID == Intrinsic::sadd_with_overflow || 3695 IID == Intrinsic::uadd_with_overflow || 3696 IID == Intrinsic::ssub_with_overflow || 3697 IID == Intrinsic::usub_with_overflow || 3698 IID == Intrinsic::smul_with_overflow || 3699 IID == Intrinsic::umul_with_overflow) && 3700 "Not an overflow intrinsic!"); 3701 #endif 3702 3703 SmallVector<const BranchInst *, 2> GuardingBranches; 3704 SmallVector<const ExtractValueInst *, 2> Results; 3705 3706 for (const User *U : II->users()) { 3707 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3708 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3709 3710 if (EVI->getIndices()[0] == 0) 3711 Results.push_back(EVI); 3712 else { 3713 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3714 3715 for (const auto *U : EVI->users()) 3716 if (const auto *B = dyn_cast<BranchInst>(U)) { 3717 assert(B->isConditional() && "How else is it using an i1?"); 3718 GuardingBranches.push_back(B); 3719 } 3720 } 3721 } else { 3722 // We are using the aggregate directly in a way we don't want to analyze 3723 // here (storing it to a global, say). 3724 return false; 3725 } 3726 } 3727 3728 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3729 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3730 if (!NoWrapEdge.isSingleEdge()) 3731 return false; 3732 3733 // Check if all users of the add are provably no-wrap. 3734 for (const auto *Result : Results) { 3735 // If the extractvalue itself is not executed on overflow, the we don't 3736 // need to check each use separately, since domination is transitive. 3737 if (DT.dominates(NoWrapEdge, Result->getParent())) 3738 continue; 3739 3740 for (auto &RU : Result->uses()) 3741 if (!DT.dominates(NoWrapEdge, RU)) 3742 return false; 3743 } 3744 3745 return true; 3746 }; 3747 3748 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3749 } 3750 3751 3752 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3753 const DataLayout &DL, 3754 AssumptionCache *AC, 3755 const Instruction *CxtI, 3756 const DominatorTree *DT) { 3757 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3758 Add, DL, AC, CxtI, DT); 3759 } 3760 3761 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3762 const Value *RHS, 3763 const DataLayout &DL, 3764 AssumptionCache *AC, 3765 const Instruction *CxtI, 3766 const DominatorTree *DT) { 3767 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3768 } 3769 3770 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3771 // A memory operation returns normally if it isn't volatile. A volatile 3772 // operation is allowed to trap. 3773 // 3774 // An atomic operation isn't guaranteed to return in a reasonable amount of 3775 // time because it's possible for another thread to interfere with it for an 3776 // arbitrary length of time, but programs aren't allowed to rely on that. 3777 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3778 return !LI->isVolatile(); 3779 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3780 return !SI->isVolatile(); 3781 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3782 return !CXI->isVolatile(); 3783 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3784 return !RMWI->isVolatile(); 3785 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3786 return !MII->isVolatile(); 3787 3788 // If there is no successor, then execution can't transfer to it. 3789 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3790 return !CRI->unwindsToCaller(); 3791 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3792 return !CatchSwitch->unwindsToCaller(); 3793 if (isa<ResumeInst>(I)) 3794 return false; 3795 if (isa<ReturnInst>(I)) 3796 return false; 3797 if (isa<UnreachableInst>(I)) 3798 return false; 3799 3800 // Calls can throw, or contain an infinite loop, or kill the process. 3801 if (auto CS = ImmutableCallSite(I)) { 3802 // Call sites that throw have implicit non-local control flow. 3803 if (!CS.doesNotThrow()) 3804 return false; 3805 3806 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3807 // etc. and thus not return. However, LLVM already assumes that 3808 // 3809 // - Thread exiting actions are modeled as writes to memory invisible to 3810 // the program. 3811 // 3812 // - Loops that don't have side effects (side effects are volatile/atomic 3813 // stores and IO) always terminate (see http://llvm.org/PR965). 3814 // Furthermore IO itself is also modeled as writes to memory invisible to 3815 // the program. 3816 // 3817 // We rely on those assumptions here, and use the memory effects of the call 3818 // target as a proxy for checking that it always returns. 3819 3820 // FIXME: This isn't aggressive enough; a call which only writes to a global 3821 // is guaranteed to return. 3822 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3823 match(I, m_Intrinsic<Intrinsic::assume>()); 3824 } 3825 3826 // Other instructions return normally. 3827 return true; 3828 } 3829 3830 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3831 const Loop *L) { 3832 // The loop header is guaranteed to be executed for every iteration. 3833 // 3834 // FIXME: Relax this constraint to cover all basic blocks that are 3835 // guaranteed to be executed at every iteration. 3836 if (I->getParent() != L->getHeader()) return false; 3837 3838 for (const Instruction &LI : *L->getHeader()) { 3839 if (&LI == I) return true; 3840 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3841 } 3842 llvm_unreachable("Instruction not contained in its own parent basic block."); 3843 } 3844 3845 bool llvm::propagatesFullPoison(const Instruction *I) { 3846 switch (I->getOpcode()) { 3847 case Instruction::Add: 3848 case Instruction::Sub: 3849 case Instruction::Xor: 3850 case Instruction::Trunc: 3851 case Instruction::BitCast: 3852 case Instruction::AddrSpaceCast: 3853 case Instruction::Mul: 3854 case Instruction::Shl: 3855 case Instruction::GetElementPtr: 3856 // These operations all propagate poison unconditionally. Note that poison 3857 // is not any particular value, so xor or subtraction of poison with 3858 // itself still yields poison, not zero. 3859 return true; 3860 3861 case Instruction::AShr: 3862 case Instruction::SExt: 3863 // For these operations, one bit of the input is replicated across 3864 // multiple output bits. A replicated poison bit is still poison. 3865 return true; 3866 3867 case Instruction::ICmp: 3868 // Comparing poison with any value yields poison. This is why, for 3869 // instance, x s< (x +nsw 1) can be folded to true. 3870 return true; 3871 3872 default: 3873 return false; 3874 } 3875 } 3876 3877 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3878 switch (I->getOpcode()) { 3879 case Instruction::Store: 3880 return cast<StoreInst>(I)->getPointerOperand(); 3881 3882 case Instruction::Load: 3883 return cast<LoadInst>(I)->getPointerOperand(); 3884 3885 case Instruction::AtomicCmpXchg: 3886 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3887 3888 case Instruction::AtomicRMW: 3889 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3890 3891 case Instruction::UDiv: 3892 case Instruction::SDiv: 3893 case Instruction::URem: 3894 case Instruction::SRem: 3895 return I->getOperand(1); 3896 3897 default: 3898 return nullptr; 3899 } 3900 } 3901 3902 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 3903 // We currently only look for uses of poison values within the same basic 3904 // block, as that makes it easier to guarantee that the uses will be 3905 // executed given that PoisonI is executed. 3906 // 3907 // FIXME: Expand this to consider uses beyond the same basic block. To do 3908 // this, look out for the distinction between post-dominance and strong 3909 // post-dominance. 3910 const BasicBlock *BB = PoisonI->getParent(); 3911 3912 // Set of instructions that we have proved will yield poison if PoisonI 3913 // does. 3914 SmallSet<const Value *, 16> YieldsPoison; 3915 SmallSet<const BasicBlock *, 4> Visited; 3916 YieldsPoison.insert(PoisonI); 3917 Visited.insert(PoisonI->getParent()); 3918 3919 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3920 3921 unsigned Iter = 0; 3922 while (Iter++ < MaxDepth) { 3923 for (auto &I : make_range(Begin, End)) { 3924 if (&I != PoisonI) { 3925 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3926 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3927 return true; 3928 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3929 return false; 3930 } 3931 3932 // Mark poison that propagates from I through uses of I. 3933 if (YieldsPoison.count(&I)) { 3934 for (const User *User : I.users()) { 3935 const Instruction *UserI = cast<Instruction>(User); 3936 if (propagatesFullPoison(UserI)) 3937 YieldsPoison.insert(User); 3938 } 3939 } 3940 } 3941 3942 if (auto *NextBB = BB->getSingleSuccessor()) { 3943 if (Visited.insert(NextBB).second) { 3944 BB = NextBB; 3945 Begin = BB->getFirstNonPHI()->getIterator(); 3946 End = BB->end(); 3947 continue; 3948 } 3949 } 3950 3951 break; 3952 }; 3953 return false; 3954 } 3955 3956 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3957 if (FMF.noNaNs()) 3958 return true; 3959 3960 if (auto *C = dyn_cast<ConstantFP>(V)) 3961 return !C->isNaN(); 3962 return false; 3963 } 3964 3965 static bool isKnownNonZero(const Value *V) { 3966 if (auto *C = dyn_cast<ConstantFP>(V)) 3967 return !C->isZero(); 3968 return false; 3969 } 3970 3971 /// Match clamp pattern for float types without care about NaNs or signed zeros. 3972 /// Given non-min/max outer cmp/select from the clamp pattern this 3973 /// function recognizes if it can be substitued by a "canonical" min/max 3974 /// pattern. 3975 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 3976 Value *CmpLHS, Value *CmpRHS, 3977 Value *TrueVal, Value *FalseVal, 3978 Value *&LHS, Value *&RHS) { 3979 // Try to match 3980 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 3981 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 3982 // and return description of the outer Max/Min. 3983 3984 // First, check if select has inverse order: 3985 if (CmpRHS == FalseVal) { 3986 std::swap(TrueVal, FalseVal); 3987 Pred = CmpInst::getInversePredicate(Pred); 3988 } 3989 3990 // Assume success now. If there's no match, callers should not use these anyway. 3991 LHS = TrueVal; 3992 RHS = FalseVal; 3993 3994 const APFloat *FC1; 3995 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 3996 return {SPF_UNKNOWN, SPNB_NA, false}; 3997 3998 const APFloat *FC2; 3999 switch (Pred) { 4000 case CmpInst::FCMP_OLT: 4001 case CmpInst::FCMP_OLE: 4002 case CmpInst::FCMP_ULT: 4003 case CmpInst::FCMP_ULE: 4004 if (match(FalseVal, 4005 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4006 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4007 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4008 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4009 break; 4010 case CmpInst::FCMP_OGT: 4011 case CmpInst::FCMP_OGE: 4012 case CmpInst::FCMP_UGT: 4013 case CmpInst::FCMP_UGE: 4014 if (match(FalseVal, 4015 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4016 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4017 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4018 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4019 break; 4020 default: 4021 break; 4022 } 4023 4024 return {SPF_UNKNOWN, SPNB_NA, false}; 4025 } 4026 4027 /// Match non-obvious integer minimum and maximum sequences. 4028 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4029 Value *CmpLHS, Value *CmpRHS, 4030 Value *TrueVal, Value *FalseVal, 4031 Value *&LHS, Value *&RHS) { 4032 // Assume success. If there's no match, callers should not use these anyway. 4033 LHS = TrueVal; 4034 RHS = FalseVal; 4035 4036 // Recognize variations of: 4037 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4038 const APInt *C1; 4039 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4040 const APInt *C2; 4041 4042 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4043 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4044 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4045 return {SPF_SMAX, SPNB_NA, false}; 4046 4047 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4048 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4049 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4050 return {SPF_SMIN, SPNB_NA, false}; 4051 4052 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4053 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4054 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4055 return {SPF_UMAX, SPNB_NA, false}; 4056 4057 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4058 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4059 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4060 return {SPF_UMIN, SPNB_NA, false}; 4061 } 4062 4063 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4064 return {SPF_UNKNOWN, SPNB_NA, false}; 4065 4066 // Z = X -nsw Y 4067 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4068 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4069 if (match(TrueVal, m_Zero()) && 4070 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4071 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4072 4073 // Z = X -nsw Y 4074 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4075 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4076 if (match(FalseVal, m_Zero()) && 4077 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4078 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4079 4080 if (!match(CmpRHS, m_APInt(C1))) 4081 return {SPF_UNKNOWN, SPNB_NA, false}; 4082 4083 // An unsigned min/max can be written with a signed compare. 4084 const APInt *C2; 4085 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4086 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4087 // Is the sign bit set? 4088 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4089 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4090 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4091 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4092 4093 // Is the sign bit clear? 4094 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4095 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4096 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4097 C2->isMinSignedValue()) 4098 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4099 } 4100 4101 // Look through 'not' ops to find disguised signed min/max. 4102 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4103 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4104 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4105 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4106 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4107 4108 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4109 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4110 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4111 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4112 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4113 4114 return {SPF_UNKNOWN, SPNB_NA, false}; 4115 } 4116 4117 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4118 FastMathFlags FMF, 4119 Value *CmpLHS, Value *CmpRHS, 4120 Value *TrueVal, Value *FalseVal, 4121 Value *&LHS, Value *&RHS) { 4122 LHS = CmpLHS; 4123 RHS = CmpRHS; 4124 4125 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4126 // return inconsistent results between implementations. 4127 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4128 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4129 // Therefore we behave conservatively and only proceed if at least one of the 4130 // operands is known to not be zero, or if we don't care about signed zeroes. 4131 switch (Pred) { 4132 default: break; 4133 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4134 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4135 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4136 !isKnownNonZero(CmpRHS)) 4137 return {SPF_UNKNOWN, SPNB_NA, false}; 4138 } 4139 4140 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4141 bool Ordered = false; 4142 4143 // When given one NaN and one non-NaN input: 4144 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4145 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4146 // ordered comparison fails), which could be NaN or non-NaN. 4147 // so here we discover exactly what NaN behavior is required/accepted. 4148 if (CmpInst::isFPPredicate(Pred)) { 4149 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4150 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4151 4152 if (LHSSafe && RHSSafe) { 4153 // Both operands are known non-NaN. 4154 NaNBehavior = SPNB_RETURNS_ANY; 4155 } else if (CmpInst::isOrdered(Pred)) { 4156 // An ordered comparison will return false when given a NaN, so it 4157 // returns the RHS. 4158 Ordered = true; 4159 if (LHSSafe) 4160 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4161 NaNBehavior = SPNB_RETURNS_NAN; 4162 else if (RHSSafe) 4163 NaNBehavior = SPNB_RETURNS_OTHER; 4164 else 4165 // Completely unsafe. 4166 return {SPF_UNKNOWN, SPNB_NA, false}; 4167 } else { 4168 Ordered = false; 4169 // An unordered comparison will return true when given a NaN, so it 4170 // returns the LHS. 4171 if (LHSSafe) 4172 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4173 NaNBehavior = SPNB_RETURNS_OTHER; 4174 else if (RHSSafe) 4175 NaNBehavior = SPNB_RETURNS_NAN; 4176 else 4177 // Completely unsafe. 4178 return {SPF_UNKNOWN, SPNB_NA, false}; 4179 } 4180 } 4181 4182 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4183 std::swap(CmpLHS, CmpRHS); 4184 Pred = CmpInst::getSwappedPredicate(Pred); 4185 if (NaNBehavior == SPNB_RETURNS_NAN) 4186 NaNBehavior = SPNB_RETURNS_OTHER; 4187 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4188 NaNBehavior = SPNB_RETURNS_NAN; 4189 Ordered = !Ordered; 4190 } 4191 4192 // ([if]cmp X, Y) ? X : Y 4193 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4194 switch (Pred) { 4195 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4196 case ICmpInst::ICMP_UGT: 4197 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4198 case ICmpInst::ICMP_SGT: 4199 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4200 case ICmpInst::ICMP_ULT: 4201 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4202 case ICmpInst::ICMP_SLT: 4203 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4204 case FCmpInst::FCMP_UGT: 4205 case FCmpInst::FCMP_UGE: 4206 case FCmpInst::FCMP_OGT: 4207 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4208 case FCmpInst::FCMP_ULT: 4209 case FCmpInst::FCMP_ULE: 4210 case FCmpInst::FCMP_OLT: 4211 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4212 } 4213 } 4214 4215 const APInt *C1; 4216 if (match(CmpRHS, m_APInt(C1))) { 4217 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4218 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4219 4220 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4221 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4222 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4223 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4224 } 4225 4226 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4227 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4228 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4229 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4230 } 4231 } 4232 } 4233 4234 if (CmpInst::isIntPredicate(Pred)) 4235 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4236 4237 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4238 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4239 // semantics than minNum. Be conservative in such case. 4240 if (NaNBehavior != SPNB_RETURNS_ANY || 4241 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4242 !isKnownNonZero(CmpRHS))) 4243 return {SPF_UNKNOWN, SPNB_NA, false}; 4244 4245 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4246 } 4247 4248 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4249 Instruction::CastOps *CastOp) { 4250 auto *Cast1 = dyn_cast<CastInst>(V1); 4251 if (!Cast1) 4252 return nullptr; 4253 4254 *CastOp = Cast1->getOpcode(); 4255 Type *SrcTy = Cast1->getSrcTy(); 4256 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4257 // If V1 and V2 are both the same cast from the same type, look through V1. 4258 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4259 return Cast2->getOperand(0); 4260 return nullptr; 4261 } 4262 4263 auto *C = dyn_cast<Constant>(V2); 4264 if (!C) 4265 return nullptr; 4266 4267 Constant *CastedTo = nullptr; 4268 switch (*CastOp) { 4269 case Instruction::ZExt: 4270 if (CmpI->isUnsigned()) 4271 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4272 break; 4273 case Instruction::SExt: 4274 if (CmpI->isSigned()) 4275 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4276 break; 4277 case Instruction::Trunc: 4278 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4279 break; 4280 case Instruction::FPTrunc: 4281 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4282 break; 4283 case Instruction::FPExt: 4284 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4285 break; 4286 case Instruction::FPToUI: 4287 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4288 break; 4289 case Instruction::FPToSI: 4290 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4291 break; 4292 case Instruction::UIToFP: 4293 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4294 break; 4295 case Instruction::SIToFP: 4296 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4297 break; 4298 default: 4299 break; 4300 } 4301 4302 if (!CastedTo) 4303 return nullptr; 4304 4305 // Make sure the cast doesn't lose any information. 4306 Constant *CastedBack = 4307 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4308 if (CastedBack != C) 4309 return nullptr; 4310 4311 return CastedTo; 4312 } 4313 4314 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4315 Instruction::CastOps *CastOp) { 4316 SelectInst *SI = dyn_cast<SelectInst>(V); 4317 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4318 4319 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4320 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4321 4322 CmpInst::Predicate Pred = CmpI->getPredicate(); 4323 Value *CmpLHS = CmpI->getOperand(0); 4324 Value *CmpRHS = CmpI->getOperand(1); 4325 Value *TrueVal = SI->getTrueValue(); 4326 Value *FalseVal = SI->getFalseValue(); 4327 FastMathFlags FMF; 4328 if (isa<FPMathOperator>(CmpI)) 4329 FMF = CmpI->getFastMathFlags(); 4330 4331 // Bail out early. 4332 if (CmpI->isEquality()) 4333 return {SPF_UNKNOWN, SPNB_NA, false}; 4334 4335 // Deal with type mismatches. 4336 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4337 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4338 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4339 cast<CastInst>(TrueVal)->getOperand(0), C, 4340 LHS, RHS); 4341 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4342 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4343 C, cast<CastInst>(FalseVal)->getOperand(0), 4344 LHS, RHS); 4345 } 4346 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4347 LHS, RHS); 4348 } 4349 4350 /// Return true if "icmp Pred LHS RHS" is always true. 4351 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4352 const Value *RHS, const DataLayout &DL, 4353 unsigned Depth) { 4354 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4355 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4356 return true; 4357 4358 switch (Pred) { 4359 default: 4360 return false; 4361 4362 case CmpInst::ICMP_SLE: { 4363 const APInt *C; 4364 4365 // LHS s<= LHS +_{nsw} C if C >= 0 4366 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4367 return !C->isNegative(); 4368 return false; 4369 } 4370 4371 case CmpInst::ICMP_ULE: { 4372 const APInt *C; 4373 4374 // LHS u<= LHS +_{nuw} C for any C 4375 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4376 return true; 4377 4378 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4379 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4380 const Value *&X, 4381 const APInt *&CA, const APInt *&CB) { 4382 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4383 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4384 return true; 4385 4386 // If X & C == 0 then (X | C) == X +_{nuw} C 4387 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4388 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4389 KnownBits Known(CA->getBitWidth()); 4390 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4391 /*CxtI*/ nullptr, /*DT*/ nullptr); 4392 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4393 return true; 4394 } 4395 4396 return false; 4397 }; 4398 4399 const Value *X; 4400 const APInt *CLHS, *CRHS; 4401 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4402 return CLHS->ule(*CRHS); 4403 4404 return false; 4405 } 4406 } 4407 } 4408 4409 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4410 /// ALHS ARHS" is true. Otherwise, return None. 4411 static Optional<bool> 4412 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4413 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4414 const DataLayout &DL, unsigned Depth) { 4415 switch (Pred) { 4416 default: 4417 return None; 4418 4419 case CmpInst::ICMP_SLT: 4420 case CmpInst::ICMP_SLE: 4421 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4422 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4423 return true; 4424 return None; 4425 4426 case CmpInst::ICMP_ULT: 4427 case CmpInst::ICMP_ULE: 4428 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4429 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4430 return true; 4431 return None; 4432 } 4433 } 4434 4435 /// Return true if the operands of the two compares match. IsSwappedOps is true 4436 /// when the operands match, but are swapped. 4437 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4438 const Value *BLHS, const Value *BRHS, 4439 bool &IsSwappedOps) { 4440 4441 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4442 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4443 return IsMatchingOps || IsSwappedOps; 4444 } 4445 4446 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4447 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4448 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4449 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4450 const Value *ALHS, 4451 const Value *ARHS, 4452 CmpInst::Predicate BPred, 4453 const Value *BLHS, 4454 const Value *BRHS, 4455 bool IsSwappedOps) { 4456 // Canonicalize the operands so they're matching. 4457 if (IsSwappedOps) { 4458 std::swap(BLHS, BRHS); 4459 BPred = ICmpInst::getSwappedPredicate(BPred); 4460 } 4461 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4462 return true; 4463 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4464 return false; 4465 4466 return None; 4467 } 4468 4469 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4470 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4471 /// C2" is false. Otherwise, return None if we can't infer anything. 4472 static Optional<bool> 4473 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4474 const ConstantInt *C1, 4475 CmpInst::Predicate BPred, 4476 const Value *BLHS, const ConstantInt *C2) { 4477 assert(ALHS == BLHS && "LHS operands must match."); 4478 ConstantRange DomCR = 4479 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4480 ConstantRange CR = 4481 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4482 ConstantRange Intersection = DomCR.intersectWith(CR); 4483 ConstantRange Difference = DomCR.difference(CR); 4484 if (Intersection.isEmptySet()) 4485 return false; 4486 if (Difference.isEmptySet()) 4487 return true; 4488 return None; 4489 } 4490 4491 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4492 /// false. Otherwise, return None if we can't infer anything. 4493 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4494 const ICmpInst *RHS, 4495 const DataLayout &DL, bool LHSIsTrue, 4496 unsigned Depth) { 4497 Value *ALHS = LHS->getOperand(0); 4498 Value *ARHS = LHS->getOperand(1); 4499 // The rest of the logic assumes the LHS condition is true. If that's not the 4500 // case, invert the predicate to make it so. 4501 ICmpInst::Predicate APred = 4502 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4503 4504 Value *BLHS = RHS->getOperand(0); 4505 Value *BRHS = RHS->getOperand(1); 4506 ICmpInst::Predicate BPred = RHS->getPredicate(); 4507 4508 // Can we infer anything when the two compares have matching operands? 4509 bool IsSwappedOps; 4510 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4511 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4512 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4513 return Implication; 4514 // No amount of additional analysis will infer the second condition, so 4515 // early exit. 4516 return None; 4517 } 4518 4519 // Can we infer anything when the LHS operands match and the RHS operands are 4520 // constants (not necessarily matching)? 4521 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4522 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4523 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4524 cast<ConstantInt>(BRHS))) 4525 return Implication; 4526 // No amount of additional analysis will infer the second condition, so 4527 // early exit. 4528 return None; 4529 } 4530 4531 if (APred == BPred) 4532 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4533 return None; 4534 } 4535 4536 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4537 /// false. Otherwise, return None if we can't infer anything. We expect the 4538 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 4539 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 4540 const ICmpInst *RHS, 4541 const DataLayout &DL, bool LHSIsTrue, 4542 unsigned Depth) { 4543 // The LHS must be an 'or' or an 'and' instruction. 4544 assert((LHS->getOpcode() == Instruction::And || 4545 LHS->getOpcode() == Instruction::Or) && 4546 "Expected LHS to be 'and' or 'or'."); 4547 4548 assert(Depth <= MaxDepth && "Hit recursion limit"); 4549 4550 // If the result of an 'or' is false, then we know both legs of the 'or' are 4551 // false. Similarly, if the result of an 'and' is true, then we know both 4552 // legs of the 'and' are true. 4553 Value *ALHS, *ARHS; 4554 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 4555 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 4556 // FIXME: Make this non-recursion. 4557 if (Optional<bool> Implication = 4558 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 4559 return Implication; 4560 if (Optional<bool> Implication = 4561 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 4562 return Implication; 4563 return None; 4564 } 4565 return None; 4566 } 4567 4568 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4569 const DataLayout &DL, bool LHSIsTrue, 4570 unsigned Depth) { 4571 // Bail out when we hit the limit. 4572 if (Depth == MaxDepth) 4573 return None; 4574 4575 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 4576 // example. 4577 if (LHS->getType() != RHS->getType()) 4578 return None; 4579 4580 Type *OpTy = LHS->getType(); 4581 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 4582 4583 // LHS ==> RHS by definition 4584 if (LHS == RHS) 4585 return LHSIsTrue; 4586 4587 // FIXME: Extending the code below to handle vectors. 4588 if (OpTy->isVectorTy()) 4589 return None; 4590 4591 assert(OpTy->isIntegerTy(1) && "implied by above"); 4592 4593 // Both LHS and RHS are icmps. 4594 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 4595 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 4596 if (LHSCmp && RHSCmp) 4597 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 4598 4599 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 4600 // an icmp. FIXME: Add support for and/or on the RHS. 4601 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 4602 if (LHSBO && RHSCmp) { 4603 if ((LHSBO->getOpcode() == Instruction::And || 4604 LHSBO->getOpcode() == Instruction::Or)) 4605 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 4606 } 4607 return None; 4608 } 4609