1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
165   // If we've been provided with a context instruction, then use that (provided
166   // it has been inserted).
167   if (CxtI && CxtI->getParent())
168     return CxtI;
169 
170   // If the value is really an already-inserted instruction, then use that.
171   CxtI = dyn_cast<Instruction>(V1);
172   if (CxtI && CxtI->getParent())
173     return CxtI;
174 
175   CxtI = dyn_cast<Instruction>(V2);
176   if (CxtI && CxtI->getParent())
177     return CxtI;
178 
179   return nullptr;
180 }
181 
182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
183                                    const APInt &DemandedElts,
184                                    APInt &DemandedLHS, APInt &DemandedRHS) {
185   // The length of scalable vectors is unknown at compile time, thus we
186   // cannot check their values
187   if (isa<ScalableVectorType>(Shuf->getType()))
188     return false;
189 
190   int NumElts =
191       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
192   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
193   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
194   if (DemandedElts.isNullValue())
195     return true;
196   // Simple case of a shuffle with zeroinitializer.
197   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
198     DemandedLHS.setBit(0);
199     return true;
200   }
201   for (int i = 0; i != NumMaskElts; ++i) {
202     if (!DemandedElts[i])
203       continue;
204     int M = Shuf->getMaskValue(i);
205     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
206 
207     // For undef elements, we don't know anything about the common state of
208     // the shuffle result.
209     if (M == -1)
210       return false;
211     if (M < NumElts)
212       DemandedLHS.setBit(M % NumElts);
213     else
214       DemandedRHS.setBit(M % NumElts);
215   }
216 
217   return true;
218 }
219 
220 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
221                              KnownBits &Known, unsigned Depth, const Query &Q);
222 
223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
224                              const Query &Q) {
225   // FIXME: We currently have no way to represent the DemandedElts of a scalable
226   // vector
227   if (isa<ScalableVectorType>(V->getType())) {
228     Known.resetAll();
229     return;
230   }
231 
232   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
233   APInt DemandedElts =
234       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
235   computeKnownBits(V, DemandedElts, Known, Depth, Q);
236 }
237 
238 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
239                             const DataLayout &DL, unsigned Depth,
240                             AssumptionCache *AC, const Instruction *CxtI,
241                             const DominatorTree *DT,
242                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
243   ::computeKnownBits(V, Known, Depth,
244                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
245 }
246 
247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
248                             KnownBits &Known, const DataLayout &DL,
249                             unsigned Depth, AssumptionCache *AC,
250                             const Instruction *CxtI, const DominatorTree *DT,
251                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
252   ::computeKnownBits(V, DemandedElts, Known, Depth,
253                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
257                                   unsigned Depth, const Query &Q);
258 
259 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
260                                   const Query &Q);
261 
262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
263                                  unsigned Depth, AssumptionCache *AC,
264                                  const Instruction *CxtI,
265                                  const DominatorTree *DT,
266                                  OptimizationRemarkEmitter *ORE,
267                                  bool UseInstrInfo) {
268   return ::computeKnownBits(
269       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
270 }
271 
272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
273                                  const DataLayout &DL, unsigned Depth,
274                                  AssumptionCache *AC, const Instruction *CxtI,
275                                  const DominatorTree *DT,
276                                  OptimizationRemarkEmitter *ORE,
277                                  bool UseInstrInfo) {
278   return ::computeKnownBits(
279       V, DemandedElts, Depth,
280       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
281 }
282 
283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
284                                const DataLayout &DL, AssumptionCache *AC,
285                                const Instruction *CxtI, const DominatorTree *DT,
286                                bool UseInstrInfo) {
287   assert(LHS->getType() == RHS->getType() &&
288          "LHS and RHS should have the same type");
289   assert(LHS->getType()->isIntOrIntVectorTy() &&
290          "LHS and RHS should be integers");
291   // Look for an inverted mask: (X & ~M) op (Y & M).
292   Value *M;
293   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
294       match(RHS, m_c_And(m_Specific(M), m_Value())))
295     return true;
296   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
297       match(LHS, m_c_And(m_Specific(M), m_Value())))
298     return true;
299   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
300   KnownBits LHSKnown(IT->getBitWidth());
301   KnownBits RHSKnown(IT->getBitWidth());
302   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
303   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
304   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
305 }
306 
307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
308   for (const User *U : CxtI->users()) {
309     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
310       if (IC->isEquality())
311         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
312           if (C->isNullValue())
313             continue;
314     return false;
315   }
316   return true;
317 }
318 
319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
320                                    const Query &Q);
321 
322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
323                                   bool OrZero, unsigned Depth,
324                                   AssumptionCache *AC, const Instruction *CxtI,
325                                   const DominatorTree *DT, bool UseInstrInfo) {
326   return ::isKnownToBeAPowerOfTwo(
327       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
328 }
329 
330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
331                            unsigned Depth, const Query &Q);
332 
333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
334 
335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
336                           AssumptionCache *AC, const Instruction *CxtI,
337                           const DominatorTree *DT, bool UseInstrInfo) {
338   return ::isKnownNonZero(V, Depth,
339                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
340 }
341 
342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
343                               unsigned Depth, AssumptionCache *AC,
344                               const Instruction *CxtI, const DominatorTree *DT,
345                               bool UseInstrInfo) {
346   KnownBits Known =
347       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
348   return Known.isNonNegative();
349 }
350 
351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
352                            AssumptionCache *AC, const Instruction *CxtI,
353                            const DominatorTree *DT, bool UseInstrInfo) {
354   if (auto *CI = dyn_cast<ConstantInt>(V))
355     return CI->getValue().isStrictlyPositive();
356 
357   // TODO: We'd doing two recursive queries here.  We should factor this such
358   // that only a single query is needed.
359   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
360          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
361 }
362 
363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
364                            AssumptionCache *AC, const Instruction *CxtI,
365                            const DominatorTree *DT, bool UseInstrInfo) {
366   KnownBits Known =
367       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
368   return Known.isNegative();
369 }
370 
371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
372                             const Query &Q);
373 
374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
375                            const DataLayout &DL, AssumptionCache *AC,
376                            const Instruction *CxtI, const DominatorTree *DT,
377                            bool UseInstrInfo) {
378   return ::isKnownNonEqual(V1, V2, 0,
379                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
380                                  UseInstrInfo, /*ORE=*/nullptr));
381 }
382 
383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
384                               const Query &Q);
385 
386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
387                              const DataLayout &DL, unsigned Depth,
388                              AssumptionCache *AC, const Instruction *CxtI,
389                              const DominatorTree *DT, bool UseInstrInfo) {
390   return ::MaskedValueIsZero(
391       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
392 }
393 
394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
395                                    unsigned Depth, const Query &Q);
396 
397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
398                                    const Query &Q) {
399   // FIXME: We currently have no way to represent the DemandedElts of a scalable
400   // vector
401   if (isa<ScalableVectorType>(V->getType()))
402     return 1;
403 
404   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
405   APInt DemandedElts =
406       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
407   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
408 }
409 
410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
411                                   unsigned Depth, AssumptionCache *AC,
412                                   const Instruction *CxtI,
413                                   const DominatorTree *DT, bool UseInstrInfo) {
414   return ::ComputeNumSignBits(
415       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
416 }
417 
418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
419                                    bool NSW, const APInt &DemandedElts,
420                                    KnownBits &KnownOut, KnownBits &Known2,
421                                    unsigned Depth, const Query &Q) {
422   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
423 
424   // If one operand is unknown and we have no nowrap information,
425   // the result will be unknown independently of the second operand.
426   if (KnownOut.isUnknown() && !NSW)
427     return;
428 
429   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
430   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
431 }
432 
433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
434                                 const APInt &DemandedElts, KnownBits &Known,
435                                 KnownBits &Known2, unsigned Depth,
436                                 const Query &Q) {
437   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
438   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
439 
440   bool isKnownNegative = false;
441   bool isKnownNonNegative = false;
442   // If the multiplication is known not to overflow, compute the sign bit.
443   if (NSW) {
444     if (Op0 == Op1) {
445       // The product of a number with itself is non-negative.
446       isKnownNonNegative = true;
447     } else {
448       bool isKnownNonNegativeOp1 = Known.isNonNegative();
449       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
450       bool isKnownNegativeOp1 = Known.isNegative();
451       bool isKnownNegativeOp0 = Known2.isNegative();
452       // The product of two numbers with the same sign is non-negative.
453       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
454                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
455       // The product of a negative number and a non-negative number is either
456       // negative or zero.
457       if (!isKnownNonNegative)
458         isKnownNegative =
459             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
460              Known2.isNonZero()) ||
461             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
462     }
463   }
464 
465   Known = KnownBits::computeForMul(Known, Known2);
466 
467   // Only make use of no-wrap flags if we failed to compute the sign bit
468   // directly.  This matters if the multiplication always overflows, in
469   // which case we prefer to follow the result of the direct computation,
470   // though as the program is invoking undefined behaviour we can choose
471   // whatever we like here.
472   if (isKnownNonNegative && !Known.isNegative())
473     Known.makeNonNegative();
474   else if (isKnownNegative && !Known.isNonNegative())
475     Known.makeNegative();
476 }
477 
478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
479                                              KnownBits &Known) {
480   unsigned BitWidth = Known.getBitWidth();
481   unsigned NumRanges = Ranges.getNumOperands() / 2;
482   assert(NumRanges >= 1);
483 
484   Known.Zero.setAllBits();
485   Known.One.setAllBits();
486 
487   for (unsigned i = 0; i < NumRanges; ++i) {
488     ConstantInt *Lower =
489         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
490     ConstantInt *Upper =
491         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
492     ConstantRange Range(Lower->getValue(), Upper->getValue());
493 
494     // The first CommonPrefixBits of all values in Range are equal.
495     unsigned CommonPrefixBits =
496         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
497     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
498     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
499     Known.One &= UnsignedMax & Mask;
500     Known.Zero &= ~UnsignedMax & Mask;
501   }
502 }
503 
504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
505   SmallVector<const Value *, 16> WorkSet(1, I);
506   SmallPtrSet<const Value *, 32> Visited;
507   SmallPtrSet<const Value *, 16> EphValues;
508 
509   // The instruction defining an assumption's condition itself is always
510   // considered ephemeral to that assumption (even if it has other
511   // non-ephemeral users). See r246696's test case for an example.
512   if (is_contained(I->operands(), E))
513     return true;
514 
515   while (!WorkSet.empty()) {
516     const Value *V = WorkSet.pop_back_val();
517     if (!Visited.insert(V).second)
518       continue;
519 
520     // If all uses of this value are ephemeral, then so is this value.
521     if (llvm::all_of(V->users(), [&](const User *U) {
522                                    return EphValues.count(U);
523                                  })) {
524       if (V == E)
525         return true;
526 
527       if (V == I || isSafeToSpeculativelyExecute(V)) {
528        EphValues.insert(V);
529        if (const User *U = dyn_cast<User>(V))
530          append_range(WorkSet, U->operands());
531       }
532     }
533   }
534 
535   return false;
536 }
537 
538 // Is this an intrinsic that cannot be speculated but also cannot trap?
539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
540   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
541     return CI->isAssumeLikeIntrinsic();
542 
543   return false;
544 }
545 
546 bool llvm::isValidAssumeForContext(const Instruction *Inv,
547                                    const Instruction *CxtI,
548                                    const DominatorTree *DT) {
549   // There are two restrictions on the use of an assume:
550   //  1. The assume must dominate the context (or the control flow must
551   //     reach the assume whenever it reaches the context).
552   //  2. The context must not be in the assume's set of ephemeral values
553   //     (otherwise we will use the assume to prove that the condition
554   //     feeding the assume is trivially true, thus causing the removal of
555   //     the assume).
556 
557   if (Inv->getParent() == CxtI->getParent()) {
558     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
559     // in the BB.
560     if (Inv->comesBefore(CxtI))
561       return true;
562 
563     // Don't let an assume affect itself - this would cause the problems
564     // `isEphemeralValueOf` is trying to prevent, and it would also make
565     // the loop below go out of bounds.
566     if (Inv == CxtI)
567       return false;
568 
569     // The context comes first, but they're both in the same block.
570     // Make sure there is nothing in between that might interrupt
571     // the control flow, not even CxtI itself.
572     // We limit the scan distance between the assume and its context instruction
573     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
574     // it can be adjusted if needed (could be turned into a cl::opt).
575     unsigned ScanLimit = 15;
576     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
577       if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0)
578         return false;
579 
580     return !isEphemeralValueOf(Inv, CxtI);
581   }
582 
583   // Inv and CxtI are in different blocks.
584   if (DT) {
585     if (DT->dominates(Inv, CxtI))
586       return true;
587   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
588     // We don't have a DT, but this trivially dominates.
589     return true;
590   }
591 
592   return false;
593 }
594 
595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
596   // v u> y implies v != 0.
597   if (Pred == ICmpInst::ICMP_UGT)
598     return true;
599 
600   // Special-case v != 0 to also handle v != null.
601   if (Pred == ICmpInst::ICMP_NE)
602     return match(RHS, m_Zero());
603 
604   // All other predicates - rely on generic ConstantRange handling.
605   const APInt *C;
606   if (!match(RHS, m_APInt(C)))
607     return false;
608 
609   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
610   return !TrueValues.contains(APInt::getNullValue(C->getBitWidth()));
611 }
612 
613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
614   // Use of assumptions is context-sensitive. If we don't have a context, we
615   // cannot use them!
616   if (!Q.AC || !Q.CxtI)
617     return false;
618 
619   if (Q.CxtI && V->getType()->isPointerTy()) {
620     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
621     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
622                               V->getType()->getPointerAddressSpace()))
623       AttrKinds.push_back(Attribute::Dereferenceable);
624 
625     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
626       return true;
627   }
628 
629   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
630     if (!AssumeVH)
631       continue;
632     CallInst *I = cast<CallInst>(AssumeVH);
633     assert(I->getFunction() == Q.CxtI->getFunction() &&
634            "Got assumption for the wrong function!");
635     if (Q.isExcluded(I))
636       continue;
637 
638     // Warning: This loop can end up being somewhat performance sensitive.
639     // We're running this loop for once for each value queried resulting in a
640     // runtime of ~O(#assumes * #values).
641 
642     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
643            "must be an assume intrinsic");
644 
645     Value *RHS;
646     CmpInst::Predicate Pred;
647     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
648     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
649       return false;
650 
651     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
652       return true;
653   }
654 
655   return false;
656 }
657 
658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
659                                        unsigned Depth, const Query &Q) {
660   // Use of assumptions is context-sensitive. If we don't have a context, we
661   // cannot use them!
662   if (!Q.AC || !Q.CxtI)
663     return;
664 
665   unsigned BitWidth = Known.getBitWidth();
666 
667   // Refine Known set if the pointer alignment is set by assume bundles.
668   if (V->getType()->isPointerTy()) {
669     if (RetainedKnowledge RK = getKnowledgeValidInContext(
670             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
671       Known.Zero.setLowBits(Log2_32(RK.ArgValue));
672     }
673   }
674 
675   // Note that the patterns below need to be kept in sync with the code
676   // in AssumptionCache::updateAffectedValues.
677 
678   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
679     if (!AssumeVH)
680       continue;
681     CallInst *I = cast<CallInst>(AssumeVH);
682     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
683            "Got assumption for the wrong function!");
684     if (Q.isExcluded(I))
685       continue;
686 
687     // Warning: This loop can end up being somewhat performance sensitive.
688     // We're running this loop for once for each value queried resulting in a
689     // runtime of ~O(#assumes * #values).
690 
691     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
692            "must be an assume intrinsic");
693 
694     Value *Arg = I->getArgOperand(0);
695 
696     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
697       assert(BitWidth == 1 && "assume operand is not i1?");
698       Known.setAllOnes();
699       return;
700     }
701     if (match(Arg, m_Not(m_Specific(V))) &&
702         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
703       assert(BitWidth == 1 && "assume operand is not i1?");
704       Known.setAllZero();
705       return;
706     }
707 
708     // The remaining tests are all recursive, so bail out if we hit the limit.
709     if (Depth == MaxAnalysisRecursionDepth)
710       continue;
711 
712     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
713     if (!Cmp)
714       continue;
715 
716     // Note that ptrtoint may change the bitwidth.
717     Value *A, *B;
718     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
719 
720     CmpInst::Predicate Pred;
721     uint64_t C;
722     switch (Cmp->getPredicate()) {
723     default:
724       break;
725     case ICmpInst::ICMP_EQ:
726       // assume(v = a)
727       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
728           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
729         KnownBits RHSKnown =
730             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
731         Known.Zero |= RHSKnown.Zero;
732         Known.One  |= RHSKnown.One;
733       // assume(v & b = a)
734       } else if (match(Cmp,
735                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
736                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
737         KnownBits RHSKnown =
738             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
739         KnownBits MaskKnown =
740             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
741 
742         // For those bits in the mask that are known to be one, we can propagate
743         // known bits from the RHS to V.
744         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
745         Known.One  |= RHSKnown.One  & MaskKnown.One;
746       // assume(~(v & b) = a)
747       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
748                                      m_Value(A))) &&
749                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
750         KnownBits RHSKnown =
751             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
752         KnownBits MaskKnown =
753             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
754 
755         // For those bits in the mask that are known to be one, we can propagate
756         // inverted known bits from the RHS to V.
757         Known.Zero |= RHSKnown.One  & MaskKnown.One;
758         Known.One  |= RHSKnown.Zero & MaskKnown.One;
759       // assume(v | b = a)
760       } else if (match(Cmp,
761                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
762                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
763         KnownBits RHSKnown =
764             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
765         KnownBits BKnown =
766             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
767 
768         // For those bits in B that are known to be zero, we can propagate known
769         // bits from the RHS to V.
770         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
771         Known.One  |= RHSKnown.One  & BKnown.Zero;
772       // assume(~(v | b) = a)
773       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
774                                      m_Value(A))) &&
775                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
776         KnownBits RHSKnown =
777             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
778         KnownBits BKnown =
779             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
780 
781         // For those bits in B that are known to be zero, we can propagate
782         // inverted known bits from the RHS to V.
783         Known.Zero |= RHSKnown.One  & BKnown.Zero;
784         Known.One  |= RHSKnown.Zero & BKnown.Zero;
785       // assume(v ^ b = a)
786       } else if (match(Cmp,
787                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
788                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
789         KnownBits RHSKnown =
790             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
791         KnownBits BKnown =
792             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
793 
794         // For those bits in B that are known to be zero, we can propagate known
795         // bits from the RHS to V. For those bits in B that are known to be one,
796         // we can propagate inverted known bits from the RHS to V.
797         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
798         Known.One  |= RHSKnown.One  & BKnown.Zero;
799         Known.Zero |= RHSKnown.One  & BKnown.One;
800         Known.One  |= RHSKnown.Zero & BKnown.One;
801       // assume(~(v ^ b) = a)
802       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
803                                      m_Value(A))) &&
804                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
805         KnownBits RHSKnown =
806             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
807         KnownBits BKnown =
808             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
809 
810         // For those bits in B that are known to be zero, we can propagate
811         // inverted known bits from the RHS to V. For those bits in B that are
812         // known to be one, we can propagate known bits from the RHS to V.
813         Known.Zero |= RHSKnown.One  & BKnown.Zero;
814         Known.One  |= RHSKnown.Zero & BKnown.Zero;
815         Known.Zero |= RHSKnown.Zero & BKnown.One;
816         Known.One  |= RHSKnown.One  & BKnown.One;
817       // assume(v << c = a)
818       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
819                                      m_Value(A))) &&
820                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
821         KnownBits RHSKnown =
822             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
823 
824         // For those bits in RHS that are known, we can propagate them to known
825         // bits in V shifted to the right by C.
826         RHSKnown.Zero.lshrInPlace(C);
827         Known.Zero |= RHSKnown.Zero;
828         RHSKnown.One.lshrInPlace(C);
829         Known.One  |= RHSKnown.One;
830       // assume(~(v << c) = a)
831       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
832                                      m_Value(A))) &&
833                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
834         KnownBits RHSKnown =
835             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
836         // For those bits in RHS that are known, we can propagate them inverted
837         // to known bits in V shifted to the right by C.
838         RHSKnown.One.lshrInPlace(C);
839         Known.Zero |= RHSKnown.One;
840         RHSKnown.Zero.lshrInPlace(C);
841         Known.One  |= RHSKnown.Zero;
842       // assume(v >> c = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
848         // For those bits in RHS that are known, we can propagate them to known
849         // bits in V shifted to the right by C.
850         Known.Zero |= RHSKnown.Zero << C;
851         Known.One  |= RHSKnown.One  << C;
852       // assume(~(v >> c) = a)
853       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
854                                      m_Value(A))) &&
855                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
856         KnownBits RHSKnown =
857             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
858         // For those bits in RHS that are known, we can propagate them inverted
859         // to known bits in V shifted to the right by C.
860         Known.Zero |= RHSKnown.One  << C;
861         Known.One  |= RHSKnown.Zero << C;
862       }
863       break;
864     case ICmpInst::ICMP_SGE:
865       // assume(v >=_s c) where c is non-negative
866       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
867           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
868         KnownBits RHSKnown =
869             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
870 
871         if (RHSKnown.isNonNegative()) {
872           // We know that the sign bit is zero.
873           Known.makeNonNegative();
874         }
875       }
876       break;
877     case ICmpInst::ICMP_SGT:
878       // assume(v >_s c) where c is at least -1.
879       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
880           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
881         KnownBits RHSKnown =
882             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
883 
884         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
885           // We know that the sign bit is zero.
886           Known.makeNonNegative();
887         }
888       }
889       break;
890     case ICmpInst::ICMP_SLE:
891       // assume(v <=_s c) where c is negative
892       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
893           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
894         KnownBits RHSKnown =
895             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
896 
897         if (RHSKnown.isNegative()) {
898           // We know that the sign bit is one.
899           Known.makeNegative();
900         }
901       }
902       break;
903     case ICmpInst::ICMP_SLT:
904       // assume(v <_s c) where c is non-positive
905       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
906           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
907         KnownBits RHSKnown =
908             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
909 
910         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
911           // We know that the sign bit is one.
912           Known.makeNegative();
913         }
914       }
915       break;
916     case ICmpInst::ICMP_ULE:
917       // assume(v <=_u c)
918       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
919           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
920         KnownBits RHSKnown =
921             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
922 
923         // Whatever high bits in c are zero are known to be zero.
924         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
925       }
926       break;
927     case ICmpInst::ICMP_ULT:
928       // assume(v <_u c)
929       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
930           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
931         KnownBits RHSKnown =
932             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
933 
934         // If the RHS is known zero, then this assumption must be wrong (nothing
935         // is unsigned less than zero). Signal a conflict and get out of here.
936         if (RHSKnown.isZero()) {
937           Known.Zero.setAllBits();
938           Known.One.setAllBits();
939           break;
940         }
941 
942         // Whatever high bits in c are zero are known to be zero (if c is a power
943         // of 2, then one more).
944         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
945           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
946         else
947           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
948       }
949       break;
950     }
951   }
952 
953   // If assumptions conflict with each other or previous known bits, then we
954   // have a logical fallacy. It's possible that the assumption is not reachable,
955   // so this isn't a real bug. On the other hand, the program may have undefined
956   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
957   // clear out the known bits, try to warn the user, and hope for the best.
958   if (Known.Zero.intersects(Known.One)) {
959     Known.resetAll();
960 
961     if (Q.ORE)
962       Q.ORE->emit([&]() {
963         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
964         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
965                                           CxtI)
966                << "Detected conflicting code assumptions. Program may "
967                   "have undefined behavior, or compiler may have "
968                   "internal error.";
969       });
970   }
971 }
972 
973 /// Compute known bits from a shift operator, including those with a
974 /// non-constant shift amount. Known is the output of this function. Known2 is a
975 /// pre-allocated temporary with the same bit width as Known and on return
976 /// contains the known bit of the shift value source. KF is an
977 /// operator-specific function that, given the known-bits and a shift amount,
978 /// compute the implied known-bits of the shift operator's result respectively
979 /// for that shift amount. The results from calling KF are conservatively
980 /// combined for all permitted shift amounts.
981 static void computeKnownBitsFromShiftOperator(
982     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
983     KnownBits &Known2, unsigned Depth, const Query &Q,
984     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
985   unsigned BitWidth = Known.getBitWidth();
986   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
987   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
988 
989   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
990   // BitWidth > 64 and any upper bits are known, we'll end up returning the
991   // limit value (which implies all bits are known).
992   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
993   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
994   bool ShiftAmtIsConstant = Known.isConstant();
995   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
996 
997   if (ShiftAmtIsConstant) {
998     Known = KF(Known2, Known);
999 
1000     // If the known bits conflict, this must be an overflowing left shift, so
1001     // the shift result is poison. We can return anything we want. Choose 0 for
1002     // the best folding opportunity.
1003     if (Known.hasConflict())
1004       Known.setAllZero();
1005 
1006     return;
1007   }
1008 
1009   // If the shift amount could be greater than or equal to the bit-width of the
1010   // LHS, the value could be poison, but bail out because the check below is
1011   // expensive.
1012   // TODO: Should we just carry on?
1013   if (MaxShiftAmtIsOutOfRange) {
1014     Known.resetAll();
1015     return;
1016   }
1017 
1018   // It would be more-clearly correct to use the two temporaries for this
1019   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1020   Known.resetAll();
1021 
1022   // If we know the shifter operand is nonzero, we can sometimes infer more
1023   // known bits. However this is expensive to compute, so be lazy about it and
1024   // only compute it when absolutely necessary.
1025   Optional<bool> ShifterOperandIsNonZero;
1026 
1027   // Early exit if we can't constrain any well-defined shift amount.
1028   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1029       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1030     ShifterOperandIsNonZero =
1031         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1032     if (!*ShifterOperandIsNonZero)
1033       return;
1034   }
1035 
1036   Known.Zero.setAllBits();
1037   Known.One.setAllBits();
1038   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1039     // Combine the shifted known input bits only for those shift amounts
1040     // compatible with its known constraints.
1041     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1042       continue;
1043     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1044       continue;
1045     // If we know the shifter is nonzero, we may be able to infer more known
1046     // bits. This check is sunk down as far as possible to avoid the expensive
1047     // call to isKnownNonZero if the cheaper checks above fail.
1048     if (ShiftAmt == 0) {
1049       if (!ShifterOperandIsNonZero.hasValue())
1050         ShifterOperandIsNonZero =
1051             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1052       if (*ShifterOperandIsNonZero)
1053         continue;
1054     }
1055 
1056     Known = KnownBits::commonBits(
1057         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1058   }
1059 
1060   // If the known bits conflict, the result is poison. Return a 0 and hope the
1061   // caller can further optimize that.
1062   if (Known.hasConflict())
1063     Known.setAllZero();
1064 }
1065 
1066 static void computeKnownBitsFromOperator(const Operator *I,
1067                                          const APInt &DemandedElts,
1068                                          KnownBits &Known, unsigned Depth,
1069                                          const Query &Q) {
1070   unsigned BitWidth = Known.getBitWidth();
1071 
1072   KnownBits Known2(BitWidth);
1073   switch (I->getOpcode()) {
1074   default: break;
1075   case Instruction::Load:
1076     if (MDNode *MD =
1077             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1078       computeKnownBitsFromRangeMetadata(*MD, Known);
1079     break;
1080   case Instruction::And: {
1081     // If either the LHS or the RHS are Zero, the result is zero.
1082     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1083     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1084 
1085     Known &= Known2;
1086 
1087     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1088     // here we handle the more general case of adding any odd number by
1089     // matching the form add(x, add(x, y)) where y is odd.
1090     // TODO: This could be generalized to clearing any bit set in y where the
1091     // following bit is known to be unset in y.
1092     Value *X = nullptr, *Y = nullptr;
1093     if (!Known.Zero[0] && !Known.One[0] &&
1094         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1095       Known2.resetAll();
1096       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1097       if (Known2.countMinTrailingOnes() > 0)
1098         Known.Zero.setBit(0);
1099     }
1100     break;
1101   }
1102   case Instruction::Or:
1103     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1104     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1105 
1106     Known |= Known2;
1107     break;
1108   case Instruction::Xor:
1109     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1110     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1111 
1112     Known ^= Known2;
1113     break;
1114   case Instruction::Mul: {
1115     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1116     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1117                         Known, Known2, Depth, Q);
1118     break;
1119   }
1120   case Instruction::UDiv: {
1121     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1122     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1123     Known = KnownBits::udiv(Known, Known2);
1124     break;
1125   }
1126   case Instruction::Select: {
1127     const Value *LHS = nullptr, *RHS = nullptr;
1128     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1129     if (SelectPatternResult::isMinOrMax(SPF)) {
1130       computeKnownBits(RHS, Known, Depth + 1, Q);
1131       computeKnownBits(LHS, Known2, Depth + 1, Q);
1132       switch (SPF) {
1133       default:
1134         llvm_unreachable("Unhandled select pattern flavor!");
1135       case SPF_SMAX:
1136         Known = KnownBits::smax(Known, Known2);
1137         break;
1138       case SPF_SMIN:
1139         Known = KnownBits::smin(Known, Known2);
1140         break;
1141       case SPF_UMAX:
1142         Known = KnownBits::umax(Known, Known2);
1143         break;
1144       case SPF_UMIN:
1145         Known = KnownBits::umin(Known, Known2);
1146         break;
1147       }
1148       break;
1149     }
1150 
1151     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1152     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1153 
1154     // Only known if known in both the LHS and RHS.
1155     Known = KnownBits::commonBits(Known, Known2);
1156 
1157     if (SPF == SPF_ABS) {
1158       // RHS from matchSelectPattern returns the negation part of abs pattern.
1159       // If the negate has an NSW flag we can assume the sign bit of the result
1160       // will be 0 because that makes abs(INT_MIN) undefined.
1161       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1162           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1163         Known.Zero.setSignBit();
1164     }
1165 
1166     break;
1167   }
1168   case Instruction::FPTrunc:
1169   case Instruction::FPExt:
1170   case Instruction::FPToUI:
1171   case Instruction::FPToSI:
1172   case Instruction::SIToFP:
1173   case Instruction::UIToFP:
1174     break; // Can't work with floating point.
1175   case Instruction::PtrToInt:
1176   case Instruction::IntToPtr:
1177     // Fall through and handle them the same as zext/trunc.
1178     LLVM_FALLTHROUGH;
1179   case Instruction::ZExt:
1180   case Instruction::Trunc: {
1181     Type *SrcTy = I->getOperand(0)->getType();
1182 
1183     unsigned SrcBitWidth;
1184     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1185     // which fall through here.
1186     Type *ScalarTy = SrcTy->getScalarType();
1187     SrcBitWidth = ScalarTy->isPointerTy() ?
1188       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1189       Q.DL.getTypeSizeInBits(ScalarTy);
1190 
1191     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1192     Known = Known.anyextOrTrunc(SrcBitWidth);
1193     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1194     Known = Known.zextOrTrunc(BitWidth);
1195     break;
1196   }
1197   case Instruction::BitCast: {
1198     Type *SrcTy = I->getOperand(0)->getType();
1199     if (SrcTy->isIntOrPtrTy() &&
1200         // TODO: For now, not handling conversions like:
1201         // (bitcast i64 %x to <2 x i32>)
1202         !I->getType()->isVectorTy()) {
1203       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1204       break;
1205     }
1206     break;
1207   }
1208   case Instruction::SExt: {
1209     // Compute the bits in the result that are not present in the input.
1210     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1211 
1212     Known = Known.trunc(SrcBitWidth);
1213     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1214     // If the sign bit of the input is known set or clear, then we know the
1215     // top bits of the result.
1216     Known = Known.sext(BitWidth);
1217     break;
1218   }
1219   case Instruction::Shl: {
1220     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1221     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1222       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1223       // If this shift has "nsw" keyword, then the result is either a poison
1224       // value or has the same sign bit as the first operand.
1225       if (NSW) {
1226         if (KnownVal.Zero.isSignBitSet())
1227           Result.Zero.setSignBit();
1228         if (KnownVal.One.isSignBitSet())
1229           Result.One.setSignBit();
1230       }
1231       return Result;
1232     };
1233     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1234                                       KF);
1235     // Trailing zeros of a right-shifted constant never decrease.
1236     const APInt *C;
1237     if (match(I->getOperand(0), m_APInt(C)))
1238       Known.Zero.setLowBits(C->countTrailingZeros());
1239     break;
1240   }
1241   case Instruction::LShr: {
1242     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1243       return KnownBits::lshr(KnownVal, KnownAmt);
1244     };
1245     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1246                                       KF);
1247     // Leading zeros of a left-shifted constant never decrease.
1248     const APInt *C;
1249     if (match(I->getOperand(0), m_APInt(C)))
1250       Known.Zero.setHighBits(C->countLeadingZeros());
1251     break;
1252   }
1253   case Instruction::AShr: {
1254     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1255       return KnownBits::ashr(KnownVal, KnownAmt);
1256     };
1257     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1258                                       KF);
1259     break;
1260   }
1261   case Instruction::Sub: {
1262     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1263     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1264                            DemandedElts, Known, Known2, Depth, Q);
1265     break;
1266   }
1267   case Instruction::Add: {
1268     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1269     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1270                            DemandedElts, Known, Known2, Depth, Q);
1271     break;
1272   }
1273   case Instruction::SRem:
1274     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1276     Known = KnownBits::srem(Known, Known2);
1277     break;
1278 
1279   case Instruction::URem:
1280     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1281     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1282     Known = KnownBits::urem(Known, Known2);
1283     break;
1284   case Instruction::Alloca:
1285     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1286     break;
1287   case Instruction::GetElementPtr: {
1288     // Analyze all of the subscripts of this getelementptr instruction
1289     // to determine if we can prove known low zero bits.
1290     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1291     // Accumulate the constant indices in a separate variable
1292     // to minimize the number of calls to computeForAddSub.
1293     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1294 
1295     gep_type_iterator GTI = gep_type_begin(I);
1296     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1297       // TrailZ can only become smaller, short-circuit if we hit zero.
1298       if (Known.isUnknown())
1299         break;
1300 
1301       Value *Index = I->getOperand(i);
1302 
1303       // Handle case when index is zero.
1304       Constant *CIndex = dyn_cast<Constant>(Index);
1305       if (CIndex && CIndex->isZeroValue())
1306         continue;
1307 
1308       if (StructType *STy = GTI.getStructTypeOrNull()) {
1309         // Handle struct member offset arithmetic.
1310 
1311         assert(CIndex &&
1312                "Access to structure field must be known at compile time");
1313 
1314         if (CIndex->getType()->isVectorTy())
1315           Index = CIndex->getSplatValue();
1316 
1317         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1318         const StructLayout *SL = Q.DL.getStructLayout(STy);
1319         uint64_t Offset = SL->getElementOffset(Idx);
1320         AccConstIndices += Offset;
1321         continue;
1322       }
1323 
1324       // Handle array index arithmetic.
1325       Type *IndexedTy = GTI.getIndexedType();
1326       if (!IndexedTy->isSized()) {
1327         Known.resetAll();
1328         break;
1329       }
1330 
1331       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1332       KnownBits IndexBits(IndexBitWidth);
1333       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1334       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1335       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1336       KnownBits ScalingFactor(IndexBitWidth);
1337       // Multiply by current sizeof type.
1338       // &A[i] == A + i * sizeof(*A[i]).
1339       if (IndexTypeSize.isScalable()) {
1340         // For scalable types the only thing we know about sizeof is
1341         // that this is a multiple of the minimum size.
1342         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1343       } else if (IndexBits.isConstant()) {
1344         APInt IndexConst = IndexBits.getConstant();
1345         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1346         IndexConst *= ScalingFactor;
1347         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1348         continue;
1349       } else {
1350         ScalingFactor =
1351             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1352       }
1353       IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor);
1354 
1355       // If the offsets have a different width from the pointer, according
1356       // to the language reference we need to sign-extend or truncate them
1357       // to the width of the pointer.
1358       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1359 
1360       // Note that inbounds does *not* guarantee nsw for the addition, as only
1361       // the offset is signed, while the base address is unsigned.
1362       Known = KnownBits::computeForAddSub(
1363           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1364     }
1365     if (!Known.isUnknown() && !AccConstIndices.isNullValue()) {
1366       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1367       Known = KnownBits::computeForAddSub(
1368           /*Add=*/true, /*NSW=*/false, Known, Index);
1369     }
1370     break;
1371   }
1372   case Instruction::PHI: {
1373     const PHINode *P = cast<PHINode>(I);
1374     BinaryOperator *BO = nullptr;
1375     Value *R = nullptr, *L = nullptr;
1376     if (matchSimpleRecurrence(P, BO, R, L)) {
1377       // Handle the case of a simple two-predecessor recurrence PHI.
1378       // There's a lot more that could theoretically be done here, but
1379       // this is sufficient to catch some interesting cases.
1380       unsigned Opcode = BO->getOpcode();
1381 
1382       // If this is a shift recurrence, we know the bits being shifted in.
1383       // We can combine that with information about the start value of the
1384       // recurrence to conclude facts about the result.
1385       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1386            Opcode == Instruction::Shl) &&
1387           BO->getOperand(0) == I) {
1388 
1389         // We have matched a recurrence of the form:
1390         // %iv = [R, %entry], [%iv.next, %backedge]
1391         // %iv.next = shift_op %iv, L
1392 
1393         // Recurse with the phi context to avoid concern about whether facts
1394         // inferred hold at original context instruction.  TODO: It may be
1395         // correct to use the original context.  IF warranted, explore and
1396         // add sufficient tests to cover.
1397         Query RecQ = Q;
1398         RecQ.CxtI = P;
1399         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1400         switch (Opcode) {
1401         case Instruction::Shl:
1402           // A shl recurrence will only increase the tailing zeros
1403           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1404           break;
1405         case Instruction::LShr:
1406           // A lshr recurrence will preserve the leading zeros of the
1407           // start value
1408           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1409           break;
1410         case Instruction::AShr:
1411           // An ashr recurrence will extend the initial sign bit
1412           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1413           Known.One.setHighBits(Known2.countMinLeadingOnes());
1414           break;
1415         };
1416       }
1417 
1418       // Check for operations that have the property that if
1419       // both their operands have low zero bits, the result
1420       // will have low zero bits.
1421       if (Opcode == Instruction::Add ||
1422           Opcode == Instruction::Sub ||
1423           Opcode == Instruction::And ||
1424           Opcode == Instruction::Or ||
1425           Opcode == Instruction::Mul) {
1426         // Change the context instruction to the "edge" that flows into the
1427         // phi. This is important because that is where the value is actually
1428         // "evaluated" even though it is used later somewhere else. (see also
1429         // D69571).
1430         Query RecQ = Q;
1431 
1432         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1433         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1434         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1435 
1436         // Ok, we have a PHI of the form L op= R. Check for low
1437         // zero bits.
1438         RecQ.CxtI = RInst;
1439         computeKnownBits(R, Known2, Depth + 1, RecQ);
1440 
1441         // We need to take the minimum number of known bits
1442         KnownBits Known3(BitWidth);
1443         RecQ.CxtI = LInst;
1444         computeKnownBits(L, Known3, Depth + 1, RecQ);
1445 
1446         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1447                                        Known3.countMinTrailingZeros()));
1448 
1449         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1450         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1451           // If initial value of recurrence is nonnegative, and we are adding
1452           // a nonnegative number with nsw, the result can only be nonnegative
1453           // or poison value regardless of the number of times we execute the
1454           // add in phi recurrence. If initial value is negative and we are
1455           // adding a negative number with nsw, the result can only be
1456           // negative or poison value. Similar arguments apply to sub and mul.
1457           //
1458           // (add non-negative, non-negative) --> non-negative
1459           // (add negative, negative) --> negative
1460           if (Opcode == Instruction::Add) {
1461             if (Known2.isNonNegative() && Known3.isNonNegative())
1462               Known.makeNonNegative();
1463             else if (Known2.isNegative() && Known3.isNegative())
1464               Known.makeNegative();
1465           }
1466 
1467           // (sub nsw non-negative, negative) --> non-negative
1468           // (sub nsw negative, non-negative) --> negative
1469           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1470             if (Known2.isNonNegative() && Known3.isNegative())
1471               Known.makeNonNegative();
1472             else if (Known2.isNegative() && Known3.isNonNegative())
1473               Known.makeNegative();
1474           }
1475 
1476           // (mul nsw non-negative, non-negative) --> non-negative
1477           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1478                    Known3.isNonNegative())
1479             Known.makeNonNegative();
1480         }
1481 
1482         break;
1483       }
1484     }
1485 
1486     // Unreachable blocks may have zero-operand PHI nodes.
1487     if (P->getNumIncomingValues() == 0)
1488       break;
1489 
1490     // Otherwise take the unions of the known bit sets of the operands,
1491     // taking conservative care to avoid excessive recursion.
1492     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1493       // Skip if every incoming value references to ourself.
1494       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1495         break;
1496 
1497       Known.Zero.setAllBits();
1498       Known.One.setAllBits();
1499       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1500         Value *IncValue = P->getIncomingValue(u);
1501         // Skip direct self references.
1502         if (IncValue == P) continue;
1503 
1504         // Change the context instruction to the "edge" that flows into the
1505         // phi. This is important because that is where the value is actually
1506         // "evaluated" even though it is used later somewhere else. (see also
1507         // D69571).
1508         Query RecQ = Q;
1509         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1510 
1511         Known2 = KnownBits(BitWidth);
1512         // Recurse, but cap the recursion to one level, because we don't
1513         // want to waste time spinning around in loops.
1514         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1515         Known = KnownBits::commonBits(Known, Known2);
1516         // If all bits have been ruled out, there's no need to check
1517         // more operands.
1518         if (Known.isUnknown())
1519           break;
1520       }
1521     }
1522     break;
1523   }
1524   case Instruction::Call:
1525   case Instruction::Invoke:
1526     // If range metadata is attached to this call, set known bits from that,
1527     // and then intersect with known bits based on other properties of the
1528     // function.
1529     if (MDNode *MD =
1530             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1531       computeKnownBitsFromRangeMetadata(*MD, Known);
1532     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1533       computeKnownBits(RV, Known2, Depth + 1, Q);
1534       Known.Zero |= Known2.Zero;
1535       Known.One |= Known2.One;
1536     }
1537     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1538       switch (II->getIntrinsicID()) {
1539       default: break;
1540       case Intrinsic::abs: {
1541         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1542         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1543         Known = Known2.abs(IntMinIsPoison);
1544         break;
1545       }
1546       case Intrinsic::bitreverse:
1547         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1548         Known.Zero |= Known2.Zero.reverseBits();
1549         Known.One |= Known2.One.reverseBits();
1550         break;
1551       case Intrinsic::bswap:
1552         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1553         Known.Zero |= Known2.Zero.byteSwap();
1554         Known.One |= Known2.One.byteSwap();
1555         break;
1556       case Intrinsic::ctlz: {
1557         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1558         // If we have a known 1, its position is our upper bound.
1559         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1560         // If this call is undefined for 0, the result will be less than 2^n.
1561         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1562           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1563         unsigned LowBits = Log2_32(PossibleLZ)+1;
1564         Known.Zero.setBitsFrom(LowBits);
1565         break;
1566       }
1567       case Intrinsic::cttz: {
1568         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1569         // If we have a known 1, its position is our upper bound.
1570         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1571         // If this call is undefined for 0, the result will be less than 2^n.
1572         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1573           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1574         unsigned LowBits = Log2_32(PossibleTZ)+1;
1575         Known.Zero.setBitsFrom(LowBits);
1576         break;
1577       }
1578       case Intrinsic::ctpop: {
1579         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1580         // We can bound the space the count needs.  Also, bits known to be zero
1581         // can't contribute to the population.
1582         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1583         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1584         Known.Zero.setBitsFrom(LowBits);
1585         // TODO: we could bound KnownOne using the lower bound on the number
1586         // of bits which might be set provided by popcnt KnownOne2.
1587         break;
1588       }
1589       case Intrinsic::fshr:
1590       case Intrinsic::fshl: {
1591         const APInt *SA;
1592         if (!match(I->getOperand(2), m_APInt(SA)))
1593           break;
1594 
1595         // Normalize to funnel shift left.
1596         uint64_t ShiftAmt = SA->urem(BitWidth);
1597         if (II->getIntrinsicID() == Intrinsic::fshr)
1598           ShiftAmt = BitWidth - ShiftAmt;
1599 
1600         KnownBits Known3(BitWidth);
1601         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1602         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1603 
1604         Known.Zero =
1605             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1606         Known.One =
1607             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1608         break;
1609       }
1610       case Intrinsic::uadd_sat:
1611       case Intrinsic::usub_sat: {
1612         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1613         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1614         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1615 
1616         // Add: Leading ones of either operand are preserved.
1617         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1618         // as leading zeros in the result.
1619         unsigned LeadingKnown;
1620         if (IsAdd)
1621           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1622                                   Known2.countMinLeadingOnes());
1623         else
1624           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1625                                   Known2.countMinLeadingOnes());
1626 
1627         Known = KnownBits::computeForAddSub(
1628             IsAdd, /* NSW */ false, Known, Known2);
1629 
1630         // We select between the operation result and all-ones/zero
1631         // respectively, so we can preserve known ones/zeros.
1632         if (IsAdd) {
1633           Known.One.setHighBits(LeadingKnown);
1634           Known.Zero.clearAllBits();
1635         } else {
1636           Known.Zero.setHighBits(LeadingKnown);
1637           Known.One.clearAllBits();
1638         }
1639         break;
1640       }
1641       case Intrinsic::umin:
1642         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1643         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1644         Known = KnownBits::umin(Known, Known2);
1645         break;
1646       case Intrinsic::umax:
1647         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1648         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1649         Known = KnownBits::umax(Known, Known2);
1650         break;
1651       case Intrinsic::smin:
1652         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1653         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1654         Known = KnownBits::smin(Known, Known2);
1655         break;
1656       case Intrinsic::smax:
1657         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1658         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1659         Known = KnownBits::smax(Known, Known2);
1660         break;
1661       case Intrinsic::x86_sse42_crc32_64_64:
1662         Known.Zero.setBitsFrom(32);
1663         break;
1664       }
1665     }
1666     break;
1667   case Instruction::ShuffleVector: {
1668     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1669     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1670     if (!Shuf) {
1671       Known.resetAll();
1672       return;
1673     }
1674     // For undef elements, we don't know anything about the common state of
1675     // the shuffle result.
1676     APInt DemandedLHS, DemandedRHS;
1677     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1678       Known.resetAll();
1679       return;
1680     }
1681     Known.One.setAllBits();
1682     Known.Zero.setAllBits();
1683     if (!!DemandedLHS) {
1684       const Value *LHS = Shuf->getOperand(0);
1685       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1686       // If we don't know any bits, early out.
1687       if (Known.isUnknown())
1688         break;
1689     }
1690     if (!!DemandedRHS) {
1691       const Value *RHS = Shuf->getOperand(1);
1692       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1693       Known = KnownBits::commonBits(Known, Known2);
1694     }
1695     break;
1696   }
1697   case Instruction::InsertElement: {
1698     const Value *Vec = I->getOperand(0);
1699     const Value *Elt = I->getOperand(1);
1700     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1701     // Early out if the index is non-constant or out-of-range.
1702     unsigned NumElts = DemandedElts.getBitWidth();
1703     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1704       Known.resetAll();
1705       return;
1706     }
1707     Known.One.setAllBits();
1708     Known.Zero.setAllBits();
1709     unsigned EltIdx = CIdx->getZExtValue();
1710     // Do we demand the inserted element?
1711     if (DemandedElts[EltIdx]) {
1712       computeKnownBits(Elt, Known, Depth + 1, Q);
1713       // If we don't know any bits, early out.
1714       if (Known.isUnknown())
1715         break;
1716     }
1717     // We don't need the base vector element that has been inserted.
1718     APInt DemandedVecElts = DemandedElts;
1719     DemandedVecElts.clearBit(EltIdx);
1720     if (!!DemandedVecElts) {
1721       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1722       Known = KnownBits::commonBits(Known, Known2);
1723     }
1724     break;
1725   }
1726   case Instruction::ExtractElement: {
1727     // Look through extract element. If the index is non-constant or
1728     // out-of-range demand all elements, otherwise just the extracted element.
1729     const Value *Vec = I->getOperand(0);
1730     const Value *Idx = I->getOperand(1);
1731     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1732     if (isa<ScalableVectorType>(Vec->getType())) {
1733       // FIXME: there's probably *something* we can do with scalable vectors
1734       Known.resetAll();
1735       break;
1736     }
1737     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1738     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1739     if (CIdx && CIdx->getValue().ult(NumElts))
1740       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1741     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1742     break;
1743   }
1744   case Instruction::ExtractValue:
1745     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1746       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1747       if (EVI->getNumIndices() != 1) break;
1748       if (EVI->getIndices()[0] == 0) {
1749         switch (II->getIntrinsicID()) {
1750         default: break;
1751         case Intrinsic::uadd_with_overflow:
1752         case Intrinsic::sadd_with_overflow:
1753           computeKnownBitsAddSub(true, II->getArgOperand(0),
1754                                  II->getArgOperand(1), false, DemandedElts,
1755                                  Known, Known2, Depth, Q);
1756           break;
1757         case Intrinsic::usub_with_overflow:
1758         case Intrinsic::ssub_with_overflow:
1759           computeKnownBitsAddSub(false, II->getArgOperand(0),
1760                                  II->getArgOperand(1), false, DemandedElts,
1761                                  Known, Known2, Depth, Q);
1762           break;
1763         case Intrinsic::umul_with_overflow:
1764         case Intrinsic::smul_with_overflow:
1765           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1766                               DemandedElts, Known, Known2, Depth, Q);
1767           break;
1768         }
1769       }
1770     }
1771     break;
1772   case Instruction::Freeze:
1773     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1774                                   Depth + 1))
1775       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1776     break;
1777   }
1778 }
1779 
1780 /// Determine which bits of V are known to be either zero or one and return
1781 /// them.
1782 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1783                            unsigned Depth, const Query &Q) {
1784   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1785   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1786   return Known;
1787 }
1788 
1789 /// Determine which bits of V are known to be either zero or one and return
1790 /// them.
1791 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1792   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1793   computeKnownBits(V, Known, Depth, Q);
1794   return Known;
1795 }
1796 
1797 /// Determine which bits of V are known to be either zero or one and return
1798 /// them in the Known bit set.
1799 ///
1800 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1801 /// we cannot optimize based on the assumption that it is zero without changing
1802 /// it to be an explicit zero.  If we don't change it to zero, other code could
1803 /// optimized based on the contradictory assumption that it is non-zero.
1804 /// Because instcombine aggressively folds operations with undef args anyway,
1805 /// this won't lose us code quality.
1806 ///
1807 /// This function is defined on values with integer type, values with pointer
1808 /// type, and vectors of integers.  In the case
1809 /// where V is a vector, known zero, and known one values are the
1810 /// same width as the vector element, and the bit is set only if it is true
1811 /// for all of the demanded elements in the vector specified by DemandedElts.
1812 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1813                       KnownBits &Known, unsigned Depth, const Query &Q) {
1814   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1815     // No demanded elts or V is a scalable vector, better to assume we don't
1816     // know anything.
1817     Known.resetAll();
1818     return;
1819   }
1820 
1821   assert(V && "No Value?");
1822   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1823 
1824 #ifndef NDEBUG
1825   Type *Ty = V->getType();
1826   unsigned BitWidth = Known.getBitWidth();
1827 
1828   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1829          "Not integer or pointer type!");
1830 
1831   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1832     assert(
1833         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1834         "DemandedElt width should equal the fixed vector number of elements");
1835   } else {
1836     assert(DemandedElts == APInt(1, 1) &&
1837            "DemandedElt width should be 1 for scalars");
1838   }
1839 
1840   Type *ScalarTy = Ty->getScalarType();
1841   if (ScalarTy->isPointerTy()) {
1842     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1843            "V and Known should have same BitWidth");
1844   } else {
1845     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1846            "V and Known should have same BitWidth");
1847   }
1848 #endif
1849 
1850   const APInt *C;
1851   if (match(V, m_APInt(C))) {
1852     // We know all of the bits for a scalar constant or a splat vector constant!
1853     Known = KnownBits::makeConstant(*C);
1854     return;
1855   }
1856   // Null and aggregate-zero are all-zeros.
1857   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1858     Known.setAllZero();
1859     return;
1860   }
1861   // Handle a constant vector by taking the intersection of the known bits of
1862   // each element.
1863   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1864     // We know that CDV must be a vector of integers. Take the intersection of
1865     // each element.
1866     Known.Zero.setAllBits(); Known.One.setAllBits();
1867     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1868       if (!DemandedElts[i])
1869         continue;
1870       APInt Elt = CDV->getElementAsAPInt(i);
1871       Known.Zero &= ~Elt;
1872       Known.One &= Elt;
1873     }
1874     return;
1875   }
1876 
1877   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1878     // We know that CV must be a vector of integers. Take the intersection of
1879     // each element.
1880     Known.Zero.setAllBits(); Known.One.setAllBits();
1881     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1882       if (!DemandedElts[i])
1883         continue;
1884       Constant *Element = CV->getAggregateElement(i);
1885       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1886       if (!ElementCI) {
1887         Known.resetAll();
1888         return;
1889       }
1890       const APInt &Elt = ElementCI->getValue();
1891       Known.Zero &= ~Elt;
1892       Known.One &= Elt;
1893     }
1894     return;
1895   }
1896 
1897   // Start out not knowing anything.
1898   Known.resetAll();
1899 
1900   // We can't imply anything about undefs.
1901   if (isa<UndefValue>(V))
1902     return;
1903 
1904   // There's no point in looking through other users of ConstantData for
1905   // assumptions.  Confirm that we've handled them all.
1906   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1907 
1908   // All recursive calls that increase depth must come after this.
1909   if (Depth == MaxAnalysisRecursionDepth)
1910     return;
1911 
1912   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1913   // the bits of its aliasee.
1914   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1915     if (!GA->isInterposable())
1916       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1917     return;
1918   }
1919 
1920   if (const Operator *I = dyn_cast<Operator>(V))
1921     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1922 
1923   // Aligned pointers have trailing zeros - refine Known.Zero set
1924   if (isa<PointerType>(V->getType())) {
1925     Align Alignment = V->getPointerAlignment(Q.DL);
1926     Known.Zero.setLowBits(Log2(Alignment));
1927   }
1928 
1929   // computeKnownBitsFromAssume strictly refines Known.
1930   // Therefore, we run them after computeKnownBitsFromOperator.
1931 
1932   // Check whether a nearby assume intrinsic can determine some known bits.
1933   computeKnownBitsFromAssume(V, Known, Depth, Q);
1934 
1935   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1936 }
1937 
1938 /// Return true if the given value is known to have exactly one
1939 /// bit set when defined. For vectors return true if every element is known to
1940 /// be a power of two when defined. Supports values with integer or pointer
1941 /// types and vectors of integers.
1942 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1943                             const Query &Q) {
1944   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1945 
1946   // Attempt to match against constants.
1947   if (OrZero && match(V, m_Power2OrZero()))
1948       return true;
1949   if (match(V, m_Power2()))
1950       return true;
1951 
1952   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1953   // it is shifted off the end then the result is undefined.
1954   if (match(V, m_Shl(m_One(), m_Value())))
1955     return true;
1956 
1957   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1958   // the bottom.  If it is shifted off the bottom then the result is undefined.
1959   if (match(V, m_LShr(m_SignMask(), m_Value())))
1960     return true;
1961 
1962   // The remaining tests are all recursive, so bail out if we hit the limit.
1963   if (Depth++ == MaxAnalysisRecursionDepth)
1964     return false;
1965 
1966   Value *X = nullptr, *Y = nullptr;
1967   // A shift left or a logical shift right of a power of two is a power of two
1968   // or zero.
1969   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1970                  match(V, m_LShr(m_Value(X), m_Value()))))
1971     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1972 
1973   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1974     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1975 
1976   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1977     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1978            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1979 
1980   // Peek through min/max.
1981   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
1982     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
1983            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
1984   }
1985 
1986   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1987     // A power of two and'd with anything is a power of two or zero.
1988     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1989         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1990       return true;
1991     // X & (-X) is always a power of two or zero.
1992     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1993       return true;
1994     return false;
1995   }
1996 
1997   // Adding a power-of-two or zero to the same power-of-two or zero yields
1998   // either the original power-of-two, a larger power-of-two or zero.
1999   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2000     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2001     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2002         Q.IIQ.hasNoSignedWrap(VOBO)) {
2003       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2004           match(X, m_And(m_Value(), m_Specific(Y))))
2005         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2006           return true;
2007       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2008           match(Y, m_And(m_Value(), m_Specific(X))))
2009         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2010           return true;
2011 
2012       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2013       KnownBits LHSBits(BitWidth);
2014       computeKnownBits(X, LHSBits, Depth, Q);
2015 
2016       KnownBits RHSBits(BitWidth);
2017       computeKnownBits(Y, RHSBits, Depth, Q);
2018       // If i8 V is a power of two or zero:
2019       //  ZeroBits: 1 1 1 0 1 1 1 1
2020       // ~ZeroBits: 0 0 0 1 0 0 0 0
2021       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2022         // If OrZero isn't set, we cannot give back a zero result.
2023         // Make sure either the LHS or RHS has a bit set.
2024         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2025           return true;
2026     }
2027   }
2028 
2029   // An exact divide or right shift can only shift off zero bits, so the result
2030   // is a power of two only if the first operand is a power of two and not
2031   // copying a sign bit (sdiv int_min, 2).
2032   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2033       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2034     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2035                                   Depth, Q);
2036   }
2037 
2038   return false;
2039 }
2040 
2041 /// Test whether a GEP's result is known to be non-null.
2042 ///
2043 /// Uses properties inherent in a GEP to try to determine whether it is known
2044 /// to be non-null.
2045 ///
2046 /// Currently this routine does not support vector GEPs.
2047 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2048                               const Query &Q) {
2049   const Function *F = nullptr;
2050   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2051     F = I->getFunction();
2052 
2053   if (!GEP->isInBounds() ||
2054       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2055     return false;
2056 
2057   // FIXME: Support vector-GEPs.
2058   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2059 
2060   // If the base pointer is non-null, we cannot walk to a null address with an
2061   // inbounds GEP in address space zero.
2062   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2063     return true;
2064 
2065   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2066   // If so, then the GEP cannot produce a null pointer, as doing so would
2067   // inherently violate the inbounds contract within address space zero.
2068   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2069        GTI != GTE; ++GTI) {
2070     // Struct types are easy -- they must always be indexed by a constant.
2071     if (StructType *STy = GTI.getStructTypeOrNull()) {
2072       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2073       unsigned ElementIdx = OpC->getZExtValue();
2074       const StructLayout *SL = Q.DL.getStructLayout(STy);
2075       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2076       if (ElementOffset > 0)
2077         return true;
2078       continue;
2079     }
2080 
2081     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2082     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2083       continue;
2084 
2085     // Fast path the constant operand case both for efficiency and so we don't
2086     // increment Depth when just zipping down an all-constant GEP.
2087     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2088       if (!OpC->isZero())
2089         return true;
2090       continue;
2091     }
2092 
2093     // We post-increment Depth here because while isKnownNonZero increments it
2094     // as well, when we pop back up that increment won't persist. We don't want
2095     // to recurse 10k times just because we have 10k GEP operands. We don't
2096     // bail completely out because we want to handle constant GEPs regardless
2097     // of depth.
2098     if (Depth++ >= MaxAnalysisRecursionDepth)
2099       continue;
2100 
2101     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2102       return true;
2103   }
2104 
2105   return false;
2106 }
2107 
2108 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2109                                                   const Instruction *CtxI,
2110                                                   const DominatorTree *DT) {
2111   if (isa<Constant>(V))
2112     return false;
2113 
2114   if (!CtxI || !DT)
2115     return false;
2116 
2117   unsigned NumUsesExplored = 0;
2118   for (auto *U : V->users()) {
2119     // Avoid massive lists
2120     if (NumUsesExplored >= DomConditionsMaxUses)
2121       break;
2122     NumUsesExplored++;
2123 
2124     // If the value is used as an argument to a call or invoke, then argument
2125     // attributes may provide an answer about null-ness.
2126     if (const auto *CB = dyn_cast<CallBase>(U))
2127       if (auto *CalledFunc = CB->getCalledFunction())
2128         for (const Argument &Arg : CalledFunc->args())
2129           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2130               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2131               DT->dominates(CB, CtxI))
2132             return true;
2133 
2134     // If the value is used as a load/store, then the pointer must be non null.
2135     if (V == getLoadStorePointerOperand(U)) {
2136       const Instruction *I = cast<Instruction>(U);
2137       if (!NullPointerIsDefined(I->getFunction(),
2138                                 V->getType()->getPointerAddressSpace()) &&
2139           DT->dominates(I, CtxI))
2140         return true;
2141     }
2142 
2143     // Consider only compare instructions uniquely controlling a branch
2144     Value *RHS;
2145     CmpInst::Predicate Pred;
2146     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2147       continue;
2148 
2149     bool NonNullIfTrue;
2150     if (cmpExcludesZero(Pred, RHS))
2151       NonNullIfTrue = true;
2152     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2153       NonNullIfTrue = false;
2154     else
2155       continue;
2156 
2157     SmallVector<const User *, 4> WorkList;
2158     SmallPtrSet<const User *, 4> Visited;
2159     for (auto *CmpU : U->users()) {
2160       assert(WorkList.empty() && "Should be!");
2161       if (Visited.insert(CmpU).second)
2162         WorkList.push_back(CmpU);
2163 
2164       while (!WorkList.empty()) {
2165         auto *Curr = WorkList.pop_back_val();
2166 
2167         // If a user is an AND, add all its users to the work list. We only
2168         // propagate "pred != null" condition through AND because it is only
2169         // correct to assume that all conditions of AND are met in true branch.
2170         // TODO: Support similar logic of OR and EQ predicate?
2171         if (NonNullIfTrue)
2172           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2173             for (auto *CurrU : Curr->users())
2174               if (Visited.insert(CurrU).second)
2175                 WorkList.push_back(CurrU);
2176             continue;
2177           }
2178 
2179         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2180           assert(BI->isConditional() && "uses a comparison!");
2181 
2182           BasicBlock *NonNullSuccessor =
2183               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2184           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2185           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2186             return true;
2187         } else if (NonNullIfTrue && isGuard(Curr) &&
2188                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2189           return true;
2190         }
2191       }
2192     }
2193   }
2194 
2195   return false;
2196 }
2197 
2198 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2199 /// ensure that the value it's attached to is never Value?  'RangeType' is
2200 /// is the type of the value described by the range.
2201 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2202   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2203   assert(NumRanges >= 1);
2204   for (unsigned i = 0; i < NumRanges; ++i) {
2205     ConstantInt *Lower =
2206         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2207     ConstantInt *Upper =
2208         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2209     ConstantRange Range(Lower->getValue(), Upper->getValue());
2210     if (Range.contains(Value))
2211       return false;
2212   }
2213   return true;
2214 }
2215 
2216 static bool isNonZeroRecurrence(const PHINode *PN) {
2217   // Try and detect a recurrence that monotonically increases from a
2218   // starting value, as these are common as induction variables.
2219   BinaryOperator *BO = nullptr;
2220   Value *Start = nullptr, *Step = nullptr;
2221   const APInt *StartC, *StepC;
2222   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2223       !match(Start, m_APInt(StartC)))
2224     return false;
2225 
2226   switch (BO->getOpcode()) {
2227   case Instruction::Add:
2228     return match(Step, m_APInt(StepC)) &&
2229            ((BO->hasNoUnsignedWrap() && !StartC->isNullValue() &&
2230              !StepC->isNullValue()) ||
2231             (BO->hasNoSignedWrap() && StartC->isStrictlyPositive() &&
2232              StepC->isNonNegative()));
2233   case Instruction::Mul:
2234     return !StartC->isNullValue() && match(Step, m_APInt(StepC)) &&
2235            ((BO->hasNoUnsignedWrap() && !StepC->isNullValue()) ||
2236             (BO->hasNoSignedWrap() && StepC->isStrictlyPositive()));
2237   case Instruction::Shl:
2238     return !StartC->isNullValue() &&
2239            (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap());
2240   default:
2241     return false;
2242   }
2243 }
2244 
2245 /// Return true if the given value is known to be non-zero when defined. For
2246 /// vectors, return true if every demanded element is known to be non-zero when
2247 /// defined. For pointers, if the context instruction and dominator tree are
2248 /// specified, perform context-sensitive analysis and return true if the
2249 /// pointer couldn't possibly be null at the specified instruction.
2250 /// Supports values with integer or pointer type and vectors of integers.
2251 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2252                     const Query &Q) {
2253   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2254   // vector
2255   if (isa<ScalableVectorType>(V->getType()))
2256     return false;
2257 
2258   if (auto *C = dyn_cast<Constant>(V)) {
2259     if (C->isNullValue())
2260       return false;
2261     if (isa<ConstantInt>(C))
2262       // Must be non-zero due to null test above.
2263       return true;
2264 
2265     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2266       // See the comment for IntToPtr/PtrToInt instructions below.
2267       if (CE->getOpcode() == Instruction::IntToPtr ||
2268           CE->getOpcode() == Instruction::PtrToInt)
2269         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2270                 .getFixedSize() <=
2271             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2272           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2273     }
2274 
2275     // For constant vectors, check that all elements are undefined or known
2276     // non-zero to determine that the whole vector is known non-zero.
2277     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2278       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2279         if (!DemandedElts[i])
2280           continue;
2281         Constant *Elt = C->getAggregateElement(i);
2282         if (!Elt || Elt->isNullValue())
2283           return false;
2284         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2285           return false;
2286       }
2287       return true;
2288     }
2289 
2290     // A global variable in address space 0 is non null unless extern weak
2291     // or an absolute symbol reference. Other address spaces may have null as a
2292     // valid address for a global, so we can't assume anything.
2293     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2294       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2295           GV->getType()->getAddressSpace() == 0)
2296         return true;
2297     } else
2298       return false;
2299   }
2300 
2301   if (auto *I = dyn_cast<Instruction>(V)) {
2302     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2303       // If the possible ranges don't contain zero, then the value is
2304       // definitely non-zero.
2305       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2306         const APInt ZeroValue(Ty->getBitWidth(), 0);
2307         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2308           return true;
2309       }
2310     }
2311   }
2312 
2313   if (isKnownNonZeroFromAssume(V, Q))
2314     return true;
2315 
2316   // Some of the tests below are recursive, so bail out if we hit the limit.
2317   if (Depth++ >= MaxAnalysisRecursionDepth)
2318     return false;
2319 
2320   // Check for pointer simplifications.
2321 
2322   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2323     // Alloca never returns null, malloc might.
2324     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2325       return true;
2326 
2327     // A byval, inalloca may not be null in a non-default addres space. A
2328     // nonnull argument is assumed never 0.
2329     if (const Argument *A = dyn_cast<Argument>(V)) {
2330       if (((A->hasPassPointeeByValueCopyAttr() &&
2331             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2332            A->hasNonNullAttr()))
2333         return true;
2334     }
2335 
2336     // A Load tagged with nonnull metadata is never null.
2337     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2338       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2339         return true;
2340 
2341     if (const auto *Call = dyn_cast<CallBase>(V)) {
2342       if (Call->isReturnNonNull())
2343         return true;
2344       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2345         return isKnownNonZero(RP, Depth, Q);
2346     }
2347   }
2348 
2349   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2350     return true;
2351 
2352   // Check for recursive pointer simplifications.
2353   if (V->getType()->isPointerTy()) {
2354     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2355     // do not alter the value, or at least not the nullness property of the
2356     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2357     //
2358     // Note that we have to take special care to avoid looking through
2359     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2360     // as casts that can alter the value, e.g., AddrSpaceCasts.
2361     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2362       return isGEPKnownNonNull(GEP, Depth, Q);
2363 
2364     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2365       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2366 
2367     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2368       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2369           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2370         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2371   }
2372 
2373   // Similar to int2ptr above, we can look through ptr2int here if the cast
2374   // is a no-op or an extend and not a truncate.
2375   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2376     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2377         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2378       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2379 
2380   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2381 
2382   // X | Y != 0 if X != 0 or Y != 0.
2383   Value *X = nullptr, *Y = nullptr;
2384   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2385     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2386            isKnownNonZero(Y, DemandedElts, Depth, Q);
2387 
2388   // ext X != 0 if X != 0.
2389   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2390     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2391 
2392   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2393   // if the lowest bit is shifted off the end.
2394   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2395     // shl nuw can't remove any non-zero bits.
2396     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2397     if (Q.IIQ.hasNoUnsignedWrap(BO))
2398       return isKnownNonZero(X, Depth, Q);
2399 
2400     KnownBits Known(BitWidth);
2401     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2402     if (Known.One[0])
2403       return true;
2404   }
2405   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2406   // defined if the sign bit is shifted off the end.
2407   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2408     // shr exact can only shift out zero bits.
2409     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2410     if (BO->isExact())
2411       return isKnownNonZero(X, Depth, Q);
2412 
2413     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2414     if (Known.isNegative())
2415       return true;
2416 
2417     // If the shifter operand is a constant, and all of the bits shifted
2418     // out are known to be zero, and X is known non-zero then at least one
2419     // non-zero bit must remain.
2420     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2421       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2422       // Is there a known one in the portion not shifted out?
2423       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2424         return true;
2425       // Are all the bits to be shifted out known zero?
2426       if (Known.countMinTrailingZeros() >= ShiftVal)
2427         return isKnownNonZero(X, DemandedElts, Depth, Q);
2428     }
2429   }
2430   // div exact can only produce a zero if the dividend is zero.
2431   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2432     return isKnownNonZero(X, DemandedElts, Depth, Q);
2433   }
2434   // X + Y.
2435   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2436     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2437     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2438 
2439     // If X and Y are both non-negative (as signed values) then their sum is not
2440     // zero unless both X and Y are zero.
2441     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2442       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2443           isKnownNonZero(Y, DemandedElts, Depth, Q))
2444         return true;
2445 
2446     // If X and Y are both negative (as signed values) then their sum is not
2447     // zero unless both X and Y equal INT_MIN.
2448     if (XKnown.isNegative() && YKnown.isNegative()) {
2449       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2450       // The sign bit of X is set.  If some other bit is set then X is not equal
2451       // to INT_MIN.
2452       if (XKnown.One.intersects(Mask))
2453         return true;
2454       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2455       // to INT_MIN.
2456       if (YKnown.One.intersects(Mask))
2457         return true;
2458     }
2459 
2460     // The sum of a non-negative number and a power of two is not zero.
2461     if (XKnown.isNonNegative() &&
2462         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2463       return true;
2464     if (YKnown.isNonNegative() &&
2465         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2466       return true;
2467   }
2468   // X * Y.
2469   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2470     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2471     // If X and Y are non-zero then so is X * Y as long as the multiplication
2472     // does not overflow.
2473     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2474         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2475         isKnownNonZero(Y, DemandedElts, Depth, Q))
2476       return true;
2477   }
2478   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2479   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2480     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2481         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2482       return true;
2483   }
2484   // PHI
2485   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2486     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2487       return true;
2488 
2489     // Check if all incoming values are non-zero using recursion.
2490     Query RecQ = Q;
2491     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2492     return llvm::all_of(PN->operands(), [&](const Use &U) {
2493       if (U.get() == PN)
2494         return true;
2495       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2496       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2497     });
2498   }
2499   // ExtractElement
2500   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2501     const Value *Vec = EEI->getVectorOperand();
2502     const Value *Idx = EEI->getIndexOperand();
2503     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2504     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2505       unsigned NumElts = VecTy->getNumElements();
2506       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2507       if (CIdx && CIdx->getValue().ult(NumElts))
2508         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2509       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2510     }
2511   }
2512   // Freeze
2513   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2514     auto *Op = FI->getOperand(0);
2515     if (isKnownNonZero(Op, Depth, Q) &&
2516         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2517       return true;
2518   }
2519 
2520   KnownBits Known(BitWidth);
2521   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2522   return Known.One != 0;
2523 }
2524 
2525 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2526   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2527   // vector
2528   if (isa<ScalableVectorType>(V->getType()))
2529     return false;
2530 
2531   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2532   APInt DemandedElts =
2533       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2534   return isKnownNonZero(V, DemandedElts, Depth, Q);
2535 }
2536 
2537 /// Return true if V2 == V1 + X, where X is known non-zero.
2538 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2539                            const Query &Q) {
2540   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2541   if (!BO || BO->getOpcode() != Instruction::Add)
2542     return false;
2543   Value *Op = nullptr;
2544   if (V2 == BO->getOperand(0))
2545     Op = BO->getOperand(1);
2546   else if (V2 == BO->getOperand(1))
2547     Op = BO->getOperand(0);
2548   else
2549     return false;
2550   return isKnownNonZero(Op, Depth + 1, Q);
2551 }
2552 
2553 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2554 /// the multiplication is nuw or nsw.
2555 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2556                           const Query &Q) {
2557   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2558     const APInt *C;
2559     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2560            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2561            !C->isNullValue() && !C->isOneValue() &&
2562            isKnownNonZero(V1, Depth + 1, Q);
2563   }
2564   return false;
2565 }
2566 
2567 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2568 /// the shift is nuw or nsw.
2569 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2570                           const Query &Q) {
2571   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2572     const APInt *C;
2573     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2574            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2575            !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q);
2576   }
2577   return false;
2578 }
2579 
2580 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2581                            unsigned Depth, const Query &Q) {
2582   // Check two PHIs are in same block.
2583   if (PN1->getParent() != PN2->getParent())
2584     return false;
2585 
2586   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2587   bool UsedFullRecursion = false;
2588   for (const BasicBlock *IncomBB : PN1->blocks()) {
2589     if (!VisitedBBs.insert(IncomBB).second)
2590       continue; // Don't reprocess blocks that we have dealt with already.
2591     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2592     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2593     const APInt *C1, *C2;
2594     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2595       continue;
2596 
2597     // Only one pair of phi operands is allowed for full recursion.
2598     if (UsedFullRecursion)
2599       return false;
2600 
2601     Query RecQ = Q;
2602     RecQ.CxtI = IncomBB->getTerminator();
2603     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2604       return false;
2605     UsedFullRecursion = true;
2606   }
2607   return true;
2608 }
2609 
2610 /// Return true if it is known that V1 != V2.
2611 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2612                             const Query &Q) {
2613   if (V1 == V2)
2614     return false;
2615   if (V1->getType() != V2->getType())
2616     // We can't look through casts yet.
2617     return false;
2618 
2619   if (Depth >= MaxAnalysisRecursionDepth)
2620     return false;
2621 
2622   // See if we can recurse through (exactly one of) our operands.  This
2623   // requires our operation be 1-to-1 and map every input value to exactly
2624   // one output value.  Such an operation is invertible.
2625   auto *O1 = dyn_cast<Operator>(V1);
2626   auto *O2 = dyn_cast<Operator>(V2);
2627   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2628     switch (O1->getOpcode()) {
2629     default: break;
2630     case Instruction::Add:
2631     case Instruction::Sub:
2632       // Assume operand order has been canonicalized
2633       if (O1->getOperand(0) == O2->getOperand(0))
2634         return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1),
2635                                Depth + 1, Q);
2636       if (O1->getOperand(1) == O2->getOperand(1))
2637         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2638                                Depth + 1, Q);
2639       break;
2640     case Instruction::Mul: {
2641       // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2642       // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2643       // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2644       auto *OBO1 = cast<OverflowingBinaryOperator>(O1);
2645       auto *OBO2 = cast<OverflowingBinaryOperator>(O2);
2646       if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2647           (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2648         break;
2649 
2650       // Assume operand order has been canonicalized
2651       if (O1->getOperand(1) == O2->getOperand(1) &&
2652           isa<ConstantInt>(O1->getOperand(1)) &&
2653           !cast<ConstantInt>(O1->getOperand(1))->isZero())
2654         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2655                                Depth + 1, Q);
2656       break;
2657     }
2658     case Instruction::Shl: {
2659       // Same as multiplies, with the difference that we don't need to check
2660       // for a non-zero multiply. Shifts always multiply by non-zero.
2661       auto *OBO1 = cast<OverflowingBinaryOperator>(O1);
2662       auto *OBO2 = cast<OverflowingBinaryOperator>(O2);
2663       if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2664           (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2665         break;
2666 
2667       if (O1->getOperand(1) == O2->getOperand(1))
2668         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2669                                Depth + 1, Q);
2670       break;
2671     }
2672     case Instruction::SExt:
2673     case Instruction::ZExt:
2674       if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType())
2675         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), Depth + 1,
2676                                Q);
2677       break;
2678     case Instruction::PHI:
2679       const PHINode *PN1 = cast<PHINode>(V1);
2680       const PHINode *PN2 = cast<PHINode>(V2);
2681       // FIXME: This is missing a generalization to handle the case where one is
2682       // a PHI and another one isn't.
2683       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2684         return true;
2685       break;
2686     };
2687   }
2688 
2689   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2690     return true;
2691 
2692   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2693     return true;
2694 
2695   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2696     return true;
2697 
2698   if (V1->getType()->isIntOrIntVectorTy()) {
2699     // Are any known bits in V1 contradictory to known bits in V2? If V1
2700     // has a known zero where V2 has a known one, they must not be equal.
2701     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2702     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2703 
2704     if (Known1.Zero.intersects(Known2.One) ||
2705         Known2.Zero.intersects(Known1.One))
2706       return true;
2707   }
2708   return false;
2709 }
2710 
2711 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2712 /// simplify operations downstream. Mask is known to be zero for bits that V
2713 /// cannot have.
2714 ///
2715 /// This function is defined on values with integer type, values with pointer
2716 /// type, and vectors of integers.  In the case
2717 /// where V is a vector, the mask, known zero, and known one values are the
2718 /// same width as the vector element, and the bit is set only if it is true
2719 /// for all of the elements in the vector.
2720 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2721                        const Query &Q) {
2722   KnownBits Known(Mask.getBitWidth());
2723   computeKnownBits(V, Known, Depth, Q);
2724   return Mask.isSubsetOf(Known.Zero);
2725 }
2726 
2727 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2728 // Returns the input and lower/upper bounds.
2729 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2730                                 const APInt *&CLow, const APInt *&CHigh) {
2731   assert(isa<Operator>(Select) &&
2732          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2733          "Input should be a Select!");
2734 
2735   const Value *LHS = nullptr, *RHS = nullptr;
2736   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2737   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2738     return false;
2739 
2740   if (!match(RHS, m_APInt(CLow)))
2741     return false;
2742 
2743   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2744   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2745   if (getInverseMinMaxFlavor(SPF) != SPF2)
2746     return false;
2747 
2748   if (!match(RHS2, m_APInt(CHigh)))
2749     return false;
2750 
2751   if (SPF == SPF_SMIN)
2752     std::swap(CLow, CHigh);
2753 
2754   In = LHS2;
2755   return CLow->sle(*CHigh);
2756 }
2757 
2758 /// For vector constants, loop over the elements and find the constant with the
2759 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2760 /// or if any element was not analyzed; otherwise, return the count for the
2761 /// element with the minimum number of sign bits.
2762 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2763                                                  const APInt &DemandedElts,
2764                                                  unsigned TyBits) {
2765   const auto *CV = dyn_cast<Constant>(V);
2766   if (!CV || !isa<FixedVectorType>(CV->getType()))
2767     return 0;
2768 
2769   unsigned MinSignBits = TyBits;
2770   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2771   for (unsigned i = 0; i != NumElts; ++i) {
2772     if (!DemandedElts[i])
2773       continue;
2774     // If we find a non-ConstantInt, bail out.
2775     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2776     if (!Elt)
2777       return 0;
2778 
2779     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2780   }
2781 
2782   return MinSignBits;
2783 }
2784 
2785 static unsigned ComputeNumSignBitsImpl(const Value *V,
2786                                        const APInt &DemandedElts,
2787                                        unsigned Depth, const Query &Q);
2788 
2789 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2790                                    unsigned Depth, const Query &Q) {
2791   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2792   assert(Result > 0 && "At least one sign bit needs to be present!");
2793   return Result;
2794 }
2795 
2796 /// Return the number of times the sign bit of the register is replicated into
2797 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2798 /// (itself), but other cases can give us information. For example, immediately
2799 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2800 /// other, so we return 3. For vectors, return the number of sign bits for the
2801 /// vector element with the minimum number of known sign bits of the demanded
2802 /// elements in the vector specified by DemandedElts.
2803 static unsigned ComputeNumSignBitsImpl(const Value *V,
2804                                        const APInt &DemandedElts,
2805                                        unsigned Depth, const Query &Q) {
2806   Type *Ty = V->getType();
2807 
2808   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2809   // vector
2810   if (isa<ScalableVectorType>(Ty))
2811     return 1;
2812 
2813 #ifndef NDEBUG
2814   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2815 
2816   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2817     assert(
2818         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2819         "DemandedElt width should equal the fixed vector number of elements");
2820   } else {
2821     assert(DemandedElts == APInt(1, 1) &&
2822            "DemandedElt width should be 1 for scalars");
2823   }
2824 #endif
2825 
2826   // We return the minimum number of sign bits that are guaranteed to be present
2827   // in V, so for undef we have to conservatively return 1.  We don't have the
2828   // same behavior for poison though -- that's a FIXME today.
2829 
2830   Type *ScalarTy = Ty->getScalarType();
2831   unsigned TyBits = ScalarTy->isPointerTy() ?
2832     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2833     Q.DL.getTypeSizeInBits(ScalarTy);
2834 
2835   unsigned Tmp, Tmp2;
2836   unsigned FirstAnswer = 1;
2837 
2838   // Note that ConstantInt is handled by the general computeKnownBits case
2839   // below.
2840 
2841   if (Depth == MaxAnalysisRecursionDepth)
2842     return 1;
2843 
2844   if (auto *U = dyn_cast<Operator>(V)) {
2845     switch (Operator::getOpcode(V)) {
2846     default: break;
2847     case Instruction::SExt:
2848       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2849       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2850 
2851     case Instruction::SDiv: {
2852       const APInt *Denominator;
2853       // sdiv X, C -> adds log(C) sign bits.
2854       if (match(U->getOperand(1), m_APInt(Denominator))) {
2855 
2856         // Ignore non-positive denominator.
2857         if (!Denominator->isStrictlyPositive())
2858           break;
2859 
2860         // Calculate the incoming numerator bits.
2861         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2862 
2863         // Add floor(log(C)) bits to the numerator bits.
2864         return std::min(TyBits, NumBits + Denominator->logBase2());
2865       }
2866       break;
2867     }
2868 
2869     case Instruction::SRem: {
2870       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2871 
2872       const APInt *Denominator;
2873       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2874       // positive constant.  This let us put a lower bound on the number of sign
2875       // bits.
2876       if (match(U->getOperand(1), m_APInt(Denominator))) {
2877 
2878         // Ignore non-positive denominator.
2879         if (Denominator->isStrictlyPositive()) {
2880           // Calculate the leading sign bit constraints by examining the
2881           // denominator.  Given that the denominator is positive, there are two
2882           // cases:
2883           //
2884           //  1. The numerator is positive. The result range is [0,C) and
2885           //     [0,C) u< (1 << ceilLogBase2(C)).
2886           //
2887           //  2. The numerator is negative. Then the result range is (-C,0] and
2888           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2889           //
2890           // Thus a lower bound on the number of sign bits is `TyBits -
2891           // ceilLogBase2(C)`.
2892 
2893           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2894           Tmp = std::max(Tmp, ResBits);
2895         }
2896       }
2897       return Tmp;
2898     }
2899 
2900     case Instruction::AShr: {
2901       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2902       // ashr X, C   -> adds C sign bits.  Vectors too.
2903       const APInt *ShAmt;
2904       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2905         if (ShAmt->uge(TyBits))
2906           break; // Bad shift.
2907         unsigned ShAmtLimited = ShAmt->getZExtValue();
2908         Tmp += ShAmtLimited;
2909         if (Tmp > TyBits) Tmp = TyBits;
2910       }
2911       return Tmp;
2912     }
2913     case Instruction::Shl: {
2914       const APInt *ShAmt;
2915       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2916         // shl destroys sign bits.
2917         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2918         if (ShAmt->uge(TyBits) ||   // Bad shift.
2919             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2920         Tmp2 = ShAmt->getZExtValue();
2921         return Tmp - Tmp2;
2922       }
2923       break;
2924     }
2925     case Instruction::And:
2926     case Instruction::Or:
2927     case Instruction::Xor: // NOT is handled here.
2928       // Logical binary ops preserve the number of sign bits at the worst.
2929       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2930       if (Tmp != 1) {
2931         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2932         FirstAnswer = std::min(Tmp, Tmp2);
2933         // We computed what we know about the sign bits as our first
2934         // answer. Now proceed to the generic code that uses
2935         // computeKnownBits, and pick whichever answer is better.
2936       }
2937       break;
2938 
2939     case Instruction::Select: {
2940       // If we have a clamp pattern, we know that the number of sign bits will
2941       // be the minimum of the clamp min/max range.
2942       const Value *X;
2943       const APInt *CLow, *CHigh;
2944       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2945         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2946 
2947       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2948       if (Tmp == 1) break;
2949       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2950       return std::min(Tmp, Tmp2);
2951     }
2952 
2953     case Instruction::Add:
2954       // Add can have at most one carry bit.  Thus we know that the output
2955       // is, at worst, one more bit than the inputs.
2956       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2957       if (Tmp == 1) break;
2958 
2959       // Special case decrementing a value (ADD X, -1):
2960       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2961         if (CRHS->isAllOnesValue()) {
2962           KnownBits Known(TyBits);
2963           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2964 
2965           // If the input is known to be 0 or 1, the output is 0/-1, which is
2966           // all sign bits set.
2967           if ((Known.Zero | 1).isAllOnesValue())
2968             return TyBits;
2969 
2970           // If we are subtracting one from a positive number, there is no carry
2971           // out of the result.
2972           if (Known.isNonNegative())
2973             return Tmp;
2974         }
2975 
2976       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2977       if (Tmp2 == 1) break;
2978       return std::min(Tmp, Tmp2) - 1;
2979 
2980     case Instruction::Sub:
2981       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2982       if (Tmp2 == 1) break;
2983 
2984       // Handle NEG.
2985       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2986         if (CLHS->isNullValue()) {
2987           KnownBits Known(TyBits);
2988           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2989           // If the input is known to be 0 or 1, the output is 0/-1, which is
2990           // all sign bits set.
2991           if ((Known.Zero | 1).isAllOnesValue())
2992             return TyBits;
2993 
2994           // If the input is known to be positive (the sign bit is known clear),
2995           // the output of the NEG has the same number of sign bits as the
2996           // input.
2997           if (Known.isNonNegative())
2998             return Tmp2;
2999 
3000           // Otherwise, we treat this like a SUB.
3001         }
3002 
3003       // Sub can have at most one carry bit.  Thus we know that the output
3004       // is, at worst, one more bit than the inputs.
3005       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3006       if (Tmp == 1) break;
3007       return std::min(Tmp, Tmp2) - 1;
3008 
3009     case Instruction::Mul: {
3010       // The output of the Mul can be at most twice the valid bits in the
3011       // inputs.
3012       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3013       if (SignBitsOp0 == 1) break;
3014       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3015       if (SignBitsOp1 == 1) break;
3016       unsigned OutValidBits =
3017           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3018       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3019     }
3020 
3021     case Instruction::PHI: {
3022       const PHINode *PN = cast<PHINode>(U);
3023       unsigned NumIncomingValues = PN->getNumIncomingValues();
3024       // Don't analyze large in-degree PHIs.
3025       if (NumIncomingValues > 4) break;
3026       // Unreachable blocks may have zero-operand PHI nodes.
3027       if (NumIncomingValues == 0) break;
3028 
3029       // Take the minimum of all incoming values.  This can't infinitely loop
3030       // because of our depth threshold.
3031       Query RecQ = Q;
3032       Tmp = TyBits;
3033       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3034         if (Tmp == 1) return Tmp;
3035         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3036         Tmp = std::min(
3037             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3038       }
3039       return Tmp;
3040     }
3041 
3042     case Instruction::Trunc:
3043       // FIXME: it's tricky to do anything useful for this, but it is an
3044       // important case for targets like X86.
3045       break;
3046 
3047     case Instruction::ExtractElement:
3048       // Look through extract element. At the moment we keep this simple and
3049       // skip tracking the specific element. But at least we might find
3050       // information valid for all elements of the vector (for example if vector
3051       // is sign extended, shifted, etc).
3052       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3053 
3054     case Instruction::ShuffleVector: {
3055       // Collect the minimum number of sign bits that are shared by every vector
3056       // element referenced by the shuffle.
3057       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3058       if (!Shuf) {
3059         // FIXME: Add support for shufflevector constant expressions.
3060         return 1;
3061       }
3062       APInt DemandedLHS, DemandedRHS;
3063       // For undef elements, we don't know anything about the common state of
3064       // the shuffle result.
3065       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3066         return 1;
3067       Tmp = std::numeric_limits<unsigned>::max();
3068       if (!!DemandedLHS) {
3069         const Value *LHS = Shuf->getOperand(0);
3070         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3071       }
3072       // If we don't know anything, early out and try computeKnownBits
3073       // fall-back.
3074       if (Tmp == 1)
3075         break;
3076       if (!!DemandedRHS) {
3077         const Value *RHS = Shuf->getOperand(1);
3078         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3079         Tmp = std::min(Tmp, Tmp2);
3080       }
3081       // If we don't know anything, early out and try computeKnownBits
3082       // fall-back.
3083       if (Tmp == 1)
3084         break;
3085       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3086       return Tmp;
3087     }
3088     case Instruction::Call: {
3089       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3090         switch (II->getIntrinsicID()) {
3091         default: break;
3092         case Intrinsic::abs:
3093           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3094           if (Tmp == 1) break;
3095 
3096           // Absolute value reduces number of sign bits by at most 1.
3097           return Tmp - 1;
3098         }
3099       }
3100     }
3101     }
3102   }
3103 
3104   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3105   // use this information.
3106 
3107   // If we can examine all elements of a vector constant successfully, we're
3108   // done (we can't do any better than that). If not, keep trying.
3109   if (unsigned VecSignBits =
3110           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3111     return VecSignBits;
3112 
3113   KnownBits Known(TyBits);
3114   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3115 
3116   // If we know that the sign bit is either zero or one, determine the number of
3117   // identical bits in the top of the input value.
3118   return std::max(FirstAnswer, Known.countMinSignBits());
3119 }
3120 
3121 /// This function computes the integer multiple of Base that equals V.
3122 /// If successful, it returns true and returns the multiple in
3123 /// Multiple. If unsuccessful, it returns false. It looks
3124 /// through SExt instructions only if LookThroughSExt is true.
3125 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3126                            bool LookThroughSExt, unsigned Depth) {
3127   assert(V && "No Value?");
3128   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3129   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3130 
3131   Type *T = V->getType();
3132 
3133   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3134 
3135   if (Base == 0)
3136     return false;
3137 
3138   if (Base == 1) {
3139     Multiple = V;
3140     return true;
3141   }
3142 
3143   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3144   Constant *BaseVal = ConstantInt::get(T, Base);
3145   if (CO && CO == BaseVal) {
3146     // Multiple is 1.
3147     Multiple = ConstantInt::get(T, 1);
3148     return true;
3149   }
3150 
3151   if (CI && CI->getZExtValue() % Base == 0) {
3152     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3153     return true;
3154   }
3155 
3156   if (Depth == MaxAnalysisRecursionDepth) return false;
3157 
3158   Operator *I = dyn_cast<Operator>(V);
3159   if (!I) return false;
3160 
3161   switch (I->getOpcode()) {
3162   default: break;
3163   case Instruction::SExt:
3164     if (!LookThroughSExt) return false;
3165     // otherwise fall through to ZExt
3166     LLVM_FALLTHROUGH;
3167   case Instruction::ZExt:
3168     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3169                            LookThroughSExt, Depth+1);
3170   case Instruction::Shl:
3171   case Instruction::Mul: {
3172     Value *Op0 = I->getOperand(0);
3173     Value *Op1 = I->getOperand(1);
3174 
3175     if (I->getOpcode() == Instruction::Shl) {
3176       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3177       if (!Op1CI) return false;
3178       // Turn Op0 << Op1 into Op0 * 2^Op1
3179       APInt Op1Int = Op1CI->getValue();
3180       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3181       APInt API(Op1Int.getBitWidth(), 0);
3182       API.setBit(BitToSet);
3183       Op1 = ConstantInt::get(V->getContext(), API);
3184     }
3185 
3186     Value *Mul0 = nullptr;
3187     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3188       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3189         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3190           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3191               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3192             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3193           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3194               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3195             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3196 
3197           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3198           Multiple = ConstantExpr::getMul(MulC, Op1C);
3199           return true;
3200         }
3201 
3202       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3203         if (Mul0CI->getValue() == 1) {
3204           // V == Base * Op1, so return Op1
3205           Multiple = Op1;
3206           return true;
3207         }
3208     }
3209 
3210     Value *Mul1 = nullptr;
3211     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3212       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3213         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3214           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3215               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3216             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3217           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3218               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3219             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3220 
3221           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3222           Multiple = ConstantExpr::getMul(MulC, Op0C);
3223           return true;
3224         }
3225 
3226       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3227         if (Mul1CI->getValue() == 1) {
3228           // V == Base * Op0, so return Op0
3229           Multiple = Op0;
3230           return true;
3231         }
3232     }
3233   }
3234   }
3235 
3236   // We could not determine if V is a multiple of Base.
3237   return false;
3238 }
3239 
3240 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3241                                             const TargetLibraryInfo *TLI) {
3242   const Function *F = CB.getCalledFunction();
3243   if (!F)
3244     return Intrinsic::not_intrinsic;
3245 
3246   if (F->isIntrinsic())
3247     return F->getIntrinsicID();
3248 
3249   // We are going to infer semantics of a library function based on mapping it
3250   // to an LLVM intrinsic. Check that the library function is available from
3251   // this callbase and in this environment.
3252   LibFunc Func;
3253   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3254       !CB.onlyReadsMemory())
3255     return Intrinsic::not_intrinsic;
3256 
3257   switch (Func) {
3258   default:
3259     break;
3260   case LibFunc_sin:
3261   case LibFunc_sinf:
3262   case LibFunc_sinl:
3263     return Intrinsic::sin;
3264   case LibFunc_cos:
3265   case LibFunc_cosf:
3266   case LibFunc_cosl:
3267     return Intrinsic::cos;
3268   case LibFunc_exp:
3269   case LibFunc_expf:
3270   case LibFunc_expl:
3271     return Intrinsic::exp;
3272   case LibFunc_exp2:
3273   case LibFunc_exp2f:
3274   case LibFunc_exp2l:
3275     return Intrinsic::exp2;
3276   case LibFunc_log:
3277   case LibFunc_logf:
3278   case LibFunc_logl:
3279     return Intrinsic::log;
3280   case LibFunc_log10:
3281   case LibFunc_log10f:
3282   case LibFunc_log10l:
3283     return Intrinsic::log10;
3284   case LibFunc_log2:
3285   case LibFunc_log2f:
3286   case LibFunc_log2l:
3287     return Intrinsic::log2;
3288   case LibFunc_fabs:
3289   case LibFunc_fabsf:
3290   case LibFunc_fabsl:
3291     return Intrinsic::fabs;
3292   case LibFunc_fmin:
3293   case LibFunc_fminf:
3294   case LibFunc_fminl:
3295     return Intrinsic::minnum;
3296   case LibFunc_fmax:
3297   case LibFunc_fmaxf:
3298   case LibFunc_fmaxl:
3299     return Intrinsic::maxnum;
3300   case LibFunc_copysign:
3301   case LibFunc_copysignf:
3302   case LibFunc_copysignl:
3303     return Intrinsic::copysign;
3304   case LibFunc_floor:
3305   case LibFunc_floorf:
3306   case LibFunc_floorl:
3307     return Intrinsic::floor;
3308   case LibFunc_ceil:
3309   case LibFunc_ceilf:
3310   case LibFunc_ceill:
3311     return Intrinsic::ceil;
3312   case LibFunc_trunc:
3313   case LibFunc_truncf:
3314   case LibFunc_truncl:
3315     return Intrinsic::trunc;
3316   case LibFunc_rint:
3317   case LibFunc_rintf:
3318   case LibFunc_rintl:
3319     return Intrinsic::rint;
3320   case LibFunc_nearbyint:
3321   case LibFunc_nearbyintf:
3322   case LibFunc_nearbyintl:
3323     return Intrinsic::nearbyint;
3324   case LibFunc_round:
3325   case LibFunc_roundf:
3326   case LibFunc_roundl:
3327     return Intrinsic::round;
3328   case LibFunc_roundeven:
3329   case LibFunc_roundevenf:
3330   case LibFunc_roundevenl:
3331     return Intrinsic::roundeven;
3332   case LibFunc_pow:
3333   case LibFunc_powf:
3334   case LibFunc_powl:
3335     return Intrinsic::pow;
3336   case LibFunc_sqrt:
3337   case LibFunc_sqrtf:
3338   case LibFunc_sqrtl:
3339     return Intrinsic::sqrt;
3340   }
3341 
3342   return Intrinsic::not_intrinsic;
3343 }
3344 
3345 /// Return true if we can prove that the specified FP value is never equal to
3346 /// -0.0.
3347 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3348 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3349 ///       the same as +0.0 in floating-point ops.
3350 ///
3351 /// NOTE: this function will need to be revisited when we support non-default
3352 /// rounding modes!
3353 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3354                                 unsigned Depth) {
3355   if (auto *CFP = dyn_cast<ConstantFP>(V))
3356     return !CFP->getValueAPF().isNegZero();
3357 
3358   if (Depth == MaxAnalysisRecursionDepth)
3359     return false;
3360 
3361   auto *Op = dyn_cast<Operator>(V);
3362   if (!Op)
3363     return false;
3364 
3365   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3366   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3367     return true;
3368 
3369   // sitofp and uitofp turn into +0.0 for zero.
3370   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3371     return true;
3372 
3373   if (auto *Call = dyn_cast<CallInst>(Op)) {
3374     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3375     switch (IID) {
3376     default:
3377       break;
3378     // sqrt(-0.0) = -0.0, no other negative results are possible.
3379     case Intrinsic::sqrt:
3380     case Intrinsic::canonicalize:
3381       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3382     // fabs(x) != -0.0
3383     case Intrinsic::fabs:
3384       return true;
3385     }
3386   }
3387 
3388   return false;
3389 }
3390 
3391 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3392 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3393 /// bit despite comparing equal.
3394 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3395                                             const TargetLibraryInfo *TLI,
3396                                             bool SignBitOnly,
3397                                             unsigned Depth) {
3398   // TODO: This function does not do the right thing when SignBitOnly is true
3399   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3400   // which flips the sign bits of NaNs.  See
3401   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3402 
3403   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3404     return !CFP->getValueAPF().isNegative() ||
3405            (!SignBitOnly && CFP->getValueAPF().isZero());
3406   }
3407 
3408   // Handle vector of constants.
3409   if (auto *CV = dyn_cast<Constant>(V)) {
3410     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3411       unsigned NumElts = CVFVTy->getNumElements();
3412       for (unsigned i = 0; i != NumElts; ++i) {
3413         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3414         if (!CFP)
3415           return false;
3416         if (CFP->getValueAPF().isNegative() &&
3417             (SignBitOnly || !CFP->getValueAPF().isZero()))
3418           return false;
3419       }
3420 
3421       // All non-negative ConstantFPs.
3422       return true;
3423     }
3424   }
3425 
3426   if (Depth == MaxAnalysisRecursionDepth)
3427     return false;
3428 
3429   const Operator *I = dyn_cast<Operator>(V);
3430   if (!I)
3431     return false;
3432 
3433   switch (I->getOpcode()) {
3434   default:
3435     break;
3436   // Unsigned integers are always nonnegative.
3437   case Instruction::UIToFP:
3438     return true;
3439   case Instruction::FMul:
3440   case Instruction::FDiv:
3441     // X * X is always non-negative or a NaN.
3442     // X / X is always exactly 1.0 or a NaN.
3443     if (I->getOperand(0) == I->getOperand(1) &&
3444         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3445       return true;
3446 
3447     LLVM_FALLTHROUGH;
3448   case Instruction::FAdd:
3449   case Instruction::FRem:
3450     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3451                                            Depth + 1) &&
3452            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3453                                            Depth + 1);
3454   case Instruction::Select:
3455     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3456                                            Depth + 1) &&
3457            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3458                                            Depth + 1);
3459   case Instruction::FPExt:
3460   case Instruction::FPTrunc:
3461     // Widening/narrowing never change sign.
3462     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3463                                            Depth + 1);
3464   case Instruction::ExtractElement:
3465     // Look through extract element. At the moment we keep this simple and skip
3466     // tracking the specific element. But at least we might find information
3467     // valid for all elements of the vector.
3468     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3469                                            Depth + 1);
3470   case Instruction::Call:
3471     const auto *CI = cast<CallInst>(I);
3472     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3473     switch (IID) {
3474     default:
3475       break;
3476     case Intrinsic::maxnum: {
3477       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3478       auto isPositiveNum = [&](Value *V) {
3479         if (SignBitOnly) {
3480           // With SignBitOnly, this is tricky because the result of
3481           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3482           // a constant strictly greater than 0.0.
3483           const APFloat *C;
3484           return match(V, m_APFloat(C)) &&
3485                  *C > APFloat::getZero(C->getSemantics());
3486         }
3487 
3488         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3489         // maxnum can't be ordered-less-than-zero.
3490         return isKnownNeverNaN(V, TLI) &&
3491                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3492       };
3493 
3494       // TODO: This could be improved. We could also check that neither operand
3495       //       has its sign bit set (and at least 1 is not-NAN?).
3496       return isPositiveNum(V0) || isPositiveNum(V1);
3497     }
3498 
3499     case Intrinsic::maximum:
3500       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3501                                              Depth + 1) ||
3502              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3503                                              Depth + 1);
3504     case Intrinsic::minnum:
3505     case Intrinsic::minimum:
3506       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3507                                              Depth + 1) &&
3508              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3509                                              Depth + 1);
3510     case Intrinsic::exp:
3511     case Intrinsic::exp2:
3512     case Intrinsic::fabs:
3513       return true;
3514 
3515     case Intrinsic::sqrt:
3516       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3517       if (!SignBitOnly)
3518         return true;
3519       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3520                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3521 
3522     case Intrinsic::powi:
3523       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3524         // powi(x,n) is non-negative if n is even.
3525         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3526           return true;
3527       }
3528       // TODO: This is not correct.  Given that exp is an integer, here are the
3529       // ways that pow can return a negative value:
3530       //
3531       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3532       //   pow(-0, exp)   --> -inf if exp is negative odd.
3533       //   pow(-0, exp)   --> -0 if exp is positive odd.
3534       //   pow(-inf, exp) --> -0 if exp is negative odd.
3535       //   pow(-inf, exp) --> -inf if exp is positive odd.
3536       //
3537       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3538       // but we must return false if x == -0.  Unfortunately we do not currently
3539       // have a way of expressing this constraint.  See details in
3540       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3541       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3542                                              Depth + 1);
3543 
3544     case Intrinsic::fma:
3545     case Intrinsic::fmuladd:
3546       // x*x+y is non-negative if y is non-negative.
3547       return I->getOperand(0) == I->getOperand(1) &&
3548              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3549              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3550                                              Depth + 1);
3551     }
3552     break;
3553   }
3554   return false;
3555 }
3556 
3557 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3558                                        const TargetLibraryInfo *TLI) {
3559   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3560 }
3561 
3562 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3563   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3564 }
3565 
3566 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3567                                 unsigned Depth) {
3568   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3569 
3570   // If we're told that infinities won't happen, assume they won't.
3571   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3572     if (FPMathOp->hasNoInfs())
3573       return true;
3574 
3575   // Handle scalar constants.
3576   if (auto *CFP = dyn_cast<ConstantFP>(V))
3577     return !CFP->isInfinity();
3578 
3579   if (Depth == MaxAnalysisRecursionDepth)
3580     return false;
3581 
3582   if (auto *Inst = dyn_cast<Instruction>(V)) {
3583     switch (Inst->getOpcode()) {
3584     case Instruction::Select: {
3585       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3586              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3587     }
3588     case Instruction::SIToFP:
3589     case Instruction::UIToFP: {
3590       // Get width of largest magnitude integer (remove a bit if signed).
3591       // This still works for a signed minimum value because the largest FP
3592       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3593       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3594       if (Inst->getOpcode() == Instruction::SIToFP)
3595         --IntSize;
3596 
3597       // If the exponent of the largest finite FP value can hold the largest
3598       // integer, the result of the cast must be finite.
3599       Type *FPTy = Inst->getType()->getScalarType();
3600       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3601     }
3602     default:
3603       break;
3604     }
3605   }
3606 
3607   // try to handle fixed width vector constants
3608   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3609   if (VFVTy && isa<Constant>(V)) {
3610     // For vectors, verify that each element is not infinity.
3611     unsigned NumElts = VFVTy->getNumElements();
3612     for (unsigned i = 0; i != NumElts; ++i) {
3613       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3614       if (!Elt)
3615         return false;
3616       if (isa<UndefValue>(Elt))
3617         continue;
3618       auto *CElt = dyn_cast<ConstantFP>(Elt);
3619       if (!CElt || CElt->isInfinity())
3620         return false;
3621     }
3622     // All elements were confirmed non-infinity or undefined.
3623     return true;
3624   }
3625 
3626   // was not able to prove that V never contains infinity
3627   return false;
3628 }
3629 
3630 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3631                            unsigned Depth) {
3632   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3633 
3634   // If we're told that NaNs won't happen, assume they won't.
3635   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3636     if (FPMathOp->hasNoNaNs())
3637       return true;
3638 
3639   // Handle scalar constants.
3640   if (auto *CFP = dyn_cast<ConstantFP>(V))
3641     return !CFP->isNaN();
3642 
3643   if (Depth == MaxAnalysisRecursionDepth)
3644     return false;
3645 
3646   if (auto *Inst = dyn_cast<Instruction>(V)) {
3647     switch (Inst->getOpcode()) {
3648     case Instruction::FAdd:
3649     case Instruction::FSub:
3650       // Adding positive and negative infinity produces NaN.
3651       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3652              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3653              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3654               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3655 
3656     case Instruction::FMul:
3657       // Zero multiplied with infinity produces NaN.
3658       // FIXME: If neither side can be zero fmul never produces NaN.
3659       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3660              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3661              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3662              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3663 
3664     case Instruction::FDiv:
3665     case Instruction::FRem:
3666       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3667       return false;
3668 
3669     case Instruction::Select: {
3670       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3671              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3672     }
3673     case Instruction::SIToFP:
3674     case Instruction::UIToFP:
3675       return true;
3676     case Instruction::FPTrunc:
3677     case Instruction::FPExt:
3678       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3679     default:
3680       break;
3681     }
3682   }
3683 
3684   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3685     switch (II->getIntrinsicID()) {
3686     case Intrinsic::canonicalize:
3687     case Intrinsic::fabs:
3688     case Intrinsic::copysign:
3689     case Intrinsic::exp:
3690     case Intrinsic::exp2:
3691     case Intrinsic::floor:
3692     case Intrinsic::ceil:
3693     case Intrinsic::trunc:
3694     case Intrinsic::rint:
3695     case Intrinsic::nearbyint:
3696     case Intrinsic::round:
3697     case Intrinsic::roundeven:
3698       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3699     case Intrinsic::sqrt:
3700       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3701              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3702     case Intrinsic::minnum:
3703     case Intrinsic::maxnum:
3704       // If either operand is not NaN, the result is not NaN.
3705       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3706              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3707     default:
3708       return false;
3709     }
3710   }
3711 
3712   // Try to handle fixed width vector constants
3713   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3714   if (VFVTy && isa<Constant>(V)) {
3715     // For vectors, verify that each element is not NaN.
3716     unsigned NumElts = VFVTy->getNumElements();
3717     for (unsigned i = 0; i != NumElts; ++i) {
3718       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3719       if (!Elt)
3720         return false;
3721       if (isa<UndefValue>(Elt))
3722         continue;
3723       auto *CElt = dyn_cast<ConstantFP>(Elt);
3724       if (!CElt || CElt->isNaN())
3725         return false;
3726     }
3727     // All elements were confirmed not-NaN or undefined.
3728     return true;
3729   }
3730 
3731   // Was not able to prove that V never contains NaN
3732   return false;
3733 }
3734 
3735 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3736 
3737   // All byte-wide stores are splatable, even of arbitrary variables.
3738   if (V->getType()->isIntegerTy(8))
3739     return V;
3740 
3741   LLVMContext &Ctx = V->getContext();
3742 
3743   // Undef don't care.
3744   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3745   if (isa<UndefValue>(V))
3746     return UndefInt8;
3747 
3748   // Return Undef for zero-sized type.
3749   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3750     return UndefInt8;
3751 
3752   Constant *C = dyn_cast<Constant>(V);
3753   if (!C) {
3754     // Conceptually, we could handle things like:
3755     //   %a = zext i8 %X to i16
3756     //   %b = shl i16 %a, 8
3757     //   %c = or i16 %a, %b
3758     // but until there is an example that actually needs this, it doesn't seem
3759     // worth worrying about.
3760     return nullptr;
3761   }
3762 
3763   // Handle 'null' ConstantArrayZero etc.
3764   if (C->isNullValue())
3765     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3766 
3767   // Constant floating-point values can be handled as integer values if the
3768   // corresponding integer value is "byteable".  An important case is 0.0.
3769   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3770     Type *Ty = nullptr;
3771     if (CFP->getType()->isHalfTy())
3772       Ty = Type::getInt16Ty(Ctx);
3773     else if (CFP->getType()->isFloatTy())
3774       Ty = Type::getInt32Ty(Ctx);
3775     else if (CFP->getType()->isDoubleTy())
3776       Ty = Type::getInt64Ty(Ctx);
3777     // Don't handle long double formats, which have strange constraints.
3778     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3779               : nullptr;
3780   }
3781 
3782   // We can handle constant integers that are multiple of 8 bits.
3783   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3784     if (CI->getBitWidth() % 8 == 0) {
3785       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3786       if (!CI->getValue().isSplat(8))
3787         return nullptr;
3788       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3789     }
3790   }
3791 
3792   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3793     if (CE->getOpcode() == Instruction::IntToPtr) {
3794       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3795         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3796         return isBytewiseValue(
3797             ConstantExpr::getIntegerCast(CE->getOperand(0),
3798                                          Type::getIntNTy(Ctx, BitWidth), false),
3799             DL);
3800       }
3801     }
3802   }
3803 
3804   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3805     if (LHS == RHS)
3806       return LHS;
3807     if (!LHS || !RHS)
3808       return nullptr;
3809     if (LHS == UndefInt8)
3810       return RHS;
3811     if (RHS == UndefInt8)
3812       return LHS;
3813     return nullptr;
3814   };
3815 
3816   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3817     Value *Val = UndefInt8;
3818     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3819       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3820         return nullptr;
3821     return Val;
3822   }
3823 
3824   if (isa<ConstantAggregate>(C)) {
3825     Value *Val = UndefInt8;
3826     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3827       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3828         return nullptr;
3829     return Val;
3830   }
3831 
3832   // Don't try to handle the handful of other constants.
3833   return nullptr;
3834 }
3835 
3836 // This is the recursive version of BuildSubAggregate. It takes a few different
3837 // arguments. Idxs is the index within the nested struct From that we are
3838 // looking at now (which is of type IndexedType). IdxSkip is the number of
3839 // indices from Idxs that should be left out when inserting into the resulting
3840 // struct. To is the result struct built so far, new insertvalue instructions
3841 // build on that.
3842 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3843                                 SmallVectorImpl<unsigned> &Idxs,
3844                                 unsigned IdxSkip,
3845                                 Instruction *InsertBefore) {
3846   StructType *STy = dyn_cast<StructType>(IndexedType);
3847   if (STy) {
3848     // Save the original To argument so we can modify it
3849     Value *OrigTo = To;
3850     // General case, the type indexed by Idxs is a struct
3851     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3852       // Process each struct element recursively
3853       Idxs.push_back(i);
3854       Value *PrevTo = To;
3855       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3856                              InsertBefore);
3857       Idxs.pop_back();
3858       if (!To) {
3859         // Couldn't find any inserted value for this index? Cleanup
3860         while (PrevTo != OrigTo) {
3861           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3862           PrevTo = Del->getAggregateOperand();
3863           Del->eraseFromParent();
3864         }
3865         // Stop processing elements
3866         break;
3867       }
3868     }
3869     // If we successfully found a value for each of our subaggregates
3870     if (To)
3871       return To;
3872   }
3873   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3874   // the struct's elements had a value that was inserted directly. In the latter
3875   // case, perhaps we can't determine each of the subelements individually, but
3876   // we might be able to find the complete struct somewhere.
3877 
3878   // Find the value that is at that particular spot
3879   Value *V = FindInsertedValue(From, Idxs);
3880 
3881   if (!V)
3882     return nullptr;
3883 
3884   // Insert the value in the new (sub) aggregate
3885   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3886                                  "tmp", InsertBefore);
3887 }
3888 
3889 // This helper takes a nested struct and extracts a part of it (which is again a
3890 // struct) into a new value. For example, given the struct:
3891 // { a, { b, { c, d }, e } }
3892 // and the indices "1, 1" this returns
3893 // { c, d }.
3894 //
3895 // It does this by inserting an insertvalue for each element in the resulting
3896 // struct, as opposed to just inserting a single struct. This will only work if
3897 // each of the elements of the substruct are known (ie, inserted into From by an
3898 // insertvalue instruction somewhere).
3899 //
3900 // All inserted insertvalue instructions are inserted before InsertBefore
3901 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3902                                 Instruction *InsertBefore) {
3903   assert(InsertBefore && "Must have someplace to insert!");
3904   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3905                                                              idx_range);
3906   Value *To = UndefValue::get(IndexedType);
3907   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3908   unsigned IdxSkip = Idxs.size();
3909 
3910   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3911 }
3912 
3913 /// Given an aggregate and a sequence of indices, see if the scalar value
3914 /// indexed is already around as a register, for example if it was inserted
3915 /// directly into the aggregate.
3916 ///
3917 /// If InsertBefore is not null, this function will duplicate (modified)
3918 /// insertvalues when a part of a nested struct is extracted.
3919 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3920                                Instruction *InsertBefore) {
3921   // Nothing to index? Just return V then (this is useful at the end of our
3922   // recursion).
3923   if (idx_range.empty())
3924     return V;
3925   // We have indices, so V should have an indexable type.
3926   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3927          "Not looking at a struct or array?");
3928   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3929          "Invalid indices for type?");
3930 
3931   if (Constant *C = dyn_cast<Constant>(V)) {
3932     C = C->getAggregateElement(idx_range[0]);
3933     if (!C) return nullptr;
3934     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3935   }
3936 
3937   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3938     // Loop the indices for the insertvalue instruction in parallel with the
3939     // requested indices
3940     const unsigned *req_idx = idx_range.begin();
3941     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3942          i != e; ++i, ++req_idx) {
3943       if (req_idx == idx_range.end()) {
3944         // We can't handle this without inserting insertvalues
3945         if (!InsertBefore)
3946           return nullptr;
3947 
3948         // The requested index identifies a part of a nested aggregate. Handle
3949         // this specially. For example,
3950         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3951         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3952         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3953         // This can be changed into
3954         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3955         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3956         // which allows the unused 0,0 element from the nested struct to be
3957         // removed.
3958         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3959                                  InsertBefore);
3960       }
3961 
3962       // This insert value inserts something else than what we are looking for.
3963       // See if the (aggregate) value inserted into has the value we are
3964       // looking for, then.
3965       if (*req_idx != *i)
3966         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3967                                  InsertBefore);
3968     }
3969     // If we end up here, the indices of the insertvalue match with those
3970     // requested (though possibly only partially). Now we recursively look at
3971     // the inserted value, passing any remaining indices.
3972     return FindInsertedValue(I->getInsertedValueOperand(),
3973                              makeArrayRef(req_idx, idx_range.end()),
3974                              InsertBefore);
3975   }
3976 
3977   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3978     // If we're extracting a value from an aggregate that was extracted from
3979     // something else, we can extract from that something else directly instead.
3980     // However, we will need to chain I's indices with the requested indices.
3981 
3982     // Calculate the number of indices required
3983     unsigned size = I->getNumIndices() + idx_range.size();
3984     // Allocate some space to put the new indices in
3985     SmallVector<unsigned, 5> Idxs;
3986     Idxs.reserve(size);
3987     // Add indices from the extract value instruction
3988     Idxs.append(I->idx_begin(), I->idx_end());
3989 
3990     // Add requested indices
3991     Idxs.append(idx_range.begin(), idx_range.end());
3992 
3993     assert(Idxs.size() == size
3994            && "Number of indices added not correct?");
3995 
3996     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3997   }
3998   // Otherwise, we don't know (such as, extracting from a function return value
3999   // or load instruction)
4000   return nullptr;
4001 }
4002 
4003 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4004                                        unsigned CharSize) {
4005   // Make sure the GEP has exactly three arguments.
4006   if (GEP->getNumOperands() != 3)
4007     return false;
4008 
4009   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4010   // CharSize.
4011   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4012   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4013     return false;
4014 
4015   // Check to make sure that the first operand of the GEP is an integer and
4016   // has value 0 so that we are sure we're indexing into the initializer.
4017   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4018   if (!FirstIdx || !FirstIdx->isZero())
4019     return false;
4020 
4021   return true;
4022 }
4023 
4024 bool llvm::getConstantDataArrayInfo(const Value *V,
4025                                     ConstantDataArraySlice &Slice,
4026                                     unsigned ElementSize, uint64_t Offset) {
4027   assert(V);
4028 
4029   // Look through bitcast instructions and geps.
4030   V = V->stripPointerCasts();
4031 
4032   // If the value is a GEP instruction or constant expression, treat it as an
4033   // offset.
4034   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4035     // The GEP operator should be based on a pointer to string constant, and is
4036     // indexing into the string constant.
4037     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4038       return false;
4039 
4040     // If the second index isn't a ConstantInt, then this is a variable index
4041     // into the array.  If this occurs, we can't say anything meaningful about
4042     // the string.
4043     uint64_t StartIdx = 0;
4044     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4045       StartIdx = CI->getZExtValue();
4046     else
4047       return false;
4048     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4049                                     StartIdx + Offset);
4050   }
4051 
4052   // The GEP instruction, constant or instruction, must reference a global
4053   // variable that is a constant and is initialized. The referenced constant
4054   // initializer is the array that we'll use for optimization.
4055   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4056   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4057     return false;
4058 
4059   const ConstantDataArray *Array;
4060   ArrayType *ArrayTy;
4061   if (GV->getInitializer()->isNullValue()) {
4062     Type *GVTy = GV->getValueType();
4063     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4064       // A zeroinitializer for the array; there is no ConstantDataArray.
4065       Array = nullptr;
4066     } else {
4067       const DataLayout &DL = GV->getParent()->getDataLayout();
4068       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4069       uint64_t Length = SizeInBytes / (ElementSize / 8);
4070       if (Length <= Offset)
4071         return false;
4072 
4073       Slice.Array = nullptr;
4074       Slice.Offset = 0;
4075       Slice.Length = Length - Offset;
4076       return true;
4077     }
4078   } else {
4079     // This must be a ConstantDataArray.
4080     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4081     if (!Array)
4082       return false;
4083     ArrayTy = Array->getType();
4084   }
4085   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4086     return false;
4087 
4088   uint64_t NumElts = ArrayTy->getArrayNumElements();
4089   if (Offset > NumElts)
4090     return false;
4091 
4092   Slice.Array = Array;
4093   Slice.Offset = Offset;
4094   Slice.Length = NumElts - Offset;
4095   return true;
4096 }
4097 
4098 /// This function computes the length of a null-terminated C string pointed to
4099 /// by V. If successful, it returns true and returns the string in Str.
4100 /// If unsuccessful, it returns false.
4101 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4102                                  uint64_t Offset, bool TrimAtNul) {
4103   ConstantDataArraySlice Slice;
4104   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4105     return false;
4106 
4107   if (Slice.Array == nullptr) {
4108     if (TrimAtNul) {
4109       Str = StringRef();
4110       return true;
4111     }
4112     if (Slice.Length == 1) {
4113       Str = StringRef("", 1);
4114       return true;
4115     }
4116     // We cannot instantiate a StringRef as we do not have an appropriate string
4117     // of 0s at hand.
4118     return false;
4119   }
4120 
4121   // Start out with the entire array in the StringRef.
4122   Str = Slice.Array->getAsString();
4123   // Skip over 'offset' bytes.
4124   Str = Str.substr(Slice.Offset);
4125 
4126   if (TrimAtNul) {
4127     // Trim off the \0 and anything after it.  If the array is not nul
4128     // terminated, we just return the whole end of string.  The client may know
4129     // some other way that the string is length-bound.
4130     Str = Str.substr(0, Str.find('\0'));
4131   }
4132   return true;
4133 }
4134 
4135 // These next two are very similar to the above, but also look through PHI
4136 // nodes.
4137 // TODO: See if we can integrate these two together.
4138 
4139 /// If we can compute the length of the string pointed to by
4140 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4141 static uint64_t GetStringLengthH(const Value *V,
4142                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4143                                  unsigned CharSize) {
4144   // Look through noop bitcast instructions.
4145   V = V->stripPointerCasts();
4146 
4147   // If this is a PHI node, there are two cases: either we have already seen it
4148   // or we haven't.
4149   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4150     if (!PHIs.insert(PN).second)
4151       return ~0ULL;  // already in the set.
4152 
4153     // If it was new, see if all the input strings are the same length.
4154     uint64_t LenSoFar = ~0ULL;
4155     for (Value *IncValue : PN->incoming_values()) {
4156       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4157       if (Len == 0) return 0; // Unknown length -> unknown.
4158 
4159       if (Len == ~0ULL) continue;
4160 
4161       if (Len != LenSoFar && LenSoFar != ~0ULL)
4162         return 0;    // Disagree -> unknown.
4163       LenSoFar = Len;
4164     }
4165 
4166     // Success, all agree.
4167     return LenSoFar;
4168   }
4169 
4170   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4171   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4172     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4173     if (Len1 == 0) return 0;
4174     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4175     if (Len2 == 0) return 0;
4176     if (Len1 == ~0ULL) return Len2;
4177     if (Len2 == ~0ULL) return Len1;
4178     if (Len1 != Len2) return 0;
4179     return Len1;
4180   }
4181 
4182   // Otherwise, see if we can read the string.
4183   ConstantDataArraySlice Slice;
4184   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4185     return 0;
4186 
4187   if (Slice.Array == nullptr)
4188     return 1;
4189 
4190   // Search for nul characters
4191   unsigned NullIndex = 0;
4192   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4193     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4194       break;
4195   }
4196 
4197   return NullIndex + 1;
4198 }
4199 
4200 /// If we can compute the length of the string pointed to by
4201 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4202 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4203   if (!V->getType()->isPointerTy())
4204     return 0;
4205 
4206   SmallPtrSet<const PHINode*, 32> PHIs;
4207   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4208   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4209   // an empty string as a length.
4210   return Len == ~0ULL ? 1 : Len;
4211 }
4212 
4213 const Value *
4214 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4215                                            bool MustPreserveNullness) {
4216   assert(Call &&
4217          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4218   if (const Value *RV = Call->getReturnedArgOperand())
4219     return RV;
4220   // This can be used only as a aliasing property.
4221   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4222           Call, MustPreserveNullness))
4223     return Call->getArgOperand(0);
4224   return nullptr;
4225 }
4226 
4227 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4228     const CallBase *Call, bool MustPreserveNullness) {
4229   switch (Call->getIntrinsicID()) {
4230   case Intrinsic::launder_invariant_group:
4231   case Intrinsic::strip_invariant_group:
4232   case Intrinsic::aarch64_irg:
4233   case Intrinsic::aarch64_tagp:
4234     return true;
4235   case Intrinsic::ptrmask:
4236     return !MustPreserveNullness;
4237   default:
4238     return false;
4239   }
4240 }
4241 
4242 /// \p PN defines a loop-variant pointer to an object.  Check if the
4243 /// previous iteration of the loop was referring to the same object as \p PN.
4244 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4245                                          const LoopInfo *LI) {
4246   // Find the loop-defined value.
4247   Loop *L = LI->getLoopFor(PN->getParent());
4248   if (PN->getNumIncomingValues() != 2)
4249     return true;
4250 
4251   // Find the value from previous iteration.
4252   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4253   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4254     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4255   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4256     return true;
4257 
4258   // If a new pointer is loaded in the loop, the pointer references a different
4259   // object in every iteration.  E.g.:
4260   //    for (i)
4261   //       int *p = a[i];
4262   //       ...
4263   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4264     if (!L->isLoopInvariant(Load->getPointerOperand()))
4265       return false;
4266   return true;
4267 }
4268 
4269 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4270   if (!V->getType()->isPointerTy())
4271     return V;
4272   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4273     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4274       V = GEP->getPointerOperand();
4275     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4276                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4277       V = cast<Operator>(V)->getOperand(0);
4278       if (!V->getType()->isPointerTy())
4279         return V;
4280     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4281       if (GA->isInterposable())
4282         return V;
4283       V = GA->getAliasee();
4284     } else {
4285       if (auto *PHI = dyn_cast<PHINode>(V)) {
4286         // Look through single-arg phi nodes created by LCSSA.
4287         if (PHI->getNumIncomingValues() == 1) {
4288           V = PHI->getIncomingValue(0);
4289           continue;
4290         }
4291       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4292         // CaptureTracking can know about special capturing properties of some
4293         // intrinsics like launder.invariant.group, that can't be expressed with
4294         // the attributes, but have properties like returning aliasing pointer.
4295         // Because some analysis may assume that nocaptured pointer is not
4296         // returned from some special intrinsic (because function would have to
4297         // be marked with returns attribute), it is crucial to use this function
4298         // because it should be in sync with CaptureTracking. Not using it may
4299         // cause weird miscompilations where 2 aliasing pointers are assumed to
4300         // noalias.
4301         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4302           V = RP;
4303           continue;
4304         }
4305       }
4306 
4307       return V;
4308     }
4309     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4310   }
4311   return V;
4312 }
4313 
4314 void llvm::getUnderlyingObjects(const Value *V,
4315                                 SmallVectorImpl<const Value *> &Objects,
4316                                 LoopInfo *LI, unsigned MaxLookup) {
4317   SmallPtrSet<const Value *, 4> Visited;
4318   SmallVector<const Value *, 4> Worklist;
4319   Worklist.push_back(V);
4320   do {
4321     const Value *P = Worklist.pop_back_val();
4322     P = getUnderlyingObject(P, MaxLookup);
4323 
4324     if (!Visited.insert(P).second)
4325       continue;
4326 
4327     if (auto *SI = dyn_cast<SelectInst>(P)) {
4328       Worklist.push_back(SI->getTrueValue());
4329       Worklist.push_back(SI->getFalseValue());
4330       continue;
4331     }
4332 
4333     if (auto *PN = dyn_cast<PHINode>(P)) {
4334       // If this PHI changes the underlying object in every iteration of the
4335       // loop, don't look through it.  Consider:
4336       //   int **A;
4337       //   for (i) {
4338       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4339       //     Curr = A[i];
4340       //     *Prev, *Curr;
4341       //
4342       // Prev is tracking Curr one iteration behind so they refer to different
4343       // underlying objects.
4344       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4345           isSameUnderlyingObjectInLoop(PN, LI))
4346         append_range(Worklist, PN->incoming_values());
4347       continue;
4348     }
4349 
4350     Objects.push_back(P);
4351   } while (!Worklist.empty());
4352 }
4353 
4354 /// This is the function that does the work of looking through basic
4355 /// ptrtoint+arithmetic+inttoptr sequences.
4356 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4357   do {
4358     if (const Operator *U = dyn_cast<Operator>(V)) {
4359       // If we find a ptrtoint, we can transfer control back to the
4360       // regular getUnderlyingObjectFromInt.
4361       if (U->getOpcode() == Instruction::PtrToInt)
4362         return U->getOperand(0);
4363       // If we find an add of a constant, a multiplied value, or a phi, it's
4364       // likely that the other operand will lead us to the base
4365       // object. We don't have to worry about the case where the
4366       // object address is somehow being computed by the multiply,
4367       // because our callers only care when the result is an
4368       // identifiable object.
4369       if (U->getOpcode() != Instruction::Add ||
4370           (!isa<ConstantInt>(U->getOperand(1)) &&
4371            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4372            !isa<PHINode>(U->getOperand(1))))
4373         return V;
4374       V = U->getOperand(0);
4375     } else {
4376       return V;
4377     }
4378     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4379   } while (true);
4380 }
4381 
4382 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4383 /// ptrtoint+arithmetic+inttoptr sequences.
4384 /// It returns false if unidentified object is found in getUnderlyingObjects.
4385 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4386                                           SmallVectorImpl<Value *> &Objects) {
4387   SmallPtrSet<const Value *, 16> Visited;
4388   SmallVector<const Value *, 4> Working(1, V);
4389   do {
4390     V = Working.pop_back_val();
4391 
4392     SmallVector<const Value *, 4> Objs;
4393     getUnderlyingObjects(V, Objs);
4394 
4395     for (const Value *V : Objs) {
4396       if (!Visited.insert(V).second)
4397         continue;
4398       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4399         const Value *O =
4400           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4401         if (O->getType()->isPointerTy()) {
4402           Working.push_back(O);
4403           continue;
4404         }
4405       }
4406       // If getUnderlyingObjects fails to find an identifiable object,
4407       // getUnderlyingObjectsForCodeGen also fails for safety.
4408       if (!isIdentifiedObject(V)) {
4409         Objects.clear();
4410         return false;
4411       }
4412       Objects.push_back(const_cast<Value *>(V));
4413     }
4414   } while (!Working.empty());
4415   return true;
4416 }
4417 
4418 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4419   AllocaInst *Result = nullptr;
4420   SmallPtrSet<Value *, 4> Visited;
4421   SmallVector<Value *, 4> Worklist;
4422 
4423   auto AddWork = [&](Value *V) {
4424     if (Visited.insert(V).second)
4425       Worklist.push_back(V);
4426   };
4427 
4428   AddWork(V);
4429   do {
4430     V = Worklist.pop_back_val();
4431     assert(Visited.count(V));
4432 
4433     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4434       if (Result && Result != AI)
4435         return nullptr;
4436       Result = AI;
4437     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4438       AddWork(CI->getOperand(0));
4439     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4440       for (Value *IncValue : PN->incoming_values())
4441         AddWork(IncValue);
4442     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4443       AddWork(SI->getTrueValue());
4444       AddWork(SI->getFalseValue());
4445     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4446       if (OffsetZero && !GEP->hasAllZeroIndices())
4447         return nullptr;
4448       AddWork(GEP->getPointerOperand());
4449     } else {
4450       return nullptr;
4451     }
4452   } while (!Worklist.empty());
4453 
4454   return Result;
4455 }
4456 
4457 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4458     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4459   for (const User *U : V->users()) {
4460     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4461     if (!II)
4462       return false;
4463 
4464     if (AllowLifetime && II->isLifetimeStartOrEnd())
4465       continue;
4466 
4467     if (AllowDroppable && II->isDroppable())
4468       continue;
4469 
4470     return false;
4471   }
4472   return true;
4473 }
4474 
4475 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4476   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4477       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4478 }
4479 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4480   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4481       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4482 }
4483 
4484 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4485   if (!LI.isUnordered())
4486     return true;
4487   const Function &F = *LI.getFunction();
4488   // Speculative load may create a race that did not exist in the source.
4489   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4490     // Speculative load may load data from dirty regions.
4491     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4492     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4493 }
4494 
4495 
4496 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4497                                         const Instruction *CtxI,
4498                                         const DominatorTree *DT,
4499                                         const TargetLibraryInfo *TLI) {
4500   const Operator *Inst = dyn_cast<Operator>(V);
4501   if (!Inst)
4502     return false;
4503 
4504   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4505     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4506       if (C->canTrap())
4507         return false;
4508 
4509   switch (Inst->getOpcode()) {
4510   default:
4511     return true;
4512   case Instruction::UDiv:
4513   case Instruction::URem: {
4514     // x / y is undefined if y == 0.
4515     const APInt *V;
4516     if (match(Inst->getOperand(1), m_APInt(V)))
4517       return *V != 0;
4518     return false;
4519   }
4520   case Instruction::SDiv:
4521   case Instruction::SRem: {
4522     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4523     const APInt *Numerator, *Denominator;
4524     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4525       return false;
4526     // We cannot hoist this division if the denominator is 0.
4527     if (*Denominator == 0)
4528       return false;
4529     // It's safe to hoist if the denominator is not 0 or -1.
4530     if (!Denominator->isAllOnesValue())
4531       return true;
4532     // At this point we know that the denominator is -1.  It is safe to hoist as
4533     // long we know that the numerator is not INT_MIN.
4534     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4535       return !Numerator->isMinSignedValue();
4536     // The numerator *might* be MinSignedValue.
4537     return false;
4538   }
4539   case Instruction::Load: {
4540     const LoadInst *LI = cast<LoadInst>(Inst);
4541     if (mustSuppressSpeculation(*LI))
4542       return false;
4543     const DataLayout &DL = LI->getModule()->getDataLayout();
4544     return isDereferenceableAndAlignedPointer(
4545         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4546         DL, CtxI, DT, TLI);
4547   }
4548   case Instruction::Call: {
4549     auto *CI = cast<const CallInst>(Inst);
4550     const Function *Callee = CI->getCalledFunction();
4551 
4552     // The called function could have undefined behavior or side-effects, even
4553     // if marked readnone nounwind.
4554     return Callee && Callee->isSpeculatable();
4555   }
4556   case Instruction::VAArg:
4557   case Instruction::Alloca:
4558   case Instruction::Invoke:
4559   case Instruction::CallBr:
4560   case Instruction::PHI:
4561   case Instruction::Store:
4562   case Instruction::Ret:
4563   case Instruction::Br:
4564   case Instruction::IndirectBr:
4565   case Instruction::Switch:
4566   case Instruction::Unreachable:
4567   case Instruction::Fence:
4568   case Instruction::AtomicRMW:
4569   case Instruction::AtomicCmpXchg:
4570   case Instruction::LandingPad:
4571   case Instruction::Resume:
4572   case Instruction::CatchSwitch:
4573   case Instruction::CatchPad:
4574   case Instruction::CatchRet:
4575   case Instruction::CleanupPad:
4576   case Instruction::CleanupRet:
4577     return false; // Misc instructions which have effects
4578   }
4579 }
4580 
4581 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4582   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4583 }
4584 
4585 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4586 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4587   switch (OR) {
4588     case ConstantRange::OverflowResult::MayOverflow:
4589       return OverflowResult::MayOverflow;
4590     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4591       return OverflowResult::AlwaysOverflowsLow;
4592     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4593       return OverflowResult::AlwaysOverflowsHigh;
4594     case ConstantRange::OverflowResult::NeverOverflows:
4595       return OverflowResult::NeverOverflows;
4596   }
4597   llvm_unreachable("Unknown OverflowResult");
4598 }
4599 
4600 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4601 static ConstantRange computeConstantRangeIncludingKnownBits(
4602     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4603     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4604     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4605   KnownBits Known = computeKnownBits(
4606       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4607   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4608   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4609   ConstantRange::PreferredRangeType RangeType =
4610       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4611   return CR1.intersectWith(CR2, RangeType);
4612 }
4613 
4614 OverflowResult llvm::computeOverflowForUnsignedMul(
4615     const Value *LHS, const Value *RHS, const DataLayout &DL,
4616     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4617     bool UseInstrInfo) {
4618   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4619                                         nullptr, UseInstrInfo);
4620   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4621                                         nullptr, UseInstrInfo);
4622   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4623   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4624   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4625 }
4626 
4627 OverflowResult
4628 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4629                                   const DataLayout &DL, AssumptionCache *AC,
4630                                   const Instruction *CxtI,
4631                                   const DominatorTree *DT, bool UseInstrInfo) {
4632   // Multiplying n * m significant bits yields a result of n + m significant
4633   // bits. If the total number of significant bits does not exceed the
4634   // result bit width (minus 1), there is no overflow.
4635   // This means if we have enough leading sign bits in the operands
4636   // we can guarantee that the result does not overflow.
4637   // Ref: "Hacker's Delight" by Henry Warren
4638   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4639 
4640   // Note that underestimating the number of sign bits gives a more
4641   // conservative answer.
4642   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4643                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4644 
4645   // First handle the easy case: if we have enough sign bits there's
4646   // definitely no overflow.
4647   if (SignBits > BitWidth + 1)
4648     return OverflowResult::NeverOverflows;
4649 
4650   // There are two ambiguous cases where there can be no overflow:
4651   //   SignBits == BitWidth + 1    and
4652   //   SignBits == BitWidth
4653   // The second case is difficult to check, therefore we only handle the
4654   // first case.
4655   if (SignBits == BitWidth + 1) {
4656     // It overflows only when both arguments are negative and the true
4657     // product is exactly the minimum negative number.
4658     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4659     // For simplicity we just check if at least one side is not negative.
4660     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4661                                           nullptr, UseInstrInfo);
4662     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4663                                           nullptr, UseInstrInfo);
4664     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4665       return OverflowResult::NeverOverflows;
4666   }
4667   return OverflowResult::MayOverflow;
4668 }
4669 
4670 OverflowResult llvm::computeOverflowForUnsignedAdd(
4671     const Value *LHS, const Value *RHS, const DataLayout &DL,
4672     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4673     bool UseInstrInfo) {
4674   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4675       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4676       nullptr, UseInstrInfo);
4677   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4678       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4679       nullptr, UseInstrInfo);
4680   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4681 }
4682 
4683 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4684                                                   const Value *RHS,
4685                                                   const AddOperator *Add,
4686                                                   const DataLayout &DL,
4687                                                   AssumptionCache *AC,
4688                                                   const Instruction *CxtI,
4689                                                   const DominatorTree *DT) {
4690   if (Add && Add->hasNoSignedWrap()) {
4691     return OverflowResult::NeverOverflows;
4692   }
4693 
4694   // If LHS and RHS each have at least two sign bits, the addition will look
4695   // like
4696   //
4697   // XX..... +
4698   // YY.....
4699   //
4700   // If the carry into the most significant position is 0, X and Y can't both
4701   // be 1 and therefore the carry out of the addition is also 0.
4702   //
4703   // If the carry into the most significant position is 1, X and Y can't both
4704   // be 0 and therefore the carry out of the addition is also 1.
4705   //
4706   // Since the carry into the most significant position is always equal to
4707   // the carry out of the addition, there is no signed overflow.
4708   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4709       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4710     return OverflowResult::NeverOverflows;
4711 
4712   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4713       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4714   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4715       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4716   OverflowResult OR =
4717       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4718   if (OR != OverflowResult::MayOverflow)
4719     return OR;
4720 
4721   // The remaining code needs Add to be available. Early returns if not so.
4722   if (!Add)
4723     return OverflowResult::MayOverflow;
4724 
4725   // If the sign of Add is the same as at least one of the operands, this add
4726   // CANNOT overflow. If this can be determined from the known bits of the
4727   // operands the above signedAddMayOverflow() check will have already done so.
4728   // The only other way to improve on the known bits is from an assumption, so
4729   // call computeKnownBitsFromAssume() directly.
4730   bool LHSOrRHSKnownNonNegative =
4731       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4732   bool LHSOrRHSKnownNegative =
4733       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4734   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4735     KnownBits AddKnown(LHSRange.getBitWidth());
4736     computeKnownBitsFromAssume(
4737         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4738     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4739         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4740       return OverflowResult::NeverOverflows;
4741   }
4742 
4743   return OverflowResult::MayOverflow;
4744 }
4745 
4746 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4747                                                    const Value *RHS,
4748                                                    const DataLayout &DL,
4749                                                    AssumptionCache *AC,
4750                                                    const Instruction *CxtI,
4751                                                    const DominatorTree *DT) {
4752   // Checking for conditions implied by dominating conditions may be expensive.
4753   // Limit it to usub_with_overflow calls for now.
4754   if (match(CxtI,
4755             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4756     if (auto C =
4757             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4758       if (*C)
4759         return OverflowResult::NeverOverflows;
4760       return OverflowResult::AlwaysOverflowsLow;
4761     }
4762   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4763       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4764   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4765       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4766   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4767 }
4768 
4769 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4770                                                  const Value *RHS,
4771                                                  const DataLayout &DL,
4772                                                  AssumptionCache *AC,
4773                                                  const Instruction *CxtI,
4774                                                  const DominatorTree *DT) {
4775   // If LHS and RHS each have at least two sign bits, the subtraction
4776   // cannot overflow.
4777   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4778       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4779     return OverflowResult::NeverOverflows;
4780 
4781   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4782       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4783   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4784       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4785   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4786 }
4787 
4788 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4789                                      const DominatorTree &DT) {
4790   SmallVector<const BranchInst *, 2> GuardingBranches;
4791   SmallVector<const ExtractValueInst *, 2> Results;
4792 
4793   for (const User *U : WO->users()) {
4794     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4795       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4796 
4797       if (EVI->getIndices()[0] == 0)
4798         Results.push_back(EVI);
4799       else {
4800         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4801 
4802         for (const auto *U : EVI->users())
4803           if (const auto *B = dyn_cast<BranchInst>(U)) {
4804             assert(B->isConditional() && "How else is it using an i1?");
4805             GuardingBranches.push_back(B);
4806           }
4807       }
4808     } else {
4809       // We are using the aggregate directly in a way we don't want to analyze
4810       // here (storing it to a global, say).
4811       return false;
4812     }
4813   }
4814 
4815   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4816     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4817     if (!NoWrapEdge.isSingleEdge())
4818       return false;
4819 
4820     // Check if all users of the add are provably no-wrap.
4821     for (const auto *Result : Results) {
4822       // If the extractvalue itself is not executed on overflow, the we don't
4823       // need to check each use separately, since domination is transitive.
4824       if (DT.dominates(NoWrapEdge, Result->getParent()))
4825         continue;
4826 
4827       for (auto &RU : Result->uses())
4828         if (!DT.dominates(NoWrapEdge, RU))
4829           return false;
4830     }
4831 
4832     return true;
4833   };
4834 
4835   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4836 }
4837 
4838 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4839   // See whether I has flags that may create poison
4840   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4841     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4842       return true;
4843   }
4844   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4845     if (ExactOp->isExact())
4846       return true;
4847   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4848     auto FMF = FP->getFastMathFlags();
4849     if (FMF.noNaNs() || FMF.noInfs())
4850       return true;
4851   }
4852 
4853   unsigned Opcode = Op->getOpcode();
4854 
4855   // Check whether opcode is a poison/undef-generating operation
4856   switch (Opcode) {
4857   case Instruction::Shl:
4858   case Instruction::AShr:
4859   case Instruction::LShr: {
4860     // Shifts return poison if shiftwidth is larger than the bitwidth.
4861     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4862       SmallVector<Constant *, 4> ShiftAmounts;
4863       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4864         unsigned NumElts = FVTy->getNumElements();
4865         for (unsigned i = 0; i < NumElts; ++i)
4866           ShiftAmounts.push_back(C->getAggregateElement(i));
4867       } else if (isa<ScalableVectorType>(C->getType()))
4868         return true; // Can't tell, just return true to be safe
4869       else
4870         ShiftAmounts.push_back(C);
4871 
4872       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4873         auto *CI = dyn_cast_or_null<ConstantInt>(C);
4874         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4875       });
4876       return !Safe;
4877     }
4878     return true;
4879   }
4880   case Instruction::FPToSI:
4881   case Instruction::FPToUI:
4882     // fptosi/ui yields poison if the resulting value does not fit in the
4883     // destination type.
4884     return true;
4885   case Instruction::Call:
4886     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
4887       switch (II->getIntrinsicID()) {
4888       // TODO: Add more intrinsics.
4889       case Intrinsic::ctpop:
4890         return false;
4891       }
4892     }
4893     LLVM_FALLTHROUGH;
4894   case Instruction::CallBr:
4895   case Instruction::Invoke: {
4896     const auto *CB = cast<CallBase>(Op);
4897     return !CB->hasRetAttr(Attribute::NoUndef);
4898   }
4899   case Instruction::InsertElement:
4900   case Instruction::ExtractElement: {
4901     // If index exceeds the length of the vector, it returns poison
4902     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4903     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4904     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4905     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4906       return true;
4907     return false;
4908   }
4909   case Instruction::ShuffleVector: {
4910     // shufflevector may return undef.
4911     if (PoisonOnly)
4912       return false;
4913     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4914                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4915                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4916     return is_contained(Mask, UndefMaskElem);
4917   }
4918   case Instruction::FNeg:
4919   case Instruction::PHI:
4920   case Instruction::Select:
4921   case Instruction::URem:
4922   case Instruction::SRem:
4923   case Instruction::ExtractValue:
4924   case Instruction::InsertValue:
4925   case Instruction::Freeze:
4926   case Instruction::ICmp:
4927   case Instruction::FCmp:
4928     return false;
4929   case Instruction::GetElementPtr: {
4930     const auto *GEP = cast<GEPOperator>(Op);
4931     return GEP->isInBounds();
4932   }
4933   default: {
4934     const auto *CE = dyn_cast<ConstantExpr>(Op);
4935     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4936       return false;
4937     else if (Instruction::isBinaryOp(Opcode))
4938       return false;
4939     // Be conservative and return true.
4940     return true;
4941   }
4942   }
4943 }
4944 
4945 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4946   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4947 }
4948 
4949 bool llvm::canCreatePoison(const Operator *Op) {
4950   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4951 }
4952 
4953 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
4954                                   const Value *V, unsigned Depth) {
4955   if (ValAssumedPoison == V)
4956     return true;
4957 
4958   const unsigned MaxDepth = 2;
4959   if (Depth >= MaxDepth)
4960     return false;
4961 
4962   if (const auto *I = dyn_cast<Instruction>(V)) {
4963     if (propagatesPoison(cast<Operator>(I)))
4964       return any_of(I->operands(), [=](const Value *Op) {
4965         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
4966       });
4967 
4968     // 'select ValAssumedPoison, _, _' is poison.
4969     if (const auto *SI = dyn_cast<SelectInst>(I))
4970       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
4971                                    Depth + 1);
4972     // V  = extractvalue V0, idx
4973     // V2 = extractvalue V0, idx2
4974     // V0's elements are all poison or not. (e.g., add_with_overflow)
4975     const WithOverflowInst *II;
4976     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
4977         match(ValAssumedPoison, m_ExtractValue(m_Specific(II))))
4978       return true;
4979   }
4980   return false;
4981 }
4982 
4983 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
4984                           unsigned Depth) {
4985   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
4986     return true;
4987 
4988   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
4989     return true;
4990 
4991   const unsigned MaxDepth = 2;
4992   if (Depth >= MaxDepth)
4993     return false;
4994 
4995   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
4996   if (I && !canCreatePoison(cast<Operator>(I))) {
4997     return all_of(I->operands(), [=](const Value *Op) {
4998       return impliesPoison(Op, V, Depth + 1);
4999     });
5000   }
5001   return false;
5002 }
5003 
5004 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5005   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5006 }
5007 
5008 static bool programUndefinedIfUndefOrPoison(const Value *V,
5009                                             bool PoisonOnly);
5010 
5011 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5012                                              AssumptionCache *AC,
5013                                              const Instruction *CtxI,
5014                                              const DominatorTree *DT,
5015                                              unsigned Depth, bool PoisonOnly) {
5016   if (Depth >= MaxAnalysisRecursionDepth)
5017     return false;
5018 
5019   if (isa<MetadataAsValue>(V))
5020     return false;
5021 
5022   if (const auto *A = dyn_cast<Argument>(V)) {
5023     if (A->hasAttribute(Attribute::NoUndef))
5024       return true;
5025   }
5026 
5027   if (auto *C = dyn_cast<Constant>(V)) {
5028     if (isa<UndefValue>(C))
5029       return PoisonOnly && !isa<PoisonValue>(C);
5030 
5031     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5032         isa<ConstantPointerNull>(C) || isa<Function>(C))
5033       return true;
5034 
5035     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5036       return (PoisonOnly ? !C->containsPoisonElement()
5037                          : !C->containsUndefOrPoisonElement()) &&
5038              !C->containsConstantExpression();
5039   }
5040 
5041   // Strip cast operations from a pointer value.
5042   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5043   // inbounds with zero offset. To guarantee that the result isn't poison, the
5044   // stripped pointer is checked as it has to be pointing into an allocated
5045   // object or be null `null` to ensure `inbounds` getelement pointers with a
5046   // zero offset could not produce poison.
5047   // It can strip off addrspacecast that do not change bit representation as
5048   // well. We believe that such addrspacecast is equivalent to no-op.
5049   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5050   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5051       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5052     return true;
5053 
5054   auto OpCheck = [&](const Value *V) {
5055     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5056                                             PoisonOnly);
5057   };
5058 
5059   if (auto *Opr = dyn_cast<Operator>(V)) {
5060     // If the value is a freeze instruction, then it can never
5061     // be undef or poison.
5062     if (isa<FreezeInst>(V))
5063       return true;
5064 
5065     if (const auto *CB = dyn_cast<CallBase>(V)) {
5066       if (CB->hasRetAttr(Attribute::NoUndef))
5067         return true;
5068     }
5069 
5070     if (const auto *PN = dyn_cast<PHINode>(V)) {
5071       unsigned Num = PN->getNumIncomingValues();
5072       bool IsWellDefined = true;
5073       for (unsigned i = 0; i < Num; ++i) {
5074         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5075         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5076                                               DT, Depth + 1, PoisonOnly)) {
5077           IsWellDefined = false;
5078           break;
5079         }
5080       }
5081       if (IsWellDefined)
5082         return true;
5083     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5084       return true;
5085   }
5086 
5087   if (auto *I = dyn_cast<LoadInst>(V))
5088     if (I->getMetadata(LLVMContext::MD_noundef))
5089       return true;
5090 
5091   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5092     return true;
5093 
5094   // CxtI may be null or a cloned instruction.
5095   if (!CtxI || !CtxI->getParent() || !DT)
5096     return false;
5097 
5098   auto *DNode = DT->getNode(CtxI->getParent());
5099   if (!DNode)
5100     // Unreachable block
5101     return false;
5102 
5103   // If V is used as a branch condition before reaching CtxI, V cannot be
5104   // undef or poison.
5105   //   br V, BB1, BB2
5106   // BB1:
5107   //   CtxI ; V cannot be undef or poison here
5108   auto *Dominator = DNode->getIDom();
5109   while (Dominator) {
5110     auto *TI = Dominator->getBlock()->getTerminator();
5111 
5112     Value *Cond = nullptr;
5113     if (auto BI = dyn_cast<BranchInst>(TI)) {
5114       if (BI->isConditional())
5115         Cond = BI->getCondition();
5116     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
5117       Cond = SI->getCondition();
5118     }
5119 
5120     if (Cond) {
5121       if (Cond == V)
5122         return true;
5123       else if (PoisonOnly && isa<Operator>(Cond)) {
5124         // For poison, we can analyze further
5125         auto *Opr = cast<Operator>(Cond);
5126         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5127           return true;
5128       }
5129     }
5130 
5131     Dominator = Dominator->getIDom();
5132   }
5133 
5134   SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
5135   if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
5136     return true;
5137 
5138   return false;
5139 }
5140 
5141 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5142                                             const Instruction *CtxI,
5143                                             const DominatorTree *DT,
5144                                             unsigned Depth) {
5145   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5146 }
5147 
5148 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5149                                      const Instruction *CtxI,
5150                                      const DominatorTree *DT, unsigned Depth) {
5151   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5152 }
5153 
5154 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5155                                                  const DataLayout &DL,
5156                                                  AssumptionCache *AC,
5157                                                  const Instruction *CxtI,
5158                                                  const DominatorTree *DT) {
5159   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5160                                        Add, DL, AC, CxtI, DT);
5161 }
5162 
5163 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5164                                                  const Value *RHS,
5165                                                  const DataLayout &DL,
5166                                                  AssumptionCache *AC,
5167                                                  const Instruction *CxtI,
5168                                                  const DominatorTree *DT) {
5169   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5170 }
5171 
5172 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5173   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5174   // of time because it's possible for another thread to interfere with it for an
5175   // arbitrary length of time, but programs aren't allowed to rely on that.
5176 
5177   // If there is no successor, then execution can't transfer to it.
5178   if (isa<ReturnInst>(I))
5179     return false;
5180   if (isa<UnreachableInst>(I))
5181     return false;
5182 
5183   // An instruction that returns without throwing must transfer control flow
5184   // to a successor.
5185   return !I->mayThrow() && I->willReturn();
5186 }
5187 
5188 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5189   // TODO: This is slightly conservative for invoke instruction since exiting
5190   // via an exception *is* normal control for them.
5191   for (const Instruction &I : *BB)
5192     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5193       return false;
5194   return true;
5195 }
5196 
5197 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5198                                                   const Loop *L) {
5199   // The loop header is guaranteed to be executed for every iteration.
5200   //
5201   // FIXME: Relax this constraint to cover all basic blocks that are
5202   // guaranteed to be executed at every iteration.
5203   if (I->getParent() != L->getHeader()) return false;
5204 
5205   for (const Instruction &LI : *L->getHeader()) {
5206     if (&LI == I) return true;
5207     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5208   }
5209   llvm_unreachable("Instruction not contained in its own parent basic block.");
5210 }
5211 
5212 bool llvm::propagatesPoison(const Operator *I) {
5213   switch (I->getOpcode()) {
5214   case Instruction::Freeze:
5215   case Instruction::Select:
5216   case Instruction::PHI:
5217   case Instruction::Call:
5218   case Instruction::Invoke:
5219     return false;
5220   case Instruction::ICmp:
5221   case Instruction::FCmp:
5222   case Instruction::GetElementPtr:
5223     return true;
5224   default:
5225     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5226       return true;
5227 
5228     // Be conservative and return false.
5229     return false;
5230   }
5231 }
5232 
5233 void llvm::getGuaranteedWellDefinedOps(
5234     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5235   switch (I->getOpcode()) {
5236     case Instruction::Store:
5237       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5238       break;
5239 
5240     case Instruction::Load:
5241       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5242       break;
5243 
5244     // Since dereferenceable attribute imply noundef, atomic operations
5245     // also implicitly have noundef pointers too
5246     case Instruction::AtomicCmpXchg:
5247       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5248       break;
5249 
5250     case Instruction::AtomicRMW:
5251       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5252       break;
5253 
5254     case Instruction::Call:
5255     case Instruction::Invoke: {
5256       const CallBase *CB = cast<CallBase>(I);
5257       if (CB->isIndirectCall())
5258         Operands.insert(CB->getCalledOperand());
5259       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5260         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5261             CB->paramHasAttr(i, Attribute::Dereferenceable))
5262           Operands.insert(CB->getArgOperand(i));
5263       }
5264       break;
5265     }
5266 
5267     default:
5268       break;
5269   }
5270 }
5271 
5272 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5273                                      SmallPtrSetImpl<const Value *> &Operands) {
5274   getGuaranteedWellDefinedOps(I, Operands);
5275   switch (I->getOpcode()) {
5276   // Divisors of these operations are allowed to be partially undef.
5277   case Instruction::UDiv:
5278   case Instruction::SDiv:
5279   case Instruction::URem:
5280   case Instruction::SRem:
5281     Operands.insert(I->getOperand(1));
5282     break;
5283 
5284   default:
5285     break;
5286   }
5287 }
5288 
5289 bool llvm::mustTriggerUB(const Instruction *I,
5290                          const SmallSet<const Value *, 16>& KnownPoison) {
5291   SmallPtrSet<const Value *, 4> NonPoisonOps;
5292   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5293 
5294   for (const auto *V : NonPoisonOps)
5295     if (KnownPoison.count(V))
5296       return true;
5297 
5298   return false;
5299 }
5300 
5301 static bool programUndefinedIfUndefOrPoison(const Value *V,
5302                                             bool PoisonOnly) {
5303   // We currently only look for uses of values within the same basic
5304   // block, as that makes it easier to guarantee that the uses will be
5305   // executed given that Inst is executed.
5306   //
5307   // FIXME: Expand this to consider uses beyond the same basic block. To do
5308   // this, look out for the distinction between post-dominance and strong
5309   // post-dominance.
5310   const BasicBlock *BB = nullptr;
5311   BasicBlock::const_iterator Begin;
5312   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5313     BB = Inst->getParent();
5314     Begin = Inst->getIterator();
5315     Begin++;
5316   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5317     BB = &Arg->getParent()->getEntryBlock();
5318     Begin = BB->begin();
5319   } else {
5320     return false;
5321   }
5322 
5323   BasicBlock::const_iterator End = BB->end();
5324 
5325   if (!PoisonOnly) {
5326     // Since undef does not propagate eagerly, be conservative & just check
5327     // whether a value is directly passed to an instruction that must take
5328     // well-defined operands.
5329 
5330     for (auto &I : make_range(Begin, End)) {
5331       SmallPtrSet<const Value *, 4> WellDefinedOps;
5332       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5333       for (auto *Op : WellDefinedOps) {
5334         if (Op == V)
5335           return true;
5336       }
5337       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5338         break;
5339     }
5340     return false;
5341   }
5342 
5343   // Set of instructions that we have proved will yield poison if Inst
5344   // does.
5345   SmallSet<const Value *, 16> YieldsPoison;
5346   SmallSet<const BasicBlock *, 4> Visited;
5347 
5348   YieldsPoison.insert(V);
5349   auto Propagate = [&](const User *User) {
5350     if (propagatesPoison(cast<Operator>(User)))
5351       YieldsPoison.insert(User);
5352   };
5353   for_each(V->users(), Propagate);
5354   Visited.insert(BB);
5355 
5356   unsigned Iter = 0;
5357   while (Iter++ < MaxAnalysisRecursionDepth) {
5358     for (auto &I : make_range(Begin, End)) {
5359       if (mustTriggerUB(&I, YieldsPoison))
5360         return true;
5361       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5362         return false;
5363 
5364       // Mark poison that propagates from I through uses of I.
5365       if (YieldsPoison.count(&I))
5366         for_each(I.users(), Propagate);
5367     }
5368 
5369     if (auto *NextBB = BB->getSingleSuccessor()) {
5370       if (Visited.insert(NextBB).second) {
5371         BB = NextBB;
5372         Begin = BB->getFirstNonPHI()->getIterator();
5373         End = BB->end();
5374         continue;
5375       }
5376     }
5377 
5378     break;
5379   }
5380   return false;
5381 }
5382 
5383 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5384   return ::programUndefinedIfUndefOrPoison(Inst, false);
5385 }
5386 
5387 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5388   return ::programUndefinedIfUndefOrPoison(Inst, true);
5389 }
5390 
5391 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5392   if (FMF.noNaNs())
5393     return true;
5394 
5395   if (auto *C = dyn_cast<ConstantFP>(V))
5396     return !C->isNaN();
5397 
5398   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5399     if (!C->getElementType()->isFloatingPointTy())
5400       return false;
5401     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5402       if (C->getElementAsAPFloat(I).isNaN())
5403         return false;
5404     }
5405     return true;
5406   }
5407 
5408   if (isa<ConstantAggregateZero>(V))
5409     return true;
5410 
5411   return false;
5412 }
5413 
5414 static bool isKnownNonZero(const Value *V) {
5415   if (auto *C = dyn_cast<ConstantFP>(V))
5416     return !C->isZero();
5417 
5418   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5419     if (!C->getElementType()->isFloatingPointTy())
5420       return false;
5421     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5422       if (C->getElementAsAPFloat(I).isZero())
5423         return false;
5424     }
5425     return true;
5426   }
5427 
5428   return false;
5429 }
5430 
5431 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5432 /// Given non-min/max outer cmp/select from the clamp pattern this
5433 /// function recognizes if it can be substitued by a "canonical" min/max
5434 /// pattern.
5435 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5436                                                Value *CmpLHS, Value *CmpRHS,
5437                                                Value *TrueVal, Value *FalseVal,
5438                                                Value *&LHS, Value *&RHS) {
5439   // Try to match
5440   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5441   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5442   // and return description of the outer Max/Min.
5443 
5444   // First, check if select has inverse order:
5445   if (CmpRHS == FalseVal) {
5446     std::swap(TrueVal, FalseVal);
5447     Pred = CmpInst::getInversePredicate(Pred);
5448   }
5449 
5450   // Assume success now. If there's no match, callers should not use these anyway.
5451   LHS = TrueVal;
5452   RHS = FalseVal;
5453 
5454   const APFloat *FC1;
5455   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5456     return {SPF_UNKNOWN, SPNB_NA, false};
5457 
5458   const APFloat *FC2;
5459   switch (Pred) {
5460   case CmpInst::FCMP_OLT:
5461   case CmpInst::FCMP_OLE:
5462   case CmpInst::FCMP_ULT:
5463   case CmpInst::FCMP_ULE:
5464     if (match(FalseVal,
5465               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5466                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5467         *FC1 < *FC2)
5468       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5469     break;
5470   case CmpInst::FCMP_OGT:
5471   case CmpInst::FCMP_OGE:
5472   case CmpInst::FCMP_UGT:
5473   case CmpInst::FCMP_UGE:
5474     if (match(FalseVal,
5475               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5476                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5477         *FC1 > *FC2)
5478       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5479     break;
5480   default:
5481     break;
5482   }
5483 
5484   return {SPF_UNKNOWN, SPNB_NA, false};
5485 }
5486 
5487 /// Recognize variations of:
5488 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5489 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5490                                       Value *CmpLHS, Value *CmpRHS,
5491                                       Value *TrueVal, Value *FalseVal) {
5492   // Swap the select operands and predicate to match the patterns below.
5493   if (CmpRHS != TrueVal) {
5494     Pred = ICmpInst::getSwappedPredicate(Pred);
5495     std::swap(TrueVal, FalseVal);
5496   }
5497   const APInt *C1;
5498   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5499     const APInt *C2;
5500     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5501     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5502         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5503       return {SPF_SMAX, SPNB_NA, false};
5504 
5505     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5506     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5507         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5508       return {SPF_SMIN, SPNB_NA, false};
5509 
5510     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5511     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5512         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5513       return {SPF_UMAX, SPNB_NA, false};
5514 
5515     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5516     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5517         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5518       return {SPF_UMIN, SPNB_NA, false};
5519   }
5520   return {SPF_UNKNOWN, SPNB_NA, false};
5521 }
5522 
5523 /// Recognize variations of:
5524 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5525 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5526                                                Value *CmpLHS, Value *CmpRHS,
5527                                                Value *TVal, Value *FVal,
5528                                                unsigned Depth) {
5529   // TODO: Allow FP min/max with nnan/nsz.
5530   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5531 
5532   Value *A = nullptr, *B = nullptr;
5533   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5534   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5535     return {SPF_UNKNOWN, SPNB_NA, false};
5536 
5537   Value *C = nullptr, *D = nullptr;
5538   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5539   if (L.Flavor != R.Flavor)
5540     return {SPF_UNKNOWN, SPNB_NA, false};
5541 
5542   // We have something like: x Pred y ? min(a, b) : min(c, d).
5543   // Try to match the compare to the min/max operations of the select operands.
5544   // First, make sure we have the right compare predicate.
5545   switch (L.Flavor) {
5546   case SPF_SMIN:
5547     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5548       Pred = ICmpInst::getSwappedPredicate(Pred);
5549       std::swap(CmpLHS, CmpRHS);
5550     }
5551     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5552       break;
5553     return {SPF_UNKNOWN, SPNB_NA, false};
5554   case SPF_SMAX:
5555     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5556       Pred = ICmpInst::getSwappedPredicate(Pred);
5557       std::swap(CmpLHS, CmpRHS);
5558     }
5559     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5560       break;
5561     return {SPF_UNKNOWN, SPNB_NA, false};
5562   case SPF_UMIN:
5563     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5564       Pred = ICmpInst::getSwappedPredicate(Pred);
5565       std::swap(CmpLHS, CmpRHS);
5566     }
5567     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5568       break;
5569     return {SPF_UNKNOWN, SPNB_NA, false};
5570   case SPF_UMAX:
5571     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5572       Pred = ICmpInst::getSwappedPredicate(Pred);
5573       std::swap(CmpLHS, CmpRHS);
5574     }
5575     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5576       break;
5577     return {SPF_UNKNOWN, SPNB_NA, false};
5578   default:
5579     return {SPF_UNKNOWN, SPNB_NA, false};
5580   }
5581 
5582   // If there is a common operand in the already matched min/max and the other
5583   // min/max operands match the compare operands (either directly or inverted),
5584   // then this is min/max of the same flavor.
5585 
5586   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5587   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5588   if (D == B) {
5589     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5590                                          match(A, m_Not(m_Specific(CmpRHS)))))
5591       return {L.Flavor, SPNB_NA, false};
5592   }
5593   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5594   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5595   if (C == B) {
5596     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5597                                          match(A, m_Not(m_Specific(CmpRHS)))))
5598       return {L.Flavor, SPNB_NA, false};
5599   }
5600   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5601   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5602   if (D == A) {
5603     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5604                                          match(B, m_Not(m_Specific(CmpRHS)))))
5605       return {L.Flavor, SPNB_NA, false};
5606   }
5607   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5608   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5609   if (C == A) {
5610     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5611                                          match(B, m_Not(m_Specific(CmpRHS)))))
5612       return {L.Flavor, SPNB_NA, false};
5613   }
5614 
5615   return {SPF_UNKNOWN, SPNB_NA, false};
5616 }
5617 
5618 /// If the input value is the result of a 'not' op, constant integer, or vector
5619 /// splat of a constant integer, return the bitwise-not source value.
5620 /// TODO: This could be extended to handle non-splat vector integer constants.
5621 static Value *getNotValue(Value *V) {
5622   Value *NotV;
5623   if (match(V, m_Not(m_Value(NotV))))
5624     return NotV;
5625 
5626   const APInt *C;
5627   if (match(V, m_APInt(C)))
5628     return ConstantInt::get(V->getType(), ~(*C));
5629 
5630   return nullptr;
5631 }
5632 
5633 /// Match non-obvious integer minimum and maximum sequences.
5634 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5635                                        Value *CmpLHS, Value *CmpRHS,
5636                                        Value *TrueVal, Value *FalseVal,
5637                                        Value *&LHS, Value *&RHS,
5638                                        unsigned Depth) {
5639   // Assume success. If there's no match, callers should not use these anyway.
5640   LHS = TrueVal;
5641   RHS = FalseVal;
5642 
5643   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5644   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5645     return SPR;
5646 
5647   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5648   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5649     return SPR;
5650 
5651   // Look through 'not' ops to find disguised min/max.
5652   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5653   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5654   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5655     switch (Pred) {
5656     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5657     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5658     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5659     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5660     default: break;
5661     }
5662   }
5663 
5664   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5665   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5666   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5667     switch (Pred) {
5668     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5669     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5670     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5671     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5672     default: break;
5673     }
5674   }
5675 
5676   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5677     return {SPF_UNKNOWN, SPNB_NA, false};
5678 
5679   // Z = X -nsw Y
5680   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5681   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5682   if (match(TrueVal, m_Zero()) &&
5683       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5684     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5685 
5686   // Z = X -nsw Y
5687   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5688   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5689   if (match(FalseVal, m_Zero()) &&
5690       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5691     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5692 
5693   const APInt *C1;
5694   if (!match(CmpRHS, m_APInt(C1)))
5695     return {SPF_UNKNOWN, SPNB_NA, false};
5696 
5697   // An unsigned min/max can be written with a signed compare.
5698   const APInt *C2;
5699   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5700       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5701     // Is the sign bit set?
5702     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5703     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5704     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5705         C2->isMaxSignedValue())
5706       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5707 
5708     // Is the sign bit clear?
5709     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5710     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5711     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5712         C2->isMinSignedValue())
5713       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5714   }
5715 
5716   return {SPF_UNKNOWN, SPNB_NA, false};
5717 }
5718 
5719 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5720   assert(X && Y && "Invalid operand");
5721 
5722   // X = sub (0, Y) || X = sub nsw (0, Y)
5723   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5724       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5725     return true;
5726 
5727   // Y = sub (0, X) || Y = sub nsw (0, X)
5728   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5729       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5730     return true;
5731 
5732   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5733   Value *A, *B;
5734   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5735                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5736          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5737                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5738 }
5739 
5740 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5741                                               FastMathFlags FMF,
5742                                               Value *CmpLHS, Value *CmpRHS,
5743                                               Value *TrueVal, Value *FalseVal,
5744                                               Value *&LHS, Value *&RHS,
5745                                               unsigned Depth) {
5746   if (CmpInst::isFPPredicate(Pred)) {
5747     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5748     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5749     // purpose of identifying min/max. Disregard vector constants with undefined
5750     // elements because those can not be back-propagated for analysis.
5751     Value *OutputZeroVal = nullptr;
5752     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5753         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5754       OutputZeroVal = TrueVal;
5755     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5756              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5757       OutputZeroVal = FalseVal;
5758 
5759     if (OutputZeroVal) {
5760       if (match(CmpLHS, m_AnyZeroFP()))
5761         CmpLHS = OutputZeroVal;
5762       if (match(CmpRHS, m_AnyZeroFP()))
5763         CmpRHS = OutputZeroVal;
5764     }
5765   }
5766 
5767   LHS = CmpLHS;
5768   RHS = CmpRHS;
5769 
5770   // Signed zero may return inconsistent results between implementations.
5771   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5772   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5773   // Therefore, we behave conservatively and only proceed if at least one of the
5774   // operands is known to not be zero or if we don't care about signed zero.
5775   switch (Pred) {
5776   default: break;
5777   // FIXME: Include OGT/OLT/UGT/ULT.
5778   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5779   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5780     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5781         !isKnownNonZero(CmpRHS))
5782       return {SPF_UNKNOWN, SPNB_NA, false};
5783   }
5784 
5785   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5786   bool Ordered = false;
5787 
5788   // When given one NaN and one non-NaN input:
5789   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5790   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5791   //     ordered comparison fails), which could be NaN or non-NaN.
5792   // so here we discover exactly what NaN behavior is required/accepted.
5793   if (CmpInst::isFPPredicate(Pred)) {
5794     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5795     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5796 
5797     if (LHSSafe && RHSSafe) {
5798       // Both operands are known non-NaN.
5799       NaNBehavior = SPNB_RETURNS_ANY;
5800     } else if (CmpInst::isOrdered(Pred)) {
5801       // An ordered comparison will return false when given a NaN, so it
5802       // returns the RHS.
5803       Ordered = true;
5804       if (LHSSafe)
5805         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5806         NaNBehavior = SPNB_RETURNS_NAN;
5807       else if (RHSSafe)
5808         NaNBehavior = SPNB_RETURNS_OTHER;
5809       else
5810         // Completely unsafe.
5811         return {SPF_UNKNOWN, SPNB_NA, false};
5812     } else {
5813       Ordered = false;
5814       // An unordered comparison will return true when given a NaN, so it
5815       // returns the LHS.
5816       if (LHSSafe)
5817         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5818         NaNBehavior = SPNB_RETURNS_OTHER;
5819       else if (RHSSafe)
5820         NaNBehavior = SPNB_RETURNS_NAN;
5821       else
5822         // Completely unsafe.
5823         return {SPF_UNKNOWN, SPNB_NA, false};
5824     }
5825   }
5826 
5827   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5828     std::swap(CmpLHS, CmpRHS);
5829     Pred = CmpInst::getSwappedPredicate(Pred);
5830     if (NaNBehavior == SPNB_RETURNS_NAN)
5831       NaNBehavior = SPNB_RETURNS_OTHER;
5832     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5833       NaNBehavior = SPNB_RETURNS_NAN;
5834     Ordered = !Ordered;
5835   }
5836 
5837   // ([if]cmp X, Y) ? X : Y
5838   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5839     switch (Pred) {
5840     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5841     case ICmpInst::ICMP_UGT:
5842     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5843     case ICmpInst::ICMP_SGT:
5844     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5845     case ICmpInst::ICMP_ULT:
5846     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5847     case ICmpInst::ICMP_SLT:
5848     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5849     case FCmpInst::FCMP_UGT:
5850     case FCmpInst::FCMP_UGE:
5851     case FCmpInst::FCMP_OGT:
5852     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5853     case FCmpInst::FCMP_ULT:
5854     case FCmpInst::FCMP_ULE:
5855     case FCmpInst::FCMP_OLT:
5856     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5857     }
5858   }
5859 
5860   if (isKnownNegation(TrueVal, FalseVal)) {
5861     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5862     // match against either LHS or sext(LHS).
5863     auto MaybeSExtCmpLHS =
5864         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5865     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5866     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5867     if (match(TrueVal, MaybeSExtCmpLHS)) {
5868       // Set the return values. If the compare uses the negated value (-X >s 0),
5869       // swap the return values because the negated value is always 'RHS'.
5870       LHS = TrueVal;
5871       RHS = FalseVal;
5872       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5873         std::swap(LHS, RHS);
5874 
5875       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5876       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5877       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5878         return {SPF_ABS, SPNB_NA, false};
5879 
5880       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5881       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5882         return {SPF_ABS, SPNB_NA, false};
5883 
5884       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5885       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5886       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5887         return {SPF_NABS, SPNB_NA, false};
5888     }
5889     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5890       // Set the return values. If the compare uses the negated value (-X >s 0),
5891       // swap the return values because the negated value is always 'RHS'.
5892       LHS = FalseVal;
5893       RHS = TrueVal;
5894       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5895         std::swap(LHS, RHS);
5896 
5897       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5898       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5899       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5900         return {SPF_NABS, SPNB_NA, false};
5901 
5902       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5903       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5904       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5905         return {SPF_ABS, SPNB_NA, false};
5906     }
5907   }
5908 
5909   if (CmpInst::isIntPredicate(Pred))
5910     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5911 
5912   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5913   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5914   // semantics than minNum. Be conservative in such case.
5915   if (NaNBehavior != SPNB_RETURNS_ANY ||
5916       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5917        !isKnownNonZero(CmpRHS)))
5918     return {SPF_UNKNOWN, SPNB_NA, false};
5919 
5920   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5921 }
5922 
5923 /// Helps to match a select pattern in case of a type mismatch.
5924 ///
5925 /// The function processes the case when type of true and false values of a
5926 /// select instruction differs from type of the cmp instruction operands because
5927 /// of a cast instruction. The function checks if it is legal to move the cast
5928 /// operation after "select". If yes, it returns the new second value of
5929 /// "select" (with the assumption that cast is moved):
5930 /// 1. As operand of cast instruction when both values of "select" are same cast
5931 /// instructions.
5932 /// 2. As restored constant (by applying reverse cast operation) when the first
5933 /// value of the "select" is a cast operation and the second value is a
5934 /// constant.
5935 /// NOTE: We return only the new second value because the first value could be
5936 /// accessed as operand of cast instruction.
5937 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5938                               Instruction::CastOps *CastOp) {
5939   auto *Cast1 = dyn_cast<CastInst>(V1);
5940   if (!Cast1)
5941     return nullptr;
5942 
5943   *CastOp = Cast1->getOpcode();
5944   Type *SrcTy = Cast1->getSrcTy();
5945   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5946     // If V1 and V2 are both the same cast from the same type, look through V1.
5947     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5948       return Cast2->getOperand(0);
5949     return nullptr;
5950   }
5951 
5952   auto *C = dyn_cast<Constant>(V2);
5953   if (!C)
5954     return nullptr;
5955 
5956   Constant *CastedTo = nullptr;
5957   switch (*CastOp) {
5958   case Instruction::ZExt:
5959     if (CmpI->isUnsigned())
5960       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5961     break;
5962   case Instruction::SExt:
5963     if (CmpI->isSigned())
5964       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5965     break;
5966   case Instruction::Trunc:
5967     Constant *CmpConst;
5968     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5969         CmpConst->getType() == SrcTy) {
5970       // Here we have the following case:
5971       //
5972       //   %cond = cmp iN %x, CmpConst
5973       //   %tr = trunc iN %x to iK
5974       //   %narrowsel = select i1 %cond, iK %t, iK C
5975       //
5976       // We can always move trunc after select operation:
5977       //
5978       //   %cond = cmp iN %x, CmpConst
5979       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5980       //   %tr = trunc iN %widesel to iK
5981       //
5982       // Note that C could be extended in any way because we don't care about
5983       // upper bits after truncation. It can't be abs pattern, because it would
5984       // look like:
5985       //
5986       //   select i1 %cond, x, -x.
5987       //
5988       // So only min/max pattern could be matched. Such match requires widened C
5989       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5990       // CmpConst == C is checked below.
5991       CastedTo = CmpConst;
5992     } else {
5993       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5994     }
5995     break;
5996   case Instruction::FPTrunc:
5997     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5998     break;
5999   case Instruction::FPExt:
6000     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6001     break;
6002   case Instruction::FPToUI:
6003     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6004     break;
6005   case Instruction::FPToSI:
6006     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6007     break;
6008   case Instruction::UIToFP:
6009     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6010     break;
6011   case Instruction::SIToFP:
6012     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6013     break;
6014   default:
6015     break;
6016   }
6017 
6018   if (!CastedTo)
6019     return nullptr;
6020 
6021   // Make sure the cast doesn't lose any information.
6022   Constant *CastedBack =
6023       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6024   if (CastedBack != C)
6025     return nullptr;
6026 
6027   return CastedTo;
6028 }
6029 
6030 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6031                                              Instruction::CastOps *CastOp,
6032                                              unsigned Depth) {
6033   if (Depth >= MaxAnalysisRecursionDepth)
6034     return {SPF_UNKNOWN, SPNB_NA, false};
6035 
6036   SelectInst *SI = dyn_cast<SelectInst>(V);
6037   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6038 
6039   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6040   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6041 
6042   Value *TrueVal = SI->getTrueValue();
6043   Value *FalseVal = SI->getFalseValue();
6044 
6045   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6046                                             CastOp, Depth);
6047 }
6048 
6049 SelectPatternResult llvm::matchDecomposedSelectPattern(
6050     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6051     Instruction::CastOps *CastOp, unsigned Depth) {
6052   CmpInst::Predicate Pred = CmpI->getPredicate();
6053   Value *CmpLHS = CmpI->getOperand(0);
6054   Value *CmpRHS = CmpI->getOperand(1);
6055   FastMathFlags FMF;
6056   if (isa<FPMathOperator>(CmpI))
6057     FMF = CmpI->getFastMathFlags();
6058 
6059   // Bail out early.
6060   if (CmpI->isEquality())
6061     return {SPF_UNKNOWN, SPNB_NA, false};
6062 
6063   // Deal with type mismatches.
6064   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6065     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6066       // If this is a potential fmin/fmax with a cast to integer, then ignore
6067       // -0.0 because there is no corresponding integer value.
6068       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6069         FMF.setNoSignedZeros();
6070       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6071                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6072                                   LHS, RHS, Depth);
6073     }
6074     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6075       // If this is a potential fmin/fmax with a cast to integer, then ignore
6076       // -0.0 because there is no corresponding integer value.
6077       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6078         FMF.setNoSignedZeros();
6079       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6080                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6081                                   LHS, RHS, Depth);
6082     }
6083   }
6084   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6085                               LHS, RHS, Depth);
6086 }
6087 
6088 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6089   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6090   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6091   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6092   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6093   if (SPF == SPF_FMINNUM)
6094     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6095   if (SPF == SPF_FMAXNUM)
6096     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6097   llvm_unreachable("unhandled!");
6098 }
6099 
6100 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6101   if (SPF == SPF_SMIN) return SPF_SMAX;
6102   if (SPF == SPF_UMIN) return SPF_UMAX;
6103   if (SPF == SPF_SMAX) return SPF_SMIN;
6104   if (SPF == SPF_UMAX) return SPF_UMIN;
6105   llvm_unreachable("unhandled!");
6106 }
6107 
6108 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6109   switch (MinMaxID) {
6110   case Intrinsic::smax: return Intrinsic::smin;
6111   case Intrinsic::smin: return Intrinsic::smax;
6112   case Intrinsic::umax: return Intrinsic::umin;
6113   case Intrinsic::umin: return Intrinsic::umax;
6114   default: llvm_unreachable("Unexpected intrinsic");
6115   }
6116 }
6117 
6118 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6119   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6120 }
6121 
6122 std::pair<Intrinsic::ID, bool>
6123 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6124   // Check if VL contains select instructions that can be folded into a min/max
6125   // vector intrinsic and return the intrinsic if it is possible.
6126   // TODO: Support floating point min/max.
6127   bool AllCmpSingleUse = true;
6128   SelectPatternResult SelectPattern;
6129   SelectPattern.Flavor = SPF_UNKNOWN;
6130   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6131         Value *LHS, *RHS;
6132         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6133         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6134             CurrentPattern.Flavor == SPF_FMINNUM ||
6135             CurrentPattern.Flavor == SPF_FMAXNUM ||
6136             !I->getType()->isIntOrIntVectorTy())
6137           return false;
6138         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6139             SelectPattern.Flavor != CurrentPattern.Flavor)
6140           return false;
6141         SelectPattern = CurrentPattern;
6142         AllCmpSingleUse &=
6143             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6144         return true;
6145       })) {
6146     switch (SelectPattern.Flavor) {
6147     case SPF_SMIN:
6148       return {Intrinsic::smin, AllCmpSingleUse};
6149     case SPF_UMIN:
6150       return {Intrinsic::umin, AllCmpSingleUse};
6151     case SPF_SMAX:
6152       return {Intrinsic::smax, AllCmpSingleUse};
6153     case SPF_UMAX:
6154       return {Intrinsic::umax, AllCmpSingleUse};
6155     default:
6156       llvm_unreachable("unexpected select pattern flavor");
6157     }
6158   }
6159   return {Intrinsic::not_intrinsic, false};
6160 }
6161 
6162 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6163                                  Value *&Start, Value *&Step) {
6164   // Handle the case of a simple two-predecessor recurrence PHI.
6165   // There's a lot more that could theoretically be done here, but
6166   // this is sufficient to catch some interesting cases.
6167   if (P->getNumIncomingValues() != 2)
6168     return false;
6169 
6170   for (unsigned i = 0; i != 2; ++i) {
6171     Value *L = P->getIncomingValue(i);
6172     Value *R = P->getIncomingValue(!i);
6173     Operator *LU = dyn_cast<Operator>(L);
6174     if (!LU)
6175       continue;
6176     unsigned Opcode = LU->getOpcode();
6177 
6178     switch (Opcode) {
6179     default:
6180       continue;
6181     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6182     case Instruction::LShr:
6183     case Instruction::AShr:
6184     case Instruction::Shl:
6185     case Instruction::Add:
6186     case Instruction::Sub:
6187     case Instruction::And:
6188     case Instruction::Or:
6189     case Instruction::Mul: {
6190       Value *LL = LU->getOperand(0);
6191       Value *LR = LU->getOperand(1);
6192       // Find a recurrence.
6193       if (LL == P)
6194         L = LR;
6195       else if (LR == P)
6196         L = LL;
6197       else
6198         continue; // Check for recurrence with L and R flipped.
6199 
6200       break; // Match!
6201     }
6202     };
6203 
6204     // We have matched a recurrence of the form:
6205     //   %iv = [R, %entry], [%iv.next, %backedge]
6206     //   %iv.next = binop %iv, L
6207     // OR
6208     //   %iv = [R, %entry], [%iv.next, %backedge]
6209     //   %iv.next = binop L, %iv
6210     BO = cast<BinaryOperator>(LU);
6211     Start = R;
6212     Step = L;
6213     return true;
6214   }
6215   return false;
6216 }
6217 
6218 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6219                                  Value *&Start, Value *&Step) {
6220   BinaryOperator *BO = nullptr;
6221   P = dyn_cast<PHINode>(I->getOperand(0));
6222   if (!P)
6223     P = dyn_cast<PHINode>(I->getOperand(1));
6224   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6225 }
6226 
6227 /// Return true if "icmp Pred LHS RHS" is always true.
6228 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6229                             const Value *RHS, const DataLayout &DL,
6230                             unsigned Depth) {
6231   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6232   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6233     return true;
6234 
6235   switch (Pred) {
6236   default:
6237     return false;
6238 
6239   case CmpInst::ICMP_SLE: {
6240     const APInt *C;
6241 
6242     // LHS s<= LHS +_{nsw} C   if C >= 0
6243     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6244       return !C->isNegative();
6245     return false;
6246   }
6247 
6248   case CmpInst::ICMP_ULE: {
6249     const APInt *C;
6250 
6251     // LHS u<= LHS +_{nuw} C   for any C
6252     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6253       return true;
6254 
6255     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6256     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6257                                        const Value *&X,
6258                                        const APInt *&CA, const APInt *&CB) {
6259       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6260           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6261         return true;
6262 
6263       // If X & C == 0 then (X | C) == X +_{nuw} C
6264       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6265           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6266         KnownBits Known(CA->getBitWidth());
6267         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6268                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6269         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6270           return true;
6271       }
6272 
6273       return false;
6274     };
6275 
6276     const Value *X;
6277     const APInt *CLHS, *CRHS;
6278     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6279       return CLHS->ule(*CRHS);
6280 
6281     return false;
6282   }
6283   }
6284 }
6285 
6286 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6287 /// ALHS ARHS" is true.  Otherwise, return None.
6288 static Optional<bool>
6289 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6290                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6291                       const DataLayout &DL, unsigned Depth) {
6292   switch (Pred) {
6293   default:
6294     return None;
6295 
6296   case CmpInst::ICMP_SLT:
6297   case CmpInst::ICMP_SLE:
6298     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6299         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6300       return true;
6301     return None;
6302 
6303   case CmpInst::ICMP_ULT:
6304   case CmpInst::ICMP_ULE:
6305     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6306         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6307       return true;
6308     return None;
6309   }
6310 }
6311 
6312 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6313 /// when the operands match, but are swapped.
6314 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6315                           const Value *BLHS, const Value *BRHS,
6316                           bool &IsSwappedOps) {
6317 
6318   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6319   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6320   return IsMatchingOps || IsSwappedOps;
6321 }
6322 
6323 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6324 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6325 /// Otherwise, return None if we can't infer anything.
6326 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6327                                                     CmpInst::Predicate BPred,
6328                                                     bool AreSwappedOps) {
6329   // Canonicalize the predicate as if the operands were not commuted.
6330   if (AreSwappedOps)
6331     BPred = ICmpInst::getSwappedPredicate(BPred);
6332 
6333   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6334     return true;
6335   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6336     return false;
6337 
6338   return None;
6339 }
6340 
6341 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6342 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6343 /// Otherwise, return None if we can't infer anything.
6344 static Optional<bool>
6345 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6346                                  const ConstantInt *C1,
6347                                  CmpInst::Predicate BPred,
6348                                  const ConstantInt *C2) {
6349   ConstantRange DomCR =
6350       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6351   ConstantRange CR =
6352       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6353   ConstantRange Intersection = DomCR.intersectWith(CR);
6354   ConstantRange Difference = DomCR.difference(CR);
6355   if (Intersection.isEmptySet())
6356     return false;
6357   if (Difference.isEmptySet())
6358     return true;
6359   return None;
6360 }
6361 
6362 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6363 /// false.  Otherwise, return None if we can't infer anything.
6364 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6365                                          CmpInst::Predicate BPred,
6366                                          const Value *BLHS, const Value *BRHS,
6367                                          const DataLayout &DL, bool LHSIsTrue,
6368                                          unsigned Depth) {
6369   Value *ALHS = LHS->getOperand(0);
6370   Value *ARHS = LHS->getOperand(1);
6371 
6372   // The rest of the logic assumes the LHS condition is true.  If that's not the
6373   // case, invert the predicate to make it so.
6374   CmpInst::Predicate APred =
6375       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6376 
6377   // Can we infer anything when the two compares have matching operands?
6378   bool AreSwappedOps;
6379   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6380     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6381             APred, BPred, AreSwappedOps))
6382       return Implication;
6383     // No amount of additional analysis will infer the second condition, so
6384     // early exit.
6385     return None;
6386   }
6387 
6388   // Can we infer anything when the LHS operands match and the RHS operands are
6389   // constants (not necessarily matching)?
6390   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6391     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6392             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6393       return Implication;
6394     // No amount of additional analysis will infer the second condition, so
6395     // early exit.
6396     return None;
6397   }
6398 
6399   if (APred == BPred)
6400     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6401   return None;
6402 }
6403 
6404 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6405 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6406 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6407 static Optional<bool>
6408 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6409                    const Value *RHSOp0, const Value *RHSOp1,
6410                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6411   // The LHS must be an 'or', 'and', or a 'select' instruction.
6412   assert((LHS->getOpcode() == Instruction::And ||
6413           LHS->getOpcode() == Instruction::Or ||
6414           LHS->getOpcode() == Instruction::Select) &&
6415          "Expected LHS to be 'and', 'or', or 'select'.");
6416 
6417   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6418 
6419   // If the result of an 'or' is false, then we know both legs of the 'or' are
6420   // false.  Similarly, if the result of an 'and' is true, then we know both
6421   // legs of the 'and' are true.
6422   const Value *ALHS, *ARHS;
6423   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6424       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6425     // FIXME: Make this non-recursion.
6426     if (Optional<bool> Implication = isImpliedCondition(
6427             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6428       return Implication;
6429     if (Optional<bool> Implication = isImpliedCondition(
6430             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6431       return Implication;
6432     return None;
6433   }
6434   return None;
6435 }
6436 
6437 Optional<bool>
6438 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6439                          const Value *RHSOp0, const Value *RHSOp1,
6440                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6441   // Bail out when we hit the limit.
6442   if (Depth == MaxAnalysisRecursionDepth)
6443     return None;
6444 
6445   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6446   // example.
6447   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6448     return None;
6449 
6450   Type *OpTy = LHS->getType();
6451   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6452 
6453   // FIXME: Extending the code below to handle vectors.
6454   if (OpTy->isVectorTy())
6455     return None;
6456 
6457   assert(OpTy->isIntegerTy(1) && "implied by above");
6458 
6459   // Both LHS and RHS are icmps.
6460   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6461   if (LHSCmp)
6462     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6463                               Depth);
6464 
6465   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6466   /// the RHS to be an icmp.
6467   /// FIXME: Add support for and/or/select on the RHS.
6468   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6469     if ((LHSI->getOpcode() == Instruction::And ||
6470          LHSI->getOpcode() == Instruction::Or ||
6471          LHSI->getOpcode() == Instruction::Select))
6472       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6473                                 Depth);
6474   }
6475   return None;
6476 }
6477 
6478 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6479                                         const DataLayout &DL, bool LHSIsTrue,
6480                                         unsigned Depth) {
6481   // LHS ==> RHS by definition
6482   if (LHS == RHS)
6483     return LHSIsTrue;
6484 
6485   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6486   if (RHSCmp)
6487     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6488                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6489                               LHSIsTrue, Depth);
6490   return None;
6491 }
6492 
6493 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6494 // condition dominating ContextI or nullptr, if no condition is found.
6495 static std::pair<Value *, bool>
6496 getDomPredecessorCondition(const Instruction *ContextI) {
6497   if (!ContextI || !ContextI->getParent())
6498     return {nullptr, false};
6499 
6500   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6501   // dominator tree (eg, from a SimplifyQuery) instead?
6502   const BasicBlock *ContextBB = ContextI->getParent();
6503   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6504   if (!PredBB)
6505     return {nullptr, false};
6506 
6507   // We need a conditional branch in the predecessor.
6508   Value *PredCond;
6509   BasicBlock *TrueBB, *FalseBB;
6510   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6511     return {nullptr, false};
6512 
6513   // The branch should get simplified. Don't bother simplifying this condition.
6514   if (TrueBB == FalseBB)
6515     return {nullptr, false};
6516 
6517   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6518          "Predecessor block does not point to successor?");
6519 
6520   // Is this condition implied by the predecessor condition?
6521   return {PredCond, TrueBB == ContextBB};
6522 }
6523 
6524 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6525                                              const Instruction *ContextI,
6526                                              const DataLayout &DL) {
6527   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6528   auto PredCond = getDomPredecessorCondition(ContextI);
6529   if (PredCond.first)
6530     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6531   return None;
6532 }
6533 
6534 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6535                                              const Value *LHS, const Value *RHS,
6536                                              const Instruction *ContextI,
6537                                              const DataLayout &DL) {
6538   auto PredCond = getDomPredecessorCondition(ContextI);
6539   if (PredCond.first)
6540     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6541                               PredCond.second);
6542   return None;
6543 }
6544 
6545 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6546                               APInt &Upper, const InstrInfoQuery &IIQ) {
6547   unsigned Width = Lower.getBitWidth();
6548   const APInt *C;
6549   switch (BO.getOpcode()) {
6550   case Instruction::Add:
6551     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6552       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6553       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6554         // 'add nuw x, C' produces [C, UINT_MAX].
6555         Lower = *C;
6556       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6557         if (C->isNegative()) {
6558           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6559           Lower = APInt::getSignedMinValue(Width);
6560           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6561         } else {
6562           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6563           Lower = APInt::getSignedMinValue(Width) + *C;
6564           Upper = APInt::getSignedMaxValue(Width) + 1;
6565         }
6566       }
6567     }
6568     break;
6569 
6570   case Instruction::And:
6571     if (match(BO.getOperand(1), m_APInt(C)))
6572       // 'and x, C' produces [0, C].
6573       Upper = *C + 1;
6574     break;
6575 
6576   case Instruction::Or:
6577     if (match(BO.getOperand(1), m_APInt(C)))
6578       // 'or x, C' produces [C, UINT_MAX].
6579       Lower = *C;
6580     break;
6581 
6582   case Instruction::AShr:
6583     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6584       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6585       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6586       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6587     } else if (match(BO.getOperand(0), m_APInt(C))) {
6588       unsigned ShiftAmount = Width - 1;
6589       if (!C->isNullValue() && IIQ.isExact(&BO))
6590         ShiftAmount = C->countTrailingZeros();
6591       if (C->isNegative()) {
6592         // 'ashr C, x' produces [C, C >> (Width-1)]
6593         Lower = *C;
6594         Upper = C->ashr(ShiftAmount) + 1;
6595       } else {
6596         // 'ashr C, x' produces [C >> (Width-1), C]
6597         Lower = C->ashr(ShiftAmount);
6598         Upper = *C + 1;
6599       }
6600     }
6601     break;
6602 
6603   case Instruction::LShr:
6604     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6605       // 'lshr x, C' produces [0, UINT_MAX >> C].
6606       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6607     } else if (match(BO.getOperand(0), m_APInt(C))) {
6608       // 'lshr C, x' produces [C >> (Width-1), C].
6609       unsigned ShiftAmount = Width - 1;
6610       if (!C->isNullValue() && IIQ.isExact(&BO))
6611         ShiftAmount = C->countTrailingZeros();
6612       Lower = C->lshr(ShiftAmount);
6613       Upper = *C + 1;
6614     }
6615     break;
6616 
6617   case Instruction::Shl:
6618     if (match(BO.getOperand(0), m_APInt(C))) {
6619       if (IIQ.hasNoUnsignedWrap(&BO)) {
6620         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6621         Lower = *C;
6622         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6623       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6624         if (C->isNegative()) {
6625           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6626           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6627           Lower = C->shl(ShiftAmount);
6628           Upper = *C + 1;
6629         } else {
6630           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6631           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6632           Lower = *C;
6633           Upper = C->shl(ShiftAmount) + 1;
6634         }
6635       }
6636     }
6637     break;
6638 
6639   case Instruction::SDiv:
6640     if (match(BO.getOperand(1), m_APInt(C))) {
6641       APInt IntMin = APInt::getSignedMinValue(Width);
6642       APInt IntMax = APInt::getSignedMaxValue(Width);
6643       if (C->isAllOnesValue()) {
6644         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6645         //    where C != -1 and C != 0 and C != 1
6646         Lower = IntMin + 1;
6647         Upper = IntMax + 1;
6648       } else if (C->countLeadingZeros() < Width - 1) {
6649         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6650         //    where C != -1 and C != 0 and C != 1
6651         Lower = IntMin.sdiv(*C);
6652         Upper = IntMax.sdiv(*C);
6653         if (Lower.sgt(Upper))
6654           std::swap(Lower, Upper);
6655         Upper = Upper + 1;
6656         assert(Upper != Lower && "Upper part of range has wrapped!");
6657       }
6658     } else if (match(BO.getOperand(0), m_APInt(C))) {
6659       if (C->isMinSignedValue()) {
6660         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6661         Lower = *C;
6662         Upper = Lower.lshr(1) + 1;
6663       } else {
6664         // 'sdiv C, x' produces [-|C|, |C|].
6665         Upper = C->abs() + 1;
6666         Lower = (-Upper) + 1;
6667       }
6668     }
6669     break;
6670 
6671   case Instruction::UDiv:
6672     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6673       // 'udiv x, C' produces [0, UINT_MAX / C].
6674       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6675     } else if (match(BO.getOperand(0), m_APInt(C))) {
6676       // 'udiv C, x' produces [0, C].
6677       Upper = *C + 1;
6678     }
6679     break;
6680 
6681   case Instruction::SRem:
6682     if (match(BO.getOperand(1), m_APInt(C))) {
6683       // 'srem x, C' produces (-|C|, |C|).
6684       Upper = C->abs();
6685       Lower = (-Upper) + 1;
6686     }
6687     break;
6688 
6689   case Instruction::URem:
6690     if (match(BO.getOperand(1), m_APInt(C)))
6691       // 'urem x, C' produces [0, C).
6692       Upper = *C;
6693     break;
6694 
6695   default:
6696     break;
6697   }
6698 }
6699 
6700 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6701                                   APInt &Upper) {
6702   unsigned Width = Lower.getBitWidth();
6703   const APInt *C;
6704   switch (II.getIntrinsicID()) {
6705   case Intrinsic::ctpop:
6706   case Intrinsic::ctlz:
6707   case Intrinsic::cttz:
6708     // Maximum of set/clear bits is the bit width.
6709     assert(Lower == 0 && "Expected lower bound to be zero");
6710     Upper = Width + 1;
6711     break;
6712   case Intrinsic::uadd_sat:
6713     // uadd.sat(x, C) produces [C, UINT_MAX].
6714     if (match(II.getOperand(0), m_APInt(C)) ||
6715         match(II.getOperand(1), m_APInt(C)))
6716       Lower = *C;
6717     break;
6718   case Intrinsic::sadd_sat:
6719     if (match(II.getOperand(0), m_APInt(C)) ||
6720         match(II.getOperand(1), m_APInt(C))) {
6721       if (C->isNegative()) {
6722         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6723         Lower = APInt::getSignedMinValue(Width);
6724         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6725       } else {
6726         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6727         Lower = APInt::getSignedMinValue(Width) + *C;
6728         Upper = APInt::getSignedMaxValue(Width) + 1;
6729       }
6730     }
6731     break;
6732   case Intrinsic::usub_sat:
6733     // usub.sat(C, x) produces [0, C].
6734     if (match(II.getOperand(0), m_APInt(C)))
6735       Upper = *C + 1;
6736     // usub.sat(x, C) produces [0, UINT_MAX - C].
6737     else if (match(II.getOperand(1), m_APInt(C)))
6738       Upper = APInt::getMaxValue(Width) - *C + 1;
6739     break;
6740   case Intrinsic::ssub_sat:
6741     if (match(II.getOperand(0), m_APInt(C))) {
6742       if (C->isNegative()) {
6743         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6744         Lower = APInt::getSignedMinValue(Width);
6745         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6746       } else {
6747         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6748         Lower = *C - APInt::getSignedMaxValue(Width);
6749         Upper = APInt::getSignedMaxValue(Width) + 1;
6750       }
6751     } else if (match(II.getOperand(1), m_APInt(C))) {
6752       if (C->isNegative()) {
6753         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6754         Lower = APInt::getSignedMinValue(Width) - *C;
6755         Upper = APInt::getSignedMaxValue(Width) + 1;
6756       } else {
6757         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6758         Lower = APInt::getSignedMinValue(Width);
6759         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6760       }
6761     }
6762     break;
6763   case Intrinsic::umin:
6764   case Intrinsic::umax:
6765   case Intrinsic::smin:
6766   case Intrinsic::smax:
6767     if (!match(II.getOperand(0), m_APInt(C)) &&
6768         !match(II.getOperand(1), m_APInt(C)))
6769       break;
6770 
6771     switch (II.getIntrinsicID()) {
6772     case Intrinsic::umin:
6773       Upper = *C + 1;
6774       break;
6775     case Intrinsic::umax:
6776       Lower = *C;
6777       break;
6778     case Intrinsic::smin:
6779       Lower = APInt::getSignedMinValue(Width);
6780       Upper = *C + 1;
6781       break;
6782     case Intrinsic::smax:
6783       Lower = *C;
6784       Upper = APInt::getSignedMaxValue(Width) + 1;
6785       break;
6786     default:
6787       llvm_unreachable("Must be min/max intrinsic");
6788     }
6789     break;
6790   case Intrinsic::abs:
6791     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6792     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6793     if (match(II.getOperand(1), m_One()))
6794       Upper = APInt::getSignedMaxValue(Width) + 1;
6795     else
6796       Upper = APInt::getSignedMinValue(Width) + 1;
6797     break;
6798   default:
6799     break;
6800   }
6801 }
6802 
6803 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6804                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6805   const Value *LHS = nullptr, *RHS = nullptr;
6806   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6807   if (R.Flavor == SPF_UNKNOWN)
6808     return;
6809 
6810   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6811 
6812   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6813     // If the negation part of the abs (in RHS) has the NSW flag,
6814     // then the result of abs(X) is [0..SIGNED_MAX],
6815     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6816     Lower = APInt::getNullValue(BitWidth);
6817     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6818         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6819       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6820     else
6821       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6822     return;
6823   }
6824 
6825   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6826     // The result of -abs(X) is <= 0.
6827     Lower = APInt::getSignedMinValue(BitWidth);
6828     Upper = APInt(BitWidth, 1);
6829     return;
6830   }
6831 
6832   const APInt *C;
6833   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6834     return;
6835 
6836   switch (R.Flavor) {
6837     case SPF_UMIN:
6838       Upper = *C + 1;
6839       break;
6840     case SPF_UMAX:
6841       Lower = *C;
6842       break;
6843     case SPF_SMIN:
6844       Lower = APInt::getSignedMinValue(BitWidth);
6845       Upper = *C + 1;
6846       break;
6847     case SPF_SMAX:
6848       Lower = *C;
6849       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6850       break;
6851     default:
6852       break;
6853   }
6854 }
6855 
6856 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6857                                          AssumptionCache *AC,
6858                                          const Instruction *CtxI,
6859                                          unsigned Depth) {
6860   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6861 
6862   if (Depth == MaxAnalysisRecursionDepth)
6863     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6864 
6865   const APInt *C;
6866   if (match(V, m_APInt(C)))
6867     return ConstantRange(*C);
6868 
6869   InstrInfoQuery IIQ(UseInstrInfo);
6870   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6871   APInt Lower = APInt(BitWidth, 0);
6872   APInt Upper = APInt(BitWidth, 0);
6873   if (auto *BO = dyn_cast<BinaryOperator>(V))
6874     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6875   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6876     setLimitsForIntrinsic(*II, Lower, Upper);
6877   else if (auto *SI = dyn_cast<SelectInst>(V))
6878     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6879 
6880   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6881 
6882   if (auto *I = dyn_cast<Instruction>(V))
6883     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6884       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6885 
6886   if (CtxI && AC) {
6887     // Try to restrict the range based on information from assumptions.
6888     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6889       if (!AssumeVH)
6890         continue;
6891       CallInst *I = cast<CallInst>(AssumeVH);
6892       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6893              "Got assumption for the wrong function!");
6894       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6895              "must be an assume intrinsic");
6896 
6897       if (!isValidAssumeForContext(I, CtxI, nullptr))
6898         continue;
6899       Value *Arg = I->getArgOperand(0);
6900       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6901       // Currently we just use information from comparisons.
6902       if (!Cmp || Cmp->getOperand(0) != V)
6903         continue;
6904       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6905                                                AC, I, Depth + 1);
6906       CR = CR.intersectWith(
6907           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6908     }
6909   }
6910 
6911   return CR;
6912 }
6913 
6914 static Optional<int64_t>
6915 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6916   // Skip over the first indices.
6917   gep_type_iterator GTI = gep_type_begin(GEP);
6918   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6919     /*skip along*/;
6920 
6921   // Compute the offset implied by the rest of the indices.
6922   int64_t Offset = 0;
6923   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6924     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6925     if (!OpC)
6926       return None;
6927     if (OpC->isZero())
6928       continue; // No offset.
6929 
6930     // Handle struct indices, which add their field offset to the pointer.
6931     if (StructType *STy = GTI.getStructTypeOrNull()) {
6932       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6933       continue;
6934     }
6935 
6936     // Otherwise, we have a sequential type like an array or fixed-length
6937     // vector. Multiply the index by the ElementSize.
6938     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6939     if (Size.isScalable())
6940       return None;
6941     Offset += Size.getFixedSize() * OpC->getSExtValue();
6942   }
6943 
6944   return Offset;
6945 }
6946 
6947 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6948                                         const DataLayout &DL) {
6949   Ptr1 = Ptr1->stripPointerCasts();
6950   Ptr2 = Ptr2->stripPointerCasts();
6951 
6952   // Handle the trivial case first.
6953   if (Ptr1 == Ptr2) {
6954     return 0;
6955   }
6956 
6957   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6958   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6959 
6960   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6961   // as in "P" and "gep P, 1".
6962   // Also do this iteratively to handle the the following case:
6963   //   Ptr_t1 = GEP Ptr1, c1
6964   //   Ptr_t2 = GEP Ptr_t1, c2
6965   //   Ptr2 = GEP Ptr_t2, c3
6966   // where we will return c1+c2+c3.
6967   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6968   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6969   // are the same, and return the difference between offsets.
6970   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6971                                  const Value *Ptr) -> Optional<int64_t> {
6972     const GEPOperator *GEP_T = GEP;
6973     int64_t OffsetVal = 0;
6974     bool HasSameBase = false;
6975     while (GEP_T) {
6976       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6977       if (!Offset)
6978         return None;
6979       OffsetVal += *Offset;
6980       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6981       if (Op0 == Ptr) {
6982         HasSameBase = true;
6983         break;
6984       }
6985       GEP_T = dyn_cast<GEPOperator>(Op0);
6986     }
6987     if (!HasSameBase)
6988       return None;
6989     return OffsetVal;
6990   };
6991 
6992   if (GEP1) {
6993     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6994     if (Offset)
6995       return -*Offset;
6996   }
6997   if (GEP2) {
6998     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6999     if (Offset)
7000       return Offset;
7001   }
7002 
7003   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7004   // base.  After that base, they may have some number of common (and
7005   // potentially variable) indices.  After that they handle some constant
7006   // offset, which determines their offset from each other.  At this point, we
7007   // handle no other case.
7008   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
7009     return None;
7010 
7011   // Skip any common indices and track the GEP types.
7012   unsigned Idx = 1;
7013   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7014     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7015       break;
7016 
7017   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
7018   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
7019   if (!Offset1 || !Offset2)
7020     return None;
7021   return *Offset2 - *Offset1;
7022 }
7023