1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 982 /// operator-specific functions that, given the known-zero or known-one bits 983 /// respectively, and a shift amount, compute the implied known-zero or 984 /// known-one bits of the shift operator's result respectively for that shift 985 /// amount. The results from calling KZF and KOF are conservatively combined for 986 /// all permitted shift amounts. 987 static void computeKnownBitsFromShiftOperator( 988 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 989 KnownBits &Known2, unsigned Depth, const Query &Q, 990 function_ref<APInt(const APInt &, unsigned)> KZF, 991 function_ref<APInt(const APInt &, unsigned)> KOF) { 992 unsigned BitWidth = Known.getBitWidth(); 993 994 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 995 if (Known.isConstant()) { 996 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 997 998 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 999 Known.Zero = KZF(Known.Zero, ShiftAmt); 1000 Known.One = KOF(Known.One, ShiftAmt); 1001 // If the known bits conflict, this must be an overflowing left shift, so 1002 // the shift result is poison. We can return anything we want. Choose 0 for 1003 // the best folding opportunity. 1004 if (Known.hasConflict()) 1005 Known.setAllZero(); 1006 1007 return; 1008 } 1009 1010 // If the shift amount could be greater than or equal to the bit-width of the 1011 // LHS, the value could be poison, but bail out because the check below is 1012 // expensive. 1013 // TODO: Should we just carry on? 1014 if (Known.getMaxValue().uge(BitWidth)) { 1015 Known.resetAll(); 1016 return; 1017 } 1018 1019 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1020 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1021 // limit value (which implies all bits are known). 1022 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1023 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1024 1025 // It would be more-clearly correct to use the two temporaries for this 1026 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1027 Known.resetAll(); 1028 1029 // If we know the shifter operand is nonzero, we can sometimes infer more 1030 // known bits. However this is expensive to compute, so be lazy about it and 1031 // only compute it when absolutely necessary. 1032 Optional<bool> ShifterOperandIsNonZero; 1033 1034 // Early exit if we can't constrain any well-defined shift amount. 1035 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1036 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1037 ShifterOperandIsNonZero = 1038 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1039 if (!*ShifterOperandIsNonZero) 1040 return; 1041 } 1042 1043 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1044 1045 Known.Zero.setAllBits(); 1046 Known.One.setAllBits(); 1047 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1048 // Combine the shifted known input bits only for those shift amounts 1049 // compatible with its known constraints. 1050 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1051 continue; 1052 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1053 continue; 1054 // If we know the shifter is nonzero, we may be able to infer more known 1055 // bits. This check is sunk down as far as possible to avoid the expensive 1056 // call to isKnownNonZero if the cheaper checks above fail. 1057 if (ShiftAmt == 0) { 1058 if (!ShifterOperandIsNonZero.hasValue()) 1059 ShifterOperandIsNonZero = 1060 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1061 if (*ShifterOperandIsNonZero) 1062 continue; 1063 } 1064 1065 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1066 Known.One &= KOF(Known2.One, ShiftAmt); 1067 } 1068 1069 // If the known bits conflict, the result is poison. Return a 0 and hope the 1070 // caller can further optimize that. 1071 if (Known.hasConflict()) 1072 Known.setAllZero(); 1073 } 1074 1075 static void computeKnownBitsFromOperator(const Operator *I, 1076 const APInt &DemandedElts, 1077 KnownBits &Known, unsigned Depth, 1078 const Query &Q) { 1079 unsigned BitWidth = Known.getBitWidth(); 1080 1081 KnownBits Known2(BitWidth); 1082 switch (I->getOpcode()) { 1083 default: break; 1084 case Instruction::Load: 1085 if (MDNode *MD = 1086 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1087 computeKnownBitsFromRangeMetadata(*MD, Known); 1088 break; 1089 case Instruction::And: { 1090 // If either the LHS or the RHS are Zero, the result is zero. 1091 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1092 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1093 1094 Known &= Known2; 1095 1096 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1097 // here we handle the more general case of adding any odd number by 1098 // matching the form add(x, add(x, y)) where y is odd. 1099 // TODO: This could be generalized to clearing any bit set in y where the 1100 // following bit is known to be unset in y. 1101 Value *X = nullptr, *Y = nullptr; 1102 if (!Known.Zero[0] && !Known.One[0] && 1103 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1104 Known2.resetAll(); 1105 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1106 if (Known2.countMinTrailingOnes() > 0) 1107 Known.Zero.setBit(0); 1108 } 1109 break; 1110 } 1111 case Instruction::Or: 1112 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1113 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1114 1115 Known |= Known2; 1116 break; 1117 case Instruction::Xor: 1118 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1119 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1120 1121 Known ^= Known2; 1122 break; 1123 case Instruction::Mul: { 1124 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1125 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1126 Known, Known2, Depth, Q); 1127 break; 1128 } 1129 case Instruction::UDiv: { 1130 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1131 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1132 Known = KnownBits::udiv(Known, Known2); 1133 break; 1134 } 1135 case Instruction::Select: { 1136 const Value *LHS = nullptr, *RHS = nullptr; 1137 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1138 if (SelectPatternResult::isMinOrMax(SPF)) { 1139 computeKnownBits(RHS, Known, Depth + 1, Q); 1140 computeKnownBits(LHS, Known2, Depth + 1, Q); 1141 switch (SPF) { 1142 default: 1143 llvm_unreachable("Unhandled select pattern flavor!"); 1144 case SPF_SMAX: 1145 Known = KnownBits::smax(Known, Known2); 1146 break; 1147 case SPF_SMIN: 1148 Known = KnownBits::smin(Known, Known2); 1149 break; 1150 case SPF_UMAX: 1151 Known = KnownBits::umax(Known, Known2); 1152 break; 1153 case SPF_UMIN: 1154 Known = KnownBits::umin(Known, Known2); 1155 break; 1156 } 1157 break; 1158 } 1159 1160 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1161 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1162 1163 // Only known if known in both the LHS and RHS. 1164 Known.One &= Known2.One; 1165 Known.Zero &= Known2.Zero; 1166 1167 if (SPF == SPF_ABS) { 1168 // RHS from matchSelectPattern returns the negation part of abs pattern. 1169 // If the negate has an NSW flag we can assume the sign bit of the result 1170 // will be 0 because that makes abs(INT_MIN) undefined. 1171 if (match(RHS, m_Neg(m_Specific(LHS))) && 1172 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1173 Known.Zero.setSignBit(); 1174 } 1175 1176 break; 1177 } 1178 case Instruction::FPTrunc: 1179 case Instruction::FPExt: 1180 case Instruction::FPToUI: 1181 case Instruction::FPToSI: 1182 case Instruction::SIToFP: 1183 case Instruction::UIToFP: 1184 break; // Can't work with floating point. 1185 case Instruction::PtrToInt: 1186 case Instruction::IntToPtr: 1187 // Fall through and handle them the same as zext/trunc. 1188 LLVM_FALLTHROUGH; 1189 case Instruction::ZExt: 1190 case Instruction::Trunc: { 1191 Type *SrcTy = I->getOperand(0)->getType(); 1192 1193 unsigned SrcBitWidth; 1194 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1195 // which fall through here. 1196 Type *ScalarTy = SrcTy->getScalarType(); 1197 SrcBitWidth = ScalarTy->isPointerTy() ? 1198 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1199 Q.DL.getTypeSizeInBits(ScalarTy); 1200 1201 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1202 Known = Known.anyextOrTrunc(SrcBitWidth); 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 Known = Known.zextOrTrunc(BitWidth); 1205 break; 1206 } 1207 case Instruction::BitCast: { 1208 Type *SrcTy = I->getOperand(0)->getType(); 1209 if (SrcTy->isIntOrPtrTy() && 1210 // TODO: For now, not handling conversions like: 1211 // (bitcast i64 %x to <2 x i32>) 1212 !I->getType()->isVectorTy()) { 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 break; 1215 } 1216 break; 1217 } 1218 case Instruction::SExt: { 1219 // Compute the bits in the result that are not present in the input. 1220 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1221 1222 Known = Known.trunc(SrcBitWidth); 1223 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1224 // If the sign bit of the input is known set or clear, then we know the 1225 // top bits of the result. 1226 Known = Known.sext(BitWidth); 1227 break; 1228 } 1229 case Instruction::Shl: { 1230 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1231 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1232 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1233 APInt KZResult = KnownZero << ShiftAmt; 1234 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1235 // If this shift has "nsw" keyword, then the result is either a poison 1236 // value or has the same sign bit as the first operand. 1237 if (NSW && KnownZero.isSignBitSet()) 1238 KZResult.setSignBit(); 1239 return KZResult; 1240 }; 1241 1242 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1243 APInt KOResult = KnownOne << ShiftAmt; 1244 if (NSW && KnownOne.isSignBitSet()) 1245 KOResult.setSignBit(); 1246 return KOResult; 1247 }; 1248 1249 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1250 KZF, KOF); 1251 break; 1252 } 1253 case Instruction::LShr: { 1254 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1255 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1256 APInt KZResult = KnownZero.lshr(ShiftAmt); 1257 // High bits known zero. 1258 KZResult.setHighBits(ShiftAmt); 1259 return KZResult; 1260 }; 1261 1262 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1263 return KnownOne.lshr(ShiftAmt); 1264 }; 1265 1266 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1267 KZF, KOF); 1268 break; 1269 } 1270 case Instruction::AShr: { 1271 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1272 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1273 return KnownZero.ashr(ShiftAmt); 1274 }; 1275 1276 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1277 return KnownOne.ashr(ShiftAmt); 1278 }; 1279 1280 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1281 KZF, KOF); 1282 break; 1283 } 1284 case Instruction::Sub: { 1285 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1286 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1287 DemandedElts, Known, Known2, Depth, Q); 1288 break; 1289 } 1290 case Instruction::Add: { 1291 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1292 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1293 DemandedElts, Known, Known2, Depth, Q); 1294 break; 1295 } 1296 case Instruction::SRem: 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1299 Known = KnownBits::srem(Known, Known2); 1300 break; 1301 1302 case Instruction::URem: 1303 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1304 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1305 Known = KnownBits::urem(Known, Known2); 1306 break; 1307 case Instruction::Alloca: 1308 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1309 break; 1310 case Instruction::GetElementPtr: { 1311 // Analyze all of the subscripts of this getelementptr instruction 1312 // to determine if we can prove known low zero bits. 1313 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1314 // Accumulate the constant indices in a separate variable 1315 // to minimize the number of calls to computeForAddSub. 1316 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1317 1318 gep_type_iterator GTI = gep_type_begin(I); 1319 // If the inbounds keyword is not present, the offsets are added to the 1320 // base address with silently-wrapping two’s complement arithmetic. 1321 bool IsInBounds = cast<GEPOperator>(I)->isInBounds(); 1322 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1323 // TrailZ can only become smaller, short-circuit if we hit zero. 1324 if (Known.isUnknown()) 1325 break; 1326 1327 Value *Index = I->getOperand(i); 1328 1329 // Handle case when index is zero. 1330 Constant *CIndex = dyn_cast<Constant>(Index); 1331 if (CIndex && CIndex->isZeroValue()) 1332 continue; 1333 1334 if (StructType *STy = GTI.getStructTypeOrNull()) { 1335 // Handle struct member offset arithmetic. 1336 1337 assert(CIndex && 1338 "Access to structure field must be known at compile time"); 1339 1340 if (CIndex->getType()->isVectorTy()) 1341 Index = CIndex->getSplatValue(); 1342 1343 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1344 const StructLayout *SL = Q.DL.getStructLayout(STy); 1345 uint64_t Offset = SL->getElementOffset(Idx); 1346 AccConstIndices += Offset; 1347 continue; 1348 } 1349 1350 // Handle array index arithmetic. 1351 Type *IndexedTy = GTI.getIndexedType(); 1352 if (!IndexedTy->isSized()) { 1353 Known.resetAll(); 1354 break; 1355 } 1356 1357 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1358 KnownBits IndexBits(IndexBitWidth); 1359 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1360 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1361 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1362 KnownBits ScalingFactor(IndexBitWidth); 1363 // Multiply by current sizeof type. 1364 // &A[i] == A + i * sizeof(*A[i]). 1365 if (IndexTypeSize.isScalable()) { 1366 // For scalable types the only thing we know about sizeof is 1367 // that this is a multiple of the minimum size. 1368 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1369 } else if (IndexBits.isConstant()) { 1370 APInt IndexConst = IndexBits.getConstant(); 1371 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1372 IndexConst *= ScalingFactor; 1373 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1374 continue; 1375 } else { 1376 ScalingFactor.Zero = ~TypeSizeInBytes; 1377 ScalingFactor.One = TypeSizeInBytes; 1378 } 1379 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1380 1381 // If the offsets have a different width from the pointer, according 1382 // to the language reference we need to sign-extend or truncate them 1383 // to the width of the pointer. 1384 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1385 1386 Known = KnownBits::computeForAddSub( 1387 /*Add=*/true, 1388 /*NSW=*/IsInBounds, Known, IndexBits); 1389 } 1390 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1391 KnownBits Index(BitWidth); 1392 Index.Zero = ~AccConstIndices; 1393 Index.One = AccConstIndices; 1394 Known = KnownBits::computeForAddSub( 1395 /*Add=*/true, 1396 /*NSW=*/IsInBounds, Known, Index); 1397 } 1398 break; 1399 } 1400 case Instruction::PHI: { 1401 const PHINode *P = cast<PHINode>(I); 1402 // Handle the case of a simple two-predecessor recurrence PHI. 1403 // There's a lot more that could theoretically be done here, but 1404 // this is sufficient to catch some interesting cases. 1405 if (P->getNumIncomingValues() == 2) { 1406 for (unsigned i = 0; i != 2; ++i) { 1407 Value *L = P->getIncomingValue(i); 1408 Value *R = P->getIncomingValue(!i); 1409 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1410 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1411 Operator *LU = dyn_cast<Operator>(L); 1412 if (!LU) 1413 continue; 1414 unsigned Opcode = LU->getOpcode(); 1415 // Check for operations that have the property that if 1416 // both their operands have low zero bits, the result 1417 // will have low zero bits. 1418 if (Opcode == Instruction::Add || 1419 Opcode == Instruction::Sub || 1420 Opcode == Instruction::And || 1421 Opcode == Instruction::Or || 1422 Opcode == Instruction::Mul) { 1423 Value *LL = LU->getOperand(0); 1424 Value *LR = LU->getOperand(1); 1425 // Find a recurrence. 1426 if (LL == I) 1427 L = LR; 1428 else if (LR == I) 1429 L = LL; 1430 else 1431 continue; // Check for recurrence with L and R flipped. 1432 1433 // Change the context instruction to the "edge" that flows into the 1434 // phi. This is important because that is where the value is actually 1435 // "evaluated" even though it is used later somewhere else. (see also 1436 // D69571). 1437 Query RecQ = Q; 1438 1439 // Ok, we have a PHI of the form L op= R. Check for low 1440 // zero bits. 1441 RecQ.CxtI = RInst; 1442 computeKnownBits(R, Known2, Depth + 1, RecQ); 1443 1444 // We need to take the minimum number of known bits 1445 KnownBits Known3(BitWidth); 1446 RecQ.CxtI = LInst; 1447 computeKnownBits(L, Known3, Depth + 1, RecQ); 1448 1449 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1450 Known3.countMinTrailingZeros())); 1451 1452 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1453 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1454 // If initial value of recurrence is nonnegative, and we are adding 1455 // a nonnegative number with nsw, the result can only be nonnegative 1456 // or poison value regardless of the number of times we execute the 1457 // add in phi recurrence. If initial value is negative and we are 1458 // adding a negative number with nsw, the result can only be 1459 // negative or poison value. Similar arguments apply to sub and mul. 1460 // 1461 // (add non-negative, non-negative) --> non-negative 1462 // (add negative, negative) --> negative 1463 if (Opcode == Instruction::Add) { 1464 if (Known2.isNonNegative() && Known3.isNonNegative()) 1465 Known.makeNonNegative(); 1466 else if (Known2.isNegative() && Known3.isNegative()) 1467 Known.makeNegative(); 1468 } 1469 1470 // (sub nsw non-negative, negative) --> non-negative 1471 // (sub nsw negative, non-negative) --> negative 1472 else if (Opcode == Instruction::Sub && LL == I) { 1473 if (Known2.isNonNegative() && Known3.isNegative()) 1474 Known.makeNonNegative(); 1475 else if (Known2.isNegative() && Known3.isNonNegative()) 1476 Known.makeNegative(); 1477 } 1478 1479 // (mul nsw non-negative, non-negative) --> non-negative 1480 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1481 Known3.isNonNegative()) 1482 Known.makeNonNegative(); 1483 } 1484 1485 break; 1486 } 1487 } 1488 } 1489 1490 // Unreachable blocks may have zero-operand PHI nodes. 1491 if (P->getNumIncomingValues() == 0) 1492 break; 1493 1494 // Otherwise take the unions of the known bit sets of the operands, 1495 // taking conservative care to avoid excessive recursion. 1496 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1497 // Skip if every incoming value references to ourself. 1498 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1499 break; 1500 1501 Known.Zero.setAllBits(); 1502 Known.One.setAllBits(); 1503 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1504 Value *IncValue = P->getIncomingValue(u); 1505 // Skip direct self references. 1506 if (IncValue == P) continue; 1507 1508 // Change the context instruction to the "edge" that flows into the 1509 // phi. This is important because that is where the value is actually 1510 // "evaluated" even though it is used later somewhere else. (see also 1511 // D69571). 1512 Query RecQ = Q; 1513 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1514 1515 Known2 = KnownBits(BitWidth); 1516 // Recurse, but cap the recursion to one level, because we don't 1517 // want to waste time spinning around in loops. 1518 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1519 Known.Zero &= Known2.Zero; 1520 Known.One &= Known2.One; 1521 // If all bits have been ruled out, there's no need to check 1522 // more operands. 1523 if (!Known.Zero && !Known.One) 1524 break; 1525 } 1526 } 1527 break; 1528 } 1529 case Instruction::Call: 1530 case Instruction::Invoke: 1531 // If range metadata is attached to this call, set known bits from that, 1532 // and then intersect with known bits based on other properties of the 1533 // function. 1534 if (MDNode *MD = 1535 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1536 computeKnownBitsFromRangeMetadata(*MD, Known); 1537 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1538 computeKnownBits(RV, Known2, Depth + 1, Q); 1539 Known.Zero |= Known2.Zero; 1540 Known.One |= Known2.One; 1541 } 1542 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1543 switch (II->getIntrinsicID()) { 1544 default: break; 1545 case Intrinsic::abs: 1546 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1547 1548 // If the source's MSB is zero then we know the rest of the bits. 1549 if (Known2.isNonNegative()) { 1550 Known.Zero |= Known2.Zero; 1551 Known.One |= Known2.One; 1552 break; 1553 } 1554 1555 // Absolute value preserves trailing zero count. 1556 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1557 1558 // If this call is undefined for INT_MIN, the result is positive. We 1559 // also know it can't be INT_MIN if there is a set bit that isn't the 1560 // sign bit. 1561 Known2.One.clearSignBit(); 1562 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1563 Known.Zero.setSignBit(); 1564 // FIXME: Handle known negative input? 1565 // FIXME: Calculate the negated Known bits and combine them? 1566 break; 1567 case Intrinsic::bitreverse: 1568 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1569 Known.Zero |= Known2.Zero.reverseBits(); 1570 Known.One |= Known2.One.reverseBits(); 1571 break; 1572 case Intrinsic::bswap: 1573 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1574 Known.Zero |= Known2.Zero.byteSwap(); 1575 Known.One |= Known2.One.byteSwap(); 1576 break; 1577 case Intrinsic::ctlz: { 1578 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1579 // If we have a known 1, its position is our upper bound. 1580 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1581 // If this call is undefined for 0, the result will be less than 2^n. 1582 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1583 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1584 unsigned LowBits = Log2_32(PossibleLZ)+1; 1585 Known.Zero.setBitsFrom(LowBits); 1586 break; 1587 } 1588 case Intrinsic::cttz: { 1589 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1590 // If we have a known 1, its position is our upper bound. 1591 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1592 // If this call is undefined for 0, the result will be less than 2^n. 1593 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1594 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1595 unsigned LowBits = Log2_32(PossibleTZ)+1; 1596 Known.Zero.setBitsFrom(LowBits); 1597 break; 1598 } 1599 case Intrinsic::ctpop: { 1600 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1601 // We can bound the space the count needs. Also, bits known to be zero 1602 // can't contribute to the population. 1603 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1604 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1605 Known.Zero.setBitsFrom(LowBits); 1606 // TODO: we could bound KnownOne using the lower bound on the number 1607 // of bits which might be set provided by popcnt KnownOne2. 1608 break; 1609 } 1610 case Intrinsic::fshr: 1611 case Intrinsic::fshl: { 1612 const APInt *SA; 1613 if (!match(I->getOperand(2), m_APInt(SA))) 1614 break; 1615 1616 // Normalize to funnel shift left. 1617 uint64_t ShiftAmt = SA->urem(BitWidth); 1618 if (II->getIntrinsicID() == Intrinsic::fshr) 1619 ShiftAmt = BitWidth - ShiftAmt; 1620 1621 KnownBits Known3(BitWidth); 1622 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1623 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1624 1625 Known.Zero = 1626 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1627 Known.One = 1628 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1629 break; 1630 } 1631 case Intrinsic::uadd_sat: 1632 case Intrinsic::usub_sat: { 1633 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1634 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1635 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1636 1637 // Add: Leading ones of either operand are preserved. 1638 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1639 // as leading zeros in the result. 1640 unsigned LeadingKnown; 1641 if (IsAdd) 1642 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1643 Known2.countMinLeadingOnes()); 1644 else 1645 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1646 Known2.countMinLeadingOnes()); 1647 1648 Known = KnownBits::computeForAddSub( 1649 IsAdd, /* NSW */ false, Known, Known2); 1650 1651 // We select between the operation result and all-ones/zero 1652 // respectively, so we can preserve known ones/zeros. 1653 if (IsAdd) { 1654 Known.One.setHighBits(LeadingKnown); 1655 Known.Zero.clearAllBits(); 1656 } else { 1657 Known.Zero.setHighBits(LeadingKnown); 1658 Known.One.clearAllBits(); 1659 } 1660 break; 1661 } 1662 case Intrinsic::umin: 1663 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1664 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1665 Known = KnownBits::umin(Known, Known2); 1666 break; 1667 case Intrinsic::umax: 1668 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1669 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1670 Known = KnownBits::umax(Known, Known2); 1671 break; 1672 case Intrinsic::smin: 1673 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1674 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1675 Known = KnownBits::smin(Known, Known2); 1676 break; 1677 case Intrinsic::smax: 1678 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1679 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1680 Known = KnownBits::smax(Known, Known2); 1681 break; 1682 case Intrinsic::x86_sse42_crc32_64_64: 1683 Known.Zero.setBitsFrom(32); 1684 break; 1685 } 1686 } 1687 break; 1688 case Instruction::ShuffleVector: { 1689 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1690 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1691 if (!Shuf) { 1692 Known.resetAll(); 1693 return; 1694 } 1695 // For undef elements, we don't know anything about the common state of 1696 // the shuffle result. 1697 APInt DemandedLHS, DemandedRHS; 1698 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1699 Known.resetAll(); 1700 return; 1701 } 1702 Known.One.setAllBits(); 1703 Known.Zero.setAllBits(); 1704 if (!!DemandedLHS) { 1705 const Value *LHS = Shuf->getOperand(0); 1706 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1707 // If we don't know any bits, early out. 1708 if (Known.isUnknown()) 1709 break; 1710 } 1711 if (!!DemandedRHS) { 1712 const Value *RHS = Shuf->getOperand(1); 1713 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1714 Known.One &= Known2.One; 1715 Known.Zero &= Known2.Zero; 1716 } 1717 break; 1718 } 1719 case Instruction::InsertElement: { 1720 const Value *Vec = I->getOperand(0); 1721 const Value *Elt = I->getOperand(1); 1722 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1723 // Early out if the index is non-constant or out-of-range. 1724 unsigned NumElts = DemandedElts.getBitWidth(); 1725 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1726 Known.resetAll(); 1727 return; 1728 } 1729 Known.One.setAllBits(); 1730 Known.Zero.setAllBits(); 1731 unsigned EltIdx = CIdx->getZExtValue(); 1732 // Do we demand the inserted element? 1733 if (DemandedElts[EltIdx]) { 1734 computeKnownBits(Elt, Known, Depth + 1, Q); 1735 // If we don't know any bits, early out. 1736 if (Known.isUnknown()) 1737 break; 1738 } 1739 // We don't need the base vector element that has been inserted. 1740 APInt DemandedVecElts = DemandedElts; 1741 DemandedVecElts.clearBit(EltIdx); 1742 if (!!DemandedVecElts) { 1743 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1744 Known.One &= Known2.One; 1745 Known.Zero &= Known2.Zero; 1746 } 1747 break; 1748 } 1749 case Instruction::ExtractElement: { 1750 // Look through extract element. If the index is non-constant or 1751 // out-of-range demand all elements, otherwise just the extracted element. 1752 const Value *Vec = I->getOperand(0); 1753 const Value *Idx = I->getOperand(1); 1754 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1755 if (isa<ScalableVectorType>(Vec->getType())) { 1756 // FIXME: there's probably *something* we can do with scalable vectors 1757 Known.resetAll(); 1758 break; 1759 } 1760 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1761 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1762 if (CIdx && CIdx->getValue().ult(NumElts)) 1763 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1764 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1765 break; 1766 } 1767 case Instruction::ExtractValue: 1768 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1769 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1770 if (EVI->getNumIndices() != 1) break; 1771 if (EVI->getIndices()[0] == 0) { 1772 switch (II->getIntrinsicID()) { 1773 default: break; 1774 case Intrinsic::uadd_with_overflow: 1775 case Intrinsic::sadd_with_overflow: 1776 computeKnownBitsAddSub(true, II->getArgOperand(0), 1777 II->getArgOperand(1), false, DemandedElts, 1778 Known, Known2, Depth, Q); 1779 break; 1780 case Intrinsic::usub_with_overflow: 1781 case Intrinsic::ssub_with_overflow: 1782 computeKnownBitsAddSub(false, II->getArgOperand(0), 1783 II->getArgOperand(1), false, DemandedElts, 1784 Known, Known2, Depth, Q); 1785 break; 1786 case Intrinsic::umul_with_overflow: 1787 case Intrinsic::smul_with_overflow: 1788 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1789 DemandedElts, Known, Known2, Depth, Q); 1790 break; 1791 } 1792 } 1793 } 1794 break; 1795 case Instruction::Freeze: 1796 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1797 Depth + 1)) 1798 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1799 break; 1800 } 1801 } 1802 1803 /// Determine which bits of V are known to be either zero or one and return 1804 /// them. 1805 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1806 unsigned Depth, const Query &Q) { 1807 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1808 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1809 return Known; 1810 } 1811 1812 /// Determine which bits of V are known to be either zero or one and return 1813 /// them. 1814 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1815 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1816 computeKnownBits(V, Known, Depth, Q); 1817 return Known; 1818 } 1819 1820 /// Determine which bits of V are known to be either zero or one and return 1821 /// them in the Known bit set. 1822 /// 1823 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1824 /// we cannot optimize based on the assumption that it is zero without changing 1825 /// it to be an explicit zero. If we don't change it to zero, other code could 1826 /// optimized based on the contradictory assumption that it is non-zero. 1827 /// Because instcombine aggressively folds operations with undef args anyway, 1828 /// this won't lose us code quality. 1829 /// 1830 /// This function is defined on values with integer type, values with pointer 1831 /// type, and vectors of integers. In the case 1832 /// where V is a vector, known zero, and known one values are the 1833 /// same width as the vector element, and the bit is set only if it is true 1834 /// for all of the demanded elements in the vector specified by DemandedElts. 1835 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1836 KnownBits &Known, unsigned Depth, const Query &Q) { 1837 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1838 // No demanded elts or V is a scalable vector, better to assume we don't 1839 // know anything. 1840 Known.resetAll(); 1841 return; 1842 } 1843 1844 assert(V && "No Value?"); 1845 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1846 1847 #ifndef NDEBUG 1848 Type *Ty = V->getType(); 1849 unsigned BitWidth = Known.getBitWidth(); 1850 1851 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1852 "Not integer or pointer type!"); 1853 1854 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1855 assert( 1856 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1857 "DemandedElt width should equal the fixed vector number of elements"); 1858 } else { 1859 assert(DemandedElts == APInt(1, 1) && 1860 "DemandedElt width should be 1 for scalars"); 1861 } 1862 1863 Type *ScalarTy = Ty->getScalarType(); 1864 if (ScalarTy->isPointerTy()) { 1865 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1866 "V and Known should have same BitWidth"); 1867 } else { 1868 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1869 "V and Known should have same BitWidth"); 1870 } 1871 #endif 1872 1873 const APInt *C; 1874 if (match(V, m_APInt(C))) { 1875 // We know all of the bits for a scalar constant or a splat vector constant! 1876 Known.One = *C; 1877 Known.Zero = ~Known.One; 1878 return; 1879 } 1880 // Null and aggregate-zero are all-zeros. 1881 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1882 Known.setAllZero(); 1883 return; 1884 } 1885 // Handle a constant vector by taking the intersection of the known bits of 1886 // each element. 1887 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1888 // We know that CDV must be a vector of integers. Take the intersection of 1889 // each element. 1890 Known.Zero.setAllBits(); Known.One.setAllBits(); 1891 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1892 if (!DemandedElts[i]) 1893 continue; 1894 APInt Elt = CDV->getElementAsAPInt(i); 1895 Known.Zero &= ~Elt; 1896 Known.One &= Elt; 1897 } 1898 return; 1899 } 1900 1901 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1902 // We know that CV must be a vector of integers. Take the intersection of 1903 // each element. 1904 Known.Zero.setAllBits(); Known.One.setAllBits(); 1905 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1906 if (!DemandedElts[i]) 1907 continue; 1908 Constant *Element = CV->getAggregateElement(i); 1909 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1910 if (!ElementCI) { 1911 Known.resetAll(); 1912 return; 1913 } 1914 const APInt &Elt = ElementCI->getValue(); 1915 Known.Zero &= ~Elt; 1916 Known.One &= Elt; 1917 } 1918 return; 1919 } 1920 1921 // Start out not knowing anything. 1922 Known.resetAll(); 1923 1924 // We can't imply anything about undefs. 1925 if (isa<UndefValue>(V)) 1926 return; 1927 1928 // There's no point in looking through other users of ConstantData for 1929 // assumptions. Confirm that we've handled them all. 1930 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1931 1932 // All recursive calls that increase depth must come after this. 1933 if (Depth == MaxAnalysisRecursionDepth) 1934 return; 1935 1936 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1937 // the bits of its aliasee. 1938 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1939 if (!GA->isInterposable()) 1940 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1941 return; 1942 } 1943 1944 if (const Operator *I = dyn_cast<Operator>(V)) 1945 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1946 1947 // Aligned pointers have trailing zeros - refine Known.Zero set 1948 if (isa<PointerType>(V->getType())) { 1949 Align Alignment = V->getPointerAlignment(Q.DL); 1950 Known.Zero.setLowBits(Log2(Alignment)); 1951 } 1952 1953 // computeKnownBitsFromAssume strictly refines Known. 1954 // Therefore, we run them after computeKnownBitsFromOperator. 1955 1956 // Check whether a nearby assume intrinsic can determine some known bits. 1957 computeKnownBitsFromAssume(V, Known, Depth, Q); 1958 1959 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1960 } 1961 1962 /// Return true if the given value is known to have exactly one 1963 /// bit set when defined. For vectors return true if every element is known to 1964 /// be a power of two when defined. Supports values with integer or pointer 1965 /// types and vectors of integers. 1966 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1967 const Query &Q) { 1968 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1969 1970 // Attempt to match against constants. 1971 if (OrZero && match(V, m_Power2OrZero())) 1972 return true; 1973 if (match(V, m_Power2())) 1974 return true; 1975 1976 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1977 // it is shifted off the end then the result is undefined. 1978 if (match(V, m_Shl(m_One(), m_Value()))) 1979 return true; 1980 1981 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1982 // the bottom. If it is shifted off the bottom then the result is undefined. 1983 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1984 return true; 1985 1986 // The remaining tests are all recursive, so bail out if we hit the limit. 1987 if (Depth++ == MaxAnalysisRecursionDepth) 1988 return false; 1989 1990 Value *X = nullptr, *Y = nullptr; 1991 // A shift left or a logical shift right of a power of two is a power of two 1992 // or zero. 1993 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1994 match(V, m_LShr(m_Value(X), m_Value())))) 1995 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1996 1997 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1998 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1999 2000 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2001 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2002 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2003 2004 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2005 // A power of two and'd with anything is a power of two or zero. 2006 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2007 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2008 return true; 2009 // X & (-X) is always a power of two or zero. 2010 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2011 return true; 2012 return false; 2013 } 2014 2015 // Adding a power-of-two or zero to the same power-of-two or zero yields 2016 // either the original power-of-two, a larger power-of-two or zero. 2017 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2018 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2019 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2020 Q.IIQ.hasNoSignedWrap(VOBO)) { 2021 if (match(X, m_And(m_Specific(Y), m_Value())) || 2022 match(X, m_And(m_Value(), m_Specific(Y)))) 2023 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2024 return true; 2025 if (match(Y, m_And(m_Specific(X), m_Value())) || 2026 match(Y, m_And(m_Value(), m_Specific(X)))) 2027 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2028 return true; 2029 2030 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2031 KnownBits LHSBits(BitWidth); 2032 computeKnownBits(X, LHSBits, Depth, Q); 2033 2034 KnownBits RHSBits(BitWidth); 2035 computeKnownBits(Y, RHSBits, Depth, Q); 2036 // If i8 V is a power of two or zero: 2037 // ZeroBits: 1 1 1 0 1 1 1 1 2038 // ~ZeroBits: 0 0 0 1 0 0 0 0 2039 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2040 // If OrZero isn't set, we cannot give back a zero result. 2041 // Make sure either the LHS or RHS has a bit set. 2042 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2043 return true; 2044 } 2045 } 2046 2047 // An exact divide or right shift can only shift off zero bits, so the result 2048 // is a power of two only if the first operand is a power of two and not 2049 // copying a sign bit (sdiv int_min, 2). 2050 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2051 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2052 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2053 Depth, Q); 2054 } 2055 2056 return false; 2057 } 2058 2059 /// Test whether a GEP's result is known to be non-null. 2060 /// 2061 /// Uses properties inherent in a GEP to try to determine whether it is known 2062 /// to be non-null. 2063 /// 2064 /// Currently this routine does not support vector GEPs. 2065 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2066 const Query &Q) { 2067 const Function *F = nullptr; 2068 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2069 F = I->getFunction(); 2070 2071 if (!GEP->isInBounds() || 2072 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2073 return false; 2074 2075 // FIXME: Support vector-GEPs. 2076 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2077 2078 // If the base pointer is non-null, we cannot walk to a null address with an 2079 // inbounds GEP in address space zero. 2080 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2081 return true; 2082 2083 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2084 // If so, then the GEP cannot produce a null pointer, as doing so would 2085 // inherently violate the inbounds contract within address space zero. 2086 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2087 GTI != GTE; ++GTI) { 2088 // Struct types are easy -- they must always be indexed by a constant. 2089 if (StructType *STy = GTI.getStructTypeOrNull()) { 2090 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2091 unsigned ElementIdx = OpC->getZExtValue(); 2092 const StructLayout *SL = Q.DL.getStructLayout(STy); 2093 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2094 if (ElementOffset > 0) 2095 return true; 2096 continue; 2097 } 2098 2099 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2100 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2101 continue; 2102 2103 // Fast path the constant operand case both for efficiency and so we don't 2104 // increment Depth when just zipping down an all-constant GEP. 2105 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2106 if (!OpC->isZero()) 2107 return true; 2108 continue; 2109 } 2110 2111 // We post-increment Depth here because while isKnownNonZero increments it 2112 // as well, when we pop back up that increment won't persist. We don't want 2113 // to recurse 10k times just because we have 10k GEP operands. We don't 2114 // bail completely out because we want to handle constant GEPs regardless 2115 // of depth. 2116 if (Depth++ >= MaxAnalysisRecursionDepth) 2117 continue; 2118 2119 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2120 return true; 2121 } 2122 2123 return false; 2124 } 2125 2126 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2127 const Instruction *CtxI, 2128 const DominatorTree *DT) { 2129 if (isa<Constant>(V)) 2130 return false; 2131 2132 if (!CtxI || !DT) 2133 return false; 2134 2135 unsigned NumUsesExplored = 0; 2136 for (auto *U : V->users()) { 2137 // Avoid massive lists 2138 if (NumUsesExplored >= DomConditionsMaxUses) 2139 break; 2140 NumUsesExplored++; 2141 2142 // If the value is used as an argument to a call or invoke, then argument 2143 // attributes may provide an answer about null-ness. 2144 if (const auto *CB = dyn_cast<CallBase>(U)) 2145 if (auto *CalledFunc = CB->getCalledFunction()) 2146 for (const Argument &Arg : CalledFunc->args()) 2147 if (CB->getArgOperand(Arg.getArgNo()) == V && 2148 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2149 return true; 2150 2151 // If the value is used as a load/store, then the pointer must be non null. 2152 if (V == getLoadStorePointerOperand(U)) { 2153 const Instruction *I = cast<Instruction>(U); 2154 if (!NullPointerIsDefined(I->getFunction(), 2155 V->getType()->getPointerAddressSpace()) && 2156 DT->dominates(I, CtxI)) 2157 return true; 2158 } 2159 2160 // Consider only compare instructions uniquely controlling a branch 2161 CmpInst::Predicate Pred; 2162 if (!match(const_cast<User *>(U), 2163 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2164 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2165 continue; 2166 2167 SmallVector<const User *, 4> WorkList; 2168 SmallPtrSet<const User *, 4> Visited; 2169 for (auto *CmpU : U->users()) { 2170 assert(WorkList.empty() && "Should be!"); 2171 if (Visited.insert(CmpU).second) 2172 WorkList.push_back(CmpU); 2173 2174 while (!WorkList.empty()) { 2175 auto *Curr = WorkList.pop_back_val(); 2176 2177 // If a user is an AND, add all its users to the work list. We only 2178 // propagate "pred != null" condition through AND because it is only 2179 // correct to assume that all conditions of AND are met in true branch. 2180 // TODO: Support similar logic of OR and EQ predicate? 2181 if (Pred == ICmpInst::ICMP_NE) 2182 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2183 if (BO->getOpcode() == Instruction::And) { 2184 for (auto *BOU : BO->users()) 2185 if (Visited.insert(BOU).second) 2186 WorkList.push_back(BOU); 2187 continue; 2188 } 2189 2190 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2191 assert(BI->isConditional() && "uses a comparison!"); 2192 2193 BasicBlock *NonNullSuccessor = 2194 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2195 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2196 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2197 return true; 2198 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2199 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2200 return true; 2201 } 2202 } 2203 } 2204 } 2205 2206 return false; 2207 } 2208 2209 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2210 /// ensure that the value it's attached to is never Value? 'RangeType' is 2211 /// is the type of the value described by the range. 2212 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2213 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2214 assert(NumRanges >= 1); 2215 for (unsigned i = 0; i < NumRanges; ++i) { 2216 ConstantInt *Lower = 2217 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2218 ConstantInt *Upper = 2219 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2220 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2221 if (Range.contains(Value)) 2222 return false; 2223 } 2224 return true; 2225 } 2226 2227 /// Return true if the given value is known to be non-zero when defined. For 2228 /// vectors, return true if every demanded element is known to be non-zero when 2229 /// defined. For pointers, if the context instruction and dominator tree are 2230 /// specified, perform context-sensitive analysis and return true if the 2231 /// pointer couldn't possibly be null at the specified instruction. 2232 /// Supports values with integer or pointer type and vectors of integers. 2233 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2234 const Query &Q) { 2235 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2236 // vector 2237 if (isa<ScalableVectorType>(V->getType())) 2238 return false; 2239 2240 if (auto *C = dyn_cast<Constant>(V)) { 2241 if (C->isNullValue()) 2242 return false; 2243 if (isa<ConstantInt>(C)) 2244 // Must be non-zero due to null test above. 2245 return true; 2246 2247 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2248 // See the comment for IntToPtr/PtrToInt instructions below. 2249 if (CE->getOpcode() == Instruction::IntToPtr || 2250 CE->getOpcode() == Instruction::PtrToInt) 2251 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2252 .getFixedSize() <= 2253 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2254 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2255 } 2256 2257 // For constant vectors, check that all elements are undefined or known 2258 // non-zero to determine that the whole vector is known non-zero. 2259 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2260 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2261 if (!DemandedElts[i]) 2262 continue; 2263 Constant *Elt = C->getAggregateElement(i); 2264 if (!Elt || Elt->isNullValue()) 2265 return false; 2266 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2267 return false; 2268 } 2269 return true; 2270 } 2271 2272 // A global variable in address space 0 is non null unless extern weak 2273 // or an absolute symbol reference. Other address spaces may have null as a 2274 // valid address for a global, so we can't assume anything. 2275 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2276 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2277 GV->getType()->getAddressSpace() == 0) 2278 return true; 2279 } else 2280 return false; 2281 } 2282 2283 if (auto *I = dyn_cast<Instruction>(V)) { 2284 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2285 // If the possible ranges don't contain zero, then the value is 2286 // definitely non-zero. 2287 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2288 const APInt ZeroValue(Ty->getBitWidth(), 0); 2289 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2290 return true; 2291 } 2292 } 2293 } 2294 2295 if (isKnownNonZeroFromAssume(V, Q)) 2296 return true; 2297 2298 // Some of the tests below are recursive, so bail out if we hit the limit. 2299 if (Depth++ >= MaxAnalysisRecursionDepth) 2300 return false; 2301 2302 // Check for pointer simplifications. 2303 2304 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2305 // Alloca never returns null, malloc might. 2306 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2307 return true; 2308 2309 // A byval, inalloca may not be null in a non-default addres space. A 2310 // nonnull argument is assumed never 0. 2311 if (const Argument *A = dyn_cast<Argument>(V)) { 2312 if (((A->hasPassPointeeByValueCopyAttr() && 2313 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2314 A->hasNonNullAttr())) 2315 return true; 2316 } 2317 2318 // A Load tagged with nonnull metadata is never null. 2319 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2320 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2321 return true; 2322 2323 if (const auto *Call = dyn_cast<CallBase>(V)) { 2324 if (Call->isReturnNonNull()) 2325 return true; 2326 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2327 return isKnownNonZero(RP, Depth, Q); 2328 } 2329 } 2330 2331 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2332 return true; 2333 2334 // Check for recursive pointer simplifications. 2335 if (V->getType()->isPointerTy()) { 2336 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2337 // do not alter the value, or at least not the nullness property of the 2338 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2339 // 2340 // Note that we have to take special care to avoid looking through 2341 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2342 // as casts that can alter the value, e.g., AddrSpaceCasts. 2343 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2344 return isGEPKnownNonNull(GEP, Depth, Q); 2345 2346 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2347 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2348 2349 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2350 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2351 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2352 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2353 } 2354 2355 // Similar to int2ptr above, we can look through ptr2int here if the cast 2356 // is a no-op or an extend and not a truncate. 2357 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2358 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2359 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2360 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2361 2362 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2363 2364 // X | Y != 0 if X != 0 or Y != 0. 2365 Value *X = nullptr, *Y = nullptr; 2366 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2367 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2368 isKnownNonZero(Y, DemandedElts, Depth, Q); 2369 2370 // ext X != 0 if X != 0. 2371 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2372 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2373 2374 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2375 // if the lowest bit is shifted off the end. 2376 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2377 // shl nuw can't remove any non-zero bits. 2378 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2379 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2380 return isKnownNonZero(X, Depth, Q); 2381 2382 KnownBits Known(BitWidth); 2383 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2384 if (Known.One[0]) 2385 return true; 2386 } 2387 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2388 // defined if the sign bit is shifted off the end. 2389 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2390 // shr exact can only shift out zero bits. 2391 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2392 if (BO->isExact()) 2393 return isKnownNonZero(X, Depth, Q); 2394 2395 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2396 if (Known.isNegative()) 2397 return true; 2398 2399 // If the shifter operand is a constant, and all of the bits shifted 2400 // out are known to be zero, and X is known non-zero then at least one 2401 // non-zero bit must remain. 2402 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2403 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2404 // Is there a known one in the portion not shifted out? 2405 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2406 return true; 2407 // Are all the bits to be shifted out known zero? 2408 if (Known.countMinTrailingZeros() >= ShiftVal) 2409 return isKnownNonZero(X, DemandedElts, Depth, Q); 2410 } 2411 } 2412 // div exact can only produce a zero if the dividend is zero. 2413 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2414 return isKnownNonZero(X, DemandedElts, Depth, Q); 2415 } 2416 // X + Y. 2417 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2418 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2419 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2420 2421 // If X and Y are both non-negative (as signed values) then their sum is not 2422 // zero unless both X and Y are zero. 2423 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2424 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2425 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2426 return true; 2427 2428 // If X and Y are both negative (as signed values) then their sum is not 2429 // zero unless both X and Y equal INT_MIN. 2430 if (XKnown.isNegative() && YKnown.isNegative()) { 2431 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2432 // The sign bit of X is set. If some other bit is set then X is not equal 2433 // to INT_MIN. 2434 if (XKnown.One.intersects(Mask)) 2435 return true; 2436 // The sign bit of Y is set. If some other bit is set then Y is not equal 2437 // to INT_MIN. 2438 if (YKnown.One.intersects(Mask)) 2439 return true; 2440 } 2441 2442 // The sum of a non-negative number and a power of two is not zero. 2443 if (XKnown.isNonNegative() && 2444 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2445 return true; 2446 if (YKnown.isNonNegative() && 2447 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2448 return true; 2449 } 2450 // X * Y. 2451 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2452 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2453 // If X and Y are non-zero then so is X * Y as long as the multiplication 2454 // does not overflow. 2455 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2456 isKnownNonZero(X, DemandedElts, Depth, Q) && 2457 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2458 return true; 2459 } 2460 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2461 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2462 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2463 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2464 return true; 2465 } 2466 // PHI 2467 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2468 // Try and detect a recurrence that monotonically increases from a 2469 // starting value, as these are common as induction variables. 2470 if (PN->getNumIncomingValues() == 2) { 2471 Value *Start = PN->getIncomingValue(0); 2472 Value *Induction = PN->getIncomingValue(1); 2473 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2474 std::swap(Start, Induction); 2475 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2476 if (!C->isZero() && !C->isNegative()) { 2477 ConstantInt *X; 2478 if (Q.IIQ.UseInstrInfo && 2479 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2480 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2481 !X->isNegative()) 2482 return true; 2483 } 2484 } 2485 } 2486 // Check if all incoming values are non-zero using recursion. 2487 Query RecQ = Q; 2488 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2489 return llvm::all_of(PN->operands(), [&](const Use &U) { 2490 if (U.get() == PN) 2491 return true; 2492 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2493 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2494 }); 2495 } 2496 // ExtractElement 2497 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2498 const Value *Vec = EEI->getVectorOperand(); 2499 const Value *Idx = EEI->getIndexOperand(); 2500 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2501 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2502 unsigned NumElts = VecTy->getNumElements(); 2503 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2504 if (CIdx && CIdx->getValue().ult(NumElts)) 2505 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2506 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2507 } 2508 } 2509 // Freeze 2510 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2511 auto *Op = FI->getOperand(0); 2512 if (isKnownNonZero(Op, Depth, Q) && 2513 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2514 return true; 2515 } 2516 2517 KnownBits Known(BitWidth); 2518 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2519 return Known.One != 0; 2520 } 2521 2522 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2523 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2524 // vector 2525 if (isa<ScalableVectorType>(V->getType())) 2526 return false; 2527 2528 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2529 APInt DemandedElts = 2530 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2531 return isKnownNonZero(V, DemandedElts, Depth, Q); 2532 } 2533 2534 /// Return true if V2 == V1 + X, where X is known non-zero. 2535 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2536 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2537 if (!BO || BO->getOpcode() != Instruction::Add) 2538 return false; 2539 Value *Op = nullptr; 2540 if (V2 == BO->getOperand(0)) 2541 Op = BO->getOperand(1); 2542 else if (V2 == BO->getOperand(1)) 2543 Op = BO->getOperand(0); 2544 else 2545 return false; 2546 return isKnownNonZero(Op, 0, Q); 2547 } 2548 2549 /// Return true if it is known that V1 != V2. 2550 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2551 if (V1 == V2) 2552 return false; 2553 if (V1->getType() != V2->getType()) 2554 // We can't look through casts yet. 2555 return false; 2556 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2557 return true; 2558 2559 if (V1->getType()->isIntOrIntVectorTy()) { 2560 // Are any known bits in V1 contradictory to known bits in V2? If V1 2561 // has a known zero where V2 has a known one, they must not be equal. 2562 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2563 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2564 2565 if (Known1.Zero.intersects(Known2.One) || 2566 Known2.Zero.intersects(Known1.One)) 2567 return true; 2568 } 2569 return false; 2570 } 2571 2572 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2573 /// simplify operations downstream. Mask is known to be zero for bits that V 2574 /// cannot have. 2575 /// 2576 /// This function is defined on values with integer type, values with pointer 2577 /// type, and vectors of integers. In the case 2578 /// where V is a vector, the mask, known zero, and known one values are the 2579 /// same width as the vector element, and the bit is set only if it is true 2580 /// for all of the elements in the vector. 2581 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2582 const Query &Q) { 2583 KnownBits Known(Mask.getBitWidth()); 2584 computeKnownBits(V, Known, Depth, Q); 2585 return Mask.isSubsetOf(Known.Zero); 2586 } 2587 2588 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2589 // Returns the input and lower/upper bounds. 2590 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2591 const APInt *&CLow, const APInt *&CHigh) { 2592 assert(isa<Operator>(Select) && 2593 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2594 "Input should be a Select!"); 2595 2596 const Value *LHS = nullptr, *RHS = nullptr; 2597 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2598 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2599 return false; 2600 2601 if (!match(RHS, m_APInt(CLow))) 2602 return false; 2603 2604 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2605 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2606 if (getInverseMinMaxFlavor(SPF) != SPF2) 2607 return false; 2608 2609 if (!match(RHS2, m_APInt(CHigh))) 2610 return false; 2611 2612 if (SPF == SPF_SMIN) 2613 std::swap(CLow, CHigh); 2614 2615 In = LHS2; 2616 return CLow->sle(*CHigh); 2617 } 2618 2619 /// For vector constants, loop over the elements and find the constant with the 2620 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2621 /// or if any element was not analyzed; otherwise, return the count for the 2622 /// element with the minimum number of sign bits. 2623 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2624 const APInt &DemandedElts, 2625 unsigned TyBits) { 2626 const auto *CV = dyn_cast<Constant>(V); 2627 if (!CV || !isa<FixedVectorType>(CV->getType())) 2628 return 0; 2629 2630 unsigned MinSignBits = TyBits; 2631 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2632 for (unsigned i = 0; i != NumElts; ++i) { 2633 if (!DemandedElts[i]) 2634 continue; 2635 // If we find a non-ConstantInt, bail out. 2636 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2637 if (!Elt) 2638 return 0; 2639 2640 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2641 } 2642 2643 return MinSignBits; 2644 } 2645 2646 static unsigned ComputeNumSignBitsImpl(const Value *V, 2647 const APInt &DemandedElts, 2648 unsigned Depth, const Query &Q); 2649 2650 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2651 unsigned Depth, const Query &Q) { 2652 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2653 assert(Result > 0 && "At least one sign bit needs to be present!"); 2654 return Result; 2655 } 2656 2657 /// Return the number of times the sign bit of the register is replicated into 2658 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2659 /// (itself), but other cases can give us information. For example, immediately 2660 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2661 /// other, so we return 3. For vectors, return the number of sign bits for the 2662 /// vector element with the minimum number of known sign bits of the demanded 2663 /// elements in the vector specified by DemandedElts. 2664 static unsigned ComputeNumSignBitsImpl(const Value *V, 2665 const APInt &DemandedElts, 2666 unsigned Depth, const Query &Q) { 2667 Type *Ty = V->getType(); 2668 2669 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2670 // vector 2671 if (isa<ScalableVectorType>(Ty)) 2672 return 1; 2673 2674 #ifndef NDEBUG 2675 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2676 2677 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2678 assert( 2679 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2680 "DemandedElt width should equal the fixed vector number of elements"); 2681 } else { 2682 assert(DemandedElts == APInt(1, 1) && 2683 "DemandedElt width should be 1 for scalars"); 2684 } 2685 #endif 2686 2687 // We return the minimum number of sign bits that are guaranteed to be present 2688 // in V, so for undef we have to conservatively return 1. We don't have the 2689 // same behavior for poison though -- that's a FIXME today. 2690 2691 Type *ScalarTy = Ty->getScalarType(); 2692 unsigned TyBits = ScalarTy->isPointerTy() ? 2693 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2694 Q.DL.getTypeSizeInBits(ScalarTy); 2695 2696 unsigned Tmp, Tmp2; 2697 unsigned FirstAnswer = 1; 2698 2699 // Note that ConstantInt is handled by the general computeKnownBits case 2700 // below. 2701 2702 if (Depth == MaxAnalysisRecursionDepth) 2703 return 1; 2704 2705 if (auto *U = dyn_cast<Operator>(V)) { 2706 switch (Operator::getOpcode(V)) { 2707 default: break; 2708 case Instruction::SExt: 2709 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2710 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2711 2712 case Instruction::SDiv: { 2713 const APInt *Denominator; 2714 // sdiv X, C -> adds log(C) sign bits. 2715 if (match(U->getOperand(1), m_APInt(Denominator))) { 2716 2717 // Ignore non-positive denominator. 2718 if (!Denominator->isStrictlyPositive()) 2719 break; 2720 2721 // Calculate the incoming numerator bits. 2722 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2723 2724 // Add floor(log(C)) bits to the numerator bits. 2725 return std::min(TyBits, NumBits + Denominator->logBase2()); 2726 } 2727 break; 2728 } 2729 2730 case Instruction::SRem: { 2731 const APInt *Denominator; 2732 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2733 // positive constant. This let us put a lower bound on the number of sign 2734 // bits. 2735 if (match(U->getOperand(1), m_APInt(Denominator))) { 2736 2737 // Ignore non-positive denominator. 2738 if (!Denominator->isStrictlyPositive()) 2739 break; 2740 2741 // Calculate the incoming numerator bits. SRem by a positive constant 2742 // can't lower the number of sign bits. 2743 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2744 2745 // Calculate the leading sign bit constraints by examining the 2746 // denominator. Given that the denominator is positive, there are two 2747 // cases: 2748 // 2749 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2750 // (1 << ceilLogBase2(C)). 2751 // 2752 // 2. the numerator is negative. Then the result range is (-C,0] and 2753 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2754 // 2755 // Thus a lower bound on the number of sign bits is `TyBits - 2756 // ceilLogBase2(C)`. 2757 2758 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2759 return std::max(NumrBits, ResBits); 2760 } 2761 break; 2762 } 2763 2764 case Instruction::AShr: { 2765 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2766 // ashr X, C -> adds C sign bits. Vectors too. 2767 const APInt *ShAmt; 2768 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2769 if (ShAmt->uge(TyBits)) 2770 break; // Bad shift. 2771 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2772 Tmp += ShAmtLimited; 2773 if (Tmp > TyBits) Tmp = TyBits; 2774 } 2775 return Tmp; 2776 } 2777 case Instruction::Shl: { 2778 const APInt *ShAmt; 2779 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2780 // shl destroys sign bits. 2781 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2782 if (ShAmt->uge(TyBits) || // Bad shift. 2783 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2784 Tmp2 = ShAmt->getZExtValue(); 2785 return Tmp - Tmp2; 2786 } 2787 break; 2788 } 2789 case Instruction::And: 2790 case Instruction::Or: 2791 case Instruction::Xor: // NOT is handled here. 2792 // Logical binary ops preserve the number of sign bits at the worst. 2793 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2794 if (Tmp != 1) { 2795 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2796 FirstAnswer = std::min(Tmp, Tmp2); 2797 // We computed what we know about the sign bits as our first 2798 // answer. Now proceed to the generic code that uses 2799 // computeKnownBits, and pick whichever answer is better. 2800 } 2801 break; 2802 2803 case Instruction::Select: { 2804 // If we have a clamp pattern, we know that the number of sign bits will 2805 // be the minimum of the clamp min/max range. 2806 const Value *X; 2807 const APInt *CLow, *CHigh; 2808 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2809 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2810 2811 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2812 if (Tmp == 1) break; 2813 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2814 return std::min(Tmp, Tmp2); 2815 } 2816 2817 case Instruction::Add: 2818 // Add can have at most one carry bit. Thus we know that the output 2819 // is, at worst, one more bit than the inputs. 2820 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2821 if (Tmp == 1) break; 2822 2823 // Special case decrementing a value (ADD X, -1): 2824 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2825 if (CRHS->isAllOnesValue()) { 2826 KnownBits Known(TyBits); 2827 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2828 2829 // If the input is known to be 0 or 1, the output is 0/-1, which is 2830 // all sign bits set. 2831 if ((Known.Zero | 1).isAllOnesValue()) 2832 return TyBits; 2833 2834 // If we are subtracting one from a positive number, there is no carry 2835 // out of the result. 2836 if (Known.isNonNegative()) 2837 return Tmp; 2838 } 2839 2840 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2841 if (Tmp2 == 1) break; 2842 return std::min(Tmp, Tmp2) - 1; 2843 2844 case Instruction::Sub: 2845 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2846 if (Tmp2 == 1) break; 2847 2848 // Handle NEG. 2849 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2850 if (CLHS->isNullValue()) { 2851 KnownBits Known(TyBits); 2852 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2853 // If the input is known to be 0 or 1, the output is 0/-1, which is 2854 // all sign bits set. 2855 if ((Known.Zero | 1).isAllOnesValue()) 2856 return TyBits; 2857 2858 // If the input is known to be positive (the sign bit is known clear), 2859 // the output of the NEG has the same number of sign bits as the 2860 // input. 2861 if (Known.isNonNegative()) 2862 return Tmp2; 2863 2864 // Otherwise, we treat this like a SUB. 2865 } 2866 2867 // Sub can have at most one carry bit. Thus we know that the output 2868 // is, at worst, one more bit than the inputs. 2869 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2870 if (Tmp == 1) break; 2871 return std::min(Tmp, Tmp2) - 1; 2872 2873 case Instruction::Mul: { 2874 // The output of the Mul can be at most twice the valid bits in the 2875 // inputs. 2876 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2877 if (SignBitsOp0 == 1) break; 2878 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2879 if (SignBitsOp1 == 1) break; 2880 unsigned OutValidBits = 2881 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2882 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2883 } 2884 2885 case Instruction::PHI: { 2886 const PHINode *PN = cast<PHINode>(U); 2887 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2888 // Don't analyze large in-degree PHIs. 2889 if (NumIncomingValues > 4) break; 2890 // Unreachable blocks may have zero-operand PHI nodes. 2891 if (NumIncomingValues == 0) break; 2892 2893 // Take the minimum of all incoming values. This can't infinitely loop 2894 // because of our depth threshold. 2895 Query RecQ = Q; 2896 Tmp = TyBits; 2897 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2898 if (Tmp == 1) return Tmp; 2899 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2900 Tmp = std::min( 2901 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2902 } 2903 return Tmp; 2904 } 2905 2906 case Instruction::Trunc: 2907 // FIXME: it's tricky to do anything useful for this, but it is an 2908 // important case for targets like X86. 2909 break; 2910 2911 case Instruction::ExtractElement: 2912 // Look through extract element. At the moment we keep this simple and 2913 // skip tracking the specific element. But at least we might find 2914 // information valid for all elements of the vector (for example if vector 2915 // is sign extended, shifted, etc). 2916 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2917 2918 case Instruction::ShuffleVector: { 2919 // Collect the minimum number of sign bits that are shared by every vector 2920 // element referenced by the shuffle. 2921 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2922 if (!Shuf) { 2923 // FIXME: Add support for shufflevector constant expressions. 2924 return 1; 2925 } 2926 APInt DemandedLHS, DemandedRHS; 2927 // For undef elements, we don't know anything about the common state of 2928 // the shuffle result. 2929 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2930 return 1; 2931 Tmp = std::numeric_limits<unsigned>::max(); 2932 if (!!DemandedLHS) { 2933 const Value *LHS = Shuf->getOperand(0); 2934 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2935 } 2936 // If we don't know anything, early out and try computeKnownBits 2937 // fall-back. 2938 if (Tmp == 1) 2939 break; 2940 if (!!DemandedRHS) { 2941 const Value *RHS = Shuf->getOperand(1); 2942 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2943 Tmp = std::min(Tmp, Tmp2); 2944 } 2945 // If we don't know anything, early out and try computeKnownBits 2946 // fall-back. 2947 if (Tmp == 1) 2948 break; 2949 assert(Tmp <= Ty->getScalarSizeInBits() && 2950 "Failed to determine minimum sign bits"); 2951 return Tmp; 2952 } 2953 case Instruction::Call: { 2954 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2955 switch (II->getIntrinsicID()) { 2956 default: break; 2957 case Intrinsic::abs: 2958 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2959 if (Tmp == 1) break; 2960 2961 // Absolute value reduces number of sign bits by at most 1. 2962 return Tmp - 1; 2963 } 2964 } 2965 } 2966 } 2967 } 2968 2969 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2970 // use this information. 2971 2972 // If we can examine all elements of a vector constant successfully, we're 2973 // done (we can't do any better than that). If not, keep trying. 2974 if (unsigned VecSignBits = 2975 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2976 return VecSignBits; 2977 2978 KnownBits Known(TyBits); 2979 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2980 2981 // If we know that the sign bit is either zero or one, determine the number of 2982 // identical bits in the top of the input value. 2983 return std::max(FirstAnswer, Known.countMinSignBits()); 2984 } 2985 2986 /// This function computes the integer multiple of Base that equals V. 2987 /// If successful, it returns true and returns the multiple in 2988 /// Multiple. If unsuccessful, it returns false. It looks 2989 /// through SExt instructions only if LookThroughSExt is true. 2990 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2991 bool LookThroughSExt, unsigned Depth) { 2992 assert(V && "No Value?"); 2993 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2994 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2995 2996 Type *T = V->getType(); 2997 2998 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2999 3000 if (Base == 0) 3001 return false; 3002 3003 if (Base == 1) { 3004 Multiple = V; 3005 return true; 3006 } 3007 3008 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3009 Constant *BaseVal = ConstantInt::get(T, Base); 3010 if (CO && CO == BaseVal) { 3011 // Multiple is 1. 3012 Multiple = ConstantInt::get(T, 1); 3013 return true; 3014 } 3015 3016 if (CI && CI->getZExtValue() % Base == 0) { 3017 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3018 return true; 3019 } 3020 3021 if (Depth == MaxAnalysisRecursionDepth) return false; 3022 3023 Operator *I = dyn_cast<Operator>(V); 3024 if (!I) return false; 3025 3026 switch (I->getOpcode()) { 3027 default: break; 3028 case Instruction::SExt: 3029 if (!LookThroughSExt) return false; 3030 // otherwise fall through to ZExt 3031 LLVM_FALLTHROUGH; 3032 case Instruction::ZExt: 3033 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3034 LookThroughSExt, Depth+1); 3035 case Instruction::Shl: 3036 case Instruction::Mul: { 3037 Value *Op0 = I->getOperand(0); 3038 Value *Op1 = I->getOperand(1); 3039 3040 if (I->getOpcode() == Instruction::Shl) { 3041 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3042 if (!Op1CI) return false; 3043 // Turn Op0 << Op1 into Op0 * 2^Op1 3044 APInt Op1Int = Op1CI->getValue(); 3045 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3046 APInt API(Op1Int.getBitWidth(), 0); 3047 API.setBit(BitToSet); 3048 Op1 = ConstantInt::get(V->getContext(), API); 3049 } 3050 3051 Value *Mul0 = nullptr; 3052 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3053 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3054 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3055 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3056 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3057 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3058 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3059 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3060 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3061 3062 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3063 Multiple = ConstantExpr::getMul(MulC, Op1C); 3064 return true; 3065 } 3066 3067 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3068 if (Mul0CI->getValue() == 1) { 3069 // V == Base * Op1, so return Op1 3070 Multiple = Op1; 3071 return true; 3072 } 3073 } 3074 3075 Value *Mul1 = nullptr; 3076 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3077 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3078 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3079 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3080 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3081 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3082 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3083 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3084 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3085 3086 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3087 Multiple = ConstantExpr::getMul(MulC, Op0C); 3088 return true; 3089 } 3090 3091 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3092 if (Mul1CI->getValue() == 1) { 3093 // V == Base * Op0, so return Op0 3094 Multiple = Op0; 3095 return true; 3096 } 3097 } 3098 } 3099 } 3100 3101 // We could not determine if V is a multiple of Base. 3102 return false; 3103 } 3104 3105 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3106 const TargetLibraryInfo *TLI) { 3107 const Function *F = CB.getCalledFunction(); 3108 if (!F) 3109 return Intrinsic::not_intrinsic; 3110 3111 if (F->isIntrinsic()) 3112 return F->getIntrinsicID(); 3113 3114 // We are going to infer semantics of a library function based on mapping it 3115 // to an LLVM intrinsic. Check that the library function is available from 3116 // this callbase and in this environment. 3117 LibFunc Func; 3118 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3119 !CB.onlyReadsMemory()) 3120 return Intrinsic::not_intrinsic; 3121 3122 switch (Func) { 3123 default: 3124 break; 3125 case LibFunc_sin: 3126 case LibFunc_sinf: 3127 case LibFunc_sinl: 3128 return Intrinsic::sin; 3129 case LibFunc_cos: 3130 case LibFunc_cosf: 3131 case LibFunc_cosl: 3132 return Intrinsic::cos; 3133 case LibFunc_exp: 3134 case LibFunc_expf: 3135 case LibFunc_expl: 3136 return Intrinsic::exp; 3137 case LibFunc_exp2: 3138 case LibFunc_exp2f: 3139 case LibFunc_exp2l: 3140 return Intrinsic::exp2; 3141 case LibFunc_log: 3142 case LibFunc_logf: 3143 case LibFunc_logl: 3144 return Intrinsic::log; 3145 case LibFunc_log10: 3146 case LibFunc_log10f: 3147 case LibFunc_log10l: 3148 return Intrinsic::log10; 3149 case LibFunc_log2: 3150 case LibFunc_log2f: 3151 case LibFunc_log2l: 3152 return Intrinsic::log2; 3153 case LibFunc_fabs: 3154 case LibFunc_fabsf: 3155 case LibFunc_fabsl: 3156 return Intrinsic::fabs; 3157 case LibFunc_fmin: 3158 case LibFunc_fminf: 3159 case LibFunc_fminl: 3160 return Intrinsic::minnum; 3161 case LibFunc_fmax: 3162 case LibFunc_fmaxf: 3163 case LibFunc_fmaxl: 3164 return Intrinsic::maxnum; 3165 case LibFunc_copysign: 3166 case LibFunc_copysignf: 3167 case LibFunc_copysignl: 3168 return Intrinsic::copysign; 3169 case LibFunc_floor: 3170 case LibFunc_floorf: 3171 case LibFunc_floorl: 3172 return Intrinsic::floor; 3173 case LibFunc_ceil: 3174 case LibFunc_ceilf: 3175 case LibFunc_ceill: 3176 return Intrinsic::ceil; 3177 case LibFunc_trunc: 3178 case LibFunc_truncf: 3179 case LibFunc_truncl: 3180 return Intrinsic::trunc; 3181 case LibFunc_rint: 3182 case LibFunc_rintf: 3183 case LibFunc_rintl: 3184 return Intrinsic::rint; 3185 case LibFunc_nearbyint: 3186 case LibFunc_nearbyintf: 3187 case LibFunc_nearbyintl: 3188 return Intrinsic::nearbyint; 3189 case LibFunc_round: 3190 case LibFunc_roundf: 3191 case LibFunc_roundl: 3192 return Intrinsic::round; 3193 case LibFunc_roundeven: 3194 case LibFunc_roundevenf: 3195 case LibFunc_roundevenl: 3196 return Intrinsic::roundeven; 3197 case LibFunc_pow: 3198 case LibFunc_powf: 3199 case LibFunc_powl: 3200 return Intrinsic::pow; 3201 case LibFunc_sqrt: 3202 case LibFunc_sqrtf: 3203 case LibFunc_sqrtl: 3204 return Intrinsic::sqrt; 3205 } 3206 3207 return Intrinsic::not_intrinsic; 3208 } 3209 3210 /// Return true if we can prove that the specified FP value is never equal to 3211 /// -0.0. 3212 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3213 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3214 /// the same as +0.0 in floating-point ops. 3215 /// 3216 /// NOTE: this function will need to be revisited when we support non-default 3217 /// rounding modes! 3218 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3219 unsigned Depth) { 3220 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3221 return !CFP->getValueAPF().isNegZero(); 3222 3223 if (Depth == MaxAnalysisRecursionDepth) 3224 return false; 3225 3226 auto *Op = dyn_cast<Operator>(V); 3227 if (!Op) 3228 return false; 3229 3230 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3231 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3232 return true; 3233 3234 // sitofp and uitofp turn into +0.0 for zero. 3235 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3236 return true; 3237 3238 if (auto *Call = dyn_cast<CallInst>(Op)) { 3239 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3240 switch (IID) { 3241 default: 3242 break; 3243 // sqrt(-0.0) = -0.0, no other negative results are possible. 3244 case Intrinsic::sqrt: 3245 case Intrinsic::canonicalize: 3246 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3247 // fabs(x) != -0.0 3248 case Intrinsic::fabs: 3249 return true; 3250 } 3251 } 3252 3253 return false; 3254 } 3255 3256 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3257 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3258 /// bit despite comparing equal. 3259 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3260 const TargetLibraryInfo *TLI, 3261 bool SignBitOnly, 3262 unsigned Depth) { 3263 // TODO: This function does not do the right thing when SignBitOnly is true 3264 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3265 // which flips the sign bits of NaNs. See 3266 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3267 3268 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3269 return !CFP->getValueAPF().isNegative() || 3270 (!SignBitOnly && CFP->getValueAPF().isZero()); 3271 } 3272 3273 // Handle vector of constants. 3274 if (auto *CV = dyn_cast<Constant>(V)) { 3275 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3276 unsigned NumElts = CVFVTy->getNumElements(); 3277 for (unsigned i = 0; i != NumElts; ++i) { 3278 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3279 if (!CFP) 3280 return false; 3281 if (CFP->getValueAPF().isNegative() && 3282 (SignBitOnly || !CFP->getValueAPF().isZero())) 3283 return false; 3284 } 3285 3286 // All non-negative ConstantFPs. 3287 return true; 3288 } 3289 } 3290 3291 if (Depth == MaxAnalysisRecursionDepth) 3292 return false; 3293 3294 const Operator *I = dyn_cast<Operator>(V); 3295 if (!I) 3296 return false; 3297 3298 switch (I->getOpcode()) { 3299 default: 3300 break; 3301 // Unsigned integers are always nonnegative. 3302 case Instruction::UIToFP: 3303 return true; 3304 case Instruction::FMul: 3305 case Instruction::FDiv: 3306 // X * X is always non-negative or a NaN. 3307 // X / X is always exactly 1.0 or a NaN. 3308 if (I->getOperand(0) == I->getOperand(1) && 3309 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3310 return true; 3311 3312 LLVM_FALLTHROUGH; 3313 case Instruction::FAdd: 3314 case Instruction::FRem: 3315 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3316 Depth + 1) && 3317 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3318 Depth + 1); 3319 case Instruction::Select: 3320 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3321 Depth + 1) && 3322 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3323 Depth + 1); 3324 case Instruction::FPExt: 3325 case Instruction::FPTrunc: 3326 // Widening/narrowing never change sign. 3327 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3328 Depth + 1); 3329 case Instruction::ExtractElement: 3330 // Look through extract element. At the moment we keep this simple and skip 3331 // tracking the specific element. But at least we might find information 3332 // valid for all elements of the vector. 3333 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3334 Depth + 1); 3335 case Instruction::Call: 3336 const auto *CI = cast<CallInst>(I); 3337 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3338 switch (IID) { 3339 default: 3340 break; 3341 case Intrinsic::maxnum: { 3342 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3343 auto isPositiveNum = [&](Value *V) { 3344 if (SignBitOnly) { 3345 // With SignBitOnly, this is tricky because the result of 3346 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3347 // a constant strictly greater than 0.0. 3348 const APFloat *C; 3349 return match(V, m_APFloat(C)) && 3350 *C > APFloat::getZero(C->getSemantics()); 3351 } 3352 3353 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3354 // maxnum can't be ordered-less-than-zero. 3355 return isKnownNeverNaN(V, TLI) && 3356 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3357 }; 3358 3359 // TODO: This could be improved. We could also check that neither operand 3360 // has its sign bit set (and at least 1 is not-NAN?). 3361 return isPositiveNum(V0) || isPositiveNum(V1); 3362 } 3363 3364 case Intrinsic::maximum: 3365 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3366 Depth + 1) || 3367 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3368 Depth + 1); 3369 case Intrinsic::minnum: 3370 case Intrinsic::minimum: 3371 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3372 Depth + 1) && 3373 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3374 Depth + 1); 3375 case Intrinsic::exp: 3376 case Intrinsic::exp2: 3377 case Intrinsic::fabs: 3378 return true; 3379 3380 case Intrinsic::sqrt: 3381 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3382 if (!SignBitOnly) 3383 return true; 3384 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3385 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3386 3387 case Intrinsic::powi: 3388 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3389 // powi(x,n) is non-negative if n is even. 3390 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3391 return true; 3392 } 3393 // TODO: This is not correct. Given that exp is an integer, here are the 3394 // ways that pow can return a negative value: 3395 // 3396 // pow(x, exp) --> negative if exp is odd and x is negative. 3397 // pow(-0, exp) --> -inf if exp is negative odd. 3398 // pow(-0, exp) --> -0 if exp is positive odd. 3399 // pow(-inf, exp) --> -0 if exp is negative odd. 3400 // pow(-inf, exp) --> -inf if exp is positive odd. 3401 // 3402 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3403 // but we must return false if x == -0. Unfortunately we do not currently 3404 // have a way of expressing this constraint. See details in 3405 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3406 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3407 Depth + 1); 3408 3409 case Intrinsic::fma: 3410 case Intrinsic::fmuladd: 3411 // x*x+y is non-negative if y is non-negative. 3412 return I->getOperand(0) == I->getOperand(1) && 3413 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3414 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3415 Depth + 1); 3416 } 3417 break; 3418 } 3419 return false; 3420 } 3421 3422 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3423 const TargetLibraryInfo *TLI) { 3424 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3425 } 3426 3427 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3428 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3429 } 3430 3431 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3432 unsigned Depth) { 3433 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3434 3435 // If we're told that infinities won't happen, assume they won't. 3436 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3437 if (FPMathOp->hasNoInfs()) 3438 return true; 3439 3440 // Handle scalar constants. 3441 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3442 return !CFP->isInfinity(); 3443 3444 if (Depth == MaxAnalysisRecursionDepth) 3445 return false; 3446 3447 if (auto *Inst = dyn_cast<Instruction>(V)) { 3448 switch (Inst->getOpcode()) { 3449 case Instruction::Select: { 3450 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3451 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3452 } 3453 case Instruction::SIToFP: 3454 case Instruction::UIToFP: { 3455 // Get width of largest magnitude integer (remove a bit if signed). 3456 // This still works for a signed minimum value because the largest FP 3457 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3458 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3459 if (Inst->getOpcode() == Instruction::SIToFP) 3460 --IntSize; 3461 3462 // If the exponent of the largest finite FP value can hold the largest 3463 // integer, the result of the cast must be finite. 3464 Type *FPTy = Inst->getType()->getScalarType(); 3465 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3466 } 3467 default: 3468 break; 3469 } 3470 } 3471 3472 // try to handle fixed width vector constants 3473 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3474 if (VFVTy && isa<Constant>(V)) { 3475 // For vectors, verify that each element is not infinity. 3476 unsigned NumElts = VFVTy->getNumElements(); 3477 for (unsigned i = 0; i != NumElts; ++i) { 3478 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3479 if (!Elt) 3480 return false; 3481 if (isa<UndefValue>(Elt)) 3482 continue; 3483 auto *CElt = dyn_cast<ConstantFP>(Elt); 3484 if (!CElt || CElt->isInfinity()) 3485 return false; 3486 } 3487 // All elements were confirmed non-infinity or undefined. 3488 return true; 3489 } 3490 3491 // was not able to prove that V never contains infinity 3492 return false; 3493 } 3494 3495 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3496 unsigned Depth) { 3497 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3498 3499 // If we're told that NaNs won't happen, assume they won't. 3500 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3501 if (FPMathOp->hasNoNaNs()) 3502 return true; 3503 3504 // Handle scalar constants. 3505 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3506 return !CFP->isNaN(); 3507 3508 if (Depth == MaxAnalysisRecursionDepth) 3509 return false; 3510 3511 if (auto *Inst = dyn_cast<Instruction>(V)) { 3512 switch (Inst->getOpcode()) { 3513 case Instruction::FAdd: 3514 case Instruction::FSub: 3515 // Adding positive and negative infinity produces NaN. 3516 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3517 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3518 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3519 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3520 3521 case Instruction::FMul: 3522 // Zero multiplied with infinity produces NaN. 3523 // FIXME: If neither side can be zero fmul never produces NaN. 3524 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3525 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3526 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3527 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3528 3529 case Instruction::FDiv: 3530 case Instruction::FRem: 3531 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3532 return false; 3533 3534 case Instruction::Select: { 3535 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3536 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3537 } 3538 case Instruction::SIToFP: 3539 case Instruction::UIToFP: 3540 return true; 3541 case Instruction::FPTrunc: 3542 case Instruction::FPExt: 3543 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3544 default: 3545 break; 3546 } 3547 } 3548 3549 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3550 switch (II->getIntrinsicID()) { 3551 case Intrinsic::canonicalize: 3552 case Intrinsic::fabs: 3553 case Intrinsic::copysign: 3554 case Intrinsic::exp: 3555 case Intrinsic::exp2: 3556 case Intrinsic::floor: 3557 case Intrinsic::ceil: 3558 case Intrinsic::trunc: 3559 case Intrinsic::rint: 3560 case Intrinsic::nearbyint: 3561 case Intrinsic::round: 3562 case Intrinsic::roundeven: 3563 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3564 case Intrinsic::sqrt: 3565 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3566 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3567 case Intrinsic::minnum: 3568 case Intrinsic::maxnum: 3569 // If either operand is not NaN, the result is not NaN. 3570 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3571 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3572 default: 3573 return false; 3574 } 3575 } 3576 3577 // Try to handle fixed width vector constants 3578 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3579 if (VFVTy && isa<Constant>(V)) { 3580 // For vectors, verify that each element is not NaN. 3581 unsigned NumElts = VFVTy->getNumElements(); 3582 for (unsigned i = 0; i != NumElts; ++i) { 3583 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3584 if (!Elt) 3585 return false; 3586 if (isa<UndefValue>(Elt)) 3587 continue; 3588 auto *CElt = dyn_cast<ConstantFP>(Elt); 3589 if (!CElt || CElt->isNaN()) 3590 return false; 3591 } 3592 // All elements were confirmed not-NaN or undefined. 3593 return true; 3594 } 3595 3596 // Was not able to prove that V never contains NaN 3597 return false; 3598 } 3599 3600 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3601 3602 // All byte-wide stores are splatable, even of arbitrary variables. 3603 if (V->getType()->isIntegerTy(8)) 3604 return V; 3605 3606 LLVMContext &Ctx = V->getContext(); 3607 3608 // Undef don't care. 3609 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3610 if (isa<UndefValue>(V)) 3611 return UndefInt8; 3612 3613 // Return Undef for zero-sized type. 3614 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3615 return UndefInt8; 3616 3617 Constant *C = dyn_cast<Constant>(V); 3618 if (!C) { 3619 // Conceptually, we could handle things like: 3620 // %a = zext i8 %X to i16 3621 // %b = shl i16 %a, 8 3622 // %c = or i16 %a, %b 3623 // but until there is an example that actually needs this, it doesn't seem 3624 // worth worrying about. 3625 return nullptr; 3626 } 3627 3628 // Handle 'null' ConstantArrayZero etc. 3629 if (C->isNullValue()) 3630 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3631 3632 // Constant floating-point values can be handled as integer values if the 3633 // corresponding integer value is "byteable". An important case is 0.0. 3634 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3635 Type *Ty = nullptr; 3636 if (CFP->getType()->isHalfTy()) 3637 Ty = Type::getInt16Ty(Ctx); 3638 else if (CFP->getType()->isFloatTy()) 3639 Ty = Type::getInt32Ty(Ctx); 3640 else if (CFP->getType()->isDoubleTy()) 3641 Ty = Type::getInt64Ty(Ctx); 3642 // Don't handle long double formats, which have strange constraints. 3643 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3644 : nullptr; 3645 } 3646 3647 // We can handle constant integers that are multiple of 8 bits. 3648 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3649 if (CI->getBitWidth() % 8 == 0) { 3650 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3651 if (!CI->getValue().isSplat(8)) 3652 return nullptr; 3653 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3654 } 3655 } 3656 3657 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3658 if (CE->getOpcode() == Instruction::IntToPtr) { 3659 auto PS = DL.getPointerSizeInBits( 3660 cast<PointerType>(CE->getType())->getAddressSpace()); 3661 return isBytewiseValue( 3662 ConstantExpr::getIntegerCast(CE->getOperand(0), 3663 Type::getIntNTy(Ctx, PS), false), 3664 DL); 3665 } 3666 } 3667 3668 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3669 if (LHS == RHS) 3670 return LHS; 3671 if (!LHS || !RHS) 3672 return nullptr; 3673 if (LHS == UndefInt8) 3674 return RHS; 3675 if (RHS == UndefInt8) 3676 return LHS; 3677 return nullptr; 3678 }; 3679 3680 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3681 Value *Val = UndefInt8; 3682 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3683 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3684 return nullptr; 3685 return Val; 3686 } 3687 3688 if (isa<ConstantAggregate>(C)) { 3689 Value *Val = UndefInt8; 3690 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3691 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3692 return nullptr; 3693 return Val; 3694 } 3695 3696 // Don't try to handle the handful of other constants. 3697 return nullptr; 3698 } 3699 3700 // This is the recursive version of BuildSubAggregate. It takes a few different 3701 // arguments. Idxs is the index within the nested struct From that we are 3702 // looking at now (which is of type IndexedType). IdxSkip is the number of 3703 // indices from Idxs that should be left out when inserting into the resulting 3704 // struct. To is the result struct built so far, new insertvalue instructions 3705 // build on that. 3706 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3707 SmallVectorImpl<unsigned> &Idxs, 3708 unsigned IdxSkip, 3709 Instruction *InsertBefore) { 3710 StructType *STy = dyn_cast<StructType>(IndexedType); 3711 if (STy) { 3712 // Save the original To argument so we can modify it 3713 Value *OrigTo = To; 3714 // General case, the type indexed by Idxs is a struct 3715 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3716 // Process each struct element recursively 3717 Idxs.push_back(i); 3718 Value *PrevTo = To; 3719 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3720 InsertBefore); 3721 Idxs.pop_back(); 3722 if (!To) { 3723 // Couldn't find any inserted value for this index? Cleanup 3724 while (PrevTo != OrigTo) { 3725 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3726 PrevTo = Del->getAggregateOperand(); 3727 Del->eraseFromParent(); 3728 } 3729 // Stop processing elements 3730 break; 3731 } 3732 } 3733 // If we successfully found a value for each of our subaggregates 3734 if (To) 3735 return To; 3736 } 3737 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3738 // the struct's elements had a value that was inserted directly. In the latter 3739 // case, perhaps we can't determine each of the subelements individually, but 3740 // we might be able to find the complete struct somewhere. 3741 3742 // Find the value that is at that particular spot 3743 Value *V = FindInsertedValue(From, Idxs); 3744 3745 if (!V) 3746 return nullptr; 3747 3748 // Insert the value in the new (sub) aggregate 3749 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3750 "tmp", InsertBefore); 3751 } 3752 3753 // This helper takes a nested struct and extracts a part of it (which is again a 3754 // struct) into a new value. For example, given the struct: 3755 // { a, { b, { c, d }, e } } 3756 // and the indices "1, 1" this returns 3757 // { c, d }. 3758 // 3759 // It does this by inserting an insertvalue for each element in the resulting 3760 // struct, as opposed to just inserting a single struct. This will only work if 3761 // each of the elements of the substruct are known (ie, inserted into From by an 3762 // insertvalue instruction somewhere). 3763 // 3764 // All inserted insertvalue instructions are inserted before InsertBefore 3765 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3766 Instruction *InsertBefore) { 3767 assert(InsertBefore && "Must have someplace to insert!"); 3768 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3769 idx_range); 3770 Value *To = UndefValue::get(IndexedType); 3771 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3772 unsigned IdxSkip = Idxs.size(); 3773 3774 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3775 } 3776 3777 /// Given an aggregate and a sequence of indices, see if the scalar value 3778 /// indexed is already around as a register, for example if it was inserted 3779 /// directly into the aggregate. 3780 /// 3781 /// If InsertBefore is not null, this function will duplicate (modified) 3782 /// insertvalues when a part of a nested struct is extracted. 3783 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3784 Instruction *InsertBefore) { 3785 // Nothing to index? Just return V then (this is useful at the end of our 3786 // recursion). 3787 if (idx_range.empty()) 3788 return V; 3789 // We have indices, so V should have an indexable type. 3790 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3791 "Not looking at a struct or array?"); 3792 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3793 "Invalid indices for type?"); 3794 3795 if (Constant *C = dyn_cast<Constant>(V)) { 3796 C = C->getAggregateElement(idx_range[0]); 3797 if (!C) return nullptr; 3798 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3799 } 3800 3801 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3802 // Loop the indices for the insertvalue instruction in parallel with the 3803 // requested indices 3804 const unsigned *req_idx = idx_range.begin(); 3805 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3806 i != e; ++i, ++req_idx) { 3807 if (req_idx == idx_range.end()) { 3808 // We can't handle this without inserting insertvalues 3809 if (!InsertBefore) 3810 return nullptr; 3811 3812 // The requested index identifies a part of a nested aggregate. Handle 3813 // this specially. For example, 3814 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3815 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3816 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3817 // This can be changed into 3818 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3819 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3820 // which allows the unused 0,0 element from the nested struct to be 3821 // removed. 3822 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3823 InsertBefore); 3824 } 3825 3826 // This insert value inserts something else than what we are looking for. 3827 // See if the (aggregate) value inserted into has the value we are 3828 // looking for, then. 3829 if (*req_idx != *i) 3830 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3831 InsertBefore); 3832 } 3833 // If we end up here, the indices of the insertvalue match with those 3834 // requested (though possibly only partially). Now we recursively look at 3835 // the inserted value, passing any remaining indices. 3836 return FindInsertedValue(I->getInsertedValueOperand(), 3837 makeArrayRef(req_idx, idx_range.end()), 3838 InsertBefore); 3839 } 3840 3841 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3842 // If we're extracting a value from an aggregate that was extracted from 3843 // something else, we can extract from that something else directly instead. 3844 // However, we will need to chain I's indices with the requested indices. 3845 3846 // Calculate the number of indices required 3847 unsigned size = I->getNumIndices() + idx_range.size(); 3848 // Allocate some space to put the new indices in 3849 SmallVector<unsigned, 5> Idxs; 3850 Idxs.reserve(size); 3851 // Add indices from the extract value instruction 3852 Idxs.append(I->idx_begin(), I->idx_end()); 3853 3854 // Add requested indices 3855 Idxs.append(idx_range.begin(), idx_range.end()); 3856 3857 assert(Idxs.size() == size 3858 && "Number of indices added not correct?"); 3859 3860 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3861 } 3862 // Otherwise, we don't know (such as, extracting from a function return value 3863 // or load instruction) 3864 return nullptr; 3865 } 3866 3867 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3868 unsigned CharSize) { 3869 // Make sure the GEP has exactly three arguments. 3870 if (GEP->getNumOperands() != 3) 3871 return false; 3872 3873 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3874 // CharSize. 3875 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3876 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3877 return false; 3878 3879 // Check to make sure that the first operand of the GEP is an integer and 3880 // has value 0 so that we are sure we're indexing into the initializer. 3881 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3882 if (!FirstIdx || !FirstIdx->isZero()) 3883 return false; 3884 3885 return true; 3886 } 3887 3888 bool llvm::getConstantDataArrayInfo(const Value *V, 3889 ConstantDataArraySlice &Slice, 3890 unsigned ElementSize, uint64_t Offset) { 3891 assert(V); 3892 3893 // Look through bitcast instructions and geps. 3894 V = V->stripPointerCasts(); 3895 3896 // If the value is a GEP instruction or constant expression, treat it as an 3897 // offset. 3898 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3899 // The GEP operator should be based on a pointer to string constant, and is 3900 // indexing into the string constant. 3901 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3902 return false; 3903 3904 // If the second index isn't a ConstantInt, then this is a variable index 3905 // into the array. If this occurs, we can't say anything meaningful about 3906 // the string. 3907 uint64_t StartIdx = 0; 3908 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3909 StartIdx = CI->getZExtValue(); 3910 else 3911 return false; 3912 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3913 StartIdx + Offset); 3914 } 3915 3916 // The GEP instruction, constant or instruction, must reference a global 3917 // variable that is a constant and is initialized. The referenced constant 3918 // initializer is the array that we'll use for optimization. 3919 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3920 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3921 return false; 3922 3923 const ConstantDataArray *Array; 3924 ArrayType *ArrayTy; 3925 if (GV->getInitializer()->isNullValue()) { 3926 Type *GVTy = GV->getValueType(); 3927 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3928 // A zeroinitializer for the array; there is no ConstantDataArray. 3929 Array = nullptr; 3930 } else { 3931 const DataLayout &DL = GV->getParent()->getDataLayout(); 3932 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3933 uint64_t Length = SizeInBytes / (ElementSize / 8); 3934 if (Length <= Offset) 3935 return false; 3936 3937 Slice.Array = nullptr; 3938 Slice.Offset = 0; 3939 Slice.Length = Length - Offset; 3940 return true; 3941 } 3942 } else { 3943 // This must be a ConstantDataArray. 3944 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3945 if (!Array) 3946 return false; 3947 ArrayTy = Array->getType(); 3948 } 3949 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3950 return false; 3951 3952 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3953 if (Offset > NumElts) 3954 return false; 3955 3956 Slice.Array = Array; 3957 Slice.Offset = Offset; 3958 Slice.Length = NumElts - Offset; 3959 return true; 3960 } 3961 3962 /// This function computes the length of a null-terminated C string pointed to 3963 /// by V. If successful, it returns true and returns the string in Str. 3964 /// If unsuccessful, it returns false. 3965 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3966 uint64_t Offset, bool TrimAtNul) { 3967 ConstantDataArraySlice Slice; 3968 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3969 return false; 3970 3971 if (Slice.Array == nullptr) { 3972 if (TrimAtNul) { 3973 Str = StringRef(); 3974 return true; 3975 } 3976 if (Slice.Length == 1) { 3977 Str = StringRef("", 1); 3978 return true; 3979 } 3980 // We cannot instantiate a StringRef as we do not have an appropriate string 3981 // of 0s at hand. 3982 return false; 3983 } 3984 3985 // Start out with the entire array in the StringRef. 3986 Str = Slice.Array->getAsString(); 3987 // Skip over 'offset' bytes. 3988 Str = Str.substr(Slice.Offset); 3989 3990 if (TrimAtNul) { 3991 // Trim off the \0 and anything after it. If the array is not nul 3992 // terminated, we just return the whole end of string. The client may know 3993 // some other way that the string is length-bound. 3994 Str = Str.substr(0, Str.find('\0')); 3995 } 3996 return true; 3997 } 3998 3999 // These next two are very similar to the above, but also look through PHI 4000 // nodes. 4001 // TODO: See if we can integrate these two together. 4002 4003 /// If we can compute the length of the string pointed to by 4004 /// the specified pointer, return 'len+1'. If we can't, return 0. 4005 static uint64_t GetStringLengthH(const Value *V, 4006 SmallPtrSetImpl<const PHINode*> &PHIs, 4007 unsigned CharSize) { 4008 // Look through noop bitcast instructions. 4009 V = V->stripPointerCasts(); 4010 4011 // If this is a PHI node, there are two cases: either we have already seen it 4012 // or we haven't. 4013 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4014 if (!PHIs.insert(PN).second) 4015 return ~0ULL; // already in the set. 4016 4017 // If it was new, see if all the input strings are the same length. 4018 uint64_t LenSoFar = ~0ULL; 4019 for (Value *IncValue : PN->incoming_values()) { 4020 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4021 if (Len == 0) return 0; // Unknown length -> unknown. 4022 4023 if (Len == ~0ULL) continue; 4024 4025 if (Len != LenSoFar && LenSoFar != ~0ULL) 4026 return 0; // Disagree -> unknown. 4027 LenSoFar = Len; 4028 } 4029 4030 // Success, all agree. 4031 return LenSoFar; 4032 } 4033 4034 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4035 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4036 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4037 if (Len1 == 0) return 0; 4038 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4039 if (Len2 == 0) return 0; 4040 if (Len1 == ~0ULL) return Len2; 4041 if (Len2 == ~0ULL) return Len1; 4042 if (Len1 != Len2) return 0; 4043 return Len1; 4044 } 4045 4046 // Otherwise, see if we can read the string. 4047 ConstantDataArraySlice Slice; 4048 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4049 return 0; 4050 4051 if (Slice.Array == nullptr) 4052 return 1; 4053 4054 // Search for nul characters 4055 unsigned NullIndex = 0; 4056 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4057 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4058 break; 4059 } 4060 4061 return NullIndex + 1; 4062 } 4063 4064 /// If we can compute the length of the string pointed to by 4065 /// the specified pointer, return 'len+1'. If we can't, return 0. 4066 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4067 if (!V->getType()->isPointerTy()) 4068 return 0; 4069 4070 SmallPtrSet<const PHINode*, 32> PHIs; 4071 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4072 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4073 // an empty string as a length. 4074 return Len == ~0ULL ? 1 : Len; 4075 } 4076 4077 const Value * 4078 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4079 bool MustPreserveNullness) { 4080 assert(Call && 4081 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4082 if (const Value *RV = Call->getReturnedArgOperand()) 4083 return RV; 4084 // This can be used only as a aliasing property. 4085 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4086 Call, MustPreserveNullness)) 4087 return Call->getArgOperand(0); 4088 return nullptr; 4089 } 4090 4091 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4092 const CallBase *Call, bool MustPreserveNullness) { 4093 switch (Call->getIntrinsicID()) { 4094 case Intrinsic::launder_invariant_group: 4095 case Intrinsic::strip_invariant_group: 4096 case Intrinsic::aarch64_irg: 4097 case Intrinsic::aarch64_tagp: 4098 return true; 4099 case Intrinsic::ptrmask: 4100 return !MustPreserveNullness; 4101 default: 4102 return false; 4103 } 4104 } 4105 4106 /// \p PN defines a loop-variant pointer to an object. Check if the 4107 /// previous iteration of the loop was referring to the same object as \p PN. 4108 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4109 const LoopInfo *LI) { 4110 // Find the loop-defined value. 4111 Loop *L = LI->getLoopFor(PN->getParent()); 4112 if (PN->getNumIncomingValues() != 2) 4113 return true; 4114 4115 // Find the value from previous iteration. 4116 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4117 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4118 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4119 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4120 return true; 4121 4122 // If a new pointer is loaded in the loop, the pointer references a different 4123 // object in every iteration. E.g.: 4124 // for (i) 4125 // int *p = a[i]; 4126 // ... 4127 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4128 if (!L->isLoopInvariant(Load->getPointerOperand())) 4129 return false; 4130 return true; 4131 } 4132 4133 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4134 if (!V->getType()->isPointerTy()) 4135 return V; 4136 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4137 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4138 V = GEP->getPointerOperand(); 4139 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4140 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4141 V = cast<Operator>(V)->getOperand(0); 4142 if (!V->getType()->isPointerTy()) 4143 return V; 4144 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4145 if (GA->isInterposable()) 4146 return V; 4147 V = GA->getAliasee(); 4148 } else { 4149 if (auto *PHI = dyn_cast<PHINode>(V)) { 4150 // Look through single-arg phi nodes created by LCSSA. 4151 if (PHI->getNumIncomingValues() == 1) { 4152 V = PHI->getIncomingValue(0); 4153 continue; 4154 } 4155 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4156 // CaptureTracking can know about special capturing properties of some 4157 // intrinsics like launder.invariant.group, that can't be expressed with 4158 // the attributes, but have properties like returning aliasing pointer. 4159 // Because some analysis may assume that nocaptured pointer is not 4160 // returned from some special intrinsic (because function would have to 4161 // be marked with returns attribute), it is crucial to use this function 4162 // because it should be in sync with CaptureTracking. Not using it may 4163 // cause weird miscompilations where 2 aliasing pointers are assumed to 4164 // noalias. 4165 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4166 V = RP; 4167 continue; 4168 } 4169 } 4170 4171 return V; 4172 } 4173 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4174 } 4175 return V; 4176 } 4177 4178 void llvm::getUnderlyingObjects(const Value *V, 4179 SmallVectorImpl<const Value *> &Objects, 4180 LoopInfo *LI, unsigned MaxLookup) { 4181 SmallPtrSet<const Value *, 4> Visited; 4182 SmallVector<const Value *, 4> Worklist; 4183 Worklist.push_back(V); 4184 do { 4185 const Value *P = Worklist.pop_back_val(); 4186 P = getUnderlyingObject(P, MaxLookup); 4187 4188 if (!Visited.insert(P).second) 4189 continue; 4190 4191 if (auto *SI = dyn_cast<SelectInst>(P)) { 4192 Worklist.push_back(SI->getTrueValue()); 4193 Worklist.push_back(SI->getFalseValue()); 4194 continue; 4195 } 4196 4197 if (auto *PN = dyn_cast<PHINode>(P)) { 4198 // If this PHI changes the underlying object in every iteration of the 4199 // loop, don't look through it. Consider: 4200 // int **A; 4201 // for (i) { 4202 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4203 // Curr = A[i]; 4204 // *Prev, *Curr; 4205 // 4206 // Prev is tracking Curr one iteration behind so they refer to different 4207 // underlying objects. 4208 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4209 isSameUnderlyingObjectInLoop(PN, LI)) 4210 for (Value *IncValue : PN->incoming_values()) 4211 Worklist.push_back(IncValue); 4212 continue; 4213 } 4214 4215 Objects.push_back(P); 4216 } while (!Worklist.empty()); 4217 } 4218 4219 /// This is the function that does the work of looking through basic 4220 /// ptrtoint+arithmetic+inttoptr sequences. 4221 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4222 do { 4223 if (const Operator *U = dyn_cast<Operator>(V)) { 4224 // If we find a ptrtoint, we can transfer control back to the 4225 // regular getUnderlyingObjectFromInt. 4226 if (U->getOpcode() == Instruction::PtrToInt) 4227 return U->getOperand(0); 4228 // If we find an add of a constant, a multiplied value, or a phi, it's 4229 // likely that the other operand will lead us to the base 4230 // object. We don't have to worry about the case where the 4231 // object address is somehow being computed by the multiply, 4232 // because our callers only care when the result is an 4233 // identifiable object. 4234 if (U->getOpcode() != Instruction::Add || 4235 (!isa<ConstantInt>(U->getOperand(1)) && 4236 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4237 !isa<PHINode>(U->getOperand(1)))) 4238 return V; 4239 V = U->getOperand(0); 4240 } else { 4241 return V; 4242 } 4243 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4244 } while (true); 4245 } 4246 4247 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4248 /// ptrtoint+arithmetic+inttoptr sequences. 4249 /// It returns false if unidentified object is found in getUnderlyingObjects. 4250 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4251 SmallVectorImpl<Value *> &Objects) { 4252 SmallPtrSet<const Value *, 16> Visited; 4253 SmallVector<const Value *, 4> Working(1, V); 4254 do { 4255 V = Working.pop_back_val(); 4256 4257 SmallVector<const Value *, 4> Objs; 4258 getUnderlyingObjects(V, Objs); 4259 4260 for (const Value *V : Objs) { 4261 if (!Visited.insert(V).second) 4262 continue; 4263 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4264 const Value *O = 4265 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4266 if (O->getType()->isPointerTy()) { 4267 Working.push_back(O); 4268 continue; 4269 } 4270 } 4271 // If getUnderlyingObjects fails to find an identifiable object, 4272 // getUnderlyingObjectsForCodeGen also fails for safety. 4273 if (!isIdentifiedObject(V)) { 4274 Objects.clear(); 4275 return false; 4276 } 4277 Objects.push_back(const_cast<Value *>(V)); 4278 } 4279 } while (!Working.empty()); 4280 return true; 4281 } 4282 4283 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4284 AllocaInst *Result = nullptr; 4285 SmallPtrSet<Value *, 4> Visited; 4286 SmallVector<Value *, 4> Worklist; 4287 4288 auto AddWork = [&](Value *V) { 4289 if (Visited.insert(V).second) 4290 Worklist.push_back(V); 4291 }; 4292 4293 AddWork(V); 4294 do { 4295 V = Worklist.pop_back_val(); 4296 assert(Visited.count(V)); 4297 4298 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4299 if (Result && Result != AI) 4300 return nullptr; 4301 Result = AI; 4302 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4303 AddWork(CI->getOperand(0)); 4304 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4305 for (Value *IncValue : PN->incoming_values()) 4306 AddWork(IncValue); 4307 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4308 AddWork(SI->getTrueValue()); 4309 AddWork(SI->getFalseValue()); 4310 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4311 if (OffsetZero && !GEP->hasAllZeroIndices()) 4312 return nullptr; 4313 AddWork(GEP->getPointerOperand()); 4314 } else { 4315 return nullptr; 4316 } 4317 } while (!Worklist.empty()); 4318 4319 return Result; 4320 } 4321 4322 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4323 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4324 for (const User *U : V->users()) { 4325 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4326 if (!II) 4327 return false; 4328 4329 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4330 continue; 4331 4332 if (AllowDroppable && II->isDroppable()) 4333 continue; 4334 4335 return false; 4336 } 4337 return true; 4338 } 4339 4340 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4341 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4342 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4343 } 4344 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4345 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4346 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4347 } 4348 4349 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4350 if (!LI.isUnordered()) 4351 return true; 4352 const Function &F = *LI.getFunction(); 4353 // Speculative load may create a race that did not exist in the source. 4354 return F.hasFnAttribute(Attribute::SanitizeThread) || 4355 // Speculative load may load data from dirty regions. 4356 F.hasFnAttribute(Attribute::SanitizeAddress) || 4357 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4358 } 4359 4360 4361 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4362 const Instruction *CtxI, 4363 const DominatorTree *DT) { 4364 const Operator *Inst = dyn_cast<Operator>(V); 4365 if (!Inst) 4366 return false; 4367 4368 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4369 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4370 if (C->canTrap()) 4371 return false; 4372 4373 switch (Inst->getOpcode()) { 4374 default: 4375 return true; 4376 case Instruction::UDiv: 4377 case Instruction::URem: { 4378 // x / y is undefined if y == 0. 4379 const APInt *V; 4380 if (match(Inst->getOperand(1), m_APInt(V))) 4381 return *V != 0; 4382 return false; 4383 } 4384 case Instruction::SDiv: 4385 case Instruction::SRem: { 4386 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4387 const APInt *Numerator, *Denominator; 4388 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4389 return false; 4390 // We cannot hoist this division if the denominator is 0. 4391 if (*Denominator == 0) 4392 return false; 4393 // It's safe to hoist if the denominator is not 0 or -1. 4394 if (*Denominator != -1) 4395 return true; 4396 // At this point we know that the denominator is -1. It is safe to hoist as 4397 // long we know that the numerator is not INT_MIN. 4398 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4399 return !Numerator->isMinSignedValue(); 4400 // The numerator *might* be MinSignedValue. 4401 return false; 4402 } 4403 case Instruction::Load: { 4404 const LoadInst *LI = cast<LoadInst>(Inst); 4405 if (mustSuppressSpeculation(*LI)) 4406 return false; 4407 const DataLayout &DL = LI->getModule()->getDataLayout(); 4408 return isDereferenceableAndAlignedPointer( 4409 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4410 DL, CtxI, DT); 4411 } 4412 case Instruction::Call: { 4413 auto *CI = cast<const CallInst>(Inst); 4414 const Function *Callee = CI->getCalledFunction(); 4415 4416 // The called function could have undefined behavior or side-effects, even 4417 // if marked readnone nounwind. 4418 return Callee && Callee->isSpeculatable(); 4419 } 4420 case Instruction::VAArg: 4421 case Instruction::Alloca: 4422 case Instruction::Invoke: 4423 case Instruction::CallBr: 4424 case Instruction::PHI: 4425 case Instruction::Store: 4426 case Instruction::Ret: 4427 case Instruction::Br: 4428 case Instruction::IndirectBr: 4429 case Instruction::Switch: 4430 case Instruction::Unreachable: 4431 case Instruction::Fence: 4432 case Instruction::AtomicRMW: 4433 case Instruction::AtomicCmpXchg: 4434 case Instruction::LandingPad: 4435 case Instruction::Resume: 4436 case Instruction::CatchSwitch: 4437 case Instruction::CatchPad: 4438 case Instruction::CatchRet: 4439 case Instruction::CleanupPad: 4440 case Instruction::CleanupRet: 4441 return false; // Misc instructions which have effects 4442 } 4443 } 4444 4445 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4446 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4447 } 4448 4449 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4450 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4451 switch (OR) { 4452 case ConstantRange::OverflowResult::MayOverflow: 4453 return OverflowResult::MayOverflow; 4454 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4455 return OverflowResult::AlwaysOverflowsLow; 4456 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4457 return OverflowResult::AlwaysOverflowsHigh; 4458 case ConstantRange::OverflowResult::NeverOverflows: 4459 return OverflowResult::NeverOverflows; 4460 } 4461 llvm_unreachable("Unknown OverflowResult"); 4462 } 4463 4464 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4465 static ConstantRange computeConstantRangeIncludingKnownBits( 4466 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4467 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4468 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4469 KnownBits Known = computeKnownBits( 4470 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4471 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4472 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4473 ConstantRange::PreferredRangeType RangeType = 4474 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4475 return CR1.intersectWith(CR2, RangeType); 4476 } 4477 4478 OverflowResult llvm::computeOverflowForUnsignedMul( 4479 const Value *LHS, const Value *RHS, const DataLayout &DL, 4480 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4481 bool UseInstrInfo) { 4482 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4483 nullptr, UseInstrInfo); 4484 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4485 nullptr, UseInstrInfo); 4486 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4487 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4488 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4489 } 4490 4491 OverflowResult 4492 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4493 const DataLayout &DL, AssumptionCache *AC, 4494 const Instruction *CxtI, 4495 const DominatorTree *DT, bool UseInstrInfo) { 4496 // Multiplying n * m significant bits yields a result of n + m significant 4497 // bits. If the total number of significant bits does not exceed the 4498 // result bit width (minus 1), there is no overflow. 4499 // This means if we have enough leading sign bits in the operands 4500 // we can guarantee that the result does not overflow. 4501 // Ref: "Hacker's Delight" by Henry Warren 4502 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4503 4504 // Note that underestimating the number of sign bits gives a more 4505 // conservative answer. 4506 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4507 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4508 4509 // First handle the easy case: if we have enough sign bits there's 4510 // definitely no overflow. 4511 if (SignBits > BitWidth + 1) 4512 return OverflowResult::NeverOverflows; 4513 4514 // There are two ambiguous cases where there can be no overflow: 4515 // SignBits == BitWidth + 1 and 4516 // SignBits == BitWidth 4517 // The second case is difficult to check, therefore we only handle the 4518 // first case. 4519 if (SignBits == BitWidth + 1) { 4520 // It overflows only when both arguments are negative and the true 4521 // product is exactly the minimum negative number. 4522 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4523 // For simplicity we just check if at least one side is not negative. 4524 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4525 nullptr, UseInstrInfo); 4526 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4527 nullptr, UseInstrInfo); 4528 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4529 return OverflowResult::NeverOverflows; 4530 } 4531 return OverflowResult::MayOverflow; 4532 } 4533 4534 OverflowResult llvm::computeOverflowForUnsignedAdd( 4535 const Value *LHS, const Value *RHS, const DataLayout &DL, 4536 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4537 bool UseInstrInfo) { 4538 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4539 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4540 nullptr, UseInstrInfo); 4541 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4542 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4543 nullptr, UseInstrInfo); 4544 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4545 } 4546 4547 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4548 const Value *RHS, 4549 const AddOperator *Add, 4550 const DataLayout &DL, 4551 AssumptionCache *AC, 4552 const Instruction *CxtI, 4553 const DominatorTree *DT) { 4554 if (Add && Add->hasNoSignedWrap()) { 4555 return OverflowResult::NeverOverflows; 4556 } 4557 4558 // If LHS and RHS each have at least two sign bits, the addition will look 4559 // like 4560 // 4561 // XX..... + 4562 // YY..... 4563 // 4564 // If the carry into the most significant position is 0, X and Y can't both 4565 // be 1 and therefore the carry out of the addition is also 0. 4566 // 4567 // If the carry into the most significant position is 1, X and Y can't both 4568 // be 0 and therefore the carry out of the addition is also 1. 4569 // 4570 // Since the carry into the most significant position is always equal to 4571 // the carry out of the addition, there is no signed overflow. 4572 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4573 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4574 return OverflowResult::NeverOverflows; 4575 4576 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4577 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4578 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4579 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4580 OverflowResult OR = 4581 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4582 if (OR != OverflowResult::MayOverflow) 4583 return OR; 4584 4585 // The remaining code needs Add to be available. Early returns if not so. 4586 if (!Add) 4587 return OverflowResult::MayOverflow; 4588 4589 // If the sign of Add is the same as at least one of the operands, this add 4590 // CANNOT overflow. If this can be determined from the known bits of the 4591 // operands the above signedAddMayOverflow() check will have already done so. 4592 // The only other way to improve on the known bits is from an assumption, so 4593 // call computeKnownBitsFromAssume() directly. 4594 bool LHSOrRHSKnownNonNegative = 4595 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4596 bool LHSOrRHSKnownNegative = 4597 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4598 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4599 KnownBits AddKnown(LHSRange.getBitWidth()); 4600 computeKnownBitsFromAssume( 4601 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4602 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4603 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4604 return OverflowResult::NeverOverflows; 4605 } 4606 4607 return OverflowResult::MayOverflow; 4608 } 4609 4610 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4611 const Value *RHS, 4612 const DataLayout &DL, 4613 AssumptionCache *AC, 4614 const Instruction *CxtI, 4615 const DominatorTree *DT) { 4616 // Checking for conditions implied by dominating conditions may be expensive. 4617 // Limit it to usub_with_overflow calls for now. 4618 if (match(CxtI, 4619 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4620 if (auto C = 4621 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4622 if (*C) 4623 return OverflowResult::NeverOverflows; 4624 return OverflowResult::AlwaysOverflowsLow; 4625 } 4626 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4627 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4628 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4629 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4630 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4631 } 4632 4633 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4634 const Value *RHS, 4635 const DataLayout &DL, 4636 AssumptionCache *AC, 4637 const Instruction *CxtI, 4638 const DominatorTree *DT) { 4639 // If LHS and RHS each have at least two sign bits, the subtraction 4640 // cannot overflow. 4641 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4642 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4643 return OverflowResult::NeverOverflows; 4644 4645 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4646 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4647 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4648 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4649 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4650 } 4651 4652 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4653 const DominatorTree &DT) { 4654 SmallVector<const BranchInst *, 2> GuardingBranches; 4655 SmallVector<const ExtractValueInst *, 2> Results; 4656 4657 for (const User *U : WO->users()) { 4658 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4659 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4660 4661 if (EVI->getIndices()[0] == 0) 4662 Results.push_back(EVI); 4663 else { 4664 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4665 4666 for (const auto *U : EVI->users()) 4667 if (const auto *B = dyn_cast<BranchInst>(U)) { 4668 assert(B->isConditional() && "How else is it using an i1?"); 4669 GuardingBranches.push_back(B); 4670 } 4671 } 4672 } else { 4673 // We are using the aggregate directly in a way we don't want to analyze 4674 // here (storing it to a global, say). 4675 return false; 4676 } 4677 } 4678 4679 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4680 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4681 if (!NoWrapEdge.isSingleEdge()) 4682 return false; 4683 4684 // Check if all users of the add are provably no-wrap. 4685 for (const auto *Result : Results) { 4686 // If the extractvalue itself is not executed on overflow, the we don't 4687 // need to check each use separately, since domination is transitive. 4688 if (DT.dominates(NoWrapEdge, Result->getParent())) 4689 continue; 4690 4691 for (auto &RU : Result->uses()) 4692 if (!DT.dominates(NoWrapEdge, RU)) 4693 return false; 4694 } 4695 4696 return true; 4697 }; 4698 4699 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4700 } 4701 4702 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4703 // See whether I has flags that may create poison 4704 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4705 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4706 return true; 4707 } 4708 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4709 if (ExactOp->isExact()) 4710 return true; 4711 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4712 auto FMF = FP->getFastMathFlags(); 4713 if (FMF.noNaNs() || FMF.noInfs()) 4714 return true; 4715 } 4716 4717 unsigned Opcode = Op->getOpcode(); 4718 4719 // Check whether opcode is a poison/undef-generating operation 4720 switch (Opcode) { 4721 case Instruction::Shl: 4722 case Instruction::AShr: 4723 case Instruction::LShr: { 4724 // Shifts return poison if shiftwidth is larger than the bitwidth. 4725 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4726 SmallVector<Constant *, 4> ShiftAmounts; 4727 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4728 unsigned NumElts = FVTy->getNumElements(); 4729 for (unsigned i = 0; i < NumElts; ++i) 4730 ShiftAmounts.push_back(C->getAggregateElement(i)); 4731 } else if (isa<ScalableVectorType>(C->getType())) 4732 return true; // Can't tell, just return true to be safe 4733 else 4734 ShiftAmounts.push_back(C); 4735 4736 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4737 auto *CI = dyn_cast<ConstantInt>(C); 4738 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4739 }); 4740 return !Safe; 4741 } 4742 return true; 4743 } 4744 case Instruction::FPToSI: 4745 case Instruction::FPToUI: 4746 // fptosi/ui yields poison if the resulting value does not fit in the 4747 // destination type. 4748 return true; 4749 case Instruction::Call: 4750 case Instruction::CallBr: 4751 case Instruction::Invoke: { 4752 const auto *CB = cast<CallBase>(Op); 4753 return !CB->hasRetAttr(Attribute::NoUndef); 4754 } 4755 case Instruction::InsertElement: 4756 case Instruction::ExtractElement: { 4757 // If index exceeds the length of the vector, it returns poison 4758 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4759 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4760 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4761 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4762 return true; 4763 return false; 4764 } 4765 case Instruction::ShuffleVector: { 4766 // shufflevector may return undef. 4767 if (PoisonOnly) 4768 return false; 4769 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4770 ? cast<ConstantExpr>(Op)->getShuffleMask() 4771 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4772 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4773 } 4774 case Instruction::FNeg: 4775 case Instruction::PHI: 4776 case Instruction::Select: 4777 case Instruction::URem: 4778 case Instruction::SRem: 4779 case Instruction::ExtractValue: 4780 case Instruction::InsertValue: 4781 case Instruction::Freeze: 4782 case Instruction::ICmp: 4783 case Instruction::FCmp: 4784 return false; 4785 case Instruction::GetElementPtr: { 4786 const auto *GEP = cast<GEPOperator>(Op); 4787 return GEP->isInBounds(); 4788 } 4789 default: { 4790 const auto *CE = dyn_cast<ConstantExpr>(Op); 4791 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4792 return false; 4793 else if (Instruction::isBinaryOp(Opcode)) 4794 return false; 4795 // Be conservative and return true. 4796 return true; 4797 } 4798 } 4799 } 4800 4801 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4802 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4803 } 4804 4805 bool llvm::canCreatePoison(const Operator *Op) { 4806 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4807 } 4808 4809 static bool programUndefinedIfUndefOrPoison(const Value *V, 4810 bool PoisonOnly); 4811 4812 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4813 AssumptionCache *AC, 4814 const Instruction *CtxI, 4815 const DominatorTree *DT, 4816 unsigned Depth, bool PoisonOnly) { 4817 if (Depth >= MaxAnalysisRecursionDepth) 4818 return false; 4819 4820 if (isa<MetadataAsValue>(V)) 4821 return false; 4822 4823 if (const auto *A = dyn_cast<Argument>(V)) { 4824 if (A->hasAttribute(Attribute::NoUndef)) 4825 return true; 4826 } 4827 4828 if (auto *C = dyn_cast<Constant>(V)) { 4829 if (isa<UndefValue>(C)) 4830 return PoisonOnly; 4831 4832 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4833 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4834 return true; 4835 4836 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4837 return (PoisonOnly || !C->containsUndefElement()) && 4838 !C->containsConstantExpression(); 4839 } 4840 4841 // Strip cast operations from a pointer value. 4842 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4843 // inbounds with zero offset. To guarantee that the result isn't poison, the 4844 // stripped pointer is checked as it has to be pointing into an allocated 4845 // object or be null `null` to ensure `inbounds` getelement pointers with a 4846 // zero offset could not produce poison. 4847 // It can strip off addrspacecast that do not change bit representation as 4848 // well. We believe that such addrspacecast is equivalent to no-op. 4849 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4850 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4851 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4852 return true; 4853 4854 auto OpCheck = [&](const Value *V) { 4855 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4856 PoisonOnly); 4857 }; 4858 4859 if (auto *Opr = dyn_cast<Operator>(V)) { 4860 // If the value is a freeze instruction, then it can never 4861 // be undef or poison. 4862 if (isa<FreezeInst>(V)) 4863 return true; 4864 4865 if (const auto *CB = dyn_cast<CallBase>(V)) { 4866 if (CB->hasRetAttr(Attribute::NoUndef)) 4867 return true; 4868 } 4869 4870 if (const auto *PN = dyn_cast<PHINode>(V)) { 4871 unsigned Num = PN->getNumIncomingValues(); 4872 bool IsWellDefined = true; 4873 for (unsigned i = 0; i < Num; ++i) { 4874 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4875 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4876 DT, Depth + 1, PoisonOnly)) { 4877 IsWellDefined = false; 4878 break; 4879 } 4880 } 4881 if (IsWellDefined) 4882 return true; 4883 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4884 return true; 4885 } 4886 4887 if (auto *I = dyn_cast<LoadInst>(V)) 4888 if (I->getMetadata(LLVMContext::MD_noundef)) 4889 return true; 4890 4891 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4892 return true; 4893 4894 // CxtI may be null or a cloned instruction. 4895 if (!CtxI || !CtxI->getParent() || !DT) 4896 return false; 4897 4898 auto *DNode = DT->getNode(CtxI->getParent()); 4899 if (!DNode) 4900 // Unreachable block 4901 return false; 4902 4903 // If V is used as a branch condition before reaching CtxI, V cannot be 4904 // undef or poison. 4905 // br V, BB1, BB2 4906 // BB1: 4907 // CtxI ; V cannot be undef or poison here 4908 auto *Dominator = DNode->getIDom(); 4909 while (Dominator) { 4910 auto *TI = Dominator->getBlock()->getTerminator(); 4911 4912 Value *Cond = nullptr; 4913 if (auto BI = dyn_cast<BranchInst>(TI)) { 4914 if (BI->isConditional()) 4915 Cond = BI->getCondition(); 4916 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4917 Cond = SI->getCondition(); 4918 } 4919 4920 if (Cond) { 4921 if (Cond == V) 4922 return true; 4923 else if (PoisonOnly && isa<Operator>(Cond)) { 4924 // For poison, we can analyze further 4925 auto *Opr = cast<Operator>(Cond); 4926 if (propagatesPoison(Opr) && 4927 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4928 return true; 4929 } 4930 } 4931 4932 Dominator = Dominator->getIDom(); 4933 } 4934 4935 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4936 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4937 return true; 4938 4939 return false; 4940 } 4941 4942 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4943 const Instruction *CtxI, 4944 const DominatorTree *DT, 4945 unsigned Depth) { 4946 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4947 } 4948 4949 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4950 const Instruction *CtxI, 4951 const DominatorTree *DT, unsigned Depth) { 4952 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4953 } 4954 4955 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4956 const DataLayout &DL, 4957 AssumptionCache *AC, 4958 const Instruction *CxtI, 4959 const DominatorTree *DT) { 4960 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4961 Add, DL, AC, CxtI, DT); 4962 } 4963 4964 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4965 const Value *RHS, 4966 const DataLayout &DL, 4967 AssumptionCache *AC, 4968 const Instruction *CxtI, 4969 const DominatorTree *DT) { 4970 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4971 } 4972 4973 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4974 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4975 // of time because it's possible for another thread to interfere with it for an 4976 // arbitrary length of time, but programs aren't allowed to rely on that. 4977 4978 // If there is no successor, then execution can't transfer to it. 4979 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4980 return !CRI->unwindsToCaller(); 4981 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4982 return !CatchSwitch->unwindsToCaller(); 4983 if (isa<ResumeInst>(I)) 4984 return false; 4985 if (isa<ReturnInst>(I)) 4986 return false; 4987 if (isa<UnreachableInst>(I)) 4988 return false; 4989 4990 // Calls can throw, or contain an infinite loop, or kill the process. 4991 if (const auto *CB = dyn_cast<CallBase>(I)) { 4992 // Call sites that throw have implicit non-local control flow. 4993 if (!CB->doesNotThrow()) 4994 return false; 4995 4996 // A function which doens't throw and has "willreturn" attribute will 4997 // always return. 4998 if (CB->hasFnAttr(Attribute::WillReturn)) 4999 return true; 5000 5001 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5002 // etc. and thus not return. However, LLVM already assumes that 5003 // 5004 // - Thread exiting actions are modeled as writes to memory invisible to 5005 // the program. 5006 // 5007 // - Loops that don't have side effects (side effects are volatile/atomic 5008 // stores and IO) always terminate (see http://llvm.org/PR965). 5009 // Furthermore IO itself is also modeled as writes to memory invisible to 5010 // the program. 5011 // 5012 // We rely on those assumptions here, and use the memory effects of the call 5013 // target as a proxy for checking that it always returns. 5014 5015 // FIXME: This isn't aggressive enough; a call which only writes to a global 5016 // is guaranteed to return. 5017 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5018 } 5019 5020 // Other instructions return normally. 5021 return true; 5022 } 5023 5024 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5025 // TODO: This is slightly conservative for invoke instruction since exiting 5026 // via an exception *is* normal control for them. 5027 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5028 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5029 return false; 5030 return true; 5031 } 5032 5033 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5034 const Loop *L) { 5035 // The loop header is guaranteed to be executed for every iteration. 5036 // 5037 // FIXME: Relax this constraint to cover all basic blocks that are 5038 // guaranteed to be executed at every iteration. 5039 if (I->getParent() != L->getHeader()) return false; 5040 5041 for (const Instruction &LI : *L->getHeader()) { 5042 if (&LI == I) return true; 5043 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5044 } 5045 llvm_unreachable("Instruction not contained in its own parent basic block."); 5046 } 5047 5048 bool llvm::propagatesPoison(const Operator *I) { 5049 switch (I->getOpcode()) { 5050 case Instruction::Freeze: 5051 case Instruction::Select: 5052 case Instruction::PHI: 5053 case Instruction::Call: 5054 case Instruction::Invoke: 5055 return false; 5056 case Instruction::ICmp: 5057 case Instruction::FCmp: 5058 case Instruction::GetElementPtr: 5059 return true; 5060 default: 5061 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5062 return true; 5063 5064 // Be conservative and return false. 5065 return false; 5066 } 5067 } 5068 5069 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5070 SmallPtrSetImpl<const Value *> &Operands) { 5071 switch (I->getOpcode()) { 5072 case Instruction::Store: 5073 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5074 break; 5075 5076 case Instruction::Load: 5077 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5078 break; 5079 5080 case Instruction::AtomicCmpXchg: 5081 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5082 break; 5083 5084 case Instruction::AtomicRMW: 5085 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5086 break; 5087 5088 case Instruction::UDiv: 5089 case Instruction::SDiv: 5090 case Instruction::URem: 5091 case Instruction::SRem: 5092 Operands.insert(I->getOperand(1)); 5093 break; 5094 5095 case Instruction::Call: 5096 case Instruction::Invoke: { 5097 const CallBase *CB = cast<CallBase>(I); 5098 if (CB->isIndirectCall()) 5099 Operands.insert(CB->getCalledOperand()); 5100 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5101 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5102 Operands.insert(CB->getArgOperand(i)); 5103 } 5104 break; 5105 } 5106 5107 default: 5108 break; 5109 } 5110 } 5111 5112 bool llvm::mustTriggerUB(const Instruction *I, 5113 const SmallSet<const Value *, 16>& KnownPoison) { 5114 SmallPtrSet<const Value *, 4> NonPoisonOps; 5115 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5116 5117 for (const auto *V : NonPoisonOps) 5118 if (KnownPoison.count(V)) 5119 return true; 5120 5121 return false; 5122 } 5123 5124 static bool programUndefinedIfUndefOrPoison(const Value *V, 5125 bool PoisonOnly) { 5126 // We currently only look for uses of values within the same basic 5127 // block, as that makes it easier to guarantee that the uses will be 5128 // executed given that Inst is executed. 5129 // 5130 // FIXME: Expand this to consider uses beyond the same basic block. To do 5131 // this, look out for the distinction between post-dominance and strong 5132 // post-dominance. 5133 const BasicBlock *BB = nullptr; 5134 BasicBlock::const_iterator Begin; 5135 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5136 BB = Inst->getParent(); 5137 Begin = Inst->getIterator(); 5138 Begin++; 5139 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5140 BB = &Arg->getParent()->getEntryBlock(); 5141 Begin = BB->begin(); 5142 } else { 5143 return false; 5144 } 5145 5146 BasicBlock::const_iterator End = BB->end(); 5147 5148 if (!PoisonOnly) { 5149 // Be conservative & just check whether a value is passed to a noundef 5150 // argument. 5151 // Instructions that raise UB with a poison operand are well-defined 5152 // or have unclear semantics when the input is partially undef. 5153 // For example, 'udiv x, (undef | 1)' isn't UB. 5154 5155 for (auto &I : make_range(Begin, End)) { 5156 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5157 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5158 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5159 CB->getArgOperand(i) == V) 5160 return true; 5161 } 5162 } 5163 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5164 break; 5165 } 5166 return false; 5167 } 5168 5169 // Set of instructions that we have proved will yield poison if Inst 5170 // does. 5171 SmallSet<const Value *, 16> YieldsPoison; 5172 SmallSet<const BasicBlock *, 4> Visited; 5173 5174 YieldsPoison.insert(V); 5175 auto Propagate = [&](const User *User) { 5176 if (propagatesPoison(cast<Operator>(User))) 5177 YieldsPoison.insert(User); 5178 }; 5179 for_each(V->users(), Propagate); 5180 Visited.insert(BB); 5181 5182 unsigned Iter = 0; 5183 while (Iter++ < MaxAnalysisRecursionDepth) { 5184 for (auto &I : make_range(Begin, End)) { 5185 if (mustTriggerUB(&I, YieldsPoison)) 5186 return true; 5187 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5188 return false; 5189 5190 // Mark poison that propagates from I through uses of I. 5191 if (YieldsPoison.count(&I)) 5192 for_each(I.users(), Propagate); 5193 } 5194 5195 if (auto *NextBB = BB->getSingleSuccessor()) { 5196 if (Visited.insert(NextBB).second) { 5197 BB = NextBB; 5198 Begin = BB->getFirstNonPHI()->getIterator(); 5199 End = BB->end(); 5200 continue; 5201 } 5202 } 5203 5204 break; 5205 } 5206 return false; 5207 } 5208 5209 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5210 return ::programUndefinedIfUndefOrPoison(Inst, false); 5211 } 5212 5213 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5214 return ::programUndefinedIfUndefOrPoison(Inst, true); 5215 } 5216 5217 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5218 if (FMF.noNaNs()) 5219 return true; 5220 5221 if (auto *C = dyn_cast<ConstantFP>(V)) 5222 return !C->isNaN(); 5223 5224 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5225 if (!C->getElementType()->isFloatingPointTy()) 5226 return false; 5227 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5228 if (C->getElementAsAPFloat(I).isNaN()) 5229 return false; 5230 } 5231 return true; 5232 } 5233 5234 if (isa<ConstantAggregateZero>(V)) 5235 return true; 5236 5237 return false; 5238 } 5239 5240 static bool isKnownNonZero(const Value *V) { 5241 if (auto *C = dyn_cast<ConstantFP>(V)) 5242 return !C->isZero(); 5243 5244 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5245 if (!C->getElementType()->isFloatingPointTy()) 5246 return false; 5247 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5248 if (C->getElementAsAPFloat(I).isZero()) 5249 return false; 5250 } 5251 return true; 5252 } 5253 5254 return false; 5255 } 5256 5257 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5258 /// Given non-min/max outer cmp/select from the clamp pattern this 5259 /// function recognizes if it can be substitued by a "canonical" min/max 5260 /// pattern. 5261 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5262 Value *CmpLHS, Value *CmpRHS, 5263 Value *TrueVal, Value *FalseVal, 5264 Value *&LHS, Value *&RHS) { 5265 // Try to match 5266 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5267 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5268 // and return description of the outer Max/Min. 5269 5270 // First, check if select has inverse order: 5271 if (CmpRHS == FalseVal) { 5272 std::swap(TrueVal, FalseVal); 5273 Pred = CmpInst::getInversePredicate(Pred); 5274 } 5275 5276 // Assume success now. If there's no match, callers should not use these anyway. 5277 LHS = TrueVal; 5278 RHS = FalseVal; 5279 5280 const APFloat *FC1; 5281 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5282 return {SPF_UNKNOWN, SPNB_NA, false}; 5283 5284 const APFloat *FC2; 5285 switch (Pred) { 5286 case CmpInst::FCMP_OLT: 5287 case CmpInst::FCMP_OLE: 5288 case CmpInst::FCMP_ULT: 5289 case CmpInst::FCMP_ULE: 5290 if (match(FalseVal, 5291 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5292 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5293 *FC1 < *FC2) 5294 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5295 break; 5296 case CmpInst::FCMP_OGT: 5297 case CmpInst::FCMP_OGE: 5298 case CmpInst::FCMP_UGT: 5299 case CmpInst::FCMP_UGE: 5300 if (match(FalseVal, 5301 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5302 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5303 *FC1 > *FC2) 5304 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5305 break; 5306 default: 5307 break; 5308 } 5309 5310 return {SPF_UNKNOWN, SPNB_NA, false}; 5311 } 5312 5313 /// Recognize variations of: 5314 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5315 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5316 Value *CmpLHS, Value *CmpRHS, 5317 Value *TrueVal, Value *FalseVal) { 5318 // Swap the select operands and predicate to match the patterns below. 5319 if (CmpRHS != TrueVal) { 5320 Pred = ICmpInst::getSwappedPredicate(Pred); 5321 std::swap(TrueVal, FalseVal); 5322 } 5323 const APInt *C1; 5324 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5325 const APInt *C2; 5326 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5327 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5328 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5329 return {SPF_SMAX, SPNB_NA, false}; 5330 5331 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5332 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5333 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5334 return {SPF_SMIN, SPNB_NA, false}; 5335 5336 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5337 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5338 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5339 return {SPF_UMAX, SPNB_NA, false}; 5340 5341 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5342 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5343 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5344 return {SPF_UMIN, SPNB_NA, false}; 5345 } 5346 return {SPF_UNKNOWN, SPNB_NA, false}; 5347 } 5348 5349 /// Recognize variations of: 5350 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5351 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5352 Value *CmpLHS, Value *CmpRHS, 5353 Value *TVal, Value *FVal, 5354 unsigned Depth) { 5355 // TODO: Allow FP min/max with nnan/nsz. 5356 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5357 5358 Value *A = nullptr, *B = nullptr; 5359 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5360 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5361 return {SPF_UNKNOWN, SPNB_NA, false}; 5362 5363 Value *C = nullptr, *D = nullptr; 5364 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5365 if (L.Flavor != R.Flavor) 5366 return {SPF_UNKNOWN, SPNB_NA, false}; 5367 5368 // We have something like: x Pred y ? min(a, b) : min(c, d). 5369 // Try to match the compare to the min/max operations of the select operands. 5370 // First, make sure we have the right compare predicate. 5371 switch (L.Flavor) { 5372 case SPF_SMIN: 5373 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5374 Pred = ICmpInst::getSwappedPredicate(Pred); 5375 std::swap(CmpLHS, CmpRHS); 5376 } 5377 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5378 break; 5379 return {SPF_UNKNOWN, SPNB_NA, false}; 5380 case SPF_SMAX: 5381 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5382 Pred = ICmpInst::getSwappedPredicate(Pred); 5383 std::swap(CmpLHS, CmpRHS); 5384 } 5385 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5386 break; 5387 return {SPF_UNKNOWN, SPNB_NA, false}; 5388 case SPF_UMIN: 5389 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5390 Pred = ICmpInst::getSwappedPredicate(Pred); 5391 std::swap(CmpLHS, CmpRHS); 5392 } 5393 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5394 break; 5395 return {SPF_UNKNOWN, SPNB_NA, false}; 5396 case SPF_UMAX: 5397 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5398 Pred = ICmpInst::getSwappedPredicate(Pred); 5399 std::swap(CmpLHS, CmpRHS); 5400 } 5401 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5402 break; 5403 return {SPF_UNKNOWN, SPNB_NA, false}; 5404 default: 5405 return {SPF_UNKNOWN, SPNB_NA, false}; 5406 } 5407 5408 // If there is a common operand in the already matched min/max and the other 5409 // min/max operands match the compare operands (either directly or inverted), 5410 // then this is min/max of the same flavor. 5411 5412 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5413 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5414 if (D == B) { 5415 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5416 match(A, m_Not(m_Specific(CmpRHS))))) 5417 return {L.Flavor, SPNB_NA, false}; 5418 } 5419 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5420 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5421 if (C == B) { 5422 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5423 match(A, m_Not(m_Specific(CmpRHS))))) 5424 return {L.Flavor, SPNB_NA, false}; 5425 } 5426 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5427 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5428 if (D == A) { 5429 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5430 match(B, m_Not(m_Specific(CmpRHS))))) 5431 return {L.Flavor, SPNB_NA, false}; 5432 } 5433 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5434 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5435 if (C == A) { 5436 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5437 match(B, m_Not(m_Specific(CmpRHS))))) 5438 return {L.Flavor, SPNB_NA, false}; 5439 } 5440 5441 return {SPF_UNKNOWN, SPNB_NA, false}; 5442 } 5443 5444 /// If the input value is the result of a 'not' op, constant integer, or vector 5445 /// splat of a constant integer, return the bitwise-not source value. 5446 /// TODO: This could be extended to handle non-splat vector integer constants. 5447 static Value *getNotValue(Value *V) { 5448 Value *NotV; 5449 if (match(V, m_Not(m_Value(NotV)))) 5450 return NotV; 5451 5452 const APInt *C; 5453 if (match(V, m_APInt(C))) 5454 return ConstantInt::get(V->getType(), ~(*C)); 5455 5456 return nullptr; 5457 } 5458 5459 /// Match non-obvious integer minimum and maximum sequences. 5460 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5461 Value *CmpLHS, Value *CmpRHS, 5462 Value *TrueVal, Value *FalseVal, 5463 Value *&LHS, Value *&RHS, 5464 unsigned Depth) { 5465 // Assume success. If there's no match, callers should not use these anyway. 5466 LHS = TrueVal; 5467 RHS = FalseVal; 5468 5469 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5470 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5471 return SPR; 5472 5473 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5474 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5475 return SPR; 5476 5477 // Look through 'not' ops to find disguised min/max. 5478 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5479 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5480 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5481 switch (Pred) { 5482 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5483 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5484 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5485 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5486 default: break; 5487 } 5488 } 5489 5490 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5491 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5492 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5493 switch (Pred) { 5494 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5495 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5496 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5497 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5498 default: break; 5499 } 5500 } 5501 5502 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5503 return {SPF_UNKNOWN, SPNB_NA, false}; 5504 5505 // Z = X -nsw Y 5506 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5507 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5508 if (match(TrueVal, m_Zero()) && 5509 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5510 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5511 5512 // Z = X -nsw Y 5513 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5514 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5515 if (match(FalseVal, m_Zero()) && 5516 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5517 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5518 5519 const APInt *C1; 5520 if (!match(CmpRHS, m_APInt(C1))) 5521 return {SPF_UNKNOWN, SPNB_NA, false}; 5522 5523 // An unsigned min/max can be written with a signed compare. 5524 const APInt *C2; 5525 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5526 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5527 // Is the sign bit set? 5528 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5529 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5530 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5531 C2->isMaxSignedValue()) 5532 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5533 5534 // Is the sign bit clear? 5535 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5536 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5537 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5538 C2->isMinSignedValue()) 5539 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5540 } 5541 5542 return {SPF_UNKNOWN, SPNB_NA, false}; 5543 } 5544 5545 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5546 assert(X && Y && "Invalid operand"); 5547 5548 // X = sub (0, Y) || X = sub nsw (0, Y) 5549 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5550 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5551 return true; 5552 5553 // Y = sub (0, X) || Y = sub nsw (0, X) 5554 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5555 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5556 return true; 5557 5558 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5559 Value *A, *B; 5560 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5561 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5562 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5563 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5564 } 5565 5566 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5567 FastMathFlags FMF, 5568 Value *CmpLHS, Value *CmpRHS, 5569 Value *TrueVal, Value *FalseVal, 5570 Value *&LHS, Value *&RHS, 5571 unsigned Depth) { 5572 if (CmpInst::isFPPredicate(Pred)) { 5573 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5574 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5575 // purpose of identifying min/max. Disregard vector constants with undefined 5576 // elements because those can not be back-propagated for analysis. 5577 Value *OutputZeroVal = nullptr; 5578 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5579 !cast<Constant>(TrueVal)->containsUndefElement()) 5580 OutputZeroVal = TrueVal; 5581 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5582 !cast<Constant>(FalseVal)->containsUndefElement()) 5583 OutputZeroVal = FalseVal; 5584 5585 if (OutputZeroVal) { 5586 if (match(CmpLHS, m_AnyZeroFP())) 5587 CmpLHS = OutputZeroVal; 5588 if (match(CmpRHS, m_AnyZeroFP())) 5589 CmpRHS = OutputZeroVal; 5590 } 5591 } 5592 5593 LHS = CmpLHS; 5594 RHS = CmpRHS; 5595 5596 // Signed zero may return inconsistent results between implementations. 5597 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5598 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5599 // Therefore, we behave conservatively and only proceed if at least one of the 5600 // operands is known to not be zero or if we don't care about signed zero. 5601 switch (Pred) { 5602 default: break; 5603 // FIXME: Include OGT/OLT/UGT/ULT. 5604 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5605 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5606 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5607 !isKnownNonZero(CmpRHS)) 5608 return {SPF_UNKNOWN, SPNB_NA, false}; 5609 } 5610 5611 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5612 bool Ordered = false; 5613 5614 // When given one NaN and one non-NaN input: 5615 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5616 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5617 // ordered comparison fails), which could be NaN or non-NaN. 5618 // so here we discover exactly what NaN behavior is required/accepted. 5619 if (CmpInst::isFPPredicate(Pred)) { 5620 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5621 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5622 5623 if (LHSSafe && RHSSafe) { 5624 // Both operands are known non-NaN. 5625 NaNBehavior = SPNB_RETURNS_ANY; 5626 } else if (CmpInst::isOrdered(Pred)) { 5627 // An ordered comparison will return false when given a NaN, so it 5628 // returns the RHS. 5629 Ordered = true; 5630 if (LHSSafe) 5631 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5632 NaNBehavior = SPNB_RETURNS_NAN; 5633 else if (RHSSafe) 5634 NaNBehavior = SPNB_RETURNS_OTHER; 5635 else 5636 // Completely unsafe. 5637 return {SPF_UNKNOWN, SPNB_NA, false}; 5638 } else { 5639 Ordered = false; 5640 // An unordered comparison will return true when given a NaN, so it 5641 // returns the LHS. 5642 if (LHSSafe) 5643 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5644 NaNBehavior = SPNB_RETURNS_OTHER; 5645 else if (RHSSafe) 5646 NaNBehavior = SPNB_RETURNS_NAN; 5647 else 5648 // Completely unsafe. 5649 return {SPF_UNKNOWN, SPNB_NA, false}; 5650 } 5651 } 5652 5653 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5654 std::swap(CmpLHS, CmpRHS); 5655 Pred = CmpInst::getSwappedPredicate(Pred); 5656 if (NaNBehavior == SPNB_RETURNS_NAN) 5657 NaNBehavior = SPNB_RETURNS_OTHER; 5658 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5659 NaNBehavior = SPNB_RETURNS_NAN; 5660 Ordered = !Ordered; 5661 } 5662 5663 // ([if]cmp X, Y) ? X : Y 5664 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5665 switch (Pred) { 5666 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5667 case ICmpInst::ICMP_UGT: 5668 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5669 case ICmpInst::ICMP_SGT: 5670 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5671 case ICmpInst::ICMP_ULT: 5672 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5673 case ICmpInst::ICMP_SLT: 5674 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5675 case FCmpInst::FCMP_UGT: 5676 case FCmpInst::FCMP_UGE: 5677 case FCmpInst::FCMP_OGT: 5678 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5679 case FCmpInst::FCMP_ULT: 5680 case FCmpInst::FCMP_ULE: 5681 case FCmpInst::FCMP_OLT: 5682 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5683 } 5684 } 5685 5686 if (isKnownNegation(TrueVal, FalseVal)) { 5687 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5688 // match against either LHS or sext(LHS). 5689 auto MaybeSExtCmpLHS = 5690 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5691 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5692 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5693 if (match(TrueVal, MaybeSExtCmpLHS)) { 5694 // Set the return values. If the compare uses the negated value (-X >s 0), 5695 // swap the return values because the negated value is always 'RHS'. 5696 LHS = TrueVal; 5697 RHS = FalseVal; 5698 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5699 std::swap(LHS, RHS); 5700 5701 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5702 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5703 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5704 return {SPF_ABS, SPNB_NA, false}; 5705 5706 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5707 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5708 return {SPF_ABS, SPNB_NA, false}; 5709 5710 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5711 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5712 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5713 return {SPF_NABS, SPNB_NA, false}; 5714 } 5715 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5716 // Set the return values. If the compare uses the negated value (-X >s 0), 5717 // swap the return values because the negated value is always 'RHS'. 5718 LHS = FalseVal; 5719 RHS = TrueVal; 5720 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5721 std::swap(LHS, RHS); 5722 5723 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5724 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5725 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5726 return {SPF_NABS, SPNB_NA, false}; 5727 5728 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5729 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5730 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5731 return {SPF_ABS, SPNB_NA, false}; 5732 } 5733 } 5734 5735 if (CmpInst::isIntPredicate(Pred)) 5736 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5737 5738 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5739 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5740 // semantics than minNum. Be conservative in such case. 5741 if (NaNBehavior != SPNB_RETURNS_ANY || 5742 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5743 !isKnownNonZero(CmpRHS))) 5744 return {SPF_UNKNOWN, SPNB_NA, false}; 5745 5746 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5747 } 5748 5749 /// Helps to match a select pattern in case of a type mismatch. 5750 /// 5751 /// The function processes the case when type of true and false values of a 5752 /// select instruction differs from type of the cmp instruction operands because 5753 /// of a cast instruction. The function checks if it is legal to move the cast 5754 /// operation after "select". If yes, it returns the new second value of 5755 /// "select" (with the assumption that cast is moved): 5756 /// 1. As operand of cast instruction when both values of "select" are same cast 5757 /// instructions. 5758 /// 2. As restored constant (by applying reverse cast operation) when the first 5759 /// value of the "select" is a cast operation and the second value is a 5760 /// constant. 5761 /// NOTE: We return only the new second value because the first value could be 5762 /// accessed as operand of cast instruction. 5763 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5764 Instruction::CastOps *CastOp) { 5765 auto *Cast1 = dyn_cast<CastInst>(V1); 5766 if (!Cast1) 5767 return nullptr; 5768 5769 *CastOp = Cast1->getOpcode(); 5770 Type *SrcTy = Cast1->getSrcTy(); 5771 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5772 // If V1 and V2 are both the same cast from the same type, look through V1. 5773 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5774 return Cast2->getOperand(0); 5775 return nullptr; 5776 } 5777 5778 auto *C = dyn_cast<Constant>(V2); 5779 if (!C) 5780 return nullptr; 5781 5782 Constant *CastedTo = nullptr; 5783 switch (*CastOp) { 5784 case Instruction::ZExt: 5785 if (CmpI->isUnsigned()) 5786 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5787 break; 5788 case Instruction::SExt: 5789 if (CmpI->isSigned()) 5790 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5791 break; 5792 case Instruction::Trunc: 5793 Constant *CmpConst; 5794 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5795 CmpConst->getType() == SrcTy) { 5796 // Here we have the following case: 5797 // 5798 // %cond = cmp iN %x, CmpConst 5799 // %tr = trunc iN %x to iK 5800 // %narrowsel = select i1 %cond, iK %t, iK C 5801 // 5802 // We can always move trunc after select operation: 5803 // 5804 // %cond = cmp iN %x, CmpConst 5805 // %widesel = select i1 %cond, iN %x, iN CmpConst 5806 // %tr = trunc iN %widesel to iK 5807 // 5808 // Note that C could be extended in any way because we don't care about 5809 // upper bits after truncation. It can't be abs pattern, because it would 5810 // look like: 5811 // 5812 // select i1 %cond, x, -x. 5813 // 5814 // So only min/max pattern could be matched. Such match requires widened C 5815 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5816 // CmpConst == C is checked below. 5817 CastedTo = CmpConst; 5818 } else { 5819 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5820 } 5821 break; 5822 case Instruction::FPTrunc: 5823 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5824 break; 5825 case Instruction::FPExt: 5826 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5827 break; 5828 case Instruction::FPToUI: 5829 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5830 break; 5831 case Instruction::FPToSI: 5832 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5833 break; 5834 case Instruction::UIToFP: 5835 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5836 break; 5837 case Instruction::SIToFP: 5838 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5839 break; 5840 default: 5841 break; 5842 } 5843 5844 if (!CastedTo) 5845 return nullptr; 5846 5847 // Make sure the cast doesn't lose any information. 5848 Constant *CastedBack = 5849 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5850 if (CastedBack != C) 5851 return nullptr; 5852 5853 return CastedTo; 5854 } 5855 5856 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5857 Instruction::CastOps *CastOp, 5858 unsigned Depth) { 5859 if (Depth >= MaxAnalysisRecursionDepth) 5860 return {SPF_UNKNOWN, SPNB_NA, false}; 5861 5862 SelectInst *SI = dyn_cast<SelectInst>(V); 5863 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5864 5865 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5866 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5867 5868 Value *TrueVal = SI->getTrueValue(); 5869 Value *FalseVal = SI->getFalseValue(); 5870 5871 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5872 CastOp, Depth); 5873 } 5874 5875 SelectPatternResult llvm::matchDecomposedSelectPattern( 5876 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5877 Instruction::CastOps *CastOp, unsigned Depth) { 5878 CmpInst::Predicate Pred = CmpI->getPredicate(); 5879 Value *CmpLHS = CmpI->getOperand(0); 5880 Value *CmpRHS = CmpI->getOperand(1); 5881 FastMathFlags FMF; 5882 if (isa<FPMathOperator>(CmpI)) 5883 FMF = CmpI->getFastMathFlags(); 5884 5885 // Bail out early. 5886 if (CmpI->isEquality()) 5887 return {SPF_UNKNOWN, SPNB_NA, false}; 5888 5889 // Deal with type mismatches. 5890 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5891 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5892 // If this is a potential fmin/fmax with a cast to integer, then ignore 5893 // -0.0 because there is no corresponding integer value. 5894 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5895 FMF.setNoSignedZeros(); 5896 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5897 cast<CastInst>(TrueVal)->getOperand(0), C, 5898 LHS, RHS, Depth); 5899 } 5900 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5901 // If this is a potential fmin/fmax with a cast to integer, then ignore 5902 // -0.0 because there is no corresponding integer value. 5903 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5904 FMF.setNoSignedZeros(); 5905 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5906 C, cast<CastInst>(FalseVal)->getOperand(0), 5907 LHS, RHS, Depth); 5908 } 5909 } 5910 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5911 LHS, RHS, Depth); 5912 } 5913 5914 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5915 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5916 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5917 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5918 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5919 if (SPF == SPF_FMINNUM) 5920 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5921 if (SPF == SPF_FMAXNUM) 5922 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5923 llvm_unreachable("unhandled!"); 5924 } 5925 5926 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5927 if (SPF == SPF_SMIN) return SPF_SMAX; 5928 if (SPF == SPF_UMIN) return SPF_UMAX; 5929 if (SPF == SPF_SMAX) return SPF_SMIN; 5930 if (SPF == SPF_UMAX) return SPF_UMIN; 5931 llvm_unreachable("unhandled!"); 5932 } 5933 5934 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5935 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5936 } 5937 5938 std::pair<Intrinsic::ID, bool> 5939 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5940 // Check if VL contains select instructions that can be folded into a min/max 5941 // vector intrinsic and return the intrinsic if it is possible. 5942 // TODO: Support floating point min/max. 5943 bool AllCmpSingleUse = true; 5944 SelectPatternResult SelectPattern; 5945 SelectPattern.Flavor = SPF_UNKNOWN; 5946 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5947 Value *LHS, *RHS; 5948 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5949 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5950 CurrentPattern.Flavor == SPF_FMINNUM || 5951 CurrentPattern.Flavor == SPF_FMAXNUM || 5952 !I->getType()->isIntOrIntVectorTy()) 5953 return false; 5954 if (SelectPattern.Flavor != SPF_UNKNOWN && 5955 SelectPattern.Flavor != CurrentPattern.Flavor) 5956 return false; 5957 SelectPattern = CurrentPattern; 5958 AllCmpSingleUse &= 5959 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5960 return true; 5961 })) { 5962 switch (SelectPattern.Flavor) { 5963 case SPF_SMIN: 5964 return {Intrinsic::smin, AllCmpSingleUse}; 5965 case SPF_UMIN: 5966 return {Intrinsic::umin, AllCmpSingleUse}; 5967 case SPF_SMAX: 5968 return {Intrinsic::smax, AllCmpSingleUse}; 5969 case SPF_UMAX: 5970 return {Intrinsic::umax, AllCmpSingleUse}; 5971 default: 5972 llvm_unreachable("unexpected select pattern flavor"); 5973 } 5974 } 5975 return {Intrinsic::not_intrinsic, false}; 5976 } 5977 5978 /// Return true if "icmp Pred LHS RHS" is always true. 5979 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5980 const Value *RHS, const DataLayout &DL, 5981 unsigned Depth) { 5982 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5983 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5984 return true; 5985 5986 switch (Pred) { 5987 default: 5988 return false; 5989 5990 case CmpInst::ICMP_SLE: { 5991 const APInt *C; 5992 5993 // LHS s<= LHS +_{nsw} C if C >= 0 5994 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5995 return !C->isNegative(); 5996 return false; 5997 } 5998 5999 case CmpInst::ICMP_ULE: { 6000 const APInt *C; 6001 6002 // LHS u<= LHS +_{nuw} C for any C 6003 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6004 return true; 6005 6006 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6007 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6008 const Value *&X, 6009 const APInt *&CA, const APInt *&CB) { 6010 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6011 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6012 return true; 6013 6014 // If X & C == 0 then (X | C) == X +_{nuw} C 6015 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6016 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6017 KnownBits Known(CA->getBitWidth()); 6018 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6019 /*CxtI*/ nullptr, /*DT*/ nullptr); 6020 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6021 return true; 6022 } 6023 6024 return false; 6025 }; 6026 6027 const Value *X; 6028 const APInt *CLHS, *CRHS; 6029 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6030 return CLHS->ule(*CRHS); 6031 6032 return false; 6033 } 6034 } 6035 } 6036 6037 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6038 /// ALHS ARHS" is true. Otherwise, return None. 6039 static Optional<bool> 6040 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6041 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6042 const DataLayout &DL, unsigned Depth) { 6043 switch (Pred) { 6044 default: 6045 return None; 6046 6047 case CmpInst::ICMP_SLT: 6048 case CmpInst::ICMP_SLE: 6049 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6050 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6051 return true; 6052 return None; 6053 6054 case CmpInst::ICMP_ULT: 6055 case CmpInst::ICMP_ULE: 6056 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6057 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6058 return true; 6059 return None; 6060 } 6061 } 6062 6063 /// Return true if the operands of the two compares match. IsSwappedOps is true 6064 /// when the operands match, but are swapped. 6065 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6066 const Value *BLHS, const Value *BRHS, 6067 bool &IsSwappedOps) { 6068 6069 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6070 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6071 return IsMatchingOps || IsSwappedOps; 6072 } 6073 6074 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6075 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6076 /// Otherwise, return None if we can't infer anything. 6077 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6078 CmpInst::Predicate BPred, 6079 bool AreSwappedOps) { 6080 // Canonicalize the predicate as if the operands were not commuted. 6081 if (AreSwappedOps) 6082 BPred = ICmpInst::getSwappedPredicate(BPred); 6083 6084 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6085 return true; 6086 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6087 return false; 6088 6089 return None; 6090 } 6091 6092 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6093 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6094 /// Otherwise, return None if we can't infer anything. 6095 static Optional<bool> 6096 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6097 const ConstantInt *C1, 6098 CmpInst::Predicate BPred, 6099 const ConstantInt *C2) { 6100 ConstantRange DomCR = 6101 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6102 ConstantRange CR = 6103 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6104 ConstantRange Intersection = DomCR.intersectWith(CR); 6105 ConstantRange Difference = DomCR.difference(CR); 6106 if (Intersection.isEmptySet()) 6107 return false; 6108 if (Difference.isEmptySet()) 6109 return true; 6110 return None; 6111 } 6112 6113 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6114 /// false. Otherwise, return None if we can't infer anything. 6115 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6116 CmpInst::Predicate BPred, 6117 const Value *BLHS, const Value *BRHS, 6118 const DataLayout &DL, bool LHSIsTrue, 6119 unsigned Depth) { 6120 Value *ALHS = LHS->getOperand(0); 6121 Value *ARHS = LHS->getOperand(1); 6122 6123 // The rest of the logic assumes the LHS condition is true. If that's not the 6124 // case, invert the predicate to make it so. 6125 CmpInst::Predicate APred = 6126 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6127 6128 // Can we infer anything when the two compares have matching operands? 6129 bool AreSwappedOps; 6130 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6131 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6132 APred, BPred, AreSwappedOps)) 6133 return Implication; 6134 // No amount of additional analysis will infer the second condition, so 6135 // early exit. 6136 return None; 6137 } 6138 6139 // Can we infer anything when the LHS operands match and the RHS operands are 6140 // constants (not necessarily matching)? 6141 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6142 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6143 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6144 return Implication; 6145 // No amount of additional analysis will infer the second condition, so 6146 // early exit. 6147 return None; 6148 } 6149 6150 if (APred == BPred) 6151 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6152 return None; 6153 } 6154 6155 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6156 /// false. Otherwise, return None if we can't infer anything. We expect the 6157 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6158 static Optional<bool> 6159 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6160 const Value *RHSOp0, const Value *RHSOp1, 6161 6162 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6163 // The LHS must be an 'or' or an 'and' instruction. 6164 assert((LHS->getOpcode() == Instruction::And || 6165 LHS->getOpcode() == Instruction::Or) && 6166 "Expected LHS to be 'and' or 'or'."); 6167 6168 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6169 6170 // If the result of an 'or' is false, then we know both legs of the 'or' are 6171 // false. Similarly, if the result of an 'and' is true, then we know both 6172 // legs of the 'and' are true. 6173 Value *ALHS, *ARHS; 6174 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6175 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6176 // FIXME: Make this non-recursion. 6177 if (Optional<bool> Implication = isImpliedCondition( 6178 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6179 return Implication; 6180 if (Optional<bool> Implication = isImpliedCondition( 6181 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6182 return Implication; 6183 return None; 6184 } 6185 return None; 6186 } 6187 6188 Optional<bool> 6189 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6190 const Value *RHSOp0, const Value *RHSOp1, 6191 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6192 // Bail out when we hit the limit. 6193 if (Depth == MaxAnalysisRecursionDepth) 6194 return None; 6195 6196 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6197 // example. 6198 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6199 return None; 6200 6201 Type *OpTy = LHS->getType(); 6202 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6203 6204 // FIXME: Extending the code below to handle vectors. 6205 if (OpTy->isVectorTy()) 6206 return None; 6207 6208 assert(OpTy->isIntegerTy(1) && "implied by above"); 6209 6210 // Both LHS and RHS are icmps. 6211 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6212 if (LHSCmp) 6213 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6214 Depth); 6215 6216 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6217 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6218 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6219 if (LHSBO) { 6220 if ((LHSBO->getOpcode() == Instruction::And || 6221 LHSBO->getOpcode() == Instruction::Or)) 6222 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6223 Depth); 6224 } 6225 return None; 6226 } 6227 6228 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6229 const DataLayout &DL, bool LHSIsTrue, 6230 unsigned Depth) { 6231 // LHS ==> RHS by definition 6232 if (LHS == RHS) 6233 return LHSIsTrue; 6234 6235 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6236 if (RHSCmp) 6237 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6238 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6239 LHSIsTrue, Depth); 6240 return None; 6241 } 6242 6243 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6244 // condition dominating ContextI or nullptr, if no condition is found. 6245 static std::pair<Value *, bool> 6246 getDomPredecessorCondition(const Instruction *ContextI) { 6247 if (!ContextI || !ContextI->getParent()) 6248 return {nullptr, false}; 6249 6250 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6251 // dominator tree (eg, from a SimplifyQuery) instead? 6252 const BasicBlock *ContextBB = ContextI->getParent(); 6253 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6254 if (!PredBB) 6255 return {nullptr, false}; 6256 6257 // We need a conditional branch in the predecessor. 6258 Value *PredCond; 6259 BasicBlock *TrueBB, *FalseBB; 6260 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6261 return {nullptr, false}; 6262 6263 // The branch should get simplified. Don't bother simplifying this condition. 6264 if (TrueBB == FalseBB) 6265 return {nullptr, false}; 6266 6267 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6268 "Predecessor block does not point to successor?"); 6269 6270 // Is this condition implied by the predecessor condition? 6271 return {PredCond, TrueBB == ContextBB}; 6272 } 6273 6274 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6275 const Instruction *ContextI, 6276 const DataLayout &DL) { 6277 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6278 auto PredCond = getDomPredecessorCondition(ContextI); 6279 if (PredCond.first) 6280 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6281 return None; 6282 } 6283 6284 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6285 const Value *LHS, const Value *RHS, 6286 const Instruction *ContextI, 6287 const DataLayout &DL) { 6288 auto PredCond = getDomPredecessorCondition(ContextI); 6289 if (PredCond.first) 6290 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6291 PredCond.second); 6292 return None; 6293 } 6294 6295 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6296 APInt &Upper, const InstrInfoQuery &IIQ) { 6297 unsigned Width = Lower.getBitWidth(); 6298 const APInt *C; 6299 switch (BO.getOpcode()) { 6300 case Instruction::Add: 6301 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6302 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6303 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6304 // 'add nuw x, C' produces [C, UINT_MAX]. 6305 Lower = *C; 6306 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6307 if (C->isNegative()) { 6308 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6309 Lower = APInt::getSignedMinValue(Width); 6310 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6311 } else { 6312 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6313 Lower = APInt::getSignedMinValue(Width) + *C; 6314 Upper = APInt::getSignedMaxValue(Width) + 1; 6315 } 6316 } 6317 } 6318 break; 6319 6320 case Instruction::And: 6321 if (match(BO.getOperand(1), m_APInt(C))) 6322 // 'and x, C' produces [0, C]. 6323 Upper = *C + 1; 6324 break; 6325 6326 case Instruction::Or: 6327 if (match(BO.getOperand(1), m_APInt(C))) 6328 // 'or x, C' produces [C, UINT_MAX]. 6329 Lower = *C; 6330 break; 6331 6332 case Instruction::AShr: 6333 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6334 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6335 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6336 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6337 } else if (match(BO.getOperand(0), m_APInt(C))) { 6338 unsigned ShiftAmount = Width - 1; 6339 if (!C->isNullValue() && IIQ.isExact(&BO)) 6340 ShiftAmount = C->countTrailingZeros(); 6341 if (C->isNegative()) { 6342 // 'ashr C, x' produces [C, C >> (Width-1)] 6343 Lower = *C; 6344 Upper = C->ashr(ShiftAmount) + 1; 6345 } else { 6346 // 'ashr C, x' produces [C >> (Width-1), C] 6347 Lower = C->ashr(ShiftAmount); 6348 Upper = *C + 1; 6349 } 6350 } 6351 break; 6352 6353 case Instruction::LShr: 6354 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6355 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6356 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6357 } else if (match(BO.getOperand(0), m_APInt(C))) { 6358 // 'lshr C, x' produces [C >> (Width-1), C]. 6359 unsigned ShiftAmount = Width - 1; 6360 if (!C->isNullValue() && IIQ.isExact(&BO)) 6361 ShiftAmount = C->countTrailingZeros(); 6362 Lower = C->lshr(ShiftAmount); 6363 Upper = *C + 1; 6364 } 6365 break; 6366 6367 case Instruction::Shl: 6368 if (match(BO.getOperand(0), m_APInt(C))) { 6369 if (IIQ.hasNoUnsignedWrap(&BO)) { 6370 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6371 Lower = *C; 6372 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6373 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6374 if (C->isNegative()) { 6375 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6376 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6377 Lower = C->shl(ShiftAmount); 6378 Upper = *C + 1; 6379 } else { 6380 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6381 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6382 Lower = *C; 6383 Upper = C->shl(ShiftAmount) + 1; 6384 } 6385 } 6386 } 6387 break; 6388 6389 case Instruction::SDiv: 6390 if (match(BO.getOperand(1), m_APInt(C))) { 6391 APInt IntMin = APInt::getSignedMinValue(Width); 6392 APInt IntMax = APInt::getSignedMaxValue(Width); 6393 if (C->isAllOnesValue()) { 6394 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6395 // where C != -1 and C != 0 and C != 1 6396 Lower = IntMin + 1; 6397 Upper = IntMax + 1; 6398 } else if (C->countLeadingZeros() < Width - 1) { 6399 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6400 // where C != -1 and C != 0 and C != 1 6401 Lower = IntMin.sdiv(*C); 6402 Upper = IntMax.sdiv(*C); 6403 if (Lower.sgt(Upper)) 6404 std::swap(Lower, Upper); 6405 Upper = Upper + 1; 6406 assert(Upper != Lower && "Upper part of range has wrapped!"); 6407 } 6408 } else if (match(BO.getOperand(0), m_APInt(C))) { 6409 if (C->isMinSignedValue()) { 6410 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6411 Lower = *C; 6412 Upper = Lower.lshr(1) + 1; 6413 } else { 6414 // 'sdiv C, x' produces [-|C|, |C|]. 6415 Upper = C->abs() + 1; 6416 Lower = (-Upper) + 1; 6417 } 6418 } 6419 break; 6420 6421 case Instruction::UDiv: 6422 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6423 // 'udiv x, C' produces [0, UINT_MAX / C]. 6424 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6425 } else if (match(BO.getOperand(0), m_APInt(C))) { 6426 // 'udiv C, x' produces [0, C]. 6427 Upper = *C + 1; 6428 } 6429 break; 6430 6431 case Instruction::SRem: 6432 if (match(BO.getOperand(1), m_APInt(C))) { 6433 // 'srem x, C' produces (-|C|, |C|). 6434 Upper = C->abs(); 6435 Lower = (-Upper) + 1; 6436 } 6437 break; 6438 6439 case Instruction::URem: 6440 if (match(BO.getOperand(1), m_APInt(C))) 6441 // 'urem x, C' produces [0, C). 6442 Upper = *C; 6443 break; 6444 6445 default: 6446 break; 6447 } 6448 } 6449 6450 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6451 APInt &Upper) { 6452 unsigned Width = Lower.getBitWidth(); 6453 const APInt *C; 6454 switch (II.getIntrinsicID()) { 6455 case Intrinsic::ctpop: 6456 case Intrinsic::ctlz: 6457 case Intrinsic::cttz: 6458 // Maximum of set/clear bits is the bit width. 6459 assert(Lower == 0 && "Expected lower bound to be zero"); 6460 Upper = Width + 1; 6461 break; 6462 case Intrinsic::uadd_sat: 6463 // uadd.sat(x, C) produces [C, UINT_MAX]. 6464 if (match(II.getOperand(0), m_APInt(C)) || 6465 match(II.getOperand(1), m_APInt(C))) 6466 Lower = *C; 6467 break; 6468 case Intrinsic::sadd_sat: 6469 if (match(II.getOperand(0), m_APInt(C)) || 6470 match(II.getOperand(1), m_APInt(C))) { 6471 if (C->isNegative()) { 6472 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6473 Lower = APInt::getSignedMinValue(Width); 6474 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6475 } else { 6476 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6477 Lower = APInt::getSignedMinValue(Width) + *C; 6478 Upper = APInt::getSignedMaxValue(Width) + 1; 6479 } 6480 } 6481 break; 6482 case Intrinsic::usub_sat: 6483 // usub.sat(C, x) produces [0, C]. 6484 if (match(II.getOperand(0), m_APInt(C))) 6485 Upper = *C + 1; 6486 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6487 else if (match(II.getOperand(1), m_APInt(C))) 6488 Upper = APInt::getMaxValue(Width) - *C + 1; 6489 break; 6490 case Intrinsic::ssub_sat: 6491 if (match(II.getOperand(0), m_APInt(C))) { 6492 if (C->isNegative()) { 6493 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6494 Lower = APInt::getSignedMinValue(Width); 6495 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6496 } else { 6497 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6498 Lower = *C - APInt::getSignedMaxValue(Width); 6499 Upper = APInt::getSignedMaxValue(Width) + 1; 6500 } 6501 } else if (match(II.getOperand(1), m_APInt(C))) { 6502 if (C->isNegative()) { 6503 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6504 Lower = APInt::getSignedMinValue(Width) - *C; 6505 Upper = APInt::getSignedMaxValue(Width) + 1; 6506 } else { 6507 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6508 Lower = APInt::getSignedMinValue(Width); 6509 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6510 } 6511 } 6512 break; 6513 case Intrinsic::umin: 6514 case Intrinsic::umax: 6515 case Intrinsic::smin: 6516 case Intrinsic::smax: 6517 if (!match(II.getOperand(0), m_APInt(C)) && 6518 !match(II.getOperand(1), m_APInt(C))) 6519 break; 6520 6521 switch (II.getIntrinsicID()) { 6522 case Intrinsic::umin: 6523 Upper = *C + 1; 6524 break; 6525 case Intrinsic::umax: 6526 Lower = *C; 6527 break; 6528 case Intrinsic::smin: 6529 Lower = APInt::getSignedMinValue(Width); 6530 Upper = *C + 1; 6531 break; 6532 case Intrinsic::smax: 6533 Lower = *C; 6534 Upper = APInt::getSignedMaxValue(Width) + 1; 6535 break; 6536 default: 6537 llvm_unreachable("Must be min/max intrinsic"); 6538 } 6539 break; 6540 case Intrinsic::abs: 6541 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6542 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6543 if (match(II.getOperand(1), m_One())) 6544 Upper = APInt::getSignedMaxValue(Width) + 1; 6545 else 6546 Upper = APInt::getSignedMinValue(Width) + 1; 6547 break; 6548 default: 6549 break; 6550 } 6551 } 6552 6553 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6554 APInt &Upper, const InstrInfoQuery &IIQ) { 6555 const Value *LHS = nullptr, *RHS = nullptr; 6556 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6557 if (R.Flavor == SPF_UNKNOWN) 6558 return; 6559 6560 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6561 6562 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6563 // If the negation part of the abs (in RHS) has the NSW flag, 6564 // then the result of abs(X) is [0..SIGNED_MAX], 6565 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6566 Lower = APInt::getNullValue(BitWidth); 6567 if (match(RHS, m_Neg(m_Specific(LHS))) && 6568 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6569 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6570 else 6571 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6572 return; 6573 } 6574 6575 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6576 // The result of -abs(X) is <= 0. 6577 Lower = APInt::getSignedMinValue(BitWidth); 6578 Upper = APInt(BitWidth, 1); 6579 return; 6580 } 6581 6582 const APInt *C; 6583 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6584 return; 6585 6586 switch (R.Flavor) { 6587 case SPF_UMIN: 6588 Upper = *C + 1; 6589 break; 6590 case SPF_UMAX: 6591 Lower = *C; 6592 break; 6593 case SPF_SMIN: 6594 Lower = APInt::getSignedMinValue(BitWidth); 6595 Upper = *C + 1; 6596 break; 6597 case SPF_SMAX: 6598 Lower = *C; 6599 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6600 break; 6601 default: 6602 break; 6603 } 6604 } 6605 6606 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6607 AssumptionCache *AC, 6608 const Instruction *CtxI, 6609 unsigned Depth) { 6610 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6611 6612 if (Depth == MaxAnalysisRecursionDepth) 6613 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6614 6615 const APInt *C; 6616 if (match(V, m_APInt(C))) 6617 return ConstantRange(*C); 6618 6619 InstrInfoQuery IIQ(UseInstrInfo); 6620 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6621 APInt Lower = APInt(BitWidth, 0); 6622 APInt Upper = APInt(BitWidth, 0); 6623 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6624 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6625 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6626 setLimitsForIntrinsic(*II, Lower, Upper); 6627 else if (auto *SI = dyn_cast<SelectInst>(V)) 6628 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6629 6630 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6631 6632 if (auto *I = dyn_cast<Instruction>(V)) 6633 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6634 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6635 6636 if (CtxI && AC) { 6637 // Try to restrict the range based on information from assumptions. 6638 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6639 if (!AssumeVH) 6640 continue; 6641 CallInst *I = cast<CallInst>(AssumeVH); 6642 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6643 "Got assumption for the wrong function!"); 6644 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6645 "must be an assume intrinsic"); 6646 6647 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6648 continue; 6649 Value *Arg = I->getArgOperand(0); 6650 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6651 // Currently we just use information from comparisons. 6652 if (!Cmp || Cmp->getOperand(0) != V) 6653 continue; 6654 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6655 AC, I, Depth + 1); 6656 CR = CR.intersectWith( 6657 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6658 } 6659 } 6660 6661 return CR; 6662 } 6663 6664 static Optional<int64_t> 6665 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6666 // Skip over the first indices. 6667 gep_type_iterator GTI = gep_type_begin(GEP); 6668 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6669 /*skip along*/; 6670 6671 // Compute the offset implied by the rest of the indices. 6672 int64_t Offset = 0; 6673 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6674 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6675 if (!OpC) 6676 return None; 6677 if (OpC->isZero()) 6678 continue; // No offset. 6679 6680 // Handle struct indices, which add their field offset to the pointer. 6681 if (StructType *STy = GTI.getStructTypeOrNull()) { 6682 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6683 continue; 6684 } 6685 6686 // Otherwise, we have a sequential type like an array or fixed-length 6687 // vector. Multiply the index by the ElementSize. 6688 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6689 if (Size.isScalable()) 6690 return None; 6691 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6692 } 6693 6694 return Offset; 6695 } 6696 6697 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6698 const DataLayout &DL) { 6699 Ptr1 = Ptr1->stripPointerCasts(); 6700 Ptr2 = Ptr2->stripPointerCasts(); 6701 6702 // Handle the trivial case first. 6703 if (Ptr1 == Ptr2) { 6704 return 0; 6705 } 6706 6707 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6708 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6709 6710 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6711 // as in "P" and "gep P, 1". 6712 // Also do this iteratively to handle the the following case: 6713 // Ptr_t1 = GEP Ptr1, c1 6714 // Ptr_t2 = GEP Ptr_t1, c2 6715 // Ptr2 = GEP Ptr_t2, c3 6716 // where we will return c1+c2+c3. 6717 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6718 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6719 // are the same, and return the difference between offsets. 6720 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6721 const Value *Ptr) -> Optional<int64_t> { 6722 const GEPOperator *GEP_T = GEP; 6723 int64_t OffsetVal = 0; 6724 bool HasSameBase = false; 6725 while (GEP_T) { 6726 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6727 if (!Offset) 6728 return None; 6729 OffsetVal += *Offset; 6730 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6731 if (Op0 == Ptr) { 6732 HasSameBase = true; 6733 break; 6734 } 6735 GEP_T = dyn_cast<GEPOperator>(Op0); 6736 } 6737 if (!HasSameBase) 6738 return None; 6739 return OffsetVal; 6740 }; 6741 6742 if (GEP1) { 6743 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6744 if (Offset) 6745 return -*Offset; 6746 } 6747 if (GEP2) { 6748 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6749 if (Offset) 6750 return Offset; 6751 } 6752 6753 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6754 // base. After that base, they may have some number of common (and 6755 // potentially variable) indices. After that they handle some constant 6756 // offset, which determines their offset from each other. At this point, we 6757 // handle no other case. 6758 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6759 return None; 6760 6761 // Skip any common indices and track the GEP types. 6762 unsigned Idx = 1; 6763 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6764 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6765 break; 6766 6767 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6768 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6769 if (!Offset1 || !Offset2) 6770 return None; 6771 return *Offset2 - *Offset1; 6772 } 6773