1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 unsigned BitWidth = Known.getBitWidth(); 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 isKnownNonZero(Op0, Depth, Q)) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 443 isKnownNonZero(Op1, Depth, Q)); 444 } 445 } 446 447 assert(!Known.hasConflict() && !Known2.hasConflict()); 448 // Compute a conservative estimate for high known-0 bits. 449 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 450 Known2.countMinLeadingZeros(), 451 BitWidth) - BitWidth; 452 LeadZ = std::min(LeadZ, BitWidth); 453 454 // The result of the bottom bits of an integer multiply can be 455 // inferred by looking at the bottom bits of both operands and 456 // multiplying them together. 457 // We can infer at least the minimum number of known trailing bits 458 // of both operands. Depending on number of trailing zeros, we can 459 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 460 // a and b are divisible by m and n respectively. 461 // We then calculate how many of those bits are inferrable and set 462 // the output. For example, the i8 mul: 463 // a = XXXX1100 (12) 464 // b = XXXX1110 (14) 465 // We know the bottom 3 bits are zero since the first can be divided by 466 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 467 // Applying the multiplication to the trimmed arguments gets: 468 // XX11 (3) 469 // X111 (7) 470 // ------- 471 // XX11 472 // XX11 473 // XX11 474 // XX11 475 // ------- 476 // XXXXX01 477 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 478 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 479 // The proof for this can be described as: 480 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 481 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 482 // umin(countTrailingZeros(C2), C6) + 483 // umin(C5 - umin(countTrailingZeros(C1), C5), 484 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 485 // %aa = shl i8 %a, C5 486 // %bb = shl i8 %b, C6 487 // %aaa = or i8 %aa, C1 488 // %bbb = or i8 %bb, C2 489 // %mul = mul i8 %aaa, %bbb 490 // %mask = and i8 %mul, C7 491 // => 492 // %mask = i8 ((C1*C2)&C7) 493 // Where C5, C6 describe the known bits of %a, %b 494 // C1, C2 describe the known bottom bits of %a, %b. 495 // C7 describes the mask of the known bits of the result. 496 APInt Bottom0 = Known.One; 497 APInt Bottom1 = Known2.One; 498 499 // How many times we'd be able to divide each argument by 2 (shr by 1). 500 // This gives us the number of trailing zeros on the multiplication result. 501 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 502 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 503 unsigned TrailZero0 = Known.countMinTrailingZeros(); 504 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 505 unsigned TrailZ = TrailZero0 + TrailZero1; 506 507 // Figure out the fewest known-bits operand. 508 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 509 TrailBitsKnown1 - TrailZero1); 510 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 511 512 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 513 Bottom1.getLoBits(TrailBitsKnown1); 514 515 Known.resetAll(); 516 Known.Zero.setHighBits(LeadZ); 517 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 518 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 519 520 // Only make use of no-wrap flags if we failed to compute the sign bit 521 // directly. This matters if the multiplication always overflows, in 522 // which case we prefer to follow the result of the direct computation, 523 // though as the program is invoking undefined behaviour we can choose 524 // whatever we like here. 525 if (isKnownNonNegative && !Known.isNegative()) 526 Known.makeNonNegative(); 527 else if (isKnownNegative && !Known.isNonNegative()) 528 Known.makeNegative(); 529 } 530 531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 532 KnownBits &Known) { 533 unsigned BitWidth = Known.getBitWidth(); 534 unsigned NumRanges = Ranges.getNumOperands() / 2; 535 assert(NumRanges >= 1); 536 537 Known.Zero.setAllBits(); 538 Known.One.setAllBits(); 539 540 for (unsigned i = 0; i < NumRanges; ++i) { 541 ConstantInt *Lower = 542 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 543 ConstantInt *Upper = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 545 ConstantRange Range(Lower->getValue(), Upper->getValue()); 546 547 // The first CommonPrefixBits of all values in Range are equal. 548 unsigned CommonPrefixBits = 549 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 550 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 551 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 552 Known.One &= UnsignedMax & Mask; 553 Known.Zero &= ~UnsignedMax & Mask; 554 } 555 } 556 557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 558 SmallVector<const Value *, 16> WorkSet(1, I); 559 SmallPtrSet<const Value *, 32> Visited; 560 SmallPtrSet<const Value *, 16> EphValues; 561 562 // The instruction defining an assumption's condition itself is always 563 // considered ephemeral to that assumption (even if it has other 564 // non-ephemeral users). See r246696's test case for an example. 565 if (is_contained(I->operands(), E)) 566 return true; 567 568 while (!WorkSet.empty()) { 569 const Value *V = WorkSet.pop_back_val(); 570 if (!Visited.insert(V).second) 571 continue; 572 573 // If all uses of this value are ephemeral, then so is this value. 574 if (llvm::all_of(V->users(), [&](const User *U) { 575 return EphValues.count(U); 576 })) { 577 if (V == E) 578 return true; 579 580 if (V == I || isSafeToSpeculativelyExecute(V)) { 581 EphValues.insert(V); 582 if (const User *U = dyn_cast<User>(V)) 583 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 584 J != JE; ++J) 585 WorkSet.push_back(*J); 586 } 587 } 588 } 589 590 return false; 591 } 592 593 // Is this an intrinsic that cannot be speculated but also cannot trap? 594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 595 if (const CallInst *CI = dyn_cast<CallInst>(I)) 596 if (Function *F = CI->getCalledFunction()) 597 switch (F->getIntrinsicID()) { 598 default: break; 599 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 600 case Intrinsic::assume: 601 case Intrinsic::sideeffect: 602 case Intrinsic::dbg_declare: 603 case Intrinsic::dbg_value: 604 case Intrinsic::dbg_label: 605 case Intrinsic::invariant_start: 606 case Intrinsic::invariant_end: 607 case Intrinsic::lifetime_start: 608 case Intrinsic::lifetime_end: 609 case Intrinsic::objectsize: 610 case Intrinsic::ptr_annotation: 611 case Intrinsic::var_annotation: 612 return true; 613 } 614 615 return false; 616 } 617 618 bool llvm::isValidAssumeForContext(const Instruction *Inv, 619 const Instruction *CxtI, 620 const DominatorTree *DT) { 621 // There are two restrictions on the use of an assume: 622 // 1. The assume must dominate the context (or the control flow must 623 // reach the assume whenever it reaches the context). 624 // 2. The context must not be in the assume's set of ephemeral values 625 // (otherwise we will use the assume to prove that the condition 626 // feeding the assume is trivially true, thus causing the removal of 627 // the assume). 628 629 if (Inv->getParent() == CxtI->getParent()) { 630 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 631 // in the BB. 632 if (Inv->comesBefore(CxtI)) 633 return true; 634 635 // Don't let an assume affect itself - this would cause the problems 636 // `isEphemeralValueOf` is trying to prevent, and it would also make 637 // the loop below go out of bounds. 638 if (Inv == CxtI) 639 return false; 640 641 // The context comes first, but they're both in the same block. 642 // Make sure there is nothing in between that might interrupt 643 // the control flow, not even CxtI itself. 644 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 645 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 646 return false; 647 648 return !isEphemeralValueOf(Inv, CxtI); 649 } 650 651 // Inv and CxtI are in different blocks. 652 if (DT) { 653 if (DT->dominates(Inv, CxtI)) 654 return true; 655 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 656 // We don't have a DT, but this trivially dominates. 657 return true; 658 } 659 660 return false; 661 } 662 663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 664 // Use of assumptions is context-sensitive. If we don't have a context, we 665 // cannot use them! 666 if (!Q.AC || !Q.CxtI) 667 return false; 668 669 // Note that the patterns below need to be kept in sync with the code 670 // in AssumptionCache::updateAffectedValues. 671 672 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 673 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 674 675 Value *RHS; 676 CmpInst::Predicate Pred; 677 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 678 return false; 679 // assume(v u> y) -> assume(v != 0) 680 if (Pred == ICmpInst::ICMP_UGT) 681 return true; 682 683 // assume(v != 0) 684 // We special-case this one to ensure that we handle `assume(v != null)`. 685 if (Pred == ICmpInst::ICMP_NE) 686 return match(RHS, m_Zero()); 687 688 // All other predicates - rely on generic ConstantRange handling. 689 ConstantInt *CI; 690 if (!match(RHS, m_ConstantInt(CI))) 691 return false; 692 ConstantRange RHSRange(CI->getValue()); 693 ConstantRange TrueValues = 694 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 695 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 696 }; 697 698 if (Q.CxtI && V->getType()->isPointerTy()) { 699 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 700 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 701 V->getType()->getPointerAddressSpace())) 702 AttrKinds.push_back(Attribute::Dereferenceable); 703 704 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 705 return true; 706 } 707 708 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 709 if (!AssumeVH) 710 continue; 711 CallInst *I = cast<CallInst>(AssumeVH); 712 assert(I->getFunction() == Q.CxtI->getFunction() && 713 "Got assumption for the wrong function!"); 714 if (Q.isExcluded(I)) 715 continue; 716 717 // Warning: This loop can end up being somewhat performance sensitive. 718 // We're running this loop for once for each value queried resulting in a 719 // runtime of ~O(#assumes * #values). 720 721 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 722 "must be an assume intrinsic"); 723 724 Value *Arg = I->getArgOperand(0); 725 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 726 if (!Cmp) 727 continue; 728 729 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 730 return true; 731 } 732 733 return false; 734 } 735 736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 737 unsigned Depth, const Query &Q) { 738 // Use of assumptions is context-sensitive. If we don't have a context, we 739 // cannot use them! 740 if (!Q.AC || !Q.CxtI) 741 return; 742 743 unsigned BitWidth = Known.getBitWidth(); 744 745 // Note that the patterns below need to be kept in sync with the code 746 // in AssumptionCache::updateAffectedValues. 747 748 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 749 if (!AssumeVH) 750 continue; 751 CallInst *I = cast<CallInst>(AssumeVH); 752 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 753 "Got assumption for the wrong function!"); 754 if (Q.isExcluded(I)) 755 continue; 756 757 // Warning: This loop can end up being somewhat performance sensitive. 758 // We're running this loop for once for each value queried resulting in a 759 // runtime of ~O(#assumes * #values). 760 761 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 762 "must be an assume intrinsic"); 763 764 Value *Arg = I->getArgOperand(0); 765 766 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllOnes(); 769 return; 770 } 771 if (match(Arg, m_Not(m_Specific(V))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 assert(BitWidth == 1 && "assume operand is not i1?"); 774 Known.setAllZero(); 775 return; 776 } 777 778 // The remaining tests are all recursive, so bail out if we hit the limit. 779 if (Depth == MaxAnalysisRecursionDepth) 780 continue; 781 782 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 783 if (!Cmp) 784 continue; 785 786 // Note that ptrtoint may change the bitwidth. 787 Value *A, *B; 788 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 789 790 CmpInst::Predicate Pred; 791 uint64_t C; 792 switch (Cmp->getPredicate()) { 793 default: 794 break; 795 case ICmpInst::ICMP_EQ: 796 // assume(v = a) 797 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 Known.Zero |= RHSKnown.Zero; 802 Known.One |= RHSKnown.One; 803 // assume(v & b = a) 804 } else if (match(Cmp, 805 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown = 808 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 KnownBits MaskKnown = 810 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 812 // For those bits in the mask that are known to be one, we can propagate 813 // known bits from the RHS to V. 814 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 815 Known.One |= RHSKnown.One & MaskKnown.One; 816 // assume(~(v & b) = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 KnownBits MaskKnown = 823 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 825 // For those bits in the mask that are known to be one, we can propagate 826 // inverted known bits from the RHS to V. 827 Known.Zero |= RHSKnown.One & MaskKnown.One; 828 Known.One |= RHSKnown.Zero & MaskKnown.One; 829 // assume(v | b = a) 830 } else if (match(Cmp, 831 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 KnownBits BKnown = 836 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 838 // For those bits in B that are known to be zero, we can propagate known 839 // bits from the RHS to V. 840 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 841 Known.One |= RHSKnown.One & BKnown.Zero; 842 // assume(~(v | b) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 KnownBits BKnown = 849 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 851 // For those bits in B that are known to be zero, we can propagate 852 // inverted known bits from the RHS to V. 853 Known.Zero |= RHSKnown.One & BKnown.Zero; 854 Known.One |= RHSKnown.Zero & BKnown.Zero; 855 // assume(v ^ b = a) 856 } else if (match(Cmp, 857 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 861 KnownBits BKnown = 862 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 864 // For those bits in B that are known to be zero, we can propagate known 865 // bits from the RHS to V. For those bits in B that are known to be one, 866 // we can propagate inverted known bits from the RHS to V. 867 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 868 Known.One |= RHSKnown.One & BKnown.Zero; 869 Known.Zero |= RHSKnown.One & BKnown.One; 870 Known.One |= RHSKnown.Zero & BKnown.One; 871 // assume(~(v ^ b) = a) 872 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 873 m_Value(A))) && 874 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 875 KnownBits RHSKnown = 876 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 877 KnownBits BKnown = 878 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 880 // For those bits in B that are known to be zero, we can propagate 881 // inverted known bits from the RHS to V. For those bits in B that are 882 // known to be one, we can propagate known bits from the RHS to V. 883 Known.Zero |= RHSKnown.One & BKnown.Zero; 884 Known.One |= RHSKnown.Zero & BKnown.Zero; 885 Known.Zero |= RHSKnown.Zero & BKnown.One; 886 Known.One |= RHSKnown.One & BKnown.One; 887 // assume(v << c = a) 888 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 889 m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 891 KnownBits RHSKnown = 892 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 893 894 // For those bits in RHS that are known, we can propagate them to known 895 // bits in V shifted to the right by C. 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.Zero |= RHSKnown.Zero; 898 RHSKnown.One.lshrInPlace(C); 899 Known.One |= RHSKnown.One; 900 // assume(~(v << c) = a) 901 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 902 m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 904 KnownBits RHSKnown = 905 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 906 // For those bits in RHS that are known, we can propagate them inverted 907 // to known bits in V shifted to the right by C. 908 RHSKnown.One.lshrInPlace(C); 909 Known.Zero |= RHSKnown.One; 910 RHSKnown.Zero.lshrInPlace(C); 911 Known.One |= RHSKnown.Zero; 912 // assume(v >> c = a) 913 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 914 m_Value(A))) && 915 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 916 KnownBits RHSKnown = 917 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 918 // For those bits in RHS that are known, we can propagate them to known 919 // bits in V shifted to the right by C. 920 Known.Zero |= RHSKnown.Zero << C; 921 Known.One |= RHSKnown.One << C; 922 // assume(~(v >> c) = a) 923 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 924 m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 // For those bits in RHS that are known, we can propagate them inverted 929 // to known bits in V shifted to the right by C. 930 Known.Zero |= RHSKnown.One << C; 931 Known.One |= RHSKnown.Zero << C; 932 } 933 break; 934 case ICmpInst::ICMP_SGE: 935 // assume(v >=_s c) where c is non-negative 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown = 939 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 940 941 if (RHSKnown.isNonNegative()) { 942 // We know that the sign bit is zero. 943 Known.makeNonNegative(); 944 } 945 } 946 break; 947 case ICmpInst::ICMP_SGT: 948 // assume(v >_s c) where c is at least -1. 949 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 950 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 951 KnownBits RHSKnown = 952 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 953 954 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 955 // We know that the sign bit is zero. 956 Known.makeNonNegative(); 957 } 958 } 959 break; 960 case ICmpInst::ICMP_SLE: 961 // assume(v <=_s c) where c is negative 962 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 963 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 964 KnownBits RHSKnown = 965 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 966 967 if (RHSKnown.isNegative()) { 968 // We know that the sign bit is one. 969 Known.makeNegative(); 970 } 971 } 972 break; 973 case ICmpInst::ICMP_SLT: 974 // assume(v <_s c) where c is non-positive 975 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 976 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 977 KnownBits RHSKnown = 978 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 979 980 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 981 // We know that the sign bit is one. 982 Known.makeNegative(); 983 } 984 } 985 break; 986 case ICmpInst::ICMP_ULE: 987 // assume(v <=_u c) 988 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 989 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 990 KnownBits RHSKnown = 991 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 992 993 // Whatever high bits in c are zero are known to be zero. 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 995 } 996 break; 997 case ICmpInst::ICMP_ULT: 998 // assume(v <_u c) 999 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1000 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1001 KnownBits RHSKnown = 1002 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1003 1004 // If the RHS is known zero, then this assumption must be wrong (nothing 1005 // is unsigned less than zero). Signal a conflict and get out of here. 1006 if (RHSKnown.isZero()) { 1007 Known.Zero.setAllBits(); 1008 Known.One.setAllBits(); 1009 break; 1010 } 1011 1012 // Whatever high bits in c are zero are known to be zero (if c is a power 1013 // of 2, then one more). 1014 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1015 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1016 else 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1018 } 1019 break; 1020 } 1021 } 1022 1023 // If assumptions conflict with each other or previous known bits, then we 1024 // have a logical fallacy. It's possible that the assumption is not reachable, 1025 // so this isn't a real bug. On the other hand, the program may have undefined 1026 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1027 // clear out the known bits, try to warn the user, and hope for the best. 1028 if (Known.Zero.intersects(Known.One)) { 1029 Known.resetAll(); 1030 1031 if (Q.ORE) 1032 Q.ORE->emit([&]() { 1033 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1034 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1035 CxtI) 1036 << "Detected conflicting code assumptions. Program may " 1037 "have undefined behavior, or compiler may have " 1038 "internal error."; 1039 }); 1040 } 1041 } 1042 1043 /// Compute known bits from a shift operator, including those with a 1044 /// non-constant shift amount. Known is the output of this function. Known2 is a 1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1046 /// operator-specific functions that, given the known-zero or known-one bits 1047 /// respectively, and a shift amount, compute the implied known-zero or 1048 /// known-one bits of the shift operator's result respectively for that shift 1049 /// amount. The results from calling KZF and KOF are conservatively combined for 1050 /// all permitted shift amounts. 1051 static void computeKnownBitsFromShiftOperator( 1052 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1053 KnownBits &Known2, unsigned Depth, const Query &Q, 1054 function_ref<APInt(const APInt &, unsigned)> KZF, 1055 function_ref<APInt(const APInt &, unsigned)> KOF) { 1056 unsigned BitWidth = Known.getBitWidth(); 1057 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 if (Known.isConstant()) { 1060 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1061 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1063 Known.Zero = KZF(Known.Zero, ShiftAmt); 1064 Known.One = KOF(Known.One, ShiftAmt); 1065 // If the known bits conflict, this must be an overflowing left shift, so 1066 // the shift result is poison. We can return anything we want. Choose 0 for 1067 // the best folding opportunity. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 1071 return; 1072 } 1073 1074 // If the shift amount could be greater than or equal to the bit-width of the 1075 // LHS, the value could be poison, but bail out because the check below is 1076 // expensive. 1077 // TODO: Should we just carry on? 1078 if (Known.getMaxValue().uge(BitWidth)) { 1079 Known.resetAll(); 1080 return; 1081 } 1082 1083 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1084 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1085 // limit value (which implies all bits are known). 1086 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1087 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1088 1089 // It would be more-clearly correct to use the two temporaries for this 1090 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1091 Known.resetAll(); 1092 1093 // If we know the shifter operand is nonzero, we can sometimes infer more 1094 // known bits. However this is expensive to compute, so be lazy about it and 1095 // only compute it when absolutely necessary. 1096 Optional<bool> ShifterOperandIsNonZero; 1097 1098 // Early exit if we can't constrain any well-defined shift amount. 1099 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1100 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1101 ShifterOperandIsNonZero = 1102 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1103 if (!*ShifterOperandIsNonZero) 1104 return; 1105 } 1106 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1112 // Combine the shifted known input bits only for those shift amounts 1113 // compatible with its known constraints. 1114 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1115 continue; 1116 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1117 continue; 1118 // If we know the shifter is nonzero, we may be able to infer more known 1119 // bits. This check is sunk down as far as possible to avoid the expensive 1120 // call to isKnownNonZero if the cheaper checks above fail. 1121 if (ShiftAmt == 0) { 1122 if (!ShifterOperandIsNonZero.hasValue()) 1123 ShifterOperandIsNonZero = 1124 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1125 if (*ShifterOperandIsNonZero) 1126 continue; 1127 } 1128 1129 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1130 Known.One &= KOF(Known2.One, ShiftAmt); 1131 } 1132 1133 // If the known bits conflict, the result is poison. Return a 0 and hope the 1134 // caller can further optimize that. 1135 if (Known.hasConflict()) 1136 Known.setAllZero(); 1137 } 1138 1139 static void computeKnownBitsFromOperator(const Operator *I, 1140 const APInt &DemandedElts, 1141 KnownBits &Known, unsigned Depth, 1142 const Query &Q) { 1143 unsigned BitWidth = Known.getBitWidth(); 1144 1145 KnownBits Known2(BitWidth); 1146 switch (I->getOpcode()) { 1147 default: break; 1148 case Instruction::Load: 1149 if (MDNode *MD = 1150 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1151 computeKnownBitsFromRangeMetadata(*MD, Known); 1152 break; 1153 case Instruction::And: { 1154 // If either the LHS or the RHS are Zero, the result is zero. 1155 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1157 1158 Known &= Known2; 1159 1160 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1161 // here we handle the more general case of adding any odd number by 1162 // matching the form add(x, add(x, y)) where y is odd. 1163 // TODO: This could be generalized to clearing any bit set in y where the 1164 // following bit is known to be unset in y. 1165 Value *X = nullptr, *Y = nullptr; 1166 if (!Known.Zero[0] && !Known.One[0] && 1167 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1168 Known2.resetAll(); 1169 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1170 if (Known2.countMinTrailingOnes() > 0) 1171 Known.Zero.setBit(0); 1172 } 1173 break; 1174 } 1175 case Instruction::Or: 1176 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1178 1179 Known |= Known2; 1180 break; 1181 case Instruction::Xor: 1182 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1183 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1184 1185 Known ^= Known2; 1186 break; 1187 case Instruction::Mul: { 1188 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1189 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::UDiv: { 1194 // For the purposes of computing leading zeros we can conservatively 1195 // treat a udiv as a logical right shift by the power of 2 known to 1196 // be less than the denominator. 1197 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1198 unsigned LeadZ = Known2.countMinLeadingZeros(); 1199 1200 Known2.resetAll(); 1201 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1202 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1203 if (RHSMaxLeadingZeros != BitWidth) 1204 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1205 1206 Known.Zero.setHighBits(LeadZ); 1207 break; 1208 } 1209 case Instruction::Select: { 1210 const Value *LHS = nullptr, *RHS = nullptr; 1211 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1212 if (SelectPatternResult::isMinOrMax(SPF)) { 1213 computeKnownBits(RHS, Known, Depth + 1, Q); 1214 computeKnownBits(LHS, Known2, Depth + 1, Q); 1215 switch (SPF) { 1216 default: 1217 llvm_unreachable("Unhandled select pattern flavor!"); 1218 case SPF_SMAX: 1219 Known = KnownBits::smax(Known, Known2); 1220 break; 1221 case SPF_SMIN: 1222 Known = KnownBits::smin(Known, Known2); 1223 break; 1224 case SPF_UMAX: 1225 Known = KnownBits::umax(Known, Known2); 1226 break; 1227 case SPF_UMIN: 1228 Known = KnownBits::umin(Known, Known2); 1229 break; 1230 } 1231 break; 1232 } 1233 1234 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1235 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1236 1237 // Only known if known in both the LHS and RHS. 1238 Known.One &= Known2.One; 1239 Known.Zero &= Known2.Zero; 1240 1241 if (SPF == SPF_ABS) { 1242 // RHS from matchSelectPattern returns the negation part of abs pattern. 1243 // If the negate has an NSW flag we can assume the sign bit of the result 1244 // will be 0 because that makes abs(INT_MIN) undefined. 1245 if (match(RHS, m_Neg(m_Specific(LHS))) && 1246 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1247 Known.Zero.setSignBit(); 1248 } 1249 1250 break; 1251 } 1252 case Instruction::FPTrunc: 1253 case Instruction::FPExt: 1254 case Instruction::FPToUI: 1255 case Instruction::FPToSI: 1256 case Instruction::SIToFP: 1257 case Instruction::UIToFP: 1258 break; // Can't work with floating point. 1259 case Instruction::PtrToInt: 1260 case Instruction::IntToPtr: 1261 // Fall through and handle them the same as zext/trunc. 1262 LLVM_FALLTHROUGH; 1263 case Instruction::ZExt: 1264 case Instruction::Trunc: { 1265 Type *SrcTy = I->getOperand(0)->getType(); 1266 1267 unsigned SrcBitWidth; 1268 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1269 // which fall through here. 1270 Type *ScalarTy = SrcTy->getScalarType(); 1271 SrcBitWidth = ScalarTy->isPointerTy() ? 1272 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1273 Q.DL.getTypeSizeInBits(ScalarTy); 1274 1275 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1276 Known = Known.anyextOrTrunc(SrcBitWidth); 1277 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1278 Known = Known.zextOrTrunc(BitWidth); 1279 break; 1280 } 1281 case Instruction::BitCast: { 1282 Type *SrcTy = I->getOperand(0)->getType(); 1283 if (SrcTy->isIntOrPtrTy() && 1284 // TODO: For now, not handling conversions like: 1285 // (bitcast i64 %x to <2 x i32>) 1286 !I->getType()->isVectorTy()) { 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 break; 1289 } 1290 break; 1291 } 1292 case Instruction::SExt: { 1293 // Compute the bits in the result that are not present in the input. 1294 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1295 1296 Known = Known.trunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 // If the sign bit of the input is known set or clear, then we know the 1299 // top bits of the result. 1300 Known = Known.sext(BitWidth); 1301 break; 1302 } 1303 case Instruction::Shl: { 1304 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1305 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1306 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1307 APInt KZResult = KnownZero << ShiftAmt; 1308 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1309 // If this shift has "nsw" keyword, then the result is either a poison 1310 // value or has the same sign bit as the first operand. 1311 if (NSW && KnownZero.isSignBitSet()) 1312 KZResult.setSignBit(); 1313 return KZResult; 1314 }; 1315 1316 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1317 APInt KOResult = KnownOne << ShiftAmt; 1318 if (NSW && KnownOne.isSignBitSet()) 1319 KOResult.setSignBit(); 1320 return KOResult; 1321 }; 1322 1323 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1324 KZF, KOF); 1325 break; 1326 } 1327 case Instruction::LShr: { 1328 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1329 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1330 APInt KZResult = KnownZero.lshr(ShiftAmt); 1331 // High bits known zero. 1332 KZResult.setHighBits(ShiftAmt); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1337 return KnownOne.lshr(ShiftAmt); 1338 }; 1339 1340 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1341 KZF, KOF); 1342 break; 1343 } 1344 case Instruction::AShr: { 1345 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1346 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1347 return KnownZero.ashr(ShiftAmt); 1348 }; 1349 1350 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1351 return KnownOne.ashr(ShiftAmt); 1352 }; 1353 1354 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1355 KZF, KOF); 1356 break; 1357 } 1358 case Instruction::Sub: { 1359 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1360 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1361 DemandedElts, Known, Known2, Depth, Q); 1362 break; 1363 } 1364 case Instruction::Add: { 1365 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1366 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1367 DemandedElts, Known, Known2, Depth, Q); 1368 break; 1369 } 1370 case Instruction::SRem: 1371 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1372 APInt RA = Rem->getValue().abs(); 1373 if (RA.isPowerOf2()) { 1374 APInt LowBits = RA - 1; 1375 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1376 1377 // The low bits of the first operand are unchanged by the srem. 1378 Known.Zero = Known2.Zero & LowBits; 1379 Known.One = Known2.One & LowBits; 1380 1381 // If the first operand is non-negative or has all low bits zero, then 1382 // the upper bits are all zero. 1383 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1384 Known.Zero |= ~LowBits; 1385 1386 // If the first operand is negative and not all low bits are zero, then 1387 // the upper bits are all one. 1388 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1389 Known.One |= ~LowBits; 1390 1391 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1392 break; 1393 } 1394 } 1395 1396 // The sign bit is the LHS's sign bit, except when the result of the 1397 // remainder is zero. 1398 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1399 // If it's known zero, our sign bit is also zero. 1400 if (Known2.isNonNegative()) 1401 Known.makeNonNegative(); 1402 1403 break; 1404 case Instruction::URem: { 1405 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1406 const APInt &RA = Rem->getValue(); 1407 if (RA.isPowerOf2()) { 1408 APInt LowBits = (RA - 1); 1409 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1410 Known.Zero |= ~LowBits; 1411 Known.One &= LowBits; 1412 break; 1413 } 1414 } 1415 1416 // Since the result is less than or equal to either operand, any leading 1417 // zero bits in either operand must also exist in the result. 1418 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1419 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1420 1421 unsigned Leaders = 1422 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1423 Known.resetAll(); 1424 Known.Zero.setHighBits(Leaders); 1425 break; 1426 } 1427 case Instruction::Alloca: 1428 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1429 break; 1430 case Instruction::GetElementPtr: { 1431 // Analyze all of the subscripts of this getelementptr instruction 1432 // to determine if we can prove known low zero bits. 1433 KnownBits LocalKnown(BitWidth); 1434 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1435 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1436 1437 gep_type_iterator GTI = gep_type_begin(I); 1438 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1439 // TrailZ can only become smaller, short-circuit if we hit zero. 1440 if (TrailZ == 0) 1441 break; 1442 1443 Value *Index = I->getOperand(i); 1444 if (StructType *STy = GTI.getStructTypeOrNull()) { 1445 // Handle struct member offset arithmetic. 1446 1447 // Handle case when index is vector zeroinitializer 1448 Constant *CIndex = cast<Constant>(Index); 1449 if (CIndex->isZeroValue()) 1450 continue; 1451 1452 if (CIndex->getType()->isVectorTy()) 1453 Index = CIndex->getSplatValue(); 1454 1455 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1456 const StructLayout *SL = Q.DL.getStructLayout(STy); 1457 uint64_t Offset = SL->getElementOffset(Idx); 1458 TrailZ = std::min<unsigned>(TrailZ, 1459 countTrailingZeros(Offset)); 1460 } else { 1461 // Handle array index arithmetic. 1462 Type *IndexedTy = GTI.getIndexedType(); 1463 if (!IndexedTy->isSized()) { 1464 TrailZ = 0; 1465 break; 1466 } 1467 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1468 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1469 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1470 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1471 TrailZ = std::min(TrailZ, 1472 unsigned(countTrailingZeros(TypeSize) + 1473 LocalKnown.countMinTrailingZeros())); 1474 } 1475 } 1476 1477 Known.Zero.setLowBits(TrailZ); 1478 break; 1479 } 1480 case Instruction::PHI: { 1481 const PHINode *P = cast<PHINode>(I); 1482 // Handle the case of a simple two-predecessor recurrence PHI. 1483 // There's a lot more that could theoretically be done here, but 1484 // this is sufficient to catch some interesting cases. 1485 if (P->getNumIncomingValues() == 2) { 1486 for (unsigned i = 0; i != 2; ++i) { 1487 Value *L = P->getIncomingValue(i); 1488 Value *R = P->getIncomingValue(!i); 1489 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1490 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1491 Operator *LU = dyn_cast<Operator>(L); 1492 if (!LU) 1493 continue; 1494 unsigned Opcode = LU->getOpcode(); 1495 // Check for operations that have the property that if 1496 // both their operands have low zero bits, the result 1497 // will have low zero bits. 1498 if (Opcode == Instruction::Add || 1499 Opcode == Instruction::Sub || 1500 Opcode == Instruction::And || 1501 Opcode == Instruction::Or || 1502 Opcode == Instruction::Mul) { 1503 Value *LL = LU->getOperand(0); 1504 Value *LR = LU->getOperand(1); 1505 // Find a recurrence. 1506 if (LL == I) 1507 L = LR; 1508 else if (LR == I) 1509 L = LL; 1510 else 1511 continue; // Check for recurrence with L and R flipped. 1512 1513 // Change the context instruction to the "edge" that flows into the 1514 // phi. This is important because that is where the value is actually 1515 // "evaluated" even though it is used later somewhere else. (see also 1516 // D69571). 1517 Query RecQ = Q; 1518 1519 // Ok, we have a PHI of the form L op= R. Check for low 1520 // zero bits. 1521 RecQ.CxtI = RInst; 1522 computeKnownBits(R, Known2, Depth + 1, RecQ); 1523 1524 // We need to take the minimum number of known bits 1525 KnownBits Known3(BitWidth); 1526 RecQ.CxtI = LInst; 1527 computeKnownBits(L, Known3, Depth + 1, RecQ); 1528 1529 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1530 Known3.countMinTrailingZeros())); 1531 1532 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1533 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1534 // If initial value of recurrence is nonnegative, and we are adding 1535 // a nonnegative number with nsw, the result can only be nonnegative 1536 // or poison value regardless of the number of times we execute the 1537 // add in phi recurrence. If initial value is negative and we are 1538 // adding a negative number with nsw, the result can only be 1539 // negative or poison value. Similar arguments apply to sub and mul. 1540 // 1541 // (add non-negative, non-negative) --> non-negative 1542 // (add negative, negative) --> negative 1543 if (Opcode == Instruction::Add) { 1544 if (Known2.isNonNegative() && Known3.isNonNegative()) 1545 Known.makeNonNegative(); 1546 else if (Known2.isNegative() && Known3.isNegative()) 1547 Known.makeNegative(); 1548 } 1549 1550 // (sub nsw non-negative, negative) --> non-negative 1551 // (sub nsw negative, non-negative) --> negative 1552 else if (Opcode == Instruction::Sub && LL == I) { 1553 if (Known2.isNonNegative() && Known3.isNegative()) 1554 Known.makeNonNegative(); 1555 else if (Known2.isNegative() && Known3.isNonNegative()) 1556 Known.makeNegative(); 1557 } 1558 1559 // (mul nsw non-negative, non-negative) --> non-negative 1560 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1561 Known3.isNonNegative()) 1562 Known.makeNonNegative(); 1563 } 1564 1565 break; 1566 } 1567 } 1568 } 1569 1570 // Unreachable blocks may have zero-operand PHI nodes. 1571 if (P->getNumIncomingValues() == 0) 1572 break; 1573 1574 // Otherwise take the unions of the known bit sets of the operands, 1575 // taking conservative care to avoid excessive recursion. 1576 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1577 // Skip if every incoming value references to ourself. 1578 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1579 break; 1580 1581 Known.Zero.setAllBits(); 1582 Known.One.setAllBits(); 1583 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1584 Value *IncValue = P->getIncomingValue(u); 1585 // Skip direct self references. 1586 if (IncValue == P) continue; 1587 1588 // Change the context instruction to the "edge" that flows into the 1589 // phi. This is important because that is where the value is actually 1590 // "evaluated" even though it is used later somewhere else. (see also 1591 // D69571). 1592 Query RecQ = Q; 1593 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1594 1595 Known2 = KnownBits(BitWidth); 1596 // Recurse, but cap the recursion to one level, because we don't 1597 // want to waste time spinning around in loops. 1598 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1599 Known.Zero &= Known2.Zero; 1600 Known.One &= Known2.One; 1601 // If all bits have been ruled out, there's no need to check 1602 // more operands. 1603 if (!Known.Zero && !Known.One) 1604 break; 1605 } 1606 } 1607 break; 1608 } 1609 case Instruction::Call: 1610 case Instruction::Invoke: 1611 // If range metadata is attached to this call, set known bits from that, 1612 // and then intersect with known bits based on other properties of the 1613 // function. 1614 if (MDNode *MD = 1615 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1616 computeKnownBitsFromRangeMetadata(*MD, Known); 1617 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1618 computeKnownBits(RV, Known2, Depth + 1, Q); 1619 Known.Zero |= Known2.Zero; 1620 Known.One |= Known2.One; 1621 } 1622 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1623 switch (II->getIntrinsicID()) { 1624 default: break; 1625 case Intrinsic::abs: 1626 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1627 1628 // If the source's MSB is zero then we know the rest of the bits. 1629 if (Known2.isNonNegative()) { 1630 Known.Zero |= Known2.Zero; 1631 Known.One |= Known2.One; 1632 break; 1633 } 1634 1635 // Absolute value preserves trailing zero count. 1636 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1637 1638 // If this call is undefined for INT_MIN, the result is positive. We 1639 // also know it can't be INT_MIN if there is a set bit that isn't the 1640 // sign bit. 1641 Known2.One.clearSignBit(); 1642 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1643 Known.Zero.setSignBit(); 1644 // FIXME: Handle known negative input? 1645 // FIXME: Calculate the negated Known bits and combine them? 1646 break; 1647 case Intrinsic::bitreverse: 1648 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1649 Known.Zero |= Known2.Zero.reverseBits(); 1650 Known.One |= Known2.One.reverseBits(); 1651 break; 1652 case Intrinsic::bswap: 1653 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1654 Known.Zero |= Known2.Zero.byteSwap(); 1655 Known.One |= Known2.One.byteSwap(); 1656 break; 1657 case Intrinsic::ctlz: { 1658 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1659 // If we have a known 1, its position is our upper bound. 1660 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1661 // If this call is undefined for 0, the result will be less than 2^n. 1662 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1663 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1664 unsigned LowBits = Log2_32(PossibleLZ)+1; 1665 Known.Zero.setBitsFrom(LowBits); 1666 break; 1667 } 1668 case Intrinsic::cttz: { 1669 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1670 // If we have a known 1, its position is our upper bound. 1671 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1672 // If this call is undefined for 0, the result will be less than 2^n. 1673 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1674 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1675 unsigned LowBits = Log2_32(PossibleTZ)+1; 1676 Known.Zero.setBitsFrom(LowBits); 1677 break; 1678 } 1679 case Intrinsic::ctpop: { 1680 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1681 // We can bound the space the count needs. Also, bits known to be zero 1682 // can't contribute to the population. 1683 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1684 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1685 Known.Zero.setBitsFrom(LowBits); 1686 // TODO: we could bound KnownOne using the lower bound on the number 1687 // of bits which might be set provided by popcnt KnownOne2. 1688 break; 1689 } 1690 case Intrinsic::fshr: 1691 case Intrinsic::fshl: { 1692 const APInt *SA; 1693 if (!match(I->getOperand(2), m_APInt(SA))) 1694 break; 1695 1696 // Normalize to funnel shift left. 1697 uint64_t ShiftAmt = SA->urem(BitWidth); 1698 if (II->getIntrinsicID() == Intrinsic::fshr) 1699 ShiftAmt = BitWidth - ShiftAmt; 1700 1701 KnownBits Known3(BitWidth); 1702 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1703 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1704 1705 Known.Zero = 1706 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1707 Known.One = 1708 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1709 break; 1710 } 1711 case Intrinsic::uadd_sat: 1712 case Intrinsic::usub_sat: { 1713 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1714 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1715 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1716 1717 // Add: Leading ones of either operand are preserved. 1718 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1719 // as leading zeros in the result. 1720 unsigned LeadingKnown; 1721 if (IsAdd) 1722 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1723 Known2.countMinLeadingOnes()); 1724 else 1725 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1726 Known2.countMinLeadingOnes()); 1727 1728 Known = KnownBits::computeForAddSub( 1729 IsAdd, /* NSW */ false, Known, Known2); 1730 1731 // We select between the operation result and all-ones/zero 1732 // respectively, so we can preserve known ones/zeros. 1733 if (IsAdd) { 1734 Known.One.setHighBits(LeadingKnown); 1735 Known.Zero.clearAllBits(); 1736 } else { 1737 Known.Zero.setHighBits(LeadingKnown); 1738 Known.One.clearAllBits(); 1739 } 1740 break; 1741 } 1742 case Intrinsic::umin: 1743 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1744 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1745 Known = KnownBits::umin(Known, Known2); 1746 break; 1747 case Intrinsic::umax: 1748 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1749 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1750 Known = KnownBits::umax(Known, Known2); 1751 break; 1752 case Intrinsic::smin: 1753 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1754 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1755 Known = KnownBits::smin(Known, Known2); 1756 break; 1757 case Intrinsic::smax: 1758 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1759 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1760 Known = KnownBits::smax(Known, Known2); 1761 break; 1762 case Intrinsic::x86_sse42_crc32_64_64: 1763 Known.Zero.setBitsFrom(32); 1764 break; 1765 } 1766 } 1767 break; 1768 case Instruction::ShuffleVector: { 1769 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1770 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1771 if (!Shuf) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 // For undef elements, we don't know anything about the common state of 1776 // the shuffle result. 1777 APInt DemandedLHS, DemandedRHS; 1778 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1779 Known.resetAll(); 1780 return; 1781 } 1782 Known.One.setAllBits(); 1783 Known.Zero.setAllBits(); 1784 if (!!DemandedLHS) { 1785 const Value *LHS = Shuf->getOperand(0); 1786 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1787 // If we don't know any bits, early out. 1788 if (Known.isUnknown()) 1789 break; 1790 } 1791 if (!!DemandedRHS) { 1792 const Value *RHS = Shuf->getOperand(1); 1793 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1794 Known.One &= Known2.One; 1795 Known.Zero &= Known2.Zero; 1796 } 1797 break; 1798 } 1799 case Instruction::InsertElement: { 1800 const Value *Vec = I->getOperand(0); 1801 const Value *Elt = I->getOperand(1); 1802 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1803 // Early out if the index is non-constant or out-of-range. 1804 unsigned NumElts = DemandedElts.getBitWidth(); 1805 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1806 Known.resetAll(); 1807 return; 1808 } 1809 Known.One.setAllBits(); 1810 Known.Zero.setAllBits(); 1811 unsigned EltIdx = CIdx->getZExtValue(); 1812 // Do we demand the inserted element? 1813 if (DemandedElts[EltIdx]) { 1814 computeKnownBits(Elt, Known, Depth + 1, Q); 1815 // If we don't know any bits, early out. 1816 if (Known.isUnknown()) 1817 break; 1818 } 1819 // We don't need the base vector element that has been inserted. 1820 APInt DemandedVecElts = DemandedElts; 1821 DemandedVecElts.clearBit(EltIdx); 1822 if (!!DemandedVecElts) { 1823 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1824 Known.One &= Known2.One; 1825 Known.Zero &= Known2.Zero; 1826 } 1827 break; 1828 } 1829 case Instruction::ExtractElement: { 1830 // Look through extract element. If the index is non-constant or 1831 // out-of-range demand all elements, otherwise just the extracted element. 1832 const Value *Vec = I->getOperand(0); 1833 const Value *Idx = I->getOperand(1); 1834 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1835 if (isa<ScalableVectorType>(Vec->getType())) { 1836 // FIXME: there's probably *something* we can do with scalable vectors 1837 Known.resetAll(); 1838 break; 1839 } 1840 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1841 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1842 if (CIdx && CIdx->getValue().ult(NumElts)) 1843 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1844 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1845 break; 1846 } 1847 case Instruction::ExtractValue: 1848 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1849 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1850 if (EVI->getNumIndices() != 1) break; 1851 if (EVI->getIndices()[0] == 0) { 1852 switch (II->getIntrinsicID()) { 1853 default: break; 1854 case Intrinsic::uadd_with_overflow: 1855 case Intrinsic::sadd_with_overflow: 1856 computeKnownBitsAddSub(true, II->getArgOperand(0), 1857 II->getArgOperand(1), false, DemandedElts, 1858 Known, Known2, Depth, Q); 1859 break; 1860 case Intrinsic::usub_with_overflow: 1861 case Intrinsic::ssub_with_overflow: 1862 computeKnownBitsAddSub(false, II->getArgOperand(0), 1863 II->getArgOperand(1), false, DemandedElts, 1864 Known, Known2, Depth, Q); 1865 break; 1866 case Intrinsic::umul_with_overflow: 1867 case Intrinsic::smul_with_overflow: 1868 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1869 DemandedElts, Known, Known2, Depth, Q); 1870 break; 1871 } 1872 } 1873 } 1874 break; 1875 case Instruction::Freeze: 1876 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.CxtI, Q.DT, Depth + 1)) 1877 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1878 break; 1879 } 1880 } 1881 1882 /// Determine which bits of V are known to be either zero or one and return 1883 /// them. 1884 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1885 unsigned Depth, const Query &Q) { 1886 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1887 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1888 return Known; 1889 } 1890 1891 /// Determine which bits of V are known to be either zero or one and return 1892 /// them. 1893 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1894 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1895 computeKnownBits(V, Known, Depth, Q); 1896 return Known; 1897 } 1898 1899 /// Determine which bits of V are known to be either zero or one and return 1900 /// them in the Known bit set. 1901 /// 1902 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1903 /// we cannot optimize based on the assumption that it is zero without changing 1904 /// it to be an explicit zero. If we don't change it to zero, other code could 1905 /// optimized based on the contradictory assumption that it is non-zero. 1906 /// Because instcombine aggressively folds operations with undef args anyway, 1907 /// this won't lose us code quality. 1908 /// 1909 /// This function is defined on values with integer type, values with pointer 1910 /// type, and vectors of integers. In the case 1911 /// where V is a vector, known zero, and known one values are the 1912 /// same width as the vector element, and the bit is set only if it is true 1913 /// for all of the demanded elements in the vector specified by DemandedElts. 1914 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1915 KnownBits &Known, unsigned Depth, const Query &Q) { 1916 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1917 // No demanded elts or V is a scalable vector, better to assume we don't 1918 // know anything. 1919 Known.resetAll(); 1920 return; 1921 } 1922 1923 assert(V && "No Value?"); 1924 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1925 1926 #ifndef NDEBUG 1927 Type *Ty = V->getType(); 1928 unsigned BitWidth = Known.getBitWidth(); 1929 1930 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1931 "Not integer or pointer type!"); 1932 1933 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1934 assert( 1935 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1936 "DemandedElt width should equal the fixed vector number of elements"); 1937 } else { 1938 assert(DemandedElts == APInt(1, 1) && 1939 "DemandedElt width should be 1 for scalars"); 1940 } 1941 1942 Type *ScalarTy = Ty->getScalarType(); 1943 if (ScalarTy->isPointerTy()) { 1944 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1945 "V and Known should have same BitWidth"); 1946 } else { 1947 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1948 "V and Known should have same BitWidth"); 1949 } 1950 #endif 1951 1952 const APInt *C; 1953 if (match(V, m_APInt(C))) { 1954 // We know all of the bits for a scalar constant or a splat vector constant! 1955 Known.One = *C; 1956 Known.Zero = ~Known.One; 1957 return; 1958 } 1959 // Null and aggregate-zero are all-zeros. 1960 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1961 Known.setAllZero(); 1962 return; 1963 } 1964 // Handle a constant vector by taking the intersection of the known bits of 1965 // each element. 1966 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1967 // We know that CDV must be a vector of integers. Take the intersection of 1968 // each element. 1969 Known.Zero.setAllBits(); Known.One.setAllBits(); 1970 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1971 if (!DemandedElts[i]) 1972 continue; 1973 APInt Elt = CDV->getElementAsAPInt(i); 1974 Known.Zero &= ~Elt; 1975 Known.One &= Elt; 1976 } 1977 return; 1978 } 1979 1980 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1981 // We know that CV must be a vector of integers. Take the intersection of 1982 // each element. 1983 Known.Zero.setAllBits(); Known.One.setAllBits(); 1984 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1985 if (!DemandedElts[i]) 1986 continue; 1987 Constant *Element = CV->getAggregateElement(i); 1988 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1989 if (!ElementCI) { 1990 Known.resetAll(); 1991 return; 1992 } 1993 const APInt &Elt = ElementCI->getValue(); 1994 Known.Zero &= ~Elt; 1995 Known.One &= Elt; 1996 } 1997 return; 1998 } 1999 2000 // Start out not knowing anything. 2001 Known.resetAll(); 2002 2003 // We can't imply anything about undefs. 2004 if (isa<UndefValue>(V)) 2005 return; 2006 2007 // There's no point in looking through other users of ConstantData for 2008 // assumptions. Confirm that we've handled them all. 2009 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2010 2011 // All recursive calls that increase depth must come after this. 2012 if (Depth == MaxAnalysisRecursionDepth) 2013 return; 2014 2015 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2016 // the bits of its aliasee. 2017 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2018 if (!GA->isInterposable()) 2019 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2020 return; 2021 } 2022 2023 if (const Operator *I = dyn_cast<Operator>(V)) 2024 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2025 2026 // Aligned pointers have trailing zeros - refine Known.Zero set 2027 if (isa<PointerType>(V->getType())) { 2028 Align Alignment = V->getPointerAlignment(Q.DL); 2029 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2030 } 2031 2032 // computeKnownBitsFromAssume strictly refines Known. 2033 // Therefore, we run them after computeKnownBitsFromOperator. 2034 2035 // Check whether a nearby assume intrinsic can determine some known bits. 2036 computeKnownBitsFromAssume(V, Known, Depth, Q); 2037 2038 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2039 } 2040 2041 /// Return true if the given value is known to have exactly one 2042 /// bit set when defined. For vectors return true if every element is known to 2043 /// be a power of two when defined. Supports values with integer or pointer 2044 /// types and vectors of integers. 2045 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2046 const Query &Q) { 2047 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2048 2049 // Attempt to match against constants. 2050 if (OrZero && match(V, m_Power2OrZero())) 2051 return true; 2052 if (match(V, m_Power2())) 2053 return true; 2054 2055 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2056 // it is shifted off the end then the result is undefined. 2057 if (match(V, m_Shl(m_One(), m_Value()))) 2058 return true; 2059 2060 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2061 // the bottom. If it is shifted off the bottom then the result is undefined. 2062 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2063 return true; 2064 2065 // The remaining tests are all recursive, so bail out if we hit the limit. 2066 if (Depth++ == MaxAnalysisRecursionDepth) 2067 return false; 2068 2069 Value *X = nullptr, *Y = nullptr; 2070 // A shift left or a logical shift right of a power of two is a power of two 2071 // or zero. 2072 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2073 match(V, m_LShr(m_Value(X), m_Value())))) 2074 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2075 2076 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2077 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2078 2079 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2080 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2081 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2082 2083 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2084 // A power of two and'd with anything is a power of two or zero. 2085 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2086 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2087 return true; 2088 // X & (-X) is always a power of two or zero. 2089 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2090 return true; 2091 return false; 2092 } 2093 2094 // Adding a power-of-two or zero to the same power-of-two or zero yields 2095 // either the original power-of-two, a larger power-of-two or zero. 2096 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2097 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2098 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2099 Q.IIQ.hasNoSignedWrap(VOBO)) { 2100 if (match(X, m_And(m_Specific(Y), m_Value())) || 2101 match(X, m_And(m_Value(), m_Specific(Y)))) 2102 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2103 return true; 2104 if (match(Y, m_And(m_Specific(X), m_Value())) || 2105 match(Y, m_And(m_Value(), m_Specific(X)))) 2106 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2107 return true; 2108 2109 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2110 KnownBits LHSBits(BitWidth); 2111 computeKnownBits(X, LHSBits, Depth, Q); 2112 2113 KnownBits RHSBits(BitWidth); 2114 computeKnownBits(Y, RHSBits, Depth, Q); 2115 // If i8 V is a power of two or zero: 2116 // ZeroBits: 1 1 1 0 1 1 1 1 2117 // ~ZeroBits: 0 0 0 1 0 0 0 0 2118 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2119 // If OrZero isn't set, we cannot give back a zero result. 2120 // Make sure either the LHS or RHS has a bit set. 2121 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2122 return true; 2123 } 2124 } 2125 2126 // An exact divide or right shift can only shift off zero bits, so the result 2127 // is a power of two only if the first operand is a power of two and not 2128 // copying a sign bit (sdiv int_min, 2). 2129 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2130 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2131 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2132 Depth, Q); 2133 } 2134 2135 return false; 2136 } 2137 2138 /// Test whether a GEP's result is known to be non-null. 2139 /// 2140 /// Uses properties inherent in a GEP to try to determine whether it is known 2141 /// to be non-null. 2142 /// 2143 /// Currently this routine does not support vector GEPs. 2144 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2145 const Query &Q) { 2146 const Function *F = nullptr; 2147 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2148 F = I->getFunction(); 2149 2150 if (!GEP->isInBounds() || 2151 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2152 return false; 2153 2154 // FIXME: Support vector-GEPs. 2155 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2156 2157 // If the base pointer is non-null, we cannot walk to a null address with an 2158 // inbounds GEP in address space zero. 2159 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2160 return true; 2161 2162 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2163 // If so, then the GEP cannot produce a null pointer, as doing so would 2164 // inherently violate the inbounds contract within address space zero. 2165 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2166 GTI != GTE; ++GTI) { 2167 // Struct types are easy -- they must always be indexed by a constant. 2168 if (StructType *STy = GTI.getStructTypeOrNull()) { 2169 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2170 unsigned ElementIdx = OpC->getZExtValue(); 2171 const StructLayout *SL = Q.DL.getStructLayout(STy); 2172 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2173 if (ElementOffset > 0) 2174 return true; 2175 continue; 2176 } 2177 2178 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2179 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2180 continue; 2181 2182 // Fast path the constant operand case both for efficiency and so we don't 2183 // increment Depth when just zipping down an all-constant GEP. 2184 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2185 if (!OpC->isZero()) 2186 return true; 2187 continue; 2188 } 2189 2190 // We post-increment Depth here because while isKnownNonZero increments it 2191 // as well, when we pop back up that increment won't persist. We don't want 2192 // to recurse 10k times just because we have 10k GEP operands. We don't 2193 // bail completely out because we want to handle constant GEPs regardless 2194 // of depth. 2195 if (Depth++ >= MaxAnalysisRecursionDepth) 2196 continue; 2197 2198 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2199 return true; 2200 } 2201 2202 return false; 2203 } 2204 2205 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2206 const Instruction *CtxI, 2207 const DominatorTree *DT) { 2208 if (isa<Constant>(V)) 2209 return false; 2210 2211 if (!CtxI || !DT) 2212 return false; 2213 2214 unsigned NumUsesExplored = 0; 2215 for (auto *U : V->users()) { 2216 // Avoid massive lists 2217 if (NumUsesExplored >= DomConditionsMaxUses) 2218 break; 2219 NumUsesExplored++; 2220 2221 // If the value is used as an argument to a call or invoke, then argument 2222 // attributes may provide an answer about null-ness. 2223 if (const auto *CB = dyn_cast<CallBase>(U)) 2224 if (auto *CalledFunc = CB->getCalledFunction()) 2225 for (const Argument &Arg : CalledFunc->args()) 2226 if (CB->getArgOperand(Arg.getArgNo()) == V && 2227 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2228 return true; 2229 2230 // If the value is used as a load/store, then the pointer must be non null. 2231 if (V == getLoadStorePointerOperand(U)) { 2232 const Instruction *I = cast<Instruction>(U); 2233 if (!NullPointerIsDefined(I->getFunction(), 2234 V->getType()->getPointerAddressSpace()) && 2235 DT->dominates(I, CtxI)) 2236 return true; 2237 } 2238 2239 // Consider only compare instructions uniquely controlling a branch 2240 CmpInst::Predicate Pred; 2241 if (!match(const_cast<User *>(U), 2242 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2243 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2244 continue; 2245 2246 SmallVector<const User *, 4> WorkList; 2247 SmallPtrSet<const User *, 4> Visited; 2248 for (auto *CmpU : U->users()) { 2249 assert(WorkList.empty() && "Should be!"); 2250 if (Visited.insert(CmpU).second) 2251 WorkList.push_back(CmpU); 2252 2253 while (!WorkList.empty()) { 2254 auto *Curr = WorkList.pop_back_val(); 2255 2256 // If a user is an AND, add all its users to the work list. We only 2257 // propagate "pred != null" condition through AND because it is only 2258 // correct to assume that all conditions of AND are met in true branch. 2259 // TODO: Support similar logic of OR and EQ predicate? 2260 if (Pred == ICmpInst::ICMP_NE) 2261 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2262 if (BO->getOpcode() == Instruction::And) { 2263 for (auto *BOU : BO->users()) 2264 if (Visited.insert(BOU).second) 2265 WorkList.push_back(BOU); 2266 continue; 2267 } 2268 2269 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2270 assert(BI->isConditional() && "uses a comparison!"); 2271 2272 BasicBlock *NonNullSuccessor = 2273 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2274 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2275 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2276 return true; 2277 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2278 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2279 return true; 2280 } 2281 } 2282 } 2283 } 2284 2285 return false; 2286 } 2287 2288 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2289 /// ensure that the value it's attached to is never Value? 'RangeType' is 2290 /// is the type of the value described by the range. 2291 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2292 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2293 assert(NumRanges >= 1); 2294 for (unsigned i = 0; i < NumRanges; ++i) { 2295 ConstantInt *Lower = 2296 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2297 ConstantInt *Upper = 2298 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2299 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2300 if (Range.contains(Value)) 2301 return false; 2302 } 2303 return true; 2304 } 2305 2306 /// Return true if the given value is known to be non-zero when defined. For 2307 /// vectors, return true if every demanded element is known to be non-zero when 2308 /// defined. For pointers, if the context instruction and dominator tree are 2309 /// specified, perform context-sensitive analysis and return true if the 2310 /// pointer couldn't possibly be null at the specified instruction. 2311 /// Supports values with integer or pointer type and vectors of integers. 2312 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2313 const Query &Q) { 2314 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2315 // vector 2316 if (isa<ScalableVectorType>(V->getType())) 2317 return false; 2318 2319 if (auto *C = dyn_cast<Constant>(V)) { 2320 if (C->isNullValue()) 2321 return false; 2322 if (isa<ConstantInt>(C)) 2323 // Must be non-zero due to null test above. 2324 return true; 2325 2326 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2327 // See the comment for IntToPtr/PtrToInt instructions below. 2328 if (CE->getOpcode() == Instruction::IntToPtr || 2329 CE->getOpcode() == Instruction::PtrToInt) 2330 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2331 Q.DL.getTypeSizeInBits(CE->getType())) 2332 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2333 } 2334 2335 // For constant vectors, check that all elements are undefined or known 2336 // non-zero to determine that the whole vector is known non-zero. 2337 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2338 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2339 if (!DemandedElts[i]) 2340 continue; 2341 Constant *Elt = C->getAggregateElement(i); 2342 if (!Elt || Elt->isNullValue()) 2343 return false; 2344 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2345 return false; 2346 } 2347 return true; 2348 } 2349 2350 // A global variable in address space 0 is non null unless extern weak 2351 // or an absolute symbol reference. Other address spaces may have null as a 2352 // valid address for a global, so we can't assume anything. 2353 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2354 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2355 GV->getType()->getAddressSpace() == 0) 2356 return true; 2357 } else 2358 return false; 2359 } 2360 2361 if (auto *I = dyn_cast<Instruction>(V)) { 2362 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2363 // If the possible ranges don't contain zero, then the value is 2364 // definitely non-zero. 2365 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2366 const APInt ZeroValue(Ty->getBitWidth(), 0); 2367 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2368 return true; 2369 } 2370 } 2371 } 2372 2373 if (isKnownNonZeroFromAssume(V, Q)) 2374 return true; 2375 2376 // Some of the tests below are recursive, so bail out if we hit the limit. 2377 if (Depth++ >= MaxAnalysisRecursionDepth) 2378 return false; 2379 2380 // Check for pointer simplifications. 2381 2382 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2383 // Alloca never returns null, malloc might. 2384 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2385 return true; 2386 2387 // A byval, inalloca may not be null in a non-default addres space. A 2388 // nonnull argument is assumed never 0. 2389 if (const Argument *A = dyn_cast<Argument>(V)) { 2390 if (((A->hasPassPointeeByValueCopyAttr() && 2391 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2392 A->hasNonNullAttr())) 2393 return true; 2394 } 2395 2396 // A Load tagged with nonnull metadata is never null. 2397 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2398 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2399 return true; 2400 2401 if (const auto *Call = dyn_cast<CallBase>(V)) { 2402 if (Call->isReturnNonNull()) 2403 return true; 2404 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2405 return isKnownNonZero(RP, Depth, Q); 2406 } 2407 } 2408 2409 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2410 return true; 2411 2412 // Check for recursive pointer simplifications. 2413 if (V->getType()->isPointerTy()) { 2414 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2415 // do not alter the value, or at least not the nullness property of the 2416 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2417 // 2418 // Note that we have to take special care to avoid looking through 2419 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2420 // as casts that can alter the value, e.g., AddrSpaceCasts. 2421 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2422 return isGEPKnownNonNull(GEP, Depth, Q); 2423 2424 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2425 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2426 2427 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2428 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2429 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2430 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2431 } 2432 2433 // Similar to int2ptr above, we can look through ptr2int here if the cast 2434 // is a no-op or an extend and not a truncate. 2435 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2436 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2437 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2438 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2439 2440 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2441 2442 // X | Y != 0 if X != 0 or Y != 0. 2443 Value *X = nullptr, *Y = nullptr; 2444 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2445 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2446 isKnownNonZero(Y, DemandedElts, Depth, Q); 2447 2448 // ext X != 0 if X != 0. 2449 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2450 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2451 2452 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2453 // if the lowest bit is shifted off the end. 2454 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2455 // shl nuw can't remove any non-zero bits. 2456 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2457 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2458 return isKnownNonZero(X, Depth, Q); 2459 2460 KnownBits Known(BitWidth); 2461 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2462 if (Known.One[0]) 2463 return true; 2464 } 2465 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2466 // defined if the sign bit is shifted off the end. 2467 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2468 // shr exact can only shift out zero bits. 2469 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2470 if (BO->isExact()) 2471 return isKnownNonZero(X, Depth, Q); 2472 2473 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2474 if (Known.isNegative()) 2475 return true; 2476 2477 // If the shifter operand is a constant, and all of the bits shifted 2478 // out are known to be zero, and X is known non-zero then at least one 2479 // non-zero bit must remain. 2480 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2481 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2482 // Is there a known one in the portion not shifted out? 2483 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2484 return true; 2485 // Are all the bits to be shifted out known zero? 2486 if (Known.countMinTrailingZeros() >= ShiftVal) 2487 return isKnownNonZero(X, DemandedElts, Depth, Q); 2488 } 2489 } 2490 // div exact can only produce a zero if the dividend is zero. 2491 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2492 return isKnownNonZero(X, DemandedElts, Depth, Q); 2493 } 2494 // X + Y. 2495 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2496 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2497 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2498 2499 // If X and Y are both non-negative (as signed values) then their sum is not 2500 // zero unless both X and Y are zero. 2501 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2502 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2503 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2504 return true; 2505 2506 // If X and Y are both negative (as signed values) then their sum is not 2507 // zero unless both X and Y equal INT_MIN. 2508 if (XKnown.isNegative() && YKnown.isNegative()) { 2509 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2510 // The sign bit of X is set. If some other bit is set then X is not equal 2511 // to INT_MIN. 2512 if (XKnown.One.intersects(Mask)) 2513 return true; 2514 // The sign bit of Y is set. If some other bit is set then Y is not equal 2515 // to INT_MIN. 2516 if (YKnown.One.intersects(Mask)) 2517 return true; 2518 } 2519 2520 // The sum of a non-negative number and a power of two is not zero. 2521 if (XKnown.isNonNegative() && 2522 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2523 return true; 2524 if (YKnown.isNonNegative() && 2525 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2526 return true; 2527 } 2528 // X * Y. 2529 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2530 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2531 // If X and Y are non-zero then so is X * Y as long as the multiplication 2532 // does not overflow. 2533 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2534 isKnownNonZero(X, DemandedElts, Depth, Q) && 2535 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2536 return true; 2537 } 2538 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2539 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2540 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2541 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2542 return true; 2543 } 2544 // PHI 2545 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2546 // Try and detect a recurrence that monotonically increases from a 2547 // starting value, as these are common as induction variables. 2548 if (PN->getNumIncomingValues() == 2) { 2549 Value *Start = PN->getIncomingValue(0); 2550 Value *Induction = PN->getIncomingValue(1); 2551 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2552 std::swap(Start, Induction); 2553 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2554 if (!C->isZero() && !C->isNegative()) { 2555 ConstantInt *X; 2556 if (Q.IIQ.UseInstrInfo && 2557 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2558 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2559 !X->isNegative()) 2560 return true; 2561 } 2562 } 2563 } 2564 // Check if all incoming values are non-zero constant. 2565 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2566 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2567 }); 2568 if (AllNonZeroConstants) 2569 return true; 2570 } 2571 // ExtractElement 2572 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2573 const Value *Vec = EEI->getVectorOperand(); 2574 const Value *Idx = EEI->getIndexOperand(); 2575 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2576 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2577 unsigned NumElts = VecTy->getNumElements(); 2578 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2579 if (CIdx && CIdx->getValue().ult(NumElts)) 2580 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2581 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2582 } 2583 } 2584 // Freeze 2585 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2586 auto *Op = FI->getOperand(0); 2587 if (isKnownNonZero(Op, Depth, Q) && 2588 isGuaranteedNotToBePoison(Op, Q.CxtI, Q.DT, Depth)) 2589 return true; 2590 } 2591 2592 KnownBits Known(BitWidth); 2593 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2594 return Known.One != 0; 2595 } 2596 2597 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2598 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2599 // vector 2600 if (isa<ScalableVectorType>(V->getType())) 2601 return false; 2602 2603 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2604 APInt DemandedElts = 2605 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2606 return isKnownNonZero(V, DemandedElts, Depth, Q); 2607 } 2608 2609 /// Return true if V2 == V1 + X, where X is known non-zero. 2610 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2611 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2612 if (!BO || BO->getOpcode() != Instruction::Add) 2613 return false; 2614 Value *Op = nullptr; 2615 if (V2 == BO->getOperand(0)) 2616 Op = BO->getOperand(1); 2617 else if (V2 == BO->getOperand(1)) 2618 Op = BO->getOperand(0); 2619 else 2620 return false; 2621 return isKnownNonZero(Op, 0, Q); 2622 } 2623 2624 /// Return true if it is known that V1 != V2. 2625 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2626 if (V1 == V2) 2627 return false; 2628 if (V1->getType() != V2->getType()) 2629 // We can't look through casts yet. 2630 return false; 2631 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2632 return true; 2633 2634 if (V1->getType()->isIntOrIntVectorTy()) { 2635 // Are any known bits in V1 contradictory to known bits in V2? If V1 2636 // has a known zero where V2 has a known one, they must not be equal. 2637 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2638 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2639 2640 if (Known1.Zero.intersects(Known2.One) || 2641 Known2.Zero.intersects(Known1.One)) 2642 return true; 2643 } 2644 return false; 2645 } 2646 2647 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2648 /// simplify operations downstream. Mask is known to be zero for bits that V 2649 /// cannot have. 2650 /// 2651 /// This function is defined on values with integer type, values with pointer 2652 /// type, and vectors of integers. In the case 2653 /// where V is a vector, the mask, known zero, and known one values are the 2654 /// same width as the vector element, and the bit is set only if it is true 2655 /// for all of the elements in the vector. 2656 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2657 const Query &Q) { 2658 KnownBits Known(Mask.getBitWidth()); 2659 computeKnownBits(V, Known, Depth, Q); 2660 return Mask.isSubsetOf(Known.Zero); 2661 } 2662 2663 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2664 // Returns the input and lower/upper bounds. 2665 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2666 const APInt *&CLow, const APInt *&CHigh) { 2667 assert(isa<Operator>(Select) && 2668 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2669 "Input should be a Select!"); 2670 2671 const Value *LHS = nullptr, *RHS = nullptr; 2672 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2673 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2674 return false; 2675 2676 if (!match(RHS, m_APInt(CLow))) 2677 return false; 2678 2679 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2680 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2681 if (getInverseMinMaxFlavor(SPF) != SPF2) 2682 return false; 2683 2684 if (!match(RHS2, m_APInt(CHigh))) 2685 return false; 2686 2687 if (SPF == SPF_SMIN) 2688 std::swap(CLow, CHigh); 2689 2690 In = LHS2; 2691 return CLow->sle(*CHigh); 2692 } 2693 2694 /// For vector constants, loop over the elements and find the constant with the 2695 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2696 /// or if any element was not analyzed; otherwise, return the count for the 2697 /// element with the minimum number of sign bits. 2698 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2699 const APInt &DemandedElts, 2700 unsigned TyBits) { 2701 const auto *CV = dyn_cast<Constant>(V); 2702 if (!CV || !isa<FixedVectorType>(CV->getType())) 2703 return 0; 2704 2705 unsigned MinSignBits = TyBits; 2706 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2707 for (unsigned i = 0; i != NumElts; ++i) { 2708 if (!DemandedElts[i]) 2709 continue; 2710 // If we find a non-ConstantInt, bail out. 2711 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2712 if (!Elt) 2713 return 0; 2714 2715 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2716 } 2717 2718 return MinSignBits; 2719 } 2720 2721 static unsigned ComputeNumSignBitsImpl(const Value *V, 2722 const APInt &DemandedElts, 2723 unsigned Depth, const Query &Q); 2724 2725 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2726 unsigned Depth, const Query &Q) { 2727 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2728 assert(Result > 0 && "At least one sign bit needs to be present!"); 2729 return Result; 2730 } 2731 2732 /// Return the number of times the sign bit of the register is replicated into 2733 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2734 /// (itself), but other cases can give us information. For example, immediately 2735 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2736 /// other, so we return 3. For vectors, return the number of sign bits for the 2737 /// vector element with the minimum number of known sign bits of the demanded 2738 /// elements in the vector specified by DemandedElts. 2739 static unsigned ComputeNumSignBitsImpl(const Value *V, 2740 const APInt &DemandedElts, 2741 unsigned Depth, const Query &Q) { 2742 Type *Ty = V->getType(); 2743 2744 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2745 // vector 2746 if (isa<ScalableVectorType>(Ty)) 2747 return 1; 2748 2749 #ifndef NDEBUG 2750 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2751 2752 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2753 assert( 2754 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2755 "DemandedElt width should equal the fixed vector number of elements"); 2756 } else { 2757 assert(DemandedElts == APInt(1, 1) && 2758 "DemandedElt width should be 1 for scalars"); 2759 } 2760 #endif 2761 2762 // We return the minimum number of sign bits that are guaranteed to be present 2763 // in V, so for undef we have to conservatively return 1. We don't have the 2764 // same behavior for poison though -- that's a FIXME today. 2765 2766 Type *ScalarTy = Ty->getScalarType(); 2767 unsigned TyBits = ScalarTy->isPointerTy() ? 2768 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2769 Q.DL.getTypeSizeInBits(ScalarTy); 2770 2771 unsigned Tmp, Tmp2; 2772 unsigned FirstAnswer = 1; 2773 2774 // Note that ConstantInt is handled by the general computeKnownBits case 2775 // below. 2776 2777 if (Depth == MaxAnalysisRecursionDepth) 2778 return 1; 2779 2780 if (auto *U = dyn_cast<Operator>(V)) { 2781 switch (Operator::getOpcode(V)) { 2782 default: break; 2783 case Instruction::SExt: 2784 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2785 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2786 2787 case Instruction::SDiv: { 2788 const APInt *Denominator; 2789 // sdiv X, C -> adds log(C) sign bits. 2790 if (match(U->getOperand(1), m_APInt(Denominator))) { 2791 2792 // Ignore non-positive denominator. 2793 if (!Denominator->isStrictlyPositive()) 2794 break; 2795 2796 // Calculate the incoming numerator bits. 2797 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2798 2799 // Add floor(log(C)) bits to the numerator bits. 2800 return std::min(TyBits, NumBits + Denominator->logBase2()); 2801 } 2802 break; 2803 } 2804 2805 case Instruction::SRem: { 2806 const APInt *Denominator; 2807 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2808 // positive constant. This let us put a lower bound on the number of sign 2809 // bits. 2810 if (match(U->getOperand(1), m_APInt(Denominator))) { 2811 2812 // Ignore non-positive denominator. 2813 if (!Denominator->isStrictlyPositive()) 2814 break; 2815 2816 // Calculate the incoming numerator bits. SRem by a positive constant 2817 // can't lower the number of sign bits. 2818 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2819 2820 // Calculate the leading sign bit constraints by examining the 2821 // denominator. Given that the denominator is positive, there are two 2822 // cases: 2823 // 2824 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2825 // (1 << ceilLogBase2(C)). 2826 // 2827 // 2. the numerator is negative. Then the result range is (-C,0] and 2828 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2829 // 2830 // Thus a lower bound on the number of sign bits is `TyBits - 2831 // ceilLogBase2(C)`. 2832 2833 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2834 return std::max(NumrBits, ResBits); 2835 } 2836 break; 2837 } 2838 2839 case Instruction::AShr: { 2840 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2841 // ashr X, C -> adds C sign bits. Vectors too. 2842 const APInt *ShAmt; 2843 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2844 if (ShAmt->uge(TyBits)) 2845 break; // Bad shift. 2846 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2847 Tmp += ShAmtLimited; 2848 if (Tmp > TyBits) Tmp = TyBits; 2849 } 2850 return Tmp; 2851 } 2852 case Instruction::Shl: { 2853 const APInt *ShAmt; 2854 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2855 // shl destroys sign bits. 2856 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2857 if (ShAmt->uge(TyBits) || // Bad shift. 2858 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2859 Tmp2 = ShAmt->getZExtValue(); 2860 return Tmp - Tmp2; 2861 } 2862 break; 2863 } 2864 case Instruction::And: 2865 case Instruction::Or: 2866 case Instruction::Xor: // NOT is handled here. 2867 // Logical binary ops preserve the number of sign bits at the worst. 2868 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2869 if (Tmp != 1) { 2870 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2871 FirstAnswer = std::min(Tmp, Tmp2); 2872 // We computed what we know about the sign bits as our first 2873 // answer. Now proceed to the generic code that uses 2874 // computeKnownBits, and pick whichever answer is better. 2875 } 2876 break; 2877 2878 case Instruction::Select: { 2879 // If we have a clamp pattern, we know that the number of sign bits will 2880 // be the minimum of the clamp min/max range. 2881 const Value *X; 2882 const APInt *CLow, *CHigh; 2883 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2884 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2885 2886 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2887 if (Tmp == 1) break; 2888 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2889 return std::min(Tmp, Tmp2); 2890 } 2891 2892 case Instruction::Add: 2893 // Add can have at most one carry bit. Thus we know that the output 2894 // is, at worst, one more bit than the inputs. 2895 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2896 if (Tmp == 1) break; 2897 2898 // Special case decrementing a value (ADD X, -1): 2899 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2900 if (CRHS->isAllOnesValue()) { 2901 KnownBits Known(TyBits); 2902 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2903 2904 // If the input is known to be 0 or 1, the output is 0/-1, which is 2905 // all sign bits set. 2906 if ((Known.Zero | 1).isAllOnesValue()) 2907 return TyBits; 2908 2909 // If we are subtracting one from a positive number, there is no carry 2910 // out of the result. 2911 if (Known.isNonNegative()) 2912 return Tmp; 2913 } 2914 2915 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2916 if (Tmp2 == 1) break; 2917 return std::min(Tmp, Tmp2) - 1; 2918 2919 case Instruction::Sub: 2920 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2921 if (Tmp2 == 1) break; 2922 2923 // Handle NEG. 2924 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2925 if (CLHS->isNullValue()) { 2926 KnownBits Known(TyBits); 2927 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2928 // If the input is known to be 0 or 1, the output is 0/-1, which is 2929 // all sign bits set. 2930 if ((Known.Zero | 1).isAllOnesValue()) 2931 return TyBits; 2932 2933 // If the input is known to be positive (the sign bit is known clear), 2934 // the output of the NEG has the same number of sign bits as the 2935 // input. 2936 if (Known.isNonNegative()) 2937 return Tmp2; 2938 2939 // Otherwise, we treat this like a SUB. 2940 } 2941 2942 // Sub can have at most one carry bit. Thus we know that the output 2943 // is, at worst, one more bit than the inputs. 2944 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2945 if (Tmp == 1) break; 2946 return std::min(Tmp, Tmp2) - 1; 2947 2948 case Instruction::Mul: { 2949 // The output of the Mul can be at most twice the valid bits in the 2950 // inputs. 2951 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2952 if (SignBitsOp0 == 1) break; 2953 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2954 if (SignBitsOp1 == 1) break; 2955 unsigned OutValidBits = 2956 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2957 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2958 } 2959 2960 case Instruction::PHI: { 2961 const PHINode *PN = cast<PHINode>(U); 2962 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2963 // Don't analyze large in-degree PHIs. 2964 if (NumIncomingValues > 4) break; 2965 // Unreachable blocks may have zero-operand PHI nodes. 2966 if (NumIncomingValues == 0) break; 2967 2968 // Take the minimum of all incoming values. This can't infinitely loop 2969 // because of our depth threshold. 2970 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2971 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2972 if (Tmp == 1) return Tmp; 2973 Tmp = std::min( 2974 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2975 } 2976 return Tmp; 2977 } 2978 2979 case Instruction::Trunc: 2980 // FIXME: it's tricky to do anything useful for this, but it is an 2981 // important case for targets like X86. 2982 break; 2983 2984 case Instruction::ExtractElement: 2985 // Look through extract element. At the moment we keep this simple and 2986 // skip tracking the specific element. But at least we might find 2987 // information valid for all elements of the vector (for example if vector 2988 // is sign extended, shifted, etc). 2989 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2990 2991 case Instruction::ShuffleVector: { 2992 // Collect the minimum number of sign bits that are shared by every vector 2993 // element referenced by the shuffle. 2994 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2995 if (!Shuf) { 2996 // FIXME: Add support for shufflevector constant expressions. 2997 return 1; 2998 } 2999 APInt DemandedLHS, DemandedRHS; 3000 // For undef elements, we don't know anything about the common state of 3001 // the shuffle result. 3002 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3003 return 1; 3004 Tmp = std::numeric_limits<unsigned>::max(); 3005 if (!!DemandedLHS) { 3006 const Value *LHS = Shuf->getOperand(0); 3007 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3008 } 3009 // If we don't know anything, early out and try computeKnownBits 3010 // fall-back. 3011 if (Tmp == 1) 3012 break; 3013 if (!!DemandedRHS) { 3014 const Value *RHS = Shuf->getOperand(1); 3015 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3016 Tmp = std::min(Tmp, Tmp2); 3017 } 3018 // If we don't know anything, early out and try computeKnownBits 3019 // fall-back. 3020 if (Tmp == 1) 3021 break; 3022 assert(Tmp <= Ty->getScalarSizeInBits() && 3023 "Failed to determine minimum sign bits"); 3024 return Tmp; 3025 } 3026 case Instruction::Call: { 3027 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3028 switch (II->getIntrinsicID()) { 3029 default: break; 3030 case Intrinsic::abs: 3031 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3032 if (Tmp == 1) break; 3033 3034 // Absolute value reduces number of sign bits by at most 1. 3035 return Tmp - 1; 3036 } 3037 } 3038 } 3039 } 3040 } 3041 3042 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3043 // use this information. 3044 3045 // If we can examine all elements of a vector constant successfully, we're 3046 // done (we can't do any better than that). If not, keep trying. 3047 if (unsigned VecSignBits = 3048 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3049 return VecSignBits; 3050 3051 KnownBits Known(TyBits); 3052 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3053 3054 // If we know that the sign bit is either zero or one, determine the number of 3055 // identical bits in the top of the input value. 3056 return std::max(FirstAnswer, Known.countMinSignBits()); 3057 } 3058 3059 /// This function computes the integer multiple of Base that equals V. 3060 /// If successful, it returns true and returns the multiple in 3061 /// Multiple. If unsuccessful, it returns false. It looks 3062 /// through SExt instructions only if LookThroughSExt is true. 3063 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3064 bool LookThroughSExt, unsigned Depth) { 3065 assert(V && "No Value?"); 3066 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3067 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3068 3069 Type *T = V->getType(); 3070 3071 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3072 3073 if (Base == 0) 3074 return false; 3075 3076 if (Base == 1) { 3077 Multiple = V; 3078 return true; 3079 } 3080 3081 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3082 Constant *BaseVal = ConstantInt::get(T, Base); 3083 if (CO && CO == BaseVal) { 3084 // Multiple is 1. 3085 Multiple = ConstantInt::get(T, 1); 3086 return true; 3087 } 3088 3089 if (CI && CI->getZExtValue() % Base == 0) { 3090 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3091 return true; 3092 } 3093 3094 if (Depth == MaxAnalysisRecursionDepth) return false; 3095 3096 Operator *I = dyn_cast<Operator>(V); 3097 if (!I) return false; 3098 3099 switch (I->getOpcode()) { 3100 default: break; 3101 case Instruction::SExt: 3102 if (!LookThroughSExt) return false; 3103 // otherwise fall through to ZExt 3104 LLVM_FALLTHROUGH; 3105 case Instruction::ZExt: 3106 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3107 LookThroughSExt, Depth+1); 3108 case Instruction::Shl: 3109 case Instruction::Mul: { 3110 Value *Op0 = I->getOperand(0); 3111 Value *Op1 = I->getOperand(1); 3112 3113 if (I->getOpcode() == Instruction::Shl) { 3114 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3115 if (!Op1CI) return false; 3116 // Turn Op0 << Op1 into Op0 * 2^Op1 3117 APInt Op1Int = Op1CI->getValue(); 3118 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3119 APInt API(Op1Int.getBitWidth(), 0); 3120 API.setBit(BitToSet); 3121 Op1 = ConstantInt::get(V->getContext(), API); 3122 } 3123 3124 Value *Mul0 = nullptr; 3125 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3126 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3127 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3128 if (Op1C->getType()->getPrimitiveSizeInBits() < 3129 MulC->getType()->getPrimitiveSizeInBits()) 3130 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3131 if (Op1C->getType()->getPrimitiveSizeInBits() > 3132 MulC->getType()->getPrimitiveSizeInBits()) 3133 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3134 3135 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3136 Multiple = ConstantExpr::getMul(MulC, Op1C); 3137 return true; 3138 } 3139 3140 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3141 if (Mul0CI->getValue() == 1) { 3142 // V == Base * Op1, so return Op1 3143 Multiple = Op1; 3144 return true; 3145 } 3146 } 3147 3148 Value *Mul1 = nullptr; 3149 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3150 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3151 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3152 if (Op0C->getType()->getPrimitiveSizeInBits() < 3153 MulC->getType()->getPrimitiveSizeInBits()) 3154 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3155 if (Op0C->getType()->getPrimitiveSizeInBits() > 3156 MulC->getType()->getPrimitiveSizeInBits()) 3157 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3158 3159 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3160 Multiple = ConstantExpr::getMul(MulC, Op0C); 3161 return true; 3162 } 3163 3164 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3165 if (Mul1CI->getValue() == 1) { 3166 // V == Base * Op0, so return Op0 3167 Multiple = Op0; 3168 return true; 3169 } 3170 } 3171 } 3172 } 3173 3174 // We could not determine if V is a multiple of Base. 3175 return false; 3176 } 3177 3178 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3179 const TargetLibraryInfo *TLI) { 3180 const Function *F = CB.getCalledFunction(); 3181 if (!F) 3182 return Intrinsic::not_intrinsic; 3183 3184 if (F->isIntrinsic()) 3185 return F->getIntrinsicID(); 3186 3187 // We are going to infer semantics of a library function based on mapping it 3188 // to an LLVM intrinsic. Check that the library function is available from 3189 // this callbase and in this environment. 3190 LibFunc Func; 3191 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3192 !CB.onlyReadsMemory()) 3193 return Intrinsic::not_intrinsic; 3194 3195 switch (Func) { 3196 default: 3197 break; 3198 case LibFunc_sin: 3199 case LibFunc_sinf: 3200 case LibFunc_sinl: 3201 return Intrinsic::sin; 3202 case LibFunc_cos: 3203 case LibFunc_cosf: 3204 case LibFunc_cosl: 3205 return Intrinsic::cos; 3206 case LibFunc_exp: 3207 case LibFunc_expf: 3208 case LibFunc_expl: 3209 return Intrinsic::exp; 3210 case LibFunc_exp2: 3211 case LibFunc_exp2f: 3212 case LibFunc_exp2l: 3213 return Intrinsic::exp2; 3214 case LibFunc_log: 3215 case LibFunc_logf: 3216 case LibFunc_logl: 3217 return Intrinsic::log; 3218 case LibFunc_log10: 3219 case LibFunc_log10f: 3220 case LibFunc_log10l: 3221 return Intrinsic::log10; 3222 case LibFunc_log2: 3223 case LibFunc_log2f: 3224 case LibFunc_log2l: 3225 return Intrinsic::log2; 3226 case LibFunc_fabs: 3227 case LibFunc_fabsf: 3228 case LibFunc_fabsl: 3229 return Intrinsic::fabs; 3230 case LibFunc_fmin: 3231 case LibFunc_fminf: 3232 case LibFunc_fminl: 3233 return Intrinsic::minnum; 3234 case LibFunc_fmax: 3235 case LibFunc_fmaxf: 3236 case LibFunc_fmaxl: 3237 return Intrinsic::maxnum; 3238 case LibFunc_copysign: 3239 case LibFunc_copysignf: 3240 case LibFunc_copysignl: 3241 return Intrinsic::copysign; 3242 case LibFunc_floor: 3243 case LibFunc_floorf: 3244 case LibFunc_floorl: 3245 return Intrinsic::floor; 3246 case LibFunc_ceil: 3247 case LibFunc_ceilf: 3248 case LibFunc_ceill: 3249 return Intrinsic::ceil; 3250 case LibFunc_trunc: 3251 case LibFunc_truncf: 3252 case LibFunc_truncl: 3253 return Intrinsic::trunc; 3254 case LibFunc_rint: 3255 case LibFunc_rintf: 3256 case LibFunc_rintl: 3257 return Intrinsic::rint; 3258 case LibFunc_nearbyint: 3259 case LibFunc_nearbyintf: 3260 case LibFunc_nearbyintl: 3261 return Intrinsic::nearbyint; 3262 case LibFunc_round: 3263 case LibFunc_roundf: 3264 case LibFunc_roundl: 3265 return Intrinsic::round; 3266 case LibFunc_roundeven: 3267 case LibFunc_roundevenf: 3268 case LibFunc_roundevenl: 3269 return Intrinsic::roundeven; 3270 case LibFunc_pow: 3271 case LibFunc_powf: 3272 case LibFunc_powl: 3273 return Intrinsic::pow; 3274 case LibFunc_sqrt: 3275 case LibFunc_sqrtf: 3276 case LibFunc_sqrtl: 3277 return Intrinsic::sqrt; 3278 } 3279 3280 return Intrinsic::not_intrinsic; 3281 } 3282 3283 /// Return true if we can prove that the specified FP value is never equal to 3284 /// -0.0. 3285 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3286 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3287 /// the same as +0.0 in floating-point ops. 3288 /// 3289 /// NOTE: this function will need to be revisited when we support non-default 3290 /// rounding modes! 3291 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3292 unsigned Depth) { 3293 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3294 return !CFP->getValueAPF().isNegZero(); 3295 3296 if (Depth == MaxAnalysisRecursionDepth) 3297 return false; 3298 3299 auto *Op = dyn_cast<Operator>(V); 3300 if (!Op) 3301 return false; 3302 3303 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3304 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3305 return true; 3306 3307 // sitofp and uitofp turn into +0.0 for zero. 3308 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3309 return true; 3310 3311 if (auto *Call = dyn_cast<CallInst>(Op)) { 3312 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3313 switch (IID) { 3314 default: 3315 break; 3316 // sqrt(-0.0) = -0.0, no other negative results are possible. 3317 case Intrinsic::sqrt: 3318 case Intrinsic::canonicalize: 3319 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3320 // fabs(x) != -0.0 3321 case Intrinsic::fabs: 3322 return true; 3323 } 3324 } 3325 3326 return false; 3327 } 3328 3329 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3330 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3331 /// bit despite comparing equal. 3332 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3333 const TargetLibraryInfo *TLI, 3334 bool SignBitOnly, 3335 unsigned Depth) { 3336 // TODO: This function does not do the right thing when SignBitOnly is true 3337 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3338 // which flips the sign bits of NaNs. See 3339 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3340 3341 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3342 return !CFP->getValueAPF().isNegative() || 3343 (!SignBitOnly && CFP->getValueAPF().isZero()); 3344 } 3345 3346 // Handle vector of constants. 3347 if (auto *CV = dyn_cast<Constant>(V)) { 3348 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3349 unsigned NumElts = CVFVTy->getNumElements(); 3350 for (unsigned i = 0; i != NumElts; ++i) { 3351 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3352 if (!CFP) 3353 return false; 3354 if (CFP->getValueAPF().isNegative() && 3355 (SignBitOnly || !CFP->getValueAPF().isZero())) 3356 return false; 3357 } 3358 3359 // All non-negative ConstantFPs. 3360 return true; 3361 } 3362 } 3363 3364 if (Depth == MaxAnalysisRecursionDepth) 3365 return false; 3366 3367 const Operator *I = dyn_cast<Operator>(V); 3368 if (!I) 3369 return false; 3370 3371 switch (I->getOpcode()) { 3372 default: 3373 break; 3374 // Unsigned integers are always nonnegative. 3375 case Instruction::UIToFP: 3376 return true; 3377 case Instruction::FMul: 3378 case Instruction::FDiv: 3379 // X * X is always non-negative or a NaN. 3380 // X / X is always exactly 1.0 or a NaN. 3381 if (I->getOperand(0) == I->getOperand(1) && 3382 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3383 return true; 3384 3385 LLVM_FALLTHROUGH; 3386 case Instruction::FAdd: 3387 case Instruction::FRem: 3388 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3389 Depth + 1) && 3390 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3391 Depth + 1); 3392 case Instruction::Select: 3393 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3394 Depth + 1) && 3395 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3396 Depth + 1); 3397 case Instruction::FPExt: 3398 case Instruction::FPTrunc: 3399 // Widening/narrowing never change sign. 3400 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3401 Depth + 1); 3402 case Instruction::ExtractElement: 3403 // Look through extract element. At the moment we keep this simple and skip 3404 // tracking the specific element. But at least we might find information 3405 // valid for all elements of the vector. 3406 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3407 Depth + 1); 3408 case Instruction::Call: 3409 const auto *CI = cast<CallInst>(I); 3410 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3411 switch (IID) { 3412 default: 3413 break; 3414 case Intrinsic::maxnum: { 3415 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3416 auto isPositiveNum = [&](Value *V) { 3417 if (SignBitOnly) { 3418 // With SignBitOnly, this is tricky because the result of 3419 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3420 // a constant strictly greater than 0.0. 3421 const APFloat *C; 3422 return match(V, m_APFloat(C)) && 3423 *C > APFloat::getZero(C->getSemantics()); 3424 } 3425 3426 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3427 // maxnum can't be ordered-less-than-zero. 3428 return isKnownNeverNaN(V, TLI) && 3429 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3430 }; 3431 3432 // TODO: This could be improved. We could also check that neither operand 3433 // has its sign bit set (and at least 1 is not-NAN?). 3434 return isPositiveNum(V0) || isPositiveNum(V1); 3435 } 3436 3437 case Intrinsic::maximum: 3438 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3439 Depth + 1) || 3440 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3441 Depth + 1); 3442 case Intrinsic::minnum: 3443 case Intrinsic::minimum: 3444 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3445 Depth + 1) && 3446 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3447 Depth + 1); 3448 case Intrinsic::exp: 3449 case Intrinsic::exp2: 3450 case Intrinsic::fabs: 3451 return true; 3452 3453 case Intrinsic::sqrt: 3454 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3455 if (!SignBitOnly) 3456 return true; 3457 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3458 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3459 3460 case Intrinsic::powi: 3461 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3462 // powi(x,n) is non-negative if n is even. 3463 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3464 return true; 3465 } 3466 // TODO: This is not correct. Given that exp is an integer, here are the 3467 // ways that pow can return a negative value: 3468 // 3469 // pow(x, exp) --> negative if exp is odd and x is negative. 3470 // pow(-0, exp) --> -inf if exp is negative odd. 3471 // pow(-0, exp) --> -0 if exp is positive odd. 3472 // pow(-inf, exp) --> -0 if exp is negative odd. 3473 // pow(-inf, exp) --> -inf if exp is positive odd. 3474 // 3475 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3476 // but we must return false if x == -0. Unfortunately we do not currently 3477 // have a way of expressing this constraint. See details in 3478 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3479 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3480 Depth + 1); 3481 3482 case Intrinsic::fma: 3483 case Intrinsic::fmuladd: 3484 // x*x+y is non-negative if y is non-negative. 3485 return I->getOperand(0) == I->getOperand(1) && 3486 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3487 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3488 Depth + 1); 3489 } 3490 break; 3491 } 3492 return false; 3493 } 3494 3495 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3496 const TargetLibraryInfo *TLI) { 3497 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3498 } 3499 3500 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3501 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3502 } 3503 3504 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3505 unsigned Depth) { 3506 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3507 3508 // If we're told that infinities won't happen, assume they won't. 3509 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3510 if (FPMathOp->hasNoInfs()) 3511 return true; 3512 3513 // Handle scalar constants. 3514 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3515 return !CFP->isInfinity(); 3516 3517 if (Depth == MaxAnalysisRecursionDepth) 3518 return false; 3519 3520 if (auto *Inst = dyn_cast<Instruction>(V)) { 3521 switch (Inst->getOpcode()) { 3522 case Instruction::Select: { 3523 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3524 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3525 } 3526 case Instruction::UIToFP: 3527 // If the input type fits into the floating type the result is finite. 3528 return ilogb(APFloat::getLargest( 3529 Inst->getType()->getScalarType()->getFltSemantics())) >= 3530 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3531 default: 3532 break; 3533 } 3534 } 3535 3536 // try to handle fixed width vector constants 3537 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3538 if (VFVTy && isa<Constant>(V)) { 3539 // For vectors, verify that each element is not infinity. 3540 unsigned NumElts = VFVTy->getNumElements(); 3541 for (unsigned i = 0; i != NumElts; ++i) { 3542 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3543 if (!Elt) 3544 return false; 3545 if (isa<UndefValue>(Elt)) 3546 continue; 3547 auto *CElt = dyn_cast<ConstantFP>(Elt); 3548 if (!CElt || CElt->isInfinity()) 3549 return false; 3550 } 3551 // All elements were confirmed non-infinity or undefined. 3552 return true; 3553 } 3554 3555 // was not able to prove that V never contains infinity 3556 return false; 3557 } 3558 3559 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3560 unsigned Depth) { 3561 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3562 3563 // If we're told that NaNs won't happen, assume they won't. 3564 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3565 if (FPMathOp->hasNoNaNs()) 3566 return true; 3567 3568 // Handle scalar constants. 3569 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3570 return !CFP->isNaN(); 3571 3572 if (Depth == MaxAnalysisRecursionDepth) 3573 return false; 3574 3575 if (auto *Inst = dyn_cast<Instruction>(V)) { 3576 switch (Inst->getOpcode()) { 3577 case Instruction::FAdd: 3578 case Instruction::FSub: 3579 // Adding positive and negative infinity produces NaN. 3580 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3581 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3582 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3583 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3584 3585 case Instruction::FMul: 3586 // Zero multiplied with infinity produces NaN. 3587 // FIXME: If neither side can be zero fmul never produces NaN. 3588 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3589 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3590 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3591 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3592 3593 case Instruction::FDiv: 3594 case Instruction::FRem: 3595 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3596 return false; 3597 3598 case Instruction::Select: { 3599 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3600 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3601 } 3602 case Instruction::SIToFP: 3603 case Instruction::UIToFP: 3604 return true; 3605 case Instruction::FPTrunc: 3606 case Instruction::FPExt: 3607 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3608 default: 3609 break; 3610 } 3611 } 3612 3613 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3614 switch (II->getIntrinsicID()) { 3615 case Intrinsic::canonicalize: 3616 case Intrinsic::fabs: 3617 case Intrinsic::copysign: 3618 case Intrinsic::exp: 3619 case Intrinsic::exp2: 3620 case Intrinsic::floor: 3621 case Intrinsic::ceil: 3622 case Intrinsic::trunc: 3623 case Intrinsic::rint: 3624 case Intrinsic::nearbyint: 3625 case Intrinsic::round: 3626 case Intrinsic::roundeven: 3627 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3628 case Intrinsic::sqrt: 3629 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3630 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3631 case Intrinsic::minnum: 3632 case Intrinsic::maxnum: 3633 // If either operand is not NaN, the result is not NaN. 3634 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3635 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3636 default: 3637 return false; 3638 } 3639 } 3640 3641 // Try to handle fixed width vector constants 3642 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3643 if (VFVTy && isa<Constant>(V)) { 3644 // For vectors, verify that each element is not NaN. 3645 unsigned NumElts = VFVTy->getNumElements(); 3646 for (unsigned i = 0; i != NumElts; ++i) { 3647 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3648 if (!Elt) 3649 return false; 3650 if (isa<UndefValue>(Elt)) 3651 continue; 3652 auto *CElt = dyn_cast<ConstantFP>(Elt); 3653 if (!CElt || CElt->isNaN()) 3654 return false; 3655 } 3656 // All elements were confirmed not-NaN or undefined. 3657 return true; 3658 } 3659 3660 // Was not able to prove that V never contains NaN 3661 return false; 3662 } 3663 3664 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3665 3666 // All byte-wide stores are splatable, even of arbitrary variables. 3667 if (V->getType()->isIntegerTy(8)) 3668 return V; 3669 3670 LLVMContext &Ctx = V->getContext(); 3671 3672 // Undef don't care. 3673 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3674 if (isa<UndefValue>(V)) 3675 return UndefInt8; 3676 3677 // Return Undef for zero-sized type. 3678 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3679 return UndefInt8; 3680 3681 Constant *C = dyn_cast<Constant>(V); 3682 if (!C) { 3683 // Conceptually, we could handle things like: 3684 // %a = zext i8 %X to i16 3685 // %b = shl i16 %a, 8 3686 // %c = or i16 %a, %b 3687 // but until there is an example that actually needs this, it doesn't seem 3688 // worth worrying about. 3689 return nullptr; 3690 } 3691 3692 // Handle 'null' ConstantArrayZero etc. 3693 if (C->isNullValue()) 3694 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3695 3696 // Constant floating-point values can be handled as integer values if the 3697 // corresponding integer value is "byteable". An important case is 0.0. 3698 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3699 Type *Ty = nullptr; 3700 if (CFP->getType()->isHalfTy()) 3701 Ty = Type::getInt16Ty(Ctx); 3702 else if (CFP->getType()->isFloatTy()) 3703 Ty = Type::getInt32Ty(Ctx); 3704 else if (CFP->getType()->isDoubleTy()) 3705 Ty = Type::getInt64Ty(Ctx); 3706 // Don't handle long double formats, which have strange constraints. 3707 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3708 : nullptr; 3709 } 3710 3711 // We can handle constant integers that are multiple of 8 bits. 3712 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3713 if (CI->getBitWidth() % 8 == 0) { 3714 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3715 if (!CI->getValue().isSplat(8)) 3716 return nullptr; 3717 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3718 } 3719 } 3720 3721 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3722 if (CE->getOpcode() == Instruction::IntToPtr) { 3723 auto PS = DL.getPointerSizeInBits( 3724 cast<PointerType>(CE->getType())->getAddressSpace()); 3725 return isBytewiseValue( 3726 ConstantExpr::getIntegerCast(CE->getOperand(0), 3727 Type::getIntNTy(Ctx, PS), false), 3728 DL); 3729 } 3730 } 3731 3732 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3733 if (LHS == RHS) 3734 return LHS; 3735 if (!LHS || !RHS) 3736 return nullptr; 3737 if (LHS == UndefInt8) 3738 return RHS; 3739 if (RHS == UndefInt8) 3740 return LHS; 3741 return nullptr; 3742 }; 3743 3744 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3745 Value *Val = UndefInt8; 3746 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3747 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3748 return nullptr; 3749 return Val; 3750 } 3751 3752 if (isa<ConstantAggregate>(C)) { 3753 Value *Val = UndefInt8; 3754 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3755 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3756 return nullptr; 3757 return Val; 3758 } 3759 3760 // Don't try to handle the handful of other constants. 3761 return nullptr; 3762 } 3763 3764 // This is the recursive version of BuildSubAggregate. It takes a few different 3765 // arguments. Idxs is the index within the nested struct From that we are 3766 // looking at now (which is of type IndexedType). IdxSkip is the number of 3767 // indices from Idxs that should be left out when inserting into the resulting 3768 // struct. To is the result struct built so far, new insertvalue instructions 3769 // build on that. 3770 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3771 SmallVectorImpl<unsigned> &Idxs, 3772 unsigned IdxSkip, 3773 Instruction *InsertBefore) { 3774 StructType *STy = dyn_cast<StructType>(IndexedType); 3775 if (STy) { 3776 // Save the original To argument so we can modify it 3777 Value *OrigTo = To; 3778 // General case, the type indexed by Idxs is a struct 3779 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3780 // Process each struct element recursively 3781 Idxs.push_back(i); 3782 Value *PrevTo = To; 3783 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3784 InsertBefore); 3785 Idxs.pop_back(); 3786 if (!To) { 3787 // Couldn't find any inserted value for this index? Cleanup 3788 while (PrevTo != OrigTo) { 3789 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3790 PrevTo = Del->getAggregateOperand(); 3791 Del->eraseFromParent(); 3792 } 3793 // Stop processing elements 3794 break; 3795 } 3796 } 3797 // If we successfully found a value for each of our subaggregates 3798 if (To) 3799 return To; 3800 } 3801 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3802 // the struct's elements had a value that was inserted directly. In the latter 3803 // case, perhaps we can't determine each of the subelements individually, but 3804 // we might be able to find the complete struct somewhere. 3805 3806 // Find the value that is at that particular spot 3807 Value *V = FindInsertedValue(From, Idxs); 3808 3809 if (!V) 3810 return nullptr; 3811 3812 // Insert the value in the new (sub) aggregate 3813 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3814 "tmp", InsertBefore); 3815 } 3816 3817 // This helper takes a nested struct and extracts a part of it (which is again a 3818 // struct) into a new value. For example, given the struct: 3819 // { a, { b, { c, d }, e } } 3820 // and the indices "1, 1" this returns 3821 // { c, d }. 3822 // 3823 // It does this by inserting an insertvalue for each element in the resulting 3824 // struct, as opposed to just inserting a single struct. This will only work if 3825 // each of the elements of the substruct are known (ie, inserted into From by an 3826 // insertvalue instruction somewhere). 3827 // 3828 // All inserted insertvalue instructions are inserted before InsertBefore 3829 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3830 Instruction *InsertBefore) { 3831 assert(InsertBefore && "Must have someplace to insert!"); 3832 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3833 idx_range); 3834 Value *To = UndefValue::get(IndexedType); 3835 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3836 unsigned IdxSkip = Idxs.size(); 3837 3838 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3839 } 3840 3841 /// Given an aggregate and a sequence of indices, see if the scalar value 3842 /// indexed is already around as a register, for example if it was inserted 3843 /// directly into the aggregate. 3844 /// 3845 /// If InsertBefore is not null, this function will duplicate (modified) 3846 /// insertvalues when a part of a nested struct is extracted. 3847 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3848 Instruction *InsertBefore) { 3849 // Nothing to index? Just return V then (this is useful at the end of our 3850 // recursion). 3851 if (idx_range.empty()) 3852 return V; 3853 // We have indices, so V should have an indexable type. 3854 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3855 "Not looking at a struct or array?"); 3856 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3857 "Invalid indices for type?"); 3858 3859 if (Constant *C = dyn_cast<Constant>(V)) { 3860 C = C->getAggregateElement(idx_range[0]); 3861 if (!C) return nullptr; 3862 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3863 } 3864 3865 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3866 // Loop the indices for the insertvalue instruction in parallel with the 3867 // requested indices 3868 const unsigned *req_idx = idx_range.begin(); 3869 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3870 i != e; ++i, ++req_idx) { 3871 if (req_idx == idx_range.end()) { 3872 // We can't handle this without inserting insertvalues 3873 if (!InsertBefore) 3874 return nullptr; 3875 3876 // The requested index identifies a part of a nested aggregate. Handle 3877 // this specially. For example, 3878 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3879 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3880 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3881 // This can be changed into 3882 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3883 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3884 // which allows the unused 0,0 element from the nested struct to be 3885 // removed. 3886 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3887 InsertBefore); 3888 } 3889 3890 // This insert value inserts something else than what we are looking for. 3891 // See if the (aggregate) value inserted into has the value we are 3892 // looking for, then. 3893 if (*req_idx != *i) 3894 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3895 InsertBefore); 3896 } 3897 // If we end up here, the indices of the insertvalue match with those 3898 // requested (though possibly only partially). Now we recursively look at 3899 // the inserted value, passing any remaining indices. 3900 return FindInsertedValue(I->getInsertedValueOperand(), 3901 makeArrayRef(req_idx, idx_range.end()), 3902 InsertBefore); 3903 } 3904 3905 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3906 // If we're extracting a value from an aggregate that was extracted from 3907 // something else, we can extract from that something else directly instead. 3908 // However, we will need to chain I's indices with the requested indices. 3909 3910 // Calculate the number of indices required 3911 unsigned size = I->getNumIndices() + idx_range.size(); 3912 // Allocate some space to put the new indices in 3913 SmallVector<unsigned, 5> Idxs; 3914 Idxs.reserve(size); 3915 // Add indices from the extract value instruction 3916 Idxs.append(I->idx_begin(), I->idx_end()); 3917 3918 // Add requested indices 3919 Idxs.append(idx_range.begin(), idx_range.end()); 3920 3921 assert(Idxs.size() == size 3922 && "Number of indices added not correct?"); 3923 3924 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3925 } 3926 // Otherwise, we don't know (such as, extracting from a function return value 3927 // or load instruction) 3928 return nullptr; 3929 } 3930 3931 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3932 unsigned CharSize) { 3933 // Make sure the GEP has exactly three arguments. 3934 if (GEP->getNumOperands() != 3) 3935 return false; 3936 3937 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3938 // CharSize. 3939 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3940 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3941 return false; 3942 3943 // Check to make sure that the first operand of the GEP is an integer and 3944 // has value 0 so that we are sure we're indexing into the initializer. 3945 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3946 if (!FirstIdx || !FirstIdx->isZero()) 3947 return false; 3948 3949 return true; 3950 } 3951 3952 bool llvm::getConstantDataArrayInfo(const Value *V, 3953 ConstantDataArraySlice &Slice, 3954 unsigned ElementSize, uint64_t Offset) { 3955 assert(V); 3956 3957 // Look through bitcast instructions and geps. 3958 V = V->stripPointerCasts(); 3959 3960 // If the value is a GEP instruction or constant expression, treat it as an 3961 // offset. 3962 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3963 // The GEP operator should be based on a pointer to string constant, and is 3964 // indexing into the string constant. 3965 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3966 return false; 3967 3968 // If the second index isn't a ConstantInt, then this is a variable index 3969 // into the array. If this occurs, we can't say anything meaningful about 3970 // the string. 3971 uint64_t StartIdx = 0; 3972 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3973 StartIdx = CI->getZExtValue(); 3974 else 3975 return false; 3976 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3977 StartIdx + Offset); 3978 } 3979 3980 // The GEP instruction, constant or instruction, must reference a global 3981 // variable that is a constant and is initialized. The referenced constant 3982 // initializer is the array that we'll use for optimization. 3983 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3984 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3985 return false; 3986 3987 const ConstantDataArray *Array; 3988 ArrayType *ArrayTy; 3989 if (GV->getInitializer()->isNullValue()) { 3990 Type *GVTy = GV->getValueType(); 3991 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3992 // A zeroinitializer for the array; there is no ConstantDataArray. 3993 Array = nullptr; 3994 } else { 3995 const DataLayout &DL = GV->getParent()->getDataLayout(); 3996 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3997 uint64_t Length = SizeInBytes / (ElementSize / 8); 3998 if (Length <= Offset) 3999 return false; 4000 4001 Slice.Array = nullptr; 4002 Slice.Offset = 0; 4003 Slice.Length = Length - Offset; 4004 return true; 4005 } 4006 } else { 4007 // This must be a ConstantDataArray. 4008 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4009 if (!Array) 4010 return false; 4011 ArrayTy = Array->getType(); 4012 } 4013 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4014 return false; 4015 4016 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4017 if (Offset > NumElts) 4018 return false; 4019 4020 Slice.Array = Array; 4021 Slice.Offset = Offset; 4022 Slice.Length = NumElts - Offset; 4023 return true; 4024 } 4025 4026 /// This function computes the length of a null-terminated C string pointed to 4027 /// by V. If successful, it returns true and returns the string in Str. 4028 /// If unsuccessful, it returns false. 4029 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4030 uint64_t Offset, bool TrimAtNul) { 4031 ConstantDataArraySlice Slice; 4032 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4033 return false; 4034 4035 if (Slice.Array == nullptr) { 4036 if (TrimAtNul) { 4037 Str = StringRef(); 4038 return true; 4039 } 4040 if (Slice.Length == 1) { 4041 Str = StringRef("", 1); 4042 return true; 4043 } 4044 // We cannot instantiate a StringRef as we do not have an appropriate string 4045 // of 0s at hand. 4046 return false; 4047 } 4048 4049 // Start out with the entire array in the StringRef. 4050 Str = Slice.Array->getAsString(); 4051 // Skip over 'offset' bytes. 4052 Str = Str.substr(Slice.Offset); 4053 4054 if (TrimAtNul) { 4055 // Trim off the \0 and anything after it. If the array is not nul 4056 // terminated, we just return the whole end of string. The client may know 4057 // some other way that the string is length-bound. 4058 Str = Str.substr(0, Str.find('\0')); 4059 } 4060 return true; 4061 } 4062 4063 // These next two are very similar to the above, but also look through PHI 4064 // nodes. 4065 // TODO: See if we can integrate these two together. 4066 4067 /// If we can compute the length of the string pointed to by 4068 /// the specified pointer, return 'len+1'. If we can't, return 0. 4069 static uint64_t GetStringLengthH(const Value *V, 4070 SmallPtrSetImpl<const PHINode*> &PHIs, 4071 unsigned CharSize) { 4072 // Look through noop bitcast instructions. 4073 V = V->stripPointerCasts(); 4074 4075 // If this is a PHI node, there are two cases: either we have already seen it 4076 // or we haven't. 4077 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4078 if (!PHIs.insert(PN).second) 4079 return ~0ULL; // already in the set. 4080 4081 // If it was new, see if all the input strings are the same length. 4082 uint64_t LenSoFar = ~0ULL; 4083 for (Value *IncValue : PN->incoming_values()) { 4084 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4085 if (Len == 0) return 0; // Unknown length -> unknown. 4086 4087 if (Len == ~0ULL) continue; 4088 4089 if (Len != LenSoFar && LenSoFar != ~0ULL) 4090 return 0; // Disagree -> unknown. 4091 LenSoFar = Len; 4092 } 4093 4094 // Success, all agree. 4095 return LenSoFar; 4096 } 4097 4098 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4099 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4100 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4101 if (Len1 == 0) return 0; 4102 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4103 if (Len2 == 0) return 0; 4104 if (Len1 == ~0ULL) return Len2; 4105 if (Len2 == ~0ULL) return Len1; 4106 if (Len1 != Len2) return 0; 4107 return Len1; 4108 } 4109 4110 // Otherwise, see if we can read the string. 4111 ConstantDataArraySlice Slice; 4112 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4113 return 0; 4114 4115 if (Slice.Array == nullptr) 4116 return 1; 4117 4118 // Search for nul characters 4119 unsigned NullIndex = 0; 4120 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4121 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4122 break; 4123 } 4124 4125 return NullIndex + 1; 4126 } 4127 4128 /// If we can compute the length of the string pointed to by 4129 /// the specified pointer, return 'len+1'. If we can't, return 0. 4130 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4131 if (!V->getType()->isPointerTy()) 4132 return 0; 4133 4134 SmallPtrSet<const PHINode*, 32> PHIs; 4135 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4136 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4137 // an empty string as a length. 4138 return Len == ~0ULL ? 1 : Len; 4139 } 4140 4141 const Value * 4142 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4143 bool MustPreserveNullness) { 4144 assert(Call && 4145 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4146 if (const Value *RV = Call->getReturnedArgOperand()) 4147 return RV; 4148 // This can be used only as a aliasing property. 4149 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4150 Call, MustPreserveNullness)) 4151 return Call->getArgOperand(0); 4152 return nullptr; 4153 } 4154 4155 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4156 const CallBase *Call, bool MustPreserveNullness) { 4157 switch (Call->getIntrinsicID()) { 4158 case Intrinsic::launder_invariant_group: 4159 case Intrinsic::strip_invariant_group: 4160 case Intrinsic::aarch64_irg: 4161 case Intrinsic::aarch64_tagp: 4162 return true; 4163 case Intrinsic::ptrmask: 4164 return !MustPreserveNullness; 4165 default: 4166 return false; 4167 } 4168 } 4169 4170 /// \p PN defines a loop-variant pointer to an object. Check if the 4171 /// previous iteration of the loop was referring to the same object as \p PN. 4172 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4173 const LoopInfo *LI) { 4174 // Find the loop-defined value. 4175 Loop *L = LI->getLoopFor(PN->getParent()); 4176 if (PN->getNumIncomingValues() != 2) 4177 return true; 4178 4179 // Find the value from previous iteration. 4180 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4181 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4182 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4183 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4184 return true; 4185 4186 // If a new pointer is loaded in the loop, the pointer references a different 4187 // object in every iteration. E.g.: 4188 // for (i) 4189 // int *p = a[i]; 4190 // ... 4191 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4192 if (!L->isLoopInvariant(Load->getPointerOperand())) 4193 return false; 4194 return true; 4195 } 4196 4197 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4198 if (!V->getType()->isPointerTy()) 4199 return V; 4200 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4201 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4202 V = GEP->getPointerOperand(); 4203 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4204 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4205 V = cast<Operator>(V)->getOperand(0); 4206 if (!V->getType()->isPointerTy()) 4207 return V; 4208 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4209 if (GA->isInterposable()) 4210 return V; 4211 V = GA->getAliasee(); 4212 } else { 4213 if (auto *PHI = dyn_cast<PHINode>(V)) { 4214 // Look through single-arg phi nodes created by LCSSA. 4215 if (PHI->getNumIncomingValues() == 1) { 4216 V = PHI->getIncomingValue(0); 4217 continue; 4218 } 4219 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4220 // CaptureTracking can know about special capturing properties of some 4221 // intrinsics like launder.invariant.group, that can't be expressed with 4222 // the attributes, but have properties like returning aliasing pointer. 4223 // Because some analysis may assume that nocaptured pointer is not 4224 // returned from some special intrinsic (because function would have to 4225 // be marked with returns attribute), it is crucial to use this function 4226 // because it should be in sync with CaptureTracking. Not using it may 4227 // cause weird miscompilations where 2 aliasing pointers are assumed to 4228 // noalias. 4229 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4230 V = RP; 4231 continue; 4232 } 4233 } 4234 4235 return V; 4236 } 4237 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4238 } 4239 return V; 4240 } 4241 4242 void llvm::getUnderlyingObjects(const Value *V, 4243 SmallVectorImpl<const Value *> &Objects, 4244 LoopInfo *LI, unsigned MaxLookup) { 4245 SmallPtrSet<const Value *, 4> Visited; 4246 SmallVector<const Value *, 4> Worklist; 4247 Worklist.push_back(V); 4248 do { 4249 const Value *P = Worklist.pop_back_val(); 4250 P = getUnderlyingObject(P, MaxLookup); 4251 4252 if (!Visited.insert(P).second) 4253 continue; 4254 4255 if (auto *SI = dyn_cast<SelectInst>(P)) { 4256 Worklist.push_back(SI->getTrueValue()); 4257 Worklist.push_back(SI->getFalseValue()); 4258 continue; 4259 } 4260 4261 if (auto *PN = dyn_cast<PHINode>(P)) { 4262 // If this PHI changes the underlying object in every iteration of the 4263 // loop, don't look through it. Consider: 4264 // int **A; 4265 // for (i) { 4266 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4267 // Curr = A[i]; 4268 // *Prev, *Curr; 4269 // 4270 // Prev is tracking Curr one iteration behind so they refer to different 4271 // underlying objects. 4272 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4273 isSameUnderlyingObjectInLoop(PN, LI)) 4274 for (Value *IncValue : PN->incoming_values()) 4275 Worklist.push_back(IncValue); 4276 continue; 4277 } 4278 4279 Objects.push_back(P); 4280 } while (!Worklist.empty()); 4281 } 4282 4283 /// This is the function that does the work of looking through basic 4284 /// ptrtoint+arithmetic+inttoptr sequences. 4285 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4286 do { 4287 if (const Operator *U = dyn_cast<Operator>(V)) { 4288 // If we find a ptrtoint, we can transfer control back to the 4289 // regular getUnderlyingObjectFromInt. 4290 if (U->getOpcode() == Instruction::PtrToInt) 4291 return U->getOperand(0); 4292 // If we find an add of a constant, a multiplied value, or a phi, it's 4293 // likely that the other operand will lead us to the base 4294 // object. We don't have to worry about the case where the 4295 // object address is somehow being computed by the multiply, 4296 // because our callers only care when the result is an 4297 // identifiable object. 4298 if (U->getOpcode() != Instruction::Add || 4299 (!isa<ConstantInt>(U->getOperand(1)) && 4300 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4301 !isa<PHINode>(U->getOperand(1)))) 4302 return V; 4303 V = U->getOperand(0); 4304 } else { 4305 return V; 4306 } 4307 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4308 } while (true); 4309 } 4310 4311 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4312 /// ptrtoint+arithmetic+inttoptr sequences. 4313 /// It returns false if unidentified object is found in getUnderlyingObjects. 4314 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4315 SmallVectorImpl<Value *> &Objects) { 4316 SmallPtrSet<const Value *, 16> Visited; 4317 SmallVector<const Value *, 4> Working(1, V); 4318 do { 4319 V = Working.pop_back_val(); 4320 4321 SmallVector<const Value *, 4> Objs; 4322 getUnderlyingObjects(V, Objs); 4323 4324 for (const Value *V : Objs) { 4325 if (!Visited.insert(V).second) 4326 continue; 4327 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4328 const Value *O = 4329 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4330 if (O->getType()->isPointerTy()) { 4331 Working.push_back(O); 4332 continue; 4333 } 4334 } 4335 // If getUnderlyingObjects fails to find an identifiable object, 4336 // getUnderlyingObjectsForCodeGen also fails for safety. 4337 if (!isIdentifiedObject(V)) { 4338 Objects.clear(); 4339 return false; 4340 } 4341 Objects.push_back(const_cast<Value *>(V)); 4342 } 4343 } while (!Working.empty()); 4344 return true; 4345 } 4346 4347 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4348 AllocaInst *Result = nullptr; 4349 SmallPtrSet<Value *, 4> Visited; 4350 SmallVector<Value *, 4> Worklist; 4351 4352 auto AddWork = [&](Value *V) { 4353 if (Visited.insert(V).second) 4354 Worklist.push_back(V); 4355 }; 4356 4357 AddWork(V); 4358 do { 4359 V = Worklist.pop_back_val(); 4360 assert(Visited.count(V)); 4361 4362 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4363 if (Result && Result != AI) 4364 return nullptr; 4365 Result = AI; 4366 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4367 AddWork(CI->getOperand(0)); 4368 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4369 for (Value *IncValue : PN->incoming_values()) 4370 AddWork(IncValue); 4371 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4372 AddWork(SI->getTrueValue()); 4373 AddWork(SI->getFalseValue()); 4374 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4375 if (OffsetZero && !GEP->hasAllZeroIndices()) 4376 return nullptr; 4377 AddWork(GEP->getPointerOperand()); 4378 } else { 4379 return nullptr; 4380 } 4381 } while (!Worklist.empty()); 4382 4383 return Result; 4384 } 4385 4386 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4387 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4388 for (const User *U : V->users()) { 4389 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4390 if (!II) 4391 return false; 4392 4393 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4394 continue; 4395 4396 if (AllowDroppable && II->isDroppable()) 4397 continue; 4398 4399 return false; 4400 } 4401 return true; 4402 } 4403 4404 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4405 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4406 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4407 } 4408 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4409 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4410 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4411 } 4412 4413 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4414 if (!LI.isUnordered()) 4415 return true; 4416 const Function &F = *LI.getFunction(); 4417 // Speculative load may create a race that did not exist in the source. 4418 return F.hasFnAttribute(Attribute::SanitizeThread) || 4419 // Speculative load may load data from dirty regions. 4420 F.hasFnAttribute(Attribute::SanitizeAddress) || 4421 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4422 } 4423 4424 4425 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4426 const Instruction *CtxI, 4427 const DominatorTree *DT) { 4428 const Operator *Inst = dyn_cast<Operator>(V); 4429 if (!Inst) 4430 return false; 4431 4432 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4433 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4434 if (C->canTrap()) 4435 return false; 4436 4437 switch (Inst->getOpcode()) { 4438 default: 4439 return true; 4440 case Instruction::UDiv: 4441 case Instruction::URem: { 4442 // x / y is undefined if y == 0. 4443 const APInt *V; 4444 if (match(Inst->getOperand(1), m_APInt(V))) 4445 return *V != 0; 4446 return false; 4447 } 4448 case Instruction::SDiv: 4449 case Instruction::SRem: { 4450 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4451 const APInt *Numerator, *Denominator; 4452 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4453 return false; 4454 // We cannot hoist this division if the denominator is 0. 4455 if (*Denominator == 0) 4456 return false; 4457 // It's safe to hoist if the denominator is not 0 or -1. 4458 if (*Denominator != -1) 4459 return true; 4460 // At this point we know that the denominator is -1. It is safe to hoist as 4461 // long we know that the numerator is not INT_MIN. 4462 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4463 return !Numerator->isMinSignedValue(); 4464 // The numerator *might* be MinSignedValue. 4465 return false; 4466 } 4467 case Instruction::Load: { 4468 const LoadInst *LI = cast<LoadInst>(Inst); 4469 if (mustSuppressSpeculation(*LI)) 4470 return false; 4471 const DataLayout &DL = LI->getModule()->getDataLayout(); 4472 return isDereferenceableAndAlignedPointer( 4473 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4474 DL, CtxI, DT); 4475 } 4476 case Instruction::Call: { 4477 auto *CI = cast<const CallInst>(Inst); 4478 const Function *Callee = CI->getCalledFunction(); 4479 4480 // The called function could have undefined behavior or side-effects, even 4481 // if marked readnone nounwind. 4482 return Callee && Callee->isSpeculatable(); 4483 } 4484 case Instruction::VAArg: 4485 case Instruction::Alloca: 4486 case Instruction::Invoke: 4487 case Instruction::CallBr: 4488 case Instruction::PHI: 4489 case Instruction::Store: 4490 case Instruction::Ret: 4491 case Instruction::Br: 4492 case Instruction::IndirectBr: 4493 case Instruction::Switch: 4494 case Instruction::Unreachable: 4495 case Instruction::Fence: 4496 case Instruction::AtomicRMW: 4497 case Instruction::AtomicCmpXchg: 4498 case Instruction::LandingPad: 4499 case Instruction::Resume: 4500 case Instruction::CatchSwitch: 4501 case Instruction::CatchPad: 4502 case Instruction::CatchRet: 4503 case Instruction::CleanupPad: 4504 case Instruction::CleanupRet: 4505 return false; // Misc instructions which have effects 4506 } 4507 } 4508 4509 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4510 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4511 } 4512 4513 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4514 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4515 switch (OR) { 4516 case ConstantRange::OverflowResult::MayOverflow: 4517 return OverflowResult::MayOverflow; 4518 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4519 return OverflowResult::AlwaysOverflowsLow; 4520 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4521 return OverflowResult::AlwaysOverflowsHigh; 4522 case ConstantRange::OverflowResult::NeverOverflows: 4523 return OverflowResult::NeverOverflows; 4524 } 4525 llvm_unreachable("Unknown OverflowResult"); 4526 } 4527 4528 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4529 static ConstantRange computeConstantRangeIncludingKnownBits( 4530 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4531 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4532 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4533 KnownBits Known = computeKnownBits( 4534 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4535 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4536 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4537 ConstantRange::PreferredRangeType RangeType = 4538 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4539 return CR1.intersectWith(CR2, RangeType); 4540 } 4541 4542 OverflowResult llvm::computeOverflowForUnsignedMul( 4543 const Value *LHS, const Value *RHS, const DataLayout &DL, 4544 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4545 bool UseInstrInfo) { 4546 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4547 nullptr, UseInstrInfo); 4548 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4549 nullptr, UseInstrInfo); 4550 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4551 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4552 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4553 } 4554 4555 OverflowResult 4556 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4557 const DataLayout &DL, AssumptionCache *AC, 4558 const Instruction *CxtI, 4559 const DominatorTree *DT, bool UseInstrInfo) { 4560 // Multiplying n * m significant bits yields a result of n + m significant 4561 // bits. If the total number of significant bits does not exceed the 4562 // result bit width (minus 1), there is no overflow. 4563 // This means if we have enough leading sign bits in the operands 4564 // we can guarantee that the result does not overflow. 4565 // Ref: "Hacker's Delight" by Henry Warren 4566 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4567 4568 // Note that underestimating the number of sign bits gives a more 4569 // conservative answer. 4570 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4571 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4572 4573 // First handle the easy case: if we have enough sign bits there's 4574 // definitely no overflow. 4575 if (SignBits > BitWidth + 1) 4576 return OverflowResult::NeverOverflows; 4577 4578 // There are two ambiguous cases where there can be no overflow: 4579 // SignBits == BitWidth + 1 and 4580 // SignBits == BitWidth 4581 // The second case is difficult to check, therefore we only handle the 4582 // first case. 4583 if (SignBits == BitWidth + 1) { 4584 // It overflows only when both arguments are negative and the true 4585 // product is exactly the minimum negative number. 4586 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4587 // For simplicity we just check if at least one side is not negative. 4588 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4589 nullptr, UseInstrInfo); 4590 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4591 nullptr, UseInstrInfo); 4592 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4593 return OverflowResult::NeverOverflows; 4594 } 4595 return OverflowResult::MayOverflow; 4596 } 4597 4598 OverflowResult llvm::computeOverflowForUnsignedAdd( 4599 const Value *LHS, const Value *RHS, const DataLayout &DL, 4600 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4601 bool UseInstrInfo) { 4602 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4603 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4604 nullptr, UseInstrInfo); 4605 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4606 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4607 nullptr, UseInstrInfo); 4608 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4609 } 4610 4611 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4612 const Value *RHS, 4613 const AddOperator *Add, 4614 const DataLayout &DL, 4615 AssumptionCache *AC, 4616 const Instruction *CxtI, 4617 const DominatorTree *DT) { 4618 if (Add && Add->hasNoSignedWrap()) { 4619 return OverflowResult::NeverOverflows; 4620 } 4621 4622 // If LHS and RHS each have at least two sign bits, the addition will look 4623 // like 4624 // 4625 // XX..... + 4626 // YY..... 4627 // 4628 // If the carry into the most significant position is 0, X and Y can't both 4629 // be 1 and therefore the carry out of the addition is also 0. 4630 // 4631 // If the carry into the most significant position is 1, X and Y can't both 4632 // be 0 and therefore the carry out of the addition is also 1. 4633 // 4634 // Since the carry into the most significant position is always equal to 4635 // the carry out of the addition, there is no signed overflow. 4636 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4637 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4638 return OverflowResult::NeverOverflows; 4639 4640 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4641 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4642 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4643 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4644 OverflowResult OR = 4645 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4646 if (OR != OverflowResult::MayOverflow) 4647 return OR; 4648 4649 // The remaining code needs Add to be available. Early returns if not so. 4650 if (!Add) 4651 return OverflowResult::MayOverflow; 4652 4653 // If the sign of Add is the same as at least one of the operands, this add 4654 // CANNOT overflow. If this can be determined from the known bits of the 4655 // operands the above signedAddMayOverflow() check will have already done so. 4656 // The only other way to improve on the known bits is from an assumption, so 4657 // call computeKnownBitsFromAssume() directly. 4658 bool LHSOrRHSKnownNonNegative = 4659 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4660 bool LHSOrRHSKnownNegative = 4661 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4662 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4663 KnownBits AddKnown(LHSRange.getBitWidth()); 4664 computeKnownBitsFromAssume( 4665 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4666 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4667 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4668 return OverflowResult::NeverOverflows; 4669 } 4670 4671 return OverflowResult::MayOverflow; 4672 } 4673 4674 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4675 const Value *RHS, 4676 const DataLayout &DL, 4677 AssumptionCache *AC, 4678 const Instruction *CxtI, 4679 const DominatorTree *DT) { 4680 // Checking for conditions implied by dominating conditions may be expensive. 4681 // Limit it to usub_with_overflow calls for now. 4682 if (match(CxtI, 4683 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4684 if (auto C = 4685 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4686 if (*C) 4687 return OverflowResult::NeverOverflows; 4688 return OverflowResult::AlwaysOverflowsLow; 4689 } 4690 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4691 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4692 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4693 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4694 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4695 } 4696 4697 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4698 const Value *RHS, 4699 const DataLayout &DL, 4700 AssumptionCache *AC, 4701 const Instruction *CxtI, 4702 const DominatorTree *DT) { 4703 // If LHS and RHS each have at least two sign bits, the subtraction 4704 // cannot overflow. 4705 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4706 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4707 return OverflowResult::NeverOverflows; 4708 4709 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4710 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4711 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4712 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4713 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4714 } 4715 4716 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4717 const DominatorTree &DT) { 4718 SmallVector<const BranchInst *, 2> GuardingBranches; 4719 SmallVector<const ExtractValueInst *, 2> Results; 4720 4721 for (const User *U : WO->users()) { 4722 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4723 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4724 4725 if (EVI->getIndices()[0] == 0) 4726 Results.push_back(EVI); 4727 else { 4728 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4729 4730 for (const auto *U : EVI->users()) 4731 if (const auto *B = dyn_cast<BranchInst>(U)) { 4732 assert(B->isConditional() && "How else is it using an i1?"); 4733 GuardingBranches.push_back(B); 4734 } 4735 } 4736 } else { 4737 // We are using the aggregate directly in a way we don't want to analyze 4738 // here (storing it to a global, say). 4739 return false; 4740 } 4741 } 4742 4743 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4744 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4745 if (!NoWrapEdge.isSingleEdge()) 4746 return false; 4747 4748 // Check if all users of the add are provably no-wrap. 4749 for (const auto *Result : Results) { 4750 // If the extractvalue itself is not executed on overflow, the we don't 4751 // need to check each use separately, since domination is transitive. 4752 if (DT.dominates(NoWrapEdge, Result->getParent())) 4753 continue; 4754 4755 for (auto &RU : Result->uses()) 4756 if (!DT.dominates(NoWrapEdge, RU)) 4757 return false; 4758 } 4759 4760 return true; 4761 }; 4762 4763 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4764 } 4765 4766 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4767 // See whether I has flags that may create poison 4768 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4769 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4770 return true; 4771 } 4772 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4773 if (ExactOp->isExact()) 4774 return true; 4775 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4776 auto FMF = FP->getFastMathFlags(); 4777 if (FMF.noNaNs() || FMF.noInfs()) 4778 return true; 4779 } 4780 4781 unsigned Opcode = Op->getOpcode(); 4782 4783 // Check whether opcode is a poison/undef-generating operation 4784 switch (Opcode) { 4785 case Instruction::Shl: 4786 case Instruction::AShr: 4787 case Instruction::LShr: { 4788 // Shifts return poison if shiftwidth is larger than the bitwidth. 4789 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4790 SmallVector<Constant *, 4> ShiftAmounts; 4791 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4792 unsigned NumElts = FVTy->getNumElements(); 4793 for (unsigned i = 0; i < NumElts; ++i) 4794 ShiftAmounts.push_back(C->getAggregateElement(i)); 4795 } else if (isa<ScalableVectorType>(C->getType())) 4796 return true; // Can't tell, just return true to be safe 4797 else 4798 ShiftAmounts.push_back(C); 4799 4800 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4801 auto *CI = dyn_cast<ConstantInt>(C); 4802 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4803 }); 4804 return !Safe; 4805 } 4806 return true; 4807 } 4808 case Instruction::FPToSI: 4809 case Instruction::FPToUI: 4810 // fptosi/ui yields poison if the resulting value does not fit in the 4811 // destination type. 4812 return true; 4813 case Instruction::Call: 4814 case Instruction::CallBr: 4815 case Instruction::Invoke: { 4816 const auto *CB = cast<CallBase>(Op); 4817 return !CB->hasRetAttr(Attribute::NoUndef); 4818 } 4819 case Instruction::InsertElement: 4820 case Instruction::ExtractElement: { 4821 // If index exceeds the length of the vector, it returns poison 4822 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4823 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4824 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4825 if (!Idx || 4826 Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue()) 4827 return true; 4828 return false; 4829 } 4830 case Instruction::ShuffleVector: { 4831 // shufflevector may return undef. 4832 if (PoisonOnly) 4833 return false; 4834 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4835 ? cast<ConstantExpr>(Op)->getShuffleMask() 4836 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4837 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4838 } 4839 case Instruction::FNeg: 4840 case Instruction::PHI: 4841 case Instruction::Select: 4842 case Instruction::URem: 4843 case Instruction::SRem: 4844 case Instruction::ExtractValue: 4845 case Instruction::InsertValue: 4846 case Instruction::Freeze: 4847 case Instruction::ICmp: 4848 case Instruction::FCmp: 4849 return false; 4850 case Instruction::GetElementPtr: { 4851 const auto *GEP = cast<GEPOperator>(Op); 4852 return GEP->isInBounds(); 4853 } 4854 default: { 4855 const auto *CE = dyn_cast<ConstantExpr>(Op); 4856 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4857 return false; 4858 else if (Instruction::isBinaryOp(Opcode)) 4859 return false; 4860 // Be conservative and return true. 4861 return true; 4862 } 4863 } 4864 } 4865 4866 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4867 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4868 } 4869 4870 bool llvm::canCreatePoison(const Operator *Op) { 4871 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4872 } 4873 4874 static bool programUndefinedIfUndefOrPoison(const Instruction *Inst, 4875 bool PoisonOnly); 4876 4877 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4878 const Instruction *CtxI, 4879 const DominatorTree *DT, 4880 unsigned Depth, bool PoisonOnly) { 4881 if (Depth >= MaxAnalysisRecursionDepth) 4882 return false; 4883 4884 if (const auto *A = dyn_cast<Argument>(V)) { 4885 if (A->hasAttribute(Attribute::NoUndef)) 4886 return true; 4887 } 4888 4889 if (auto *C = dyn_cast<Constant>(V)) { 4890 if (isa<UndefValue>(C)) 4891 return PoisonOnly; 4892 4893 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4894 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4895 return true; 4896 4897 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4898 return (PoisonOnly || !C->containsUndefElement()) && 4899 !C->containsConstantExpression(); 4900 } 4901 4902 // Strip cast operations from a pointer value. 4903 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4904 // inbounds with zero offset. To guarantee that the result isn't poison, the 4905 // stripped pointer is checked as it has to be pointing into an allocated 4906 // object or be null `null` to ensure `inbounds` getelement pointers with a 4907 // zero offset could not produce poison. 4908 // It can strip off addrspacecast that do not change bit representation as 4909 // well. We believe that such addrspacecast is equivalent to no-op. 4910 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4911 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4912 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4913 return true; 4914 4915 auto OpCheck = [&](const Value *V) { 4916 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1, PoisonOnly); 4917 }; 4918 4919 if (auto *Opr = dyn_cast<Operator>(V)) { 4920 // If the value is a freeze instruction, then it can never 4921 // be undef or poison. 4922 if (isa<FreezeInst>(V)) 4923 return true; 4924 4925 if (const auto *CB = dyn_cast<CallBase>(V)) { 4926 if (CB->hasRetAttr(Attribute::NoUndef)) 4927 return true; 4928 } 4929 4930 if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4931 return true; 4932 } 4933 4934 if (auto *I = dyn_cast<Instruction>(V)) { 4935 if (programUndefinedIfUndefOrPoison(I, PoisonOnly)) 4936 return true; 4937 } 4938 4939 // CxtI may be null or a cloned instruction. 4940 if (!CtxI || !CtxI->getParent() || !DT) 4941 return false; 4942 4943 auto *DNode = DT->getNode(CtxI->getParent()); 4944 if (!DNode) 4945 // Unreachable block 4946 return false; 4947 4948 // If V is used as a branch condition before reaching CtxI, V cannot be 4949 // undef or poison. 4950 // br V, BB1, BB2 4951 // BB1: 4952 // CtxI ; V cannot be undef or poison here 4953 auto *Dominator = DNode->getIDom(); 4954 while (Dominator) { 4955 auto *TI = Dominator->getBlock()->getTerminator(); 4956 4957 Value *Cond = nullptr; 4958 if (auto BI = dyn_cast<BranchInst>(TI)) { 4959 if (BI->isConditional()) 4960 Cond = BI->getCondition(); 4961 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4962 Cond = SI->getCondition(); 4963 } 4964 4965 if (Cond) { 4966 if (Cond == V) 4967 return true; 4968 else if (PoisonOnly && isa<Operator>(Cond)) { 4969 // For poison, we can analyze further 4970 auto *Opr = cast<Operator>(Cond); 4971 if (propagatesPoison(Opr) && 4972 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4973 return true; 4974 } 4975 } 4976 4977 Dominator = Dominator->getIDom(); 4978 } 4979 4980 return false; 4981 } 4982 4983 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4984 const Instruction *CtxI, 4985 const DominatorTree *DT, 4986 unsigned Depth) { 4987 return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, false); 4988 } 4989 4990 bool llvm::isGuaranteedNotToBePoison(const Value *V, const Instruction *CtxI, 4991 const DominatorTree *DT, unsigned Depth) { 4992 return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, true); 4993 } 4994 4995 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4996 const DataLayout &DL, 4997 AssumptionCache *AC, 4998 const Instruction *CxtI, 4999 const DominatorTree *DT) { 5000 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5001 Add, DL, AC, CxtI, DT); 5002 } 5003 5004 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5005 const Value *RHS, 5006 const DataLayout &DL, 5007 AssumptionCache *AC, 5008 const Instruction *CxtI, 5009 const DominatorTree *DT) { 5010 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5011 } 5012 5013 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5014 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5015 // of time because it's possible for another thread to interfere with it for an 5016 // arbitrary length of time, but programs aren't allowed to rely on that. 5017 5018 // If there is no successor, then execution can't transfer to it. 5019 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5020 return !CRI->unwindsToCaller(); 5021 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5022 return !CatchSwitch->unwindsToCaller(); 5023 if (isa<ResumeInst>(I)) 5024 return false; 5025 if (isa<ReturnInst>(I)) 5026 return false; 5027 if (isa<UnreachableInst>(I)) 5028 return false; 5029 5030 // Calls can throw, or contain an infinite loop, or kill the process. 5031 if (const auto *CB = dyn_cast<CallBase>(I)) { 5032 // Call sites that throw have implicit non-local control flow. 5033 if (!CB->doesNotThrow()) 5034 return false; 5035 5036 // A function which doens't throw and has "willreturn" attribute will 5037 // always return. 5038 if (CB->hasFnAttr(Attribute::WillReturn)) 5039 return true; 5040 5041 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5042 // etc. and thus not return. However, LLVM already assumes that 5043 // 5044 // - Thread exiting actions are modeled as writes to memory invisible to 5045 // the program. 5046 // 5047 // - Loops that don't have side effects (side effects are volatile/atomic 5048 // stores and IO) always terminate (see http://llvm.org/PR965). 5049 // Furthermore IO itself is also modeled as writes to memory invisible to 5050 // the program. 5051 // 5052 // We rely on those assumptions here, and use the memory effects of the call 5053 // target as a proxy for checking that it always returns. 5054 5055 // FIXME: This isn't aggressive enough; a call which only writes to a global 5056 // is guaranteed to return. 5057 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5058 } 5059 5060 // Other instructions return normally. 5061 return true; 5062 } 5063 5064 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5065 // TODO: This is slightly conservative for invoke instruction since exiting 5066 // via an exception *is* normal control for them. 5067 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5068 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5069 return false; 5070 return true; 5071 } 5072 5073 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5074 const Loop *L) { 5075 // The loop header is guaranteed to be executed for every iteration. 5076 // 5077 // FIXME: Relax this constraint to cover all basic blocks that are 5078 // guaranteed to be executed at every iteration. 5079 if (I->getParent() != L->getHeader()) return false; 5080 5081 for (const Instruction &LI : *L->getHeader()) { 5082 if (&LI == I) return true; 5083 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5084 } 5085 llvm_unreachable("Instruction not contained in its own parent basic block."); 5086 } 5087 5088 bool llvm::propagatesPoison(const Operator *I) { 5089 switch (I->getOpcode()) { 5090 case Instruction::Freeze: 5091 case Instruction::Select: 5092 case Instruction::PHI: 5093 case Instruction::Call: 5094 case Instruction::Invoke: 5095 return false; 5096 case Instruction::ICmp: 5097 case Instruction::FCmp: 5098 case Instruction::GetElementPtr: 5099 return true; 5100 default: 5101 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5102 return true; 5103 5104 // Be conservative and return false. 5105 return false; 5106 } 5107 } 5108 5109 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5110 SmallPtrSetImpl<const Value *> &Operands) { 5111 switch (I->getOpcode()) { 5112 case Instruction::Store: 5113 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5114 break; 5115 5116 case Instruction::Load: 5117 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5118 break; 5119 5120 case Instruction::AtomicCmpXchg: 5121 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5122 break; 5123 5124 case Instruction::AtomicRMW: 5125 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5126 break; 5127 5128 case Instruction::UDiv: 5129 case Instruction::SDiv: 5130 case Instruction::URem: 5131 case Instruction::SRem: 5132 Operands.insert(I->getOperand(1)); 5133 break; 5134 5135 case Instruction::Call: 5136 case Instruction::Invoke: { 5137 const CallBase *CB = cast<CallBase>(I); 5138 if (CB->isIndirectCall()) 5139 Operands.insert(CB->getCalledOperand()); 5140 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5141 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5142 Operands.insert(CB->getArgOperand(i)); 5143 } 5144 break; 5145 } 5146 5147 default: 5148 break; 5149 } 5150 } 5151 5152 bool llvm::mustTriggerUB(const Instruction *I, 5153 const SmallSet<const Value *, 16>& KnownPoison) { 5154 SmallPtrSet<const Value *, 4> NonPoisonOps; 5155 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5156 5157 for (const auto *V : NonPoisonOps) 5158 if (KnownPoison.count(V)) 5159 return true; 5160 5161 return false; 5162 } 5163 5164 static bool programUndefinedIfUndefOrPoison(const Instruction *Inst, 5165 bool PoisonOnly) { 5166 // We currently only look for uses of values within the same basic 5167 // block, as that makes it easier to guarantee that the uses will be 5168 // executed given that Inst is executed. 5169 // 5170 // FIXME: Expand this to consider uses beyond the same basic block. To do 5171 // this, look out for the distinction between post-dominance and strong 5172 // post-dominance. 5173 const BasicBlock *BB = Inst->getParent(); 5174 5175 BasicBlock::const_iterator Begin = Inst->getIterator(), End = BB->end(); 5176 5177 if (!PoisonOnly) { 5178 // Be conservative & just check whether a value is passed to a noundef 5179 // argument. 5180 // Instructions that raise UB with a poison operand are well-defined 5181 // or have unclear semantics when the input is partially undef. 5182 // For example, 'udiv x, (undef | 1)' isn't UB. 5183 5184 for (auto &I : make_range(Begin, End)) { 5185 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5186 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5187 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5188 CB->getArgOperand(i) == Inst) 5189 return true; 5190 } 5191 } 5192 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5193 break; 5194 } 5195 return false; 5196 } 5197 5198 // Set of instructions that we have proved will yield poison if Inst 5199 // does. 5200 SmallSet<const Value *, 16> YieldsPoison; 5201 SmallSet<const BasicBlock *, 4> Visited; 5202 YieldsPoison.insert(Inst); 5203 Visited.insert(Inst->getParent()); 5204 5205 unsigned Iter = 0; 5206 while (Iter++ < MaxAnalysisRecursionDepth) { 5207 for (auto &I : make_range(Begin, End)) { 5208 if (&I != Inst) { 5209 if (mustTriggerUB(&I, YieldsPoison)) 5210 return true; 5211 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5212 return false; 5213 } 5214 5215 // Mark poison that propagates from I through uses of I. 5216 if (YieldsPoison.count(&I)) { 5217 for (const User *User : I.users()) { 5218 const Instruction *UserI = cast<Instruction>(User); 5219 if (propagatesPoison(cast<Operator>(UserI))) 5220 YieldsPoison.insert(User); 5221 } 5222 } 5223 } 5224 5225 if (auto *NextBB = BB->getSingleSuccessor()) { 5226 if (Visited.insert(NextBB).second) { 5227 BB = NextBB; 5228 Begin = BB->getFirstNonPHI()->getIterator(); 5229 End = BB->end(); 5230 continue; 5231 } 5232 } 5233 5234 break; 5235 } 5236 return false; 5237 } 5238 5239 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5240 return ::programUndefinedIfUndefOrPoison(Inst, false); 5241 } 5242 5243 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5244 return ::programUndefinedIfUndefOrPoison(Inst, true); 5245 } 5246 5247 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5248 if (FMF.noNaNs()) 5249 return true; 5250 5251 if (auto *C = dyn_cast<ConstantFP>(V)) 5252 return !C->isNaN(); 5253 5254 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5255 if (!C->getElementType()->isFloatingPointTy()) 5256 return false; 5257 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5258 if (C->getElementAsAPFloat(I).isNaN()) 5259 return false; 5260 } 5261 return true; 5262 } 5263 5264 if (isa<ConstantAggregateZero>(V)) 5265 return true; 5266 5267 return false; 5268 } 5269 5270 static bool isKnownNonZero(const Value *V) { 5271 if (auto *C = dyn_cast<ConstantFP>(V)) 5272 return !C->isZero(); 5273 5274 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5275 if (!C->getElementType()->isFloatingPointTy()) 5276 return false; 5277 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5278 if (C->getElementAsAPFloat(I).isZero()) 5279 return false; 5280 } 5281 return true; 5282 } 5283 5284 return false; 5285 } 5286 5287 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5288 /// Given non-min/max outer cmp/select from the clamp pattern this 5289 /// function recognizes if it can be substitued by a "canonical" min/max 5290 /// pattern. 5291 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5292 Value *CmpLHS, Value *CmpRHS, 5293 Value *TrueVal, Value *FalseVal, 5294 Value *&LHS, Value *&RHS) { 5295 // Try to match 5296 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5297 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5298 // and return description of the outer Max/Min. 5299 5300 // First, check if select has inverse order: 5301 if (CmpRHS == FalseVal) { 5302 std::swap(TrueVal, FalseVal); 5303 Pred = CmpInst::getInversePredicate(Pred); 5304 } 5305 5306 // Assume success now. If there's no match, callers should not use these anyway. 5307 LHS = TrueVal; 5308 RHS = FalseVal; 5309 5310 const APFloat *FC1; 5311 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5312 return {SPF_UNKNOWN, SPNB_NA, false}; 5313 5314 const APFloat *FC2; 5315 switch (Pred) { 5316 case CmpInst::FCMP_OLT: 5317 case CmpInst::FCMP_OLE: 5318 case CmpInst::FCMP_ULT: 5319 case CmpInst::FCMP_ULE: 5320 if (match(FalseVal, 5321 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5322 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5323 *FC1 < *FC2) 5324 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5325 break; 5326 case CmpInst::FCMP_OGT: 5327 case CmpInst::FCMP_OGE: 5328 case CmpInst::FCMP_UGT: 5329 case CmpInst::FCMP_UGE: 5330 if (match(FalseVal, 5331 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5332 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5333 *FC1 > *FC2) 5334 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5335 break; 5336 default: 5337 break; 5338 } 5339 5340 return {SPF_UNKNOWN, SPNB_NA, false}; 5341 } 5342 5343 /// Recognize variations of: 5344 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5345 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5346 Value *CmpLHS, Value *CmpRHS, 5347 Value *TrueVal, Value *FalseVal) { 5348 // Swap the select operands and predicate to match the patterns below. 5349 if (CmpRHS != TrueVal) { 5350 Pred = ICmpInst::getSwappedPredicate(Pred); 5351 std::swap(TrueVal, FalseVal); 5352 } 5353 const APInt *C1; 5354 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5355 const APInt *C2; 5356 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5357 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5358 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5359 return {SPF_SMAX, SPNB_NA, false}; 5360 5361 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5362 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5363 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5364 return {SPF_SMIN, SPNB_NA, false}; 5365 5366 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5367 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5368 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5369 return {SPF_UMAX, SPNB_NA, false}; 5370 5371 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5372 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5373 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5374 return {SPF_UMIN, SPNB_NA, false}; 5375 } 5376 return {SPF_UNKNOWN, SPNB_NA, false}; 5377 } 5378 5379 /// Recognize variations of: 5380 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5381 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5382 Value *CmpLHS, Value *CmpRHS, 5383 Value *TVal, Value *FVal, 5384 unsigned Depth) { 5385 // TODO: Allow FP min/max with nnan/nsz. 5386 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5387 5388 Value *A = nullptr, *B = nullptr; 5389 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5390 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5391 return {SPF_UNKNOWN, SPNB_NA, false}; 5392 5393 Value *C = nullptr, *D = nullptr; 5394 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5395 if (L.Flavor != R.Flavor) 5396 return {SPF_UNKNOWN, SPNB_NA, false}; 5397 5398 // We have something like: x Pred y ? min(a, b) : min(c, d). 5399 // Try to match the compare to the min/max operations of the select operands. 5400 // First, make sure we have the right compare predicate. 5401 switch (L.Flavor) { 5402 case SPF_SMIN: 5403 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5404 Pred = ICmpInst::getSwappedPredicate(Pred); 5405 std::swap(CmpLHS, CmpRHS); 5406 } 5407 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5408 break; 5409 return {SPF_UNKNOWN, SPNB_NA, false}; 5410 case SPF_SMAX: 5411 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5412 Pred = ICmpInst::getSwappedPredicate(Pred); 5413 std::swap(CmpLHS, CmpRHS); 5414 } 5415 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5416 break; 5417 return {SPF_UNKNOWN, SPNB_NA, false}; 5418 case SPF_UMIN: 5419 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5420 Pred = ICmpInst::getSwappedPredicate(Pred); 5421 std::swap(CmpLHS, CmpRHS); 5422 } 5423 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5424 break; 5425 return {SPF_UNKNOWN, SPNB_NA, false}; 5426 case SPF_UMAX: 5427 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5428 Pred = ICmpInst::getSwappedPredicate(Pred); 5429 std::swap(CmpLHS, CmpRHS); 5430 } 5431 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5432 break; 5433 return {SPF_UNKNOWN, SPNB_NA, false}; 5434 default: 5435 return {SPF_UNKNOWN, SPNB_NA, false}; 5436 } 5437 5438 // If there is a common operand in the already matched min/max and the other 5439 // min/max operands match the compare operands (either directly or inverted), 5440 // then this is min/max of the same flavor. 5441 5442 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5443 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5444 if (D == B) { 5445 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5446 match(A, m_Not(m_Specific(CmpRHS))))) 5447 return {L.Flavor, SPNB_NA, false}; 5448 } 5449 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5450 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5451 if (C == B) { 5452 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5453 match(A, m_Not(m_Specific(CmpRHS))))) 5454 return {L.Flavor, SPNB_NA, false}; 5455 } 5456 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5457 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5458 if (D == A) { 5459 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5460 match(B, m_Not(m_Specific(CmpRHS))))) 5461 return {L.Flavor, SPNB_NA, false}; 5462 } 5463 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5464 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5465 if (C == A) { 5466 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5467 match(B, m_Not(m_Specific(CmpRHS))))) 5468 return {L.Flavor, SPNB_NA, false}; 5469 } 5470 5471 return {SPF_UNKNOWN, SPNB_NA, false}; 5472 } 5473 5474 /// If the input value is the result of a 'not' op, constant integer, or vector 5475 /// splat of a constant integer, return the bitwise-not source value. 5476 /// TODO: This could be extended to handle non-splat vector integer constants. 5477 static Value *getNotValue(Value *V) { 5478 Value *NotV; 5479 if (match(V, m_Not(m_Value(NotV)))) 5480 return NotV; 5481 5482 const APInt *C; 5483 if (match(V, m_APInt(C))) 5484 return ConstantInt::get(V->getType(), ~(*C)); 5485 5486 return nullptr; 5487 } 5488 5489 /// Match non-obvious integer minimum and maximum sequences. 5490 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5491 Value *CmpLHS, Value *CmpRHS, 5492 Value *TrueVal, Value *FalseVal, 5493 Value *&LHS, Value *&RHS, 5494 unsigned Depth) { 5495 // Assume success. If there's no match, callers should not use these anyway. 5496 LHS = TrueVal; 5497 RHS = FalseVal; 5498 5499 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5500 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5501 return SPR; 5502 5503 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5504 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5505 return SPR; 5506 5507 // Look through 'not' ops to find disguised min/max. 5508 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5509 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5510 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5511 switch (Pred) { 5512 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5513 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5514 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5515 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5516 default: break; 5517 } 5518 } 5519 5520 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5521 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5522 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5523 switch (Pred) { 5524 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5525 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5526 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5527 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5528 default: break; 5529 } 5530 } 5531 5532 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5533 return {SPF_UNKNOWN, SPNB_NA, false}; 5534 5535 // Z = X -nsw Y 5536 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5537 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5538 if (match(TrueVal, m_Zero()) && 5539 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5540 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5541 5542 // Z = X -nsw Y 5543 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5544 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5545 if (match(FalseVal, m_Zero()) && 5546 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5547 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5548 5549 const APInt *C1; 5550 if (!match(CmpRHS, m_APInt(C1))) 5551 return {SPF_UNKNOWN, SPNB_NA, false}; 5552 5553 // An unsigned min/max can be written with a signed compare. 5554 const APInt *C2; 5555 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5556 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5557 // Is the sign bit set? 5558 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5559 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5560 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5561 C2->isMaxSignedValue()) 5562 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5563 5564 // Is the sign bit clear? 5565 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5566 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5567 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5568 C2->isMinSignedValue()) 5569 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5570 } 5571 5572 return {SPF_UNKNOWN, SPNB_NA, false}; 5573 } 5574 5575 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5576 assert(X && Y && "Invalid operand"); 5577 5578 // X = sub (0, Y) || X = sub nsw (0, Y) 5579 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5580 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5581 return true; 5582 5583 // Y = sub (0, X) || Y = sub nsw (0, X) 5584 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5585 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5586 return true; 5587 5588 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5589 Value *A, *B; 5590 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5591 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5592 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5593 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5594 } 5595 5596 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5597 FastMathFlags FMF, 5598 Value *CmpLHS, Value *CmpRHS, 5599 Value *TrueVal, Value *FalseVal, 5600 Value *&LHS, Value *&RHS, 5601 unsigned Depth) { 5602 if (CmpInst::isFPPredicate(Pred)) { 5603 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5604 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5605 // purpose of identifying min/max. Disregard vector constants with undefined 5606 // elements because those can not be back-propagated for analysis. 5607 Value *OutputZeroVal = nullptr; 5608 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5609 !cast<Constant>(TrueVal)->containsUndefElement()) 5610 OutputZeroVal = TrueVal; 5611 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5612 !cast<Constant>(FalseVal)->containsUndefElement()) 5613 OutputZeroVal = FalseVal; 5614 5615 if (OutputZeroVal) { 5616 if (match(CmpLHS, m_AnyZeroFP())) 5617 CmpLHS = OutputZeroVal; 5618 if (match(CmpRHS, m_AnyZeroFP())) 5619 CmpRHS = OutputZeroVal; 5620 } 5621 } 5622 5623 LHS = CmpLHS; 5624 RHS = CmpRHS; 5625 5626 // Signed zero may return inconsistent results between implementations. 5627 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5628 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5629 // Therefore, we behave conservatively and only proceed if at least one of the 5630 // operands is known to not be zero or if we don't care about signed zero. 5631 switch (Pred) { 5632 default: break; 5633 // FIXME: Include OGT/OLT/UGT/ULT. 5634 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5635 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5636 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5637 !isKnownNonZero(CmpRHS)) 5638 return {SPF_UNKNOWN, SPNB_NA, false}; 5639 } 5640 5641 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5642 bool Ordered = false; 5643 5644 // When given one NaN and one non-NaN input: 5645 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5646 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5647 // ordered comparison fails), which could be NaN or non-NaN. 5648 // so here we discover exactly what NaN behavior is required/accepted. 5649 if (CmpInst::isFPPredicate(Pred)) { 5650 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5651 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5652 5653 if (LHSSafe && RHSSafe) { 5654 // Both operands are known non-NaN. 5655 NaNBehavior = SPNB_RETURNS_ANY; 5656 } else if (CmpInst::isOrdered(Pred)) { 5657 // An ordered comparison will return false when given a NaN, so it 5658 // returns the RHS. 5659 Ordered = true; 5660 if (LHSSafe) 5661 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5662 NaNBehavior = SPNB_RETURNS_NAN; 5663 else if (RHSSafe) 5664 NaNBehavior = SPNB_RETURNS_OTHER; 5665 else 5666 // Completely unsafe. 5667 return {SPF_UNKNOWN, SPNB_NA, false}; 5668 } else { 5669 Ordered = false; 5670 // An unordered comparison will return true when given a NaN, so it 5671 // returns the LHS. 5672 if (LHSSafe) 5673 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5674 NaNBehavior = SPNB_RETURNS_OTHER; 5675 else if (RHSSafe) 5676 NaNBehavior = SPNB_RETURNS_NAN; 5677 else 5678 // Completely unsafe. 5679 return {SPF_UNKNOWN, SPNB_NA, false}; 5680 } 5681 } 5682 5683 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5684 std::swap(CmpLHS, CmpRHS); 5685 Pred = CmpInst::getSwappedPredicate(Pred); 5686 if (NaNBehavior == SPNB_RETURNS_NAN) 5687 NaNBehavior = SPNB_RETURNS_OTHER; 5688 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5689 NaNBehavior = SPNB_RETURNS_NAN; 5690 Ordered = !Ordered; 5691 } 5692 5693 // ([if]cmp X, Y) ? X : Y 5694 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5695 switch (Pred) { 5696 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5697 case ICmpInst::ICMP_UGT: 5698 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5699 case ICmpInst::ICMP_SGT: 5700 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5701 case ICmpInst::ICMP_ULT: 5702 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5703 case ICmpInst::ICMP_SLT: 5704 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5705 case FCmpInst::FCMP_UGT: 5706 case FCmpInst::FCMP_UGE: 5707 case FCmpInst::FCMP_OGT: 5708 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5709 case FCmpInst::FCMP_ULT: 5710 case FCmpInst::FCMP_ULE: 5711 case FCmpInst::FCMP_OLT: 5712 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5713 } 5714 } 5715 5716 if (isKnownNegation(TrueVal, FalseVal)) { 5717 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5718 // match against either LHS or sext(LHS). 5719 auto MaybeSExtCmpLHS = 5720 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5721 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5722 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5723 if (match(TrueVal, MaybeSExtCmpLHS)) { 5724 // Set the return values. If the compare uses the negated value (-X >s 0), 5725 // swap the return values because the negated value is always 'RHS'. 5726 LHS = TrueVal; 5727 RHS = FalseVal; 5728 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5729 std::swap(LHS, RHS); 5730 5731 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5732 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5733 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5734 return {SPF_ABS, SPNB_NA, false}; 5735 5736 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5737 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5738 return {SPF_ABS, SPNB_NA, false}; 5739 5740 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5741 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5742 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5743 return {SPF_NABS, SPNB_NA, false}; 5744 } 5745 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5746 // Set the return values. If the compare uses the negated value (-X >s 0), 5747 // swap the return values because the negated value is always 'RHS'. 5748 LHS = FalseVal; 5749 RHS = TrueVal; 5750 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5751 std::swap(LHS, RHS); 5752 5753 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5754 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5755 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5756 return {SPF_NABS, SPNB_NA, false}; 5757 5758 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5759 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5760 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5761 return {SPF_ABS, SPNB_NA, false}; 5762 } 5763 } 5764 5765 if (CmpInst::isIntPredicate(Pred)) 5766 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5767 5768 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5769 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5770 // semantics than minNum. Be conservative in such case. 5771 if (NaNBehavior != SPNB_RETURNS_ANY || 5772 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5773 !isKnownNonZero(CmpRHS))) 5774 return {SPF_UNKNOWN, SPNB_NA, false}; 5775 5776 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5777 } 5778 5779 /// Helps to match a select pattern in case of a type mismatch. 5780 /// 5781 /// The function processes the case when type of true and false values of a 5782 /// select instruction differs from type of the cmp instruction operands because 5783 /// of a cast instruction. The function checks if it is legal to move the cast 5784 /// operation after "select". If yes, it returns the new second value of 5785 /// "select" (with the assumption that cast is moved): 5786 /// 1. As operand of cast instruction when both values of "select" are same cast 5787 /// instructions. 5788 /// 2. As restored constant (by applying reverse cast operation) when the first 5789 /// value of the "select" is a cast operation and the second value is a 5790 /// constant. 5791 /// NOTE: We return only the new second value because the first value could be 5792 /// accessed as operand of cast instruction. 5793 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5794 Instruction::CastOps *CastOp) { 5795 auto *Cast1 = dyn_cast<CastInst>(V1); 5796 if (!Cast1) 5797 return nullptr; 5798 5799 *CastOp = Cast1->getOpcode(); 5800 Type *SrcTy = Cast1->getSrcTy(); 5801 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5802 // If V1 and V2 are both the same cast from the same type, look through V1. 5803 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5804 return Cast2->getOperand(0); 5805 return nullptr; 5806 } 5807 5808 auto *C = dyn_cast<Constant>(V2); 5809 if (!C) 5810 return nullptr; 5811 5812 Constant *CastedTo = nullptr; 5813 switch (*CastOp) { 5814 case Instruction::ZExt: 5815 if (CmpI->isUnsigned()) 5816 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5817 break; 5818 case Instruction::SExt: 5819 if (CmpI->isSigned()) 5820 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5821 break; 5822 case Instruction::Trunc: 5823 Constant *CmpConst; 5824 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5825 CmpConst->getType() == SrcTy) { 5826 // Here we have the following case: 5827 // 5828 // %cond = cmp iN %x, CmpConst 5829 // %tr = trunc iN %x to iK 5830 // %narrowsel = select i1 %cond, iK %t, iK C 5831 // 5832 // We can always move trunc after select operation: 5833 // 5834 // %cond = cmp iN %x, CmpConst 5835 // %widesel = select i1 %cond, iN %x, iN CmpConst 5836 // %tr = trunc iN %widesel to iK 5837 // 5838 // Note that C could be extended in any way because we don't care about 5839 // upper bits after truncation. It can't be abs pattern, because it would 5840 // look like: 5841 // 5842 // select i1 %cond, x, -x. 5843 // 5844 // So only min/max pattern could be matched. Such match requires widened C 5845 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5846 // CmpConst == C is checked below. 5847 CastedTo = CmpConst; 5848 } else { 5849 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5850 } 5851 break; 5852 case Instruction::FPTrunc: 5853 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5854 break; 5855 case Instruction::FPExt: 5856 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5857 break; 5858 case Instruction::FPToUI: 5859 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5860 break; 5861 case Instruction::FPToSI: 5862 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5863 break; 5864 case Instruction::UIToFP: 5865 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5866 break; 5867 case Instruction::SIToFP: 5868 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5869 break; 5870 default: 5871 break; 5872 } 5873 5874 if (!CastedTo) 5875 return nullptr; 5876 5877 // Make sure the cast doesn't lose any information. 5878 Constant *CastedBack = 5879 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5880 if (CastedBack != C) 5881 return nullptr; 5882 5883 return CastedTo; 5884 } 5885 5886 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5887 Instruction::CastOps *CastOp, 5888 unsigned Depth) { 5889 if (Depth >= MaxAnalysisRecursionDepth) 5890 return {SPF_UNKNOWN, SPNB_NA, false}; 5891 5892 SelectInst *SI = dyn_cast<SelectInst>(V); 5893 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5894 5895 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5896 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5897 5898 Value *TrueVal = SI->getTrueValue(); 5899 Value *FalseVal = SI->getFalseValue(); 5900 5901 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5902 CastOp, Depth); 5903 } 5904 5905 SelectPatternResult llvm::matchDecomposedSelectPattern( 5906 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5907 Instruction::CastOps *CastOp, unsigned Depth) { 5908 CmpInst::Predicate Pred = CmpI->getPredicate(); 5909 Value *CmpLHS = CmpI->getOperand(0); 5910 Value *CmpRHS = CmpI->getOperand(1); 5911 FastMathFlags FMF; 5912 if (isa<FPMathOperator>(CmpI)) 5913 FMF = CmpI->getFastMathFlags(); 5914 5915 // Bail out early. 5916 if (CmpI->isEquality()) 5917 return {SPF_UNKNOWN, SPNB_NA, false}; 5918 5919 // Deal with type mismatches. 5920 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5921 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5922 // If this is a potential fmin/fmax with a cast to integer, then ignore 5923 // -0.0 because there is no corresponding integer value. 5924 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5925 FMF.setNoSignedZeros(); 5926 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5927 cast<CastInst>(TrueVal)->getOperand(0), C, 5928 LHS, RHS, Depth); 5929 } 5930 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5931 // If this is a potential fmin/fmax with a cast to integer, then ignore 5932 // -0.0 because there is no corresponding integer value. 5933 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5934 FMF.setNoSignedZeros(); 5935 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5936 C, cast<CastInst>(FalseVal)->getOperand(0), 5937 LHS, RHS, Depth); 5938 } 5939 } 5940 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5941 LHS, RHS, Depth); 5942 } 5943 5944 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5945 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5946 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5947 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5948 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5949 if (SPF == SPF_FMINNUM) 5950 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5951 if (SPF == SPF_FMAXNUM) 5952 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5953 llvm_unreachable("unhandled!"); 5954 } 5955 5956 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5957 if (SPF == SPF_SMIN) return SPF_SMAX; 5958 if (SPF == SPF_UMIN) return SPF_UMAX; 5959 if (SPF == SPF_SMAX) return SPF_SMIN; 5960 if (SPF == SPF_UMAX) return SPF_UMIN; 5961 llvm_unreachable("unhandled!"); 5962 } 5963 5964 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5965 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5966 } 5967 5968 /// Return true if "icmp Pred LHS RHS" is always true. 5969 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5970 const Value *RHS, const DataLayout &DL, 5971 unsigned Depth) { 5972 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5973 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5974 return true; 5975 5976 switch (Pred) { 5977 default: 5978 return false; 5979 5980 case CmpInst::ICMP_SLE: { 5981 const APInt *C; 5982 5983 // LHS s<= LHS +_{nsw} C if C >= 0 5984 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5985 return !C->isNegative(); 5986 return false; 5987 } 5988 5989 case CmpInst::ICMP_ULE: { 5990 const APInt *C; 5991 5992 // LHS u<= LHS +_{nuw} C for any C 5993 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5994 return true; 5995 5996 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5997 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5998 const Value *&X, 5999 const APInt *&CA, const APInt *&CB) { 6000 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6001 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6002 return true; 6003 6004 // If X & C == 0 then (X | C) == X +_{nuw} C 6005 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6006 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6007 KnownBits Known(CA->getBitWidth()); 6008 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6009 /*CxtI*/ nullptr, /*DT*/ nullptr); 6010 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6011 return true; 6012 } 6013 6014 return false; 6015 }; 6016 6017 const Value *X; 6018 const APInt *CLHS, *CRHS; 6019 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6020 return CLHS->ule(*CRHS); 6021 6022 return false; 6023 } 6024 } 6025 } 6026 6027 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6028 /// ALHS ARHS" is true. Otherwise, return None. 6029 static Optional<bool> 6030 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6031 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6032 const DataLayout &DL, unsigned Depth) { 6033 switch (Pred) { 6034 default: 6035 return None; 6036 6037 case CmpInst::ICMP_SLT: 6038 case CmpInst::ICMP_SLE: 6039 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6040 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6041 return true; 6042 return None; 6043 6044 case CmpInst::ICMP_ULT: 6045 case CmpInst::ICMP_ULE: 6046 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6047 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6048 return true; 6049 return None; 6050 } 6051 } 6052 6053 /// Return true if the operands of the two compares match. IsSwappedOps is true 6054 /// when the operands match, but are swapped. 6055 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6056 const Value *BLHS, const Value *BRHS, 6057 bool &IsSwappedOps) { 6058 6059 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6060 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6061 return IsMatchingOps || IsSwappedOps; 6062 } 6063 6064 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6065 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6066 /// Otherwise, return None if we can't infer anything. 6067 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6068 CmpInst::Predicate BPred, 6069 bool AreSwappedOps) { 6070 // Canonicalize the predicate as if the operands were not commuted. 6071 if (AreSwappedOps) 6072 BPred = ICmpInst::getSwappedPredicate(BPred); 6073 6074 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6075 return true; 6076 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6077 return false; 6078 6079 return None; 6080 } 6081 6082 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6083 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6084 /// Otherwise, return None if we can't infer anything. 6085 static Optional<bool> 6086 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6087 const ConstantInt *C1, 6088 CmpInst::Predicate BPred, 6089 const ConstantInt *C2) { 6090 ConstantRange DomCR = 6091 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6092 ConstantRange CR = 6093 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6094 ConstantRange Intersection = DomCR.intersectWith(CR); 6095 ConstantRange Difference = DomCR.difference(CR); 6096 if (Intersection.isEmptySet()) 6097 return false; 6098 if (Difference.isEmptySet()) 6099 return true; 6100 return None; 6101 } 6102 6103 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6104 /// false. Otherwise, return None if we can't infer anything. 6105 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6106 CmpInst::Predicate BPred, 6107 const Value *BLHS, const Value *BRHS, 6108 const DataLayout &DL, bool LHSIsTrue, 6109 unsigned Depth) { 6110 Value *ALHS = LHS->getOperand(0); 6111 Value *ARHS = LHS->getOperand(1); 6112 6113 // The rest of the logic assumes the LHS condition is true. If that's not the 6114 // case, invert the predicate to make it so. 6115 CmpInst::Predicate APred = 6116 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6117 6118 // Can we infer anything when the two compares have matching operands? 6119 bool AreSwappedOps; 6120 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6121 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6122 APred, BPred, AreSwappedOps)) 6123 return Implication; 6124 // No amount of additional analysis will infer the second condition, so 6125 // early exit. 6126 return None; 6127 } 6128 6129 // Can we infer anything when the LHS operands match and the RHS operands are 6130 // constants (not necessarily matching)? 6131 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6132 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6133 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6134 return Implication; 6135 // No amount of additional analysis will infer the second condition, so 6136 // early exit. 6137 return None; 6138 } 6139 6140 if (APred == BPred) 6141 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6142 return None; 6143 } 6144 6145 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6146 /// false. Otherwise, return None if we can't infer anything. We expect the 6147 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6148 static Optional<bool> 6149 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6150 const Value *RHSOp0, const Value *RHSOp1, 6151 6152 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6153 // The LHS must be an 'or' or an 'and' instruction. 6154 assert((LHS->getOpcode() == Instruction::And || 6155 LHS->getOpcode() == Instruction::Or) && 6156 "Expected LHS to be 'and' or 'or'."); 6157 6158 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6159 6160 // If the result of an 'or' is false, then we know both legs of the 'or' are 6161 // false. Similarly, if the result of an 'and' is true, then we know both 6162 // legs of the 'and' are true. 6163 Value *ALHS, *ARHS; 6164 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6165 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6166 // FIXME: Make this non-recursion. 6167 if (Optional<bool> Implication = isImpliedCondition( 6168 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6169 return Implication; 6170 if (Optional<bool> Implication = isImpliedCondition( 6171 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6172 return Implication; 6173 return None; 6174 } 6175 return None; 6176 } 6177 6178 Optional<bool> 6179 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6180 const Value *RHSOp0, const Value *RHSOp1, 6181 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6182 // Bail out when we hit the limit. 6183 if (Depth == MaxAnalysisRecursionDepth) 6184 return None; 6185 6186 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6187 // example. 6188 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6189 return None; 6190 6191 Type *OpTy = LHS->getType(); 6192 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6193 6194 // FIXME: Extending the code below to handle vectors. 6195 if (OpTy->isVectorTy()) 6196 return None; 6197 6198 assert(OpTy->isIntegerTy(1) && "implied by above"); 6199 6200 // Both LHS and RHS are icmps. 6201 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6202 if (LHSCmp) 6203 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6204 Depth); 6205 6206 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6207 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6208 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6209 if (LHSBO) { 6210 if ((LHSBO->getOpcode() == Instruction::And || 6211 LHSBO->getOpcode() == Instruction::Or)) 6212 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6213 Depth); 6214 } 6215 return None; 6216 } 6217 6218 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6219 const DataLayout &DL, bool LHSIsTrue, 6220 unsigned Depth) { 6221 // LHS ==> RHS by definition 6222 if (LHS == RHS) 6223 return LHSIsTrue; 6224 6225 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6226 if (RHSCmp) 6227 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6228 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6229 LHSIsTrue, Depth); 6230 return None; 6231 } 6232 6233 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6234 // condition dominating ContextI or nullptr, if no condition is found. 6235 static std::pair<Value *, bool> 6236 getDomPredecessorCondition(const Instruction *ContextI) { 6237 if (!ContextI || !ContextI->getParent()) 6238 return {nullptr, false}; 6239 6240 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6241 // dominator tree (eg, from a SimplifyQuery) instead? 6242 const BasicBlock *ContextBB = ContextI->getParent(); 6243 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6244 if (!PredBB) 6245 return {nullptr, false}; 6246 6247 // We need a conditional branch in the predecessor. 6248 Value *PredCond; 6249 BasicBlock *TrueBB, *FalseBB; 6250 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6251 return {nullptr, false}; 6252 6253 // The branch should get simplified. Don't bother simplifying this condition. 6254 if (TrueBB == FalseBB) 6255 return {nullptr, false}; 6256 6257 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6258 "Predecessor block does not point to successor?"); 6259 6260 // Is this condition implied by the predecessor condition? 6261 return {PredCond, TrueBB == ContextBB}; 6262 } 6263 6264 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6265 const Instruction *ContextI, 6266 const DataLayout &DL) { 6267 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6268 auto PredCond = getDomPredecessorCondition(ContextI); 6269 if (PredCond.first) 6270 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6271 return None; 6272 } 6273 6274 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6275 const Value *LHS, const Value *RHS, 6276 const Instruction *ContextI, 6277 const DataLayout &DL) { 6278 auto PredCond = getDomPredecessorCondition(ContextI); 6279 if (PredCond.first) 6280 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6281 PredCond.second); 6282 return None; 6283 } 6284 6285 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6286 APInt &Upper, const InstrInfoQuery &IIQ) { 6287 unsigned Width = Lower.getBitWidth(); 6288 const APInt *C; 6289 switch (BO.getOpcode()) { 6290 case Instruction::Add: 6291 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6292 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6293 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6294 // 'add nuw x, C' produces [C, UINT_MAX]. 6295 Lower = *C; 6296 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6297 if (C->isNegative()) { 6298 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6299 Lower = APInt::getSignedMinValue(Width); 6300 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6301 } else { 6302 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6303 Lower = APInt::getSignedMinValue(Width) + *C; 6304 Upper = APInt::getSignedMaxValue(Width) + 1; 6305 } 6306 } 6307 } 6308 break; 6309 6310 case Instruction::And: 6311 if (match(BO.getOperand(1), m_APInt(C))) 6312 // 'and x, C' produces [0, C]. 6313 Upper = *C + 1; 6314 break; 6315 6316 case Instruction::Or: 6317 if (match(BO.getOperand(1), m_APInt(C))) 6318 // 'or x, C' produces [C, UINT_MAX]. 6319 Lower = *C; 6320 break; 6321 6322 case Instruction::AShr: 6323 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6324 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6325 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6326 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6327 } else if (match(BO.getOperand(0), m_APInt(C))) { 6328 unsigned ShiftAmount = Width - 1; 6329 if (!C->isNullValue() && IIQ.isExact(&BO)) 6330 ShiftAmount = C->countTrailingZeros(); 6331 if (C->isNegative()) { 6332 // 'ashr C, x' produces [C, C >> (Width-1)] 6333 Lower = *C; 6334 Upper = C->ashr(ShiftAmount) + 1; 6335 } else { 6336 // 'ashr C, x' produces [C >> (Width-1), C] 6337 Lower = C->ashr(ShiftAmount); 6338 Upper = *C + 1; 6339 } 6340 } 6341 break; 6342 6343 case Instruction::LShr: 6344 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6345 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6346 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6347 } else if (match(BO.getOperand(0), m_APInt(C))) { 6348 // 'lshr C, x' produces [C >> (Width-1), C]. 6349 unsigned ShiftAmount = Width - 1; 6350 if (!C->isNullValue() && IIQ.isExact(&BO)) 6351 ShiftAmount = C->countTrailingZeros(); 6352 Lower = C->lshr(ShiftAmount); 6353 Upper = *C + 1; 6354 } 6355 break; 6356 6357 case Instruction::Shl: 6358 if (match(BO.getOperand(0), m_APInt(C))) { 6359 if (IIQ.hasNoUnsignedWrap(&BO)) { 6360 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6361 Lower = *C; 6362 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6363 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6364 if (C->isNegative()) { 6365 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6366 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6367 Lower = C->shl(ShiftAmount); 6368 Upper = *C + 1; 6369 } else { 6370 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6371 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6372 Lower = *C; 6373 Upper = C->shl(ShiftAmount) + 1; 6374 } 6375 } 6376 } 6377 break; 6378 6379 case Instruction::SDiv: 6380 if (match(BO.getOperand(1), m_APInt(C))) { 6381 APInt IntMin = APInt::getSignedMinValue(Width); 6382 APInt IntMax = APInt::getSignedMaxValue(Width); 6383 if (C->isAllOnesValue()) { 6384 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6385 // where C != -1 and C != 0 and C != 1 6386 Lower = IntMin + 1; 6387 Upper = IntMax + 1; 6388 } else if (C->countLeadingZeros() < Width - 1) { 6389 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6390 // where C != -1 and C != 0 and C != 1 6391 Lower = IntMin.sdiv(*C); 6392 Upper = IntMax.sdiv(*C); 6393 if (Lower.sgt(Upper)) 6394 std::swap(Lower, Upper); 6395 Upper = Upper + 1; 6396 assert(Upper != Lower && "Upper part of range has wrapped!"); 6397 } 6398 } else if (match(BO.getOperand(0), m_APInt(C))) { 6399 if (C->isMinSignedValue()) { 6400 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6401 Lower = *C; 6402 Upper = Lower.lshr(1) + 1; 6403 } else { 6404 // 'sdiv C, x' produces [-|C|, |C|]. 6405 Upper = C->abs() + 1; 6406 Lower = (-Upper) + 1; 6407 } 6408 } 6409 break; 6410 6411 case Instruction::UDiv: 6412 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6413 // 'udiv x, C' produces [0, UINT_MAX / C]. 6414 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6415 } else if (match(BO.getOperand(0), m_APInt(C))) { 6416 // 'udiv C, x' produces [0, C]. 6417 Upper = *C + 1; 6418 } 6419 break; 6420 6421 case Instruction::SRem: 6422 if (match(BO.getOperand(1), m_APInt(C))) { 6423 // 'srem x, C' produces (-|C|, |C|). 6424 Upper = C->abs(); 6425 Lower = (-Upper) + 1; 6426 } 6427 break; 6428 6429 case Instruction::URem: 6430 if (match(BO.getOperand(1), m_APInt(C))) 6431 // 'urem x, C' produces [0, C). 6432 Upper = *C; 6433 break; 6434 6435 default: 6436 break; 6437 } 6438 } 6439 6440 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6441 APInt &Upper) { 6442 unsigned Width = Lower.getBitWidth(); 6443 const APInt *C; 6444 switch (II.getIntrinsicID()) { 6445 case Intrinsic::uadd_sat: 6446 // uadd.sat(x, C) produces [C, UINT_MAX]. 6447 if (match(II.getOperand(0), m_APInt(C)) || 6448 match(II.getOperand(1), m_APInt(C))) 6449 Lower = *C; 6450 break; 6451 case Intrinsic::sadd_sat: 6452 if (match(II.getOperand(0), m_APInt(C)) || 6453 match(II.getOperand(1), m_APInt(C))) { 6454 if (C->isNegative()) { 6455 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6456 Lower = APInt::getSignedMinValue(Width); 6457 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6458 } else { 6459 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6460 Lower = APInt::getSignedMinValue(Width) + *C; 6461 Upper = APInt::getSignedMaxValue(Width) + 1; 6462 } 6463 } 6464 break; 6465 case Intrinsic::usub_sat: 6466 // usub.sat(C, x) produces [0, C]. 6467 if (match(II.getOperand(0), m_APInt(C))) 6468 Upper = *C + 1; 6469 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6470 else if (match(II.getOperand(1), m_APInt(C))) 6471 Upper = APInt::getMaxValue(Width) - *C + 1; 6472 break; 6473 case Intrinsic::ssub_sat: 6474 if (match(II.getOperand(0), m_APInt(C))) { 6475 if (C->isNegative()) { 6476 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6477 Lower = APInt::getSignedMinValue(Width); 6478 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6479 } else { 6480 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6481 Lower = *C - APInt::getSignedMaxValue(Width); 6482 Upper = APInt::getSignedMaxValue(Width) + 1; 6483 } 6484 } else if (match(II.getOperand(1), m_APInt(C))) { 6485 if (C->isNegative()) { 6486 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6487 Lower = APInt::getSignedMinValue(Width) - *C; 6488 Upper = APInt::getSignedMaxValue(Width) + 1; 6489 } else { 6490 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6491 Lower = APInt::getSignedMinValue(Width); 6492 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6493 } 6494 } 6495 break; 6496 case Intrinsic::umin: 6497 case Intrinsic::umax: 6498 case Intrinsic::smin: 6499 case Intrinsic::smax: 6500 if (!match(II.getOperand(0), m_APInt(C)) && 6501 !match(II.getOperand(1), m_APInt(C))) 6502 break; 6503 6504 switch (II.getIntrinsicID()) { 6505 case Intrinsic::umin: 6506 Upper = *C + 1; 6507 break; 6508 case Intrinsic::umax: 6509 Lower = *C; 6510 break; 6511 case Intrinsic::smin: 6512 Lower = APInt::getSignedMinValue(Width); 6513 Upper = *C + 1; 6514 break; 6515 case Intrinsic::smax: 6516 Lower = *C; 6517 Upper = APInt::getSignedMaxValue(Width) + 1; 6518 break; 6519 default: 6520 llvm_unreachable("Must be min/max intrinsic"); 6521 } 6522 break; 6523 case Intrinsic::abs: 6524 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6525 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6526 if (match(II.getOperand(1), m_One())) 6527 Upper = APInt::getSignedMaxValue(Width) + 1; 6528 else 6529 Upper = APInt::getSignedMinValue(Width) + 1; 6530 break; 6531 default: 6532 break; 6533 } 6534 } 6535 6536 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6537 APInt &Upper, const InstrInfoQuery &IIQ) { 6538 const Value *LHS = nullptr, *RHS = nullptr; 6539 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6540 if (R.Flavor == SPF_UNKNOWN) 6541 return; 6542 6543 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6544 6545 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6546 // If the negation part of the abs (in RHS) has the NSW flag, 6547 // then the result of abs(X) is [0..SIGNED_MAX], 6548 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6549 Lower = APInt::getNullValue(BitWidth); 6550 if (match(RHS, m_Neg(m_Specific(LHS))) && 6551 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6552 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6553 else 6554 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6555 return; 6556 } 6557 6558 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6559 // The result of -abs(X) is <= 0. 6560 Lower = APInt::getSignedMinValue(BitWidth); 6561 Upper = APInt(BitWidth, 1); 6562 return; 6563 } 6564 6565 const APInt *C; 6566 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6567 return; 6568 6569 switch (R.Flavor) { 6570 case SPF_UMIN: 6571 Upper = *C + 1; 6572 break; 6573 case SPF_UMAX: 6574 Lower = *C; 6575 break; 6576 case SPF_SMIN: 6577 Lower = APInt::getSignedMinValue(BitWidth); 6578 Upper = *C + 1; 6579 break; 6580 case SPF_SMAX: 6581 Lower = *C; 6582 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6583 break; 6584 default: 6585 break; 6586 } 6587 } 6588 6589 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6590 AssumptionCache *AC, 6591 const Instruction *CtxI, 6592 unsigned Depth) { 6593 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6594 6595 if (Depth == MaxAnalysisRecursionDepth) 6596 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6597 6598 const APInt *C; 6599 if (match(V, m_APInt(C))) 6600 return ConstantRange(*C); 6601 6602 InstrInfoQuery IIQ(UseInstrInfo); 6603 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6604 APInt Lower = APInt(BitWidth, 0); 6605 APInt Upper = APInt(BitWidth, 0); 6606 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6607 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6608 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6609 setLimitsForIntrinsic(*II, Lower, Upper); 6610 else if (auto *SI = dyn_cast<SelectInst>(V)) 6611 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6612 6613 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6614 6615 if (auto *I = dyn_cast<Instruction>(V)) 6616 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6617 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6618 6619 if (CtxI && AC) { 6620 // Try to restrict the range based on information from assumptions. 6621 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6622 if (!AssumeVH) 6623 continue; 6624 CallInst *I = cast<CallInst>(AssumeVH); 6625 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6626 "Got assumption for the wrong function!"); 6627 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6628 "must be an assume intrinsic"); 6629 6630 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6631 continue; 6632 Value *Arg = I->getArgOperand(0); 6633 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6634 // Currently we just use information from comparisons. 6635 if (!Cmp || Cmp->getOperand(0) != V) 6636 continue; 6637 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6638 AC, I, Depth + 1); 6639 CR = CR.intersectWith( 6640 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6641 } 6642 } 6643 6644 return CR; 6645 } 6646 6647 static Optional<int64_t> 6648 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6649 // Skip over the first indices. 6650 gep_type_iterator GTI = gep_type_begin(GEP); 6651 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6652 /*skip along*/; 6653 6654 // Compute the offset implied by the rest of the indices. 6655 int64_t Offset = 0; 6656 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6657 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6658 if (!OpC) 6659 return None; 6660 if (OpC->isZero()) 6661 continue; // No offset. 6662 6663 // Handle struct indices, which add their field offset to the pointer. 6664 if (StructType *STy = GTI.getStructTypeOrNull()) { 6665 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6666 continue; 6667 } 6668 6669 // Otherwise, we have a sequential type like an array or fixed-length 6670 // vector. Multiply the index by the ElementSize. 6671 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6672 if (Size.isScalable()) 6673 return None; 6674 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6675 } 6676 6677 return Offset; 6678 } 6679 6680 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6681 const DataLayout &DL) { 6682 Ptr1 = Ptr1->stripPointerCasts(); 6683 Ptr2 = Ptr2->stripPointerCasts(); 6684 6685 // Handle the trivial case first. 6686 if (Ptr1 == Ptr2) { 6687 return 0; 6688 } 6689 6690 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6691 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6692 6693 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6694 // as in "P" and "gep P, 1". 6695 // Also do this iteratively to handle the the following case: 6696 // Ptr_t1 = GEP Ptr1, c1 6697 // Ptr_t2 = GEP Ptr_t1, c2 6698 // Ptr2 = GEP Ptr_t2, c3 6699 // where we will return c1+c2+c3. 6700 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6701 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6702 // are the same, and return the difference between offsets. 6703 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6704 const Value *Ptr) -> Optional<int64_t> { 6705 const GEPOperator *GEP_T = GEP; 6706 int64_t OffsetVal = 0; 6707 bool HasSameBase = false; 6708 while (GEP_T) { 6709 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6710 if (!Offset) 6711 return None; 6712 OffsetVal += *Offset; 6713 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6714 if (Op0 == Ptr) { 6715 HasSameBase = true; 6716 break; 6717 } 6718 GEP_T = dyn_cast<GEPOperator>(Op0); 6719 } 6720 if (!HasSameBase) 6721 return None; 6722 return OffsetVal; 6723 }; 6724 6725 if (GEP1) { 6726 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6727 if (Offset) 6728 return -*Offset; 6729 } 6730 if (GEP2) { 6731 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6732 if (Offset) 6733 return Offset; 6734 } 6735 6736 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6737 // base. After that base, they may have some number of common (and 6738 // potentially variable) indices. After that they handle some constant 6739 // offset, which determines their offset from each other. At this point, we 6740 // handle no other case. 6741 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6742 return None; 6743 6744 // Skip any common indices and track the GEP types. 6745 unsigned Idx = 1; 6746 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6747 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6748 break; 6749 6750 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6751 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6752 if (!Offset1 || !Offset2) 6753 return None; 6754 return *Offset2 - *Offset1; 6755 } 6756