1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2,
360                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                    bool NSW, const APInt &DemandedElts,
401                                    KnownBits &KnownOut, KnownBits &Known2,
402                                    unsigned Depth, const Query &Q) {
403   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404 
405   // If one operand is unknown and we have no nowrap information,
406   // the result will be unknown independently of the second operand.
407   if (KnownOut.isUnknown() && !NSW)
408     return;
409 
410   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412 }
413 
414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                 const APInt &DemandedElts, KnownBits &Known,
416                                 KnownBits &Known2, unsigned Depth,
417                                 const Query &Q) {
418   unsigned BitWidth = Known.getBitWidth();
419   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
420   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
421 
422   bool isKnownNegative = false;
423   bool isKnownNonNegative = false;
424   // If the multiplication is known not to overflow, compute the sign bit.
425   if (NSW) {
426     if (Op0 == Op1) {
427       // The product of a number with itself is non-negative.
428       isKnownNonNegative = true;
429     } else {
430       bool isKnownNonNegativeOp1 = Known.isNonNegative();
431       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
432       bool isKnownNegativeOp1 = Known.isNegative();
433       bool isKnownNegativeOp0 = Known2.isNegative();
434       // The product of two numbers with the same sign is non-negative.
435       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
436         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
437       // The product of a negative number and a non-negative number is either
438       // negative or zero.
439       if (!isKnownNonNegative)
440         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
441                            isKnownNonZero(Op0, Depth, Q)) ||
442                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
443                            isKnownNonZero(Op1, Depth, Q));
444     }
445   }
446 
447   assert(!Known.hasConflict() && !Known2.hasConflict());
448   // Compute a conservative estimate for high known-0 bits.
449   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
450                              Known2.countMinLeadingZeros(),
451                              BitWidth) - BitWidth;
452   LeadZ = std::min(LeadZ, BitWidth);
453 
454   // The result of the bottom bits of an integer multiply can be
455   // inferred by looking at the bottom bits of both operands and
456   // multiplying them together.
457   // We can infer at least the minimum number of known trailing bits
458   // of both operands. Depending on number of trailing zeros, we can
459   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
460   // a and b are divisible by m and n respectively.
461   // We then calculate how many of those bits are inferrable and set
462   // the output. For example, the i8 mul:
463   //  a = XXXX1100 (12)
464   //  b = XXXX1110 (14)
465   // We know the bottom 3 bits are zero since the first can be divided by
466   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
467   // Applying the multiplication to the trimmed arguments gets:
468   //    XX11 (3)
469   //    X111 (7)
470   // -------
471   //    XX11
472   //   XX11
473   //  XX11
474   // XX11
475   // -------
476   // XXXXX01
477   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
478   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
479   // The proof for this can be described as:
480   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
481   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
482   //                    umin(countTrailingZeros(C2), C6) +
483   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
484   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
485   // %aa = shl i8 %a, C5
486   // %bb = shl i8 %b, C6
487   // %aaa = or i8 %aa, C1
488   // %bbb = or i8 %bb, C2
489   // %mul = mul i8 %aaa, %bbb
490   // %mask = and i8 %mul, C7
491   //   =>
492   // %mask = i8 ((C1*C2)&C7)
493   // Where C5, C6 describe the known bits of %a, %b
494   // C1, C2 describe the known bottom bits of %a, %b.
495   // C7 describes the mask of the known bits of the result.
496   APInt Bottom0 = Known.One;
497   APInt Bottom1 = Known2.One;
498 
499   // How many times we'd be able to divide each argument by 2 (shr by 1).
500   // This gives us the number of trailing zeros on the multiplication result.
501   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
502   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
503   unsigned TrailZero0 = Known.countMinTrailingZeros();
504   unsigned TrailZero1 = Known2.countMinTrailingZeros();
505   unsigned TrailZ = TrailZero0 + TrailZero1;
506 
507   // Figure out the fewest known-bits operand.
508   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
509                                       TrailBitsKnown1 - TrailZero1);
510   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
511 
512   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
513                       Bottom1.getLoBits(TrailBitsKnown1);
514 
515   Known.resetAll();
516   Known.Zero.setHighBits(LeadZ);
517   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
518   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
519 
520   // Only make use of no-wrap flags if we failed to compute the sign bit
521   // directly.  This matters if the multiplication always overflows, in
522   // which case we prefer to follow the result of the direct computation,
523   // though as the program is invoking undefined behaviour we can choose
524   // whatever we like here.
525   if (isKnownNonNegative && !Known.isNegative())
526     Known.makeNonNegative();
527   else if (isKnownNegative && !Known.isNonNegative())
528     Known.makeNegative();
529 }
530 
531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
532                                              KnownBits &Known) {
533   unsigned BitWidth = Known.getBitWidth();
534   unsigned NumRanges = Ranges.getNumOperands() / 2;
535   assert(NumRanges >= 1);
536 
537   Known.Zero.setAllBits();
538   Known.One.setAllBits();
539 
540   for (unsigned i = 0; i < NumRanges; ++i) {
541     ConstantInt *Lower =
542         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
543     ConstantInt *Upper =
544         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
545     ConstantRange Range(Lower->getValue(), Upper->getValue());
546 
547     // The first CommonPrefixBits of all values in Range are equal.
548     unsigned CommonPrefixBits =
549         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
550     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
551     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
552     Known.One &= UnsignedMax & Mask;
553     Known.Zero &= ~UnsignedMax & Mask;
554   }
555 }
556 
557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
558   SmallVector<const Value *, 16> WorkSet(1, I);
559   SmallPtrSet<const Value *, 32> Visited;
560   SmallPtrSet<const Value *, 16> EphValues;
561 
562   // The instruction defining an assumption's condition itself is always
563   // considered ephemeral to that assumption (even if it has other
564   // non-ephemeral users). See r246696's test case for an example.
565   if (is_contained(I->operands(), E))
566     return true;
567 
568   while (!WorkSet.empty()) {
569     const Value *V = WorkSet.pop_back_val();
570     if (!Visited.insert(V).second)
571       continue;
572 
573     // If all uses of this value are ephemeral, then so is this value.
574     if (llvm::all_of(V->users(), [&](const User *U) {
575                                    return EphValues.count(U);
576                                  })) {
577       if (V == E)
578         return true;
579 
580       if (V == I || isSafeToSpeculativelyExecute(V)) {
581        EphValues.insert(V);
582        if (const User *U = dyn_cast<User>(V))
583          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
584               J != JE; ++J)
585            WorkSet.push_back(*J);
586       }
587     }
588   }
589 
590   return false;
591 }
592 
593 // Is this an intrinsic that cannot be speculated but also cannot trap?
594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
595   if (const CallInst *CI = dyn_cast<CallInst>(I))
596     if (Function *F = CI->getCalledFunction())
597       switch (F->getIntrinsicID()) {
598       default: break;
599       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
600       case Intrinsic::assume:
601       case Intrinsic::sideeffect:
602       case Intrinsic::dbg_declare:
603       case Intrinsic::dbg_value:
604       case Intrinsic::dbg_label:
605       case Intrinsic::invariant_start:
606       case Intrinsic::invariant_end:
607       case Intrinsic::lifetime_start:
608       case Intrinsic::lifetime_end:
609       case Intrinsic::objectsize:
610       case Intrinsic::ptr_annotation:
611       case Intrinsic::var_annotation:
612         return true;
613       }
614 
615   return false;
616 }
617 
618 bool llvm::isValidAssumeForContext(const Instruction *Inv,
619                                    const Instruction *CxtI,
620                                    const DominatorTree *DT) {
621   // There are two restrictions on the use of an assume:
622   //  1. The assume must dominate the context (or the control flow must
623   //     reach the assume whenever it reaches the context).
624   //  2. The context must not be in the assume's set of ephemeral values
625   //     (otherwise we will use the assume to prove that the condition
626   //     feeding the assume is trivially true, thus causing the removal of
627   //     the assume).
628 
629   if (Inv->getParent() == CxtI->getParent()) {
630     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
631     // in the BB.
632     if (Inv->comesBefore(CxtI))
633       return true;
634 
635     // Don't let an assume affect itself - this would cause the problems
636     // `isEphemeralValueOf` is trying to prevent, and it would also make
637     // the loop below go out of bounds.
638     if (Inv == CxtI)
639       return false;
640 
641     // The context comes first, but they're both in the same block.
642     // Make sure there is nothing in between that might interrupt
643     // the control flow, not even CxtI itself.
644     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
645       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
646         return false;
647 
648     return !isEphemeralValueOf(Inv, CxtI);
649   }
650 
651   // Inv and CxtI are in different blocks.
652   if (DT) {
653     if (DT->dominates(Inv, CxtI))
654       return true;
655   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
656     // We don't have a DT, but this trivially dominates.
657     return true;
658   }
659 
660   return false;
661 }
662 
663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
664   // Use of assumptions is context-sensitive. If we don't have a context, we
665   // cannot use them!
666   if (!Q.AC || !Q.CxtI)
667     return false;
668 
669   // Note that the patterns below need to be kept in sync with the code
670   // in AssumptionCache::updateAffectedValues.
671 
672   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
673     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
674 
675     Value *RHS;
676     CmpInst::Predicate Pred;
677     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
678       return false;
679     // assume(v u> y) -> assume(v != 0)
680     if (Pred == ICmpInst::ICMP_UGT)
681       return true;
682 
683     // assume(v != 0)
684     // We special-case this one to ensure that we handle `assume(v != null)`.
685     if (Pred == ICmpInst::ICMP_NE)
686       return match(RHS, m_Zero());
687 
688     // All other predicates - rely on generic ConstantRange handling.
689     ConstantInt *CI;
690     if (!match(RHS, m_ConstantInt(CI)))
691       return false;
692     ConstantRange RHSRange(CI->getValue());
693     ConstantRange TrueValues =
694         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
695     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
696   };
697 
698   if (Q.CxtI && V->getType()->isPointerTy()) {
699     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
700     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
701                               V->getType()->getPointerAddressSpace()))
702       AttrKinds.push_back(Attribute::Dereferenceable);
703 
704     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
705       return true;
706   }
707 
708   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
709     if (!AssumeVH)
710       continue;
711     CallInst *I = cast<CallInst>(AssumeVH);
712     assert(I->getFunction() == Q.CxtI->getFunction() &&
713            "Got assumption for the wrong function!");
714     if (Q.isExcluded(I))
715       continue;
716 
717     // Warning: This loop can end up being somewhat performance sensitive.
718     // We're running this loop for once for each value queried resulting in a
719     // runtime of ~O(#assumes * #values).
720 
721     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
722            "must be an assume intrinsic");
723 
724     Value *Arg = I->getArgOperand(0);
725     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
726     if (!Cmp)
727       continue;
728 
729     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
730       return true;
731   }
732 
733   return false;
734 }
735 
736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
737                                        unsigned Depth, const Query &Q) {
738   // Use of assumptions is context-sensitive. If we don't have a context, we
739   // cannot use them!
740   if (!Q.AC || !Q.CxtI)
741     return;
742 
743   unsigned BitWidth = Known.getBitWidth();
744 
745   // Note that the patterns below need to be kept in sync with the code
746   // in AssumptionCache::updateAffectedValues.
747 
748   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
749     if (!AssumeVH)
750       continue;
751     CallInst *I = cast<CallInst>(AssumeVH);
752     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
753            "Got assumption for the wrong function!");
754     if (Q.isExcluded(I))
755       continue;
756 
757     // Warning: This loop can end up being somewhat performance sensitive.
758     // We're running this loop for once for each value queried resulting in a
759     // runtime of ~O(#assumes * #values).
760 
761     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
762            "must be an assume intrinsic");
763 
764     Value *Arg = I->getArgOperand(0);
765 
766     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
767       assert(BitWidth == 1 && "assume operand is not i1?");
768       Known.setAllOnes();
769       return;
770     }
771     if (match(Arg, m_Not(m_Specific(V))) &&
772         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
773       assert(BitWidth == 1 && "assume operand is not i1?");
774       Known.setAllZero();
775       return;
776     }
777 
778     // The remaining tests are all recursive, so bail out if we hit the limit.
779     if (Depth == MaxAnalysisRecursionDepth)
780       continue;
781 
782     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
783     if (!Cmp)
784       continue;
785 
786     // Note that ptrtoint may change the bitwidth.
787     Value *A, *B;
788     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
789 
790     CmpInst::Predicate Pred;
791     uint64_t C;
792     switch (Cmp->getPredicate()) {
793     default:
794       break;
795     case ICmpInst::ICMP_EQ:
796       // assume(v = a)
797       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
798           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
799         KnownBits RHSKnown =
800             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
801         Known.Zero |= RHSKnown.Zero;
802         Known.One  |= RHSKnown.One;
803       // assume(v & b = a)
804       } else if (match(Cmp,
805                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
806                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
807         KnownBits RHSKnown =
808             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
809         KnownBits MaskKnown =
810             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
811 
812         // For those bits in the mask that are known to be one, we can propagate
813         // known bits from the RHS to V.
814         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
815         Known.One  |= RHSKnown.One  & MaskKnown.One;
816       // assume(~(v & b) = a)
817       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
818                                      m_Value(A))) &&
819                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
820         KnownBits RHSKnown =
821             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
822         KnownBits MaskKnown =
823             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
824 
825         // For those bits in the mask that are known to be one, we can propagate
826         // inverted known bits from the RHS to V.
827         Known.Zero |= RHSKnown.One  & MaskKnown.One;
828         Known.One  |= RHSKnown.Zero & MaskKnown.One;
829       // assume(v | b = a)
830       } else if (match(Cmp,
831                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
832                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
833         KnownBits RHSKnown =
834             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
835         KnownBits BKnown =
836             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
837 
838         // For those bits in B that are known to be zero, we can propagate known
839         // bits from the RHS to V.
840         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
841         Known.One  |= RHSKnown.One  & BKnown.Zero;
842       // assume(~(v | b) = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
848         KnownBits BKnown =
849             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
850 
851         // For those bits in B that are known to be zero, we can propagate
852         // inverted known bits from the RHS to V.
853         Known.Zero |= RHSKnown.One  & BKnown.Zero;
854         Known.One  |= RHSKnown.Zero & BKnown.Zero;
855       // assume(v ^ b = a)
856       } else if (match(Cmp,
857                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
861         KnownBits BKnown =
862             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
863 
864         // For those bits in B that are known to be zero, we can propagate known
865         // bits from the RHS to V. For those bits in B that are known to be one,
866         // we can propagate inverted known bits from the RHS to V.
867         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
868         Known.One  |= RHSKnown.One  & BKnown.Zero;
869         Known.Zero |= RHSKnown.One  & BKnown.One;
870         Known.One  |= RHSKnown.Zero & BKnown.One;
871       // assume(~(v ^ b) = a)
872       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
873                                      m_Value(A))) &&
874                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
875         KnownBits RHSKnown =
876             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
877         KnownBits BKnown =
878             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
879 
880         // For those bits in B that are known to be zero, we can propagate
881         // inverted known bits from the RHS to V. For those bits in B that are
882         // known to be one, we can propagate known bits from the RHS to V.
883         Known.Zero |= RHSKnown.One  & BKnown.Zero;
884         Known.One  |= RHSKnown.Zero & BKnown.Zero;
885         Known.Zero |= RHSKnown.Zero & BKnown.One;
886         Known.One  |= RHSKnown.One  & BKnown.One;
887       // assume(v << c = a)
888       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
889                                      m_Value(A))) &&
890                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
891         KnownBits RHSKnown =
892             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
893 
894         // For those bits in RHS that are known, we can propagate them to known
895         // bits in V shifted to the right by C.
896         RHSKnown.Zero.lshrInPlace(C);
897         Known.Zero |= RHSKnown.Zero;
898         RHSKnown.One.lshrInPlace(C);
899         Known.One  |= RHSKnown.One;
900       // assume(~(v << c) = a)
901       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
902                                      m_Value(A))) &&
903                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
904         KnownBits RHSKnown =
905             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
906         // For those bits in RHS that are known, we can propagate them inverted
907         // to known bits in V shifted to the right by C.
908         RHSKnown.One.lshrInPlace(C);
909         Known.Zero |= RHSKnown.One;
910         RHSKnown.Zero.lshrInPlace(C);
911         Known.One  |= RHSKnown.Zero;
912       // assume(v >> c = a)
913       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
914                                      m_Value(A))) &&
915                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
916         KnownBits RHSKnown =
917             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
918         // For those bits in RHS that are known, we can propagate them to known
919         // bits in V shifted to the right by C.
920         Known.Zero |= RHSKnown.Zero << C;
921         Known.One  |= RHSKnown.One  << C;
922       // assume(~(v >> c) = a)
923       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
924                                      m_Value(A))) &&
925                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
926         KnownBits RHSKnown =
927             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
928         // For those bits in RHS that are known, we can propagate them inverted
929         // to known bits in V shifted to the right by C.
930         Known.Zero |= RHSKnown.One  << C;
931         Known.One  |= RHSKnown.Zero << C;
932       }
933       break;
934     case ICmpInst::ICMP_SGE:
935       // assume(v >=_s c) where c is non-negative
936       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
937           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
938         KnownBits RHSKnown =
939             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
940 
941         if (RHSKnown.isNonNegative()) {
942           // We know that the sign bit is zero.
943           Known.makeNonNegative();
944         }
945       }
946       break;
947     case ICmpInst::ICMP_SGT:
948       // assume(v >_s c) where c is at least -1.
949       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
950           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
951         KnownBits RHSKnown =
952             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
953 
954         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
955           // We know that the sign bit is zero.
956           Known.makeNonNegative();
957         }
958       }
959       break;
960     case ICmpInst::ICMP_SLE:
961       // assume(v <=_s c) where c is negative
962       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
963           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
964         KnownBits RHSKnown =
965             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
966 
967         if (RHSKnown.isNegative()) {
968           // We know that the sign bit is one.
969           Known.makeNegative();
970         }
971       }
972       break;
973     case ICmpInst::ICMP_SLT:
974       // assume(v <_s c) where c is non-positive
975       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
976           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
977         KnownBits RHSKnown =
978             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
979 
980         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
981           // We know that the sign bit is one.
982           Known.makeNegative();
983         }
984       }
985       break;
986     case ICmpInst::ICMP_ULE:
987       // assume(v <=_u c)
988       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
989           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
990         KnownBits RHSKnown =
991             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
992 
993         // Whatever high bits in c are zero are known to be zero.
994         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
995       }
996       break;
997     case ICmpInst::ICMP_ULT:
998       // assume(v <_u c)
999       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1000           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1001         KnownBits RHSKnown =
1002             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1003 
1004         // If the RHS is known zero, then this assumption must be wrong (nothing
1005         // is unsigned less than zero). Signal a conflict and get out of here.
1006         if (RHSKnown.isZero()) {
1007           Known.Zero.setAllBits();
1008           Known.One.setAllBits();
1009           break;
1010         }
1011 
1012         // Whatever high bits in c are zero are known to be zero (if c is a power
1013         // of 2, then one more).
1014         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
1015           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
1016         else
1017           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
1018       }
1019       break;
1020     }
1021   }
1022 
1023   // If assumptions conflict with each other or previous known bits, then we
1024   // have a logical fallacy. It's possible that the assumption is not reachable,
1025   // so this isn't a real bug. On the other hand, the program may have undefined
1026   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
1027   // clear out the known bits, try to warn the user, and hope for the best.
1028   if (Known.Zero.intersects(Known.One)) {
1029     Known.resetAll();
1030 
1031     if (Q.ORE)
1032       Q.ORE->emit([&]() {
1033         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
1034         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
1035                                           CxtI)
1036                << "Detected conflicting code assumptions. Program may "
1037                   "have undefined behavior, or compiler may have "
1038                   "internal error.";
1039       });
1040   }
1041 }
1042 
1043 /// Compute known bits from a shift operator, including those with a
1044 /// non-constant shift amount. Known is the output of this function. Known2 is a
1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
1046 /// operator-specific functions that, given the known-zero or known-one bits
1047 /// respectively, and a shift amount, compute the implied known-zero or
1048 /// known-one bits of the shift operator's result respectively for that shift
1049 /// amount. The results from calling KZF and KOF are conservatively combined for
1050 /// all permitted shift amounts.
1051 static void computeKnownBitsFromShiftOperator(
1052     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1053     KnownBits &Known2, unsigned Depth, const Query &Q,
1054     function_ref<APInt(const APInt &, unsigned)> KZF,
1055     function_ref<APInt(const APInt &, unsigned)> KOF) {
1056   unsigned BitWidth = Known.getBitWidth();
1057 
1058   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1059   if (Known.isConstant()) {
1060     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
1061 
1062     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1063     Known.Zero = KZF(Known.Zero, ShiftAmt);
1064     Known.One  = KOF(Known.One, ShiftAmt);
1065     // If the known bits conflict, this must be an overflowing left shift, so
1066     // the shift result is poison. We can return anything we want. Choose 0 for
1067     // the best folding opportunity.
1068     if (Known.hasConflict())
1069       Known.setAllZero();
1070 
1071     return;
1072   }
1073 
1074   // If the shift amount could be greater than or equal to the bit-width of the
1075   // LHS, the value could be poison, but bail out because the check below is
1076   // expensive.
1077   // TODO: Should we just carry on?
1078   if (Known.getMaxValue().uge(BitWidth)) {
1079     Known.resetAll();
1080     return;
1081   }
1082 
1083   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1084   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1085   // limit value (which implies all bits are known).
1086   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1087   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1088 
1089   // It would be more-clearly correct to use the two temporaries for this
1090   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1091   Known.resetAll();
1092 
1093   // If we know the shifter operand is nonzero, we can sometimes infer more
1094   // known bits. However this is expensive to compute, so be lazy about it and
1095   // only compute it when absolutely necessary.
1096   Optional<bool> ShifterOperandIsNonZero;
1097 
1098   // Early exit if we can't constrain any well-defined shift amount.
1099   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1100       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1101     ShifterOperandIsNonZero =
1102         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1103     if (!*ShifterOperandIsNonZero)
1104       return;
1105   }
1106 
1107   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1108 
1109   Known.Zero.setAllBits();
1110   Known.One.setAllBits();
1111   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1112     // Combine the shifted known input bits only for those shift amounts
1113     // compatible with its known constraints.
1114     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1115       continue;
1116     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1117       continue;
1118     // If we know the shifter is nonzero, we may be able to infer more known
1119     // bits. This check is sunk down as far as possible to avoid the expensive
1120     // call to isKnownNonZero if the cheaper checks above fail.
1121     if (ShiftAmt == 0) {
1122       if (!ShifterOperandIsNonZero.hasValue())
1123         ShifterOperandIsNonZero =
1124             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1125       if (*ShifterOperandIsNonZero)
1126         continue;
1127     }
1128 
1129     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1130     Known.One  &= KOF(Known2.One, ShiftAmt);
1131   }
1132 
1133   // If the known bits conflict, the result is poison. Return a 0 and hope the
1134   // caller can further optimize that.
1135   if (Known.hasConflict())
1136     Known.setAllZero();
1137 }
1138 
1139 static void computeKnownBitsFromOperator(const Operator *I,
1140                                          const APInt &DemandedElts,
1141                                          KnownBits &Known, unsigned Depth,
1142                                          const Query &Q) {
1143   unsigned BitWidth = Known.getBitWidth();
1144 
1145   KnownBits Known2(BitWidth);
1146   switch (I->getOpcode()) {
1147   default: break;
1148   case Instruction::Load:
1149     if (MDNode *MD =
1150             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1151       computeKnownBitsFromRangeMetadata(*MD, Known);
1152     break;
1153   case Instruction::And: {
1154     // If either the LHS or the RHS are Zero, the result is zero.
1155     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1156     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1157 
1158     Known &= Known2;
1159 
1160     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1161     // here we handle the more general case of adding any odd number by
1162     // matching the form add(x, add(x, y)) where y is odd.
1163     // TODO: This could be generalized to clearing any bit set in y where the
1164     // following bit is known to be unset in y.
1165     Value *X = nullptr, *Y = nullptr;
1166     if (!Known.Zero[0] && !Known.One[0] &&
1167         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1168       Known2.resetAll();
1169       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1170       if (Known2.countMinTrailingOnes() > 0)
1171         Known.Zero.setBit(0);
1172     }
1173     break;
1174   }
1175   case Instruction::Or:
1176     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1178 
1179     Known |= Known2;
1180     break;
1181   case Instruction::Xor:
1182     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1183     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1184 
1185     Known ^= Known2;
1186     break;
1187   case Instruction::Mul: {
1188     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1189     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1190                         Known, Known2, Depth, Q);
1191     break;
1192   }
1193   case Instruction::UDiv: {
1194     // For the purposes of computing leading zeros we can conservatively
1195     // treat a udiv as a logical right shift by the power of 2 known to
1196     // be less than the denominator.
1197     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1198     unsigned LeadZ = Known2.countMinLeadingZeros();
1199 
1200     Known2.resetAll();
1201     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1202     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1203     if (RHSMaxLeadingZeros != BitWidth)
1204       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1205 
1206     Known.Zero.setHighBits(LeadZ);
1207     break;
1208   }
1209   case Instruction::Select: {
1210     const Value *LHS = nullptr, *RHS = nullptr;
1211     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1212     if (SelectPatternResult::isMinOrMax(SPF)) {
1213       computeKnownBits(RHS, Known, Depth + 1, Q);
1214       computeKnownBits(LHS, Known2, Depth + 1, Q);
1215       switch (SPF) {
1216       default:
1217         llvm_unreachable("Unhandled select pattern flavor!");
1218       case SPF_SMAX:
1219         Known = KnownBits::smax(Known, Known2);
1220         break;
1221       case SPF_SMIN:
1222         Known = KnownBits::smin(Known, Known2);
1223         break;
1224       case SPF_UMAX:
1225         Known = KnownBits::umax(Known, Known2);
1226         break;
1227       case SPF_UMIN:
1228         Known = KnownBits::umin(Known, Known2);
1229         break;
1230       }
1231       break;
1232     }
1233 
1234     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1235     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1236 
1237     // Only known if known in both the LHS and RHS.
1238     Known.One &= Known2.One;
1239     Known.Zero &= Known2.Zero;
1240 
1241     if (SPF == SPF_ABS) {
1242       // RHS from matchSelectPattern returns the negation part of abs pattern.
1243       // If the negate has an NSW flag we can assume the sign bit of the result
1244       // will be 0 because that makes abs(INT_MIN) undefined.
1245       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1246           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1247         Known.Zero.setSignBit();
1248     }
1249 
1250     break;
1251   }
1252   case Instruction::FPTrunc:
1253   case Instruction::FPExt:
1254   case Instruction::FPToUI:
1255   case Instruction::FPToSI:
1256   case Instruction::SIToFP:
1257   case Instruction::UIToFP:
1258     break; // Can't work with floating point.
1259   case Instruction::PtrToInt:
1260   case Instruction::IntToPtr:
1261     // Fall through and handle them the same as zext/trunc.
1262     LLVM_FALLTHROUGH;
1263   case Instruction::ZExt:
1264   case Instruction::Trunc: {
1265     Type *SrcTy = I->getOperand(0)->getType();
1266 
1267     unsigned SrcBitWidth;
1268     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1269     // which fall through here.
1270     Type *ScalarTy = SrcTy->getScalarType();
1271     SrcBitWidth = ScalarTy->isPointerTy() ?
1272       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1273       Q.DL.getTypeSizeInBits(ScalarTy);
1274 
1275     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1276     Known = Known.anyextOrTrunc(SrcBitWidth);
1277     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1278     Known = Known.zextOrTrunc(BitWidth);
1279     break;
1280   }
1281   case Instruction::BitCast: {
1282     Type *SrcTy = I->getOperand(0)->getType();
1283     if (SrcTy->isIntOrPtrTy() &&
1284         // TODO: For now, not handling conversions like:
1285         // (bitcast i64 %x to <2 x i32>)
1286         !I->getType()->isVectorTy()) {
1287       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1288       break;
1289     }
1290     break;
1291   }
1292   case Instruction::SExt: {
1293     // Compute the bits in the result that are not present in the input.
1294     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1295 
1296     Known = Known.trunc(SrcBitWidth);
1297     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1298     // If the sign bit of the input is known set or clear, then we know the
1299     // top bits of the result.
1300     Known = Known.sext(BitWidth);
1301     break;
1302   }
1303   case Instruction::Shl: {
1304     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1305     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1306     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1307       APInt KZResult = KnownZero << ShiftAmt;
1308       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1309       // If this shift has "nsw" keyword, then the result is either a poison
1310       // value or has the same sign bit as the first operand.
1311       if (NSW && KnownZero.isSignBitSet())
1312         KZResult.setSignBit();
1313       return KZResult;
1314     };
1315 
1316     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1317       APInt KOResult = KnownOne << ShiftAmt;
1318       if (NSW && KnownOne.isSignBitSet())
1319         KOResult.setSignBit();
1320       return KOResult;
1321     };
1322 
1323     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1324                                       KZF, KOF);
1325     break;
1326   }
1327   case Instruction::LShr: {
1328     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1329     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1330       APInt KZResult = KnownZero.lshr(ShiftAmt);
1331       // High bits known zero.
1332       KZResult.setHighBits(ShiftAmt);
1333       return KZResult;
1334     };
1335 
1336     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1337       return KnownOne.lshr(ShiftAmt);
1338     };
1339 
1340     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1341                                       KZF, KOF);
1342     break;
1343   }
1344   case Instruction::AShr: {
1345     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1346     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1347       return KnownZero.ashr(ShiftAmt);
1348     };
1349 
1350     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1351       return KnownOne.ashr(ShiftAmt);
1352     };
1353 
1354     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1355                                       KZF, KOF);
1356     break;
1357   }
1358   case Instruction::Sub: {
1359     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1360     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1361                            DemandedElts, Known, Known2, Depth, Q);
1362     break;
1363   }
1364   case Instruction::Add: {
1365     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1366     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1367                            DemandedElts, Known, Known2, Depth, Q);
1368     break;
1369   }
1370   case Instruction::SRem:
1371     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1372       APInt RA = Rem->getValue().abs();
1373       if (RA.isPowerOf2()) {
1374         APInt LowBits = RA - 1;
1375         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1376 
1377         // The low bits of the first operand are unchanged by the srem.
1378         Known.Zero = Known2.Zero & LowBits;
1379         Known.One = Known2.One & LowBits;
1380 
1381         // If the first operand is non-negative or has all low bits zero, then
1382         // the upper bits are all zero.
1383         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1384           Known.Zero |= ~LowBits;
1385 
1386         // If the first operand is negative and not all low bits are zero, then
1387         // the upper bits are all one.
1388         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1389           Known.One |= ~LowBits;
1390 
1391         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1392         break;
1393       }
1394     }
1395 
1396     // The sign bit is the LHS's sign bit, except when the result of the
1397     // remainder is zero.
1398     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1399     // If it's known zero, our sign bit is also zero.
1400     if (Known2.isNonNegative())
1401       Known.makeNonNegative();
1402 
1403     break;
1404   case Instruction::URem: {
1405     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1406       const APInt &RA = Rem->getValue();
1407       if (RA.isPowerOf2()) {
1408         APInt LowBits = (RA - 1);
1409         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1410         Known.Zero |= ~LowBits;
1411         Known.One &= LowBits;
1412         break;
1413       }
1414     }
1415 
1416     // Since the result is less than or equal to either operand, any leading
1417     // zero bits in either operand must also exist in the result.
1418     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1419     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1420 
1421     unsigned Leaders =
1422         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1423     Known.resetAll();
1424     Known.Zero.setHighBits(Leaders);
1425     break;
1426   }
1427   case Instruction::Alloca:
1428     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1429     break;
1430   case Instruction::GetElementPtr: {
1431     // Analyze all of the subscripts of this getelementptr instruction
1432     // to determine if we can prove known low zero bits.
1433     KnownBits LocalKnown(BitWidth);
1434     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1435     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1436 
1437     gep_type_iterator GTI = gep_type_begin(I);
1438     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1439       // TrailZ can only become smaller, short-circuit if we hit zero.
1440       if (TrailZ == 0)
1441         break;
1442 
1443       Value *Index = I->getOperand(i);
1444       if (StructType *STy = GTI.getStructTypeOrNull()) {
1445         // Handle struct member offset arithmetic.
1446 
1447         // Handle case when index is vector zeroinitializer
1448         Constant *CIndex = cast<Constant>(Index);
1449         if (CIndex->isZeroValue())
1450           continue;
1451 
1452         if (CIndex->getType()->isVectorTy())
1453           Index = CIndex->getSplatValue();
1454 
1455         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1456         const StructLayout *SL = Q.DL.getStructLayout(STy);
1457         uint64_t Offset = SL->getElementOffset(Idx);
1458         TrailZ = std::min<unsigned>(TrailZ,
1459                                     countTrailingZeros(Offset));
1460       } else {
1461         // Handle array index arithmetic.
1462         Type *IndexedTy = GTI.getIndexedType();
1463         if (!IndexedTy->isSized()) {
1464           TrailZ = 0;
1465           break;
1466         }
1467         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1468         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1469         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1470         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1471         TrailZ = std::min(TrailZ,
1472                           unsigned(countTrailingZeros(TypeSize) +
1473                                    LocalKnown.countMinTrailingZeros()));
1474       }
1475     }
1476 
1477     Known.Zero.setLowBits(TrailZ);
1478     break;
1479   }
1480   case Instruction::PHI: {
1481     const PHINode *P = cast<PHINode>(I);
1482     // Handle the case of a simple two-predecessor recurrence PHI.
1483     // There's a lot more that could theoretically be done here, but
1484     // this is sufficient to catch some interesting cases.
1485     if (P->getNumIncomingValues() == 2) {
1486       for (unsigned i = 0; i != 2; ++i) {
1487         Value *L = P->getIncomingValue(i);
1488         Value *R = P->getIncomingValue(!i);
1489         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1490         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1491         Operator *LU = dyn_cast<Operator>(L);
1492         if (!LU)
1493           continue;
1494         unsigned Opcode = LU->getOpcode();
1495         // Check for operations that have the property that if
1496         // both their operands have low zero bits, the result
1497         // will have low zero bits.
1498         if (Opcode == Instruction::Add ||
1499             Opcode == Instruction::Sub ||
1500             Opcode == Instruction::And ||
1501             Opcode == Instruction::Or ||
1502             Opcode == Instruction::Mul) {
1503           Value *LL = LU->getOperand(0);
1504           Value *LR = LU->getOperand(1);
1505           // Find a recurrence.
1506           if (LL == I)
1507             L = LR;
1508           else if (LR == I)
1509             L = LL;
1510           else
1511             continue; // Check for recurrence with L and R flipped.
1512 
1513           // Change the context instruction to the "edge" that flows into the
1514           // phi. This is important because that is where the value is actually
1515           // "evaluated" even though it is used later somewhere else. (see also
1516           // D69571).
1517           Query RecQ = Q;
1518 
1519           // Ok, we have a PHI of the form L op= R. Check for low
1520           // zero bits.
1521           RecQ.CxtI = RInst;
1522           computeKnownBits(R, Known2, Depth + 1, RecQ);
1523 
1524           // We need to take the minimum number of known bits
1525           KnownBits Known3(BitWidth);
1526           RecQ.CxtI = LInst;
1527           computeKnownBits(L, Known3, Depth + 1, RecQ);
1528 
1529           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1530                                          Known3.countMinTrailingZeros()));
1531 
1532           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1533           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1534             // If initial value of recurrence is nonnegative, and we are adding
1535             // a nonnegative number with nsw, the result can only be nonnegative
1536             // or poison value regardless of the number of times we execute the
1537             // add in phi recurrence. If initial value is negative and we are
1538             // adding a negative number with nsw, the result can only be
1539             // negative or poison value. Similar arguments apply to sub and mul.
1540             //
1541             // (add non-negative, non-negative) --> non-negative
1542             // (add negative, negative) --> negative
1543             if (Opcode == Instruction::Add) {
1544               if (Known2.isNonNegative() && Known3.isNonNegative())
1545                 Known.makeNonNegative();
1546               else if (Known2.isNegative() && Known3.isNegative())
1547                 Known.makeNegative();
1548             }
1549 
1550             // (sub nsw non-negative, negative) --> non-negative
1551             // (sub nsw negative, non-negative) --> negative
1552             else if (Opcode == Instruction::Sub && LL == I) {
1553               if (Known2.isNonNegative() && Known3.isNegative())
1554                 Known.makeNonNegative();
1555               else if (Known2.isNegative() && Known3.isNonNegative())
1556                 Known.makeNegative();
1557             }
1558 
1559             // (mul nsw non-negative, non-negative) --> non-negative
1560             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1561                      Known3.isNonNegative())
1562               Known.makeNonNegative();
1563           }
1564 
1565           break;
1566         }
1567       }
1568     }
1569 
1570     // Unreachable blocks may have zero-operand PHI nodes.
1571     if (P->getNumIncomingValues() == 0)
1572       break;
1573 
1574     // Otherwise take the unions of the known bit sets of the operands,
1575     // taking conservative care to avoid excessive recursion.
1576     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1577       // Skip if every incoming value references to ourself.
1578       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1579         break;
1580 
1581       Known.Zero.setAllBits();
1582       Known.One.setAllBits();
1583       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1584         Value *IncValue = P->getIncomingValue(u);
1585         // Skip direct self references.
1586         if (IncValue == P) continue;
1587 
1588         // Change the context instruction to the "edge" that flows into the
1589         // phi. This is important because that is where the value is actually
1590         // "evaluated" even though it is used later somewhere else. (see also
1591         // D69571).
1592         Query RecQ = Q;
1593         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1594 
1595         Known2 = KnownBits(BitWidth);
1596         // Recurse, but cap the recursion to one level, because we don't
1597         // want to waste time spinning around in loops.
1598         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1599         Known.Zero &= Known2.Zero;
1600         Known.One &= Known2.One;
1601         // If all bits have been ruled out, there's no need to check
1602         // more operands.
1603         if (!Known.Zero && !Known.One)
1604           break;
1605       }
1606     }
1607     break;
1608   }
1609   case Instruction::Call:
1610   case Instruction::Invoke:
1611     // If range metadata is attached to this call, set known bits from that,
1612     // and then intersect with known bits based on other properties of the
1613     // function.
1614     if (MDNode *MD =
1615             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1616       computeKnownBitsFromRangeMetadata(*MD, Known);
1617     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1618       computeKnownBits(RV, Known2, Depth + 1, Q);
1619       Known.Zero |= Known2.Zero;
1620       Known.One |= Known2.One;
1621     }
1622     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1623       switch (II->getIntrinsicID()) {
1624       default: break;
1625       case Intrinsic::abs:
1626         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1627 
1628         // If the source's MSB is zero then we know the rest of the bits.
1629         if (Known2.isNonNegative()) {
1630           Known.Zero |= Known2.Zero;
1631           Known.One |= Known2.One;
1632           break;
1633         }
1634 
1635         // Absolute value preserves trailing zero count.
1636         Known.Zero.setLowBits(Known2.Zero.countTrailingOnes());
1637 
1638         // If this call is undefined for INT_MIN, the result is positive. We
1639         // also know it can't be INT_MIN if there is a set bit that isn't the
1640         // sign bit.
1641         Known2.One.clearSignBit();
1642         if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue())
1643           Known.Zero.setSignBit();
1644         // FIXME: Handle known negative input?
1645         // FIXME: Calculate the negated Known bits and combine them?
1646         break;
1647       case Intrinsic::bitreverse:
1648         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1649         Known.Zero |= Known2.Zero.reverseBits();
1650         Known.One |= Known2.One.reverseBits();
1651         break;
1652       case Intrinsic::bswap:
1653         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1654         Known.Zero |= Known2.Zero.byteSwap();
1655         Known.One |= Known2.One.byteSwap();
1656         break;
1657       case Intrinsic::ctlz: {
1658         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1659         // If we have a known 1, its position is our upper bound.
1660         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1661         // If this call is undefined for 0, the result will be less than 2^n.
1662         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1663           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1664         unsigned LowBits = Log2_32(PossibleLZ)+1;
1665         Known.Zero.setBitsFrom(LowBits);
1666         break;
1667       }
1668       case Intrinsic::cttz: {
1669         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1670         // If we have a known 1, its position is our upper bound.
1671         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1672         // If this call is undefined for 0, the result will be less than 2^n.
1673         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1674           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1675         unsigned LowBits = Log2_32(PossibleTZ)+1;
1676         Known.Zero.setBitsFrom(LowBits);
1677         break;
1678       }
1679       case Intrinsic::ctpop: {
1680         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1681         // We can bound the space the count needs.  Also, bits known to be zero
1682         // can't contribute to the population.
1683         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1684         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1685         Known.Zero.setBitsFrom(LowBits);
1686         // TODO: we could bound KnownOne using the lower bound on the number
1687         // of bits which might be set provided by popcnt KnownOne2.
1688         break;
1689       }
1690       case Intrinsic::fshr:
1691       case Intrinsic::fshl: {
1692         const APInt *SA;
1693         if (!match(I->getOperand(2), m_APInt(SA)))
1694           break;
1695 
1696         // Normalize to funnel shift left.
1697         uint64_t ShiftAmt = SA->urem(BitWidth);
1698         if (II->getIntrinsicID() == Intrinsic::fshr)
1699           ShiftAmt = BitWidth - ShiftAmt;
1700 
1701         KnownBits Known3(BitWidth);
1702         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1703         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1704 
1705         Known.Zero =
1706             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1707         Known.One =
1708             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1709         break;
1710       }
1711       case Intrinsic::uadd_sat:
1712       case Intrinsic::usub_sat: {
1713         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1714         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1715         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1716 
1717         // Add: Leading ones of either operand are preserved.
1718         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1719         // as leading zeros in the result.
1720         unsigned LeadingKnown;
1721         if (IsAdd)
1722           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1723                                   Known2.countMinLeadingOnes());
1724         else
1725           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1726                                   Known2.countMinLeadingOnes());
1727 
1728         Known = KnownBits::computeForAddSub(
1729             IsAdd, /* NSW */ false, Known, Known2);
1730 
1731         // We select between the operation result and all-ones/zero
1732         // respectively, so we can preserve known ones/zeros.
1733         if (IsAdd) {
1734           Known.One.setHighBits(LeadingKnown);
1735           Known.Zero.clearAllBits();
1736         } else {
1737           Known.Zero.setHighBits(LeadingKnown);
1738           Known.One.clearAllBits();
1739         }
1740         break;
1741       }
1742       case Intrinsic::umin:
1743         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1744         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1745         Known = KnownBits::umin(Known, Known2);
1746         break;
1747       case Intrinsic::umax:
1748         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1749         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1750         Known = KnownBits::umax(Known, Known2);
1751         break;
1752       case Intrinsic::smin:
1753         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1754         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1755         Known = KnownBits::smin(Known, Known2);
1756         break;
1757       case Intrinsic::smax:
1758         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1759         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1760         Known = KnownBits::smax(Known, Known2);
1761         break;
1762       case Intrinsic::x86_sse42_crc32_64_64:
1763         Known.Zero.setBitsFrom(32);
1764         break;
1765       }
1766     }
1767     break;
1768   case Instruction::ShuffleVector: {
1769     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1770     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1771     if (!Shuf) {
1772       Known.resetAll();
1773       return;
1774     }
1775     // For undef elements, we don't know anything about the common state of
1776     // the shuffle result.
1777     APInt DemandedLHS, DemandedRHS;
1778     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1779       Known.resetAll();
1780       return;
1781     }
1782     Known.One.setAllBits();
1783     Known.Zero.setAllBits();
1784     if (!!DemandedLHS) {
1785       const Value *LHS = Shuf->getOperand(0);
1786       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1787       // If we don't know any bits, early out.
1788       if (Known.isUnknown())
1789         break;
1790     }
1791     if (!!DemandedRHS) {
1792       const Value *RHS = Shuf->getOperand(1);
1793       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1794       Known.One &= Known2.One;
1795       Known.Zero &= Known2.Zero;
1796     }
1797     break;
1798   }
1799   case Instruction::InsertElement: {
1800     const Value *Vec = I->getOperand(0);
1801     const Value *Elt = I->getOperand(1);
1802     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1803     // Early out if the index is non-constant or out-of-range.
1804     unsigned NumElts = DemandedElts.getBitWidth();
1805     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1806       Known.resetAll();
1807       return;
1808     }
1809     Known.One.setAllBits();
1810     Known.Zero.setAllBits();
1811     unsigned EltIdx = CIdx->getZExtValue();
1812     // Do we demand the inserted element?
1813     if (DemandedElts[EltIdx]) {
1814       computeKnownBits(Elt, Known, Depth + 1, Q);
1815       // If we don't know any bits, early out.
1816       if (Known.isUnknown())
1817         break;
1818     }
1819     // We don't need the base vector element that has been inserted.
1820     APInt DemandedVecElts = DemandedElts;
1821     DemandedVecElts.clearBit(EltIdx);
1822     if (!!DemandedVecElts) {
1823       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1824       Known.One &= Known2.One;
1825       Known.Zero &= Known2.Zero;
1826     }
1827     break;
1828   }
1829   case Instruction::ExtractElement: {
1830     // Look through extract element. If the index is non-constant or
1831     // out-of-range demand all elements, otherwise just the extracted element.
1832     const Value *Vec = I->getOperand(0);
1833     const Value *Idx = I->getOperand(1);
1834     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1835     if (isa<ScalableVectorType>(Vec->getType())) {
1836       // FIXME: there's probably *something* we can do with scalable vectors
1837       Known.resetAll();
1838       break;
1839     }
1840     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1841     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1842     if (CIdx && CIdx->getValue().ult(NumElts))
1843       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1844     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1845     break;
1846   }
1847   case Instruction::ExtractValue:
1848     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1849       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1850       if (EVI->getNumIndices() != 1) break;
1851       if (EVI->getIndices()[0] == 0) {
1852         switch (II->getIntrinsicID()) {
1853         default: break;
1854         case Intrinsic::uadd_with_overflow:
1855         case Intrinsic::sadd_with_overflow:
1856           computeKnownBitsAddSub(true, II->getArgOperand(0),
1857                                  II->getArgOperand(1), false, DemandedElts,
1858                                  Known, Known2, Depth, Q);
1859           break;
1860         case Intrinsic::usub_with_overflow:
1861         case Intrinsic::ssub_with_overflow:
1862           computeKnownBitsAddSub(false, II->getArgOperand(0),
1863                                  II->getArgOperand(1), false, DemandedElts,
1864                                  Known, Known2, Depth, Q);
1865           break;
1866         case Intrinsic::umul_with_overflow:
1867         case Intrinsic::smul_with_overflow:
1868           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1869                               DemandedElts, Known, Known2, Depth, Q);
1870           break;
1871         }
1872       }
1873     }
1874     break;
1875   case Instruction::Freeze:
1876     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.CxtI, Q.DT, Depth + 1))
1877       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1878     break;
1879   }
1880 }
1881 
1882 /// Determine which bits of V are known to be either zero or one and return
1883 /// them.
1884 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1885                            unsigned Depth, const Query &Q) {
1886   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1887   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1888   return Known;
1889 }
1890 
1891 /// Determine which bits of V are known to be either zero or one and return
1892 /// them.
1893 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1894   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1895   computeKnownBits(V, Known, Depth, Q);
1896   return Known;
1897 }
1898 
1899 /// Determine which bits of V are known to be either zero or one and return
1900 /// them in the Known bit set.
1901 ///
1902 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1903 /// we cannot optimize based on the assumption that it is zero without changing
1904 /// it to be an explicit zero.  If we don't change it to zero, other code could
1905 /// optimized based on the contradictory assumption that it is non-zero.
1906 /// Because instcombine aggressively folds operations with undef args anyway,
1907 /// this won't lose us code quality.
1908 ///
1909 /// This function is defined on values with integer type, values with pointer
1910 /// type, and vectors of integers.  In the case
1911 /// where V is a vector, known zero, and known one values are the
1912 /// same width as the vector element, and the bit is set only if it is true
1913 /// for all of the demanded elements in the vector specified by DemandedElts.
1914 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1915                       KnownBits &Known, unsigned Depth, const Query &Q) {
1916   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1917     // No demanded elts or V is a scalable vector, better to assume we don't
1918     // know anything.
1919     Known.resetAll();
1920     return;
1921   }
1922 
1923   assert(V && "No Value?");
1924   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1925 
1926 #ifndef NDEBUG
1927   Type *Ty = V->getType();
1928   unsigned BitWidth = Known.getBitWidth();
1929 
1930   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1931          "Not integer or pointer type!");
1932 
1933   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1934     assert(
1935         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1936         "DemandedElt width should equal the fixed vector number of elements");
1937   } else {
1938     assert(DemandedElts == APInt(1, 1) &&
1939            "DemandedElt width should be 1 for scalars");
1940   }
1941 
1942   Type *ScalarTy = Ty->getScalarType();
1943   if (ScalarTy->isPointerTy()) {
1944     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1945            "V and Known should have same BitWidth");
1946   } else {
1947     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1948            "V and Known should have same BitWidth");
1949   }
1950 #endif
1951 
1952   const APInt *C;
1953   if (match(V, m_APInt(C))) {
1954     // We know all of the bits for a scalar constant or a splat vector constant!
1955     Known.One = *C;
1956     Known.Zero = ~Known.One;
1957     return;
1958   }
1959   // Null and aggregate-zero are all-zeros.
1960   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1961     Known.setAllZero();
1962     return;
1963   }
1964   // Handle a constant vector by taking the intersection of the known bits of
1965   // each element.
1966   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1967     // We know that CDV must be a vector of integers. Take the intersection of
1968     // each element.
1969     Known.Zero.setAllBits(); Known.One.setAllBits();
1970     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1971       if (!DemandedElts[i])
1972         continue;
1973       APInt Elt = CDV->getElementAsAPInt(i);
1974       Known.Zero &= ~Elt;
1975       Known.One &= Elt;
1976     }
1977     return;
1978   }
1979 
1980   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1981     // We know that CV must be a vector of integers. Take the intersection of
1982     // each element.
1983     Known.Zero.setAllBits(); Known.One.setAllBits();
1984     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1985       if (!DemandedElts[i])
1986         continue;
1987       Constant *Element = CV->getAggregateElement(i);
1988       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1989       if (!ElementCI) {
1990         Known.resetAll();
1991         return;
1992       }
1993       const APInt &Elt = ElementCI->getValue();
1994       Known.Zero &= ~Elt;
1995       Known.One &= Elt;
1996     }
1997     return;
1998   }
1999 
2000   // Start out not knowing anything.
2001   Known.resetAll();
2002 
2003   // We can't imply anything about undefs.
2004   if (isa<UndefValue>(V))
2005     return;
2006 
2007   // There's no point in looking through other users of ConstantData for
2008   // assumptions.  Confirm that we've handled them all.
2009   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2010 
2011   // All recursive calls that increase depth must come after this.
2012   if (Depth == MaxAnalysisRecursionDepth)
2013     return;
2014 
2015   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2016   // the bits of its aliasee.
2017   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2018     if (!GA->isInterposable())
2019       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2020     return;
2021   }
2022 
2023   if (const Operator *I = dyn_cast<Operator>(V))
2024     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2025 
2026   // Aligned pointers have trailing zeros - refine Known.Zero set
2027   if (isa<PointerType>(V->getType())) {
2028     Align Alignment = V->getPointerAlignment(Q.DL);
2029     Known.Zero.setLowBits(countTrailingZeros(Alignment.value()));
2030   }
2031 
2032   // computeKnownBitsFromAssume strictly refines Known.
2033   // Therefore, we run them after computeKnownBitsFromOperator.
2034 
2035   // Check whether a nearby assume intrinsic can determine some known bits.
2036   computeKnownBitsFromAssume(V, Known, Depth, Q);
2037 
2038   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2039 }
2040 
2041 /// Return true if the given value is known to have exactly one
2042 /// bit set when defined. For vectors return true if every element is known to
2043 /// be a power of two when defined. Supports values with integer or pointer
2044 /// types and vectors of integers.
2045 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2046                             const Query &Q) {
2047   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2048 
2049   // Attempt to match against constants.
2050   if (OrZero && match(V, m_Power2OrZero()))
2051       return true;
2052   if (match(V, m_Power2()))
2053       return true;
2054 
2055   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2056   // it is shifted off the end then the result is undefined.
2057   if (match(V, m_Shl(m_One(), m_Value())))
2058     return true;
2059 
2060   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2061   // the bottom.  If it is shifted off the bottom then the result is undefined.
2062   if (match(V, m_LShr(m_SignMask(), m_Value())))
2063     return true;
2064 
2065   // The remaining tests are all recursive, so bail out if we hit the limit.
2066   if (Depth++ == MaxAnalysisRecursionDepth)
2067     return false;
2068 
2069   Value *X = nullptr, *Y = nullptr;
2070   // A shift left or a logical shift right of a power of two is a power of two
2071   // or zero.
2072   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2073                  match(V, m_LShr(m_Value(X), m_Value()))))
2074     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2075 
2076   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2077     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2078 
2079   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2080     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2081            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2082 
2083   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2084     // A power of two and'd with anything is a power of two or zero.
2085     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2086         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2087       return true;
2088     // X & (-X) is always a power of two or zero.
2089     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2090       return true;
2091     return false;
2092   }
2093 
2094   // Adding a power-of-two or zero to the same power-of-two or zero yields
2095   // either the original power-of-two, a larger power-of-two or zero.
2096   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2097     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2098     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2099         Q.IIQ.hasNoSignedWrap(VOBO)) {
2100       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2101           match(X, m_And(m_Value(), m_Specific(Y))))
2102         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2103           return true;
2104       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2105           match(Y, m_And(m_Value(), m_Specific(X))))
2106         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2107           return true;
2108 
2109       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2110       KnownBits LHSBits(BitWidth);
2111       computeKnownBits(X, LHSBits, Depth, Q);
2112 
2113       KnownBits RHSBits(BitWidth);
2114       computeKnownBits(Y, RHSBits, Depth, Q);
2115       // If i8 V is a power of two or zero:
2116       //  ZeroBits: 1 1 1 0 1 1 1 1
2117       // ~ZeroBits: 0 0 0 1 0 0 0 0
2118       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2119         // If OrZero isn't set, we cannot give back a zero result.
2120         // Make sure either the LHS or RHS has a bit set.
2121         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2122           return true;
2123     }
2124   }
2125 
2126   // An exact divide or right shift can only shift off zero bits, so the result
2127   // is a power of two only if the first operand is a power of two and not
2128   // copying a sign bit (sdiv int_min, 2).
2129   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2130       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2131     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2132                                   Depth, Q);
2133   }
2134 
2135   return false;
2136 }
2137 
2138 /// Test whether a GEP's result is known to be non-null.
2139 ///
2140 /// Uses properties inherent in a GEP to try to determine whether it is known
2141 /// to be non-null.
2142 ///
2143 /// Currently this routine does not support vector GEPs.
2144 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2145                               const Query &Q) {
2146   const Function *F = nullptr;
2147   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2148     F = I->getFunction();
2149 
2150   if (!GEP->isInBounds() ||
2151       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2152     return false;
2153 
2154   // FIXME: Support vector-GEPs.
2155   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2156 
2157   // If the base pointer is non-null, we cannot walk to a null address with an
2158   // inbounds GEP in address space zero.
2159   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2160     return true;
2161 
2162   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2163   // If so, then the GEP cannot produce a null pointer, as doing so would
2164   // inherently violate the inbounds contract within address space zero.
2165   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2166        GTI != GTE; ++GTI) {
2167     // Struct types are easy -- they must always be indexed by a constant.
2168     if (StructType *STy = GTI.getStructTypeOrNull()) {
2169       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2170       unsigned ElementIdx = OpC->getZExtValue();
2171       const StructLayout *SL = Q.DL.getStructLayout(STy);
2172       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2173       if (ElementOffset > 0)
2174         return true;
2175       continue;
2176     }
2177 
2178     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2179     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2180       continue;
2181 
2182     // Fast path the constant operand case both for efficiency and so we don't
2183     // increment Depth when just zipping down an all-constant GEP.
2184     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2185       if (!OpC->isZero())
2186         return true;
2187       continue;
2188     }
2189 
2190     // We post-increment Depth here because while isKnownNonZero increments it
2191     // as well, when we pop back up that increment won't persist. We don't want
2192     // to recurse 10k times just because we have 10k GEP operands. We don't
2193     // bail completely out because we want to handle constant GEPs regardless
2194     // of depth.
2195     if (Depth++ >= MaxAnalysisRecursionDepth)
2196       continue;
2197 
2198     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2199       return true;
2200   }
2201 
2202   return false;
2203 }
2204 
2205 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2206                                                   const Instruction *CtxI,
2207                                                   const DominatorTree *DT) {
2208   if (isa<Constant>(V))
2209     return false;
2210 
2211   if (!CtxI || !DT)
2212     return false;
2213 
2214   unsigned NumUsesExplored = 0;
2215   for (auto *U : V->users()) {
2216     // Avoid massive lists
2217     if (NumUsesExplored >= DomConditionsMaxUses)
2218       break;
2219     NumUsesExplored++;
2220 
2221     // If the value is used as an argument to a call or invoke, then argument
2222     // attributes may provide an answer about null-ness.
2223     if (const auto *CB = dyn_cast<CallBase>(U))
2224       if (auto *CalledFunc = CB->getCalledFunction())
2225         for (const Argument &Arg : CalledFunc->args())
2226           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2227               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2228             return true;
2229 
2230     // If the value is used as a load/store, then the pointer must be non null.
2231     if (V == getLoadStorePointerOperand(U)) {
2232       const Instruction *I = cast<Instruction>(U);
2233       if (!NullPointerIsDefined(I->getFunction(),
2234                                 V->getType()->getPointerAddressSpace()) &&
2235           DT->dominates(I, CtxI))
2236         return true;
2237     }
2238 
2239     // Consider only compare instructions uniquely controlling a branch
2240     CmpInst::Predicate Pred;
2241     if (!match(const_cast<User *>(U),
2242                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2243         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2244       continue;
2245 
2246     SmallVector<const User *, 4> WorkList;
2247     SmallPtrSet<const User *, 4> Visited;
2248     for (auto *CmpU : U->users()) {
2249       assert(WorkList.empty() && "Should be!");
2250       if (Visited.insert(CmpU).second)
2251         WorkList.push_back(CmpU);
2252 
2253       while (!WorkList.empty()) {
2254         auto *Curr = WorkList.pop_back_val();
2255 
2256         // If a user is an AND, add all its users to the work list. We only
2257         // propagate "pred != null" condition through AND because it is only
2258         // correct to assume that all conditions of AND are met in true branch.
2259         // TODO: Support similar logic of OR and EQ predicate?
2260         if (Pred == ICmpInst::ICMP_NE)
2261           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2262             if (BO->getOpcode() == Instruction::And) {
2263               for (auto *BOU : BO->users())
2264                 if (Visited.insert(BOU).second)
2265                   WorkList.push_back(BOU);
2266               continue;
2267             }
2268 
2269         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2270           assert(BI->isConditional() && "uses a comparison!");
2271 
2272           BasicBlock *NonNullSuccessor =
2273               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2274           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2275           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2276             return true;
2277         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2278                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2279           return true;
2280         }
2281       }
2282     }
2283   }
2284 
2285   return false;
2286 }
2287 
2288 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2289 /// ensure that the value it's attached to is never Value?  'RangeType' is
2290 /// is the type of the value described by the range.
2291 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2292   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2293   assert(NumRanges >= 1);
2294   for (unsigned i = 0; i < NumRanges; ++i) {
2295     ConstantInt *Lower =
2296         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2297     ConstantInt *Upper =
2298         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2299     ConstantRange Range(Lower->getValue(), Upper->getValue());
2300     if (Range.contains(Value))
2301       return false;
2302   }
2303   return true;
2304 }
2305 
2306 /// Return true if the given value is known to be non-zero when defined. For
2307 /// vectors, return true if every demanded element is known to be non-zero when
2308 /// defined. For pointers, if the context instruction and dominator tree are
2309 /// specified, perform context-sensitive analysis and return true if the
2310 /// pointer couldn't possibly be null at the specified instruction.
2311 /// Supports values with integer or pointer type and vectors of integers.
2312 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2313                     const Query &Q) {
2314   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2315   // vector
2316   if (isa<ScalableVectorType>(V->getType()))
2317     return false;
2318 
2319   if (auto *C = dyn_cast<Constant>(V)) {
2320     if (C->isNullValue())
2321       return false;
2322     if (isa<ConstantInt>(C))
2323       // Must be non-zero due to null test above.
2324       return true;
2325 
2326     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2327       // See the comment for IntToPtr/PtrToInt instructions below.
2328       if (CE->getOpcode() == Instruction::IntToPtr ||
2329           CE->getOpcode() == Instruction::PtrToInt)
2330         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2331             Q.DL.getTypeSizeInBits(CE->getType()))
2332           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2333     }
2334 
2335     // For constant vectors, check that all elements are undefined or known
2336     // non-zero to determine that the whole vector is known non-zero.
2337     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2338       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2339         if (!DemandedElts[i])
2340           continue;
2341         Constant *Elt = C->getAggregateElement(i);
2342         if (!Elt || Elt->isNullValue())
2343           return false;
2344         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2345           return false;
2346       }
2347       return true;
2348     }
2349 
2350     // A global variable in address space 0 is non null unless extern weak
2351     // or an absolute symbol reference. Other address spaces may have null as a
2352     // valid address for a global, so we can't assume anything.
2353     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2354       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2355           GV->getType()->getAddressSpace() == 0)
2356         return true;
2357     } else
2358       return false;
2359   }
2360 
2361   if (auto *I = dyn_cast<Instruction>(V)) {
2362     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2363       // If the possible ranges don't contain zero, then the value is
2364       // definitely non-zero.
2365       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2366         const APInt ZeroValue(Ty->getBitWidth(), 0);
2367         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2368           return true;
2369       }
2370     }
2371   }
2372 
2373   if (isKnownNonZeroFromAssume(V, Q))
2374     return true;
2375 
2376   // Some of the tests below are recursive, so bail out if we hit the limit.
2377   if (Depth++ >= MaxAnalysisRecursionDepth)
2378     return false;
2379 
2380   // Check for pointer simplifications.
2381 
2382   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2383     // Alloca never returns null, malloc might.
2384     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2385       return true;
2386 
2387     // A byval, inalloca may not be null in a non-default addres space. A
2388     // nonnull argument is assumed never 0.
2389     if (const Argument *A = dyn_cast<Argument>(V)) {
2390       if (((A->hasPassPointeeByValueCopyAttr() &&
2391             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2392            A->hasNonNullAttr()))
2393         return true;
2394     }
2395 
2396     // A Load tagged with nonnull metadata is never null.
2397     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2398       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2399         return true;
2400 
2401     if (const auto *Call = dyn_cast<CallBase>(V)) {
2402       if (Call->isReturnNonNull())
2403         return true;
2404       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2405         return isKnownNonZero(RP, Depth, Q);
2406     }
2407   }
2408 
2409   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2410     return true;
2411 
2412   // Check for recursive pointer simplifications.
2413   if (V->getType()->isPointerTy()) {
2414     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2415     // do not alter the value, or at least not the nullness property of the
2416     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2417     //
2418     // Note that we have to take special care to avoid looking through
2419     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2420     // as casts that can alter the value, e.g., AddrSpaceCasts.
2421     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2422       return isGEPKnownNonNull(GEP, Depth, Q);
2423 
2424     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2425       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2426 
2427     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2428       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2429           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2430         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2431   }
2432 
2433   // Similar to int2ptr above, we can look through ptr2int here if the cast
2434   // is a no-op or an extend and not a truncate.
2435   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2436     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2437         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2438       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2439 
2440   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2441 
2442   // X | Y != 0 if X != 0 or Y != 0.
2443   Value *X = nullptr, *Y = nullptr;
2444   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2445     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2446            isKnownNonZero(Y, DemandedElts, Depth, Q);
2447 
2448   // ext X != 0 if X != 0.
2449   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2450     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2451 
2452   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2453   // if the lowest bit is shifted off the end.
2454   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2455     // shl nuw can't remove any non-zero bits.
2456     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2457     if (Q.IIQ.hasNoUnsignedWrap(BO))
2458       return isKnownNonZero(X, Depth, Q);
2459 
2460     KnownBits Known(BitWidth);
2461     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2462     if (Known.One[0])
2463       return true;
2464   }
2465   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2466   // defined if the sign bit is shifted off the end.
2467   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2468     // shr exact can only shift out zero bits.
2469     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2470     if (BO->isExact())
2471       return isKnownNonZero(X, Depth, Q);
2472 
2473     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2474     if (Known.isNegative())
2475       return true;
2476 
2477     // If the shifter operand is a constant, and all of the bits shifted
2478     // out are known to be zero, and X is known non-zero then at least one
2479     // non-zero bit must remain.
2480     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2481       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2482       // Is there a known one in the portion not shifted out?
2483       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2484         return true;
2485       // Are all the bits to be shifted out known zero?
2486       if (Known.countMinTrailingZeros() >= ShiftVal)
2487         return isKnownNonZero(X, DemandedElts, Depth, Q);
2488     }
2489   }
2490   // div exact can only produce a zero if the dividend is zero.
2491   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2492     return isKnownNonZero(X, DemandedElts, Depth, Q);
2493   }
2494   // X + Y.
2495   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2496     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2497     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2498 
2499     // If X and Y are both non-negative (as signed values) then their sum is not
2500     // zero unless both X and Y are zero.
2501     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2502       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2503           isKnownNonZero(Y, DemandedElts, Depth, Q))
2504         return true;
2505 
2506     // If X and Y are both negative (as signed values) then their sum is not
2507     // zero unless both X and Y equal INT_MIN.
2508     if (XKnown.isNegative() && YKnown.isNegative()) {
2509       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2510       // The sign bit of X is set.  If some other bit is set then X is not equal
2511       // to INT_MIN.
2512       if (XKnown.One.intersects(Mask))
2513         return true;
2514       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2515       // to INT_MIN.
2516       if (YKnown.One.intersects(Mask))
2517         return true;
2518     }
2519 
2520     // The sum of a non-negative number and a power of two is not zero.
2521     if (XKnown.isNonNegative() &&
2522         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2523       return true;
2524     if (YKnown.isNonNegative() &&
2525         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2526       return true;
2527   }
2528   // X * Y.
2529   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2530     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2531     // If X and Y are non-zero then so is X * Y as long as the multiplication
2532     // does not overflow.
2533     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2534         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2535         isKnownNonZero(Y, DemandedElts, Depth, Q))
2536       return true;
2537   }
2538   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2539   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2540     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2541         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2542       return true;
2543   }
2544   // PHI
2545   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2546     // Try and detect a recurrence that monotonically increases from a
2547     // starting value, as these are common as induction variables.
2548     if (PN->getNumIncomingValues() == 2) {
2549       Value *Start = PN->getIncomingValue(0);
2550       Value *Induction = PN->getIncomingValue(1);
2551       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2552         std::swap(Start, Induction);
2553       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2554         if (!C->isZero() && !C->isNegative()) {
2555           ConstantInt *X;
2556           if (Q.IIQ.UseInstrInfo &&
2557               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2558                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2559               !X->isNegative())
2560             return true;
2561         }
2562       }
2563     }
2564     // Check if all incoming values are non-zero constant.
2565     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2566       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2567     });
2568     if (AllNonZeroConstants)
2569       return true;
2570   }
2571   // ExtractElement
2572   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2573     const Value *Vec = EEI->getVectorOperand();
2574     const Value *Idx = EEI->getIndexOperand();
2575     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2576     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2577       unsigned NumElts = VecTy->getNumElements();
2578       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2579       if (CIdx && CIdx->getValue().ult(NumElts))
2580         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2581       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2582     }
2583   }
2584   // Freeze
2585   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2586     auto *Op = FI->getOperand(0);
2587     if (isKnownNonZero(Op, Depth, Q) &&
2588         isGuaranteedNotToBePoison(Op, Q.CxtI, Q.DT, Depth))
2589       return true;
2590   }
2591 
2592   KnownBits Known(BitWidth);
2593   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2594   return Known.One != 0;
2595 }
2596 
2597 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2598   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2599   // vector
2600   if (isa<ScalableVectorType>(V->getType()))
2601     return false;
2602 
2603   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2604   APInt DemandedElts =
2605       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2606   return isKnownNonZero(V, DemandedElts, Depth, Q);
2607 }
2608 
2609 /// Return true if V2 == V1 + X, where X is known non-zero.
2610 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2611   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2612   if (!BO || BO->getOpcode() != Instruction::Add)
2613     return false;
2614   Value *Op = nullptr;
2615   if (V2 == BO->getOperand(0))
2616     Op = BO->getOperand(1);
2617   else if (V2 == BO->getOperand(1))
2618     Op = BO->getOperand(0);
2619   else
2620     return false;
2621   return isKnownNonZero(Op, 0, Q);
2622 }
2623 
2624 /// Return true if it is known that V1 != V2.
2625 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2626   if (V1 == V2)
2627     return false;
2628   if (V1->getType() != V2->getType())
2629     // We can't look through casts yet.
2630     return false;
2631   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2632     return true;
2633 
2634   if (V1->getType()->isIntOrIntVectorTy()) {
2635     // Are any known bits in V1 contradictory to known bits in V2? If V1
2636     // has a known zero where V2 has a known one, they must not be equal.
2637     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2638     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2639 
2640     if (Known1.Zero.intersects(Known2.One) ||
2641         Known2.Zero.intersects(Known1.One))
2642       return true;
2643   }
2644   return false;
2645 }
2646 
2647 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2648 /// simplify operations downstream. Mask is known to be zero for bits that V
2649 /// cannot have.
2650 ///
2651 /// This function is defined on values with integer type, values with pointer
2652 /// type, and vectors of integers.  In the case
2653 /// where V is a vector, the mask, known zero, and known one values are the
2654 /// same width as the vector element, and the bit is set only if it is true
2655 /// for all of the elements in the vector.
2656 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2657                        const Query &Q) {
2658   KnownBits Known(Mask.getBitWidth());
2659   computeKnownBits(V, Known, Depth, Q);
2660   return Mask.isSubsetOf(Known.Zero);
2661 }
2662 
2663 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2664 // Returns the input and lower/upper bounds.
2665 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2666                                 const APInt *&CLow, const APInt *&CHigh) {
2667   assert(isa<Operator>(Select) &&
2668          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2669          "Input should be a Select!");
2670 
2671   const Value *LHS = nullptr, *RHS = nullptr;
2672   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2673   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2674     return false;
2675 
2676   if (!match(RHS, m_APInt(CLow)))
2677     return false;
2678 
2679   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2680   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2681   if (getInverseMinMaxFlavor(SPF) != SPF2)
2682     return false;
2683 
2684   if (!match(RHS2, m_APInt(CHigh)))
2685     return false;
2686 
2687   if (SPF == SPF_SMIN)
2688     std::swap(CLow, CHigh);
2689 
2690   In = LHS2;
2691   return CLow->sle(*CHigh);
2692 }
2693 
2694 /// For vector constants, loop over the elements and find the constant with the
2695 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2696 /// or if any element was not analyzed; otherwise, return the count for the
2697 /// element with the minimum number of sign bits.
2698 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2699                                                  const APInt &DemandedElts,
2700                                                  unsigned TyBits) {
2701   const auto *CV = dyn_cast<Constant>(V);
2702   if (!CV || !isa<FixedVectorType>(CV->getType()))
2703     return 0;
2704 
2705   unsigned MinSignBits = TyBits;
2706   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2707   for (unsigned i = 0; i != NumElts; ++i) {
2708     if (!DemandedElts[i])
2709       continue;
2710     // If we find a non-ConstantInt, bail out.
2711     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2712     if (!Elt)
2713       return 0;
2714 
2715     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2716   }
2717 
2718   return MinSignBits;
2719 }
2720 
2721 static unsigned ComputeNumSignBitsImpl(const Value *V,
2722                                        const APInt &DemandedElts,
2723                                        unsigned Depth, const Query &Q);
2724 
2725 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2726                                    unsigned Depth, const Query &Q) {
2727   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2728   assert(Result > 0 && "At least one sign bit needs to be present!");
2729   return Result;
2730 }
2731 
2732 /// Return the number of times the sign bit of the register is replicated into
2733 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2734 /// (itself), but other cases can give us information. For example, immediately
2735 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2736 /// other, so we return 3. For vectors, return the number of sign bits for the
2737 /// vector element with the minimum number of known sign bits of the demanded
2738 /// elements in the vector specified by DemandedElts.
2739 static unsigned ComputeNumSignBitsImpl(const Value *V,
2740                                        const APInt &DemandedElts,
2741                                        unsigned Depth, const Query &Q) {
2742   Type *Ty = V->getType();
2743 
2744   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2745   // vector
2746   if (isa<ScalableVectorType>(Ty))
2747     return 1;
2748 
2749 #ifndef NDEBUG
2750   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2751 
2752   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2753     assert(
2754         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2755         "DemandedElt width should equal the fixed vector number of elements");
2756   } else {
2757     assert(DemandedElts == APInt(1, 1) &&
2758            "DemandedElt width should be 1 for scalars");
2759   }
2760 #endif
2761 
2762   // We return the minimum number of sign bits that are guaranteed to be present
2763   // in V, so for undef we have to conservatively return 1.  We don't have the
2764   // same behavior for poison though -- that's a FIXME today.
2765 
2766   Type *ScalarTy = Ty->getScalarType();
2767   unsigned TyBits = ScalarTy->isPointerTy() ?
2768     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2769     Q.DL.getTypeSizeInBits(ScalarTy);
2770 
2771   unsigned Tmp, Tmp2;
2772   unsigned FirstAnswer = 1;
2773 
2774   // Note that ConstantInt is handled by the general computeKnownBits case
2775   // below.
2776 
2777   if (Depth == MaxAnalysisRecursionDepth)
2778     return 1;
2779 
2780   if (auto *U = dyn_cast<Operator>(V)) {
2781     switch (Operator::getOpcode(V)) {
2782     default: break;
2783     case Instruction::SExt:
2784       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2785       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2786 
2787     case Instruction::SDiv: {
2788       const APInt *Denominator;
2789       // sdiv X, C -> adds log(C) sign bits.
2790       if (match(U->getOperand(1), m_APInt(Denominator))) {
2791 
2792         // Ignore non-positive denominator.
2793         if (!Denominator->isStrictlyPositive())
2794           break;
2795 
2796         // Calculate the incoming numerator bits.
2797         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2798 
2799         // Add floor(log(C)) bits to the numerator bits.
2800         return std::min(TyBits, NumBits + Denominator->logBase2());
2801       }
2802       break;
2803     }
2804 
2805     case Instruction::SRem: {
2806       const APInt *Denominator;
2807       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2808       // positive constant.  This let us put a lower bound on the number of sign
2809       // bits.
2810       if (match(U->getOperand(1), m_APInt(Denominator))) {
2811 
2812         // Ignore non-positive denominator.
2813         if (!Denominator->isStrictlyPositive())
2814           break;
2815 
2816         // Calculate the incoming numerator bits. SRem by a positive constant
2817         // can't lower the number of sign bits.
2818         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2819 
2820         // Calculate the leading sign bit constraints by examining the
2821         // denominator.  Given that the denominator is positive, there are two
2822         // cases:
2823         //
2824         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2825         //     (1 << ceilLogBase2(C)).
2826         //
2827         //  2. the numerator is negative. Then the result range is (-C,0] and
2828         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2829         //
2830         // Thus a lower bound on the number of sign bits is `TyBits -
2831         // ceilLogBase2(C)`.
2832 
2833         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2834         return std::max(NumrBits, ResBits);
2835       }
2836       break;
2837     }
2838 
2839     case Instruction::AShr: {
2840       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2841       // ashr X, C   -> adds C sign bits.  Vectors too.
2842       const APInt *ShAmt;
2843       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2844         if (ShAmt->uge(TyBits))
2845           break; // Bad shift.
2846         unsigned ShAmtLimited = ShAmt->getZExtValue();
2847         Tmp += ShAmtLimited;
2848         if (Tmp > TyBits) Tmp = TyBits;
2849       }
2850       return Tmp;
2851     }
2852     case Instruction::Shl: {
2853       const APInt *ShAmt;
2854       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2855         // shl destroys sign bits.
2856         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2857         if (ShAmt->uge(TyBits) ||   // Bad shift.
2858             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2859         Tmp2 = ShAmt->getZExtValue();
2860         return Tmp - Tmp2;
2861       }
2862       break;
2863     }
2864     case Instruction::And:
2865     case Instruction::Or:
2866     case Instruction::Xor: // NOT is handled here.
2867       // Logical binary ops preserve the number of sign bits at the worst.
2868       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2869       if (Tmp != 1) {
2870         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2871         FirstAnswer = std::min(Tmp, Tmp2);
2872         // We computed what we know about the sign bits as our first
2873         // answer. Now proceed to the generic code that uses
2874         // computeKnownBits, and pick whichever answer is better.
2875       }
2876       break;
2877 
2878     case Instruction::Select: {
2879       // If we have a clamp pattern, we know that the number of sign bits will
2880       // be the minimum of the clamp min/max range.
2881       const Value *X;
2882       const APInt *CLow, *CHigh;
2883       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2884         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2885 
2886       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2887       if (Tmp == 1) break;
2888       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2889       return std::min(Tmp, Tmp2);
2890     }
2891 
2892     case Instruction::Add:
2893       // Add can have at most one carry bit.  Thus we know that the output
2894       // is, at worst, one more bit than the inputs.
2895       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2896       if (Tmp == 1) break;
2897 
2898       // Special case decrementing a value (ADD X, -1):
2899       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2900         if (CRHS->isAllOnesValue()) {
2901           KnownBits Known(TyBits);
2902           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2903 
2904           // If the input is known to be 0 or 1, the output is 0/-1, which is
2905           // all sign bits set.
2906           if ((Known.Zero | 1).isAllOnesValue())
2907             return TyBits;
2908 
2909           // If we are subtracting one from a positive number, there is no carry
2910           // out of the result.
2911           if (Known.isNonNegative())
2912             return Tmp;
2913         }
2914 
2915       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2916       if (Tmp2 == 1) break;
2917       return std::min(Tmp, Tmp2) - 1;
2918 
2919     case Instruction::Sub:
2920       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2921       if (Tmp2 == 1) break;
2922 
2923       // Handle NEG.
2924       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2925         if (CLHS->isNullValue()) {
2926           KnownBits Known(TyBits);
2927           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2928           // If the input is known to be 0 or 1, the output is 0/-1, which is
2929           // all sign bits set.
2930           if ((Known.Zero | 1).isAllOnesValue())
2931             return TyBits;
2932 
2933           // If the input is known to be positive (the sign bit is known clear),
2934           // the output of the NEG has the same number of sign bits as the
2935           // input.
2936           if (Known.isNonNegative())
2937             return Tmp2;
2938 
2939           // Otherwise, we treat this like a SUB.
2940         }
2941 
2942       // Sub can have at most one carry bit.  Thus we know that the output
2943       // is, at worst, one more bit than the inputs.
2944       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2945       if (Tmp == 1) break;
2946       return std::min(Tmp, Tmp2) - 1;
2947 
2948     case Instruction::Mul: {
2949       // The output of the Mul can be at most twice the valid bits in the
2950       // inputs.
2951       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2952       if (SignBitsOp0 == 1) break;
2953       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2954       if (SignBitsOp1 == 1) break;
2955       unsigned OutValidBits =
2956           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2957       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2958     }
2959 
2960     case Instruction::PHI: {
2961       const PHINode *PN = cast<PHINode>(U);
2962       unsigned NumIncomingValues = PN->getNumIncomingValues();
2963       // Don't analyze large in-degree PHIs.
2964       if (NumIncomingValues > 4) break;
2965       // Unreachable blocks may have zero-operand PHI nodes.
2966       if (NumIncomingValues == 0) break;
2967 
2968       // Take the minimum of all incoming values.  This can't infinitely loop
2969       // because of our depth threshold.
2970       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2971       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2972         if (Tmp == 1) return Tmp;
2973         Tmp = std::min(
2974             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2975       }
2976       return Tmp;
2977     }
2978 
2979     case Instruction::Trunc:
2980       // FIXME: it's tricky to do anything useful for this, but it is an
2981       // important case for targets like X86.
2982       break;
2983 
2984     case Instruction::ExtractElement:
2985       // Look through extract element. At the moment we keep this simple and
2986       // skip tracking the specific element. But at least we might find
2987       // information valid for all elements of the vector (for example if vector
2988       // is sign extended, shifted, etc).
2989       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2990 
2991     case Instruction::ShuffleVector: {
2992       // Collect the minimum number of sign bits that are shared by every vector
2993       // element referenced by the shuffle.
2994       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2995       if (!Shuf) {
2996         // FIXME: Add support for shufflevector constant expressions.
2997         return 1;
2998       }
2999       APInt DemandedLHS, DemandedRHS;
3000       // For undef elements, we don't know anything about the common state of
3001       // the shuffle result.
3002       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3003         return 1;
3004       Tmp = std::numeric_limits<unsigned>::max();
3005       if (!!DemandedLHS) {
3006         const Value *LHS = Shuf->getOperand(0);
3007         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3008       }
3009       // If we don't know anything, early out and try computeKnownBits
3010       // fall-back.
3011       if (Tmp == 1)
3012         break;
3013       if (!!DemandedRHS) {
3014         const Value *RHS = Shuf->getOperand(1);
3015         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3016         Tmp = std::min(Tmp, Tmp2);
3017       }
3018       // If we don't know anything, early out and try computeKnownBits
3019       // fall-back.
3020       if (Tmp == 1)
3021         break;
3022       assert(Tmp <= Ty->getScalarSizeInBits() &&
3023              "Failed to determine minimum sign bits");
3024       return Tmp;
3025     }
3026     case Instruction::Call: {
3027       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3028         switch (II->getIntrinsicID()) {
3029         default: break;
3030         case Intrinsic::abs:
3031           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3032           if (Tmp == 1) break;
3033 
3034           // Absolute value reduces number of sign bits by at most 1.
3035           return Tmp - 1;
3036         }
3037       }
3038     }
3039     }
3040   }
3041 
3042   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3043   // use this information.
3044 
3045   // If we can examine all elements of a vector constant successfully, we're
3046   // done (we can't do any better than that). If not, keep trying.
3047   if (unsigned VecSignBits =
3048           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3049     return VecSignBits;
3050 
3051   KnownBits Known(TyBits);
3052   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3053 
3054   // If we know that the sign bit is either zero or one, determine the number of
3055   // identical bits in the top of the input value.
3056   return std::max(FirstAnswer, Known.countMinSignBits());
3057 }
3058 
3059 /// This function computes the integer multiple of Base that equals V.
3060 /// If successful, it returns true and returns the multiple in
3061 /// Multiple. If unsuccessful, it returns false. It looks
3062 /// through SExt instructions only if LookThroughSExt is true.
3063 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3064                            bool LookThroughSExt, unsigned Depth) {
3065   assert(V && "No Value?");
3066   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3067   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3068 
3069   Type *T = V->getType();
3070 
3071   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3072 
3073   if (Base == 0)
3074     return false;
3075 
3076   if (Base == 1) {
3077     Multiple = V;
3078     return true;
3079   }
3080 
3081   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3082   Constant *BaseVal = ConstantInt::get(T, Base);
3083   if (CO && CO == BaseVal) {
3084     // Multiple is 1.
3085     Multiple = ConstantInt::get(T, 1);
3086     return true;
3087   }
3088 
3089   if (CI && CI->getZExtValue() % Base == 0) {
3090     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3091     return true;
3092   }
3093 
3094   if (Depth == MaxAnalysisRecursionDepth) return false;
3095 
3096   Operator *I = dyn_cast<Operator>(V);
3097   if (!I) return false;
3098 
3099   switch (I->getOpcode()) {
3100   default: break;
3101   case Instruction::SExt:
3102     if (!LookThroughSExt) return false;
3103     // otherwise fall through to ZExt
3104     LLVM_FALLTHROUGH;
3105   case Instruction::ZExt:
3106     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3107                            LookThroughSExt, Depth+1);
3108   case Instruction::Shl:
3109   case Instruction::Mul: {
3110     Value *Op0 = I->getOperand(0);
3111     Value *Op1 = I->getOperand(1);
3112 
3113     if (I->getOpcode() == Instruction::Shl) {
3114       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3115       if (!Op1CI) return false;
3116       // Turn Op0 << Op1 into Op0 * 2^Op1
3117       APInt Op1Int = Op1CI->getValue();
3118       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3119       APInt API(Op1Int.getBitWidth(), 0);
3120       API.setBit(BitToSet);
3121       Op1 = ConstantInt::get(V->getContext(), API);
3122     }
3123 
3124     Value *Mul0 = nullptr;
3125     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3126       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3127         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3128           if (Op1C->getType()->getPrimitiveSizeInBits() <
3129               MulC->getType()->getPrimitiveSizeInBits())
3130             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3131           if (Op1C->getType()->getPrimitiveSizeInBits() >
3132               MulC->getType()->getPrimitiveSizeInBits())
3133             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3134 
3135           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3136           Multiple = ConstantExpr::getMul(MulC, Op1C);
3137           return true;
3138         }
3139 
3140       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3141         if (Mul0CI->getValue() == 1) {
3142           // V == Base * Op1, so return Op1
3143           Multiple = Op1;
3144           return true;
3145         }
3146     }
3147 
3148     Value *Mul1 = nullptr;
3149     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3150       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3151         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3152           if (Op0C->getType()->getPrimitiveSizeInBits() <
3153               MulC->getType()->getPrimitiveSizeInBits())
3154             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3155           if (Op0C->getType()->getPrimitiveSizeInBits() >
3156               MulC->getType()->getPrimitiveSizeInBits())
3157             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3158 
3159           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3160           Multiple = ConstantExpr::getMul(MulC, Op0C);
3161           return true;
3162         }
3163 
3164       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3165         if (Mul1CI->getValue() == 1) {
3166           // V == Base * Op0, so return Op0
3167           Multiple = Op0;
3168           return true;
3169         }
3170     }
3171   }
3172   }
3173 
3174   // We could not determine if V is a multiple of Base.
3175   return false;
3176 }
3177 
3178 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3179                                             const TargetLibraryInfo *TLI) {
3180   const Function *F = CB.getCalledFunction();
3181   if (!F)
3182     return Intrinsic::not_intrinsic;
3183 
3184   if (F->isIntrinsic())
3185     return F->getIntrinsicID();
3186 
3187   // We are going to infer semantics of a library function based on mapping it
3188   // to an LLVM intrinsic. Check that the library function is available from
3189   // this callbase and in this environment.
3190   LibFunc Func;
3191   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3192       !CB.onlyReadsMemory())
3193     return Intrinsic::not_intrinsic;
3194 
3195   switch (Func) {
3196   default:
3197     break;
3198   case LibFunc_sin:
3199   case LibFunc_sinf:
3200   case LibFunc_sinl:
3201     return Intrinsic::sin;
3202   case LibFunc_cos:
3203   case LibFunc_cosf:
3204   case LibFunc_cosl:
3205     return Intrinsic::cos;
3206   case LibFunc_exp:
3207   case LibFunc_expf:
3208   case LibFunc_expl:
3209     return Intrinsic::exp;
3210   case LibFunc_exp2:
3211   case LibFunc_exp2f:
3212   case LibFunc_exp2l:
3213     return Intrinsic::exp2;
3214   case LibFunc_log:
3215   case LibFunc_logf:
3216   case LibFunc_logl:
3217     return Intrinsic::log;
3218   case LibFunc_log10:
3219   case LibFunc_log10f:
3220   case LibFunc_log10l:
3221     return Intrinsic::log10;
3222   case LibFunc_log2:
3223   case LibFunc_log2f:
3224   case LibFunc_log2l:
3225     return Intrinsic::log2;
3226   case LibFunc_fabs:
3227   case LibFunc_fabsf:
3228   case LibFunc_fabsl:
3229     return Intrinsic::fabs;
3230   case LibFunc_fmin:
3231   case LibFunc_fminf:
3232   case LibFunc_fminl:
3233     return Intrinsic::minnum;
3234   case LibFunc_fmax:
3235   case LibFunc_fmaxf:
3236   case LibFunc_fmaxl:
3237     return Intrinsic::maxnum;
3238   case LibFunc_copysign:
3239   case LibFunc_copysignf:
3240   case LibFunc_copysignl:
3241     return Intrinsic::copysign;
3242   case LibFunc_floor:
3243   case LibFunc_floorf:
3244   case LibFunc_floorl:
3245     return Intrinsic::floor;
3246   case LibFunc_ceil:
3247   case LibFunc_ceilf:
3248   case LibFunc_ceill:
3249     return Intrinsic::ceil;
3250   case LibFunc_trunc:
3251   case LibFunc_truncf:
3252   case LibFunc_truncl:
3253     return Intrinsic::trunc;
3254   case LibFunc_rint:
3255   case LibFunc_rintf:
3256   case LibFunc_rintl:
3257     return Intrinsic::rint;
3258   case LibFunc_nearbyint:
3259   case LibFunc_nearbyintf:
3260   case LibFunc_nearbyintl:
3261     return Intrinsic::nearbyint;
3262   case LibFunc_round:
3263   case LibFunc_roundf:
3264   case LibFunc_roundl:
3265     return Intrinsic::round;
3266   case LibFunc_roundeven:
3267   case LibFunc_roundevenf:
3268   case LibFunc_roundevenl:
3269     return Intrinsic::roundeven;
3270   case LibFunc_pow:
3271   case LibFunc_powf:
3272   case LibFunc_powl:
3273     return Intrinsic::pow;
3274   case LibFunc_sqrt:
3275   case LibFunc_sqrtf:
3276   case LibFunc_sqrtl:
3277     return Intrinsic::sqrt;
3278   }
3279 
3280   return Intrinsic::not_intrinsic;
3281 }
3282 
3283 /// Return true if we can prove that the specified FP value is never equal to
3284 /// -0.0.
3285 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3286 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3287 ///       the same as +0.0 in floating-point ops.
3288 ///
3289 /// NOTE: this function will need to be revisited when we support non-default
3290 /// rounding modes!
3291 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3292                                 unsigned Depth) {
3293   if (auto *CFP = dyn_cast<ConstantFP>(V))
3294     return !CFP->getValueAPF().isNegZero();
3295 
3296   if (Depth == MaxAnalysisRecursionDepth)
3297     return false;
3298 
3299   auto *Op = dyn_cast<Operator>(V);
3300   if (!Op)
3301     return false;
3302 
3303   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3304   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3305     return true;
3306 
3307   // sitofp and uitofp turn into +0.0 for zero.
3308   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3309     return true;
3310 
3311   if (auto *Call = dyn_cast<CallInst>(Op)) {
3312     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3313     switch (IID) {
3314     default:
3315       break;
3316     // sqrt(-0.0) = -0.0, no other negative results are possible.
3317     case Intrinsic::sqrt:
3318     case Intrinsic::canonicalize:
3319       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3320     // fabs(x) != -0.0
3321     case Intrinsic::fabs:
3322       return true;
3323     }
3324   }
3325 
3326   return false;
3327 }
3328 
3329 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3330 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3331 /// bit despite comparing equal.
3332 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3333                                             const TargetLibraryInfo *TLI,
3334                                             bool SignBitOnly,
3335                                             unsigned Depth) {
3336   // TODO: This function does not do the right thing when SignBitOnly is true
3337   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3338   // which flips the sign bits of NaNs.  See
3339   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3340 
3341   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3342     return !CFP->getValueAPF().isNegative() ||
3343            (!SignBitOnly && CFP->getValueAPF().isZero());
3344   }
3345 
3346   // Handle vector of constants.
3347   if (auto *CV = dyn_cast<Constant>(V)) {
3348     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3349       unsigned NumElts = CVFVTy->getNumElements();
3350       for (unsigned i = 0; i != NumElts; ++i) {
3351         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3352         if (!CFP)
3353           return false;
3354         if (CFP->getValueAPF().isNegative() &&
3355             (SignBitOnly || !CFP->getValueAPF().isZero()))
3356           return false;
3357       }
3358 
3359       // All non-negative ConstantFPs.
3360       return true;
3361     }
3362   }
3363 
3364   if (Depth == MaxAnalysisRecursionDepth)
3365     return false;
3366 
3367   const Operator *I = dyn_cast<Operator>(V);
3368   if (!I)
3369     return false;
3370 
3371   switch (I->getOpcode()) {
3372   default:
3373     break;
3374   // Unsigned integers are always nonnegative.
3375   case Instruction::UIToFP:
3376     return true;
3377   case Instruction::FMul:
3378   case Instruction::FDiv:
3379     // X * X is always non-negative or a NaN.
3380     // X / X is always exactly 1.0 or a NaN.
3381     if (I->getOperand(0) == I->getOperand(1) &&
3382         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3383       return true;
3384 
3385     LLVM_FALLTHROUGH;
3386   case Instruction::FAdd:
3387   case Instruction::FRem:
3388     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3389                                            Depth + 1) &&
3390            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3391                                            Depth + 1);
3392   case Instruction::Select:
3393     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3394                                            Depth + 1) &&
3395            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3396                                            Depth + 1);
3397   case Instruction::FPExt:
3398   case Instruction::FPTrunc:
3399     // Widening/narrowing never change sign.
3400     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3401                                            Depth + 1);
3402   case Instruction::ExtractElement:
3403     // Look through extract element. At the moment we keep this simple and skip
3404     // tracking the specific element. But at least we might find information
3405     // valid for all elements of the vector.
3406     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3407                                            Depth + 1);
3408   case Instruction::Call:
3409     const auto *CI = cast<CallInst>(I);
3410     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3411     switch (IID) {
3412     default:
3413       break;
3414     case Intrinsic::maxnum: {
3415       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3416       auto isPositiveNum = [&](Value *V) {
3417         if (SignBitOnly) {
3418           // With SignBitOnly, this is tricky because the result of
3419           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3420           // a constant strictly greater than 0.0.
3421           const APFloat *C;
3422           return match(V, m_APFloat(C)) &&
3423                  *C > APFloat::getZero(C->getSemantics());
3424         }
3425 
3426         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3427         // maxnum can't be ordered-less-than-zero.
3428         return isKnownNeverNaN(V, TLI) &&
3429                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3430       };
3431 
3432       // TODO: This could be improved. We could also check that neither operand
3433       //       has its sign bit set (and at least 1 is not-NAN?).
3434       return isPositiveNum(V0) || isPositiveNum(V1);
3435     }
3436 
3437     case Intrinsic::maximum:
3438       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3439                                              Depth + 1) ||
3440              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3441                                              Depth + 1);
3442     case Intrinsic::minnum:
3443     case Intrinsic::minimum:
3444       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3445                                              Depth + 1) &&
3446              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3447                                              Depth + 1);
3448     case Intrinsic::exp:
3449     case Intrinsic::exp2:
3450     case Intrinsic::fabs:
3451       return true;
3452 
3453     case Intrinsic::sqrt:
3454       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3455       if (!SignBitOnly)
3456         return true;
3457       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3458                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3459 
3460     case Intrinsic::powi:
3461       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3462         // powi(x,n) is non-negative if n is even.
3463         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3464           return true;
3465       }
3466       // TODO: This is not correct.  Given that exp is an integer, here are the
3467       // ways that pow can return a negative value:
3468       //
3469       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3470       //   pow(-0, exp)   --> -inf if exp is negative odd.
3471       //   pow(-0, exp)   --> -0 if exp is positive odd.
3472       //   pow(-inf, exp) --> -0 if exp is negative odd.
3473       //   pow(-inf, exp) --> -inf if exp is positive odd.
3474       //
3475       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3476       // but we must return false if x == -0.  Unfortunately we do not currently
3477       // have a way of expressing this constraint.  See details in
3478       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3479       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3480                                              Depth + 1);
3481 
3482     case Intrinsic::fma:
3483     case Intrinsic::fmuladd:
3484       // x*x+y is non-negative if y is non-negative.
3485       return I->getOperand(0) == I->getOperand(1) &&
3486              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3487              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3488                                              Depth + 1);
3489     }
3490     break;
3491   }
3492   return false;
3493 }
3494 
3495 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3496                                        const TargetLibraryInfo *TLI) {
3497   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3498 }
3499 
3500 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3501   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3502 }
3503 
3504 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3505                                 unsigned Depth) {
3506   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3507 
3508   // If we're told that infinities won't happen, assume they won't.
3509   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3510     if (FPMathOp->hasNoInfs())
3511       return true;
3512 
3513   // Handle scalar constants.
3514   if (auto *CFP = dyn_cast<ConstantFP>(V))
3515     return !CFP->isInfinity();
3516 
3517   if (Depth == MaxAnalysisRecursionDepth)
3518     return false;
3519 
3520   if (auto *Inst = dyn_cast<Instruction>(V)) {
3521     switch (Inst->getOpcode()) {
3522     case Instruction::Select: {
3523       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3524              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3525     }
3526     case Instruction::UIToFP:
3527       // If the input type fits into the floating type the result is finite.
3528       return ilogb(APFloat::getLargest(
3529                  Inst->getType()->getScalarType()->getFltSemantics())) >=
3530              (int)Inst->getOperand(0)->getType()->getScalarSizeInBits();
3531     default:
3532       break;
3533     }
3534   }
3535 
3536   // try to handle fixed width vector constants
3537   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3538   if (VFVTy && isa<Constant>(V)) {
3539     // For vectors, verify that each element is not infinity.
3540     unsigned NumElts = VFVTy->getNumElements();
3541     for (unsigned i = 0; i != NumElts; ++i) {
3542       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3543       if (!Elt)
3544         return false;
3545       if (isa<UndefValue>(Elt))
3546         continue;
3547       auto *CElt = dyn_cast<ConstantFP>(Elt);
3548       if (!CElt || CElt->isInfinity())
3549         return false;
3550     }
3551     // All elements were confirmed non-infinity or undefined.
3552     return true;
3553   }
3554 
3555   // was not able to prove that V never contains infinity
3556   return false;
3557 }
3558 
3559 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3560                            unsigned Depth) {
3561   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3562 
3563   // If we're told that NaNs won't happen, assume they won't.
3564   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3565     if (FPMathOp->hasNoNaNs())
3566       return true;
3567 
3568   // Handle scalar constants.
3569   if (auto *CFP = dyn_cast<ConstantFP>(V))
3570     return !CFP->isNaN();
3571 
3572   if (Depth == MaxAnalysisRecursionDepth)
3573     return false;
3574 
3575   if (auto *Inst = dyn_cast<Instruction>(V)) {
3576     switch (Inst->getOpcode()) {
3577     case Instruction::FAdd:
3578     case Instruction::FSub:
3579       // Adding positive and negative infinity produces NaN.
3580       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3581              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3582              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3583               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3584 
3585     case Instruction::FMul:
3586       // Zero multiplied with infinity produces NaN.
3587       // FIXME: If neither side can be zero fmul never produces NaN.
3588       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3589              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3590              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3591              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3592 
3593     case Instruction::FDiv:
3594     case Instruction::FRem:
3595       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3596       return false;
3597 
3598     case Instruction::Select: {
3599       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3600              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3601     }
3602     case Instruction::SIToFP:
3603     case Instruction::UIToFP:
3604       return true;
3605     case Instruction::FPTrunc:
3606     case Instruction::FPExt:
3607       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3608     default:
3609       break;
3610     }
3611   }
3612 
3613   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3614     switch (II->getIntrinsicID()) {
3615     case Intrinsic::canonicalize:
3616     case Intrinsic::fabs:
3617     case Intrinsic::copysign:
3618     case Intrinsic::exp:
3619     case Intrinsic::exp2:
3620     case Intrinsic::floor:
3621     case Intrinsic::ceil:
3622     case Intrinsic::trunc:
3623     case Intrinsic::rint:
3624     case Intrinsic::nearbyint:
3625     case Intrinsic::round:
3626     case Intrinsic::roundeven:
3627       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3628     case Intrinsic::sqrt:
3629       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3630              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3631     case Intrinsic::minnum:
3632     case Intrinsic::maxnum:
3633       // If either operand is not NaN, the result is not NaN.
3634       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3635              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3636     default:
3637       return false;
3638     }
3639   }
3640 
3641   // Try to handle fixed width vector constants
3642   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3643   if (VFVTy && isa<Constant>(V)) {
3644     // For vectors, verify that each element is not NaN.
3645     unsigned NumElts = VFVTy->getNumElements();
3646     for (unsigned i = 0; i != NumElts; ++i) {
3647       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3648       if (!Elt)
3649         return false;
3650       if (isa<UndefValue>(Elt))
3651         continue;
3652       auto *CElt = dyn_cast<ConstantFP>(Elt);
3653       if (!CElt || CElt->isNaN())
3654         return false;
3655     }
3656     // All elements were confirmed not-NaN or undefined.
3657     return true;
3658   }
3659 
3660   // Was not able to prove that V never contains NaN
3661   return false;
3662 }
3663 
3664 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3665 
3666   // All byte-wide stores are splatable, even of arbitrary variables.
3667   if (V->getType()->isIntegerTy(8))
3668     return V;
3669 
3670   LLVMContext &Ctx = V->getContext();
3671 
3672   // Undef don't care.
3673   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3674   if (isa<UndefValue>(V))
3675     return UndefInt8;
3676 
3677   // Return Undef for zero-sized type.
3678   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3679     return UndefInt8;
3680 
3681   Constant *C = dyn_cast<Constant>(V);
3682   if (!C) {
3683     // Conceptually, we could handle things like:
3684     //   %a = zext i8 %X to i16
3685     //   %b = shl i16 %a, 8
3686     //   %c = or i16 %a, %b
3687     // but until there is an example that actually needs this, it doesn't seem
3688     // worth worrying about.
3689     return nullptr;
3690   }
3691 
3692   // Handle 'null' ConstantArrayZero etc.
3693   if (C->isNullValue())
3694     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3695 
3696   // Constant floating-point values can be handled as integer values if the
3697   // corresponding integer value is "byteable".  An important case is 0.0.
3698   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3699     Type *Ty = nullptr;
3700     if (CFP->getType()->isHalfTy())
3701       Ty = Type::getInt16Ty(Ctx);
3702     else if (CFP->getType()->isFloatTy())
3703       Ty = Type::getInt32Ty(Ctx);
3704     else if (CFP->getType()->isDoubleTy())
3705       Ty = Type::getInt64Ty(Ctx);
3706     // Don't handle long double formats, which have strange constraints.
3707     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3708               : nullptr;
3709   }
3710 
3711   // We can handle constant integers that are multiple of 8 bits.
3712   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3713     if (CI->getBitWidth() % 8 == 0) {
3714       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3715       if (!CI->getValue().isSplat(8))
3716         return nullptr;
3717       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3718     }
3719   }
3720 
3721   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3722     if (CE->getOpcode() == Instruction::IntToPtr) {
3723       auto PS = DL.getPointerSizeInBits(
3724           cast<PointerType>(CE->getType())->getAddressSpace());
3725       return isBytewiseValue(
3726           ConstantExpr::getIntegerCast(CE->getOperand(0),
3727                                        Type::getIntNTy(Ctx, PS), false),
3728           DL);
3729     }
3730   }
3731 
3732   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3733     if (LHS == RHS)
3734       return LHS;
3735     if (!LHS || !RHS)
3736       return nullptr;
3737     if (LHS == UndefInt8)
3738       return RHS;
3739     if (RHS == UndefInt8)
3740       return LHS;
3741     return nullptr;
3742   };
3743 
3744   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3745     Value *Val = UndefInt8;
3746     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3747       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3748         return nullptr;
3749     return Val;
3750   }
3751 
3752   if (isa<ConstantAggregate>(C)) {
3753     Value *Val = UndefInt8;
3754     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3755       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3756         return nullptr;
3757     return Val;
3758   }
3759 
3760   // Don't try to handle the handful of other constants.
3761   return nullptr;
3762 }
3763 
3764 // This is the recursive version of BuildSubAggregate. It takes a few different
3765 // arguments. Idxs is the index within the nested struct From that we are
3766 // looking at now (which is of type IndexedType). IdxSkip is the number of
3767 // indices from Idxs that should be left out when inserting into the resulting
3768 // struct. To is the result struct built so far, new insertvalue instructions
3769 // build on that.
3770 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3771                                 SmallVectorImpl<unsigned> &Idxs,
3772                                 unsigned IdxSkip,
3773                                 Instruction *InsertBefore) {
3774   StructType *STy = dyn_cast<StructType>(IndexedType);
3775   if (STy) {
3776     // Save the original To argument so we can modify it
3777     Value *OrigTo = To;
3778     // General case, the type indexed by Idxs is a struct
3779     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3780       // Process each struct element recursively
3781       Idxs.push_back(i);
3782       Value *PrevTo = To;
3783       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3784                              InsertBefore);
3785       Idxs.pop_back();
3786       if (!To) {
3787         // Couldn't find any inserted value for this index? Cleanup
3788         while (PrevTo != OrigTo) {
3789           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3790           PrevTo = Del->getAggregateOperand();
3791           Del->eraseFromParent();
3792         }
3793         // Stop processing elements
3794         break;
3795       }
3796     }
3797     // If we successfully found a value for each of our subaggregates
3798     if (To)
3799       return To;
3800   }
3801   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3802   // the struct's elements had a value that was inserted directly. In the latter
3803   // case, perhaps we can't determine each of the subelements individually, but
3804   // we might be able to find the complete struct somewhere.
3805 
3806   // Find the value that is at that particular spot
3807   Value *V = FindInsertedValue(From, Idxs);
3808 
3809   if (!V)
3810     return nullptr;
3811 
3812   // Insert the value in the new (sub) aggregate
3813   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3814                                  "tmp", InsertBefore);
3815 }
3816 
3817 // This helper takes a nested struct and extracts a part of it (which is again a
3818 // struct) into a new value. For example, given the struct:
3819 // { a, { b, { c, d }, e } }
3820 // and the indices "1, 1" this returns
3821 // { c, d }.
3822 //
3823 // It does this by inserting an insertvalue for each element in the resulting
3824 // struct, as opposed to just inserting a single struct. This will only work if
3825 // each of the elements of the substruct are known (ie, inserted into From by an
3826 // insertvalue instruction somewhere).
3827 //
3828 // All inserted insertvalue instructions are inserted before InsertBefore
3829 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3830                                 Instruction *InsertBefore) {
3831   assert(InsertBefore && "Must have someplace to insert!");
3832   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3833                                                              idx_range);
3834   Value *To = UndefValue::get(IndexedType);
3835   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3836   unsigned IdxSkip = Idxs.size();
3837 
3838   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3839 }
3840 
3841 /// Given an aggregate and a sequence of indices, see if the scalar value
3842 /// indexed is already around as a register, for example if it was inserted
3843 /// directly into the aggregate.
3844 ///
3845 /// If InsertBefore is not null, this function will duplicate (modified)
3846 /// insertvalues when a part of a nested struct is extracted.
3847 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3848                                Instruction *InsertBefore) {
3849   // Nothing to index? Just return V then (this is useful at the end of our
3850   // recursion).
3851   if (idx_range.empty())
3852     return V;
3853   // We have indices, so V should have an indexable type.
3854   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3855          "Not looking at a struct or array?");
3856   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3857          "Invalid indices for type?");
3858 
3859   if (Constant *C = dyn_cast<Constant>(V)) {
3860     C = C->getAggregateElement(idx_range[0]);
3861     if (!C) return nullptr;
3862     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3863   }
3864 
3865   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3866     // Loop the indices for the insertvalue instruction in parallel with the
3867     // requested indices
3868     const unsigned *req_idx = idx_range.begin();
3869     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3870          i != e; ++i, ++req_idx) {
3871       if (req_idx == idx_range.end()) {
3872         // We can't handle this without inserting insertvalues
3873         if (!InsertBefore)
3874           return nullptr;
3875 
3876         // The requested index identifies a part of a nested aggregate. Handle
3877         // this specially. For example,
3878         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3879         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3880         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3881         // This can be changed into
3882         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3883         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3884         // which allows the unused 0,0 element from the nested struct to be
3885         // removed.
3886         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3887                                  InsertBefore);
3888       }
3889 
3890       // This insert value inserts something else than what we are looking for.
3891       // See if the (aggregate) value inserted into has the value we are
3892       // looking for, then.
3893       if (*req_idx != *i)
3894         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3895                                  InsertBefore);
3896     }
3897     // If we end up here, the indices of the insertvalue match with those
3898     // requested (though possibly only partially). Now we recursively look at
3899     // the inserted value, passing any remaining indices.
3900     return FindInsertedValue(I->getInsertedValueOperand(),
3901                              makeArrayRef(req_idx, idx_range.end()),
3902                              InsertBefore);
3903   }
3904 
3905   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3906     // If we're extracting a value from an aggregate that was extracted from
3907     // something else, we can extract from that something else directly instead.
3908     // However, we will need to chain I's indices with the requested indices.
3909 
3910     // Calculate the number of indices required
3911     unsigned size = I->getNumIndices() + idx_range.size();
3912     // Allocate some space to put the new indices in
3913     SmallVector<unsigned, 5> Idxs;
3914     Idxs.reserve(size);
3915     // Add indices from the extract value instruction
3916     Idxs.append(I->idx_begin(), I->idx_end());
3917 
3918     // Add requested indices
3919     Idxs.append(idx_range.begin(), idx_range.end());
3920 
3921     assert(Idxs.size() == size
3922            && "Number of indices added not correct?");
3923 
3924     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3925   }
3926   // Otherwise, we don't know (such as, extracting from a function return value
3927   // or load instruction)
3928   return nullptr;
3929 }
3930 
3931 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3932                                        unsigned CharSize) {
3933   // Make sure the GEP has exactly three arguments.
3934   if (GEP->getNumOperands() != 3)
3935     return false;
3936 
3937   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3938   // CharSize.
3939   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3940   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3941     return false;
3942 
3943   // Check to make sure that the first operand of the GEP is an integer and
3944   // has value 0 so that we are sure we're indexing into the initializer.
3945   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3946   if (!FirstIdx || !FirstIdx->isZero())
3947     return false;
3948 
3949   return true;
3950 }
3951 
3952 bool llvm::getConstantDataArrayInfo(const Value *V,
3953                                     ConstantDataArraySlice &Slice,
3954                                     unsigned ElementSize, uint64_t Offset) {
3955   assert(V);
3956 
3957   // Look through bitcast instructions and geps.
3958   V = V->stripPointerCasts();
3959 
3960   // If the value is a GEP instruction or constant expression, treat it as an
3961   // offset.
3962   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3963     // The GEP operator should be based on a pointer to string constant, and is
3964     // indexing into the string constant.
3965     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3966       return false;
3967 
3968     // If the second index isn't a ConstantInt, then this is a variable index
3969     // into the array.  If this occurs, we can't say anything meaningful about
3970     // the string.
3971     uint64_t StartIdx = 0;
3972     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3973       StartIdx = CI->getZExtValue();
3974     else
3975       return false;
3976     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3977                                     StartIdx + Offset);
3978   }
3979 
3980   // The GEP instruction, constant or instruction, must reference a global
3981   // variable that is a constant and is initialized. The referenced constant
3982   // initializer is the array that we'll use for optimization.
3983   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3984   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3985     return false;
3986 
3987   const ConstantDataArray *Array;
3988   ArrayType *ArrayTy;
3989   if (GV->getInitializer()->isNullValue()) {
3990     Type *GVTy = GV->getValueType();
3991     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3992       // A zeroinitializer for the array; there is no ConstantDataArray.
3993       Array = nullptr;
3994     } else {
3995       const DataLayout &DL = GV->getParent()->getDataLayout();
3996       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3997       uint64_t Length = SizeInBytes / (ElementSize / 8);
3998       if (Length <= Offset)
3999         return false;
4000 
4001       Slice.Array = nullptr;
4002       Slice.Offset = 0;
4003       Slice.Length = Length - Offset;
4004       return true;
4005     }
4006   } else {
4007     // This must be a ConstantDataArray.
4008     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4009     if (!Array)
4010       return false;
4011     ArrayTy = Array->getType();
4012   }
4013   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4014     return false;
4015 
4016   uint64_t NumElts = ArrayTy->getArrayNumElements();
4017   if (Offset > NumElts)
4018     return false;
4019 
4020   Slice.Array = Array;
4021   Slice.Offset = Offset;
4022   Slice.Length = NumElts - Offset;
4023   return true;
4024 }
4025 
4026 /// This function computes the length of a null-terminated C string pointed to
4027 /// by V. If successful, it returns true and returns the string in Str.
4028 /// If unsuccessful, it returns false.
4029 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4030                                  uint64_t Offset, bool TrimAtNul) {
4031   ConstantDataArraySlice Slice;
4032   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4033     return false;
4034 
4035   if (Slice.Array == nullptr) {
4036     if (TrimAtNul) {
4037       Str = StringRef();
4038       return true;
4039     }
4040     if (Slice.Length == 1) {
4041       Str = StringRef("", 1);
4042       return true;
4043     }
4044     // We cannot instantiate a StringRef as we do not have an appropriate string
4045     // of 0s at hand.
4046     return false;
4047   }
4048 
4049   // Start out with the entire array in the StringRef.
4050   Str = Slice.Array->getAsString();
4051   // Skip over 'offset' bytes.
4052   Str = Str.substr(Slice.Offset);
4053 
4054   if (TrimAtNul) {
4055     // Trim off the \0 and anything after it.  If the array is not nul
4056     // terminated, we just return the whole end of string.  The client may know
4057     // some other way that the string is length-bound.
4058     Str = Str.substr(0, Str.find('\0'));
4059   }
4060   return true;
4061 }
4062 
4063 // These next two are very similar to the above, but also look through PHI
4064 // nodes.
4065 // TODO: See if we can integrate these two together.
4066 
4067 /// If we can compute the length of the string pointed to by
4068 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4069 static uint64_t GetStringLengthH(const Value *V,
4070                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4071                                  unsigned CharSize) {
4072   // Look through noop bitcast instructions.
4073   V = V->stripPointerCasts();
4074 
4075   // If this is a PHI node, there are two cases: either we have already seen it
4076   // or we haven't.
4077   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4078     if (!PHIs.insert(PN).second)
4079       return ~0ULL;  // already in the set.
4080 
4081     // If it was new, see if all the input strings are the same length.
4082     uint64_t LenSoFar = ~0ULL;
4083     for (Value *IncValue : PN->incoming_values()) {
4084       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4085       if (Len == 0) return 0; // Unknown length -> unknown.
4086 
4087       if (Len == ~0ULL) continue;
4088 
4089       if (Len != LenSoFar && LenSoFar != ~0ULL)
4090         return 0;    // Disagree -> unknown.
4091       LenSoFar = Len;
4092     }
4093 
4094     // Success, all agree.
4095     return LenSoFar;
4096   }
4097 
4098   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4099   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4100     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4101     if (Len1 == 0) return 0;
4102     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4103     if (Len2 == 0) return 0;
4104     if (Len1 == ~0ULL) return Len2;
4105     if (Len2 == ~0ULL) return Len1;
4106     if (Len1 != Len2) return 0;
4107     return Len1;
4108   }
4109 
4110   // Otherwise, see if we can read the string.
4111   ConstantDataArraySlice Slice;
4112   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4113     return 0;
4114 
4115   if (Slice.Array == nullptr)
4116     return 1;
4117 
4118   // Search for nul characters
4119   unsigned NullIndex = 0;
4120   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4121     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4122       break;
4123   }
4124 
4125   return NullIndex + 1;
4126 }
4127 
4128 /// If we can compute the length of the string pointed to by
4129 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4130 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4131   if (!V->getType()->isPointerTy())
4132     return 0;
4133 
4134   SmallPtrSet<const PHINode*, 32> PHIs;
4135   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4136   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4137   // an empty string as a length.
4138   return Len == ~0ULL ? 1 : Len;
4139 }
4140 
4141 const Value *
4142 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4143                                            bool MustPreserveNullness) {
4144   assert(Call &&
4145          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4146   if (const Value *RV = Call->getReturnedArgOperand())
4147     return RV;
4148   // This can be used only as a aliasing property.
4149   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4150           Call, MustPreserveNullness))
4151     return Call->getArgOperand(0);
4152   return nullptr;
4153 }
4154 
4155 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4156     const CallBase *Call, bool MustPreserveNullness) {
4157   switch (Call->getIntrinsicID()) {
4158   case Intrinsic::launder_invariant_group:
4159   case Intrinsic::strip_invariant_group:
4160   case Intrinsic::aarch64_irg:
4161   case Intrinsic::aarch64_tagp:
4162     return true;
4163   case Intrinsic::ptrmask:
4164     return !MustPreserveNullness;
4165   default:
4166     return false;
4167   }
4168 }
4169 
4170 /// \p PN defines a loop-variant pointer to an object.  Check if the
4171 /// previous iteration of the loop was referring to the same object as \p PN.
4172 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4173                                          const LoopInfo *LI) {
4174   // Find the loop-defined value.
4175   Loop *L = LI->getLoopFor(PN->getParent());
4176   if (PN->getNumIncomingValues() != 2)
4177     return true;
4178 
4179   // Find the value from previous iteration.
4180   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4181   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4182     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4183   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4184     return true;
4185 
4186   // If a new pointer is loaded in the loop, the pointer references a different
4187   // object in every iteration.  E.g.:
4188   //    for (i)
4189   //       int *p = a[i];
4190   //       ...
4191   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4192     if (!L->isLoopInvariant(Load->getPointerOperand()))
4193       return false;
4194   return true;
4195 }
4196 
4197 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4198   if (!V->getType()->isPointerTy())
4199     return V;
4200   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4201     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4202       V = GEP->getPointerOperand();
4203     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4204                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4205       V = cast<Operator>(V)->getOperand(0);
4206       if (!V->getType()->isPointerTy())
4207         return V;
4208     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4209       if (GA->isInterposable())
4210         return V;
4211       V = GA->getAliasee();
4212     } else {
4213       if (auto *PHI = dyn_cast<PHINode>(V)) {
4214         // Look through single-arg phi nodes created by LCSSA.
4215         if (PHI->getNumIncomingValues() == 1) {
4216           V = PHI->getIncomingValue(0);
4217           continue;
4218         }
4219       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4220         // CaptureTracking can know about special capturing properties of some
4221         // intrinsics like launder.invariant.group, that can't be expressed with
4222         // the attributes, but have properties like returning aliasing pointer.
4223         // Because some analysis may assume that nocaptured pointer is not
4224         // returned from some special intrinsic (because function would have to
4225         // be marked with returns attribute), it is crucial to use this function
4226         // because it should be in sync with CaptureTracking. Not using it may
4227         // cause weird miscompilations where 2 aliasing pointers are assumed to
4228         // noalias.
4229         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4230           V = RP;
4231           continue;
4232         }
4233       }
4234 
4235       return V;
4236     }
4237     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4238   }
4239   return V;
4240 }
4241 
4242 void llvm::getUnderlyingObjects(const Value *V,
4243                                 SmallVectorImpl<const Value *> &Objects,
4244                                 LoopInfo *LI, unsigned MaxLookup) {
4245   SmallPtrSet<const Value *, 4> Visited;
4246   SmallVector<const Value *, 4> Worklist;
4247   Worklist.push_back(V);
4248   do {
4249     const Value *P = Worklist.pop_back_val();
4250     P = getUnderlyingObject(P, MaxLookup);
4251 
4252     if (!Visited.insert(P).second)
4253       continue;
4254 
4255     if (auto *SI = dyn_cast<SelectInst>(P)) {
4256       Worklist.push_back(SI->getTrueValue());
4257       Worklist.push_back(SI->getFalseValue());
4258       continue;
4259     }
4260 
4261     if (auto *PN = dyn_cast<PHINode>(P)) {
4262       // If this PHI changes the underlying object in every iteration of the
4263       // loop, don't look through it.  Consider:
4264       //   int **A;
4265       //   for (i) {
4266       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4267       //     Curr = A[i];
4268       //     *Prev, *Curr;
4269       //
4270       // Prev is tracking Curr one iteration behind so they refer to different
4271       // underlying objects.
4272       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4273           isSameUnderlyingObjectInLoop(PN, LI))
4274         for (Value *IncValue : PN->incoming_values())
4275           Worklist.push_back(IncValue);
4276       continue;
4277     }
4278 
4279     Objects.push_back(P);
4280   } while (!Worklist.empty());
4281 }
4282 
4283 /// This is the function that does the work of looking through basic
4284 /// ptrtoint+arithmetic+inttoptr sequences.
4285 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4286   do {
4287     if (const Operator *U = dyn_cast<Operator>(V)) {
4288       // If we find a ptrtoint, we can transfer control back to the
4289       // regular getUnderlyingObjectFromInt.
4290       if (U->getOpcode() == Instruction::PtrToInt)
4291         return U->getOperand(0);
4292       // If we find an add of a constant, a multiplied value, or a phi, it's
4293       // likely that the other operand will lead us to the base
4294       // object. We don't have to worry about the case where the
4295       // object address is somehow being computed by the multiply,
4296       // because our callers only care when the result is an
4297       // identifiable object.
4298       if (U->getOpcode() != Instruction::Add ||
4299           (!isa<ConstantInt>(U->getOperand(1)) &&
4300            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4301            !isa<PHINode>(U->getOperand(1))))
4302         return V;
4303       V = U->getOperand(0);
4304     } else {
4305       return V;
4306     }
4307     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4308   } while (true);
4309 }
4310 
4311 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4312 /// ptrtoint+arithmetic+inttoptr sequences.
4313 /// It returns false if unidentified object is found in getUnderlyingObjects.
4314 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4315                                           SmallVectorImpl<Value *> &Objects) {
4316   SmallPtrSet<const Value *, 16> Visited;
4317   SmallVector<const Value *, 4> Working(1, V);
4318   do {
4319     V = Working.pop_back_val();
4320 
4321     SmallVector<const Value *, 4> Objs;
4322     getUnderlyingObjects(V, Objs);
4323 
4324     for (const Value *V : Objs) {
4325       if (!Visited.insert(V).second)
4326         continue;
4327       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4328         const Value *O =
4329           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4330         if (O->getType()->isPointerTy()) {
4331           Working.push_back(O);
4332           continue;
4333         }
4334       }
4335       // If getUnderlyingObjects fails to find an identifiable object,
4336       // getUnderlyingObjectsForCodeGen also fails for safety.
4337       if (!isIdentifiedObject(V)) {
4338         Objects.clear();
4339         return false;
4340       }
4341       Objects.push_back(const_cast<Value *>(V));
4342     }
4343   } while (!Working.empty());
4344   return true;
4345 }
4346 
4347 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4348   AllocaInst *Result = nullptr;
4349   SmallPtrSet<Value *, 4> Visited;
4350   SmallVector<Value *, 4> Worklist;
4351 
4352   auto AddWork = [&](Value *V) {
4353     if (Visited.insert(V).second)
4354       Worklist.push_back(V);
4355   };
4356 
4357   AddWork(V);
4358   do {
4359     V = Worklist.pop_back_val();
4360     assert(Visited.count(V));
4361 
4362     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4363       if (Result && Result != AI)
4364         return nullptr;
4365       Result = AI;
4366     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4367       AddWork(CI->getOperand(0));
4368     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4369       for (Value *IncValue : PN->incoming_values())
4370         AddWork(IncValue);
4371     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4372       AddWork(SI->getTrueValue());
4373       AddWork(SI->getFalseValue());
4374     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4375       if (OffsetZero && !GEP->hasAllZeroIndices())
4376         return nullptr;
4377       AddWork(GEP->getPointerOperand());
4378     } else {
4379       return nullptr;
4380     }
4381   } while (!Worklist.empty());
4382 
4383   return Result;
4384 }
4385 
4386 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4387     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4388   for (const User *U : V->users()) {
4389     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4390     if (!II)
4391       return false;
4392 
4393     if (AllowLifetime && II->isLifetimeStartOrEnd())
4394       continue;
4395 
4396     if (AllowDroppable && II->isDroppable())
4397       continue;
4398 
4399     return false;
4400   }
4401   return true;
4402 }
4403 
4404 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4405   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4406       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4407 }
4408 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4409   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4410       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4411 }
4412 
4413 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4414   if (!LI.isUnordered())
4415     return true;
4416   const Function &F = *LI.getFunction();
4417   // Speculative load may create a race that did not exist in the source.
4418   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4419     // Speculative load may load data from dirty regions.
4420     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4421     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4422 }
4423 
4424 
4425 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4426                                         const Instruction *CtxI,
4427                                         const DominatorTree *DT) {
4428   const Operator *Inst = dyn_cast<Operator>(V);
4429   if (!Inst)
4430     return false;
4431 
4432   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4433     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4434       if (C->canTrap())
4435         return false;
4436 
4437   switch (Inst->getOpcode()) {
4438   default:
4439     return true;
4440   case Instruction::UDiv:
4441   case Instruction::URem: {
4442     // x / y is undefined if y == 0.
4443     const APInt *V;
4444     if (match(Inst->getOperand(1), m_APInt(V)))
4445       return *V != 0;
4446     return false;
4447   }
4448   case Instruction::SDiv:
4449   case Instruction::SRem: {
4450     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4451     const APInt *Numerator, *Denominator;
4452     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4453       return false;
4454     // We cannot hoist this division if the denominator is 0.
4455     if (*Denominator == 0)
4456       return false;
4457     // It's safe to hoist if the denominator is not 0 or -1.
4458     if (*Denominator != -1)
4459       return true;
4460     // At this point we know that the denominator is -1.  It is safe to hoist as
4461     // long we know that the numerator is not INT_MIN.
4462     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4463       return !Numerator->isMinSignedValue();
4464     // The numerator *might* be MinSignedValue.
4465     return false;
4466   }
4467   case Instruction::Load: {
4468     const LoadInst *LI = cast<LoadInst>(Inst);
4469     if (mustSuppressSpeculation(*LI))
4470       return false;
4471     const DataLayout &DL = LI->getModule()->getDataLayout();
4472     return isDereferenceableAndAlignedPointer(
4473         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4474         DL, CtxI, DT);
4475   }
4476   case Instruction::Call: {
4477     auto *CI = cast<const CallInst>(Inst);
4478     const Function *Callee = CI->getCalledFunction();
4479 
4480     // The called function could have undefined behavior or side-effects, even
4481     // if marked readnone nounwind.
4482     return Callee && Callee->isSpeculatable();
4483   }
4484   case Instruction::VAArg:
4485   case Instruction::Alloca:
4486   case Instruction::Invoke:
4487   case Instruction::CallBr:
4488   case Instruction::PHI:
4489   case Instruction::Store:
4490   case Instruction::Ret:
4491   case Instruction::Br:
4492   case Instruction::IndirectBr:
4493   case Instruction::Switch:
4494   case Instruction::Unreachable:
4495   case Instruction::Fence:
4496   case Instruction::AtomicRMW:
4497   case Instruction::AtomicCmpXchg:
4498   case Instruction::LandingPad:
4499   case Instruction::Resume:
4500   case Instruction::CatchSwitch:
4501   case Instruction::CatchPad:
4502   case Instruction::CatchRet:
4503   case Instruction::CleanupPad:
4504   case Instruction::CleanupRet:
4505     return false; // Misc instructions which have effects
4506   }
4507 }
4508 
4509 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4510   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4511 }
4512 
4513 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4514 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4515   switch (OR) {
4516     case ConstantRange::OverflowResult::MayOverflow:
4517       return OverflowResult::MayOverflow;
4518     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4519       return OverflowResult::AlwaysOverflowsLow;
4520     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4521       return OverflowResult::AlwaysOverflowsHigh;
4522     case ConstantRange::OverflowResult::NeverOverflows:
4523       return OverflowResult::NeverOverflows;
4524   }
4525   llvm_unreachable("Unknown OverflowResult");
4526 }
4527 
4528 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4529 static ConstantRange computeConstantRangeIncludingKnownBits(
4530     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4531     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4532     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4533   KnownBits Known = computeKnownBits(
4534       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4535   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4536   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4537   ConstantRange::PreferredRangeType RangeType =
4538       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4539   return CR1.intersectWith(CR2, RangeType);
4540 }
4541 
4542 OverflowResult llvm::computeOverflowForUnsignedMul(
4543     const Value *LHS, const Value *RHS, const DataLayout &DL,
4544     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4545     bool UseInstrInfo) {
4546   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4547                                         nullptr, UseInstrInfo);
4548   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4549                                         nullptr, UseInstrInfo);
4550   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4551   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4552   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4553 }
4554 
4555 OverflowResult
4556 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4557                                   const DataLayout &DL, AssumptionCache *AC,
4558                                   const Instruction *CxtI,
4559                                   const DominatorTree *DT, bool UseInstrInfo) {
4560   // Multiplying n * m significant bits yields a result of n + m significant
4561   // bits. If the total number of significant bits does not exceed the
4562   // result bit width (minus 1), there is no overflow.
4563   // This means if we have enough leading sign bits in the operands
4564   // we can guarantee that the result does not overflow.
4565   // Ref: "Hacker's Delight" by Henry Warren
4566   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4567 
4568   // Note that underestimating the number of sign bits gives a more
4569   // conservative answer.
4570   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4571                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4572 
4573   // First handle the easy case: if we have enough sign bits there's
4574   // definitely no overflow.
4575   if (SignBits > BitWidth + 1)
4576     return OverflowResult::NeverOverflows;
4577 
4578   // There are two ambiguous cases where there can be no overflow:
4579   //   SignBits == BitWidth + 1    and
4580   //   SignBits == BitWidth
4581   // The second case is difficult to check, therefore we only handle the
4582   // first case.
4583   if (SignBits == BitWidth + 1) {
4584     // It overflows only when both arguments are negative and the true
4585     // product is exactly the minimum negative number.
4586     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4587     // For simplicity we just check if at least one side is not negative.
4588     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4589                                           nullptr, UseInstrInfo);
4590     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4591                                           nullptr, UseInstrInfo);
4592     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4593       return OverflowResult::NeverOverflows;
4594   }
4595   return OverflowResult::MayOverflow;
4596 }
4597 
4598 OverflowResult llvm::computeOverflowForUnsignedAdd(
4599     const Value *LHS, const Value *RHS, const DataLayout &DL,
4600     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4601     bool UseInstrInfo) {
4602   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4603       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4604       nullptr, UseInstrInfo);
4605   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4606       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4607       nullptr, UseInstrInfo);
4608   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4609 }
4610 
4611 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4612                                                   const Value *RHS,
4613                                                   const AddOperator *Add,
4614                                                   const DataLayout &DL,
4615                                                   AssumptionCache *AC,
4616                                                   const Instruction *CxtI,
4617                                                   const DominatorTree *DT) {
4618   if (Add && Add->hasNoSignedWrap()) {
4619     return OverflowResult::NeverOverflows;
4620   }
4621 
4622   // If LHS and RHS each have at least two sign bits, the addition will look
4623   // like
4624   //
4625   // XX..... +
4626   // YY.....
4627   //
4628   // If the carry into the most significant position is 0, X and Y can't both
4629   // be 1 and therefore the carry out of the addition is also 0.
4630   //
4631   // If the carry into the most significant position is 1, X and Y can't both
4632   // be 0 and therefore the carry out of the addition is also 1.
4633   //
4634   // Since the carry into the most significant position is always equal to
4635   // the carry out of the addition, there is no signed overflow.
4636   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4637       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4638     return OverflowResult::NeverOverflows;
4639 
4640   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4641       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4642   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4643       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4644   OverflowResult OR =
4645       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4646   if (OR != OverflowResult::MayOverflow)
4647     return OR;
4648 
4649   // The remaining code needs Add to be available. Early returns if not so.
4650   if (!Add)
4651     return OverflowResult::MayOverflow;
4652 
4653   // If the sign of Add is the same as at least one of the operands, this add
4654   // CANNOT overflow. If this can be determined from the known bits of the
4655   // operands the above signedAddMayOverflow() check will have already done so.
4656   // The only other way to improve on the known bits is from an assumption, so
4657   // call computeKnownBitsFromAssume() directly.
4658   bool LHSOrRHSKnownNonNegative =
4659       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4660   bool LHSOrRHSKnownNegative =
4661       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4662   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4663     KnownBits AddKnown(LHSRange.getBitWidth());
4664     computeKnownBitsFromAssume(
4665         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4666     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4667         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4668       return OverflowResult::NeverOverflows;
4669   }
4670 
4671   return OverflowResult::MayOverflow;
4672 }
4673 
4674 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4675                                                    const Value *RHS,
4676                                                    const DataLayout &DL,
4677                                                    AssumptionCache *AC,
4678                                                    const Instruction *CxtI,
4679                                                    const DominatorTree *DT) {
4680   // Checking for conditions implied by dominating conditions may be expensive.
4681   // Limit it to usub_with_overflow calls for now.
4682   if (match(CxtI,
4683             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4684     if (auto C =
4685             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4686       if (*C)
4687         return OverflowResult::NeverOverflows;
4688       return OverflowResult::AlwaysOverflowsLow;
4689     }
4690   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4691       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4692   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4693       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4694   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4695 }
4696 
4697 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4698                                                  const Value *RHS,
4699                                                  const DataLayout &DL,
4700                                                  AssumptionCache *AC,
4701                                                  const Instruction *CxtI,
4702                                                  const DominatorTree *DT) {
4703   // If LHS and RHS each have at least two sign bits, the subtraction
4704   // cannot overflow.
4705   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4706       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4707     return OverflowResult::NeverOverflows;
4708 
4709   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4710       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4711   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4712       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4713   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4714 }
4715 
4716 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4717                                      const DominatorTree &DT) {
4718   SmallVector<const BranchInst *, 2> GuardingBranches;
4719   SmallVector<const ExtractValueInst *, 2> Results;
4720 
4721   for (const User *U : WO->users()) {
4722     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4723       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4724 
4725       if (EVI->getIndices()[0] == 0)
4726         Results.push_back(EVI);
4727       else {
4728         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4729 
4730         for (const auto *U : EVI->users())
4731           if (const auto *B = dyn_cast<BranchInst>(U)) {
4732             assert(B->isConditional() && "How else is it using an i1?");
4733             GuardingBranches.push_back(B);
4734           }
4735       }
4736     } else {
4737       // We are using the aggregate directly in a way we don't want to analyze
4738       // here (storing it to a global, say).
4739       return false;
4740     }
4741   }
4742 
4743   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4744     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4745     if (!NoWrapEdge.isSingleEdge())
4746       return false;
4747 
4748     // Check if all users of the add are provably no-wrap.
4749     for (const auto *Result : Results) {
4750       // If the extractvalue itself is not executed on overflow, the we don't
4751       // need to check each use separately, since domination is transitive.
4752       if (DT.dominates(NoWrapEdge, Result->getParent()))
4753         continue;
4754 
4755       for (auto &RU : Result->uses())
4756         if (!DT.dominates(NoWrapEdge, RU))
4757           return false;
4758     }
4759 
4760     return true;
4761   };
4762 
4763   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4764 }
4765 
4766 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4767   // See whether I has flags that may create poison
4768   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4769     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4770       return true;
4771   }
4772   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4773     if (ExactOp->isExact())
4774       return true;
4775   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4776     auto FMF = FP->getFastMathFlags();
4777     if (FMF.noNaNs() || FMF.noInfs())
4778       return true;
4779   }
4780 
4781   unsigned Opcode = Op->getOpcode();
4782 
4783   // Check whether opcode is a poison/undef-generating operation
4784   switch (Opcode) {
4785   case Instruction::Shl:
4786   case Instruction::AShr:
4787   case Instruction::LShr: {
4788     // Shifts return poison if shiftwidth is larger than the bitwidth.
4789     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4790       SmallVector<Constant *, 4> ShiftAmounts;
4791       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4792         unsigned NumElts = FVTy->getNumElements();
4793         for (unsigned i = 0; i < NumElts; ++i)
4794           ShiftAmounts.push_back(C->getAggregateElement(i));
4795       } else if (isa<ScalableVectorType>(C->getType()))
4796         return true; // Can't tell, just return true to be safe
4797       else
4798         ShiftAmounts.push_back(C);
4799 
4800       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4801         auto *CI = dyn_cast<ConstantInt>(C);
4802         return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth();
4803       });
4804       return !Safe;
4805     }
4806     return true;
4807   }
4808   case Instruction::FPToSI:
4809   case Instruction::FPToUI:
4810     // fptosi/ui yields poison if the resulting value does not fit in the
4811     // destination type.
4812     return true;
4813   case Instruction::Call:
4814   case Instruction::CallBr:
4815   case Instruction::Invoke: {
4816     const auto *CB = cast<CallBase>(Op);
4817     return !CB->hasRetAttr(Attribute::NoUndef);
4818   }
4819   case Instruction::InsertElement:
4820   case Instruction::ExtractElement: {
4821     // If index exceeds the length of the vector, it returns poison
4822     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4823     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4824     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4825     if (!Idx ||
4826         Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue())
4827       return true;
4828     return false;
4829   }
4830   case Instruction::ShuffleVector: {
4831     // shufflevector may return undef.
4832     if (PoisonOnly)
4833       return false;
4834     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4835                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4836                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4837     return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; });
4838   }
4839   case Instruction::FNeg:
4840   case Instruction::PHI:
4841   case Instruction::Select:
4842   case Instruction::URem:
4843   case Instruction::SRem:
4844   case Instruction::ExtractValue:
4845   case Instruction::InsertValue:
4846   case Instruction::Freeze:
4847   case Instruction::ICmp:
4848   case Instruction::FCmp:
4849     return false;
4850   case Instruction::GetElementPtr: {
4851     const auto *GEP = cast<GEPOperator>(Op);
4852     return GEP->isInBounds();
4853   }
4854   default: {
4855     const auto *CE = dyn_cast<ConstantExpr>(Op);
4856     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4857       return false;
4858     else if (Instruction::isBinaryOp(Opcode))
4859       return false;
4860     // Be conservative and return true.
4861     return true;
4862   }
4863   }
4864 }
4865 
4866 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4867   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4868 }
4869 
4870 bool llvm::canCreatePoison(const Operator *Op) {
4871   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4872 }
4873 
4874 static bool programUndefinedIfUndefOrPoison(const Instruction *Inst,
4875                                             bool PoisonOnly);
4876 
4877 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
4878                                              const Instruction *CtxI,
4879                                              const DominatorTree *DT,
4880                                              unsigned Depth, bool PoisonOnly) {
4881   if (Depth >= MaxAnalysisRecursionDepth)
4882     return false;
4883 
4884   if (const auto *A = dyn_cast<Argument>(V)) {
4885     if (A->hasAttribute(Attribute::NoUndef))
4886       return true;
4887   }
4888 
4889   if (auto *C = dyn_cast<Constant>(V)) {
4890     if (isa<UndefValue>(C))
4891       return PoisonOnly;
4892 
4893     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4894         isa<ConstantPointerNull>(C) || isa<Function>(C))
4895       return true;
4896 
4897     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4898       return (PoisonOnly || !C->containsUndefElement()) &&
4899              !C->containsConstantExpression();
4900   }
4901 
4902   // Strip cast operations from a pointer value.
4903   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4904   // inbounds with zero offset. To guarantee that the result isn't poison, the
4905   // stripped pointer is checked as it has to be pointing into an allocated
4906   // object or be null `null` to ensure `inbounds` getelement pointers with a
4907   // zero offset could not produce poison.
4908   // It can strip off addrspacecast that do not change bit representation as
4909   // well. We believe that such addrspacecast is equivalent to no-op.
4910   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4911   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4912       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4913     return true;
4914 
4915   auto OpCheck = [&](const Value *V) {
4916     return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1, PoisonOnly);
4917   };
4918 
4919   if (auto *Opr = dyn_cast<Operator>(V)) {
4920     // If the value is a freeze instruction, then it can never
4921     // be undef or poison.
4922     if (isa<FreezeInst>(V))
4923       return true;
4924 
4925     if (const auto *CB = dyn_cast<CallBase>(V)) {
4926       if (CB->hasRetAttr(Attribute::NoUndef))
4927         return true;
4928     }
4929 
4930     if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4931       return true;
4932   }
4933 
4934   if (auto *I = dyn_cast<Instruction>(V)) {
4935     if (programUndefinedIfUndefOrPoison(I, PoisonOnly))
4936       return true;
4937   }
4938 
4939   // CxtI may be null or a cloned instruction.
4940   if (!CtxI || !CtxI->getParent() || !DT)
4941     return false;
4942 
4943   auto *DNode = DT->getNode(CtxI->getParent());
4944   if (!DNode)
4945     // Unreachable block
4946     return false;
4947 
4948   // If V is used as a branch condition before reaching CtxI, V cannot be
4949   // undef or poison.
4950   //   br V, BB1, BB2
4951   // BB1:
4952   //   CtxI ; V cannot be undef or poison here
4953   auto *Dominator = DNode->getIDom();
4954   while (Dominator) {
4955     auto *TI = Dominator->getBlock()->getTerminator();
4956 
4957     Value *Cond = nullptr;
4958     if (auto BI = dyn_cast<BranchInst>(TI)) {
4959       if (BI->isConditional())
4960         Cond = BI->getCondition();
4961     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4962       Cond = SI->getCondition();
4963     }
4964 
4965     if (Cond) {
4966       if (Cond == V)
4967         return true;
4968       else if (PoisonOnly && isa<Operator>(Cond)) {
4969         // For poison, we can analyze further
4970         auto *Opr = cast<Operator>(Cond);
4971         if (propagatesPoison(Opr) &&
4972             any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; }))
4973           return true;
4974       }
4975     }
4976 
4977     Dominator = Dominator->getIDom();
4978   }
4979 
4980   return false;
4981 }
4982 
4983 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V,
4984                                             const Instruction *CtxI,
4985                                             const DominatorTree *DT,
4986                                             unsigned Depth) {
4987   return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, false);
4988 }
4989 
4990 bool llvm::isGuaranteedNotToBePoison(const Value *V, const Instruction *CtxI,
4991                                      const DominatorTree *DT, unsigned Depth) {
4992   return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, true);
4993 }
4994 
4995 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4996                                                  const DataLayout &DL,
4997                                                  AssumptionCache *AC,
4998                                                  const Instruction *CxtI,
4999                                                  const DominatorTree *DT) {
5000   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5001                                        Add, DL, AC, CxtI, DT);
5002 }
5003 
5004 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5005                                                  const Value *RHS,
5006                                                  const DataLayout &DL,
5007                                                  AssumptionCache *AC,
5008                                                  const Instruction *CxtI,
5009                                                  const DominatorTree *DT) {
5010   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5011 }
5012 
5013 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5014   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5015   // of time because it's possible for another thread to interfere with it for an
5016   // arbitrary length of time, but programs aren't allowed to rely on that.
5017 
5018   // If there is no successor, then execution can't transfer to it.
5019   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
5020     return !CRI->unwindsToCaller();
5021   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
5022     return !CatchSwitch->unwindsToCaller();
5023   if (isa<ResumeInst>(I))
5024     return false;
5025   if (isa<ReturnInst>(I))
5026     return false;
5027   if (isa<UnreachableInst>(I))
5028     return false;
5029 
5030   // Calls can throw, or contain an infinite loop, or kill the process.
5031   if (const auto *CB = dyn_cast<CallBase>(I)) {
5032     // Call sites that throw have implicit non-local control flow.
5033     if (!CB->doesNotThrow())
5034       return false;
5035 
5036     // A function which doens't throw and has "willreturn" attribute will
5037     // always return.
5038     if (CB->hasFnAttr(Attribute::WillReturn))
5039       return true;
5040 
5041     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
5042     // etc. and thus not return.  However, LLVM already assumes that
5043     //
5044     //  - Thread exiting actions are modeled as writes to memory invisible to
5045     //    the program.
5046     //
5047     //  - Loops that don't have side effects (side effects are volatile/atomic
5048     //    stores and IO) always terminate (see http://llvm.org/PR965).
5049     //    Furthermore IO itself is also modeled as writes to memory invisible to
5050     //    the program.
5051     //
5052     // We rely on those assumptions here, and use the memory effects of the call
5053     // target as a proxy for checking that it always returns.
5054 
5055     // FIXME: This isn't aggressive enough; a call which only writes to a global
5056     // is guaranteed to return.
5057     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5058   }
5059 
5060   // Other instructions return normally.
5061   return true;
5062 }
5063 
5064 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5065   // TODO: This is slightly conservative for invoke instruction since exiting
5066   // via an exception *is* normal control for them.
5067   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5068     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5069       return false;
5070   return true;
5071 }
5072 
5073 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5074                                                   const Loop *L) {
5075   // The loop header is guaranteed to be executed for every iteration.
5076   //
5077   // FIXME: Relax this constraint to cover all basic blocks that are
5078   // guaranteed to be executed at every iteration.
5079   if (I->getParent() != L->getHeader()) return false;
5080 
5081   for (const Instruction &LI : *L->getHeader()) {
5082     if (&LI == I) return true;
5083     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5084   }
5085   llvm_unreachable("Instruction not contained in its own parent basic block.");
5086 }
5087 
5088 bool llvm::propagatesPoison(const Operator *I) {
5089   switch (I->getOpcode()) {
5090   case Instruction::Freeze:
5091   case Instruction::Select:
5092   case Instruction::PHI:
5093   case Instruction::Call:
5094   case Instruction::Invoke:
5095     return false;
5096   case Instruction::ICmp:
5097   case Instruction::FCmp:
5098   case Instruction::GetElementPtr:
5099     return true;
5100   default:
5101     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5102       return true;
5103 
5104     // Be conservative and return false.
5105     return false;
5106   }
5107 }
5108 
5109 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5110                                      SmallPtrSetImpl<const Value *> &Operands) {
5111   switch (I->getOpcode()) {
5112     case Instruction::Store:
5113       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5114       break;
5115 
5116     case Instruction::Load:
5117       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5118       break;
5119 
5120     case Instruction::AtomicCmpXchg:
5121       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5122       break;
5123 
5124     case Instruction::AtomicRMW:
5125       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5126       break;
5127 
5128     case Instruction::UDiv:
5129     case Instruction::SDiv:
5130     case Instruction::URem:
5131     case Instruction::SRem:
5132       Operands.insert(I->getOperand(1));
5133       break;
5134 
5135     case Instruction::Call:
5136     case Instruction::Invoke: {
5137       const CallBase *CB = cast<CallBase>(I);
5138       if (CB->isIndirectCall())
5139         Operands.insert(CB->getCalledOperand());
5140       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5141         if (CB->paramHasAttr(i, Attribute::NoUndef))
5142           Operands.insert(CB->getArgOperand(i));
5143       }
5144       break;
5145     }
5146 
5147     default:
5148       break;
5149   }
5150 }
5151 
5152 bool llvm::mustTriggerUB(const Instruction *I,
5153                          const SmallSet<const Value *, 16>& KnownPoison) {
5154   SmallPtrSet<const Value *, 4> NonPoisonOps;
5155   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5156 
5157   for (const auto *V : NonPoisonOps)
5158     if (KnownPoison.count(V))
5159       return true;
5160 
5161   return false;
5162 }
5163 
5164 static bool programUndefinedIfUndefOrPoison(const Instruction *Inst,
5165                                             bool PoisonOnly) {
5166   // We currently only look for uses of values within the same basic
5167   // block, as that makes it easier to guarantee that the uses will be
5168   // executed given that Inst is executed.
5169   //
5170   // FIXME: Expand this to consider uses beyond the same basic block. To do
5171   // this, look out for the distinction between post-dominance and strong
5172   // post-dominance.
5173   const BasicBlock *BB = Inst->getParent();
5174 
5175   BasicBlock::const_iterator Begin = Inst->getIterator(), End = BB->end();
5176 
5177   if (!PoisonOnly) {
5178     // Be conservative & just check whether a value is passed to a noundef
5179     // argument.
5180     // Instructions that raise UB with a poison operand are well-defined
5181     // or have unclear semantics when the input is partially undef.
5182     // For example, 'udiv x, (undef | 1)' isn't UB.
5183 
5184     for (auto &I : make_range(Begin, End)) {
5185       if (const auto *CB = dyn_cast<CallBase>(&I)) {
5186         for (unsigned i = 0; i < CB->arg_size(); ++i) {
5187           if (CB->paramHasAttr(i, Attribute::NoUndef) &&
5188               CB->getArgOperand(i) == Inst)
5189             return true;
5190         }
5191       }
5192       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5193         break;
5194     }
5195     return false;
5196   }
5197 
5198   // Set of instructions that we have proved will yield poison if Inst
5199   // does.
5200   SmallSet<const Value *, 16> YieldsPoison;
5201   SmallSet<const BasicBlock *, 4> Visited;
5202   YieldsPoison.insert(Inst);
5203   Visited.insert(Inst->getParent());
5204 
5205   unsigned Iter = 0;
5206   while (Iter++ < MaxAnalysisRecursionDepth) {
5207     for (auto &I : make_range(Begin, End)) {
5208       if (&I != Inst) {
5209         if (mustTriggerUB(&I, YieldsPoison))
5210           return true;
5211         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5212           return false;
5213       }
5214 
5215       // Mark poison that propagates from I through uses of I.
5216       if (YieldsPoison.count(&I)) {
5217         for (const User *User : I.users()) {
5218           const Instruction *UserI = cast<Instruction>(User);
5219           if (propagatesPoison(cast<Operator>(UserI)))
5220             YieldsPoison.insert(User);
5221         }
5222       }
5223     }
5224 
5225     if (auto *NextBB = BB->getSingleSuccessor()) {
5226       if (Visited.insert(NextBB).second) {
5227         BB = NextBB;
5228         Begin = BB->getFirstNonPHI()->getIterator();
5229         End = BB->end();
5230         continue;
5231       }
5232     }
5233 
5234     break;
5235   }
5236   return false;
5237 }
5238 
5239 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5240   return ::programUndefinedIfUndefOrPoison(Inst, false);
5241 }
5242 
5243 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5244   return ::programUndefinedIfUndefOrPoison(Inst, true);
5245 }
5246 
5247 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5248   if (FMF.noNaNs())
5249     return true;
5250 
5251   if (auto *C = dyn_cast<ConstantFP>(V))
5252     return !C->isNaN();
5253 
5254   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5255     if (!C->getElementType()->isFloatingPointTy())
5256       return false;
5257     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5258       if (C->getElementAsAPFloat(I).isNaN())
5259         return false;
5260     }
5261     return true;
5262   }
5263 
5264   if (isa<ConstantAggregateZero>(V))
5265     return true;
5266 
5267   return false;
5268 }
5269 
5270 static bool isKnownNonZero(const Value *V) {
5271   if (auto *C = dyn_cast<ConstantFP>(V))
5272     return !C->isZero();
5273 
5274   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5275     if (!C->getElementType()->isFloatingPointTy())
5276       return false;
5277     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5278       if (C->getElementAsAPFloat(I).isZero())
5279         return false;
5280     }
5281     return true;
5282   }
5283 
5284   return false;
5285 }
5286 
5287 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5288 /// Given non-min/max outer cmp/select from the clamp pattern this
5289 /// function recognizes if it can be substitued by a "canonical" min/max
5290 /// pattern.
5291 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5292                                                Value *CmpLHS, Value *CmpRHS,
5293                                                Value *TrueVal, Value *FalseVal,
5294                                                Value *&LHS, Value *&RHS) {
5295   // Try to match
5296   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5297   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5298   // and return description of the outer Max/Min.
5299 
5300   // First, check if select has inverse order:
5301   if (CmpRHS == FalseVal) {
5302     std::swap(TrueVal, FalseVal);
5303     Pred = CmpInst::getInversePredicate(Pred);
5304   }
5305 
5306   // Assume success now. If there's no match, callers should not use these anyway.
5307   LHS = TrueVal;
5308   RHS = FalseVal;
5309 
5310   const APFloat *FC1;
5311   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5312     return {SPF_UNKNOWN, SPNB_NA, false};
5313 
5314   const APFloat *FC2;
5315   switch (Pred) {
5316   case CmpInst::FCMP_OLT:
5317   case CmpInst::FCMP_OLE:
5318   case CmpInst::FCMP_ULT:
5319   case CmpInst::FCMP_ULE:
5320     if (match(FalseVal,
5321               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5322                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5323         *FC1 < *FC2)
5324       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5325     break;
5326   case CmpInst::FCMP_OGT:
5327   case CmpInst::FCMP_OGE:
5328   case CmpInst::FCMP_UGT:
5329   case CmpInst::FCMP_UGE:
5330     if (match(FalseVal,
5331               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5332                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5333         *FC1 > *FC2)
5334       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5335     break;
5336   default:
5337     break;
5338   }
5339 
5340   return {SPF_UNKNOWN, SPNB_NA, false};
5341 }
5342 
5343 /// Recognize variations of:
5344 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5345 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5346                                       Value *CmpLHS, Value *CmpRHS,
5347                                       Value *TrueVal, Value *FalseVal) {
5348   // Swap the select operands and predicate to match the patterns below.
5349   if (CmpRHS != TrueVal) {
5350     Pred = ICmpInst::getSwappedPredicate(Pred);
5351     std::swap(TrueVal, FalseVal);
5352   }
5353   const APInt *C1;
5354   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5355     const APInt *C2;
5356     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5357     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5358         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5359       return {SPF_SMAX, SPNB_NA, false};
5360 
5361     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5362     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5363         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5364       return {SPF_SMIN, SPNB_NA, false};
5365 
5366     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5367     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5368         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5369       return {SPF_UMAX, SPNB_NA, false};
5370 
5371     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5372     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5373         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5374       return {SPF_UMIN, SPNB_NA, false};
5375   }
5376   return {SPF_UNKNOWN, SPNB_NA, false};
5377 }
5378 
5379 /// Recognize variations of:
5380 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5381 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5382                                                Value *CmpLHS, Value *CmpRHS,
5383                                                Value *TVal, Value *FVal,
5384                                                unsigned Depth) {
5385   // TODO: Allow FP min/max with nnan/nsz.
5386   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5387 
5388   Value *A = nullptr, *B = nullptr;
5389   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5390   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5391     return {SPF_UNKNOWN, SPNB_NA, false};
5392 
5393   Value *C = nullptr, *D = nullptr;
5394   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5395   if (L.Flavor != R.Flavor)
5396     return {SPF_UNKNOWN, SPNB_NA, false};
5397 
5398   // We have something like: x Pred y ? min(a, b) : min(c, d).
5399   // Try to match the compare to the min/max operations of the select operands.
5400   // First, make sure we have the right compare predicate.
5401   switch (L.Flavor) {
5402   case SPF_SMIN:
5403     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5404       Pred = ICmpInst::getSwappedPredicate(Pred);
5405       std::swap(CmpLHS, CmpRHS);
5406     }
5407     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5408       break;
5409     return {SPF_UNKNOWN, SPNB_NA, false};
5410   case SPF_SMAX:
5411     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5412       Pred = ICmpInst::getSwappedPredicate(Pred);
5413       std::swap(CmpLHS, CmpRHS);
5414     }
5415     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5416       break;
5417     return {SPF_UNKNOWN, SPNB_NA, false};
5418   case SPF_UMIN:
5419     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5420       Pred = ICmpInst::getSwappedPredicate(Pred);
5421       std::swap(CmpLHS, CmpRHS);
5422     }
5423     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5424       break;
5425     return {SPF_UNKNOWN, SPNB_NA, false};
5426   case SPF_UMAX:
5427     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5428       Pred = ICmpInst::getSwappedPredicate(Pred);
5429       std::swap(CmpLHS, CmpRHS);
5430     }
5431     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5432       break;
5433     return {SPF_UNKNOWN, SPNB_NA, false};
5434   default:
5435     return {SPF_UNKNOWN, SPNB_NA, false};
5436   }
5437 
5438   // If there is a common operand in the already matched min/max and the other
5439   // min/max operands match the compare operands (either directly or inverted),
5440   // then this is min/max of the same flavor.
5441 
5442   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5443   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5444   if (D == B) {
5445     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5446                                          match(A, m_Not(m_Specific(CmpRHS)))))
5447       return {L.Flavor, SPNB_NA, false};
5448   }
5449   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5450   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5451   if (C == B) {
5452     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5453                                          match(A, m_Not(m_Specific(CmpRHS)))))
5454       return {L.Flavor, SPNB_NA, false};
5455   }
5456   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5457   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5458   if (D == A) {
5459     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5460                                          match(B, m_Not(m_Specific(CmpRHS)))))
5461       return {L.Flavor, SPNB_NA, false};
5462   }
5463   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5464   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5465   if (C == A) {
5466     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5467                                          match(B, m_Not(m_Specific(CmpRHS)))))
5468       return {L.Flavor, SPNB_NA, false};
5469   }
5470 
5471   return {SPF_UNKNOWN, SPNB_NA, false};
5472 }
5473 
5474 /// If the input value is the result of a 'not' op, constant integer, or vector
5475 /// splat of a constant integer, return the bitwise-not source value.
5476 /// TODO: This could be extended to handle non-splat vector integer constants.
5477 static Value *getNotValue(Value *V) {
5478   Value *NotV;
5479   if (match(V, m_Not(m_Value(NotV))))
5480     return NotV;
5481 
5482   const APInt *C;
5483   if (match(V, m_APInt(C)))
5484     return ConstantInt::get(V->getType(), ~(*C));
5485 
5486   return nullptr;
5487 }
5488 
5489 /// Match non-obvious integer minimum and maximum sequences.
5490 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5491                                        Value *CmpLHS, Value *CmpRHS,
5492                                        Value *TrueVal, Value *FalseVal,
5493                                        Value *&LHS, Value *&RHS,
5494                                        unsigned Depth) {
5495   // Assume success. If there's no match, callers should not use these anyway.
5496   LHS = TrueVal;
5497   RHS = FalseVal;
5498 
5499   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5500   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5501     return SPR;
5502 
5503   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5504   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5505     return SPR;
5506 
5507   // Look through 'not' ops to find disguised min/max.
5508   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5509   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5510   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5511     switch (Pred) {
5512     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5513     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5514     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5515     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5516     default: break;
5517     }
5518   }
5519 
5520   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5521   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5522   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5523     switch (Pred) {
5524     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5525     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5526     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5527     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5528     default: break;
5529     }
5530   }
5531 
5532   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5533     return {SPF_UNKNOWN, SPNB_NA, false};
5534 
5535   // Z = X -nsw Y
5536   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5537   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5538   if (match(TrueVal, m_Zero()) &&
5539       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5540     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5541 
5542   // Z = X -nsw Y
5543   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5544   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5545   if (match(FalseVal, m_Zero()) &&
5546       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5547     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5548 
5549   const APInt *C1;
5550   if (!match(CmpRHS, m_APInt(C1)))
5551     return {SPF_UNKNOWN, SPNB_NA, false};
5552 
5553   // An unsigned min/max can be written with a signed compare.
5554   const APInt *C2;
5555   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5556       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5557     // Is the sign bit set?
5558     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5559     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5560     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5561         C2->isMaxSignedValue())
5562       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5563 
5564     // Is the sign bit clear?
5565     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5566     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5567     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5568         C2->isMinSignedValue())
5569       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5570   }
5571 
5572   return {SPF_UNKNOWN, SPNB_NA, false};
5573 }
5574 
5575 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5576   assert(X && Y && "Invalid operand");
5577 
5578   // X = sub (0, Y) || X = sub nsw (0, Y)
5579   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5580       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5581     return true;
5582 
5583   // Y = sub (0, X) || Y = sub nsw (0, X)
5584   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5585       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5586     return true;
5587 
5588   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5589   Value *A, *B;
5590   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5591                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5592          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5593                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5594 }
5595 
5596 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5597                                               FastMathFlags FMF,
5598                                               Value *CmpLHS, Value *CmpRHS,
5599                                               Value *TrueVal, Value *FalseVal,
5600                                               Value *&LHS, Value *&RHS,
5601                                               unsigned Depth) {
5602   if (CmpInst::isFPPredicate(Pred)) {
5603     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5604     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5605     // purpose of identifying min/max. Disregard vector constants with undefined
5606     // elements because those can not be back-propagated for analysis.
5607     Value *OutputZeroVal = nullptr;
5608     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5609         !cast<Constant>(TrueVal)->containsUndefElement())
5610       OutputZeroVal = TrueVal;
5611     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5612              !cast<Constant>(FalseVal)->containsUndefElement())
5613       OutputZeroVal = FalseVal;
5614 
5615     if (OutputZeroVal) {
5616       if (match(CmpLHS, m_AnyZeroFP()))
5617         CmpLHS = OutputZeroVal;
5618       if (match(CmpRHS, m_AnyZeroFP()))
5619         CmpRHS = OutputZeroVal;
5620     }
5621   }
5622 
5623   LHS = CmpLHS;
5624   RHS = CmpRHS;
5625 
5626   // Signed zero may return inconsistent results between implementations.
5627   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5628   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5629   // Therefore, we behave conservatively and only proceed if at least one of the
5630   // operands is known to not be zero or if we don't care about signed zero.
5631   switch (Pred) {
5632   default: break;
5633   // FIXME: Include OGT/OLT/UGT/ULT.
5634   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5635   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5636     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5637         !isKnownNonZero(CmpRHS))
5638       return {SPF_UNKNOWN, SPNB_NA, false};
5639   }
5640 
5641   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5642   bool Ordered = false;
5643 
5644   // When given one NaN and one non-NaN input:
5645   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5646   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5647   //     ordered comparison fails), which could be NaN or non-NaN.
5648   // so here we discover exactly what NaN behavior is required/accepted.
5649   if (CmpInst::isFPPredicate(Pred)) {
5650     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5651     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5652 
5653     if (LHSSafe && RHSSafe) {
5654       // Both operands are known non-NaN.
5655       NaNBehavior = SPNB_RETURNS_ANY;
5656     } else if (CmpInst::isOrdered(Pred)) {
5657       // An ordered comparison will return false when given a NaN, so it
5658       // returns the RHS.
5659       Ordered = true;
5660       if (LHSSafe)
5661         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5662         NaNBehavior = SPNB_RETURNS_NAN;
5663       else if (RHSSafe)
5664         NaNBehavior = SPNB_RETURNS_OTHER;
5665       else
5666         // Completely unsafe.
5667         return {SPF_UNKNOWN, SPNB_NA, false};
5668     } else {
5669       Ordered = false;
5670       // An unordered comparison will return true when given a NaN, so it
5671       // returns the LHS.
5672       if (LHSSafe)
5673         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5674         NaNBehavior = SPNB_RETURNS_OTHER;
5675       else if (RHSSafe)
5676         NaNBehavior = SPNB_RETURNS_NAN;
5677       else
5678         // Completely unsafe.
5679         return {SPF_UNKNOWN, SPNB_NA, false};
5680     }
5681   }
5682 
5683   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5684     std::swap(CmpLHS, CmpRHS);
5685     Pred = CmpInst::getSwappedPredicate(Pred);
5686     if (NaNBehavior == SPNB_RETURNS_NAN)
5687       NaNBehavior = SPNB_RETURNS_OTHER;
5688     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5689       NaNBehavior = SPNB_RETURNS_NAN;
5690     Ordered = !Ordered;
5691   }
5692 
5693   // ([if]cmp X, Y) ? X : Y
5694   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5695     switch (Pred) {
5696     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5697     case ICmpInst::ICMP_UGT:
5698     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5699     case ICmpInst::ICMP_SGT:
5700     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5701     case ICmpInst::ICMP_ULT:
5702     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5703     case ICmpInst::ICMP_SLT:
5704     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5705     case FCmpInst::FCMP_UGT:
5706     case FCmpInst::FCMP_UGE:
5707     case FCmpInst::FCMP_OGT:
5708     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5709     case FCmpInst::FCMP_ULT:
5710     case FCmpInst::FCMP_ULE:
5711     case FCmpInst::FCMP_OLT:
5712     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5713     }
5714   }
5715 
5716   if (isKnownNegation(TrueVal, FalseVal)) {
5717     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5718     // match against either LHS or sext(LHS).
5719     auto MaybeSExtCmpLHS =
5720         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5721     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5722     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5723     if (match(TrueVal, MaybeSExtCmpLHS)) {
5724       // Set the return values. If the compare uses the negated value (-X >s 0),
5725       // swap the return values because the negated value is always 'RHS'.
5726       LHS = TrueVal;
5727       RHS = FalseVal;
5728       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5729         std::swap(LHS, RHS);
5730 
5731       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5732       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5733       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5734         return {SPF_ABS, SPNB_NA, false};
5735 
5736       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5737       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5738         return {SPF_ABS, SPNB_NA, false};
5739 
5740       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5741       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5742       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5743         return {SPF_NABS, SPNB_NA, false};
5744     }
5745     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5746       // Set the return values. If the compare uses the negated value (-X >s 0),
5747       // swap the return values because the negated value is always 'RHS'.
5748       LHS = FalseVal;
5749       RHS = TrueVal;
5750       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5751         std::swap(LHS, RHS);
5752 
5753       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5754       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5755       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5756         return {SPF_NABS, SPNB_NA, false};
5757 
5758       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5759       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5760       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5761         return {SPF_ABS, SPNB_NA, false};
5762     }
5763   }
5764 
5765   if (CmpInst::isIntPredicate(Pred))
5766     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5767 
5768   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5769   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5770   // semantics than minNum. Be conservative in such case.
5771   if (NaNBehavior != SPNB_RETURNS_ANY ||
5772       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5773        !isKnownNonZero(CmpRHS)))
5774     return {SPF_UNKNOWN, SPNB_NA, false};
5775 
5776   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5777 }
5778 
5779 /// Helps to match a select pattern in case of a type mismatch.
5780 ///
5781 /// The function processes the case when type of true and false values of a
5782 /// select instruction differs from type of the cmp instruction operands because
5783 /// of a cast instruction. The function checks if it is legal to move the cast
5784 /// operation after "select". If yes, it returns the new second value of
5785 /// "select" (with the assumption that cast is moved):
5786 /// 1. As operand of cast instruction when both values of "select" are same cast
5787 /// instructions.
5788 /// 2. As restored constant (by applying reverse cast operation) when the first
5789 /// value of the "select" is a cast operation and the second value is a
5790 /// constant.
5791 /// NOTE: We return only the new second value because the first value could be
5792 /// accessed as operand of cast instruction.
5793 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5794                               Instruction::CastOps *CastOp) {
5795   auto *Cast1 = dyn_cast<CastInst>(V1);
5796   if (!Cast1)
5797     return nullptr;
5798 
5799   *CastOp = Cast1->getOpcode();
5800   Type *SrcTy = Cast1->getSrcTy();
5801   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5802     // If V1 and V2 are both the same cast from the same type, look through V1.
5803     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5804       return Cast2->getOperand(0);
5805     return nullptr;
5806   }
5807 
5808   auto *C = dyn_cast<Constant>(V2);
5809   if (!C)
5810     return nullptr;
5811 
5812   Constant *CastedTo = nullptr;
5813   switch (*CastOp) {
5814   case Instruction::ZExt:
5815     if (CmpI->isUnsigned())
5816       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5817     break;
5818   case Instruction::SExt:
5819     if (CmpI->isSigned())
5820       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5821     break;
5822   case Instruction::Trunc:
5823     Constant *CmpConst;
5824     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5825         CmpConst->getType() == SrcTy) {
5826       // Here we have the following case:
5827       //
5828       //   %cond = cmp iN %x, CmpConst
5829       //   %tr = trunc iN %x to iK
5830       //   %narrowsel = select i1 %cond, iK %t, iK C
5831       //
5832       // We can always move trunc after select operation:
5833       //
5834       //   %cond = cmp iN %x, CmpConst
5835       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5836       //   %tr = trunc iN %widesel to iK
5837       //
5838       // Note that C could be extended in any way because we don't care about
5839       // upper bits after truncation. It can't be abs pattern, because it would
5840       // look like:
5841       //
5842       //   select i1 %cond, x, -x.
5843       //
5844       // So only min/max pattern could be matched. Such match requires widened C
5845       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5846       // CmpConst == C is checked below.
5847       CastedTo = CmpConst;
5848     } else {
5849       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5850     }
5851     break;
5852   case Instruction::FPTrunc:
5853     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5854     break;
5855   case Instruction::FPExt:
5856     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5857     break;
5858   case Instruction::FPToUI:
5859     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5860     break;
5861   case Instruction::FPToSI:
5862     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5863     break;
5864   case Instruction::UIToFP:
5865     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5866     break;
5867   case Instruction::SIToFP:
5868     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5869     break;
5870   default:
5871     break;
5872   }
5873 
5874   if (!CastedTo)
5875     return nullptr;
5876 
5877   // Make sure the cast doesn't lose any information.
5878   Constant *CastedBack =
5879       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5880   if (CastedBack != C)
5881     return nullptr;
5882 
5883   return CastedTo;
5884 }
5885 
5886 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5887                                              Instruction::CastOps *CastOp,
5888                                              unsigned Depth) {
5889   if (Depth >= MaxAnalysisRecursionDepth)
5890     return {SPF_UNKNOWN, SPNB_NA, false};
5891 
5892   SelectInst *SI = dyn_cast<SelectInst>(V);
5893   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5894 
5895   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5896   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5897 
5898   Value *TrueVal = SI->getTrueValue();
5899   Value *FalseVal = SI->getFalseValue();
5900 
5901   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5902                                             CastOp, Depth);
5903 }
5904 
5905 SelectPatternResult llvm::matchDecomposedSelectPattern(
5906     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5907     Instruction::CastOps *CastOp, unsigned Depth) {
5908   CmpInst::Predicate Pred = CmpI->getPredicate();
5909   Value *CmpLHS = CmpI->getOperand(0);
5910   Value *CmpRHS = CmpI->getOperand(1);
5911   FastMathFlags FMF;
5912   if (isa<FPMathOperator>(CmpI))
5913     FMF = CmpI->getFastMathFlags();
5914 
5915   // Bail out early.
5916   if (CmpI->isEquality())
5917     return {SPF_UNKNOWN, SPNB_NA, false};
5918 
5919   // Deal with type mismatches.
5920   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5921     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5922       // If this is a potential fmin/fmax with a cast to integer, then ignore
5923       // -0.0 because there is no corresponding integer value.
5924       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5925         FMF.setNoSignedZeros();
5926       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5927                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5928                                   LHS, RHS, Depth);
5929     }
5930     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5931       // If this is a potential fmin/fmax with a cast to integer, then ignore
5932       // -0.0 because there is no corresponding integer value.
5933       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5934         FMF.setNoSignedZeros();
5935       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5936                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5937                                   LHS, RHS, Depth);
5938     }
5939   }
5940   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5941                               LHS, RHS, Depth);
5942 }
5943 
5944 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5945   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5946   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5947   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5948   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5949   if (SPF == SPF_FMINNUM)
5950     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5951   if (SPF == SPF_FMAXNUM)
5952     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5953   llvm_unreachable("unhandled!");
5954 }
5955 
5956 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5957   if (SPF == SPF_SMIN) return SPF_SMAX;
5958   if (SPF == SPF_UMIN) return SPF_UMAX;
5959   if (SPF == SPF_SMAX) return SPF_SMIN;
5960   if (SPF == SPF_UMAX) return SPF_UMIN;
5961   llvm_unreachable("unhandled!");
5962 }
5963 
5964 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5965   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5966 }
5967 
5968 /// Return true if "icmp Pred LHS RHS" is always true.
5969 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5970                             const Value *RHS, const DataLayout &DL,
5971                             unsigned Depth) {
5972   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5973   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5974     return true;
5975 
5976   switch (Pred) {
5977   default:
5978     return false;
5979 
5980   case CmpInst::ICMP_SLE: {
5981     const APInt *C;
5982 
5983     // LHS s<= LHS +_{nsw} C   if C >= 0
5984     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5985       return !C->isNegative();
5986     return false;
5987   }
5988 
5989   case CmpInst::ICMP_ULE: {
5990     const APInt *C;
5991 
5992     // LHS u<= LHS +_{nuw} C   for any C
5993     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5994       return true;
5995 
5996     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5997     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5998                                        const Value *&X,
5999                                        const APInt *&CA, const APInt *&CB) {
6000       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6001           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6002         return true;
6003 
6004       // If X & C == 0 then (X | C) == X +_{nuw} C
6005       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6006           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6007         KnownBits Known(CA->getBitWidth());
6008         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6009                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6010         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6011           return true;
6012       }
6013 
6014       return false;
6015     };
6016 
6017     const Value *X;
6018     const APInt *CLHS, *CRHS;
6019     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6020       return CLHS->ule(*CRHS);
6021 
6022     return false;
6023   }
6024   }
6025 }
6026 
6027 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6028 /// ALHS ARHS" is true.  Otherwise, return None.
6029 static Optional<bool>
6030 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6031                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6032                       const DataLayout &DL, unsigned Depth) {
6033   switch (Pred) {
6034   default:
6035     return None;
6036 
6037   case CmpInst::ICMP_SLT:
6038   case CmpInst::ICMP_SLE:
6039     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6040         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6041       return true;
6042     return None;
6043 
6044   case CmpInst::ICMP_ULT:
6045   case CmpInst::ICMP_ULE:
6046     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6047         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6048       return true;
6049     return None;
6050   }
6051 }
6052 
6053 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6054 /// when the operands match, but are swapped.
6055 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6056                           const Value *BLHS, const Value *BRHS,
6057                           bool &IsSwappedOps) {
6058 
6059   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6060   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6061   return IsMatchingOps || IsSwappedOps;
6062 }
6063 
6064 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6065 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6066 /// Otherwise, return None if we can't infer anything.
6067 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6068                                                     CmpInst::Predicate BPred,
6069                                                     bool AreSwappedOps) {
6070   // Canonicalize the predicate as if the operands were not commuted.
6071   if (AreSwappedOps)
6072     BPred = ICmpInst::getSwappedPredicate(BPred);
6073 
6074   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6075     return true;
6076   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6077     return false;
6078 
6079   return None;
6080 }
6081 
6082 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6083 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6084 /// Otherwise, return None if we can't infer anything.
6085 static Optional<bool>
6086 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6087                                  const ConstantInt *C1,
6088                                  CmpInst::Predicate BPred,
6089                                  const ConstantInt *C2) {
6090   ConstantRange DomCR =
6091       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6092   ConstantRange CR =
6093       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6094   ConstantRange Intersection = DomCR.intersectWith(CR);
6095   ConstantRange Difference = DomCR.difference(CR);
6096   if (Intersection.isEmptySet())
6097     return false;
6098   if (Difference.isEmptySet())
6099     return true;
6100   return None;
6101 }
6102 
6103 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6104 /// false.  Otherwise, return None if we can't infer anything.
6105 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6106                                          CmpInst::Predicate BPred,
6107                                          const Value *BLHS, const Value *BRHS,
6108                                          const DataLayout &DL, bool LHSIsTrue,
6109                                          unsigned Depth) {
6110   Value *ALHS = LHS->getOperand(0);
6111   Value *ARHS = LHS->getOperand(1);
6112 
6113   // The rest of the logic assumes the LHS condition is true.  If that's not the
6114   // case, invert the predicate to make it so.
6115   CmpInst::Predicate APred =
6116       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6117 
6118   // Can we infer anything when the two compares have matching operands?
6119   bool AreSwappedOps;
6120   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6121     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6122             APred, BPred, AreSwappedOps))
6123       return Implication;
6124     // No amount of additional analysis will infer the second condition, so
6125     // early exit.
6126     return None;
6127   }
6128 
6129   // Can we infer anything when the LHS operands match and the RHS operands are
6130   // constants (not necessarily matching)?
6131   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6132     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6133             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6134       return Implication;
6135     // No amount of additional analysis will infer the second condition, so
6136     // early exit.
6137     return None;
6138   }
6139 
6140   if (APred == BPred)
6141     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6142   return None;
6143 }
6144 
6145 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6146 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6147 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6148 static Optional<bool>
6149 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6150                    const Value *RHSOp0, const Value *RHSOp1,
6151 
6152                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6153   // The LHS must be an 'or' or an 'and' instruction.
6154   assert((LHS->getOpcode() == Instruction::And ||
6155           LHS->getOpcode() == Instruction::Or) &&
6156          "Expected LHS to be 'and' or 'or'.");
6157 
6158   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6159 
6160   // If the result of an 'or' is false, then we know both legs of the 'or' are
6161   // false.  Similarly, if the result of an 'and' is true, then we know both
6162   // legs of the 'and' are true.
6163   Value *ALHS, *ARHS;
6164   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6165       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6166     // FIXME: Make this non-recursion.
6167     if (Optional<bool> Implication = isImpliedCondition(
6168             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6169       return Implication;
6170     if (Optional<bool> Implication = isImpliedCondition(
6171             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6172       return Implication;
6173     return None;
6174   }
6175   return None;
6176 }
6177 
6178 Optional<bool>
6179 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6180                          const Value *RHSOp0, const Value *RHSOp1,
6181                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6182   // Bail out when we hit the limit.
6183   if (Depth == MaxAnalysisRecursionDepth)
6184     return None;
6185 
6186   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6187   // example.
6188   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6189     return None;
6190 
6191   Type *OpTy = LHS->getType();
6192   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6193 
6194   // FIXME: Extending the code below to handle vectors.
6195   if (OpTy->isVectorTy())
6196     return None;
6197 
6198   assert(OpTy->isIntegerTy(1) && "implied by above");
6199 
6200   // Both LHS and RHS are icmps.
6201   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6202   if (LHSCmp)
6203     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6204                               Depth);
6205 
6206   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6207   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6208   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6209   if (LHSBO) {
6210     if ((LHSBO->getOpcode() == Instruction::And ||
6211          LHSBO->getOpcode() == Instruction::Or))
6212       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6213                                 Depth);
6214   }
6215   return None;
6216 }
6217 
6218 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6219                                         const DataLayout &DL, bool LHSIsTrue,
6220                                         unsigned Depth) {
6221   // LHS ==> RHS by definition
6222   if (LHS == RHS)
6223     return LHSIsTrue;
6224 
6225   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6226   if (RHSCmp)
6227     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6228                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6229                               LHSIsTrue, Depth);
6230   return None;
6231 }
6232 
6233 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6234 // condition dominating ContextI or nullptr, if no condition is found.
6235 static std::pair<Value *, bool>
6236 getDomPredecessorCondition(const Instruction *ContextI) {
6237   if (!ContextI || !ContextI->getParent())
6238     return {nullptr, false};
6239 
6240   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6241   // dominator tree (eg, from a SimplifyQuery) instead?
6242   const BasicBlock *ContextBB = ContextI->getParent();
6243   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6244   if (!PredBB)
6245     return {nullptr, false};
6246 
6247   // We need a conditional branch in the predecessor.
6248   Value *PredCond;
6249   BasicBlock *TrueBB, *FalseBB;
6250   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6251     return {nullptr, false};
6252 
6253   // The branch should get simplified. Don't bother simplifying this condition.
6254   if (TrueBB == FalseBB)
6255     return {nullptr, false};
6256 
6257   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6258          "Predecessor block does not point to successor?");
6259 
6260   // Is this condition implied by the predecessor condition?
6261   return {PredCond, TrueBB == ContextBB};
6262 }
6263 
6264 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6265                                              const Instruction *ContextI,
6266                                              const DataLayout &DL) {
6267   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6268   auto PredCond = getDomPredecessorCondition(ContextI);
6269   if (PredCond.first)
6270     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6271   return None;
6272 }
6273 
6274 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6275                                              const Value *LHS, const Value *RHS,
6276                                              const Instruction *ContextI,
6277                                              const DataLayout &DL) {
6278   auto PredCond = getDomPredecessorCondition(ContextI);
6279   if (PredCond.first)
6280     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6281                               PredCond.second);
6282   return None;
6283 }
6284 
6285 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6286                               APInt &Upper, const InstrInfoQuery &IIQ) {
6287   unsigned Width = Lower.getBitWidth();
6288   const APInt *C;
6289   switch (BO.getOpcode()) {
6290   case Instruction::Add:
6291     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6292       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6293       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6294         // 'add nuw x, C' produces [C, UINT_MAX].
6295         Lower = *C;
6296       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6297         if (C->isNegative()) {
6298           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6299           Lower = APInt::getSignedMinValue(Width);
6300           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6301         } else {
6302           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6303           Lower = APInt::getSignedMinValue(Width) + *C;
6304           Upper = APInt::getSignedMaxValue(Width) + 1;
6305         }
6306       }
6307     }
6308     break;
6309 
6310   case Instruction::And:
6311     if (match(BO.getOperand(1), m_APInt(C)))
6312       // 'and x, C' produces [0, C].
6313       Upper = *C + 1;
6314     break;
6315 
6316   case Instruction::Or:
6317     if (match(BO.getOperand(1), m_APInt(C)))
6318       // 'or x, C' produces [C, UINT_MAX].
6319       Lower = *C;
6320     break;
6321 
6322   case Instruction::AShr:
6323     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6324       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6325       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6326       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6327     } else if (match(BO.getOperand(0), m_APInt(C))) {
6328       unsigned ShiftAmount = Width - 1;
6329       if (!C->isNullValue() && IIQ.isExact(&BO))
6330         ShiftAmount = C->countTrailingZeros();
6331       if (C->isNegative()) {
6332         // 'ashr C, x' produces [C, C >> (Width-1)]
6333         Lower = *C;
6334         Upper = C->ashr(ShiftAmount) + 1;
6335       } else {
6336         // 'ashr C, x' produces [C >> (Width-1), C]
6337         Lower = C->ashr(ShiftAmount);
6338         Upper = *C + 1;
6339       }
6340     }
6341     break;
6342 
6343   case Instruction::LShr:
6344     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6345       // 'lshr x, C' produces [0, UINT_MAX >> C].
6346       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6347     } else if (match(BO.getOperand(0), m_APInt(C))) {
6348       // 'lshr C, x' produces [C >> (Width-1), C].
6349       unsigned ShiftAmount = Width - 1;
6350       if (!C->isNullValue() && IIQ.isExact(&BO))
6351         ShiftAmount = C->countTrailingZeros();
6352       Lower = C->lshr(ShiftAmount);
6353       Upper = *C + 1;
6354     }
6355     break;
6356 
6357   case Instruction::Shl:
6358     if (match(BO.getOperand(0), m_APInt(C))) {
6359       if (IIQ.hasNoUnsignedWrap(&BO)) {
6360         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6361         Lower = *C;
6362         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6363       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6364         if (C->isNegative()) {
6365           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6366           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6367           Lower = C->shl(ShiftAmount);
6368           Upper = *C + 1;
6369         } else {
6370           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6371           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6372           Lower = *C;
6373           Upper = C->shl(ShiftAmount) + 1;
6374         }
6375       }
6376     }
6377     break;
6378 
6379   case Instruction::SDiv:
6380     if (match(BO.getOperand(1), m_APInt(C))) {
6381       APInt IntMin = APInt::getSignedMinValue(Width);
6382       APInt IntMax = APInt::getSignedMaxValue(Width);
6383       if (C->isAllOnesValue()) {
6384         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6385         //    where C != -1 and C != 0 and C != 1
6386         Lower = IntMin + 1;
6387         Upper = IntMax + 1;
6388       } else if (C->countLeadingZeros() < Width - 1) {
6389         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6390         //    where C != -1 and C != 0 and C != 1
6391         Lower = IntMin.sdiv(*C);
6392         Upper = IntMax.sdiv(*C);
6393         if (Lower.sgt(Upper))
6394           std::swap(Lower, Upper);
6395         Upper = Upper + 1;
6396         assert(Upper != Lower && "Upper part of range has wrapped!");
6397       }
6398     } else if (match(BO.getOperand(0), m_APInt(C))) {
6399       if (C->isMinSignedValue()) {
6400         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6401         Lower = *C;
6402         Upper = Lower.lshr(1) + 1;
6403       } else {
6404         // 'sdiv C, x' produces [-|C|, |C|].
6405         Upper = C->abs() + 1;
6406         Lower = (-Upper) + 1;
6407       }
6408     }
6409     break;
6410 
6411   case Instruction::UDiv:
6412     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6413       // 'udiv x, C' produces [0, UINT_MAX / C].
6414       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6415     } else if (match(BO.getOperand(0), m_APInt(C))) {
6416       // 'udiv C, x' produces [0, C].
6417       Upper = *C + 1;
6418     }
6419     break;
6420 
6421   case Instruction::SRem:
6422     if (match(BO.getOperand(1), m_APInt(C))) {
6423       // 'srem x, C' produces (-|C|, |C|).
6424       Upper = C->abs();
6425       Lower = (-Upper) + 1;
6426     }
6427     break;
6428 
6429   case Instruction::URem:
6430     if (match(BO.getOperand(1), m_APInt(C)))
6431       // 'urem x, C' produces [0, C).
6432       Upper = *C;
6433     break;
6434 
6435   default:
6436     break;
6437   }
6438 }
6439 
6440 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6441                                   APInt &Upper) {
6442   unsigned Width = Lower.getBitWidth();
6443   const APInt *C;
6444   switch (II.getIntrinsicID()) {
6445   case Intrinsic::uadd_sat:
6446     // uadd.sat(x, C) produces [C, UINT_MAX].
6447     if (match(II.getOperand(0), m_APInt(C)) ||
6448         match(II.getOperand(1), m_APInt(C)))
6449       Lower = *C;
6450     break;
6451   case Intrinsic::sadd_sat:
6452     if (match(II.getOperand(0), m_APInt(C)) ||
6453         match(II.getOperand(1), m_APInt(C))) {
6454       if (C->isNegative()) {
6455         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6456         Lower = APInt::getSignedMinValue(Width);
6457         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6458       } else {
6459         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6460         Lower = APInt::getSignedMinValue(Width) + *C;
6461         Upper = APInt::getSignedMaxValue(Width) + 1;
6462       }
6463     }
6464     break;
6465   case Intrinsic::usub_sat:
6466     // usub.sat(C, x) produces [0, C].
6467     if (match(II.getOperand(0), m_APInt(C)))
6468       Upper = *C + 1;
6469     // usub.sat(x, C) produces [0, UINT_MAX - C].
6470     else if (match(II.getOperand(1), m_APInt(C)))
6471       Upper = APInt::getMaxValue(Width) - *C + 1;
6472     break;
6473   case Intrinsic::ssub_sat:
6474     if (match(II.getOperand(0), m_APInt(C))) {
6475       if (C->isNegative()) {
6476         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6477         Lower = APInt::getSignedMinValue(Width);
6478         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6479       } else {
6480         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6481         Lower = *C - APInt::getSignedMaxValue(Width);
6482         Upper = APInt::getSignedMaxValue(Width) + 1;
6483       }
6484     } else if (match(II.getOperand(1), m_APInt(C))) {
6485       if (C->isNegative()) {
6486         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6487         Lower = APInt::getSignedMinValue(Width) - *C;
6488         Upper = APInt::getSignedMaxValue(Width) + 1;
6489       } else {
6490         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6491         Lower = APInt::getSignedMinValue(Width);
6492         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6493       }
6494     }
6495     break;
6496   case Intrinsic::umin:
6497   case Intrinsic::umax:
6498   case Intrinsic::smin:
6499   case Intrinsic::smax:
6500     if (!match(II.getOperand(0), m_APInt(C)) &&
6501         !match(II.getOperand(1), m_APInt(C)))
6502       break;
6503 
6504     switch (II.getIntrinsicID()) {
6505     case Intrinsic::umin:
6506       Upper = *C + 1;
6507       break;
6508     case Intrinsic::umax:
6509       Lower = *C;
6510       break;
6511     case Intrinsic::smin:
6512       Lower = APInt::getSignedMinValue(Width);
6513       Upper = *C + 1;
6514       break;
6515     case Intrinsic::smax:
6516       Lower = *C;
6517       Upper = APInt::getSignedMaxValue(Width) + 1;
6518       break;
6519     default:
6520       llvm_unreachable("Must be min/max intrinsic");
6521     }
6522     break;
6523   case Intrinsic::abs:
6524     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6525     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6526     if (match(II.getOperand(1), m_One()))
6527       Upper = APInt::getSignedMaxValue(Width) + 1;
6528     else
6529       Upper = APInt::getSignedMinValue(Width) + 1;
6530     break;
6531   default:
6532     break;
6533   }
6534 }
6535 
6536 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6537                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6538   const Value *LHS = nullptr, *RHS = nullptr;
6539   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6540   if (R.Flavor == SPF_UNKNOWN)
6541     return;
6542 
6543   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6544 
6545   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6546     // If the negation part of the abs (in RHS) has the NSW flag,
6547     // then the result of abs(X) is [0..SIGNED_MAX],
6548     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6549     Lower = APInt::getNullValue(BitWidth);
6550     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6551         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6552       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6553     else
6554       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6555     return;
6556   }
6557 
6558   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6559     // The result of -abs(X) is <= 0.
6560     Lower = APInt::getSignedMinValue(BitWidth);
6561     Upper = APInt(BitWidth, 1);
6562     return;
6563   }
6564 
6565   const APInt *C;
6566   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6567     return;
6568 
6569   switch (R.Flavor) {
6570     case SPF_UMIN:
6571       Upper = *C + 1;
6572       break;
6573     case SPF_UMAX:
6574       Lower = *C;
6575       break;
6576     case SPF_SMIN:
6577       Lower = APInt::getSignedMinValue(BitWidth);
6578       Upper = *C + 1;
6579       break;
6580     case SPF_SMAX:
6581       Lower = *C;
6582       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6583       break;
6584     default:
6585       break;
6586   }
6587 }
6588 
6589 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6590                                          AssumptionCache *AC,
6591                                          const Instruction *CtxI,
6592                                          unsigned Depth) {
6593   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6594 
6595   if (Depth == MaxAnalysisRecursionDepth)
6596     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6597 
6598   const APInt *C;
6599   if (match(V, m_APInt(C)))
6600     return ConstantRange(*C);
6601 
6602   InstrInfoQuery IIQ(UseInstrInfo);
6603   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6604   APInt Lower = APInt(BitWidth, 0);
6605   APInt Upper = APInt(BitWidth, 0);
6606   if (auto *BO = dyn_cast<BinaryOperator>(V))
6607     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6608   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6609     setLimitsForIntrinsic(*II, Lower, Upper);
6610   else if (auto *SI = dyn_cast<SelectInst>(V))
6611     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6612 
6613   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6614 
6615   if (auto *I = dyn_cast<Instruction>(V))
6616     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6617       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6618 
6619   if (CtxI && AC) {
6620     // Try to restrict the range based on information from assumptions.
6621     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6622       if (!AssumeVH)
6623         continue;
6624       CallInst *I = cast<CallInst>(AssumeVH);
6625       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6626              "Got assumption for the wrong function!");
6627       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6628              "must be an assume intrinsic");
6629 
6630       if (!isValidAssumeForContext(I, CtxI, nullptr))
6631         continue;
6632       Value *Arg = I->getArgOperand(0);
6633       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6634       // Currently we just use information from comparisons.
6635       if (!Cmp || Cmp->getOperand(0) != V)
6636         continue;
6637       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6638                                                AC, I, Depth + 1);
6639       CR = CR.intersectWith(
6640           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6641     }
6642   }
6643 
6644   return CR;
6645 }
6646 
6647 static Optional<int64_t>
6648 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6649   // Skip over the first indices.
6650   gep_type_iterator GTI = gep_type_begin(GEP);
6651   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6652     /*skip along*/;
6653 
6654   // Compute the offset implied by the rest of the indices.
6655   int64_t Offset = 0;
6656   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6657     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6658     if (!OpC)
6659       return None;
6660     if (OpC->isZero())
6661       continue; // No offset.
6662 
6663     // Handle struct indices, which add their field offset to the pointer.
6664     if (StructType *STy = GTI.getStructTypeOrNull()) {
6665       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6666       continue;
6667     }
6668 
6669     // Otherwise, we have a sequential type like an array or fixed-length
6670     // vector. Multiply the index by the ElementSize.
6671     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6672     if (Size.isScalable())
6673       return None;
6674     Offset += Size.getFixedSize() * OpC->getSExtValue();
6675   }
6676 
6677   return Offset;
6678 }
6679 
6680 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6681                                         const DataLayout &DL) {
6682   Ptr1 = Ptr1->stripPointerCasts();
6683   Ptr2 = Ptr2->stripPointerCasts();
6684 
6685   // Handle the trivial case first.
6686   if (Ptr1 == Ptr2) {
6687     return 0;
6688   }
6689 
6690   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6691   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6692 
6693   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6694   // as in "P" and "gep P, 1".
6695   // Also do this iteratively to handle the the following case:
6696   //   Ptr_t1 = GEP Ptr1, c1
6697   //   Ptr_t2 = GEP Ptr_t1, c2
6698   //   Ptr2 = GEP Ptr_t2, c3
6699   // where we will return c1+c2+c3.
6700   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6701   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6702   // are the same, and return the difference between offsets.
6703   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6704                                  const Value *Ptr) -> Optional<int64_t> {
6705     const GEPOperator *GEP_T = GEP;
6706     int64_t OffsetVal = 0;
6707     bool HasSameBase = false;
6708     while (GEP_T) {
6709       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6710       if (!Offset)
6711         return None;
6712       OffsetVal += *Offset;
6713       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6714       if (Op0 == Ptr) {
6715         HasSameBase = true;
6716         break;
6717       }
6718       GEP_T = dyn_cast<GEPOperator>(Op0);
6719     }
6720     if (!HasSameBase)
6721       return None;
6722     return OffsetVal;
6723   };
6724 
6725   if (GEP1) {
6726     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6727     if (Offset)
6728       return -*Offset;
6729   }
6730   if (GEP2) {
6731     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6732     if (Offset)
6733       return Offset;
6734   }
6735 
6736   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6737   // base.  After that base, they may have some number of common (and
6738   // potentially variable) indices.  After that they handle some constant
6739   // offset, which determines their offset from each other.  At this point, we
6740   // handle no other case.
6741   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6742     return None;
6743 
6744   // Skip any common indices and track the GEP types.
6745   unsigned Idx = 1;
6746   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6747     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6748       break;
6749 
6750   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6751   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6752   if (!Offset1 || !Offset2)
6753     return None;
6754   return *Offset2 - *Offset1;
6755 }
6756