1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known and on return 982 /// contains the known bit of the shift value source. KF is an 983 /// operator-specific function that, given the known-bits and a shift amount, 984 /// compute the implied known-bits of the shift operator's result respectively 985 /// for that shift amount. The results from calling KF are conservatively 986 /// combined for all permitted shift amounts. 987 static void computeKnownBitsFromShiftOperator( 988 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 989 KnownBits &Known2, unsigned Depth, const Query &Q, 990 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 991 unsigned BitWidth = Known.getBitWidth(); 992 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 993 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 994 995 if (Known.isConstant()) { 996 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 997 Known = KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))); 998 999 // If the known bits conflict, this must be an overflowing left shift, so 1000 // the shift result is poison. We can return anything we want. Choose 0 for 1001 // the best folding opportunity. 1002 if (Known.hasConflict()) 1003 Known.setAllZero(); 1004 1005 return; 1006 } 1007 1008 // If the shift amount could be greater than or equal to the bit-width of the 1009 // LHS, the value could be poison, but bail out because the check below is 1010 // expensive. 1011 // TODO: Should we just carry on? 1012 if (Known.getMaxValue().uge(BitWidth)) { 1013 Known.resetAll(); 1014 return; 1015 } 1016 1017 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1018 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1019 // limit value (which implies all bits are known). 1020 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1021 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1022 1023 // It would be more-clearly correct to use the two temporaries for this 1024 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1025 Known.resetAll(); 1026 1027 // If we know the shifter operand is nonzero, we can sometimes infer more 1028 // known bits. However this is expensive to compute, so be lazy about it and 1029 // only compute it when absolutely necessary. 1030 Optional<bool> ShifterOperandIsNonZero; 1031 1032 // Early exit if we can't constrain any well-defined shift amount. 1033 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1034 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1035 ShifterOperandIsNonZero = 1036 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1037 if (!*ShifterOperandIsNonZero) 1038 return; 1039 } 1040 1041 Known.Zero.setAllBits(); 1042 Known.One.setAllBits(); 1043 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1044 // Combine the shifted known input bits only for those shift amounts 1045 // compatible with its known constraints. 1046 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1047 continue; 1048 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1049 continue; 1050 // If we know the shifter is nonzero, we may be able to infer more known 1051 // bits. This check is sunk down as far as possible to avoid the expensive 1052 // call to isKnownNonZero if the cheaper checks above fail. 1053 if (ShiftAmt == 0) { 1054 if (!ShifterOperandIsNonZero.hasValue()) 1055 ShifterOperandIsNonZero = 1056 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1057 if (*ShifterOperandIsNonZero) 1058 continue; 1059 } 1060 1061 Known = KnownBits::commonBits( 1062 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1063 } 1064 1065 // If the known bits conflict, the result is poison. Return a 0 and hope the 1066 // caller can further optimize that. 1067 if (Known.hasConflict()) 1068 Known.setAllZero(); 1069 } 1070 1071 static void computeKnownBitsFromOperator(const Operator *I, 1072 const APInt &DemandedElts, 1073 KnownBits &Known, unsigned Depth, 1074 const Query &Q) { 1075 unsigned BitWidth = Known.getBitWidth(); 1076 1077 KnownBits Known2(BitWidth); 1078 switch (I->getOpcode()) { 1079 default: break; 1080 case Instruction::Load: 1081 if (MDNode *MD = 1082 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1083 computeKnownBitsFromRangeMetadata(*MD, Known); 1084 break; 1085 case Instruction::And: { 1086 // If either the LHS or the RHS are Zero, the result is zero. 1087 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1088 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1089 1090 Known &= Known2; 1091 1092 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1093 // here we handle the more general case of adding any odd number by 1094 // matching the form add(x, add(x, y)) where y is odd. 1095 // TODO: This could be generalized to clearing any bit set in y where the 1096 // following bit is known to be unset in y. 1097 Value *X = nullptr, *Y = nullptr; 1098 if (!Known.Zero[0] && !Known.One[0] && 1099 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1100 Known2.resetAll(); 1101 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1102 if (Known2.countMinTrailingOnes() > 0) 1103 Known.Zero.setBit(0); 1104 } 1105 break; 1106 } 1107 case Instruction::Or: 1108 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1109 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1110 1111 Known |= Known2; 1112 break; 1113 case Instruction::Xor: 1114 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1115 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1116 1117 Known ^= Known2; 1118 break; 1119 case Instruction::Mul: { 1120 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1121 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1122 Known, Known2, Depth, Q); 1123 break; 1124 } 1125 case Instruction::UDiv: { 1126 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1127 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1128 Known = KnownBits::udiv(Known, Known2); 1129 break; 1130 } 1131 case Instruction::Select: { 1132 const Value *LHS = nullptr, *RHS = nullptr; 1133 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1134 if (SelectPatternResult::isMinOrMax(SPF)) { 1135 computeKnownBits(RHS, Known, Depth + 1, Q); 1136 computeKnownBits(LHS, Known2, Depth + 1, Q); 1137 switch (SPF) { 1138 default: 1139 llvm_unreachable("Unhandled select pattern flavor!"); 1140 case SPF_SMAX: 1141 Known = KnownBits::smax(Known, Known2); 1142 break; 1143 case SPF_SMIN: 1144 Known = KnownBits::smin(Known, Known2); 1145 break; 1146 case SPF_UMAX: 1147 Known = KnownBits::umax(Known, Known2); 1148 break; 1149 case SPF_UMIN: 1150 Known = KnownBits::umin(Known, Known2); 1151 break; 1152 } 1153 break; 1154 } 1155 1156 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1157 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1158 1159 // Only known if known in both the LHS and RHS. 1160 Known = KnownBits::commonBits(Known, Known2); 1161 1162 if (SPF == SPF_ABS) { 1163 // RHS from matchSelectPattern returns the negation part of abs pattern. 1164 // If the negate has an NSW flag we can assume the sign bit of the result 1165 // will be 0 because that makes abs(INT_MIN) undefined. 1166 if (match(RHS, m_Neg(m_Specific(LHS))) && 1167 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1168 Known.Zero.setSignBit(); 1169 } 1170 1171 break; 1172 } 1173 case Instruction::FPTrunc: 1174 case Instruction::FPExt: 1175 case Instruction::FPToUI: 1176 case Instruction::FPToSI: 1177 case Instruction::SIToFP: 1178 case Instruction::UIToFP: 1179 break; // Can't work with floating point. 1180 case Instruction::PtrToInt: 1181 case Instruction::IntToPtr: 1182 // Fall through and handle them the same as zext/trunc. 1183 LLVM_FALLTHROUGH; 1184 case Instruction::ZExt: 1185 case Instruction::Trunc: { 1186 Type *SrcTy = I->getOperand(0)->getType(); 1187 1188 unsigned SrcBitWidth; 1189 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1190 // which fall through here. 1191 Type *ScalarTy = SrcTy->getScalarType(); 1192 SrcBitWidth = ScalarTy->isPointerTy() ? 1193 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1194 Q.DL.getTypeSizeInBits(ScalarTy); 1195 1196 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1197 Known = Known.anyextOrTrunc(SrcBitWidth); 1198 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1199 Known = Known.zextOrTrunc(BitWidth); 1200 break; 1201 } 1202 case Instruction::BitCast: { 1203 Type *SrcTy = I->getOperand(0)->getType(); 1204 if (SrcTy->isIntOrPtrTy() && 1205 // TODO: For now, not handling conversions like: 1206 // (bitcast i64 %x to <2 x i32>) 1207 !I->getType()->isVectorTy()) { 1208 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1209 break; 1210 } 1211 break; 1212 } 1213 case Instruction::SExt: { 1214 // Compute the bits in the result that are not present in the input. 1215 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1216 1217 Known = Known.trunc(SrcBitWidth); 1218 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1219 // If the sign bit of the input is known set or clear, then we know the 1220 // top bits of the result. 1221 Known = Known.sext(BitWidth); 1222 break; 1223 } 1224 case Instruction::Shl: { 1225 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1226 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1227 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1228 // If this shift has "nsw" keyword, then the result is either a poison 1229 // value or has the same sign bit as the first operand. 1230 if (NSW) { 1231 if (KnownVal.Zero.isSignBitSet()) 1232 Result.Zero.setSignBit(); 1233 if (KnownVal.One.isSignBitSet()) 1234 Result.One.setSignBit(); 1235 } 1236 return Result; 1237 }; 1238 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1239 KF); 1240 break; 1241 } 1242 case Instruction::LShr: { 1243 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1244 return KnownBits::lshr(KnownVal, KnownAmt); 1245 }; 1246 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1247 KF); 1248 break; 1249 } 1250 case Instruction::AShr: { 1251 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1252 return KnownBits::ashr(KnownVal, KnownAmt); 1253 }; 1254 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1255 KF); 1256 break; 1257 } 1258 case Instruction::Sub: { 1259 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1260 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1261 DemandedElts, Known, Known2, Depth, Q); 1262 break; 1263 } 1264 case Instruction::Add: { 1265 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1266 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1267 DemandedElts, Known, Known2, Depth, Q); 1268 break; 1269 } 1270 case Instruction::SRem: 1271 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1272 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1273 Known = KnownBits::srem(Known, Known2); 1274 break; 1275 1276 case Instruction::URem: 1277 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1278 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1279 Known = KnownBits::urem(Known, Known2); 1280 break; 1281 case Instruction::Alloca: 1282 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1283 break; 1284 case Instruction::GetElementPtr: { 1285 // Analyze all of the subscripts of this getelementptr instruction 1286 // to determine if we can prove known low zero bits. 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 // Accumulate the constant indices in a separate variable 1289 // to minimize the number of calls to computeForAddSub. 1290 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1291 1292 gep_type_iterator GTI = gep_type_begin(I); 1293 // If the inbounds keyword is not present, the offsets are added to the 1294 // base address with silently-wrapping two’s complement arithmetic. 1295 bool IsInBounds = cast<GEPOperator>(I)->isInBounds(); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor.Zero = ~TypeSizeInBytes; 1351 ScalingFactor.One = TypeSizeInBytes; 1352 } 1353 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 Known = KnownBits::computeForAddSub( 1361 /*Add=*/true, 1362 /*NSW=*/IsInBounds, Known, IndexBits); 1363 } 1364 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1365 KnownBits Index(BitWidth); 1366 Index.Zero = ~AccConstIndices; 1367 Index.One = AccConstIndices; 1368 Known = KnownBits::computeForAddSub( 1369 /*Add=*/true, 1370 /*NSW=*/IsInBounds, Known, Index); 1371 } 1372 break; 1373 } 1374 case Instruction::PHI: { 1375 const PHINode *P = cast<PHINode>(I); 1376 // Handle the case of a simple two-predecessor recurrence PHI. 1377 // There's a lot more that could theoretically be done here, but 1378 // this is sufficient to catch some interesting cases. 1379 if (P->getNumIncomingValues() == 2) { 1380 for (unsigned i = 0; i != 2; ++i) { 1381 Value *L = P->getIncomingValue(i); 1382 Value *R = P->getIncomingValue(!i); 1383 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1384 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1385 Operator *LU = dyn_cast<Operator>(L); 1386 if (!LU) 1387 continue; 1388 unsigned Opcode = LU->getOpcode(); 1389 // Check for operations that have the property that if 1390 // both their operands have low zero bits, the result 1391 // will have low zero bits. 1392 if (Opcode == Instruction::Add || 1393 Opcode == Instruction::Sub || 1394 Opcode == Instruction::And || 1395 Opcode == Instruction::Or || 1396 Opcode == Instruction::Mul) { 1397 Value *LL = LU->getOperand(0); 1398 Value *LR = LU->getOperand(1); 1399 // Find a recurrence. 1400 if (LL == I) 1401 L = LR; 1402 else if (LR == I) 1403 L = LL; 1404 else 1405 continue; // Check for recurrence with L and R flipped. 1406 1407 // Change the context instruction to the "edge" that flows into the 1408 // phi. This is important because that is where the value is actually 1409 // "evaluated" even though it is used later somewhere else. (see also 1410 // D69571). 1411 Query RecQ = Q; 1412 1413 // Ok, we have a PHI of the form L op= R. Check for low 1414 // zero bits. 1415 RecQ.CxtI = RInst; 1416 computeKnownBits(R, Known2, Depth + 1, RecQ); 1417 1418 // We need to take the minimum number of known bits 1419 KnownBits Known3(BitWidth); 1420 RecQ.CxtI = LInst; 1421 computeKnownBits(L, Known3, Depth + 1, RecQ); 1422 1423 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1424 Known3.countMinTrailingZeros())); 1425 1426 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1427 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1428 // If initial value of recurrence is nonnegative, and we are adding 1429 // a nonnegative number with nsw, the result can only be nonnegative 1430 // or poison value regardless of the number of times we execute the 1431 // add in phi recurrence. If initial value is negative and we are 1432 // adding a negative number with nsw, the result can only be 1433 // negative or poison value. Similar arguments apply to sub and mul. 1434 // 1435 // (add non-negative, non-negative) --> non-negative 1436 // (add negative, negative) --> negative 1437 if (Opcode == Instruction::Add) { 1438 if (Known2.isNonNegative() && Known3.isNonNegative()) 1439 Known.makeNonNegative(); 1440 else if (Known2.isNegative() && Known3.isNegative()) 1441 Known.makeNegative(); 1442 } 1443 1444 // (sub nsw non-negative, negative) --> non-negative 1445 // (sub nsw negative, non-negative) --> negative 1446 else if (Opcode == Instruction::Sub && LL == I) { 1447 if (Known2.isNonNegative() && Known3.isNegative()) 1448 Known.makeNonNegative(); 1449 else if (Known2.isNegative() && Known3.isNonNegative()) 1450 Known.makeNegative(); 1451 } 1452 1453 // (mul nsw non-negative, non-negative) --> non-negative 1454 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1455 Known3.isNonNegative()) 1456 Known.makeNonNegative(); 1457 } 1458 1459 break; 1460 } 1461 } 1462 } 1463 1464 // Unreachable blocks may have zero-operand PHI nodes. 1465 if (P->getNumIncomingValues() == 0) 1466 break; 1467 1468 // Otherwise take the unions of the known bit sets of the operands, 1469 // taking conservative care to avoid excessive recursion. 1470 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1471 // Skip if every incoming value references to ourself. 1472 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1473 break; 1474 1475 Known.Zero.setAllBits(); 1476 Known.One.setAllBits(); 1477 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1478 Value *IncValue = P->getIncomingValue(u); 1479 // Skip direct self references. 1480 if (IncValue == P) continue; 1481 1482 // Change the context instruction to the "edge" that flows into the 1483 // phi. This is important because that is where the value is actually 1484 // "evaluated" even though it is used later somewhere else. (see also 1485 // D69571). 1486 Query RecQ = Q; 1487 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1488 1489 Known2 = KnownBits(BitWidth); 1490 // Recurse, but cap the recursion to one level, because we don't 1491 // want to waste time spinning around in loops. 1492 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1493 Known = KnownBits::commonBits(Known, Known2); 1494 // If all bits have been ruled out, there's no need to check 1495 // more operands. 1496 if (Known.isUnknown()) 1497 break; 1498 } 1499 } 1500 break; 1501 } 1502 case Instruction::Call: 1503 case Instruction::Invoke: 1504 // If range metadata is attached to this call, set known bits from that, 1505 // and then intersect with known bits based on other properties of the 1506 // function. 1507 if (MDNode *MD = 1508 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1509 computeKnownBitsFromRangeMetadata(*MD, Known); 1510 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1511 computeKnownBits(RV, Known2, Depth + 1, Q); 1512 Known.Zero |= Known2.Zero; 1513 Known.One |= Known2.One; 1514 } 1515 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1516 switch (II->getIntrinsicID()) { 1517 default: break; 1518 case Intrinsic::abs: 1519 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1520 1521 // If the source's MSB is zero then we know the rest of the bits. 1522 if (Known2.isNonNegative()) { 1523 Known.Zero |= Known2.Zero; 1524 Known.One |= Known2.One; 1525 break; 1526 } 1527 1528 // Absolute value preserves trailing zero count. 1529 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1530 1531 // If this call is undefined for INT_MIN, the result is positive. We 1532 // also know it can't be INT_MIN if there is a set bit that isn't the 1533 // sign bit. 1534 Known2.One.clearSignBit(); 1535 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1536 Known.Zero.setSignBit(); 1537 // FIXME: Handle known negative input? 1538 // FIXME: Calculate the negated Known bits and combine them? 1539 break; 1540 case Intrinsic::bitreverse: 1541 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1542 Known.Zero |= Known2.Zero.reverseBits(); 1543 Known.One |= Known2.One.reverseBits(); 1544 break; 1545 case Intrinsic::bswap: 1546 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1547 Known.Zero |= Known2.Zero.byteSwap(); 1548 Known.One |= Known2.One.byteSwap(); 1549 break; 1550 case Intrinsic::ctlz: { 1551 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1552 // If we have a known 1, its position is our upper bound. 1553 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1554 // If this call is undefined for 0, the result will be less than 2^n. 1555 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1556 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1557 unsigned LowBits = Log2_32(PossibleLZ)+1; 1558 Known.Zero.setBitsFrom(LowBits); 1559 break; 1560 } 1561 case Intrinsic::cttz: { 1562 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1563 // If we have a known 1, its position is our upper bound. 1564 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1565 // If this call is undefined for 0, the result will be less than 2^n. 1566 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1567 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1568 unsigned LowBits = Log2_32(PossibleTZ)+1; 1569 Known.Zero.setBitsFrom(LowBits); 1570 break; 1571 } 1572 case Intrinsic::ctpop: { 1573 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1574 // We can bound the space the count needs. Also, bits known to be zero 1575 // can't contribute to the population. 1576 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1577 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1578 Known.Zero.setBitsFrom(LowBits); 1579 // TODO: we could bound KnownOne using the lower bound on the number 1580 // of bits which might be set provided by popcnt KnownOne2. 1581 break; 1582 } 1583 case Intrinsic::fshr: 1584 case Intrinsic::fshl: { 1585 const APInt *SA; 1586 if (!match(I->getOperand(2), m_APInt(SA))) 1587 break; 1588 1589 // Normalize to funnel shift left. 1590 uint64_t ShiftAmt = SA->urem(BitWidth); 1591 if (II->getIntrinsicID() == Intrinsic::fshr) 1592 ShiftAmt = BitWidth - ShiftAmt; 1593 1594 KnownBits Known3(BitWidth); 1595 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1596 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1597 1598 Known.Zero = 1599 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1600 Known.One = 1601 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1602 break; 1603 } 1604 case Intrinsic::uadd_sat: 1605 case Intrinsic::usub_sat: { 1606 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1607 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1608 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1609 1610 // Add: Leading ones of either operand are preserved. 1611 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1612 // as leading zeros in the result. 1613 unsigned LeadingKnown; 1614 if (IsAdd) 1615 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1616 Known2.countMinLeadingOnes()); 1617 else 1618 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1619 Known2.countMinLeadingOnes()); 1620 1621 Known = KnownBits::computeForAddSub( 1622 IsAdd, /* NSW */ false, Known, Known2); 1623 1624 // We select between the operation result and all-ones/zero 1625 // respectively, so we can preserve known ones/zeros. 1626 if (IsAdd) { 1627 Known.One.setHighBits(LeadingKnown); 1628 Known.Zero.clearAllBits(); 1629 } else { 1630 Known.Zero.setHighBits(LeadingKnown); 1631 Known.One.clearAllBits(); 1632 } 1633 break; 1634 } 1635 case Intrinsic::umin: 1636 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1637 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1638 Known = KnownBits::umin(Known, Known2); 1639 break; 1640 case Intrinsic::umax: 1641 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1642 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1643 Known = KnownBits::umax(Known, Known2); 1644 break; 1645 case Intrinsic::smin: 1646 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1647 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1648 Known = KnownBits::smin(Known, Known2); 1649 break; 1650 case Intrinsic::smax: 1651 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1652 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1653 Known = KnownBits::smax(Known, Known2); 1654 break; 1655 case Intrinsic::x86_sse42_crc32_64_64: 1656 Known.Zero.setBitsFrom(32); 1657 break; 1658 } 1659 } 1660 break; 1661 case Instruction::ShuffleVector: { 1662 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1663 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1664 if (!Shuf) { 1665 Known.resetAll(); 1666 return; 1667 } 1668 // For undef elements, we don't know anything about the common state of 1669 // the shuffle result. 1670 APInt DemandedLHS, DemandedRHS; 1671 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1672 Known.resetAll(); 1673 return; 1674 } 1675 Known.One.setAllBits(); 1676 Known.Zero.setAllBits(); 1677 if (!!DemandedLHS) { 1678 const Value *LHS = Shuf->getOperand(0); 1679 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1680 // If we don't know any bits, early out. 1681 if (Known.isUnknown()) 1682 break; 1683 } 1684 if (!!DemandedRHS) { 1685 const Value *RHS = Shuf->getOperand(1); 1686 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1687 Known = KnownBits::commonBits(Known, Known2); 1688 } 1689 break; 1690 } 1691 case Instruction::InsertElement: { 1692 const Value *Vec = I->getOperand(0); 1693 const Value *Elt = I->getOperand(1); 1694 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1695 // Early out if the index is non-constant or out-of-range. 1696 unsigned NumElts = DemandedElts.getBitWidth(); 1697 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1698 Known.resetAll(); 1699 return; 1700 } 1701 Known.One.setAllBits(); 1702 Known.Zero.setAllBits(); 1703 unsigned EltIdx = CIdx->getZExtValue(); 1704 // Do we demand the inserted element? 1705 if (DemandedElts[EltIdx]) { 1706 computeKnownBits(Elt, Known, Depth + 1, Q); 1707 // If we don't know any bits, early out. 1708 if (Known.isUnknown()) 1709 break; 1710 } 1711 // We don't need the base vector element that has been inserted. 1712 APInt DemandedVecElts = DemandedElts; 1713 DemandedVecElts.clearBit(EltIdx); 1714 if (!!DemandedVecElts) { 1715 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1716 Known = KnownBits::commonBits(Known, Known2); 1717 } 1718 break; 1719 } 1720 case Instruction::ExtractElement: { 1721 // Look through extract element. If the index is non-constant or 1722 // out-of-range demand all elements, otherwise just the extracted element. 1723 const Value *Vec = I->getOperand(0); 1724 const Value *Idx = I->getOperand(1); 1725 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1726 if (isa<ScalableVectorType>(Vec->getType())) { 1727 // FIXME: there's probably *something* we can do with scalable vectors 1728 Known.resetAll(); 1729 break; 1730 } 1731 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1732 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1733 if (CIdx && CIdx->getValue().ult(NumElts)) 1734 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1735 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1736 break; 1737 } 1738 case Instruction::ExtractValue: 1739 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1740 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1741 if (EVI->getNumIndices() != 1) break; 1742 if (EVI->getIndices()[0] == 0) { 1743 switch (II->getIntrinsicID()) { 1744 default: break; 1745 case Intrinsic::uadd_with_overflow: 1746 case Intrinsic::sadd_with_overflow: 1747 computeKnownBitsAddSub(true, II->getArgOperand(0), 1748 II->getArgOperand(1), false, DemandedElts, 1749 Known, Known2, Depth, Q); 1750 break; 1751 case Intrinsic::usub_with_overflow: 1752 case Intrinsic::ssub_with_overflow: 1753 computeKnownBitsAddSub(false, II->getArgOperand(0), 1754 II->getArgOperand(1), false, DemandedElts, 1755 Known, Known2, Depth, Q); 1756 break; 1757 case Intrinsic::umul_with_overflow: 1758 case Intrinsic::smul_with_overflow: 1759 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1760 DemandedElts, Known, Known2, Depth, Q); 1761 break; 1762 } 1763 } 1764 } 1765 break; 1766 case Instruction::Freeze: 1767 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1768 Depth + 1)) 1769 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1770 break; 1771 } 1772 } 1773 1774 /// Determine which bits of V are known to be either zero or one and return 1775 /// them. 1776 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1777 unsigned Depth, const Query &Q) { 1778 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1779 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1780 return Known; 1781 } 1782 1783 /// Determine which bits of V are known to be either zero or one and return 1784 /// them. 1785 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1786 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1787 computeKnownBits(V, Known, Depth, Q); 1788 return Known; 1789 } 1790 1791 /// Determine which bits of V are known to be either zero or one and return 1792 /// them in the Known bit set. 1793 /// 1794 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1795 /// we cannot optimize based on the assumption that it is zero without changing 1796 /// it to be an explicit zero. If we don't change it to zero, other code could 1797 /// optimized based on the contradictory assumption that it is non-zero. 1798 /// Because instcombine aggressively folds operations with undef args anyway, 1799 /// this won't lose us code quality. 1800 /// 1801 /// This function is defined on values with integer type, values with pointer 1802 /// type, and vectors of integers. In the case 1803 /// where V is a vector, known zero, and known one values are the 1804 /// same width as the vector element, and the bit is set only if it is true 1805 /// for all of the demanded elements in the vector specified by DemandedElts. 1806 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1807 KnownBits &Known, unsigned Depth, const Query &Q) { 1808 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1809 // No demanded elts or V is a scalable vector, better to assume we don't 1810 // know anything. 1811 Known.resetAll(); 1812 return; 1813 } 1814 1815 assert(V && "No Value?"); 1816 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1817 1818 #ifndef NDEBUG 1819 Type *Ty = V->getType(); 1820 unsigned BitWidth = Known.getBitWidth(); 1821 1822 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1823 "Not integer or pointer type!"); 1824 1825 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1826 assert( 1827 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1828 "DemandedElt width should equal the fixed vector number of elements"); 1829 } else { 1830 assert(DemandedElts == APInt(1, 1) && 1831 "DemandedElt width should be 1 for scalars"); 1832 } 1833 1834 Type *ScalarTy = Ty->getScalarType(); 1835 if (ScalarTy->isPointerTy()) { 1836 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1837 "V and Known should have same BitWidth"); 1838 } else { 1839 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1840 "V and Known should have same BitWidth"); 1841 } 1842 #endif 1843 1844 const APInt *C; 1845 if (match(V, m_APInt(C))) { 1846 // We know all of the bits for a scalar constant or a splat vector constant! 1847 Known.One = *C; 1848 Known.Zero = ~Known.One; 1849 return; 1850 } 1851 // Null and aggregate-zero are all-zeros. 1852 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1853 Known.setAllZero(); 1854 return; 1855 } 1856 // Handle a constant vector by taking the intersection of the known bits of 1857 // each element. 1858 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1859 // We know that CDV must be a vector of integers. Take the intersection of 1860 // each element. 1861 Known.Zero.setAllBits(); Known.One.setAllBits(); 1862 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1863 if (!DemandedElts[i]) 1864 continue; 1865 APInt Elt = CDV->getElementAsAPInt(i); 1866 Known.Zero &= ~Elt; 1867 Known.One &= Elt; 1868 } 1869 return; 1870 } 1871 1872 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1873 // We know that CV must be a vector of integers. Take the intersection of 1874 // each element. 1875 Known.Zero.setAllBits(); Known.One.setAllBits(); 1876 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1877 if (!DemandedElts[i]) 1878 continue; 1879 Constant *Element = CV->getAggregateElement(i); 1880 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1881 if (!ElementCI) { 1882 Known.resetAll(); 1883 return; 1884 } 1885 const APInt &Elt = ElementCI->getValue(); 1886 Known.Zero &= ~Elt; 1887 Known.One &= Elt; 1888 } 1889 return; 1890 } 1891 1892 // Start out not knowing anything. 1893 Known.resetAll(); 1894 1895 // We can't imply anything about undefs. 1896 if (isa<UndefValue>(V)) 1897 return; 1898 1899 // There's no point in looking through other users of ConstantData for 1900 // assumptions. Confirm that we've handled them all. 1901 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1902 1903 // All recursive calls that increase depth must come after this. 1904 if (Depth == MaxAnalysisRecursionDepth) 1905 return; 1906 1907 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1908 // the bits of its aliasee. 1909 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1910 if (!GA->isInterposable()) 1911 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1912 return; 1913 } 1914 1915 if (const Operator *I = dyn_cast<Operator>(V)) 1916 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1917 1918 // Aligned pointers have trailing zeros - refine Known.Zero set 1919 if (isa<PointerType>(V->getType())) { 1920 Align Alignment = V->getPointerAlignment(Q.DL); 1921 Known.Zero.setLowBits(Log2(Alignment)); 1922 } 1923 1924 // computeKnownBitsFromAssume strictly refines Known. 1925 // Therefore, we run them after computeKnownBitsFromOperator. 1926 1927 // Check whether a nearby assume intrinsic can determine some known bits. 1928 computeKnownBitsFromAssume(V, Known, Depth, Q); 1929 1930 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1931 } 1932 1933 /// Return true if the given value is known to have exactly one 1934 /// bit set when defined. For vectors return true if every element is known to 1935 /// be a power of two when defined. Supports values with integer or pointer 1936 /// types and vectors of integers. 1937 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1938 const Query &Q) { 1939 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1940 1941 // Attempt to match against constants. 1942 if (OrZero && match(V, m_Power2OrZero())) 1943 return true; 1944 if (match(V, m_Power2())) 1945 return true; 1946 1947 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1948 // it is shifted off the end then the result is undefined. 1949 if (match(V, m_Shl(m_One(), m_Value()))) 1950 return true; 1951 1952 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1953 // the bottom. If it is shifted off the bottom then the result is undefined. 1954 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1955 return true; 1956 1957 // The remaining tests are all recursive, so bail out if we hit the limit. 1958 if (Depth++ == MaxAnalysisRecursionDepth) 1959 return false; 1960 1961 Value *X = nullptr, *Y = nullptr; 1962 // A shift left or a logical shift right of a power of two is a power of two 1963 // or zero. 1964 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1965 match(V, m_LShr(m_Value(X), m_Value())))) 1966 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1967 1968 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1969 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1970 1971 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1972 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1973 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1974 1975 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1976 // A power of two and'd with anything is a power of two or zero. 1977 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1978 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1979 return true; 1980 // X & (-X) is always a power of two or zero. 1981 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1982 return true; 1983 return false; 1984 } 1985 1986 // Adding a power-of-two or zero to the same power-of-two or zero yields 1987 // either the original power-of-two, a larger power-of-two or zero. 1988 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1989 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1990 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1991 Q.IIQ.hasNoSignedWrap(VOBO)) { 1992 if (match(X, m_And(m_Specific(Y), m_Value())) || 1993 match(X, m_And(m_Value(), m_Specific(Y)))) 1994 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1995 return true; 1996 if (match(Y, m_And(m_Specific(X), m_Value())) || 1997 match(Y, m_And(m_Value(), m_Specific(X)))) 1998 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1999 return true; 2000 2001 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2002 KnownBits LHSBits(BitWidth); 2003 computeKnownBits(X, LHSBits, Depth, Q); 2004 2005 KnownBits RHSBits(BitWidth); 2006 computeKnownBits(Y, RHSBits, Depth, Q); 2007 // If i8 V is a power of two or zero: 2008 // ZeroBits: 1 1 1 0 1 1 1 1 2009 // ~ZeroBits: 0 0 0 1 0 0 0 0 2010 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2011 // If OrZero isn't set, we cannot give back a zero result. 2012 // Make sure either the LHS or RHS has a bit set. 2013 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2014 return true; 2015 } 2016 } 2017 2018 // An exact divide or right shift can only shift off zero bits, so the result 2019 // is a power of two only if the first operand is a power of two and not 2020 // copying a sign bit (sdiv int_min, 2). 2021 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2022 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2023 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2024 Depth, Q); 2025 } 2026 2027 return false; 2028 } 2029 2030 /// Test whether a GEP's result is known to be non-null. 2031 /// 2032 /// Uses properties inherent in a GEP to try to determine whether it is known 2033 /// to be non-null. 2034 /// 2035 /// Currently this routine does not support vector GEPs. 2036 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2037 const Query &Q) { 2038 const Function *F = nullptr; 2039 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2040 F = I->getFunction(); 2041 2042 if (!GEP->isInBounds() || 2043 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2044 return false; 2045 2046 // FIXME: Support vector-GEPs. 2047 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2048 2049 // If the base pointer is non-null, we cannot walk to a null address with an 2050 // inbounds GEP in address space zero. 2051 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2052 return true; 2053 2054 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2055 // If so, then the GEP cannot produce a null pointer, as doing so would 2056 // inherently violate the inbounds contract within address space zero. 2057 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2058 GTI != GTE; ++GTI) { 2059 // Struct types are easy -- they must always be indexed by a constant. 2060 if (StructType *STy = GTI.getStructTypeOrNull()) { 2061 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2062 unsigned ElementIdx = OpC->getZExtValue(); 2063 const StructLayout *SL = Q.DL.getStructLayout(STy); 2064 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2065 if (ElementOffset > 0) 2066 return true; 2067 continue; 2068 } 2069 2070 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2071 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2072 continue; 2073 2074 // Fast path the constant operand case both for efficiency and so we don't 2075 // increment Depth when just zipping down an all-constant GEP. 2076 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2077 if (!OpC->isZero()) 2078 return true; 2079 continue; 2080 } 2081 2082 // We post-increment Depth here because while isKnownNonZero increments it 2083 // as well, when we pop back up that increment won't persist. We don't want 2084 // to recurse 10k times just because we have 10k GEP operands. We don't 2085 // bail completely out because we want to handle constant GEPs regardless 2086 // of depth. 2087 if (Depth++ >= MaxAnalysisRecursionDepth) 2088 continue; 2089 2090 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2091 return true; 2092 } 2093 2094 return false; 2095 } 2096 2097 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2098 const Instruction *CtxI, 2099 const DominatorTree *DT) { 2100 if (isa<Constant>(V)) 2101 return false; 2102 2103 if (!CtxI || !DT) 2104 return false; 2105 2106 unsigned NumUsesExplored = 0; 2107 for (auto *U : V->users()) { 2108 // Avoid massive lists 2109 if (NumUsesExplored >= DomConditionsMaxUses) 2110 break; 2111 NumUsesExplored++; 2112 2113 // If the value is used as an argument to a call or invoke, then argument 2114 // attributes may provide an answer about null-ness. 2115 if (const auto *CB = dyn_cast<CallBase>(U)) 2116 if (auto *CalledFunc = CB->getCalledFunction()) 2117 for (const Argument &Arg : CalledFunc->args()) 2118 if (CB->getArgOperand(Arg.getArgNo()) == V && 2119 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2120 return true; 2121 2122 // If the value is used as a load/store, then the pointer must be non null. 2123 if (V == getLoadStorePointerOperand(U)) { 2124 const Instruction *I = cast<Instruction>(U); 2125 if (!NullPointerIsDefined(I->getFunction(), 2126 V->getType()->getPointerAddressSpace()) && 2127 DT->dominates(I, CtxI)) 2128 return true; 2129 } 2130 2131 // Consider only compare instructions uniquely controlling a branch 2132 CmpInst::Predicate Pred; 2133 if (!match(const_cast<User *>(U), 2134 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2135 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2136 continue; 2137 2138 SmallVector<const User *, 4> WorkList; 2139 SmallPtrSet<const User *, 4> Visited; 2140 for (auto *CmpU : U->users()) { 2141 assert(WorkList.empty() && "Should be!"); 2142 if (Visited.insert(CmpU).second) 2143 WorkList.push_back(CmpU); 2144 2145 while (!WorkList.empty()) { 2146 auto *Curr = WorkList.pop_back_val(); 2147 2148 // If a user is an AND, add all its users to the work list. We only 2149 // propagate "pred != null" condition through AND because it is only 2150 // correct to assume that all conditions of AND are met in true branch. 2151 // TODO: Support similar logic of OR and EQ predicate? 2152 if (Pred == ICmpInst::ICMP_NE) 2153 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2154 if (BO->getOpcode() == Instruction::And) { 2155 for (auto *BOU : BO->users()) 2156 if (Visited.insert(BOU).second) 2157 WorkList.push_back(BOU); 2158 continue; 2159 } 2160 2161 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2162 assert(BI->isConditional() && "uses a comparison!"); 2163 2164 BasicBlock *NonNullSuccessor = 2165 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2166 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2167 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2168 return true; 2169 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2170 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2171 return true; 2172 } 2173 } 2174 } 2175 } 2176 2177 return false; 2178 } 2179 2180 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2181 /// ensure that the value it's attached to is never Value? 'RangeType' is 2182 /// is the type of the value described by the range. 2183 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2184 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2185 assert(NumRanges >= 1); 2186 for (unsigned i = 0; i < NumRanges; ++i) { 2187 ConstantInt *Lower = 2188 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2189 ConstantInt *Upper = 2190 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2191 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2192 if (Range.contains(Value)) 2193 return false; 2194 } 2195 return true; 2196 } 2197 2198 /// Return true if the given value is known to be non-zero when defined. For 2199 /// vectors, return true if every demanded element is known to be non-zero when 2200 /// defined. For pointers, if the context instruction and dominator tree are 2201 /// specified, perform context-sensitive analysis and return true if the 2202 /// pointer couldn't possibly be null at the specified instruction. 2203 /// Supports values with integer or pointer type and vectors of integers. 2204 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2205 const Query &Q) { 2206 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2207 // vector 2208 if (isa<ScalableVectorType>(V->getType())) 2209 return false; 2210 2211 if (auto *C = dyn_cast<Constant>(V)) { 2212 if (C->isNullValue()) 2213 return false; 2214 if (isa<ConstantInt>(C)) 2215 // Must be non-zero due to null test above. 2216 return true; 2217 2218 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2219 // See the comment for IntToPtr/PtrToInt instructions below. 2220 if (CE->getOpcode() == Instruction::IntToPtr || 2221 CE->getOpcode() == Instruction::PtrToInt) 2222 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2223 .getFixedSize() <= 2224 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2225 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2226 } 2227 2228 // For constant vectors, check that all elements are undefined or known 2229 // non-zero to determine that the whole vector is known non-zero. 2230 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2231 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2232 if (!DemandedElts[i]) 2233 continue; 2234 Constant *Elt = C->getAggregateElement(i); 2235 if (!Elt || Elt->isNullValue()) 2236 return false; 2237 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2238 return false; 2239 } 2240 return true; 2241 } 2242 2243 // A global variable in address space 0 is non null unless extern weak 2244 // or an absolute symbol reference. Other address spaces may have null as a 2245 // valid address for a global, so we can't assume anything. 2246 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2247 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2248 GV->getType()->getAddressSpace() == 0) 2249 return true; 2250 } else 2251 return false; 2252 } 2253 2254 if (auto *I = dyn_cast<Instruction>(V)) { 2255 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2256 // If the possible ranges don't contain zero, then the value is 2257 // definitely non-zero. 2258 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2259 const APInt ZeroValue(Ty->getBitWidth(), 0); 2260 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2261 return true; 2262 } 2263 } 2264 } 2265 2266 if (isKnownNonZeroFromAssume(V, Q)) 2267 return true; 2268 2269 // Some of the tests below are recursive, so bail out if we hit the limit. 2270 if (Depth++ >= MaxAnalysisRecursionDepth) 2271 return false; 2272 2273 // Check for pointer simplifications. 2274 2275 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2276 // Alloca never returns null, malloc might. 2277 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2278 return true; 2279 2280 // A byval, inalloca may not be null in a non-default addres space. A 2281 // nonnull argument is assumed never 0. 2282 if (const Argument *A = dyn_cast<Argument>(V)) { 2283 if (((A->hasPassPointeeByValueCopyAttr() && 2284 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2285 A->hasNonNullAttr())) 2286 return true; 2287 } 2288 2289 // A Load tagged with nonnull metadata is never null. 2290 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2291 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2292 return true; 2293 2294 if (const auto *Call = dyn_cast<CallBase>(V)) { 2295 if (Call->isReturnNonNull()) 2296 return true; 2297 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2298 return isKnownNonZero(RP, Depth, Q); 2299 } 2300 } 2301 2302 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2303 return true; 2304 2305 // Check for recursive pointer simplifications. 2306 if (V->getType()->isPointerTy()) { 2307 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2308 // do not alter the value, or at least not the nullness property of the 2309 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2310 // 2311 // Note that we have to take special care to avoid looking through 2312 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2313 // as casts that can alter the value, e.g., AddrSpaceCasts. 2314 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2315 return isGEPKnownNonNull(GEP, Depth, Q); 2316 2317 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2318 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2319 2320 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2321 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2322 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2323 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2324 } 2325 2326 // Similar to int2ptr above, we can look through ptr2int here if the cast 2327 // is a no-op or an extend and not a truncate. 2328 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2329 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2330 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2331 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2332 2333 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2334 2335 // X | Y != 0 if X != 0 or Y != 0. 2336 Value *X = nullptr, *Y = nullptr; 2337 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2338 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2339 isKnownNonZero(Y, DemandedElts, Depth, Q); 2340 2341 // ext X != 0 if X != 0. 2342 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2343 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2344 2345 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2346 // if the lowest bit is shifted off the end. 2347 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2348 // shl nuw can't remove any non-zero bits. 2349 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2350 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2351 return isKnownNonZero(X, Depth, Q); 2352 2353 KnownBits Known(BitWidth); 2354 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2355 if (Known.One[0]) 2356 return true; 2357 } 2358 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2359 // defined if the sign bit is shifted off the end. 2360 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2361 // shr exact can only shift out zero bits. 2362 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2363 if (BO->isExact()) 2364 return isKnownNonZero(X, Depth, Q); 2365 2366 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2367 if (Known.isNegative()) 2368 return true; 2369 2370 // If the shifter operand is a constant, and all of the bits shifted 2371 // out are known to be zero, and X is known non-zero then at least one 2372 // non-zero bit must remain. 2373 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2374 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2375 // Is there a known one in the portion not shifted out? 2376 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2377 return true; 2378 // Are all the bits to be shifted out known zero? 2379 if (Known.countMinTrailingZeros() >= ShiftVal) 2380 return isKnownNonZero(X, DemandedElts, Depth, Q); 2381 } 2382 } 2383 // div exact can only produce a zero if the dividend is zero. 2384 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2385 return isKnownNonZero(X, DemandedElts, Depth, Q); 2386 } 2387 // X + Y. 2388 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2389 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2390 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2391 2392 // If X and Y are both non-negative (as signed values) then their sum is not 2393 // zero unless both X and Y are zero. 2394 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2395 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2396 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2397 return true; 2398 2399 // If X and Y are both negative (as signed values) then their sum is not 2400 // zero unless both X and Y equal INT_MIN. 2401 if (XKnown.isNegative() && YKnown.isNegative()) { 2402 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2403 // The sign bit of X is set. If some other bit is set then X is not equal 2404 // to INT_MIN. 2405 if (XKnown.One.intersects(Mask)) 2406 return true; 2407 // The sign bit of Y is set. If some other bit is set then Y is not equal 2408 // to INT_MIN. 2409 if (YKnown.One.intersects(Mask)) 2410 return true; 2411 } 2412 2413 // The sum of a non-negative number and a power of two is not zero. 2414 if (XKnown.isNonNegative() && 2415 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2416 return true; 2417 if (YKnown.isNonNegative() && 2418 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2419 return true; 2420 } 2421 // X * Y. 2422 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2423 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2424 // If X and Y are non-zero then so is X * Y as long as the multiplication 2425 // does not overflow. 2426 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2427 isKnownNonZero(X, DemandedElts, Depth, Q) && 2428 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2429 return true; 2430 } 2431 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2432 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2433 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2434 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2435 return true; 2436 } 2437 // PHI 2438 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2439 // Try and detect a recurrence that monotonically increases from a 2440 // starting value, as these are common as induction variables. 2441 if (PN->getNumIncomingValues() == 2) { 2442 Value *Start = PN->getIncomingValue(0); 2443 Value *Induction = PN->getIncomingValue(1); 2444 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2445 std::swap(Start, Induction); 2446 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2447 if (!C->isZero() && !C->isNegative()) { 2448 ConstantInt *X; 2449 if (Q.IIQ.UseInstrInfo && 2450 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2451 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2452 !X->isNegative()) 2453 return true; 2454 } 2455 } 2456 } 2457 // Check if all incoming values are non-zero using recursion. 2458 Query RecQ = Q; 2459 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2460 return llvm::all_of(PN->operands(), [&](const Use &U) { 2461 if (U.get() == PN) 2462 return true; 2463 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2464 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2465 }); 2466 } 2467 // ExtractElement 2468 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2469 const Value *Vec = EEI->getVectorOperand(); 2470 const Value *Idx = EEI->getIndexOperand(); 2471 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2472 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2473 unsigned NumElts = VecTy->getNumElements(); 2474 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2475 if (CIdx && CIdx->getValue().ult(NumElts)) 2476 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2477 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2478 } 2479 } 2480 // Freeze 2481 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2482 auto *Op = FI->getOperand(0); 2483 if (isKnownNonZero(Op, Depth, Q) && 2484 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2485 return true; 2486 } 2487 2488 KnownBits Known(BitWidth); 2489 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2490 return Known.One != 0; 2491 } 2492 2493 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2494 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2495 // vector 2496 if (isa<ScalableVectorType>(V->getType())) 2497 return false; 2498 2499 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2500 APInt DemandedElts = 2501 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2502 return isKnownNonZero(V, DemandedElts, Depth, Q); 2503 } 2504 2505 /// Return true if V2 == V1 + X, where X is known non-zero. 2506 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2507 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2508 if (!BO || BO->getOpcode() != Instruction::Add) 2509 return false; 2510 Value *Op = nullptr; 2511 if (V2 == BO->getOperand(0)) 2512 Op = BO->getOperand(1); 2513 else if (V2 == BO->getOperand(1)) 2514 Op = BO->getOperand(0); 2515 else 2516 return false; 2517 return isKnownNonZero(Op, 0, Q); 2518 } 2519 2520 /// Return true if it is known that V1 != V2. 2521 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2522 if (V1 == V2) 2523 return false; 2524 if (V1->getType() != V2->getType()) 2525 // We can't look through casts yet. 2526 return false; 2527 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2528 return true; 2529 2530 if (V1->getType()->isIntOrIntVectorTy()) { 2531 // Are any known bits in V1 contradictory to known bits in V2? If V1 2532 // has a known zero where V2 has a known one, they must not be equal. 2533 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2534 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2535 2536 if (Known1.Zero.intersects(Known2.One) || 2537 Known2.Zero.intersects(Known1.One)) 2538 return true; 2539 } 2540 return false; 2541 } 2542 2543 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2544 /// simplify operations downstream. Mask is known to be zero for bits that V 2545 /// cannot have. 2546 /// 2547 /// This function is defined on values with integer type, values with pointer 2548 /// type, and vectors of integers. In the case 2549 /// where V is a vector, the mask, known zero, and known one values are the 2550 /// same width as the vector element, and the bit is set only if it is true 2551 /// for all of the elements in the vector. 2552 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2553 const Query &Q) { 2554 KnownBits Known(Mask.getBitWidth()); 2555 computeKnownBits(V, Known, Depth, Q); 2556 return Mask.isSubsetOf(Known.Zero); 2557 } 2558 2559 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2560 // Returns the input and lower/upper bounds. 2561 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2562 const APInt *&CLow, const APInt *&CHigh) { 2563 assert(isa<Operator>(Select) && 2564 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2565 "Input should be a Select!"); 2566 2567 const Value *LHS = nullptr, *RHS = nullptr; 2568 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2569 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2570 return false; 2571 2572 if (!match(RHS, m_APInt(CLow))) 2573 return false; 2574 2575 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2576 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2577 if (getInverseMinMaxFlavor(SPF) != SPF2) 2578 return false; 2579 2580 if (!match(RHS2, m_APInt(CHigh))) 2581 return false; 2582 2583 if (SPF == SPF_SMIN) 2584 std::swap(CLow, CHigh); 2585 2586 In = LHS2; 2587 return CLow->sle(*CHigh); 2588 } 2589 2590 /// For vector constants, loop over the elements and find the constant with the 2591 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2592 /// or if any element was not analyzed; otherwise, return the count for the 2593 /// element with the minimum number of sign bits. 2594 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2595 const APInt &DemandedElts, 2596 unsigned TyBits) { 2597 const auto *CV = dyn_cast<Constant>(V); 2598 if (!CV || !isa<FixedVectorType>(CV->getType())) 2599 return 0; 2600 2601 unsigned MinSignBits = TyBits; 2602 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2603 for (unsigned i = 0; i != NumElts; ++i) { 2604 if (!DemandedElts[i]) 2605 continue; 2606 // If we find a non-ConstantInt, bail out. 2607 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2608 if (!Elt) 2609 return 0; 2610 2611 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2612 } 2613 2614 return MinSignBits; 2615 } 2616 2617 static unsigned ComputeNumSignBitsImpl(const Value *V, 2618 const APInt &DemandedElts, 2619 unsigned Depth, const Query &Q); 2620 2621 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2622 unsigned Depth, const Query &Q) { 2623 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2624 assert(Result > 0 && "At least one sign bit needs to be present!"); 2625 return Result; 2626 } 2627 2628 /// Return the number of times the sign bit of the register is replicated into 2629 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2630 /// (itself), but other cases can give us information. For example, immediately 2631 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2632 /// other, so we return 3. For vectors, return the number of sign bits for the 2633 /// vector element with the minimum number of known sign bits of the demanded 2634 /// elements in the vector specified by DemandedElts. 2635 static unsigned ComputeNumSignBitsImpl(const Value *V, 2636 const APInt &DemandedElts, 2637 unsigned Depth, const Query &Q) { 2638 Type *Ty = V->getType(); 2639 2640 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2641 // vector 2642 if (isa<ScalableVectorType>(Ty)) 2643 return 1; 2644 2645 #ifndef NDEBUG 2646 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2647 2648 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2649 assert( 2650 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2651 "DemandedElt width should equal the fixed vector number of elements"); 2652 } else { 2653 assert(DemandedElts == APInt(1, 1) && 2654 "DemandedElt width should be 1 for scalars"); 2655 } 2656 #endif 2657 2658 // We return the minimum number of sign bits that are guaranteed to be present 2659 // in V, so for undef we have to conservatively return 1. We don't have the 2660 // same behavior for poison though -- that's a FIXME today. 2661 2662 Type *ScalarTy = Ty->getScalarType(); 2663 unsigned TyBits = ScalarTy->isPointerTy() ? 2664 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2665 Q.DL.getTypeSizeInBits(ScalarTy); 2666 2667 unsigned Tmp, Tmp2; 2668 unsigned FirstAnswer = 1; 2669 2670 // Note that ConstantInt is handled by the general computeKnownBits case 2671 // below. 2672 2673 if (Depth == MaxAnalysisRecursionDepth) 2674 return 1; 2675 2676 if (auto *U = dyn_cast<Operator>(V)) { 2677 switch (Operator::getOpcode(V)) { 2678 default: break; 2679 case Instruction::SExt: 2680 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2681 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2682 2683 case Instruction::SDiv: { 2684 const APInt *Denominator; 2685 // sdiv X, C -> adds log(C) sign bits. 2686 if (match(U->getOperand(1), m_APInt(Denominator))) { 2687 2688 // Ignore non-positive denominator. 2689 if (!Denominator->isStrictlyPositive()) 2690 break; 2691 2692 // Calculate the incoming numerator bits. 2693 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2694 2695 // Add floor(log(C)) bits to the numerator bits. 2696 return std::min(TyBits, NumBits + Denominator->logBase2()); 2697 } 2698 break; 2699 } 2700 2701 case Instruction::SRem: { 2702 const APInt *Denominator; 2703 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2704 // positive constant. This let us put a lower bound on the number of sign 2705 // bits. 2706 if (match(U->getOperand(1), m_APInt(Denominator))) { 2707 2708 // Ignore non-positive denominator. 2709 if (!Denominator->isStrictlyPositive()) 2710 break; 2711 2712 // Calculate the incoming numerator bits. SRem by a positive constant 2713 // can't lower the number of sign bits. 2714 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2715 2716 // Calculate the leading sign bit constraints by examining the 2717 // denominator. Given that the denominator is positive, there are two 2718 // cases: 2719 // 2720 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2721 // (1 << ceilLogBase2(C)). 2722 // 2723 // 2. the numerator is negative. Then the result range is (-C,0] and 2724 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2725 // 2726 // Thus a lower bound on the number of sign bits is `TyBits - 2727 // ceilLogBase2(C)`. 2728 2729 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2730 return std::max(NumrBits, ResBits); 2731 } 2732 break; 2733 } 2734 2735 case Instruction::AShr: { 2736 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2737 // ashr X, C -> adds C sign bits. Vectors too. 2738 const APInt *ShAmt; 2739 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2740 if (ShAmt->uge(TyBits)) 2741 break; // Bad shift. 2742 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2743 Tmp += ShAmtLimited; 2744 if (Tmp > TyBits) Tmp = TyBits; 2745 } 2746 return Tmp; 2747 } 2748 case Instruction::Shl: { 2749 const APInt *ShAmt; 2750 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2751 // shl destroys sign bits. 2752 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2753 if (ShAmt->uge(TyBits) || // Bad shift. 2754 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2755 Tmp2 = ShAmt->getZExtValue(); 2756 return Tmp - Tmp2; 2757 } 2758 break; 2759 } 2760 case Instruction::And: 2761 case Instruction::Or: 2762 case Instruction::Xor: // NOT is handled here. 2763 // Logical binary ops preserve the number of sign bits at the worst. 2764 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2765 if (Tmp != 1) { 2766 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2767 FirstAnswer = std::min(Tmp, Tmp2); 2768 // We computed what we know about the sign bits as our first 2769 // answer. Now proceed to the generic code that uses 2770 // computeKnownBits, and pick whichever answer is better. 2771 } 2772 break; 2773 2774 case Instruction::Select: { 2775 // If we have a clamp pattern, we know that the number of sign bits will 2776 // be the minimum of the clamp min/max range. 2777 const Value *X; 2778 const APInt *CLow, *CHigh; 2779 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2780 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2781 2782 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2783 if (Tmp == 1) break; 2784 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2785 return std::min(Tmp, Tmp2); 2786 } 2787 2788 case Instruction::Add: 2789 // Add can have at most one carry bit. Thus we know that the output 2790 // is, at worst, one more bit than the inputs. 2791 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2792 if (Tmp == 1) break; 2793 2794 // Special case decrementing a value (ADD X, -1): 2795 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2796 if (CRHS->isAllOnesValue()) { 2797 KnownBits Known(TyBits); 2798 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2799 2800 // If the input is known to be 0 or 1, the output is 0/-1, which is 2801 // all sign bits set. 2802 if ((Known.Zero | 1).isAllOnesValue()) 2803 return TyBits; 2804 2805 // If we are subtracting one from a positive number, there is no carry 2806 // out of the result. 2807 if (Known.isNonNegative()) 2808 return Tmp; 2809 } 2810 2811 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2812 if (Tmp2 == 1) break; 2813 return std::min(Tmp, Tmp2) - 1; 2814 2815 case Instruction::Sub: 2816 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2817 if (Tmp2 == 1) break; 2818 2819 // Handle NEG. 2820 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2821 if (CLHS->isNullValue()) { 2822 KnownBits Known(TyBits); 2823 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2824 // If the input is known to be 0 or 1, the output is 0/-1, which is 2825 // all sign bits set. 2826 if ((Known.Zero | 1).isAllOnesValue()) 2827 return TyBits; 2828 2829 // If the input is known to be positive (the sign bit is known clear), 2830 // the output of the NEG has the same number of sign bits as the 2831 // input. 2832 if (Known.isNonNegative()) 2833 return Tmp2; 2834 2835 // Otherwise, we treat this like a SUB. 2836 } 2837 2838 // Sub can have at most one carry bit. Thus we know that the output 2839 // is, at worst, one more bit than the inputs. 2840 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2841 if (Tmp == 1) break; 2842 return std::min(Tmp, Tmp2) - 1; 2843 2844 case Instruction::Mul: { 2845 // The output of the Mul can be at most twice the valid bits in the 2846 // inputs. 2847 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2848 if (SignBitsOp0 == 1) break; 2849 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2850 if (SignBitsOp1 == 1) break; 2851 unsigned OutValidBits = 2852 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2853 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2854 } 2855 2856 case Instruction::PHI: { 2857 const PHINode *PN = cast<PHINode>(U); 2858 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2859 // Don't analyze large in-degree PHIs. 2860 if (NumIncomingValues > 4) break; 2861 // Unreachable blocks may have zero-operand PHI nodes. 2862 if (NumIncomingValues == 0) break; 2863 2864 // Take the minimum of all incoming values. This can't infinitely loop 2865 // because of our depth threshold. 2866 Query RecQ = Q; 2867 Tmp = TyBits; 2868 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2869 if (Tmp == 1) return Tmp; 2870 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2871 Tmp = std::min( 2872 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2873 } 2874 return Tmp; 2875 } 2876 2877 case Instruction::Trunc: 2878 // FIXME: it's tricky to do anything useful for this, but it is an 2879 // important case for targets like X86. 2880 break; 2881 2882 case Instruction::ExtractElement: 2883 // Look through extract element. At the moment we keep this simple and 2884 // skip tracking the specific element. But at least we might find 2885 // information valid for all elements of the vector (for example if vector 2886 // is sign extended, shifted, etc). 2887 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2888 2889 case Instruction::ShuffleVector: { 2890 // Collect the minimum number of sign bits that are shared by every vector 2891 // element referenced by the shuffle. 2892 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2893 if (!Shuf) { 2894 // FIXME: Add support for shufflevector constant expressions. 2895 return 1; 2896 } 2897 APInt DemandedLHS, DemandedRHS; 2898 // For undef elements, we don't know anything about the common state of 2899 // the shuffle result. 2900 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2901 return 1; 2902 Tmp = std::numeric_limits<unsigned>::max(); 2903 if (!!DemandedLHS) { 2904 const Value *LHS = Shuf->getOperand(0); 2905 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2906 } 2907 // If we don't know anything, early out and try computeKnownBits 2908 // fall-back. 2909 if (Tmp == 1) 2910 break; 2911 if (!!DemandedRHS) { 2912 const Value *RHS = Shuf->getOperand(1); 2913 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2914 Tmp = std::min(Tmp, Tmp2); 2915 } 2916 // If we don't know anything, early out and try computeKnownBits 2917 // fall-back. 2918 if (Tmp == 1) 2919 break; 2920 assert(Tmp <= Ty->getScalarSizeInBits() && 2921 "Failed to determine minimum sign bits"); 2922 return Tmp; 2923 } 2924 case Instruction::Call: { 2925 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2926 switch (II->getIntrinsicID()) { 2927 default: break; 2928 case Intrinsic::abs: 2929 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2930 if (Tmp == 1) break; 2931 2932 // Absolute value reduces number of sign bits by at most 1. 2933 return Tmp - 1; 2934 } 2935 } 2936 } 2937 } 2938 } 2939 2940 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2941 // use this information. 2942 2943 // If we can examine all elements of a vector constant successfully, we're 2944 // done (we can't do any better than that). If not, keep trying. 2945 if (unsigned VecSignBits = 2946 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2947 return VecSignBits; 2948 2949 KnownBits Known(TyBits); 2950 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2951 2952 // If we know that the sign bit is either zero or one, determine the number of 2953 // identical bits in the top of the input value. 2954 return std::max(FirstAnswer, Known.countMinSignBits()); 2955 } 2956 2957 /// This function computes the integer multiple of Base that equals V. 2958 /// If successful, it returns true and returns the multiple in 2959 /// Multiple. If unsuccessful, it returns false. It looks 2960 /// through SExt instructions only if LookThroughSExt is true. 2961 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2962 bool LookThroughSExt, unsigned Depth) { 2963 assert(V && "No Value?"); 2964 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2965 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2966 2967 Type *T = V->getType(); 2968 2969 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2970 2971 if (Base == 0) 2972 return false; 2973 2974 if (Base == 1) { 2975 Multiple = V; 2976 return true; 2977 } 2978 2979 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2980 Constant *BaseVal = ConstantInt::get(T, Base); 2981 if (CO && CO == BaseVal) { 2982 // Multiple is 1. 2983 Multiple = ConstantInt::get(T, 1); 2984 return true; 2985 } 2986 2987 if (CI && CI->getZExtValue() % Base == 0) { 2988 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2989 return true; 2990 } 2991 2992 if (Depth == MaxAnalysisRecursionDepth) return false; 2993 2994 Operator *I = dyn_cast<Operator>(V); 2995 if (!I) return false; 2996 2997 switch (I->getOpcode()) { 2998 default: break; 2999 case Instruction::SExt: 3000 if (!LookThroughSExt) return false; 3001 // otherwise fall through to ZExt 3002 LLVM_FALLTHROUGH; 3003 case Instruction::ZExt: 3004 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3005 LookThroughSExt, Depth+1); 3006 case Instruction::Shl: 3007 case Instruction::Mul: { 3008 Value *Op0 = I->getOperand(0); 3009 Value *Op1 = I->getOperand(1); 3010 3011 if (I->getOpcode() == Instruction::Shl) { 3012 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3013 if (!Op1CI) return false; 3014 // Turn Op0 << Op1 into Op0 * 2^Op1 3015 APInt Op1Int = Op1CI->getValue(); 3016 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3017 APInt API(Op1Int.getBitWidth(), 0); 3018 API.setBit(BitToSet); 3019 Op1 = ConstantInt::get(V->getContext(), API); 3020 } 3021 3022 Value *Mul0 = nullptr; 3023 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3024 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3025 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3026 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3027 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3028 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3029 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3030 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3031 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3032 3033 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3034 Multiple = ConstantExpr::getMul(MulC, Op1C); 3035 return true; 3036 } 3037 3038 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3039 if (Mul0CI->getValue() == 1) { 3040 // V == Base * Op1, so return Op1 3041 Multiple = Op1; 3042 return true; 3043 } 3044 } 3045 3046 Value *Mul1 = nullptr; 3047 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3048 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3049 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3050 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3051 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3052 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3053 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3054 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3055 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3056 3057 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3058 Multiple = ConstantExpr::getMul(MulC, Op0C); 3059 return true; 3060 } 3061 3062 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3063 if (Mul1CI->getValue() == 1) { 3064 // V == Base * Op0, so return Op0 3065 Multiple = Op0; 3066 return true; 3067 } 3068 } 3069 } 3070 } 3071 3072 // We could not determine if V is a multiple of Base. 3073 return false; 3074 } 3075 3076 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3077 const TargetLibraryInfo *TLI) { 3078 const Function *F = CB.getCalledFunction(); 3079 if (!F) 3080 return Intrinsic::not_intrinsic; 3081 3082 if (F->isIntrinsic()) 3083 return F->getIntrinsicID(); 3084 3085 // We are going to infer semantics of a library function based on mapping it 3086 // to an LLVM intrinsic. Check that the library function is available from 3087 // this callbase and in this environment. 3088 LibFunc Func; 3089 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3090 !CB.onlyReadsMemory()) 3091 return Intrinsic::not_intrinsic; 3092 3093 switch (Func) { 3094 default: 3095 break; 3096 case LibFunc_sin: 3097 case LibFunc_sinf: 3098 case LibFunc_sinl: 3099 return Intrinsic::sin; 3100 case LibFunc_cos: 3101 case LibFunc_cosf: 3102 case LibFunc_cosl: 3103 return Intrinsic::cos; 3104 case LibFunc_exp: 3105 case LibFunc_expf: 3106 case LibFunc_expl: 3107 return Intrinsic::exp; 3108 case LibFunc_exp2: 3109 case LibFunc_exp2f: 3110 case LibFunc_exp2l: 3111 return Intrinsic::exp2; 3112 case LibFunc_log: 3113 case LibFunc_logf: 3114 case LibFunc_logl: 3115 return Intrinsic::log; 3116 case LibFunc_log10: 3117 case LibFunc_log10f: 3118 case LibFunc_log10l: 3119 return Intrinsic::log10; 3120 case LibFunc_log2: 3121 case LibFunc_log2f: 3122 case LibFunc_log2l: 3123 return Intrinsic::log2; 3124 case LibFunc_fabs: 3125 case LibFunc_fabsf: 3126 case LibFunc_fabsl: 3127 return Intrinsic::fabs; 3128 case LibFunc_fmin: 3129 case LibFunc_fminf: 3130 case LibFunc_fminl: 3131 return Intrinsic::minnum; 3132 case LibFunc_fmax: 3133 case LibFunc_fmaxf: 3134 case LibFunc_fmaxl: 3135 return Intrinsic::maxnum; 3136 case LibFunc_copysign: 3137 case LibFunc_copysignf: 3138 case LibFunc_copysignl: 3139 return Intrinsic::copysign; 3140 case LibFunc_floor: 3141 case LibFunc_floorf: 3142 case LibFunc_floorl: 3143 return Intrinsic::floor; 3144 case LibFunc_ceil: 3145 case LibFunc_ceilf: 3146 case LibFunc_ceill: 3147 return Intrinsic::ceil; 3148 case LibFunc_trunc: 3149 case LibFunc_truncf: 3150 case LibFunc_truncl: 3151 return Intrinsic::trunc; 3152 case LibFunc_rint: 3153 case LibFunc_rintf: 3154 case LibFunc_rintl: 3155 return Intrinsic::rint; 3156 case LibFunc_nearbyint: 3157 case LibFunc_nearbyintf: 3158 case LibFunc_nearbyintl: 3159 return Intrinsic::nearbyint; 3160 case LibFunc_round: 3161 case LibFunc_roundf: 3162 case LibFunc_roundl: 3163 return Intrinsic::round; 3164 case LibFunc_roundeven: 3165 case LibFunc_roundevenf: 3166 case LibFunc_roundevenl: 3167 return Intrinsic::roundeven; 3168 case LibFunc_pow: 3169 case LibFunc_powf: 3170 case LibFunc_powl: 3171 return Intrinsic::pow; 3172 case LibFunc_sqrt: 3173 case LibFunc_sqrtf: 3174 case LibFunc_sqrtl: 3175 return Intrinsic::sqrt; 3176 } 3177 3178 return Intrinsic::not_intrinsic; 3179 } 3180 3181 /// Return true if we can prove that the specified FP value is never equal to 3182 /// -0.0. 3183 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3184 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3185 /// the same as +0.0 in floating-point ops. 3186 /// 3187 /// NOTE: this function will need to be revisited when we support non-default 3188 /// rounding modes! 3189 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3190 unsigned Depth) { 3191 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3192 return !CFP->getValueAPF().isNegZero(); 3193 3194 if (Depth == MaxAnalysisRecursionDepth) 3195 return false; 3196 3197 auto *Op = dyn_cast<Operator>(V); 3198 if (!Op) 3199 return false; 3200 3201 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3202 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3203 return true; 3204 3205 // sitofp and uitofp turn into +0.0 for zero. 3206 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3207 return true; 3208 3209 if (auto *Call = dyn_cast<CallInst>(Op)) { 3210 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3211 switch (IID) { 3212 default: 3213 break; 3214 // sqrt(-0.0) = -0.0, no other negative results are possible. 3215 case Intrinsic::sqrt: 3216 case Intrinsic::canonicalize: 3217 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3218 // fabs(x) != -0.0 3219 case Intrinsic::fabs: 3220 return true; 3221 } 3222 } 3223 3224 return false; 3225 } 3226 3227 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3228 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3229 /// bit despite comparing equal. 3230 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3231 const TargetLibraryInfo *TLI, 3232 bool SignBitOnly, 3233 unsigned Depth) { 3234 // TODO: This function does not do the right thing when SignBitOnly is true 3235 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3236 // which flips the sign bits of NaNs. See 3237 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3238 3239 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3240 return !CFP->getValueAPF().isNegative() || 3241 (!SignBitOnly && CFP->getValueAPF().isZero()); 3242 } 3243 3244 // Handle vector of constants. 3245 if (auto *CV = dyn_cast<Constant>(V)) { 3246 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3247 unsigned NumElts = CVFVTy->getNumElements(); 3248 for (unsigned i = 0; i != NumElts; ++i) { 3249 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3250 if (!CFP) 3251 return false; 3252 if (CFP->getValueAPF().isNegative() && 3253 (SignBitOnly || !CFP->getValueAPF().isZero())) 3254 return false; 3255 } 3256 3257 // All non-negative ConstantFPs. 3258 return true; 3259 } 3260 } 3261 3262 if (Depth == MaxAnalysisRecursionDepth) 3263 return false; 3264 3265 const Operator *I = dyn_cast<Operator>(V); 3266 if (!I) 3267 return false; 3268 3269 switch (I->getOpcode()) { 3270 default: 3271 break; 3272 // Unsigned integers are always nonnegative. 3273 case Instruction::UIToFP: 3274 return true; 3275 case Instruction::FMul: 3276 case Instruction::FDiv: 3277 // X * X is always non-negative or a NaN. 3278 // X / X is always exactly 1.0 or a NaN. 3279 if (I->getOperand(0) == I->getOperand(1) && 3280 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3281 return true; 3282 3283 LLVM_FALLTHROUGH; 3284 case Instruction::FAdd: 3285 case Instruction::FRem: 3286 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3287 Depth + 1) && 3288 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3289 Depth + 1); 3290 case Instruction::Select: 3291 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3292 Depth + 1) && 3293 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3294 Depth + 1); 3295 case Instruction::FPExt: 3296 case Instruction::FPTrunc: 3297 // Widening/narrowing never change sign. 3298 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3299 Depth + 1); 3300 case Instruction::ExtractElement: 3301 // Look through extract element. At the moment we keep this simple and skip 3302 // tracking the specific element. But at least we might find information 3303 // valid for all elements of the vector. 3304 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3305 Depth + 1); 3306 case Instruction::Call: 3307 const auto *CI = cast<CallInst>(I); 3308 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3309 switch (IID) { 3310 default: 3311 break; 3312 case Intrinsic::maxnum: { 3313 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3314 auto isPositiveNum = [&](Value *V) { 3315 if (SignBitOnly) { 3316 // With SignBitOnly, this is tricky because the result of 3317 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3318 // a constant strictly greater than 0.0. 3319 const APFloat *C; 3320 return match(V, m_APFloat(C)) && 3321 *C > APFloat::getZero(C->getSemantics()); 3322 } 3323 3324 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3325 // maxnum can't be ordered-less-than-zero. 3326 return isKnownNeverNaN(V, TLI) && 3327 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3328 }; 3329 3330 // TODO: This could be improved. We could also check that neither operand 3331 // has its sign bit set (and at least 1 is not-NAN?). 3332 return isPositiveNum(V0) || isPositiveNum(V1); 3333 } 3334 3335 case Intrinsic::maximum: 3336 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3337 Depth + 1) || 3338 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3339 Depth + 1); 3340 case Intrinsic::minnum: 3341 case Intrinsic::minimum: 3342 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3343 Depth + 1) && 3344 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3345 Depth + 1); 3346 case Intrinsic::exp: 3347 case Intrinsic::exp2: 3348 case Intrinsic::fabs: 3349 return true; 3350 3351 case Intrinsic::sqrt: 3352 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3353 if (!SignBitOnly) 3354 return true; 3355 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3356 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3357 3358 case Intrinsic::powi: 3359 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3360 // powi(x,n) is non-negative if n is even. 3361 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3362 return true; 3363 } 3364 // TODO: This is not correct. Given that exp is an integer, here are the 3365 // ways that pow can return a negative value: 3366 // 3367 // pow(x, exp) --> negative if exp is odd and x is negative. 3368 // pow(-0, exp) --> -inf if exp is negative odd. 3369 // pow(-0, exp) --> -0 if exp is positive odd. 3370 // pow(-inf, exp) --> -0 if exp is negative odd. 3371 // pow(-inf, exp) --> -inf if exp is positive odd. 3372 // 3373 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3374 // but we must return false if x == -0. Unfortunately we do not currently 3375 // have a way of expressing this constraint. See details in 3376 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3377 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3378 Depth + 1); 3379 3380 case Intrinsic::fma: 3381 case Intrinsic::fmuladd: 3382 // x*x+y is non-negative if y is non-negative. 3383 return I->getOperand(0) == I->getOperand(1) && 3384 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3385 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3386 Depth + 1); 3387 } 3388 break; 3389 } 3390 return false; 3391 } 3392 3393 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3394 const TargetLibraryInfo *TLI) { 3395 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3396 } 3397 3398 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3399 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3400 } 3401 3402 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3403 unsigned Depth) { 3404 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3405 3406 // If we're told that infinities won't happen, assume they won't. 3407 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3408 if (FPMathOp->hasNoInfs()) 3409 return true; 3410 3411 // Handle scalar constants. 3412 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3413 return !CFP->isInfinity(); 3414 3415 if (Depth == MaxAnalysisRecursionDepth) 3416 return false; 3417 3418 if (auto *Inst = dyn_cast<Instruction>(V)) { 3419 switch (Inst->getOpcode()) { 3420 case Instruction::Select: { 3421 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3422 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3423 } 3424 case Instruction::SIToFP: 3425 case Instruction::UIToFP: { 3426 // Get width of largest magnitude integer (remove a bit if signed). 3427 // This still works for a signed minimum value because the largest FP 3428 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3429 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3430 if (Inst->getOpcode() == Instruction::SIToFP) 3431 --IntSize; 3432 3433 // If the exponent of the largest finite FP value can hold the largest 3434 // integer, the result of the cast must be finite. 3435 Type *FPTy = Inst->getType()->getScalarType(); 3436 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3437 } 3438 default: 3439 break; 3440 } 3441 } 3442 3443 // try to handle fixed width vector constants 3444 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3445 if (VFVTy && isa<Constant>(V)) { 3446 // For vectors, verify that each element is not infinity. 3447 unsigned NumElts = VFVTy->getNumElements(); 3448 for (unsigned i = 0; i != NumElts; ++i) { 3449 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3450 if (!Elt) 3451 return false; 3452 if (isa<UndefValue>(Elt)) 3453 continue; 3454 auto *CElt = dyn_cast<ConstantFP>(Elt); 3455 if (!CElt || CElt->isInfinity()) 3456 return false; 3457 } 3458 // All elements were confirmed non-infinity or undefined. 3459 return true; 3460 } 3461 3462 // was not able to prove that V never contains infinity 3463 return false; 3464 } 3465 3466 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3467 unsigned Depth) { 3468 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3469 3470 // If we're told that NaNs won't happen, assume they won't. 3471 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3472 if (FPMathOp->hasNoNaNs()) 3473 return true; 3474 3475 // Handle scalar constants. 3476 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3477 return !CFP->isNaN(); 3478 3479 if (Depth == MaxAnalysisRecursionDepth) 3480 return false; 3481 3482 if (auto *Inst = dyn_cast<Instruction>(V)) { 3483 switch (Inst->getOpcode()) { 3484 case Instruction::FAdd: 3485 case Instruction::FSub: 3486 // Adding positive and negative infinity produces NaN. 3487 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3488 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3489 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3490 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3491 3492 case Instruction::FMul: 3493 // Zero multiplied with infinity produces NaN. 3494 // FIXME: If neither side can be zero fmul never produces NaN. 3495 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3496 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3497 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3498 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3499 3500 case Instruction::FDiv: 3501 case Instruction::FRem: 3502 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3503 return false; 3504 3505 case Instruction::Select: { 3506 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3507 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3508 } 3509 case Instruction::SIToFP: 3510 case Instruction::UIToFP: 3511 return true; 3512 case Instruction::FPTrunc: 3513 case Instruction::FPExt: 3514 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3515 default: 3516 break; 3517 } 3518 } 3519 3520 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3521 switch (II->getIntrinsicID()) { 3522 case Intrinsic::canonicalize: 3523 case Intrinsic::fabs: 3524 case Intrinsic::copysign: 3525 case Intrinsic::exp: 3526 case Intrinsic::exp2: 3527 case Intrinsic::floor: 3528 case Intrinsic::ceil: 3529 case Intrinsic::trunc: 3530 case Intrinsic::rint: 3531 case Intrinsic::nearbyint: 3532 case Intrinsic::round: 3533 case Intrinsic::roundeven: 3534 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3535 case Intrinsic::sqrt: 3536 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3537 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3538 case Intrinsic::minnum: 3539 case Intrinsic::maxnum: 3540 // If either operand is not NaN, the result is not NaN. 3541 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3542 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3543 default: 3544 return false; 3545 } 3546 } 3547 3548 // Try to handle fixed width vector constants 3549 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3550 if (VFVTy && isa<Constant>(V)) { 3551 // For vectors, verify that each element is not NaN. 3552 unsigned NumElts = VFVTy->getNumElements(); 3553 for (unsigned i = 0; i != NumElts; ++i) { 3554 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3555 if (!Elt) 3556 return false; 3557 if (isa<UndefValue>(Elt)) 3558 continue; 3559 auto *CElt = dyn_cast<ConstantFP>(Elt); 3560 if (!CElt || CElt->isNaN()) 3561 return false; 3562 } 3563 // All elements were confirmed not-NaN or undefined. 3564 return true; 3565 } 3566 3567 // Was not able to prove that V never contains NaN 3568 return false; 3569 } 3570 3571 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3572 3573 // All byte-wide stores are splatable, even of arbitrary variables. 3574 if (V->getType()->isIntegerTy(8)) 3575 return V; 3576 3577 LLVMContext &Ctx = V->getContext(); 3578 3579 // Undef don't care. 3580 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3581 if (isa<UndefValue>(V)) 3582 return UndefInt8; 3583 3584 // Return Undef for zero-sized type. 3585 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3586 return UndefInt8; 3587 3588 Constant *C = dyn_cast<Constant>(V); 3589 if (!C) { 3590 // Conceptually, we could handle things like: 3591 // %a = zext i8 %X to i16 3592 // %b = shl i16 %a, 8 3593 // %c = or i16 %a, %b 3594 // but until there is an example that actually needs this, it doesn't seem 3595 // worth worrying about. 3596 return nullptr; 3597 } 3598 3599 // Handle 'null' ConstantArrayZero etc. 3600 if (C->isNullValue()) 3601 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3602 3603 // Constant floating-point values can be handled as integer values if the 3604 // corresponding integer value is "byteable". An important case is 0.0. 3605 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3606 Type *Ty = nullptr; 3607 if (CFP->getType()->isHalfTy()) 3608 Ty = Type::getInt16Ty(Ctx); 3609 else if (CFP->getType()->isFloatTy()) 3610 Ty = Type::getInt32Ty(Ctx); 3611 else if (CFP->getType()->isDoubleTy()) 3612 Ty = Type::getInt64Ty(Ctx); 3613 // Don't handle long double formats, which have strange constraints. 3614 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3615 : nullptr; 3616 } 3617 3618 // We can handle constant integers that are multiple of 8 bits. 3619 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3620 if (CI->getBitWidth() % 8 == 0) { 3621 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3622 if (!CI->getValue().isSplat(8)) 3623 return nullptr; 3624 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3625 } 3626 } 3627 3628 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3629 if (CE->getOpcode() == Instruction::IntToPtr) { 3630 auto PS = DL.getPointerSizeInBits( 3631 cast<PointerType>(CE->getType())->getAddressSpace()); 3632 return isBytewiseValue( 3633 ConstantExpr::getIntegerCast(CE->getOperand(0), 3634 Type::getIntNTy(Ctx, PS), false), 3635 DL); 3636 } 3637 } 3638 3639 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3640 if (LHS == RHS) 3641 return LHS; 3642 if (!LHS || !RHS) 3643 return nullptr; 3644 if (LHS == UndefInt8) 3645 return RHS; 3646 if (RHS == UndefInt8) 3647 return LHS; 3648 return nullptr; 3649 }; 3650 3651 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3652 Value *Val = UndefInt8; 3653 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3654 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3655 return nullptr; 3656 return Val; 3657 } 3658 3659 if (isa<ConstantAggregate>(C)) { 3660 Value *Val = UndefInt8; 3661 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3662 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3663 return nullptr; 3664 return Val; 3665 } 3666 3667 // Don't try to handle the handful of other constants. 3668 return nullptr; 3669 } 3670 3671 // This is the recursive version of BuildSubAggregate. It takes a few different 3672 // arguments. Idxs is the index within the nested struct From that we are 3673 // looking at now (which is of type IndexedType). IdxSkip is the number of 3674 // indices from Idxs that should be left out when inserting into the resulting 3675 // struct. To is the result struct built so far, new insertvalue instructions 3676 // build on that. 3677 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3678 SmallVectorImpl<unsigned> &Idxs, 3679 unsigned IdxSkip, 3680 Instruction *InsertBefore) { 3681 StructType *STy = dyn_cast<StructType>(IndexedType); 3682 if (STy) { 3683 // Save the original To argument so we can modify it 3684 Value *OrigTo = To; 3685 // General case, the type indexed by Idxs is a struct 3686 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3687 // Process each struct element recursively 3688 Idxs.push_back(i); 3689 Value *PrevTo = To; 3690 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3691 InsertBefore); 3692 Idxs.pop_back(); 3693 if (!To) { 3694 // Couldn't find any inserted value for this index? Cleanup 3695 while (PrevTo != OrigTo) { 3696 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3697 PrevTo = Del->getAggregateOperand(); 3698 Del->eraseFromParent(); 3699 } 3700 // Stop processing elements 3701 break; 3702 } 3703 } 3704 // If we successfully found a value for each of our subaggregates 3705 if (To) 3706 return To; 3707 } 3708 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3709 // the struct's elements had a value that was inserted directly. In the latter 3710 // case, perhaps we can't determine each of the subelements individually, but 3711 // we might be able to find the complete struct somewhere. 3712 3713 // Find the value that is at that particular spot 3714 Value *V = FindInsertedValue(From, Idxs); 3715 3716 if (!V) 3717 return nullptr; 3718 3719 // Insert the value in the new (sub) aggregate 3720 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3721 "tmp", InsertBefore); 3722 } 3723 3724 // This helper takes a nested struct and extracts a part of it (which is again a 3725 // struct) into a new value. For example, given the struct: 3726 // { a, { b, { c, d }, e } } 3727 // and the indices "1, 1" this returns 3728 // { c, d }. 3729 // 3730 // It does this by inserting an insertvalue for each element in the resulting 3731 // struct, as opposed to just inserting a single struct. This will only work if 3732 // each of the elements of the substruct are known (ie, inserted into From by an 3733 // insertvalue instruction somewhere). 3734 // 3735 // All inserted insertvalue instructions are inserted before InsertBefore 3736 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3737 Instruction *InsertBefore) { 3738 assert(InsertBefore && "Must have someplace to insert!"); 3739 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3740 idx_range); 3741 Value *To = UndefValue::get(IndexedType); 3742 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3743 unsigned IdxSkip = Idxs.size(); 3744 3745 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3746 } 3747 3748 /// Given an aggregate and a sequence of indices, see if the scalar value 3749 /// indexed is already around as a register, for example if it was inserted 3750 /// directly into the aggregate. 3751 /// 3752 /// If InsertBefore is not null, this function will duplicate (modified) 3753 /// insertvalues when a part of a nested struct is extracted. 3754 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3755 Instruction *InsertBefore) { 3756 // Nothing to index? Just return V then (this is useful at the end of our 3757 // recursion). 3758 if (idx_range.empty()) 3759 return V; 3760 // We have indices, so V should have an indexable type. 3761 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3762 "Not looking at a struct or array?"); 3763 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3764 "Invalid indices for type?"); 3765 3766 if (Constant *C = dyn_cast<Constant>(V)) { 3767 C = C->getAggregateElement(idx_range[0]); 3768 if (!C) return nullptr; 3769 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3770 } 3771 3772 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3773 // Loop the indices for the insertvalue instruction in parallel with the 3774 // requested indices 3775 const unsigned *req_idx = idx_range.begin(); 3776 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3777 i != e; ++i, ++req_idx) { 3778 if (req_idx == idx_range.end()) { 3779 // We can't handle this without inserting insertvalues 3780 if (!InsertBefore) 3781 return nullptr; 3782 3783 // The requested index identifies a part of a nested aggregate. Handle 3784 // this specially. For example, 3785 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3786 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3787 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3788 // This can be changed into 3789 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3790 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3791 // which allows the unused 0,0 element from the nested struct to be 3792 // removed. 3793 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3794 InsertBefore); 3795 } 3796 3797 // This insert value inserts something else than what we are looking for. 3798 // See if the (aggregate) value inserted into has the value we are 3799 // looking for, then. 3800 if (*req_idx != *i) 3801 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3802 InsertBefore); 3803 } 3804 // If we end up here, the indices of the insertvalue match with those 3805 // requested (though possibly only partially). Now we recursively look at 3806 // the inserted value, passing any remaining indices. 3807 return FindInsertedValue(I->getInsertedValueOperand(), 3808 makeArrayRef(req_idx, idx_range.end()), 3809 InsertBefore); 3810 } 3811 3812 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3813 // If we're extracting a value from an aggregate that was extracted from 3814 // something else, we can extract from that something else directly instead. 3815 // However, we will need to chain I's indices with the requested indices. 3816 3817 // Calculate the number of indices required 3818 unsigned size = I->getNumIndices() + idx_range.size(); 3819 // Allocate some space to put the new indices in 3820 SmallVector<unsigned, 5> Idxs; 3821 Idxs.reserve(size); 3822 // Add indices from the extract value instruction 3823 Idxs.append(I->idx_begin(), I->idx_end()); 3824 3825 // Add requested indices 3826 Idxs.append(idx_range.begin(), idx_range.end()); 3827 3828 assert(Idxs.size() == size 3829 && "Number of indices added not correct?"); 3830 3831 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3832 } 3833 // Otherwise, we don't know (such as, extracting from a function return value 3834 // or load instruction) 3835 return nullptr; 3836 } 3837 3838 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3839 unsigned CharSize) { 3840 // Make sure the GEP has exactly three arguments. 3841 if (GEP->getNumOperands() != 3) 3842 return false; 3843 3844 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3845 // CharSize. 3846 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3847 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3848 return false; 3849 3850 // Check to make sure that the first operand of the GEP is an integer and 3851 // has value 0 so that we are sure we're indexing into the initializer. 3852 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3853 if (!FirstIdx || !FirstIdx->isZero()) 3854 return false; 3855 3856 return true; 3857 } 3858 3859 bool llvm::getConstantDataArrayInfo(const Value *V, 3860 ConstantDataArraySlice &Slice, 3861 unsigned ElementSize, uint64_t Offset) { 3862 assert(V); 3863 3864 // Look through bitcast instructions and geps. 3865 V = V->stripPointerCasts(); 3866 3867 // If the value is a GEP instruction or constant expression, treat it as an 3868 // offset. 3869 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3870 // The GEP operator should be based on a pointer to string constant, and is 3871 // indexing into the string constant. 3872 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3873 return false; 3874 3875 // If the second index isn't a ConstantInt, then this is a variable index 3876 // into the array. If this occurs, we can't say anything meaningful about 3877 // the string. 3878 uint64_t StartIdx = 0; 3879 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3880 StartIdx = CI->getZExtValue(); 3881 else 3882 return false; 3883 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3884 StartIdx + Offset); 3885 } 3886 3887 // The GEP instruction, constant or instruction, must reference a global 3888 // variable that is a constant and is initialized. The referenced constant 3889 // initializer is the array that we'll use for optimization. 3890 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3891 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3892 return false; 3893 3894 const ConstantDataArray *Array; 3895 ArrayType *ArrayTy; 3896 if (GV->getInitializer()->isNullValue()) { 3897 Type *GVTy = GV->getValueType(); 3898 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3899 // A zeroinitializer for the array; there is no ConstantDataArray. 3900 Array = nullptr; 3901 } else { 3902 const DataLayout &DL = GV->getParent()->getDataLayout(); 3903 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3904 uint64_t Length = SizeInBytes / (ElementSize / 8); 3905 if (Length <= Offset) 3906 return false; 3907 3908 Slice.Array = nullptr; 3909 Slice.Offset = 0; 3910 Slice.Length = Length - Offset; 3911 return true; 3912 } 3913 } else { 3914 // This must be a ConstantDataArray. 3915 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3916 if (!Array) 3917 return false; 3918 ArrayTy = Array->getType(); 3919 } 3920 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3921 return false; 3922 3923 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3924 if (Offset > NumElts) 3925 return false; 3926 3927 Slice.Array = Array; 3928 Slice.Offset = Offset; 3929 Slice.Length = NumElts - Offset; 3930 return true; 3931 } 3932 3933 /// This function computes the length of a null-terminated C string pointed to 3934 /// by V. If successful, it returns true and returns the string in Str. 3935 /// If unsuccessful, it returns false. 3936 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3937 uint64_t Offset, bool TrimAtNul) { 3938 ConstantDataArraySlice Slice; 3939 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3940 return false; 3941 3942 if (Slice.Array == nullptr) { 3943 if (TrimAtNul) { 3944 Str = StringRef(); 3945 return true; 3946 } 3947 if (Slice.Length == 1) { 3948 Str = StringRef("", 1); 3949 return true; 3950 } 3951 // We cannot instantiate a StringRef as we do not have an appropriate string 3952 // of 0s at hand. 3953 return false; 3954 } 3955 3956 // Start out with the entire array in the StringRef. 3957 Str = Slice.Array->getAsString(); 3958 // Skip over 'offset' bytes. 3959 Str = Str.substr(Slice.Offset); 3960 3961 if (TrimAtNul) { 3962 // Trim off the \0 and anything after it. If the array is not nul 3963 // terminated, we just return the whole end of string. The client may know 3964 // some other way that the string is length-bound. 3965 Str = Str.substr(0, Str.find('\0')); 3966 } 3967 return true; 3968 } 3969 3970 // These next two are very similar to the above, but also look through PHI 3971 // nodes. 3972 // TODO: See if we can integrate these two together. 3973 3974 /// If we can compute the length of the string pointed to by 3975 /// the specified pointer, return 'len+1'. If we can't, return 0. 3976 static uint64_t GetStringLengthH(const Value *V, 3977 SmallPtrSetImpl<const PHINode*> &PHIs, 3978 unsigned CharSize) { 3979 // Look through noop bitcast instructions. 3980 V = V->stripPointerCasts(); 3981 3982 // If this is a PHI node, there are two cases: either we have already seen it 3983 // or we haven't. 3984 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3985 if (!PHIs.insert(PN).second) 3986 return ~0ULL; // already in the set. 3987 3988 // If it was new, see if all the input strings are the same length. 3989 uint64_t LenSoFar = ~0ULL; 3990 for (Value *IncValue : PN->incoming_values()) { 3991 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3992 if (Len == 0) return 0; // Unknown length -> unknown. 3993 3994 if (Len == ~0ULL) continue; 3995 3996 if (Len != LenSoFar && LenSoFar != ~0ULL) 3997 return 0; // Disagree -> unknown. 3998 LenSoFar = Len; 3999 } 4000 4001 // Success, all agree. 4002 return LenSoFar; 4003 } 4004 4005 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4006 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4007 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4008 if (Len1 == 0) return 0; 4009 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4010 if (Len2 == 0) return 0; 4011 if (Len1 == ~0ULL) return Len2; 4012 if (Len2 == ~0ULL) return Len1; 4013 if (Len1 != Len2) return 0; 4014 return Len1; 4015 } 4016 4017 // Otherwise, see if we can read the string. 4018 ConstantDataArraySlice Slice; 4019 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4020 return 0; 4021 4022 if (Slice.Array == nullptr) 4023 return 1; 4024 4025 // Search for nul characters 4026 unsigned NullIndex = 0; 4027 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4028 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4029 break; 4030 } 4031 4032 return NullIndex + 1; 4033 } 4034 4035 /// If we can compute the length of the string pointed to by 4036 /// the specified pointer, return 'len+1'. If we can't, return 0. 4037 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4038 if (!V->getType()->isPointerTy()) 4039 return 0; 4040 4041 SmallPtrSet<const PHINode*, 32> PHIs; 4042 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4043 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4044 // an empty string as a length. 4045 return Len == ~0ULL ? 1 : Len; 4046 } 4047 4048 const Value * 4049 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4050 bool MustPreserveNullness) { 4051 assert(Call && 4052 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4053 if (const Value *RV = Call->getReturnedArgOperand()) 4054 return RV; 4055 // This can be used only as a aliasing property. 4056 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4057 Call, MustPreserveNullness)) 4058 return Call->getArgOperand(0); 4059 return nullptr; 4060 } 4061 4062 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4063 const CallBase *Call, bool MustPreserveNullness) { 4064 switch (Call->getIntrinsicID()) { 4065 case Intrinsic::launder_invariant_group: 4066 case Intrinsic::strip_invariant_group: 4067 case Intrinsic::aarch64_irg: 4068 case Intrinsic::aarch64_tagp: 4069 return true; 4070 case Intrinsic::ptrmask: 4071 return !MustPreserveNullness; 4072 default: 4073 return false; 4074 } 4075 } 4076 4077 /// \p PN defines a loop-variant pointer to an object. Check if the 4078 /// previous iteration of the loop was referring to the same object as \p PN. 4079 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4080 const LoopInfo *LI) { 4081 // Find the loop-defined value. 4082 Loop *L = LI->getLoopFor(PN->getParent()); 4083 if (PN->getNumIncomingValues() != 2) 4084 return true; 4085 4086 // Find the value from previous iteration. 4087 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4088 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4089 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4090 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4091 return true; 4092 4093 // If a new pointer is loaded in the loop, the pointer references a different 4094 // object in every iteration. E.g.: 4095 // for (i) 4096 // int *p = a[i]; 4097 // ... 4098 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4099 if (!L->isLoopInvariant(Load->getPointerOperand())) 4100 return false; 4101 return true; 4102 } 4103 4104 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4105 if (!V->getType()->isPointerTy()) 4106 return V; 4107 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4108 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4109 V = GEP->getPointerOperand(); 4110 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4111 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4112 V = cast<Operator>(V)->getOperand(0); 4113 if (!V->getType()->isPointerTy()) 4114 return V; 4115 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4116 if (GA->isInterposable()) 4117 return V; 4118 V = GA->getAliasee(); 4119 } else { 4120 if (auto *PHI = dyn_cast<PHINode>(V)) { 4121 // Look through single-arg phi nodes created by LCSSA. 4122 if (PHI->getNumIncomingValues() == 1) { 4123 V = PHI->getIncomingValue(0); 4124 continue; 4125 } 4126 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4127 // CaptureTracking can know about special capturing properties of some 4128 // intrinsics like launder.invariant.group, that can't be expressed with 4129 // the attributes, but have properties like returning aliasing pointer. 4130 // Because some analysis may assume that nocaptured pointer is not 4131 // returned from some special intrinsic (because function would have to 4132 // be marked with returns attribute), it is crucial to use this function 4133 // because it should be in sync with CaptureTracking. Not using it may 4134 // cause weird miscompilations where 2 aliasing pointers are assumed to 4135 // noalias. 4136 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4137 V = RP; 4138 continue; 4139 } 4140 } 4141 4142 return V; 4143 } 4144 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4145 } 4146 return V; 4147 } 4148 4149 void llvm::getUnderlyingObjects(const Value *V, 4150 SmallVectorImpl<const Value *> &Objects, 4151 LoopInfo *LI, unsigned MaxLookup) { 4152 SmallPtrSet<const Value *, 4> Visited; 4153 SmallVector<const Value *, 4> Worklist; 4154 Worklist.push_back(V); 4155 do { 4156 const Value *P = Worklist.pop_back_val(); 4157 P = getUnderlyingObject(P, MaxLookup); 4158 4159 if (!Visited.insert(P).second) 4160 continue; 4161 4162 if (auto *SI = dyn_cast<SelectInst>(P)) { 4163 Worklist.push_back(SI->getTrueValue()); 4164 Worklist.push_back(SI->getFalseValue()); 4165 continue; 4166 } 4167 4168 if (auto *PN = dyn_cast<PHINode>(P)) { 4169 // If this PHI changes the underlying object in every iteration of the 4170 // loop, don't look through it. Consider: 4171 // int **A; 4172 // for (i) { 4173 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4174 // Curr = A[i]; 4175 // *Prev, *Curr; 4176 // 4177 // Prev is tracking Curr one iteration behind so they refer to different 4178 // underlying objects. 4179 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4180 isSameUnderlyingObjectInLoop(PN, LI)) 4181 for (Value *IncValue : PN->incoming_values()) 4182 Worklist.push_back(IncValue); 4183 continue; 4184 } 4185 4186 Objects.push_back(P); 4187 } while (!Worklist.empty()); 4188 } 4189 4190 /// This is the function that does the work of looking through basic 4191 /// ptrtoint+arithmetic+inttoptr sequences. 4192 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4193 do { 4194 if (const Operator *U = dyn_cast<Operator>(V)) { 4195 // If we find a ptrtoint, we can transfer control back to the 4196 // regular getUnderlyingObjectFromInt. 4197 if (U->getOpcode() == Instruction::PtrToInt) 4198 return U->getOperand(0); 4199 // If we find an add of a constant, a multiplied value, or a phi, it's 4200 // likely that the other operand will lead us to the base 4201 // object. We don't have to worry about the case where the 4202 // object address is somehow being computed by the multiply, 4203 // because our callers only care when the result is an 4204 // identifiable object. 4205 if (U->getOpcode() != Instruction::Add || 4206 (!isa<ConstantInt>(U->getOperand(1)) && 4207 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4208 !isa<PHINode>(U->getOperand(1)))) 4209 return V; 4210 V = U->getOperand(0); 4211 } else { 4212 return V; 4213 } 4214 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4215 } while (true); 4216 } 4217 4218 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4219 /// ptrtoint+arithmetic+inttoptr sequences. 4220 /// It returns false if unidentified object is found in getUnderlyingObjects. 4221 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4222 SmallVectorImpl<Value *> &Objects) { 4223 SmallPtrSet<const Value *, 16> Visited; 4224 SmallVector<const Value *, 4> Working(1, V); 4225 do { 4226 V = Working.pop_back_val(); 4227 4228 SmallVector<const Value *, 4> Objs; 4229 getUnderlyingObjects(V, Objs); 4230 4231 for (const Value *V : Objs) { 4232 if (!Visited.insert(V).second) 4233 continue; 4234 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4235 const Value *O = 4236 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4237 if (O->getType()->isPointerTy()) { 4238 Working.push_back(O); 4239 continue; 4240 } 4241 } 4242 // If getUnderlyingObjects fails to find an identifiable object, 4243 // getUnderlyingObjectsForCodeGen also fails for safety. 4244 if (!isIdentifiedObject(V)) { 4245 Objects.clear(); 4246 return false; 4247 } 4248 Objects.push_back(const_cast<Value *>(V)); 4249 } 4250 } while (!Working.empty()); 4251 return true; 4252 } 4253 4254 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4255 AllocaInst *Result = nullptr; 4256 SmallPtrSet<Value *, 4> Visited; 4257 SmallVector<Value *, 4> Worklist; 4258 4259 auto AddWork = [&](Value *V) { 4260 if (Visited.insert(V).second) 4261 Worklist.push_back(V); 4262 }; 4263 4264 AddWork(V); 4265 do { 4266 V = Worklist.pop_back_val(); 4267 assert(Visited.count(V)); 4268 4269 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4270 if (Result && Result != AI) 4271 return nullptr; 4272 Result = AI; 4273 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4274 AddWork(CI->getOperand(0)); 4275 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4276 for (Value *IncValue : PN->incoming_values()) 4277 AddWork(IncValue); 4278 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4279 AddWork(SI->getTrueValue()); 4280 AddWork(SI->getFalseValue()); 4281 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4282 if (OffsetZero && !GEP->hasAllZeroIndices()) 4283 return nullptr; 4284 AddWork(GEP->getPointerOperand()); 4285 } else { 4286 return nullptr; 4287 } 4288 } while (!Worklist.empty()); 4289 4290 return Result; 4291 } 4292 4293 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4294 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4295 for (const User *U : V->users()) { 4296 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4297 if (!II) 4298 return false; 4299 4300 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4301 continue; 4302 4303 if (AllowDroppable && II->isDroppable()) 4304 continue; 4305 4306 return false; 4307 } 4308 return true; 4309 } 4310 4311 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4312 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4313 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4314 } 4315 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4316 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4317 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4318 } 4319 4320 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4321 if (!LI.isUnordered()) 4322 return true; 4323 const Function &F = *LI.getFunction(); 4324 // Speculative load may create a race that did not exist in the source. 4325 return F.hasFnAttribute(Attribute::SanitizeThread) || 4326 // Speculative load may load data from dirty regions. 4327 F.hasFnAttribute(Attribute::SanitizeAddress) || 4328 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4329 } 4330 4331 4332 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4333 const Instruction *CtxI, 4334 const DominatorTree *DT) { 4335 const Operator *Inst = dyn_cast<Operator>(V); 4336 if (!Inst) 4337 return false; 4338 4339 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4340 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4341 if (C->canTrap()) 4342 return false; 4343 4344 switch (Inst->getOpcode()) { 4345 default: 4346 return true; 4347 case Instruction::UDiv: 4348 case Instruction::URem: { 4349 // x / y is undefined if y == 0. 4350 const APInt *V; 4351 if (match(Inst->getOperand(1), m_APInt(V))) 4352 return *V != 0; 4353 return false; 4354 } 4355 case Instruction::SDiv: 4356 case Instruction::SRem: { 4357 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4358 const APInt *Numerator, *Denominator; 4359 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4360 return false; 4361 // We cannot hoist this division if the denominator is 0. 4362 if (*Denominator == 0) 4363 return false; 4364 // It's safe to hoist if the denominator is not 0 or -1. 4365 if (*Denominator != -1) 4366 return true; 4367 // At this point we know that the denominator is -1. It is safe to hoist as 4368 // long we know that the numerator is not INT_MIN. 4369 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4370 return !Numerator->isMinSignedValue(); 4371 // The numerator *might* be MinSignedValue. 4372 return false; 4373 } 4374 case Instruction::Load: { 4375 const LoadInst *LI = cast<LoadInst>(Inst); 4376 if (mustSuppressSpeculation(*LI)) 4377 return false; 4378 const DataLayout &DL = LI->getModule()->getDataLayout(); 4379 return isDereferenceableAndAlignedPointer( 4380 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4381 DL, CtxI, DT); 4382 } 4383 case Instruction::Call: { 4384 auto *CI = cast<const CallInst>(Inst); 4385 const Function *Callee = CI->getCalledFunction(); 4386 4387 // The called function could have undefined behavior or side-effects, even 4388 // if marked readnone nounwind. 4389 return Callee && Callee->isSpeculatable(); 4390 } 4391 case Instruction::VAArg: 4392 case Instruction::Alloca: 4393 case Instruction::Invoke: 4394 case Instruction::CallBr: 4395 case Instruction::PHI: 4396 case Instruction::Store: 4397 case Instruction::Ret: 4398 case Instruction::Br: 4399 case Instruction::IndirectBr: 4400 case Instruction::Switch: 4401 case Instruction::Unreachable: 4402 case Instruction::Fence: 4403 case Instruction::AtomicRMW: 4404 case Instruction::AtomicCmpXchg: 4405 case Instruction::LandingPad: 4406 case Instruction::Resume: 4407 case Instruction::CatchSwitch: 4408 case Instruction::CatchPad: 4409 case Instruction::CatchRet: 4410 case Instruction::CleanupPad: 4411 case Instruction::CleanupRet: 4412 return false; // Misc instructions which have effects 4413 } 4414 } 4415 4416 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4417 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4418 } 4419 4420 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4421 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4422 switch (OR) { 4423 case ConstantRange::OverflowResult::MayOverflow: 4424 return OverflowResult::MayOverflow; 4425 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4426 return OverflowResult::AlwaysOverflowsLow; 4427 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4428 return OverflowResult::AlwaysOverflowsHigh; 4429 case ConstantRange::OverflowResult::NeverOverflows: 4430 return OverflowResult::NeverOverflows; 4431 } 4432 llvm_unreachable("Unknown OverflowResult"); 4433 } 4434 4435 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4436 static ConstantRange computeConstantRangeIncludingKnownBits( 4437 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4438 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4439 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4440 KnownBits Known = computeKnownBits( 4441 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4442 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4443 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4444 ConstantRange::PreferredRangeType RangeType = 4445 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4446 return CR1.intersectWith(CR2, RangeType); 4447 } 4448 4449 OverflowResult llvm::computeOverflowForUnsignedMul( 4450 const Value *LHS, const Value *RHS, const DataLayout &DL, 4451 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4452 bool UseInstrInfo) { 4453 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4454 nullptr, UseInstrInfo); 4455 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4456 nullptr, UseInstrInfo); 4457 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4458 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4459 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4460 } 4461 4462 OverflowResult 4463 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4464 const DataLayout &DL, AssumptionCache *AC, 4465 const Instruction *CxtI, 4466 const DominatorTree *DT, bool UseInstrInfo) { 4467 // Multiplying n * m significant bits yields a result of n + m significant 4468 // bits. If the total number of significant bits does not exceed the 4469 // result bit width (minus 1), there is no overflow. 4470 // This means if we have enough leading sign bits in the operands 4471 // we can guarantee that the result does not overflow. 4472 // Ref: "Hacker's Delight" by Henry Warren 4473 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4474 4475 // Note that underestimating the number of sign bits gives a more 4476 // conservative answer. 4477 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4478 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4479 4480 // First handle the easy case: if we have enough sign bits there's 4481 // definitely no overflow. 4482 if (SignBits > BitWidth + 1) 4483 return OverflowResult::NeverOverflows; 4484 4485 // There are two ambiguous cases where there can be no overflow: 4486 // SignBits == BitWidth + 1 and 4487 // SignBits == BitWidth 4488 // The second case is difficult to check, therefore we only handle the 4489 // first case. 4490 if (SignBits == BitWidth + 1) { 4491 // It overflows only when both arguments are negative and the true 4492 // product is exactly the minimum negative number. 4493 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4494 // For simplicity we just check if at least one side is not negative. 4495 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4496 nullptr, UseInstrInfo); 4497 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4498 nullptr, UseInstrInfo); 4499 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4500 return OverflowResult::NeverOverflows; 4501 } 4502 return OverflowResult::MayOverflow; 4503 } 4504 4505 OverflowResult llvm::computeOverflowForUnsignedAdd( 4506 const Value *LHS, const Value *RHS, const DataLayout &DL, 4507 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4508 bool UseInstrInfo) { 4509 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4510 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4511 nullptr, UseInstrInfo); 4512 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4513 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4514 nullptr, UseInstrInfo); 4515 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4516 } 4517 4518 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4519 const Value *RHS, 4520 const AddOperator *Add, 4521 const DataLayout &DL, 4522 AssumptionCache *AC, 4523 const Instruction *CxtI, 4524 const DominatorTree *DT) { 4525 if (Add && Add->hasNoSignedWrap()) { 4526 return OverflowResult::NeverOverflows; 4527 } 4528 4529 // If LHS and RHS each have at least two sign bits, the addition will look 4530 // like 4531 // 4532 // XX..... + 4533 // YY..... 4534 // 4535 // If the carry into the most significant position is 0, X and Y can't both 4536 // be 1 and therefore the carry out of the addition is also 0. 4537 // 4538 // If the carry into the most significant position is 1, X and Y can't both 4539 // be 0 and therefore the carry out of the addition is also 1. 4540 // 4541 // Since the carry into the most significant position is always equal to 4542 // the carry out of the addition, there is no signed overflow. 4543 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4544 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4545 return OverflowResult::NeverOverflows; 4546 4547 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4548 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4549 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4550 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4551 OverflowResult OR = 4552 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4553 if (OR != OverflowResult::MayOverflow) 4554 return OR; 4555 4556 // The remaining code needs Add to be available. Early returns if not so. 4557 if (!Add) 4558 return OverflowResult::MayOverflow; 4559 4560 // If the sign of Add is the same as at least one of the operands, this add 4561 // CANNOT overflow. If this can be determined from the known bits of the 4562 // operands the above signedAddMayOverflow() check will have already done so. 4563 // The only other way to improve on the known bits is from an assumption, so 4564 // call computeKnownBitsFromAssume() directly. 4565 bool LHSOrRHSKnownNonNegative = 4566 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4567 bool LHSOrRHSKnownNegative = 4568 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4569 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4570 KnownBits AddKnown(LHSRange.getBitWidth()); 4571 computeKnownBitsFromAssume( 4572 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4573 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4574 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4575 return OverflowResult::NeverOverflows; 4576 } 4577 4578 return OverflowResult::MayOverflow; 4579 } 4580 4581 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4582 const Value *RHS, 4583 const DataLayout &DL, 4584 AssumptionCache *AC, 4585 const Instruction *CxtI, 4586 const DominatorTree *DT) { 4587 // Checking for conditions implied by dominating conditions may be expensive. 4588 // Limit it to usub_with_overflow calls for now. 4589 if (match(CxtI, 4590 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4591 if (auto C = 4592 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4593 if (*C) 4594 return OverflowResult::NeverOverflows; 4595 return OverflowResult::AlwaysOverflowsLow; 4596 } 4597 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4598 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4599 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4600 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4601 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4602 } 4603 4604 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4605 const Value *RHS, 4606 const DataLayout &DL, 4607 AssumptionCache *AC, 4608 const Instruction *CxtI, 4609 const DominatorTree *DT) { 4610 // If LHS and RHS each have at least two sign bits, the subtraction 4611 // cannot overflow. 4612 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4613 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4614 return OverflowResult::NeverOverflows; 4615 4616 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4617 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4618 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4619 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4620 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4621 } 4622 4623 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4624 const DominatorTree &DT) { 4625 SmallVector<const BranchInst *, 2> GuardingBranches; 4626 SmallVector<const ExtractValueInst *, 2> Results; 4627 4628 for (const User *U : WO->users()) { 4629 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4630 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4631 4632 if (EVI->getIndices()[0] == 0) 4633 Results.push_back(EVI); 4634 else { 4635 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4636 4637 for (const auto *U : EVI->users()) 4638 if (const auto *B = dyn_cast<BranchInst>(U)) { 4639 assert(B->isConditional() && "How else is it using an i1?"); 4640 GuardingBranches.push_back(B); 4641 } 4642 } 4643 } else { 4644 // We are using the aggregate directly in a way we don't want to analyze 4645 // here (storing it to a global, say). 4646 return false; 4647 } 4648 } 4649 4650 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4651 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4652 if (!NoWrapEdge.isSingleEdge()) 4653 return false; 4654 4655 // Check if all users of the add are provably no-wrap. 4656 for (const auto *Result : Results) { 4657 // If the extractvalue itself is not executed on overflow, the we don't 4658 // need to check each use separately, since domination is transitive. 4659 if (DT.dominates(NoWrapEdge, Result->getParent())) 4660 continue; 4661 4662 for (auto &RU : Result->uses()) 4663 if (!DT.dominates(NoWrapEdge, RU)) 4664 return false; 4665 } 4666 4667 return true; 4668 }; 4669 4670 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4671 } 4672 4673 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4674 // See whether I has flags that may create poison 4675 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4676 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4677 return true; 4678 } 4679 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4680 if (ExactOp->isExact()) 4681 return true; 4682 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4683 auto FMF = FP->getFastMathFlags(); 4684 if (FMF.noNaNs() || FMF.noInfs()) 4685 return true; 4686 } 4687 4688 unsigned Opcode = Op->getOpcode(); 4689 4690 // Check whether opcode is a poison/undef-generating operation 4691 switch (Opcode) { 4692 case Instruction::Shl: 4693 case Instruction::AShr: 4694 case Instruction::LShr: { 4695 // Shifts return poison if shiftwidth is larger than the bitwidth. 4696 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4697 SmallVector<Constant *, 4> ShiftAmounts; 4698 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4699 unsigned NumElts = FVTy->getNumElements(); 4700 for (unsigned i = 0; i < NumElts; ++i) 4701 ShiftAmounts.push_back(C->getAggregateElement(i)); 4702 } else if (isa<ScalableVectorType>(C->getType())) 4703 return true; // Can't tell, just return true to be safe 4704 else 4705 ShiftAmounts.push_back(C); 4706 4707 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4708 auto *CI = dyn_cast<ConstantInt>(C); 4709 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4710 }); 4711 return !Safe; 4712 } 4713 return true; 4714 } 4715 case Instruction::FPToSI: 4716 case Instruction::FPToUI: 4717 // fptosi/ui yields poison if the resulting value does not fit in the 4718 // destination type. 4719 return true; 4720 case Instruction::Call: 4721 case Instruction::CallBr: 4722 case Instruction::Invoke: { 4723 const auto *CB = cast<CallBase>(Op); 4724 return !CB->hasRetAttr(Attribute::NoUndef); 4725 } 4726 case Instruction::InsertElement: 4727 case Instruction::ExtractElement: { 4728 // If index exceeds the length of the vector, it returns poison 4729 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4730 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4731 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4732 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4733 return true; 4734 return false; 4735 } 4736 case Instruction::ShuffleVector: { 4737 // shufflevector may return undef. 4738 if (PoisonOnly) 4739 return false; 4740 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4741 ? cast<ConstantExpr>(Op)->getShuffleMask() 4742 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4743 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4744 } 4745 case Instruction::FNeg: 4746 case Instruction::PHI: 4747 case Instruction::Select: 4748 case Instruction::URem: 4749 case Instruction::SRem: 4750 case Instruction::ExtractValue: 4751 case Instruction::InsertValue: 4752 case Instruction::Freeze: 4753 case Instruction::ICmp: 4754 case Instruction::FCmp: 4755 return false; 4756 case Instruction::GetElementPtr: { 4757 const auto *GEP = cast<GEPOperator>(Op); 4758 return GEP->isInBounds(); 4759 } 4760 default: { 4761 const auto *CE = dyn_cast<ConstantExpr>(Op); 4762 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4763 return false; 4764 else if (Instruction::isBinaryOp(Opcode)) 4765 return false; 4766 // Be conservative and return true. 4767 return true; 4768 } 4769 } 4770 } 4771 4772 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4773 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4774 } 4775 4776 bool llvm::canCreatePoison(const Operator *Op) { 4777 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4778 } 4779 4780 static bool programUndefinedIfUndefOrPoison(const Value *V, 4781 bool PoisonOnly); 4782 4783 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4784 AssumptionCache *AC, 4785 const Instruction *CtxI, 4786 const DominatorTree *DT, 4787 unsigned Depth, bool PoisonOnly) { 4788 if (Depth >= MaxAnalysisRecursionDepth) 4789 return false; 4790 4791 if (isa<MetadataAsValue>(V)) 4792 return false; 4793 4794 if (const auto *A = dyn_cast<Argument>(V)) { 4795 if (A->hasAttribute(Attribute::NoUndef)) 4796 return true; 4797 } 4798 4799 if (auto *C = dyn_cast<Constant>(V)) { 4800 if (isa<UndefValue>(C)) 4801 return PoisonOnly; 4802 4803 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4804 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4805 return true; 4806 4807 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4808 return (PoisonOnly || !C->containsUndefElement()) && 4809 !C->containsConstantExpression(); 4810 } 4811 4812 // Strip cast operations from a pointer value. 4813 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4814 // inbounds with zero offset. To guarantee that the result isn't poison, the 4815 // stripped pointer is checked as it has to be pointing into an allocated 4816 // object or be null `null` to ensure `inbounds` getelement pointers with a 4817 // zero offset could not produce poison. 4818 // It can strip off addrspacecast that do not change bit representation as 4819 // well. We believe that such addrspacecast is equivalent to no-op. 4820 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4821 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4822 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4823 return true; 4824 4825 auto OpCheck = [&](const Value *V) { 4826 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4827 PoisonOnly); 4828 }; 4829 4830 if (auto *Opr = dyn_cast<Operator>(V)) { 4831 // If the value is a freeze instruction, then it can never 4832 // be undef or poison. 4833 if (isa<FreezeInst>(V)) 4834 return true; 4835 4836 if (const auto *CB = dyn_cast<CallBase>(V)) { 4837 if (CB->hasRetAttr(Attribute::NoUndef)) 4838 return true; 4839 } 4840 4841 if (const auto *PN = dyn_cast<PHINode>(V)) { 4842 unsigned Num = PN->getNumIncomingValues(); 4843 bool IsWellDefined = true; 4844 for (unsigned i = 0; i < Num; ++i) { 4845 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4846 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4847 DT, Depth + 1, PoisonOnly)) { 4848 IsWellDefined = false; 4849 break; 4850 } 4851 } 4852 if (IsWellDefined) 4853 return true; 4854 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4855 return true; 4856 } 4857 4858 if (auto *I = dyn_cast<LoadInst>(V)) 4859 if (I->getMetadata(LLVMContext::MD_noundef)) 4860 return true; 4861 4862 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4863 return true; 4864 4865 // CxtI may be null or a cloned instruction. 4866 if (!CtxI || !CtxI->getParent() || !DT) 4867 return false; 4868 4869 auto *DNode = DT->getNode(CtxI->getParent()); 4870 if (!DNode) 4871 // Unreachable block 4872 return false; 4873 4874 // If V is used as a branch condition before reaching CtxI, V cannot be 4875 // undef or poison. 4876 // br V, BB1, BB2 4877 // BB1: 4878 // CtxI ; V cannot be undef or poison here 4879 auto *Dominator = DNode->getIDom(); 4880 while (Dominator) { 4881 auto *TI = Dominator->getBlock()->getTerminator(); 4882 4883 Value *Cond = nullptr; 4884 if (auto BI = dyn_cast<BranchInst>(TI)) { 4885 if (BI->isConditional()) 4886 Cond = BI->getCondition(); 4887 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4888 Cond = SI->getCondition(); 4889 } 4890 4891 if (Cond) { 4892 if (Cond == V) 4893 return true; 4894 else if (PoisonOnly && isa<Operator>(Cond)) { 4895 // For poison, we can analyze further 4896 auto *Opr = cast<Operator>(Cond); 4897 if (propagatesPoison(Opr) && 4898 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4899 return true; 4900 } 4901 } 4902 4903 Dominator = Dominator->getIDom(); 4904 } 4905 4906 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4907 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4908 return true; 4909 4910 return false; 4911 } 4912 4913 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4914 const Instruction *CtxI, 4915 const DominatorTree *DT, 4916 unsigned Depth) { 4917 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4918 } 4919 4920 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4921 const Instruction *CtxI, 4922 const DominatorTree *DT, unsigned Depth) { 4923 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4924 } 4925 4926 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4927 const DataLayout &DL, 4928 AssumptionCache *AC, 4929 const Instruction *CxtI, 4930 const DominatorTree *DT) { 4931 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4932 Add, DL, AC, CxtI, DT); 4933 } 4934 4935 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4936 const Value *RHS, 4937 const DataLayout &DL, 4938 AssumptionCache *AC, 4939 const Instruction *CxtI, 4940 const DominatorTree *DT) { 4941 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4942 } 4943 4944 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4945 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4946 // of time because it's possible for another thread to interfere with it for an 4947 // arbitrary length of time, but programs aren't allowed to rely on that. 4948 4949 // If there is no successor, then execution can't transfer to it. 4950 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4951 return !CRI->unwindsToCaller(); 4952 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4953 return !CatchSwitch->unwindsToCaller(); 4954 if (isa<ResumeInst>(I)) 4955 return false; 4956 if (isa<ReturnInst>(I)) 4957 return false; 4958 if (isa<UnreachableInst>(I)) 4959 return false; 4960 4961 // Calls can throw, or contain an infinite loop, or kill the process. 4962 if (const auto *CB = dyn_cast<CallBase>(I)) { 4963 // Call sites that throw have implicit non-local control flow. 4964 if (!CB->doesNotThrow()) 4965 return false; 4966 4967 // A function which doens't throw and has "willreturn" attribute will 4968 // always return. 4969 if (CB->hasFnAttr(Attribute::WillReturn)) 4970 return true; 4971 4972 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4973 // etc. and thus not return. However, LLVM already assumes that 4974 // 4975 // - Thread exiting actions are modeled as writes to memory invisible to 4976 // the program. 4977 // 4978 // - Loops that don't have side effects (side effects are volatile/atomic 4979 // stores and IO) always terminate (see http://llvm.org/PR965). 4980 // Furthermore IO itself is also modeled as writes to memory invisible to 4981 // the program. 4982 // 4983 // We rely on those assumptions here, and use the memory effects of the call 4984 // target as a proxy for checking that it always returns. 4985 4986 // FIXME: This isn't aggressive enough; a call which only writes to a global 4987 // is guaranteed to return. 4988 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4989 } 4990 4991 // Other instructions return normally. 4992 return true; 4993 } 4994 4995 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4996 // TODO: This is slightly conservative for invoke instruction since exiting 4997 // via an exception *is* normal control for them. 4998 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4999 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5000 return false; 5001 return true; 5002 } 5003 5004 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5005 const Loop *L) { 5006 // The loop header is guaranteed to be executed for every iteration. 5007 // 5008 // FIXME: Relax this constraint to cover all basic blocks that are 5009 // guaranteed to be executed at every iteration. 5010 if (I->getParent() != L->getHeader()) return false; 5011 5012 for (const Instruction &LI : *L->getHeader()) { 5013 if (&LI == I) return true; 5014 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5015 } 5016 llvm_unreachable("Instruction not contained in its own parent basic block."); 5017 } 5018 5019 bool llvm::propagatesPoison(const Operator *I) { 5020 switch (I->getOpcode()) { 5021 case Instruction::Freeze: 5022 case Instruction::Select: 5023 case Instruction::PHI: 5024 case Instruction::Call: 5025 case Instruction::Invoke: 5026 return false; 5027 case Instruction::ICmp: 5028 case Instruction::FCmp: 5029 case Instruction::GetElementPtr: 5030 return true; 5031 default: 5032 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5033 return true; 5034 5035 // Be conservative and return false. 5036 return false; 5037 } 5038 } 5039 5040 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5041 SmallPtrSetImpl<const Value *> &Operands) { 5042 switch (I->getOpcode()) { 5043 case Instruction::Store: 5044 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5045 break; 5046 5047 case Instruction::Load: 5048 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5049 break; 5050 5051 case Instruction::AtomicCmpXchg: 5052 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5053 break; 5054 5055 case Instruction::AtomicRMW: 5056 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5057 break; 5058 5059 case Instruction::UDiv: 5060 case Instruction::SDiv: 5061 case Instruction::URem: 5062 case Instruction::SRem: 5063 Operands.insert(I->getOperand(1)); 5064 break; 5065 5066 case Instruction::Call: 5067 case Instruction::Invoke: { 5068 const CallBase *CB = cast<CallBase>(I); 5069 if (CB->isIndirectCall()) 5070 Operands.insert(CB->getCalledOperand()); 5071 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5072 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5073 Operands.insert(CB->getArgOperand(i)); 5074 } 5075 break; 5076 } 5077 5078 default: 5079 break; 5080 } 5081 } 5082 5083 bool llvm::mustTriggerUB(const Instruction *I, 5084 const SmallSet<const Value *, 16>& KnownPoison) { 5085 SmallPtrSet<const Value *, 4> NonPoisonOps; 5086 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5087 5088 for (const auto *V : NonPoisonOps) 5089 if (KnownPoison.count(V)) 5090 return true; 5091 5092 return false; 5093 } 5094 5095 static bool programUndefinedIfUndefOrPoison(const Value *V, 5096 bool PoisonOnly) { 5097 // We currently only look for uses of values within the same basic 5098 // block, as that makes it easier to guarantee that the uses will be 5099 // executed given that Inst is executed. 5100 // 5101 // FIXME: Expand this to consider uses beyond the same basic block. To do 5102 // this, look out for the distinction between post-dominance and strong 5103 // post-dominance. 5104 const BasicBlock *BB = nullptr; 5105 BasicBlock::const_iterator Begin; 5106 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5107 BB = Inst->getParent(); 5108 Begin = Inst->getIterator(); 5109 Begin++; 5110 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5111 BB = &Arg->getParent()->getEntryBlock(); 5112 Begin = BB->begin(); 5113 } else { 5114 return false; 5115 } 5116 5117 BasicBlock::const_iterator End = BB->end(); 5118 5119 if (!PoisonOnly) { 5120 // Be conservative & just check whether a value is passed to a noundef 5121 // argument. 5122 // Instructions that raise UB with a poison operand are well-defined 5123 // or have unclear semantics when the input is partially undef. 5124 // For example, 'udiv x, (undef | 1)' isn't UB. 5125 5126 for (auto &I : make_range(Begin, End)) { 5127 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5128 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5129 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5130 CB->getArgOperand(i) == V) 5131 return true; 5132 } 5133 } 5134 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5135 break; 5136 } 5137 return false; 5138 } 5139 5140 // Set of instructions that we have proved will yield poison if Inst 5141 // does. 5142 SmallSet<const Value *, 16> YieldsPoison; 5143 SmallSet<const BasicBlock *, 4> Visited; 5144 5145 YieldsPoison.insert(V); 5146 auto Propagate = [&](const User *User) { 5147 if (propagatesPoison(cast<Operator>(User))) 5148 YieldsPoison.insert(User); 5149 }; 5150 for_each(V->users(), Propagate); 5151 Visited.insert(BB); 5152 5153 unsigned Iter = 0; 5154 while (Iter++ < MaxAnalysisRecursionDepth) { 5155 for (auto &I : make_range(Begin, End)) { 5156 if (mustTriggerUB(&I, YieldsPoison)) 5157 return true; 5158 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5159 return false; 5160 5161 // Mark poison that propagates from I through uses of I. 5162 if (YieldsPoison.count(&I)) 5163 for_each(I.users(), Propagate); 5164 } 5165 5166 if (auto *NextBB = BB->getSingleSuccessor()) { 5167 if (Visited.insert(NextBB).second) { 5168 BB = NextBB; 5169 Begin = BB->getFirstNonPHI()->getIterator(); 5170 End = BB->end(); 5171 continue; 5172 } 5173 } 5174 5175 break; 5176 } 5177 return false; 5178 } 5179 5180 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5181 return ::programUndefinedIfUndefOrPoison(Inst, false); 5182 } 5183 5184 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5185 return ::programUndefinedIfUndefOrPoison(Inst, true); 5186 } 5187 5188 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5189 if (FMF.noNaNs()) 5190 return true; 5191 5192 if (auto *C = dyn_cast<ConstantFP>(V)) 5193 return !C->isNaN(); 5194 5195 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5196 if (!C->getElementType()->isFloatingPointTy()) 5197 return false; 5198 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5199 if (C->getElementAsAPFloat(I).isNaN()) 5200 return false; 5201 } 5202 return true; 5203 } 5204 5205 if (isa<ConstantAggregateZero>(V)) 5206 return true; 5207 5208 return false; 5209 } 5210 5211 static bool isKnownNonZero(const Value *V) { 5212 if (auto *C = dyn_cast<ConstantFP>(V)) 5213 return !C->isZero(); 5214 5215 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5216 if (!C->getElementType()->isFloatingPointTy()) 5217 return false; 5218 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5219 if (C->getElementAsAPFloat(I).isZero()) 5220 return false; 5221 } 5222 return true; 5223 } 5224 5225 return false; 5226 } 5227 5228 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5229 /// Given non-min/max outer cmp/select from the clamp pattern this 5230 /// function recognizes if it can be substitued by a "canonical" min/max 5231 /// pattern. 5232 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5233 Value *CmpLHS, Value *CmpRHS, 5234 Value *TrueVal, Value *FalseVal, 5235 Value *&LHS, Value *&RHS) { 5236 // Try to match 5237 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5238 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5239 // and return description of the outer Max/Min. 5240 5241 // First, check if select has inverse order: 5242 if (CmpRHS == FalseVal) { 5243 std::swap(TrueVal, FalseVal); 5244 Pred = CmpInst::getInversePredicate(Pred); 5245 } 5246 5247 // Assume success now. If there's no match, callers should not use these anyway. 5248 LHS = TrueVal; 5249 RHS = FalseVal; 5250 5251 const APFloat *FC1; 5252 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5253 return {SPF_UNKNOWN, SPNB_NA, false}; 5254 5255 const APFloat *FC2; 5256 switch (Pred) { 5257 case CmpInst::FCMP_OLT: 5258 case CmpInst::FCMP_OLE: 5259 case CmpInst::FCMP_ULT: 5260 case CmpInst::FCMP_ULE: 5261 if (match(FalseVal, 5262 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5263 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5264 *FC1 < *FC2) 5265 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5266 break; 5267 case CmpInst::FCMP_OGT: 5268 case CmpInst::FCMP_OGE: 5269 case CmpInst::FCMP_UGT: 5270 case CmpInst::FCMP_UGE: 5271 if (match(FalseVal, 5272 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5273 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5274 *FC1 > *FC2) 5275 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5276 break; 5277 default: 5278 break; 5279 } 5280 5281 return {SPF_UNKNOWN, SPNB_NA, false}; 5282 } 5283 5284 /// Recognize variations of: 5285 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5286 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5287 Value *CmpLHS, Value *CmpRHS, 5288 Value *TrueVal, Value *FalseVal) { 5289 // Swap the select operands and predicate to match the patterns below. 5290 if (CmpRHS != TrueVal) { 5291 Pred = ICmpInst::getSwappedPredicate(Pred); 5292 std::swap(TrueVal, FalseVal); 5293 } 5294 const APInt *C1; 5295 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5296 const APInt *C2; 5297 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5298 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5299 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5300 return {SPF_SMAX, SPNB_NA, false}; 5301 5302 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5303 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5304 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5305 return {SPF_SMIN, SPNB_NA, false}; 5306 5307 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5308 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5309 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5310 return {SPF_UMAX, SPNB_NA, false}; 5311 5312 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5313 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5314 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5315 return {SPF_UMIN, SPNB_NA, false}; 5316 } 5317 return {SPF_UNKNOWN, SPNB_NA, false}; 5318 } 5319 5320 /// Recognize variations of: 5321 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5322 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5323 Value *CmpLHS, Value *CmpRHS, 5324 Value *TVal, Value *FVal, 5325 unsigned Depth) { 5326 // TODO: Allow FP min/max with nnan/nsz. 5327 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5328 5329 Value *A = nullptr, *B = nullptr; 5330 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5331 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5332 return {SPF_UNKNOWN, SPNB_NA, false}; 5333 5334 Value *C = nullptr, *D = nullptr; 5335 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5336 if (L.Flavor != R.Flavor) 5337 return {SPF_UNKNOWN, SPNB_NA, false}; 5338 5339 // We have something like: x Pred y ? min(a, b) : min(c, d). 5340 // Try to match the compare to the min/max operations of the select operands. 5341 // First, make sure we have the right compare predicate. 5342 switch (L.Flavor) { 5343 case SPF_SMIN: 5344 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5345 Pred = ICmpInst::getSwappedPredicate(Pred); 5346 std::swap(CmpLHS, CmpRHS); 5347 } 5348 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5349 break; 5350 return {SPF_UNKNOWN, SPNB_NA, false}; 5351 case SPF_SMAX: 5352 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5353 Pred = ICmpInst::getSwappedPredicate(Pred); 5354 std::swap(CmpLHS, CmpRHS); 5355 } 5356 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5357 break; 5358 return {SPF_UNKNOWN, SPNB_NA, false}; 5359 case SPF_UMIN: 5360 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5361 Pred = ICmpInst::getSwappedPredicate(Pred); 5362 std::swap(CmpLHS, CmpRHS); 5363 } 5364 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5365 break; 5366 return {SPF_UNKNOWN, SPNB_NA, false}; 5367 case SPF_UMAX: 5368 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5369 Pred = ICmpInst::getSwappedPredicate(Pred); 5370 std::swap(CmpLHS, CmpRHS); 5371 } 5372 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5373 break; 5374 return {SPF_UNKNOWN, SPNB_NA, false}; 5375 default: 5376 return {SPF_UNKNOWN, SPNB_NA, false}; 5377 } 5378 5379 // If there is a common operand in the already matched min/max and the other 5380 // min/max operands match the compare operands (either directly or inverted), 5381 // then this is min/max of the same flavor. 5382 5383 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5384 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5385 if (D == B) { 5386 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5387 match(A, m_Not(m_Specific(CmpRHS))))) 5388 return {L.Flavor, SPNB_NA, false}; 5389 } 5390 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5391 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5392 if (C == B) { 5393 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5394 match(A, m_Not(m_Specific(CmpRHS))))) 5395 return {L.Flavor, SPNB_NA, false}; 5396 } 5397 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5398 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5399 if (D == A) { 5400 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5401 match(B, m_Not(m_Specific(CmpRHS))))) 5402 return {L.Flavor, SPNB_NA, false}; 5403 } 5404 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5405 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5406 if (C == A) { 5407 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5408 match(B, m_Not(m_Specific(CmpRHS))))) 5409 return {L.Flavor, SPNB_NA, false}; 5410 } 5411 5412 return {SPF_UNKNOWN, SPNB_NA, false}; 5413 } 5414 5415 /// If the input value is the result of a 'not' op, constant integer, or vector 5416 /// splat of a constant integer, return the bitwise-not source value. 5417 /// TODO: This could be extended to handle non-splat vector integer constants. 5418 static Value *getNotValue(Value *V) { 5419 Value *NotV; 5420 if (match(V, m_Not(m_Value(NotV)))) 5421 return NotV; 5422 5423 const APInt *C; 5424 if (match(V, m_APInt(C))) 5425 return ConstantInt::get(V->getType(), ~(*C)); 5426 5427 return nullptr; 5428 } 5429 5430 /// Match non-obvious integer minimum and maximum sequences. 5431 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5432 Value *CmpLHS, Value *CmpRHS, 5433 Value *TrueVal, Value *FalseVal, 5434 Value *&LHS, Value *&RHS, 5435 unsigned Depth) { 5436 // Assume success. If there's no match, callers should not use these anyway. 5437 LHS = TrueVal; 5438 RHS = FalseVal; 5439 5440 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5441 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5442 return SPR; 5443 5444 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5445 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5446 return SPR; 5447 5448 // Look through 'not' ops to find disguised min/max. 5449 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5450 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5451 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5452 switch (Pred) { 5453 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5454 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5455 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5456 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5457 default: break; 5458 } 5459 } 5460 5461 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5462 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5463 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5464 switch (Pred) { 5465 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5466 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5467 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5468 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5469 default: break; 5470 } 5471 } 5472 5473 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5474 return {SPF_UNKNOWN, SPNB_NA, false}; 5475 5476 // Z = X -nsw Y 5477 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5478 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5479 if (match(TrueVal, m_Zero()) && 5480 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5481 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5482 5483 // Z = X -nsw Y 5484 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5485 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5486 if (match(FalseVal, m_Zero()) && 5487 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5488 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5489 5490 const APInt *C1; 5491 if (!match(CmpRHS, m_APInt(C1))) 5492 return {SPF_UNKNOWN, SPNB_NA, false}; 5493 5494 // An unsigned min/max can be written with a signed compare. 5495 const APInt *C2; 5496 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5497 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5498 // Is the sign bit set? 5499 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5500 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5501 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5502 C2->isMaxSignedValue()) 5503 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5504 5505 // Is the sign bit clear? 5506 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5507 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5508 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5509 C2->isMinSignedValue()) 5510 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5511 } 5512 5513 return {SPF_UNKNOWN, SPNB_NA, false}; 5514 } 5515 5516 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5517 assert(X && Y && "Invalid operand"); 5518 5519 // X = sub (0, Y) || X = sub nsw (0, Y) 5520 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5521 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5522 return true; 5523 5524 // Y = sub (0, X) || Y = sub nsw (0, X) 5525 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5526 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5527 return true; 5528 5529 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5530 Value *A, *B; 5531 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5532 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5533 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5534 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5535 } 5536 5537 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5538 FastMathFlags FMF, 5539 Value *CmpLHS, Value *CmpRHS, 5540 Value *TrueVal, Value *FalseVal, 5541 Value *&LHS, Value *&RHS, 5542 unsigned Depth) { 5543 if (CmpInst::isFPPredicate(Pred)) { 5544 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5545 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5546 // purpose of identifying min/max. Disregard vector constants with undefined 5547 // elements because those can not be back-propagated for analysis. 5548 Value *OutputZeroVal = nullptr; 5549 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5550 !cast<Constant>(TrueVal)->containsUndefElement()) 5551 OutputZeroVal = TrueVal; 5552 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5553 !cast<Constant>(FalseVal)->containsUndefElement()) 5554 OutputZeroVal = FalseVal; 5555 5556 if (OutputZeroVal) { 5557 if (match(CmpLHS, m_AnyZeroFP())) 5558 CmpLHS = OutputZeroVal; 5559 if (match(CmpRHS, m_AnyZeroFP())) 5560 CmpRHS = OutputZeroVal; 5561 } 5562 } 5563 5564 LHS = CmpLHS; 5565 RHS = CmpRHS; 5566 5567 // Signed zero may return inconsistent results between implementations. 5568 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5569 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5570 // Therefore, we behave conservatively and only proceed if at least one of the 5571 // operands is known to not be zero or if we don't care about signed zero. 5572 switch (Pred) { 5573 default: break; 5574 // FIXME: Include OGT/OLT/UGT/ULT. 5575 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5576 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5577 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5578 !isKnownNonZero(CmpRHS)) 5579 return {SPF_UNKNOWN, SPNB_NA, false}; 5580 } 5581 5582 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5583 bool Ordered = false; 5584 5585 // When given one NaN and one non-NaN input: 5586 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5587 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5588 // ordered comparison fails), which could be NaN or non-NaN. 5589 // so here we discover exactly what NaN behavior is required/accepted. 5590 if (CmpInst::isFPPredicate(Pred)) { 5591 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5592 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5593 5594 if (LHSSafe && RHSSafe) { 5595 // Both operands are known non-NaN. 5596 NaNBehavior = SPNB_RETURNS_ANY; 5597 } else if (CmpInst::isOrdered(Pred)) { 5598 // An ordered comparison will return false when given a NaN, so it 5599 // returns the RHS. 5600 Ordered = true; 5601 if (LHSSafe) 5602 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5603 NaNBehavior = SPNB_RETURNS_NAN; 5604 else if (RHSSafe) 5605 NaNBehavior = SPNB_RETURNS_OTHER; 5606 else 5607 // Completely unsafe. 5608 return {SPF_UNKNOWN, SPNB_NA, false}; 5609 } else { 5610 Ordered = false; 5611 // An unordered comparison will return true when given a NaN, so it 5612 // returns the LHS. 5613 if (LHSSafe) 5614 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5615 NaNBehavior = SPNB_RETURNS_OTHER; 5616 else if (RHSSafe) 5617 NaNBehavior = SPNB_RETURNS_NAN; 5618 else 5619 // Completely unsafe. 5620 return {SPF_UNKNOWN, SPNB_NA, false}; 5621 } 5622 } 5623 5624 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5625 std::swap(CmpLHS, CmpRHS); 5626 Pred = CmpInst::getSwappedPredicate(Pred); 5627 if (NaNBehavior == SPNB_RETURNS_NAN) 5628 NaNBehavior = SPNB_RETURNS_OTHER; 5629 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5630 NaNBehavior = SPNB_RETURNS_NAN; 5631 Ordered = !Ordered; 5632 } 5633 5634 // ([if]cmp X, Y) ? X : Y 5635 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5636 switch (Pred) { 5637 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5638 case ICmpInst::ICMP_UGT: 5639 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5640 case ICmpInst::ICMP_SGT: 5641 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5642 case ICmpInst::ICMP_ULT: 5643 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5644 case ICmpInst::ICMP_SLT: 5645 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5646 case FCmpInst::FCMP_UGT: 5647 case FCmpInst::FCMP_UGE: 5648 case FCmpInst::FCMP_OGT: 5649 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5650 case FCmpInst::FCMP_ULT: 5651 case FCmpInst::FCMP_ULE: 5652 case FCmpInst::FCMP_OLT: 5653 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5654 } 5655 } 5656 5657 if (isKnownNegation(TrueVal, FalseVal)) { 5658 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5659 // match against either LHS or sext(LHS). 5660 auto MaybeSExtCmpLHS = 5661 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5662 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5663 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5664 if (match(TrueVal, MaybeSExtCmpLHS)) { 5665 // Set the return values. If the compare uses the negated value (-X >s 0), 5666 // swap the return values because the negated value is always 'RHS'. 5667 LHS = TrueVal; 5668 RHS = FalseVal; 5669 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5670 std::swap(LHS, RHS); 5671 5672 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5673 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5674 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5675 return {SPF_ABS, SPNB_NA, false}; 5676 5677 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5678 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5679 return {SPF_ABS, SPNB_NA, false}; 5680 5681 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5682 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5683 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5684 return {SPF_NABS, SPNB_NA, false}; 5685 } 5686 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5687 // Set the return values. If the compare uses the negated value (-X >s 0), 5688 // swap the return values because the negated value is always 'RHS'. 5689 LHS = FalseVal; 5690 RHS = TrueVal; 5691 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5692 std::swap(LHS, RHS); 5693 5694 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5695 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5696 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5697 return {SPF_NABS, SPNB_NA, false}; 5698 5699 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5700 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5701 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5702 return {SPF_ABS, SPNB_NA, false}; 5703 } 5704 } 5705 5706 if (CmpInst::isIntPredicate(Pred)) 5707 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5708 5709 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5710 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5711 // semantics than minNum. Be conservative in such case. 5712 if (NaNBehavior != SPNB_RETURNS_ANY || 5713 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5714 !isKnownNonZero(CmpRHS))) 5715 return {SPF_UNKNOWN, SPNB_NA, false}; 5716 5717 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5718 } 5719 5720 /// Helps to match a select pattern in case of a type mismatch. 5721 /// 5722 /// The function processes the case when type of true and false values of a 5723 /// select instruction differs from type of the cmp instruction operands because 5724 /// of a cast instruction. The function checks if it is legal to move the cast 5725 /// operation after "select". If yes, it returns the new second value of 5726 /// "select" (with the assumption that cast is moved): 5727 /// 1. As operand of cast instruction when both values of "select" are same cast 5728 /// instructions. 5729 /// 2. As restored constant (by applying reverse cast operation) when the first 5730 /// value of the "select" is a cast operation and the second value is a 5731 /// constant. 5732 /// NOTE: We return only the new second value because the first value could be 5733 /// accessed as operand of cast instruction. 5734 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5735 Instruction::CastOps *CastOp) { 5736 auto *Cast1 = dyn_cast<CastInst>(V1); 5737 if (!Cast1) 5738 return nullptr; 5739 5740 *CastOp = Cast1->getOpcode(); 5741 Type *SrcTy = Cast1->getSrcTy(); 5742 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5743 // If V1 and V2 are both the same cast from the same type, look through V1. 5744 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5745 return Cast2->getOperand(0); 5746 return nullptr; 5747 } 5748 5749 auto *C = dyn_cast<Constant>(V2); 5750 if (!C) 5751 return nullptr; 5752 5753 Constant *CastedTo = nullptr; 5754 switch (*CastOp) { 5755 case Instruction::ZExt: 5756 if (CmpI->isUnsigned()) 5757 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5758 break; 5759 case Instruction::SExt: 5760 if (CmpI->isSigned()) 5761 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5762 break; 5763 case Instruction::Trunc: 5764 Constant *CmpConst; 5765 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5766 CmpConst->getType() == SrcTy) { 5767 // Here we have the following case: 5768 // 5769 // %cond = cmp iN %x, CmpConst 5770 // %tr = trunc iN %x to iK 5771 // %narrowsel = select i1 %cond, iK %t, iK C 5772 // 5773 // We can always move trunc after select operation: 5774 // 5775 // %cond = cmp iN %x, CmpConst 5776 // %widesel = select i1 %cond, iN %x, iN CmpConst 5777 // %tr = trunc iN %widesel to iK 5778 // 5779 // Note that C could be extended in any way because we don't care about 5780 // upper bits after truncation. It can't be abs pattern, because it would 5781 // look like: 5782 // 5783 // select i1 %cond, x, -x. 5784 // 5785 // So only min/max pattern could be matched. Such match requires widened C 5786 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5787 // CmpConst == C is checked below. 5788 CastedTo = CmpConst; 5789 } else { 5790 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5791 } 5792 break; 5793 case Instruction::FPTrunc: 5794 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5795 break; 5796 case Instruction::FPExt: 5797 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5798 break; 5799 case Instruction::FPToUI: 5800 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5801 break; 5802 case Instruction::FPToSI: 5803 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5804 break; 5805 case Instruction::UIToFP: 5806 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5807 break; 5808 case Instruction::SIToFP: 5809 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5810 break; 5811 default: 5812 break; 5813 } 5814 5815 if (!CastedTo) 5816 return nullptr; 5817 5818 // Make sure the cast doesn't lose any information. 5819 Constant *CastedBack = 5820 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5821 if (CastedBack != C) 5822 return nullptr; 5823 5824 return CastedTo; 5825 } 5826 5827 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5828 Instruction::CastOps *CastOp, 5829 unsigned Depth) { 5830 if (Depth >= MaxAnalysisRecursionDepth) 5831 return {SPF_UNKNOWN, SPNB_NA, false}; 5832 5833 SelectInst *SI = dyn_cast<SelectInst>(V); 5834 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5835 5836 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5837 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5838 5839 Value *TrueVal = SI->getTrueValue(); 5840 Value *FalseVal = SI->getFalseValue(); 5841 5842 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5843 CastOp, Depth); 5844 } 5845 5846 SelectPatternResult llvm::matchDecomposedSelectPattern( 5847 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5848 Instruction::CastOps *CastOp, unsigned Depth) { 5849 CmpInst::Predicate Pred = CmpI->getPredicate(); 5850 Value *CmpLHS = CmpI->getOperand(0); 5851 Value *CmpRHS = CmpI->getOperand(1); 5852 FastMathFlags FMF; 5853 if (isa<FPMathOperator>(CmpI)) 5854 FMF = CmpI->getFastMathFlags(); 5855 5856 // Bail out early. 5857 if (CmpI->isEquality()) 5858 return {SPF_UNKNOWN, SPNB_NA, false}; 5859 5860 // Deal with type mismatches. 5861 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5862 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5863 // If this is a potential fmin/fmax with a cast to integer, then ignore 5864 // -0.0 because there is no corresponding integer value. 5865 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5866 FMF.setNoSignedZeros(); 5867 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5868 cast<CastInst>(TrueVal)->getOperand(0), C, 5869 LHS, RHS, Depth); 5870 } 5871 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5872 // If this is a potential fmin/fmax with a cast to integer, then ignore 5873 // -0.0 because there is no corresponding integer value. 5874 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5875 FMF.setNoSignedZeros(); 5876 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5877 C, cast<CastInst>(FalseVal)->getOperand(0), 5878 LHS, RHS, Depth); 5879 } 5880 } 5881 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5882 LHS, RHS, Depth); 5883 } 5884 5885 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5886 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5887 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5888 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5889 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5890 if (SPF == SPF_FMINNUM) 5891 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5892 if (SPF == SPF_FMAXNUM) 5893 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5894 llvm_unreachable("unhandled!"); 5895 } 5896 5897 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5898 if (SPF == SPF_SMIN) return SPF_SMAX; 5899 if (SPF == SPF_UMIN) return SPF_UMAX; 5900 if (SPF == SPF_SMAX) return SPF_SMIN; 5901 if (SPF == SPF_UMAX) return SPF_UMIN; 5902 llvm_unreachable("unhandled!"); 5903 } 5904 5905 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5906 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5907 } 5908 5909 std::pair<Intrinsic::ID, bool> 5910 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5911 // Check if VL contains select instructions that can be folded into a min/max 5912 // vector intrinsic and return the intrinsic if it is possible. 5913 // TODO: Support floating point min/max. 5914 bool AllCmpSingleUse = true; 5915 SelectPatternResult SelectPattern; 5916 SelectPattern.Flavor = SPF_UNKNOWN; 5917 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5918 Value *LHS, *RHS; 5919 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5920 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5921 CurrentPattern.Flavor == SPF_FMINNUM || 5922 CurrentPattern.Flavor == SPF_FMAXNUM || 5923 !I->getType()->isIntOrIntVectorTy()) 5924 return false; 5925 if (SelectPattern.Flavor != SPF_UNKNOWN && 5926 SelectPattern.Flavor != CurrentPattern.Flavor) 5927 return false; 5928 SelectPattern = CurrentPattern; 5929 AllCmpSingleUse &= 5930 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5931 return true; 5932 })) { 5933 switch (SelectPattern.Flavor) { 5934 case SPF_SMIN: 5935 return {Intrinsic::smin, AllCmpSingleUse}; 5936 case SPF_UMIN: 5937 return {Intrinsic::umin, AllCmpSingleUse}; 5938 case SPF_SMAX: 5939 return {Intrinsic::smax, AllCmpSingleUse}; 5940 case SPF_UMAX: 5941 return {Intrinsic::umax, AllCmpSingleUse}; 5942 default: 5943 llvm_unreachable("unexpected select pattern flavor"); 5944 } 5945 } 5946 return {Intrinsic::not_intrinsic, false}; 5947 } 5948 5949 /// Return true if "icmp Pred LHS RHS" is always true. 5950 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5951 const Value *RHS, const DataLayout &DL, 5952 unsigned Depth) { 5953 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5954 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5955 return true; 5956 5957 switch (Pred) { 5958 default: 5959 return false; 5960 5961 case CmpInst::ICMP_SLE: { 5962 const APInt *C; 5963 5964 // LHS s<= LHS +_{nsw} C if C >= 0 5965 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5966 return !C->isNegative(); 5967 return false; 5968 } 5969 5970 case CmpInst::ICMP_ULE: { 5971 const APInt *C; 5972 5973 // LHS u<= LHS +_{nuw} C for any C 5974 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5975 return true; 5976 5977 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5978 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5979 const Value *&X, 5980 const APInt *&CA, const APInt *&CB) { 5981 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5982 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5983 return true; 5984 5985 // If X & C == 0 then (X | C) == X +_{nuw} C 5986 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5987 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5988 KnownBits Known(CA->getBitWidth()); 5989 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5990 /*CxtI*/ nullptr, /*DT*/ nullptr); 5991 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5992 return true; 5993 } 5994 5995 return false; 5996 }; 5997 5998 const Value *X; 5999 const APInt *CLHS, *CRHS; 6000 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6001 return CLHS->ule(*CRHS); 6002 6003 return false; 6004 } 6005 } 6006 } 6007 6008 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6009 /// ALHS ARHS" is true. Otherwise, return None. 6010 static Optional<bool> 6011 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6012 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6013 const DataLayout &DL, unsigned Depth) { 6014 switch (Pred) { 6015 default: 6016 return None; 6017 6018 case CmpInst::ICMP_SLT: 6019 case CmpInst::ICMP_SLE: 6020 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6021 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6022 return true; 6023 return None; 6024 6025 case CmpInst::ICMP_ULT: 6026 case CmpInst::ICMP_ULE: 6027 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6028 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6029 return true; 6030 return None; 6031 } 6032 } 6033 6034 /// Return true if the operands of the two compares match. IsSwappedOps is true 6035 /// when the operands match, but are swapped. 6036 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6037 const Value *BLHS, const Value *BRHS, 6038 bool &IsSwappedOps) { 6039 6040 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6041 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6042 return IsMatchingOps || IsSwappedOps; 6043 } 6044 6045 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6046 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6047 /// Otherwise, return None if we can't infer anything. 6048 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6049 CmpInst::Predicate BPred, 6050 bool AreSwappedOps) { 6051 // Canonicalize the predicate as if the operands were not commuted. 6052 if (AreSwappedOps) 6053 BPred = ICmpInst::getSwappedPredicate(BPred); 6054 6055 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6056 return true; 6057 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6058 return false; 6059 6060 return None; 6061 } 6062 6063 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6064 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6065 /// Otherwise, return None if we can't infer anything. 6066 static Optional<bool> 6067 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6068 const ConstantInt *C1, 6069 CmpInst::Predicate BPred, 6070 const ConstantInt *C2) { 6071 ConstantRange DomCR = 6072 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6073 ConstantRange CR = 6074 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6075 ConstantRange Intersection = DomCR.intersectWith(CR); 6076 ConstantRange Difference = DomCR.difference(CR); 6077 if (Intersection.isEmptySet()) 6078 return false; 6079 if (Difference.isEmptySet()) 6080 return true; 6081 return None; 6082 } 6083 6084 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6085 /// false. Otherwise, return None if we can't infer anything. 6086 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6087 CmpInst::Predicate BPred, 6088 const Value *BLHS, const Value *BRHS, 6089 const DataLayout &DL, bool LHSIsTrue, 6090 unsigned Depth) { 6091 Value *ALHS = LHS->getOperand(0); 6092 Value *ARHS = LHS->getOperand(1); 6093 6094 // The rest of the logic assumes the LHS condition is true. If that's not the 6095 // case, invert the predicate to make it so. 6096 CmpInst::Predicate APred = 6097 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6098 6099 // Can we infer anything when the two compares have matching operands? 6100 bool AreSwappedOps; 6101 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6102 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6103 APred, BPred, AreSwappedOps)) 6104 return Implication; 6105 // No amount of additional analysis will infer the second condition, so 6106 // early exit. 6107 return None; 6108 } 6109 6110 // Can we infer anything when the LHS operands match and the RHS operands are 6111 // constants (not necessarily matching)? 6112 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6113 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6114 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6115 return Implication; 6116 // No amount of additional analysis will infer the second condition, so 6117 // early exit. 6118 return None; 6119 } 6120 6121 if (APred == BPred) 6122 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6123 return None; 6124 } 6125 6126 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6127 /// false. Otherwise, return None if we can't infer anything. We expect the 6128 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6129 static Optional<bool> 6130 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6131 const Value *RHSOp0, const Value *RHSOp1, 6132 6133 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6134 // The LHS must be an 'or' or an 'and' instruction. 6135 assert((LHS->getOpcode() == Instruction::And || 6136 LHS->getOpcode() == Instruction::Or) && 6137 "Expected LHS to be 'and' or 'or'."); 6138 6139 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6140 6141 // If the result of an 'or' is false, then we know both legs of the 'or' are 6142 // false. Similarly, if the result of an 'and' is true, then we know both 6143 // legs of the 'and' are true. 6144 Value *ALHS, *ARHS; 6145 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6146 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6147 // FIXME: Make this non-recursion. 6148 if (Optional<bool> Implication = isImpliedCondition( 6149 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6150 return Implication; 6151 if (Optional<bool> Implication = isImpliedCondition( 6152 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6153 return Implication; 6154 return None; 6155 } 6156 return None; 6157 } 6158 6159 Optional<bool> 6160 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6161 const Value *RHSOp0, const Value *RHSOp1, 6162 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6163 // Bail out when we hit the limit. 6164 if (Depth == MaxAnalysisRecursionDepth) 6165 return None; 6166 6167 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6168 // example. 6169 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6170 return None; 6171 6172 Type *OpTy = LHS->getType(); 6173 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6174 6175 // FIXME: Extending the code below to handle vectors. 6176 if (OpTy->isVectorTy()) 6177 return None; 6178 6179 assert(OpTy->isIntegerTy(1) && "implied by above"); 6180 6181 // Both LHS and RHS are icmps. 6182 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6183 if (LHSCmp) 6184 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6185 Depth); 6186 6187 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6188 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6189 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6190 if (LHSBO) { 6191 if ((LHSBO->getOpcode() == Instruction::And || 6192 LHSBO->getOpcode() == Instruction::Or)) 6193 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6194 Depth); 6195 } 6196 return None; 6197 } 6198 6199 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6200 const DataLayout &DL, bool LHSIsTrue, 6201 unsigned Depth) { 6202 // LHS ==> RHS by definition 6203 if (LHS == RHS) 6204 return LHSIsTrue; 6205 6206 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6207 if (RHSCmp) 6208 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6209 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6210 LHSIsTrue, Depth); 6211 return None; 6212 } 6213 6214 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6215 // condition dominating ContextI or nullptr, if no condition is found. 6216 static std::pair<Value *, bool> 6217 getDomPredecessorCondition(const Instruction *ContextI) { 6218 if (!ContextI || !ContextI->getParent()) 6219 return {nullptr, false}; 6220 6221 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6222 // dominator tree (eg, from a SimplifyQuery) instead? 6223 const BasicBlock *ContextBB = ContextI->getParent(); 6224 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6225 if (!PredBB) 6226 return {nullptr, false}; 6227 6228 // We need a conditional branch in the predecessor. 6229 Value *PredCond; 6230 BasicBlock *TrueBB, *FalseBB; 6231 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6232 return {nullptr, false}; 6233 6234 // The branch should get simplified. Don't bother simplifying this condition. 6235 if (TrueBB == FalseBB) 6236 return {nullptr, false}; 6237 6238 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6239 "Predecessor block does not point to successor?"); 6240 6241 // Is this condition implied by the predecessor condition? 6242 return {PredCond, TrueBB == ContextBB}; 6243 } 6244 6245 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6246 const Instruction *ContextI, 6247 const DataLayout &DL) { 6248 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6249 auto PredCond = getDomPredecessorCondition(ContextI); 6250 if (PredCond.first) 6251 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6252 return None; 6253 } 6254 6255 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6256 const Value *LHS, const Value *RHS, 6257 const Instruction *ContextI, 6258 const DataLayout &DL) { 6259 auto PredCond = getDomPredecessorCondition(ContextI); 6260 if (PredCond.first) 6261 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6262 PredCond.second); 6263 return None; 6264 } 6265 6266 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6267 APInt &Upper, const InstrInfoQuery &IIQ) { 6268 unsigned Width = Lower.getBitWidth(); 6269 const APInt *C; 6270 switch (BO.getOpcode()) { 6271 case Instruction::Add: 6272 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6273 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6274 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6275 // 'add nuw x, C' produces [C, UINT_MAX]. 6276 Lower = *C; 6277 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6278 if (C->isNegative()) { 6279 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6280 Lower = APInt::getSignedMinValue(Width); 6281 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6282 } else { 6283 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6284 Lower = APInt::getSignedMinValue(Width) + *C; 6285 Upper = APInt::getSignedMaxValue(Width) + 1; 6286 } 6287 } 6288 } 6289 break; 6290 6291 case Instruction::And: 6292 if (match(BO.getOperand(1), m_APInt(C))) 6293 // 'and x, C' produces [0, C]. 6294 Upper = *C + 1; 6295 break; 6296 6297 case Instruction::Or: 6298 if (match(BO.getOperand(1), m_APInt(C))) 6299 // 'or x, C' produces [C, UINT_MAX]. 6300 Lower = *C; 6301 break; 6302 6303 case Instruction::AShr: 6304 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6305 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6306 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6307 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6308 } else if (match(BO.getOperand(0), m_APInt(C))) { 6309 unsigned ShiftAmount = Width - 1; 6310 if (!C->isNullValue() && IIQ.isExact(&BO)) 6311 ShiftAmount = C->countTrailingZeros(); 6312 if (C->isNegative()) { 6313 // 'ashr C, x' produces [C, C >> (Width-1)] 6314 Lower = *C; 6315 Upper = C->ashr(ShiftAmount) + 1; 6316 } else { 6317 // 'ashr C, x' produces [C >> (Width-1), C] 6318 Lower = C->ashr(ShiftAmount); 6319 Upper = *C + 1; 6320 } 6321 } 6322 break; 6323 6324 case Instruction::LShr: 6325 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6326 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6327 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6328 } else if (match(BO.getOperand(0), m_APInt(C))) { 6329 // 'lshr C, x' produces [C >> (Width-1), C]. 6330 unsigned ShiftAmount = Width - 1; 6331 if (!C->isNullValue() && IIQ.isExact(&BO)) 6332 ShiftAmount = C->countTrailingZeros(); 6333 Lower = C->lshr(ShiftAmount); 6334 Upper = *C + 1; 6335 } 6336 break; 6337 6338 case Instruction::Shl: 6339 if (match(BO.getOperand(0), m_APInt(C))) { 6340 if (IIQ.hasNoUnsignedWrap(&BO)) { 6341 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6342 Lower = *C; 6343 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6344 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6345 if (C->isNegative()) { 6346 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6347 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6348 Lower = C->shl(ShiftAmount); 6349 Upper = *C + 1; 6350 } else { 6351 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6352 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6353 Lower = *C; 6354 Upper = C->shl(ShiftAmount) + 1; 6355 } 6356 } 6357 } 6358 break; 6359 6360 case Instruction::SDiv: 6361 if (match(BO.getOperand(1), m_APInt(C))) { 6362 APInt IntMin = APInt::getSignedMinValue(Width); 6363 APInt IntMax = APInt::getSignedMaxValue(Width); 6364 if (C->isAllOnesValue()) { 6365 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6366 // where C != -1 and C != 0 and C != 1 6367 Lower = IntMin + 1; 6368 Upper = IntMax + 1; 6369 } else if (C->countLeadingZeros() < Width - 1) { 6370 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6371 // where C != -1 and C != 0 and C != 1 6372 Lower = IntMin.sdiv(*C); 6373 Upper = IntMax.sdiv(*C); 6374 if (Lower.sgt(Upper)) 6375 std::swap(Lower, Upper); 6376 Upper = Upper + 1; 6377 assert(Upper != Lower && "Upper part of range has wrapped!"); 6378 } 6379 } else if (match(BO.getOperand(0), m_APInt(C))) { 6380 if (C->isMinSignedValue()) { 6381 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6382 Lower = *C; 6383 Upper = Lower.lshr(1) + 1; 6384 } else { 6385 // 'sdiv C, x' produces [-|C|, |C|]. 6386 Upper = C->abs() + 1; 6387 Lower = (-Upper) + 1; 6388 } 6389 } 6390 break; 6391 6392 case Instruction::UDiv: 6393 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6394 // 'udiv x, C' produces [0, UINT_MAX / C]. 6395 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6396 } else if (match(BO.getOperand(0), m_APInt(C))) { 6397 // 'udiv C, x' produces [0, C]. 6398 Upper = *C + 1; 6399 } 6400 break; 6401 6402 case Instruction::SRem: 6403 if (match(BO.getOperand(1), m_APInt(C))) { 6404 // 'srem x, C' produces (-|C|, |C|). 6405 Upper = C->abs(); 6406 Lower = (-Upper) + 1; 6407 } 6408 break; 6409 6410 case Instruction::URem: 6411 if (match(BO.getOperand(1), m_APInt(C))) 6412 // 'urem x, C' produces [0, C). 6413 Upper = *C; 6414 break; 6415 6416 default: 6417 break; 6418 } 6419 } 6420 6421 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6422 APInt &Upper) { 6423 unsigned Width = Lower.getBitWidth(); 6424 const APInt *C; 6425 switch (II.getIntrinsicID()) { 6426 case Intrinsic::ctpop: 6427 case Intrinsic::ctlz: 6428 case Intrinsic::cttz: 6429 // Maximum of set/clear bits is the bit width. 6430 assert(Lower == 0 && "Expected lower bound to be zero"); 6431 Upper = Width + 1; 6432 break; 6433 case Intrinsic::uadd_sat: 6434 // uadd.sat(x, C) produces [C, UINT_MAX]. 6435 if (match(II.getOperand(0), m_APInt(C)) || 6436 match(II.getOperand(1), m_APInt(C))) 6437 Lower = *C; 6438 break; 6439 case Intrinsic::sadd_sat: 6440 if (match(II.getOperand(0), m_APInt(C)) || 6441 match(II.getOperand(1), m_APInt(C))) { 6442 if (C->isNegative()) { 6443 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6444 Lower = APInt::getSignedMinValue(Width); 6445 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6446 } else { 6447 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6448 Lower = APInt::getSignedMinValue(Width) + *C; 6449 Upper = APInt::getSignedMaxValue(Width) + 1; 6450 } 6451 } 6452 break; 6453 case Intrinsic::usub_sat: 6454 // usub.sat(C, x) produces [0, C]. 6455 if (match(II.getOperand(0), m_APInt(C))) 6456 Upper = *C + 1; 6457 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6458 else if (match(II.getOperand(1), m_APInt(C))) 6459 Upper = APInt::getMaxValue(Width) - *C + 1; 6460 break; 6461 case Intrinsic::ssub_sat: 6462 if (match(II.getOperand(0), m_APInt(C))) { 6463 if (C->isNegative()) { 6464 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6465 Lower = APInt::getSignedMinValue(Width); 6466 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6467 } else { 6468 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6469 Lower = *C - APInt::getSignedMaxValue(Width); 6470 Upper = APInt::getSignedMaxValue(Width) + 1; 6471 } 6472 } else if (match(II.getOperand(1), m_APInt(C))) { 6473 if (C->isNegative()) { 6474 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6475 Lower = APInt::getSignedMinValue(Width) - *C; 6476 Upper = APInt::getSignedMaxValue(Width) + 1; 6477 } else { 6478 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6479 Lower = APInt::getSignedMinValue(Width); 6480 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6481 } 6482 } 6483 break; 6484 case Intrinsic::umin: 6485 case Intrinsic::umax: 6486 case Intrinsic::smin: 6487 case Intrinsic::smax: 6488 if (!match(II.getOperand(0), m_APInt(C)) && 6489 !match(II.getOperand(1), m_APInt(C))) 6490 break; 6491 6492 switch (II.getIntrinsicID()) { 6493 case Intrinsic::umin: 6494 Upper = *C + 1; 6495 break; 6496 case Intrinsic::umax: 6497 Lower = *C; 6498 break; 6499 case Intrinsic::smin: 6500 Lower = APInt::getSignedMinValue(Width); 6501 Upper = *C + 1; 6502 break; 6503 case Intrinsic::smax: 6504 Lower = *C; 6505 Upper = APInt::getSignedMaxValue(Width) + 1; 6506 break; 6507 default: 6508 llvm_unreachable("Must be min/max intrinsic"); 6509 } 6510 break; 6511 case Intrinsic::abs: 6512 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6513 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6514 if (match(II.getOperand(1), m_One())) 6515 Upper = APInt::getSignedMaxValue(Width) + 1; 6516 else 6517 Upper = APInt::getSignedMinValue(Width) + 1; 6518 break; 6519 default: 6520 break; 6521 } 6522 } 6523 6524 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6525 APInt &Upper, const InstrInfoQuery &IIQ) { 6526 const Value *LHS = nullptr, *RHS = nullptr; 6527 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6528 if (R.Flavor == SPF_UNKNOWN) 6529 return; 6530 6531 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6532 6533 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6534 // If the negation part of the abs (in RHS) has the NSW flag, 6535 // then the result of abs(X) is [0..SIGNED_MAX], 6536 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6537 Lower = APInt::getNullValue(BitWidth); 6538 if (match(RHS, m_Neg(m_Specific(LHS))) && 6539 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6540 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6541 else 6542 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6543 return; 6544 } 6545 6546 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6547 // The result of -abs(X) is <= 0. 6548 Lower = APInt::getSignedMinValue(BitWidth); 6549 Upper = APInt(BitWidth, 1); 6550 return; 6551 } 6552 6553 const APInt *C; 6554 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6555 return; 6556 6557 switch (R.Flavor) { 6558 case SPF_UMIN: 6559 Upper = *C + 1; 6560 break; 6561 case SPF_UMAX: 6562 Lower = *C; 6563 break; 6564 case SPF_SMIN: 6565 Lower = APInt::getSignedMinValue(BitWidth); 6566 Upper = *C + 1; 6567 break; 6568 case SPF_SMAX: 6569 Lower = *C; 6570 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6571 break; 6572 default: 6573 break; 6574 } 6575 } 6576 6577 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6578 AssumptionCache *AC, 6579 const Instruction *CtxI, 6580 unsigned Depth) { 6581 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6582 6583 if (Depth == MaxAnalysisRecursionDepth) 6584 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6585 6586 const APInt *C; 6587 if (match(V, m_APInt(C))) 6588 return ConstantRange(*C); 6589 6590 InstrInfoQuery IIQ(UseInstrInfo); 6591 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6592 APInt Lower = APInt(BitWidth, 0); 6593 APInt Upper = APInt(BitWidth, 0); 6594 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6595 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6596 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6597 setLimitsForIntrinsic(*II, Lower, Upper); 6598 else if (auto *SI = dyn_cast<SelectInst>(V)) 6599 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6600 6601 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6602 6603 if (auto *I = dyn_cast<Instruction>(V)) 6604 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6605 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6606 6607 if (CtxI && AC) { 6608 // Try to restrict the range based on information from assumptions. 6609 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6610 if (!AssumeVH) 6611 continue; 6612 CallInst *I = cast<CallInst>(AssumeVH); 6613 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6614 "Got assumption for the wrong function!"); 6615 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6616 "must be an assume intrinsic"); 6617 6618 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6619 continue; 6620 Value *Arg = I->getArgOperand(0); 6621 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6622 // Currently we just use information from comparisons. 6623 if (!Cmp || Cmp->getOperand(0) != V) 6624 continue; 6625 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6626 AC, I, Depth + 1); 6627 CR = CR.intersectWith( 6628 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6629 } 6630 } 6631 6632 return CR; 6633 } 6634 6635 static Optional<int64_t> 6636 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6637 // Skip over the first indices. 6638 gep_type_iterator GTI = gep_type_begin(GEP); 6639 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6640 /*skip along*/; 6641 6642 // Compute the offset implied by the rest of the indices. 6643 int64_t Offset = 0; 6644 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6645 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6646 if (!OpC) 6647 return None; 6648 if (OpC->isZero()) 6649 continue; // No offset. 6650 6651 // Handle struct indices, which add their field offset to the pointer. 6652 if (StructType *STy = GTI.getStructTypeOrNull()) { 6653 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6654 continue; 6655 } 6656 6657 // Otherwise, we have a sequential type like an array or fixed-length 6658 // vector. Multiply the index by the ElementSize. 6659 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6660 if (Size.isScalable()) 6661 return None; 6662 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6663 } 6664 6665 return Offset; 6666 } 6667 6668 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6669 const DataLayout &DL) { 6670 Ptr1 = Ptr1->stripPointerCasts(); 6671 Ptr2 = Ptr2->stripPointerCasts(); 6672 6673 // Handle the trivial case first. 6674 if (Ptr1 == Ptr2) { 6675 return 0; 6676 } 6677 6678 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6679 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6680 6681 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6682 // as in "P" and "gep P, 1". 6683 // Also do this iteratively to handle the the following case: 6684 // Ptr_t1 = GEP Ptr1, c1 6685 // Ptr_t2 = GEP Ptr_t1, c2 6686 // Ptr2 = GEP Ptr_t2, c3 6687 // where we will return c1+c2+c3. 6688 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6689 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6690 // are the same, and return the difference between offsets. 6691 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6692 const Value *Ptr) -> Optional<int64_t> { 6693 const GEPOperator *GEP_T = GEP; 6694 int64_t OffsetVal = 0; 6695 bool HasSameBase = false; 6696 while (GEP_T) { 6697 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6698 if (!Offset) 6699 return None; 6700 OffsetVal += *Offset; 6701 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6702 if (Op0 == Ptr) { 6703 HasSameBase = true; 6704 break; 6705 } 6706 GEP_T = dyn_cast<GEPOperator>(Op0); 6707 } 6708 if (!HasSameBase) 6709 return None; 6710 return OffsetVal; 6711 }; 6712 6713 if (GEP1) { 6714 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6715 if (Offset) 6716 return -*Offset; 6717 } 6718 if (GEP2) { 6719 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6720 if (Offset) 6721 return Offset; 6722 } 6723 6724 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6725 // base. After that base, they may have some number of common (and 6726 // potentially variable) indices. After that they handle some constant 6727 // offset, which determines their offset from each other. At this point, we 6728 // handle no other case. 6729 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6730 return None; 6731 6732 // Skip any common indices and track the GEP types. 6733 unsigned Idx = 1; 6734 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6735 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6736 break; 6737 6738 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6739 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6740 if (!Offset1 || !Offset2) 6741 return None; 6742 return *Offset2 - *Offset1; 6743 } 6744