1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 165 // If we've been provided with a context instruction, then use that (provided 166 // it has been inserted). 167 if (CxtI && CxtI->getParent()) 168 return CxtI; 169 170 // If the value is really an already-inserted instruction, then use that. 171 CxtI = dyn_cast<Instruction>(V1); 172 if (CxtI && CxtI->getParent()) 173 return CxtI; 174 175 CxtI = dyn_cast<Instruction>(V2); 176 if (CxtI && CxtI->getParent()) 177 return CxtI; 178 179 return nullptr; 180 } 181 182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 183 const APInt &DemandedElts, 184 APInt &DemandedLHS, APInt &DemandedRHS) { 185 // The length of scalable vectors is unknown at compile time, thus we 186 // cannot check their values 187 if (isa<ScalableVectorType>(Shuf->getType())) 188 return false; 189 190 int NumElts = 191 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 192 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 193 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 194 if (DemandedElts.isNullValue()) 195 return true; 196 // Simple case of a shuffle with zeroinitializer. 197 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 198 DemandedLHS.setBit(0); 199 return true; 200 } 201 for (int i = 0; i != NumMaskElts; ++i) { 202 if (!DemandedElts[i]) 203 continue; 204 int M = Shuf->getMaskValue(i); 205 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 206 207 // For undef elements, we don't know anything about the common state of 208 // the shuffle result. 209 if (M == -1) 210 return false; 211 if (M < NumElts) 212 DemandedLHS.setBit(M % NumElts); 213 else 214 DemandedRHS.setBit(M % NumElts); 215 } 216 217 return true; 218 } 219 220 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 221 KnownBits &Known, unsigned Depth, const Query &Q); 222 223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 224 const Query &Q) { 225 // FIXME: We currently have no way to represent the DemandedElts of a scalable 226 // vector 227 if (isa<ScalableVectorType>(V->getType())) { 228 Known.resetAll(); 229 return; 230 } 231 232 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 233 APInt DemandedElts = 234 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 235 computeKnownBits(V, DemandedElts, Known, Depth, Q); 236 } 237 238 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 239 const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, 242 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 243 ::computeKnownBits(V, Known, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 245 } 246 247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 248 KnownBits &Known, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, const DominatorTree *DT, 251 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 252 ::computeKnownBits(V, DemandedElts, Known, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 257 unsigned Depth, const Query &Q); 258 259 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 260 const Query &Q); 261 262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 263 unsigned Depth, AssumptionCache *AC, 264 const Instruction *CxtI, 265 const DominatorTree *DT, 266 OptimizationRemarkEmitter *ORE, 267 bool UseInstrInfo) { 268 return ::computeKnownBits( 269 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 270 } 271 272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 273 const DataLayout &DL, unsigned Depth, 274 AssumptionCache *AC, const Instruction *CxtI, 275 const DominatorTree *DT, 276 OptimizationRemarkEmitter *ORE, 277 bool UseInstrInfo) { 278 return ::computeKnownBits( 279 V, DemandedElts, Depth, 280 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 281 } 282 283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 284 const DataLayout &DL, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT, 286 bool UseInstrInfo) { 287 assert(LHS->getType() == RHS->getType() && 288 "LHS and RHS should have the same type"); 289 assert(LHS->getType()->isIntOrIntVectorTy() && 290 "LHS and RHS should be integers"); 291 // Look for an inverted mask: (X & ~M) op (Y & M). 292 Value *M; 293 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 294 match(RHS, m_c_And(m_Specific(M), m_Value()))) 295 return true; 296 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 297 match(LHS, m_c_And(m_Specific(M), m_Value()))) 298 return true; 299 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 300 KnownBits LHSKnown(IT->getBitWidth()); 301 KnownBits RHSKnown(IT->getBitWidth()); 302 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 303 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 304 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 305 } 306 307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 308 for (const User *U : CxtI->users()) { 309 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 310 if (IC->isEquality()) 311 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 312 if (C->isNullValue()) 313 continue; 314 return false; 315 } 316 return true; 317 } 318 319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 320 const Query &Q); 321 322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 323 bool OrZero, unsigned Depth, 324 AssumptionCache *AC, const Instruction *CxtI, 325 const DominatorTree *DT, bool UseInstrInfo) { 326 return ::isKnownToBeAPowerOfTwo( 327 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 328 } 329 330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 331 unsigned Depth, const Query &Q); 332 333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 334 335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 return ::isKnownNonZero(V, Depth, 339 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 340 } 341 342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 343 unsigned Depth, AssumptionCache *AC, 344 const Instruction *CxtI, const DominatorTree *DT, 345 bool UseInstrInfo) { 346 KnownBits Known = 347 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 348 return Known.isNonNegative(); 349 } 350 351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 352 AssumptionCache *AC, const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 if (auto *CI = dyn_cast<ConstantInt>(V)) 355 return CI->getValue().isStrictlyPositive(); 356 357 // TODO: We'd doing two recursive queries here. We should factor this such 358 // that only a single query is needed. 359 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 360 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 361 } 362 363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 364 AssumptionCache *AC, const Instruction *CxtI, 365 const DominatorTree *DT, bool UseInstrInfo) { 366 KnownBits Known = 367 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 368 return Known.isNegative(); 369 } 370 371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 372 const Query &Q); 373 374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 375 const DataLayout &DL, AssumptionCache *AC, 376 const Instruction *CxtI, const DominatorTree *DT, 377 bool UseInstrInfo) { 378 return ::isKnownNonEqual(V1, V2, 0, 379 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 380 UseInstrInfo, /*ORE=*/nullptr)); 381 } 382 383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 384 const Query &Q); 385 386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 387 const DataLayout &DL, unsigned Depth, 388 AssumptionCache *AC, const Instruction *CxtI, 389 const DominatorTree *DT, bool UseInstrInfo) { 390 return ::MaskedValueIsZero( 391 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 392 } 393 394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 395 unsigned Depth, const Query &Q); 396 397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 398 const Query &Q) { 399 // FIXME: We currently have no way to represent the DemandedElts of a scalable 400 // vector 401 if (isa<ScalableVectorType>(V->getType())) 402 return 1; 403 404 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 405 APInt DemandedElts = 406 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 407 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 408 } 409 410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 411 unsigned Depth, AssumptionCache *AC, 412 const Instruction *CxtI, 413 const DominatorTree *DT, bool UseInstrInfo) { 414 return ::ComputeNumSignBits( 415 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 416 } 417 418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 419 bool NSW, const APInt &DemandedElts, 420 KnownBits &KnownOut, KnownBits &Known2, 421 unsigned Depth, const Query &Q) { 422 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 423 424 // If one operand is unknown and we have no nowrap information, 425 // the result will be unknown independently of the second operand. 426 if (KnownOut.isUnknown() && !NSW) 427 return; 428 429 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 430 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 431 } 432 433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 434 const APInt &DemandedElts, KnownBits &Known, 435 KnownBits &Known2, unsigned Depth, 436 const Query &Q) { 437 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 438 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 439 440 bool isKnownNegative = false; 441 bool isKnownNonNegative = false; 442 // If the multiplication is known not to overflow, compute the sign bit. 443 if (NSW) { 444 if (Op0 == Op1) { 445 // The product of a number with itself is non-negative. 446 isKnownNonNegative = true; 447 } else { 448 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 449 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 450 bool isKnownNegativeOp1 = Known.isNegative(); 451 bool isKnownNegativeOp0 = Known2.isNegative(); 452 // The product of two numbers with the same sign is non-negative. 453 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 454 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 455 // The product of a negative number and a non-negative number is either 456 // negative or zero. 457 if (!isKnownNonNegative) 458 isKnownNegative = 459 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 460 Known2.isNonZero()) || 461 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 462 } 463 } 464 465 Known = KnownBits::computeForMul(Known, Known2); 466 467 // Only make use of no-wrap flags if we failed to compute the sign bit 468 // directly. This matters if the multiplication always overflows, in 469 // which case we prefer to follow the result of the direct computation, 470 // though as the program is invoking undefined behaviour we can choose 471 // whatever we like here. 472 if (isKnownNonNegative && !Known.isNegative()) 473 Known.makeNonNegative(); 474 else if (isKnownNegative && !Known.isNonNegative()) 475 Known.makeNegative(); 476 } 477 478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 479 KnownBits &Known) { 480 unsigned BitWidth = Known.getBitWidth(); 481 unsigned NumRanges = Ranges.getNumOperands() / 2; 482 assert(NumRanges >= 1); 483 484 Known.Zero.setAllBits(); 485 Known.One.setAllBits(); 486 487 for (unsigned i = 0; i < NumRanges; ++i) { 488 ConstantInt *Lower = 489 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 490 ConstantInt *Upper = 491 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 492 ConstantRange Range(Lower->getValue(), Upper->getValue()); 493 494 // The first CommonPrefixBits of all values in Range are equal. 495 unsigned CommonPrefixBits = 496 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 497 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 498 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 499 Known.One &= UnsignedMax & Mask; 500 Known.Zero &= ~UnsignedMax & Mask; 501 } 502 } 503 504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 505 SmallVector<const Value *, 16> WorkSet(1, I); 506 SmallPtrSet<const Value *, 32> Visited; 507 SmallPtrSet<const Value *, 16> EphValues; 508 509 // The instruction defining an assumption's condition itself is always 510 // considered ephemeral to that assumption (even if it has other 511 // non-ephemeral users). See r246696's test case for an example. 512 if (is_contained(I->operands(), E)) 513 return true; 514 515 while (!WorkSet.empty()) { 516 const Value *V = WorkSet.pop_back_val(); 517 if (!Visited.insert(V).second) 518 continue; 519 520 // If all uses of this value are ephemeral, then so is this value. 521 if (llvm::all_of(V->users(), [&](const User *U) { 522 return EphValues.count(U); 523 })) { 524 if (V == E) 525 return true; 526 527 if (V == I || isSafeToSpeculativelyExecute(V)) { 528 EphValues.insert(V); 529 if (const User *U = dyn_cast<User>(V)) 530 append_range(WorkSet, U->operands()); 531 } 532 } 533 } 534 535 return false; 536 } 537 538 // Is this an intrinsic that cannot be speculated but also cannot trap? 539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 540 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 541 return CI->isAssumeLikeIntrinsic(); 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 // We limit the scan distance between the assume and its context instruction 573 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 574 // it can be adjusted if needed (could be turned into a cl::opt). 575 unsigned ScanLimit = 15; 576 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 577 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 578 return false; 579 580 return !isEphemeralValueOf(Inv, CxtI); 581 } 582 583 // Inv and CxtI are in different blocks. 584 if (DT) { 585 if (DT->dominates(Inv, CxtI)) 586 return true; 587 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 588 // We don't have a DT, but this trivially dominates. 589 return true; 590 } 591 592 return false; 593 } 594 595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 596 // v u> y implies v != 0. 597 if (Pred == ICmpInst::ICMP_UGT) 598 return true; 599 600 // Special-case v != 0 to also handle v != null. 601 if (Pred == ICmpInst::ICMP_NE) 602 return match(RHS, m_Zero()); 603 604 // All other predicates - rely on generic ConstantRange handling. 605 const APInt *C; 606 if (!match(RHS, m_APInt(C))) 607 return false; 608 609 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 610 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 611 } 612 613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 614 // Use of assumptions is context-sensitive. If we don't have a context, we 615 // cannot use them! 616 if (!Q.AC || !Q.CxtI) 617 return false; 618 619 if (Q.CxtI && V->getType()->isPointerTy()) { 620 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 621 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 622 V->getType()->getPointerAddressSpace())) 623 AttrKinds.push_back(Attribute::Dereferenceable); 624 625 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 626 return true; 627 } 628 629 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 630 if (!AssumeVH) 631 continue; 632 CallInst *I = cast<CallInst>(AssumeVH); 633 assert(I->getFunction() == Q.CxtI->getFunction() && 634 "Got assumption for the wrong function!"); 635 if (Q.isExcluded(I)) 636 continue; 637 638 // Warning: This loop can end up being somewhat performance sensitive. 639 // We're running this loop for once for each value queried resulting in a 640 // runtime of ~O(#assumes * #values). 641 642 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 643 "must be an assume intrinsic"); 644 645 Value *RHS; 646 CmpInst::Predicate Pred; 647 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 648 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 649 return false; 650 651 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 652 return true; 653 } 654 655 return false; 656 } 657 658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 659 unsigned Depth, const Query &Q) { 660 // Use of assumptions is context-sensitive. If we don't have a context, we 661 // cannot use them! 662 if (!Q.AC || !Q.CxtI) 663 return; 664 665 unsigned BitWidth = Known.getBitWidth(); 666 667 // Refine Known set if the pointer alignment is set by assume bundles. 668 if (V->getType()->isPointerTy()) { 669 if (RetainedKnowledge RK = getKnowledgeValidInContext( 670 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 671 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 672 } 673 } 674 675 // Note that the patterns below need to be kept in sync with the code 676 // in AssumptionCache::updateAffectedValues. 677 678 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 679 if (!AssumeVH) 680 continue; 681 CallInst *I = cast<CallInst>(AssumeVH); 682 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 683 "Got assumption for the wrong function!"); 684 if (Q.isExcluded(I)) 685 continue; 686 687 // Warning: This loop can end up being somewhat performance sensitive. 688 // We're running this loop for once for each value queried resulting in a 689 // runtime of ~O(#assumes * #values). 690 691 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 692 "must be an assume intrinsic"); 693 694 Value *Arg = I->getArgOperand(0); 695 696 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 assert(BitWidth == 1 && "assume operand is not i1?"); 698 Known.setAllOnes(); 699 return; 700 } 701 if (match(Arg, m_Not(m_Specific(V))) && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllZero(); 705 return; 706 } 707 708 // The remaining tests are all recursive, so bail out if we hit the limit. 709 if (Depth == MaxAnalysisRecursionDepth) 710 continue; 711 712 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 713 if (!Cmp) 714 continue; 715 716 // Note that ptrtoint may change the bitwidth. 717 Value *A, *B; 718 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 719 720 CmpInst::Predicate Pred; 721 uint64_t C; 722 switch (Cmp->getPredicate()) { 723 default: 724 break; 725 case ICmpInst::ICMP_EQ: 726 // assume(v = a) 727 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 731 Known.Zero |= RHSKnown.Zero; 732 Known.One |= RHSKnown.One; 733 // assume(v & b = a) 734 } else if (match(Cmp, 735 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // known bits from the RHS to V. 744 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 745 Known.One |= RHSKnown.One & MaskKnown.One; 746 // assume(~(v & b) = a) 747 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 748 m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 KnownBits MaskKnown = 753 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 754 755 // For those bits in the mask that are known to be one, we can propagate 756 // inverted known bits from the RHS to V. 757 Known.Zero |= RHSKnown.One & MaskKnown.One; 758 Known.One |= RHSKnown.Zero & MaskKnown.One; 759 // assume(v | b = a) 760 } else if (match(Cmp, 761 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate known 769 // bits from the RHS to V. 770 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 771 Known.One |= RHSKnown.One & BKnown.Zero; 772 // assume(~(v | b) = a) 773 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 774 m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate 782 // inverted known bits from the RHS to V. 783 Known.Zero |= RHSKnown.One & BKnown.Zero; 784 Known.One |= RHSKnown.Zero & BKnown.Zero; 785 // assume(v ^ b = a) 786 } else if (match(Cmp, 787 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 789 KnownBits RHSKnown = 790 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 KnownBits BKnown = 792 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 793 794 // For those bits in B that are known to be zero, we can propagate known 795 // bits from the RHS to V. For those bits in B that are known to be one, 796 // we can propagate inverted known bits from the RHS to V. 797 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 798 Known.One |= RHSKnown.One & BKnown.Zero; 799 Known.Zero |= RHSKnown.One & BKnown.One; 800 Known.One |= RHSKnown.Zero & BKnown.One; 801 // assume(~(v ^ b) = a) 802 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 803 m_Value(A))) && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown = 806 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 KnownBits BKnown = 808 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 810 // For those bits in B that are known to be zero, we can propagate 811 // inverted known bits from the RHS to V. For those bits in B that are 812 // known to be one, we can propagate known bits from the RHS to V. 813 Known.Zero |= RHSKnown.One & BKnown.Zero; 814 Known.One |= RHSKnown.Zero & BKnown.Zero; 815 Known.Zero |= RHSKnown.Zero & BKnown.One; 816 Known.One |= RHSKnown.One & BKnown.One; 817 // assume(v << c = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 823 824 // For those bits in RHS that are known, we can propagate them to known 825 // bits in V shifted to the right by C. 826 RHSKnown.Zero.lshrInPlace(C); 827 Known.Zero |= RHSKnown.Zero; 828 RHSKnown.One.lshrInPlace(C); 829 Known.One |= RHSKnown.One; 830 // assume(~(v << c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 RHSKnown.One.lshrInPlace(C); 839 Known.Zero |= RHSKnown.One; 840 RHSKnown.Zero.lshrInPlace(C); 841 Known.One |= RHSKnown.Zero; 842 // assume(v >> c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 Known.Zero |= RHSKnown.Zero << C; 851 Known.One |= RHSKnown.One << C; 852 // assume(~(v >> c) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 856 KnownBits RHSKnown = 857 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 858 // For those bits in RHS that are known, we can propagate them inverted 859 // to known bits in V shifted to the right by C. 860 Known.Zero |= RHSKnown.One << C; 861 Known.One |= RHSKnown.Zero << C; 862 } 863 break; 864 case ICmpInst::ICMP_SGE: 865 // assume(v >=_s c) where c is non-negative 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SGT: 878 // assume(v >_s c) where c is at least -1. 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 885 // We know that the sign bit is zero. 886 Known.makeNonNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLE: 891 // assume(v <=_s c) where c is negative 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_SLT: 904 // assume(v <_s c) where c is non-positive 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 909 910 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 911 // We know that the sign bit is one. 912 Known.makeNegative(); 913 } 914 } 915 break; 916 case ICmpInst::ICMP_ULE: 917 // assume(v <=_u c) 918 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 919 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 920 KnownBits RHSKnown = 921 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 922 923 // Whatever high bits in c are zero are known to be zero. 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 925 } 926 break; 927 case ICmpInst::ICMP_ULT: 928 // assume(v <_u c) 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 933 934 // If the RHS is known zero, then this assumption must be wrong (nothing 935 // is unsigned less than zero). Signal a conflict and get out of here. 936 if (RHSKnown.isZero()) { 937 Known.Zero.setAllBits(); 938 Known.One.setAllBits(); 939 break; 940 } 941 942 // Whatever high bits in c are zero are known to be zero (if c is a power 943 // of 2, then one more). 944 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 946 else 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 } 951 } 952 953 // If assumptions conflict with each other or previous known bits, then we 954 // have a logical fallacy. It's possible that the assumption is not reachable, 955 // so this isn't a real bug. On the other hand, the program may have undefined 956 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 957 // clear out the known bits, try to warn the user, and hope for the best. 958 if (Known.Zero.intersects(Known.One)) { 959 Known.resetAll(); 960 961 if (Q.ORE) 962 Q.ORE->emit([&]() { 963 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 964 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 965 CxtI) 966 << "Detected conflicting code assumptions. Program may " 967 "have undefined behavior, or compiler may have " 968 "internal error."; 969 }); 970 } 971 } 972 973 /// Compute known bits from a shift operator, including those with a 974 /// non-constant shift amount. Known is the output of this function. Known2 is a 975 /// pre-allocated temporary with the same bit width as Known and on return 976 /// contains the known bit of the shift value source. KF is an 977 /// operator-specific function that, given the known-bits and a shift amount, 978 /// compute the implied known-bits of the shift operator's result respectively 979 /// for that shift amount. The results from calling KF are conservatively 980 /// combined for all permitted shift amounts. 981 static void computeKnownBitsFromShiftOperator( 982 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 983 KnownBits &Known2, unsigned Depth, const Query &Q, 984 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 985 unsigned BitWidth = Known.getBitWidth(); 986 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 988 989 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 990 // BitWidth > 64 and any upper bits are known, we'll end up returning the 991 // limit value (which implies all bits are known). 992 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 993 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 994 bool ShiftAmtIsConstant = Known.isConstant(); 995 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 996 997 if (ShiftAmtIsConstant) { 998 Known = KF(Known2, Known); 999 1000 // If the known bits conflict, this must be an overflowing left shift, so 1001 // the shift result is poison. We can return anything we want. Choose 0 for 1002 // the best folding opportunity. 1003 if (Known.hasConflict()) 1004 Known.setAllZero(); 1005 1006 return; 1007 } 1008 1009 // If the shift amount could be greater than or equal to the bit-width of the 1010 // LHS, the value could be poison, but bail out because the check below is 1011 // expensive. 1012 // TODO: Should we just carry on? 1013 if (MaxShiftAmtIsOutOfRange) { 1014 Known.resetAll(); 1015 return; 1016 } 1017 1018 // It would be more-clearly correct to use the two temporaries for this 1019 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1020 Known.resetAll(); 1021 1022 // If we know the shifter operand is nonzero, we can sometimes infer more 1023 // known bits. However this is expensive to compute, so be lazy about it and 1024 // only compute it when absolutely necessary. 1025 Optional<bool> ShifterOperandIsNonZero; 1026 1027 // Early exit if we can't constrain any well-defined shift amount. 1028 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1029 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1032 if (!*ShifterOperandIsNonZero) 1033 return; 1034 } 1035 1036 Known.Zero.setAllBits(); 1037 Known.One.setAllBits(); 1038 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1039 // Combine the shifted known input bits only for those shift amounts 1040 // compatible with its known constraints. 1041 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1042 continue; 1043 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1044 continue; 1045 // If we know the shifter is nonzero, we may be able to infer more known 1046 // bits. This check is sunk down as far as possible to avoid the expensive 1047 // call to isKnownNonZero if the cheaper checks above fail. 1048 if (ShiftAmt == 0) { 1049 if (!ShifterOperandIsNonZero.hasValue()) 1050 ShifterOperandIsNonZero = 1051 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1052 if (*ShifterOperandIsNonZero) 1053 continue; 1054 } 1055 1056 Known = KnownBits::commonBits( 1057 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1058 } 1059 1060 // If the known bits conflict, the result is poison. Return a 0 and hope the 1061 // caller can further optimize that. 1062 if (Known.hasConflict()) 1063 Known.setAllZero(); 1064 } 1065 1066 static void computeKnownBitsFromOperator(const Operator *I, 1067 const APInt &DemandedElts, 1068 KnownBits &Known, unsigned Depth, 1069 const Query &Q) { 1070 unsigned BitWidth = Known.getBitWidth(); 1071 1072 KnownBits Known2(BitWidth); 1073 switch (I->getOpcode()) { 1074 default: break; 1075 case Instruction::Load: 1076 if (MDNode *MD = 1077 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1078 computeKnownBitsFromRangeMetadata(*MD, Known); 1079 break; 1080 case Instruction::And: { 1081 // If either the LHS or the RHS are Zero, the result is zero. 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known &= Known2; 1086 1087 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1088 // here we handle the more general case of adding any odd number by 1089 // matching the form add(x, add(x, y)) where y is odd. 1090 // TODO: This could be generalized to clearing any bit set in y where the 1091 // following bit is known to be unset in y. 1092 Value *X = nullptr, *Y = nullptr; 1093 if (!Known.Zero[0] && !Known.One[0] && 1094 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1095 Known2.resetAll(); 1096 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1097 if (Known2.countMinTrailingOnes() > 0) 1098 Known.Zero.setBit(0); 1099 } 1100 break; 1101 } 1102 case Instruction::Or: 1103 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1104 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1105 1106 Known |= Known2; 1107 break; 1108 case Instruction::Xor: 1109 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1111 1112 Known ^= Known2; 1113 break; 1114 case Instruction::Mul: { 1115 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1116 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1117 Known, Known2, Depth, Q); 1118 break; 1119 } 1120 case Instruction::UDiv: { 1121 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1123 Known = KnownBits::udiv(Known, Known2); 1124 break; 1125 } 1126 case Instruction::Select: { 1127 const Value *LHS = nullptr, *RHS = nullptr; 1128 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1129 if (SelectPatternResult::isMinOrMax(SPF)) { 1130 computeKnownBits(RHS, Known, Depth + 1, Q); 1131 computeKnownBits(LHS, Known2, Depth + 1, Q); 1132 switch (SPF) { 1133 default: 1134 llvm_unreachable("Unhandled select pattern flavor!"); 1135 case SPF_SMAX: 1136 Known = KnownBits::smax(Known, Known2); 1137 break; 1138 case SPF_SMIN: 1139 Known = KnownBits::smin(Known, Known2); 1140 break; 1141 case SPF_UMAX: 1142 Known = KnownBits::umax(Known, Known2); 1143 break; 1144 case SPF_UMIN: 1145 Known = KnownBits::umin(Known, Known2); 1146 break; 1147 } 1148 break; 1149 } 1150 1151 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1152 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1153 1154 // Only known if known in both the LHS and RHS. 1155 Known = KnownBits::commonBits(Known, Known2); 1156 1157 if (SPF == SPF_ABS) { 1158 // RHS from matchSelectPattern returns the negation part of abs pattern. 1159 // If the negate has an NSW flag we can assume the sign bit of the result 1160 // will be 0 because that makes abs(INT_MIN) undefined. 1161 if (match(RHS, m_Neg(m_Specific(LHS))) && 1162 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1163 Known.Zero.setSignBit(); 1164 } 1165 1166 break; 1167 } 1168 case Instruction::FPTrunc: 1169 case Instruction::FPExt: 1170 case Instruction::FPToUI: 1171 case Instruction::FPToSI: 1172 case Instruction::SIToFP: 1173 case Instruction::UIToFP: 1174 break; // Can't work with floating point. 1175 case Instruction::PtrToInt: 1176 case Instruction::IntToPtr: 1177 // Fall through and handle them the same as zext/trunc. 1178 LLVM_FALLTHROUGH; 1179 case Instruction::ZExt: 1180 case Instruction::Trunc: { 1181 Type *SrcTy = I->getOperand(0)->getType(); 1182 1183 unsigned SrcBitWidth; 1184 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1185 // which fall through here. 1186 Type *ScalarTy = SrcTy->getScalarType(); 1187 SrcBitWidth = ScalarTy->isPointerTy() ? 1188 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1189 Q.DL.getTypeSizeInBits(ScalarTy); 1190 1191 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1192 Known = Known.anyextOrTrunc(SrcBitWidth); 1193 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1194 Known = Known.zextOrTrunc(BitWidth); 1195 break; 1196 } 1197 case Instruction::BitCast: { 1198 Type *SrcTy = I->getOperand(0)->getType(); 1199 if (SrcTy->isIntOrPtrTy() && 1200 // TODO: For now, not handling conversions like: 1201 // (bitcast i64 %x to <2 x i32>) 1202 !I->getType()->isVectorTy()) { 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 break; 1205 } 1206 break; 1207 } 1208 case Instruction::SExt: { 1209 // Compute the bits in the result that are not present in the input. 1210 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1211 1212 Known = Known.trunc(SrcBitWidth); 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 // If the sign bit of the input is known set or clear, then we know the 1215 // top bits of the result. 1216 Known = Known.sext(BitWidth); 1217 break; 1218 } 1219 case Instruction::Shl: { 1220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1221 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1222 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1223 // If this shift has "nsw" keyword, then the result is either a poison 1224 // value or has the same sign bit as the first operand. 1225 if (NSW) { 1226 if (KnownVal.Zero.isSignBitSet()) 1227 Result.Zero.setSignBit(); 1228 if (KnownVal.One.isSignBitSet()) 1229 Result.One.setSignBit(); 1230 } 1231 return Result; 1232 }; 1233 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1234 KF); 1235 // Trailing zeros of a right-shifted constant never decrease. 1236 const APInt *C; 1237 if (match(I->getOperand(0), m_APInt(C))) 1238 Known.Zero.setLowBits(C->countTrailingZeros()); 1239 break; 1240 } 1241 case Instruction::LShr: { 1242 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1243 return KnownBits::lshr(KnownVal, KnownAmt); 1244 }; 1245 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1246 KF); 1247 // Leading zeros of a left-shifted constant never decrease. 1248 const APInt *C; 1249 if (match(I->getOperand(0), m_APInt(C))) 1250 Known.Zero.setHighBits(C->countLeadingZeros()); 1251 break; 1252 } 1253 case Instruction::AShr: { 1254 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1255 return KnownBits::ashr(KnownVal, KnownAmt); 1256 }; 1257 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1258 KF); 1259 break; 1260 } 1261 case Instruction::Sub: { 1262 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1263 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1264 DemandedElts, Known, Known2, Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 DemandedElts, Known, Known2, Depth, Q); 1271 break; 1272 } 1273 case Instruction::SRem: 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 Known = KnownBits::srem(Known, Known2); 1277 break; 1278 1279 case Instruction::URem: 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1282 Known = KnownBits::urem(Known, Known2); 1283 break; 1284 case Instruction::Alloca: 1285 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1286 break; 1287 case Instruction::GetElementPtr: { 1288 // Analyze all of the subscripts of this getelementptr instruction 1289 // to determine if we can prove known low zero bits. 1290 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1291 // Accumulate the constant indices in a separate variable 1292 // to minimize the number of calls to computeForAddSub. 1293 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1294 1295 gep_type_iterator GTI = gep_type_begin(I); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor = 1351 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1352 } 1353 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 // Note that inbounds does *not* guarantee nsw for the addition, as only 1361 // the offset is signed, while the base address is unsigned. 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1364 } 1365 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1366 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1367 Known = KnownBits::computeForAddSub( 1368 /*Add=*/true, /*NSW=*/false, Known, Index); 1369 } 1370 break; 1371 } 1372 case Instruction::PHI: { 1373 const PHINode *P = cast<PHINode>(I); 1374 BinaryOperator *BO = nullptr; 1375 Value *R = nullptr, *L = nullptr; 1376 if (matchSimpleRecurrence(P, BO, R, L)) { 1377 // Handle the case of a simple two-predecessor recurrence PHI. 1378 // There's a lot more that could theoretically be done here, but 1379 // this is sufficient to catch some interesting cases. 1380 unsigned Opcode = BO->getOpcode(); 1381 1382 // If this is a shift recurrence, we know the bits being shifted in. 1383 // We can combine that with information about the start value of the 1384 // recurrence to conclude facts about the result. 1385 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1386 Opcode == Instruction::Shl) && 1387 BO->getOperand(0) == I) { 1388 1389 // We have matched a recurrence of the form: 1390 // %iv = [R, %entry], [%iv.next, %backedge] 1391 // %iv.next = shift_op %iv, L 1392 1393 // Recurse with the phi context to avoid concern about whether facts 1394 // inferred hold at original context instruction. TODO: It may be 1395 // correct to use the original context. IF warranted, explore and 1396 // add sufficient tests to cover. 1397 Query RecQ = Q; 1398 RecQ.CxtI = P; 1399 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1400 switch (Opcode) { 1401 case Instruction::Shl: 1402 // A shl recurrence will only increase the tailing zeros 1403 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1404 break; 1405 case Instruction::LShr: 1406 // A lshr recurrence will preserve the leading zeros of the 1407 // start value 1408 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1409 break; 1410 case Instruction::AShr: 1411 // An ashr recurrence will extend the initial sign bit 1412 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1413 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1414 break; 1415 }; 1416 } 1417 1418 // Check for operations that have the property that if 1419 // both their operands have low zero bits, the result 1420 // will have low zero bits. 1421 if (Opcode == Instruction::Add || 1422 Opcode == Instruction::Sub || 1423 Opcode == Instruction::And || 1424 Opcode == Instruction::Or || 1425 Opcode == Instruction::Mul) { 1426 // Change the context instruction to the "edge" that flows into the 1427 // phi. This is important because that is where the value is actually 1428 // "evaluated" even though it is used later somewhere else. (see also 1429 // D69571). 1430 Query RecQ = Q; 1431 1432 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1433 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1434 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1435 1436 // Ok, we have a PHI of the form L op= R. Check for low 1437 // zero bits. 1438 RecQ.CxtI = RInst; 1439 computeKnownBits(R, Known2, Depth + 1, RecQ); 1440 1441 // We need to take the minimum number of known bits 1442 KnownBits Known3(BitWidth); 1443 RecQ.CxtI = LInst; 1444 computeKnownBits(L, Known3, Depth + 1, RecQ); 1445 1446 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1447 Known3.countMinTrailingZeros())); 1448 1449 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1450 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1451 // If initial value of recurrence is nonnegative, and we are adding 1452 // a nonnegative number with nsw, the result can only be nonnegative 1453 // or poison value regardless of the number of times we execute the 1454 // add in phi recurrence. If initial value is negative and we are 1455 // adding a negative number with nsw, the result can only be 1456 // negative or poison value. Similar arguments apply to sub and mul. 1457 // 1458 // (add non-negative, non-negative) --> non-negative 1459 // (add negative, negative) --> negative 1460 if (Opcode == Instruction::Add) { 1461 if (Known2.isNonNegative() && Known3.isNonNegative()) 1462 Known.makeNonNegative(); 1463 else if (Known2.isNegative() && Known3.isNegative()) 1464 Known.makeNegative(); 1465 } 1466 1467 // (sub nsw non-negative, negative) --> non-negative 1468 // (sub nsw negative, non-negative) --> negative 1469 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1470 if (Known2.isNonNegative() && Known3.isNegative()) 1471 Known.makeNonNegative(); 1472 else if (Known2.isNegative() && Known3.isNonNegative()) 1473 Known.makeNegative(); 1474 } 1475 1476 // (mul nsw non-negative, non-negative) --> non-negative 1477 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1478 Known3.isNonNegative()) 1479 Known.makeNonNegative(); 1480 } 1481 1482 break; 1483 } 1484 } 1485 1486 // Unreachable blocks may have zero-operand PHI nodes. 1487 if (P->getNumIncomingValues() == 0) 1488 break; 1489 1490 // Otherwise take the unions of the known bit sets of the operands, 1491 // taking conservative care to avoid excessive recursion. 1492 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1493 // Skip if every incoming value references to ourself. 1494 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1495 break; 1496 1497 Known.Zero.setAllBits(); 1498 Known.One.setAllBits(); 1499 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1500 Value *IncValue = P->getIncomingValue(u); 1501 // Skip direct self references. 1502 if (IncValue == P) continue; 1503 1504 // Change the context instruction to the "edge" that flows into the 1505 // phi. This is important because that is where the value is actually 1506 // "evaluated" even though it is used later somewhere else. (see also 1507 // D69571). 1508 Query RecQ = Q; 1509 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1510 1511 Known2 = KnownBits(BitWidth); 1512 // Recurse, but cap the recursion to one level, because we don't 1513 // want to waste time spinning around in loops. 1514 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1515 Known = KnownBits::commonBits(Known, Known2); 1516 // If all bits have been ruled out, there's no need to check 1517 // more operands. 1518 if (Known.isUnknown()) 1519 break; 1520 } 1521 } 1522 break; 1523 } 1524 case Instruction::Call: 1525 case Instruction::Invoke: 1526 // If range metadata is attached to this call, set known bits from that, 1527 // and then intersect with known bits based on other properties of the 1528 // function. 1529 if (MDNode *MD = 1530 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1531 computeKnownBitsFromRangeMetadata(*MD, Known); 1532 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1533 computeKnownBits(RV, Known2, Depth + 1, Q); 1534 Known.Zero |= Known2.Zero; 1535 Known.One |= Known2.One; 1536 } 1537 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1538 switch (II->getIntrinsicID()) { 1539 default: break; 1540 case Intrinsic::abs: { 1541 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1542 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1543 Known = Known2.abs(IntMinIsPoison); 1544 break; 1545 } 1546 case Intrinsic::bitreverse: 1547 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1548 Known.Zero |= Known2.Zero.reverseBits(); 1549 Known.One |= Known2.One.reverseBits(); 1550 break; 1551 case Intrinsic::bswap: 1552 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1553 Known.Zero |= Known2.Zero.byteSwap(); 1554 Known.One |= Known2.One.byteSwap(); 1555 break; 1556 case Intrinsic::ctlz: { 1557 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1558 // If we have a known 1, its position is our upper bound. 1559 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1560 // If this call is undefined for 0, the result will be less than 2^n. 1561 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1562 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1563 unsigned LowBits = Log2_32(PossibleLZ)+1; 1564 Known.Zero.setBitsFrom(LowBits); 1565 break; 1566 } 1567 case Intrinsic::cttz: { 1568 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1569 // If we have a known 1, its position is our upper bound. 1570 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1571 // If this call is undefined for 0, the result will be less than 2^n. 1572 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1573 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1574 unsigned LowBits = Log2_32(PossibleTZ)+1; 1575 Known.Zero.setBitsFrom(LowBits); 1576 break; 1577 } 1578 case Intrinsic::ctpop: { 1579 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1580 // We can bound the space the count needs. Also, bits known to be zero 1581 // can't contribute to the population. 1582 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1583 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1584 Known.Zero.setBitsFrom(LowBits); 1585 // TODO: we could bound KnownOne using the lower bound on the number 1586 // of bits which might be set provided by popcnt KnownOne2. 1587 break; 1588 } 1589 case Intrinsic::fshr: 1590 case Intrinsic::fshl: { 1591 const APInt *SA; 1592 if (!match(I->getOperand(2), m_APInt(SA))) 1593 break; 1594 1595 // Normalize to funnel shift left. 1596 uint64_t ShiftAmt = SA->urem(BitWidth); 1597 if (II->getIntrinsicID() == Intrinsic::fshr) 1598 ShiftAmt = BitWidth - ShiftAmt; 1599 1600 KnownBits Known3(BitWidth); 1601 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1602 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1603 1604 Known.Zero = 1605 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1606 Known.One = 1607 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1608 break; 1609 } 1610 case Intrinsic::uadd_sat: 1611 case Intrinsic::usub_sat: { 1612 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1613 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1614 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1615 1616 // Add: Leading ones of either operand are preserved. 1617 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1618 // as leading zeros in the result. 1619 unsigned LeadingKnown; 1620 if (IsAdd) 1621 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1622 Known2.countMinLeadingOnes()); 1623 else 1624 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1625 Known2.countMinLeadingOnes()); 1626 1627 Known = KnownBits::computeForAddSub( 1628 IsAdd, /* NSW */ false, Known, Known2); 1629 1630 // We select between the operation result and all-ones/zero 1631 // respectively, so we can preserve known ones/zeros. 1632 if (IsAdd) { 1633 Known.One.setHighBits(LeadingKnown); 1634 Known.Zero.clearAllBits(); 1635 } else { 1636 Known.Zero.setHighBits(LeadingKnown); 1637 Known.One.clearAllBits(); 1638 } 1639 break; 1640 } 1641 case Intrinsic::umin: 1642 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1644 Known = KnownBits::umin(Known, Known2); 1645 break; 1646 case Intrinsic::umax: 1647 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1648 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1649 Known = KnownBits::umax(Known, Known2); 1650 break; 1651 case Intrinsic::smin: 1652 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1653 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1654 Known = KnownBits::smin(Known, Known2); 1655 break; 1656 case Intrinsic::smax: 1657 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1658 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1659 Known = KnownBits::smax(Known, Known2); 1660 break; 1661 case Intrinsic::x86_sse42_crc32_64_64: 1662 Known.Zero.setBitsFrom(32); 1663 break; 1664 } 1665 } 1666 break; 1667 case Instruction::ShuffleVector: { 1668 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1669 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1670 if (!Shuf) { 1671 Known.resetAll(); 1672 return; 1673 } 1674 // For undef elements, we don't know anything about the common state of 1675 // the shuffle result. 1676 APInt DemandedLHS, DemandedRHS; 1677 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1678 Known.resetAll(); 1679 return; 1680 } 1681 Known.One.setAllBits(); 1682 Known.Zero.setAllBits(); 1683 if (!!DemandedLHS) { 1684 const Value *LHS = Shuf->getOperand(0); 1685 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1686 // If we don't know any bits, early out. 1687 if (Known.isUnknown()) 1688 break; 1689 } 1690 if (!!DemandedRHS) { 1691 const Value *RHS = Shuf->getOperand(1); 1692 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1693 Known = KnownBits::commonBits(Known, Known2); 1694 } 1695 break; 1696 } 1697 case Instruction::InsertElement: { 1698 const Value *Vec = I->getOperand(0); 1699 const Value *Elt = I->getOperand(1); 1700 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1701 // Early out if the index is non-constant or out-of-range. 1702 unsigned NumElts = DemandedElts.getBitWidth(); 1703 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1704 Known.resetAll(); 1705 return; 1706 } 1707 Known.One.setAllBits(); 1708 Known.Zero.setAllBits(); 1709 unsigned EltIdx = CIdx->getZExtValue(); 1710 // Do we demand the inserted element? 1711 if (DemandedElts[EltIdx]) { 1712 computeKnownBits(Elt, Known, Depth + 1, Q); 1713 // If we don't know any bits, early out. 1714 if (Known.isUnknown()) 1715 break; 1716 } 1717 // We don't need the base vector element that has been inserted. 1718 APInt DemandedVecElts = DemandedElts; 1719 DemandedVecElts.clearBit(EltIdx); 1720 if (!!DemandedVecElts) { 1721 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1722 Known = KnownBits::commonBits(Known, Known2); 1723 } 1724 break; 1725 } 1726 case Instruction::ExtractElement: { 1727 // Look through extract element. If the index is non-constant or 1728 // out-of-range demand all elements, otherwise just the extracted element. 1729 const Value *Vec = I->getOperand(0); 1730 const Value *Idx = I->getOperand(1); 1731 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1732 if (isa<ScalableVectorType>(Vec->getType())) { 1733 // FIXME: there's probably *something* we can do with scalable vectors 1734 Known.resetAll(); 1735 break; 1736 } 1737 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1738 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1739 if (CIdx && CIdx->getValue().ult(NumElts)) 1740 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1741 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1742 break; 1743 } 1744 case Instruction::ExtractValue: 1745 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1746 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1747 if (EVI->getNumIndices() != 1) break; 1748 if (EVI->getIndices()[0] == 0) { 1749 switch (II->getIntrinsicID()) { 1750 default: break; 1751 case Intrinsic::uadd_with_overflow: 1752 case Intrinsic::sadd_with_overflow: 1753 computeKnownBitsAddSub(true, II->getArgOperand(0), 1754 II->getArgOperand(1), false, DemandedElts, 1755 Known, Known2, Depth, Q); 1756 break; 1757 case Intrinsic::usub_with_overflow: 1758 case Intrinsic::ssub_with_overflow: 1759 computeKnownBitsAddSub(false, II->getArgOperand(0), 1760 II->getArgOperand(1), false, DemandedElts, 1761 Known, Known2, Depth, Q); 1762 break; 1763 case Intrinsic::umul_with_overflow: 1764 case Intrinsic::smul_with_overflow: 1765 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1766 DemandedElts, Known, Known2, Depth, Q); 1767 break; 1768 } 1769 } 1770 } 1771 break; 1772 case Instruction::Freeze: 1773 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1774 Depth + 1)) 1775 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1776 break; 1777 } 1778 } 1779 1780 /// Determine which bits of V are known to be either zero or one and return 1781 /// them. 1782 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1783 unsigned Depth, const Query &Q) { 1784 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1785 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1786 return Known; 1787 } 1788 1789 /// Determine which bits of V are known to be either zero or one and return 1790 /// them. 1791 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1792 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1793 computeKnownBits(V, Known, Depth, Q); 1794 return Known; 1795 } 1796 1797 /// Determine which bits of V are known to be either zero or one and return 1798 /// them in the Known bit set. 1799 /// 1800 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1801 /// we cannot optimize based on the assumption that it is zero without changing 1802 /// it to be an explicit zero. If we don't change it to zero, other code could 1803 /// optimized based on the contradictory assumption that it is non-zero. 1804 /// Because instcombine aggressively folds operations with undef args anyway, 1805 /// this won't lose us code quality. 1806 /// 1807 /// This function is defined on values with integer type, values with pointer 1808 /// type, and vectors of integers. In the case 1809 /// where V is a vector, known zero, and known one values are the 1810 /// same width as the vector element, and the bit is set only if it is true 1811 /// for all of the demanded elements in the vector specified by DemandedElts. 1812 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1813 KnownBits &Known, unsigned Depth, const Query &Q) { 1814 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1815 // No demanded elts or V is a scalable vector, better to assume we don't 1816 // know anything. 1817 Known.resetAll(); 1818 return; 1819 } 1820 1821 assert(V && "No Value?"); 1822 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1823 1824 #ifndef NDEBUG 1825 Type *Ty = V->getType(); 1826 unsigned BitWidth = Known.getBitWidth(); 1827 1828 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1829 "Not integer or pointer type!"); 1830 1831 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1832 assert( 1833 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1834 "DemandedElt width should equal the fixed vector number of elements"); 1835 } else { 1836 assert(DemandedElts == APInt(1, 1) && 1837 "DemandedElt width should be 1 for scalars"); 1838 } 1839 1840 Type *ScalarTy = Ty->getScalarType(); 1841 if (ScalarTy->isPointerTy()) { 1842 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1843 "V and Known should have same BitWidth"); 1844 } else { 1845 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1846 "V and Known should have same BitWidth"); 1847 } 1848 #endif 1849 1850 const APInt *C; 1851 if (match(V, m_APInt(C))) { 1852 // We know all of the bits for a scalar constant or a splat vector constant! 1853 Known = KnownBits::makeConstant(*C); 1854 return; 1855 } 1856 // Null and aggregate-zero are all-zeros. 1857 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1858 Known.setAllZero(); 1859 return; 1860 } 1861 // Handle a constant vector by taking the intersection of the known bits of 1862 // each element. 1863 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1864 // We know that CDV must be a vector of integers. Take the intersection of 1865 // each element. 1866 Known.Zero.setAllBits(); Known.One.setAllBits(); 1867 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1868 if (!DemandedElts[i]) 1869 continue; 1870 APInt Elt = CDV->getElementAsAPInt(i); 1871 Known.Zero &= ~Elt; 1872 Known.One &= Elt; 1873 } 1874 return; 1875 } 1876 1877 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1878 // We know that CV must be a vector of integers. Take the intersection of 1879 // each element. 1880 Known.Zero.setAllBits(); Known.One.setAllBits(); 1881 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1882 if (!DemandedElts[i]) 1883 continue; 1884 Constant *Element = CV->getAggregateElement(i); 1885 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1886 if (!ElementCI) { 1887 Known.resetAll(); 1888 return; 1889 } 1890 const APInt &Elt = ElementCI->getValue(); 1891 Known.Zero &= ~Elt; 1892 Known.One &= Elt; 1893 } 1894 return; 1895 } 1896 1897 // Start out not knowing anything. 1898 Known.resetAll(); 1899 1900 // We can't imply anything about undefs. 1901 if (isa<UndefValue>(V)) 1902 return; 1903 1904 // There's no point in looking through other users of ConstantData for 1905 // assumptions. Confirm that we've handled them all. 1906 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1907 1908 // All recursive calls that increase depth must come after this. 1909 if (Depth == MaxAnalysisRecursionDepth) 1910 return; 1911 1912 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1913 // the bits of its aliasee. 1914 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1915 if (!GA->isInterposable()) 1916 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1917 return; 1918 } 1919 1920 if (const Operator *I = dyn_cast<Operator>(V)) 1921 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1922 1923 // Aligned pointers have trailing zeros - refine Known.Zero set 1924 if (isa<PointerType>(V->getType())) { 1925 Align Alignment = V->getPointerAlignment(Q.DL); 1926 Known.Zero.setLowBits(Log2(Alignment)); 1927 } 1928 1929 // computeKnownBitsFromAssume strictly refines Known. 1930 // Therefore, we run them after computeKnownBitsFromOperator. 1931 1932 // Check whether a nearby assume intrinsic can determine some known bits. 1933 computeKnownBitsFromAssume(V, Known, Depth, Q); 1934 1935 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1936 } 1937 1938 /// Return true if the given value is known to have exactly one 1939 /// bit set when defined. For vectors return true if every element is known to 1940 /// be a power of two when defined. Supports values with integer or pointer 1941 /// types and vectors of integers. 1942 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1943 const Query &Q) { 1944 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1945 1946 // Attempt to match against constants. 1947 if (OrZero && match(V, m_Power2OrZero())) 1948 return true; 1949 if (match(V, m_Power2())) 1950 return true; 1951 1952 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1953 // it is shifted off the end then the result is undefined. 1954 if (match(V, m_Shl(m_One(), m_Value()))) 1955 return true; 1956 1957 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1958 // the bottom. If it is shifted off the bottom then the result is undefined. 1959 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1960 return true; 1961 1962 // The remaining tests are all recursive, so bail out if we hit the limit. 1963 if (Depth++ == MaxAnalysisRecursionDepth) 1964 return false; 1965 1966 Value *X = nullptr, *Y = nullptr; 1967 // A shift left or a logical shift right of a power of two is a power of two 1968 // or zero. 1969 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1970 match(V, m_LShr(m_Value(X), m_Value())))) 1971 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1972 1973 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1974 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1975 1976 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1977 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1978 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1979 1980 // Peek through min/max. 1981 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 1982 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 1983 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 1984 } 1985 1986 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1987 // A power of two and'd with anything is a power of two or zero. 1988 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1989 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1990 return true; 1991 // X & (-X) is always a power of two or zero. 1992 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1993 return true; 1994 return false; 1995 } 1996 1997 // Adding a power-of-two or zero to the same power-of-two or zero yields 1998 // either the original power-of-two, a larger power-of-two or zero. 1999 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2000 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2001 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2002 Q.IIQ.hasNoSignedWrap(VOBO)) { 2003 if (match(X, m_And(m_Specific(Y), m_Value())) || 2004 match(X, m_And(m_Value(), m_Specific(Y)))) 2005 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2006 return true; 2007 if (match(Y, m_And(m_Specific(X), m_Value())) || 2008 match(Y, m_And(m_Value(), m_Specific(X)))) 2009 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2010 return true; 2011 2012 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2013 KnownBits LHSBits(BitWidth); 2014 computeKnownBits(X, LHSBits, Depth, Q); 2015 2016 KnownBits RHSBits(BitWidth); 2017 computeKnownBits(Y, RHSBits, Depth, Q); 2018 // If i8 V is a power of two or zero: 2019 // ZeroBits: 1 1 1 0 1 1 1 1 2020 // ~ZeroBits: 0 0 0 1 0 0 0 0 2021 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2022 // If OrZero isn't set, we cannot give back a zero result. 2023 // Make sure either the LHS or RHS has a bit set. 2024 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2025 return true; 2026 } 2027 } 2028 2029 // An exact divide or right shift can only shift off zero bits, so the result 2030 // is a power of two only if the first operand is a power of two and not 2031 // copying a sign bit (sdiv int_min, 2). 2032 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2033 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2034 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2035 Depth, Q); 2036 } 2037 2038 return false; 2039 } 2040 2041 /// Test whether a GEP's result is known to be non-null. 2042 /// 2043 /// Uses properties inherent in a GEP to try to determine whether it is known 2044 /// to be non-null. 2045 /// 2046 /// Currently this routine does not support vector GEPs. 2047 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2048 const Query &Q) { 2049 const Function *F = nullptr; 2050 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2051 F = I->getFunction(); 2052 2053 if (!GEP->isInBounds() || 2054 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2055 return false; 2056 2057 // FIXME: Support vector-GEPs. 2058 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2059 2060 // If the base pointer is non-null, we cannot walk to a null address with an 2061 // inbounds GEP in address space zero. 2062 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2063 return true; 2064 2065 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2066 // If so, then the GEP cannot produce a null pointer, as doing so would 2067 // inherently violate the inbounds contract within address space zero. 2068 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2069 GTI != GTE; ++GTI) { 2070 // Struct types are easy -- they must always be indexed by a constant. 2071 if (StructType *STy = GTI.getStructTypeOrNull()) { 2072 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2073 unsigned ElementIdx = OpC->getZExtValue(); 2074 const StructLayout *SL = Q.DL.getStructLayout(STy); 2075 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2076 if (ElementOffset > 0) 2077 return true; 2078 continue; 2079 } 2080 2081 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2082 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2083 continue; 2084 2085 // Fast path the constant operand case both for efficiency and so we don't 2086 // increment Depth when just zipping down an all-constant GEP. 2087 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2088 if (!OpC->isZero()) 2089 return true; 2090 continue; 2091 } 2092 2093 // We post-increment Depth here because while isKnownNonZero increments it 2094 // as well, when we pop back up that increment won't persist. We don't want 2095 // to recurse 10k times just because we have 10k GEP operands. We don't 2096 // bail completely out because we want to handle constant GEPs regardless 2097 // of depth. 2098 if (Depth++ >= MaxAnalysisRecursionDepth) 2099 continue; 2100 2101 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2102 return true; 2103 } 2104 2105 return false; 2106 } 2107 2108 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2109 const Instruction *CtxI, 2110 const DominatorTree *DT) { 2111 if (isa<Constant>(V)) 2112 return false; 2113 2114 if (!CtxI || !DT) 2115 return false; 2116 2117 unsigned NumUsesExplored = 0; 2118 for (auto *U : V->users()) { 2119 // Avoid massive lists 2120 if (NumUsesExplored >= DomConditionsMaxUses) 2121 break; 2122 NumUsesExplored++; 2123 2124 // If the value is used as an argument to a call or invoke, then argument 2125 // attributes may provide an answer about null-ness. 2126 if (const auto *CB = dyn_cast<CallBase>(U)) 2127 if (auto *CalledFunc = CB->getCalledFunction()) 2128 for (const Argument &Arg : CalledFunc->args()) 2129 if (CB->getArgOperand(Arg.getArgNo()) == V && 2130 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2131 DT->dominates(CB, CtxI)) 2132 return true; 2133 2134 // If the value is used as a load/store, then the pointer must be non null. 2135 if (V == getLoadStorePointerOperand(U)) { 2136 const Instruction *I = cast<Instruction>(U); 2137 if (!NullPointerIsDefined(I->getFunction(), 2138 V->getType()->getPointerAddressSpace()) && 2139 DT->dominates(I, CtxI)) 2140 return true; 2141 } 2142 2143 // Consider only compare instructions uniquely controlling a branch 2144 Value *RHS; 2145 CmpInst::Predicate Pred; 2146 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2147 continue; 2148 2149 bool NonNullIfTrue; 2150 if (cmpExcludesZero(Pred, RHS)) 2151 NonNullIfTrue = true; 2152 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2153 NonNullIfTrue = false; 2154 else 2155 continue; 2156 2157 SmallVector<const User *, 4> WorkList; 2158 SmallPtrSet<const User *, 4> Visited; 2159 for (auto *CmpU : U->users()) { 2160 assert(WorkList.empty() && "Should be!"); 2161 if (Visited.insert(CmpU).second) 2162 WorkList.push_back(CmpU); 2163 2164 while (!WorkList.empty()) { 2165 auto *Curr = WorkList.pop_back_val(); 2166 2167 // If a user is an AND, add all its users to the work list. We only 2168 // propagate "pred != null" condition through AND because it is only 2169 // correct to assume that all conditions of AND are met in true branch. 2170 // TODO: Support similar logic of OR and EQ predicate? 2171 if (NonNullIfTrue) 2172 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2173 for (auto *CurrU : Curr->users()) 2174 if (Visited.insert(CurrU).second) 2175 WorkList.push_back(CurrU); 2176 continue; 2177 } 2178 2179 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2180 assert(BI->isConditional() && "uses a comparison!"); 2181 2182 BasicBlock *NonNullSuccessor = 2183 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2184 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2185 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2186 return true; 2187 } else if (NonNullIfTrue && isGuard(Curr) && 2188 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2189 return true; 2190 } 2191 } 2192 } 2193 } 2194 2195 return false; 2196 } 2197 2198 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2199 /// ensure that the value it's attached to is never Value? 'RangeType' is 2200 /// is the type of the value described by the range. 2201 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2202 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2203 assert(NumRanges >= 1); 2204 for (unsigned i = 0; i < NumRanges; ++i) { 2205 ConstantInt *Lower = 2206 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2207 ConstantInt *Upper = 2208 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2209 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2210 if (Range.contains(Value)) 2211 return false; 2212 } 2213 return true; 2214 } 2215 2216 static bool isNonZeroRecurrence(const PHINode *PN) { 2217 // Try and detect a recurrence that monotonically increases from a 2218 // starting value, as these are common as induction variables. 2219 BinaryOperator *BO = nullptr; 2220 Value *Start = nullptr, *Step = nullptr; 2221 const APInt *StartC, *StepC; 2222 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2223 !match(Start, m_APInt(StartC))) 2224 return false; 2225 2226 switch (BO->getOpcode()) { 2227 case Instruction::Add: 2228 return match(Step, m_APInt(StepC)) && 2229 ((BO->hasNoUnsignedWrap() && !StartC->isNullValue() && 2230 !StepC->isNullValue()) || 2231 (BO->hasNoSignedWrap() && StartC->isStrictlyPositive() && 2232 StepC->isNonNegative())); 2233 case Instruction::Mul: 2234 return !StartC->isNullValue() && match(Step, m_APInt(StepC)) && 2235 ((BO->hasNoUnsignedWrap() && !StepC->isNullValue()) || 2236 (BO->hasNoSignedWrap() && StepC->isStrictlyPositive())); 2237 case Instruction::Shl: 2238 return !StartC->isNullValue() && 2239 (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()); 2240 case Instruction::AShr: 2241 case Instruction::LShr: 2242 return !StartC->isNullValue() && BO->isExact(); 2243 default: 2244 return false; 2245 } 2246 } 2247 2248 /// Return true if the given value is known to be non-zero when defined. For 2249 /// vectors, return true if every demanded element is known to be non-zero when 2250 /// defined. For pointers, if the context instruction and dominator tree are 2251 /// specified, perform context-sensitive analysis and return true if the 2252 /// pointer couldn't possibly be null at the specified instruction. 2253 /// Supports values with integer or pointer type and vectors of integers. 2254 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2255 const Query &Q) { 2256 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2257 // vector 2258 if (isa<ScalableVectorType>(V->getType())) 2259 return false; 2260 2261 if (auto *C = dyn_cast<Constant>(V)) { 2262 if (C->isNullValue()) 2263 return false; 2264 if (isa<ConstantInt>(C)) 2265 // Must be non-zero due to null test above. 2266 return true; 2267 2268 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2269 // See the comment for IntToPtr/PtrToInt instructions below. 2270 if (CE->getOpcode() == Instruction::IntToPtr || 2271 CE->getOpcode() == Instruction::PtrToInt) 2272 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2273 .getFixedSize() <= 2274 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2275 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2276 } 2277 2278 // For constant vectors, check that all elements are undefined or known 2279 // non-zero to determine that the whole vector is known non-zero. 2280 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2281 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2282 if (!DemandedElts[i]) 2283 continue; 2284 Constant *Elt = C->getAggregateElement(i); 2285 if (!Elt || Elt->isNullValue()) 2286 return false; 2287 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2288 return false; 2289 } 2290 return true; 2291 } 2292 2293 // A global variable in address space 0 is non null unless extern weak 2294 // or an absolute symbol reference. Other address spaces may have null as a 2295 // valid address for a global, so we can't assume anything. 2296 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2297 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2298 GV->getType()->getAddressSpace() == 0) 2299 return true; 2300 } else 2301 return false; 2302 } 2303 2304 if (auto *I = dyn_cast<Instruction>(V)) { 2305 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2306 // If the possible ranges don't contain zero, then the value is 2307 // definitely non-zero. 2308 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2309 const APInt ZeroValue(Ty->getBitWidth(), 0); 2310 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2311 return true; 2312 } 2313 } 2314 } 2315 2316 if (isKnownNonZeroFromAssume(V, Q)) 2317 return true; 2318 2319 // Some of the tests below are recursive, so bail out if we hit the limit. 2320 if (Depth++ >= MaxAnalysisRecursionDepth) 2321 return false; 2322 2323 // Check for pointer simplifications. 2324 2325 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2326 // Alloca never returns null, malloc might. 2327 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2328 return true; 2329 2330 // A byval, inalloca may not be null in a non-default addres space. A 2331 // nonnull argument is assumed never 0. 2332 if (const Argument *A = dyn_cast<Argument>(V)) { 2333 if (((A->hasPassPointeeByValueCopyAttr() && 2334 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2335 A->hasNonNullAttr())) 2336 return true; 2337 } 2338 2339 // A Load tagged with nonnull metadata is never null. 2340 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2341 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2342 return true; 2343 2344 if (const auto *Call = dyn_cast<CallBase>(V)) { 2345 if (Call->isReturnNonNull()) 2346 return true; 2347 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2348 return isKnownNonZero(RP, Depth, Q); 2349 } 2350 } 2351 2352 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2353 return true; 2354 2355 // Check for recursive pointer simplifications. 2356 if (V->getType()->isPointerTy()) { 2357 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2358 // do not alter the value, or at least not the nullness property of the 2359 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2360 // 2361 // Note that we have to take special care to avoid looking through 2362 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2363 // as casts that can alter the value, e.g., AddrSpaceCasts. 2364 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2365 return isGEPKnownNonNull(GEP, Depth, Q); 2366 2367 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2368 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2369 2370 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2371 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2372 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2373 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2374 } 2375 2376 // Similar to int2ptr above, we can look through ptr2int here if the cast 2377 // is a no-op or an extend and not a truncate. 2378 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2379 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2380 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2381 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2382 2383 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2384 2385 // X | Y != 0 if X != 0 or Y != 0. 2386 Value *X = nullptr, *Y = nullptr; 2387 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2388 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2389 isKnownNonZero(Y, DemandedElts, Depth, Q); 2390 2391 // ext X != 0 if X != 0. 2392 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2393 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2394 2395 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2396 // if the lowest bit is shifted off the end. 2397 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2398 // shl nuw can't remove any non-zero bits. 2399 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2400 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2401 return isKnownNonZero(X, Depth, Q); 2402 2403 KnownBits Known(BitWidth); 2404 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2405 if (Known.One[0]) 2406 return true; 2407 } 2408 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2409 // defined if the sign bit is shifted off the end. 2410 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2411 // shr exact can only shift out zero bits. 2412 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2413 if (BO->isExact()) 2414 return isKnownNonZero(X, Depth, Q); 2415 2416 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2417 if (Known.isNegative()) 2418 return true; 2419 2420 // If the shifter operand is a constant, and all of the bits shifted 2421 // out are known to be zero, and X is known non-zero then at least one 2422 // non-zero bit must remain. 2423 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2424 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2425 // Is there a known one in the portion not shifted out? 2426 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2427 return true; 2428 // Are all the bits to be shifted out known zero? 2429 if (Known.countMinTrailingZeros() >= ShiftVal) 2430 return isKnownNonZero(X, DemandedElts, Depth, Q); 2431 } 2432 } 2433 // div exact can only produce a zero if the dividend is zero. 2434 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2435 return isKnownNonZero(X, DemandedElts, Depth, Q); 2436 } 2437 // X + Y. 2438 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2439 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2440 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2441 2442 // If X and Y are both non-negative (as signed values) then their sum is not 2443 // zero unless both X and Y are zero. 2444 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2445 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2446 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2447 return true; 2448 2449 // If X and Y are both negative (as signed values) then their sum is not 2450 // zero unless both X and Y equal INT_MIN. 2451 if (XKnown.isNegative() && YKnown.isNegative()) { 2452 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2453 // The sign bit of X is set. If some other bit is set then X is not equal 2454 // to INT_MIN. 2455 if (XKnown.One.intersects(Mask)) 2456 return true; 2457 // The sign bit of Y is set. If some other bit is set then Y is not equal 2458 // to INT_MIN. 2459 if (YKnown.One.intersects(Mask)) 2460 return true; 2461 } 2462 2463 // The sum of a non-negative number and a power of two is not zero. 2464 if (XKnown.isNonNegative() && 2465 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2466 return true; 2467 if (YKnown.isNonNegative() && 2468 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2469 return true; 2470 } 2471 // X * Y. 2472 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2473 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2474 // If X and Y are non-zero then so is X * Y as long as the multiplication 2475 // does not overflow. 2476 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2477 isKnownNonZero(X, DemandedElts, Depth, Q) && 2478 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2479 return true; 2480 } 2481 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2482 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2483 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2484 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2485 return true; 2486 } 2487 // PHI 2488 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2489 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2490 return true; 2491 2492 // Check if all incoming values are non-zero using recursion. 2493 Query RecQ = Q; 2494 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2495 return llvm::all_of(PN->operands(), [&](const Use &U) { 2496 if (U.get() == PN) 2497 return true; 2498 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2499 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2500 }); 2501 } 2502 // ExtractElement 2503 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2504 const Value *Vec = EEI->getVectorOperand(); 2505 const Value *Idx = EEI->getIndexOperand(); 2506 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2507 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2508 unsigned NumElts = VecTy->getNumElements(); 2509 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2510 if (CIdx && CIdx->getValue().ult(NumElts)) 2511 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2512 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2513 } 2514 } 2515 // Freeze 2516 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2517 auto *Op = FI->getOperand(0); 2518 if (isKnownNonZero(Op, Depth, Q) && 2519 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2520 return true; 2521 } 2522 2523 KnownBits Known(BitWidth); 2524 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2525 return Known.One != 0; 2526 } 2527 2528 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2529 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2530 // vector 2531 if (isa<ScalableVectorType>(V->getType())) 2532 return false; 2533 2534 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2535 APInt DemandedElts = 2536 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2537 return isKnownNonZero(V, DemandedElts, Depth, Q); 2538 } 2539 2540 /// Return true if V2 == V1 + X, where X is known non-zero. 2541 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2542 const Query &Q) { 2543 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2544 if (!BO || BO->getOpcode() != Instruction::Add) 2545 return false; 2546 Value *Op = nullptr; 2547 if (V2 == BO->getOperand(0)) 2548 Op = BO->getOperand(1); 2549 else if (V2 == BO->getOperand(1)) 2550 Op = BO->getOperand(0); 2551 else 2552 return false; 2553 return isKnownNonZero(Op, Depth + 1, Q); 2554 } 2555 2556 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2557 /// the multiplication is nuw or nsw. 2558 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2559 const Query &Q) { 2560 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2561 const APInt *C; 2562 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2563 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2564 !C->isNullValue() && !C->isOneValue() && 2565 isKnownNonZero(V1, Depth + 1, Q); 2566 } 2567 return false; 2568 } 2569 2570 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2571 /// the shift is nuw or nsw. 2572 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2573 const Query &Q) { 2574 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2575 const APInt *C; 2576 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2577 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2578 !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); 2579 } 2580 return false; 2581 } 2582 2583 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2584 unsigned Depth, const Query &Q) { 2585 // Check two PHIs are in same block. 2586 if (PN1->getParent() != PN2->getParent()) 2587 return false; 2588 2589 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2590 bool UsedFullRecursion = false; 2591 for (const BasicBlock *IncomBB : PN1->blocks()) { 2592 if (!VisitedBBs.insert(IncomBB).second) 2593 continue; // Don't reprocess blocks that we have dealt with already. 2594 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2595 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2596 const APInt *C1, *C2; 2597 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2598 continue; 2599 2600 // Only one pair of phi operands is allowed for full recursion. 2601 if (UsedFullRecursion) 2602 return false; 2603 2604 Query RecQ = Q; 2605 RecQ.CxtI = IncomBB->getTerminator(); 2606 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2607 return false; 2608 UsedFullRecursion = true; 2609 } 2610 return true; 2611 } 2612 2613 /// Return true if it is known that V1 != V2. 2614 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2615 const Query &Q) { 2616 if (V1 == V2) 2617 return false; 2618 if (V1->getType() != V2->getType()) 2619 // We can't look through casts yet. 2620 return false; 2621 2622 if (Depth >= MaxAnalysisRecursionDepth) 2623 return false; 2624 2625 // See if we can recurse through (exactly one of) our operands. This 2626 // requires our operation be 1-to-1 and map every input value to exactly 2627 // one output value. Such an operation is invertible. 2628 auto *O1 = dyn_cast<Operator>(V1); 2629 auto *O2 = dyn_cast<Operator>(V2); 2630 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2631 switch (O1->getOpcode()) { 2632 default: break; 2633 case Instruction::Add: 2634 case Instruction::Sub: 2635 // Assume operand order has been canonicalized 2636 if (O1->getOperand(0) == O2->getOperand(0)) 2637 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2638 Depth + 1, Q); 2639 if (O1->getOperand(1) == O2->getOperand(1)) 2640 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2641 Depth + 1, Q); 2642 break; 2643 case Instruction::Mul: { 2644 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2645 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2646 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2647 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2648 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2649 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2650 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2651 break; 2652 2653 // Assume operand order has been canonicalized 2654 if (O1->getOperand(1) == O2->getOperand(1) && 2655 isa<ConstantInt>(O1->getOperand(1)) && 2656 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2657 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2658 Depth + 1, Q); 2659 break; 2660 } 2661 case Instruction::Shl: { 2662 // Same as multiplies, with the difference that we don't need to check 2663 // for a non-zero multiply. Shifts always multiply by non-zero. 2664 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2665 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2666 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2667 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2668 break; 2669 2670 if (O1->getOperand(1) == O2->getOperand(1)) 2671 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2672 Depth + 1, Q); 2673 break; 2674 } 2675 case Instruction::SExt: 2676 case Instruction::ZExt: 2677 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2678 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), Depth + 1, 2679 Q); 2680 break; 2681 case Instruction::PHI: 2682 const PHINode *PN1 = cast<PHINode>(V1); 2683 const PHINode *PN2 = cast<PHINode>(V2); 2684 // FIXME: This is missing a generalization to handle the case where one is 2685 // a PHI and another one isn't. 2686 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2687 return true; 2688 break; 2689 }; 2690 } 2691 2692 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2693 return true; 2694 2695 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2696 return true; 2697 2698 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2699 return true; 2700 2701 if (V1->getType()->isIntOrIntVectorTy()) { 2702 // Are any known bits in V1 contradictory to known bits in V2? If V1 2703 // has a known zero where V2 has a known one, they must not be equal. 2704 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2705 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2706 2707 if (Known1.Zero.intersects(Known2.One) || 2708 Known2.Zero.intersects(Known1.One)) 2709 return true; 2710 } 2711 return false; 2712 } 2713 2714 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2715 /// simplify operations downstream. Mask is known to be zero for bits that V 2716 /// cannot have. 2717 /// 2718 /// This function is defined on values with integer type, values with pointer 2719 /// type, and vectors of integers. In the case 2720 /// where V is a vector, the mask, known zero, and known one values are the 2721 /// same width as the vector element, and the bit is set only if it is true 2722 /// for all of the elements in the vector. 2723 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2724 const Query &Q) { 2725 KnownBits Known(Mask.getBitWidth()); 2726 computeKnownBits(V, Known, Depth, Q); 2727 return Mask.isSubsetOf(Known.Zero); 2728 } 2729 2730 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2731 // Returns the input and lower/upper bounds. 2732 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2733 const APInt *&CLow, const APInt *&CHigh) { 2734 assert(isa<Operator>(Select) && 2735 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2736 "Input should be a Select!"); 2737 2738 const Value *LHS = nullptr, *RHS = nullptr; 2739 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2740 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2741 return false; 2742 2743 if (!match(RHS, m_APInt(CLow))) 2744 return false; 2745 2746 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2747 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2748 if (getInverseMinMaxFlavor(SPF) != SPF2) 2749 return false; 2750 2751 if (!match(RHS2, m_APInt(CHigh))) 2752 return false; 2753 2754 if (SPF == SPF_SMIN) 2755 std::swap(CLow, CHigh); 2756 2757 In = LHS2; 2758 return CLow->sle(*CHigh); 2759 } 2760 2761 /// For vector constants, loop over the elements and find the constant with the 2762 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2763 /// or if any element was not analyzed; otherwise, return the count for the 2764 /// element with the minimum number of sign bits. 2765 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2766 const APInt &DemandedElts, 2767 unsigned TyBits) { 2768 const auto *CV = dyn_cast<Constant>(V); 2769 if (!CV || !isa<FixedVectorType>(CV->getType())) 2770 return 0; 2771 2772 unsigned MinSignBits = TyBits; 2773 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2774 for (unsigned i = 0; i != NumElts; ++i) { 2775 if (!DemandedElts[i]) 2776 continue; 2777 // If we find a non-ConstantInt, bail out. 2778 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2779 if (!Elt) 2780 return 0; 2781 2782 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2783 } 2784 2785 return MinSignBits; 2786 } 2787 2788 static unsigned ComputeNumSignBitsImpl(const Value *V, 2789 const APInt &DemandedElts, 2790 unsigned Depth, const Query &Q); 2791 2792 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2793 unsigned Depth, const Query &Q) { 2794 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2795 assert(Result > 0 && "At least one sign bit needs to be present!"); 2796 return Result; 2797 } 2798 2799 /// Return the number of times the sign bit of the register is replicated into 2800 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2801 /// (itself), but other cases can give us information. For example, immediately 2802 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2803 /// other, so we return 3. For vectors, return the number of sign bits for the 2804 /// vector element with the minimum number of known sign bits of the demanded 2805 /// elements in the vector specified by DemandedElts. 2806 static unsigned ComputeNumSignBitsImpl(const Value *V, 2807 const APInt &DemandedElts, 2808 unsigned Depth, const Query &Q) { 2809 Type *Ty = V->getType(); 2810 2811 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2812 // vector 2813 if (isa<ScalableVectorType>(Ty)) 2814 return 1; 2815 2816 #ifndef NDEBUG 2817 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2818 2819 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2820 assert( 2821 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2822 "DemandedElt width should equal the fixed vector number of elements"); 2823 } else { 2824 assert(DemandedElts == APInt(1, 1) && 2825 "DemandedElt width should be 1 for scalars"); 2826 } 2827 #endif 2828 2829 // We return the minimum number of sign bits that are guaranteed to be present 2830 // in V, so for undef we have to conservatively return 1. We don't have the 2831 // same behavior for poison though -- that's a FIXME today. 2832 2833 Type *ScalarTy = Ty->getScalarType(); 2834 unsigned TyBits = ScalarTy->isPointerTy() ? 2835 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2836 Q.DL.getTypeSizeInBits(ScalarTy); 2837 2838 unsigned Tmp, Tmp2; 2839 unsigned FirstAnswer = 1; 2840 2841 // Note that ConstantInt is handled by the general computeKnownBits case 2842 // below. 2843 2844 if (Depth == MaxAnalysisRecursionDepth) 2845 return 1; 2846 2847 if (auto *U = dyn_cast<Operator>(V)) { 2848 switch (Operator::getOpcode(V)) { 2849 default: break; 2850 case Instruction::SExt: 2851 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2852 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2853 2854 case Instruction::SDiv: { 2855 const APInt *Denominator; 2856 // sdiv X, C -> adds log(C) sign bits. 2857 if (match(U->getOperand(1), m_APInt(Denominator))) { 2858 2859 // Ignore non-positive denominator. 2860 if (!Denominator->isStrictlyPositive()) 2861 break; 2862 2863 // Calculate the incoming numerator bits. 2864 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2865 2866 // Add floor(log(C)) bits to the numerator bits. 2867 return std::min(TyBits, NumBits + Denominator->logBase2()); 2868 } 2869 break; 2870 } 2871 2872 case Instruction::SRem: { 2873 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2874 2875 const APInt *Denominator; 2876 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2877 // positive constant. This let us put a lower bound on the number of sign 2878 // bits. 2879 if (match(U->getOperand(1), m_APInt(Denominator))) { 2880 2881 // Ignore non-positive denominator. 2882 if (Denominator->isStrictlyPositive()) { 2883 // Calculate the leading sign bit constraints by examining the 2884 // denominator. Given that the denominator is positive, there are two 2885 // cases: 2886 // 2887 // 1. The numerator is positive. The result range is [0,C) and 2888 // [0,C) u< (1 << ceilLogBase2(C)). 2889 // 2890 // 2. The numerator is negative. Then the result range is (-C,0] and 2891 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2892 // 2893 // Thus a lower bound on the number of sign bits is `TyBits - 2894 // ceilLogBase2(C)`. 2895 2896 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2897 Tmp = std::max(Tmp, ResBits); 2898 } 2899 } 2900 return Tmp; 2901 } 2902 2903 case Instruction::AShr: { 2904 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2905 // ashr X, C -> adds C sign bits. Vectors too. 2906 const APInt *ShAmt; 2907 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2908 if (ShAmt->uge(TyBits)) 2909 break; // Bad shift. 2910 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2911 Tmp += ShAmtLimited; 2912 if (Tmp > TyBits) Tmp = TyBits; 2913 } 2914 return Tmp; 2915 } 2916 case Instruction::Shl: { 2917 const APInt *ShAmt; 2918 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2919 // shl destroys sign bits. 2920 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2921 if (ShAmt->uge(TyBits) || // Bad shift. 2922 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2923 Tmp2 = ShAmt->getZExtValue(); 2924 return Tmp - Tmp2; 2925 } 2926 break; 2927 } 2928 case Instruction::And: 2929 case Instruction::Or: 2930 case Instruction::Xor: // NOT is handled here. 2931 // Logical binary ops preserve the number of sign bits at the worst. 2932 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2933 if (Tmp != 1) { 2934 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2935 FirstAnswer = std::min(Tmp, Tmp2); 2936 // We computed what we know about the sign bits as our first 2937 // answer. Now proceed to the generic code that uses 2938 // computeKnownBits, and pick whichever answer is better. 2939 } 2940 break; 2941 2942 case Instruction::Select: { 2943 // If we have a clamp pattern, we know that the number of sign bits will 2944 // be the minimum of the clamp min/max range. 2945 const Value *X; 2946 const APInt *CLow, *CHigh; 2947 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2948 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2949 2950 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2951 if (Tmp == 1) break; 2952 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2953 return std::min(Tmp, Tmp2); 2954 } 2955 2956 case Instruction::Add: 2957 // Add can have at most one carry bit. Thus we know that the output 2958 // is, at worst, one more bit than the inputs. 2959 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2960 if (Tmp == 1) break; 2961 2962 // Special case decrementing a value (ADD X, -1): 2963 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2964 if (CRHS->isAllOnesValue()) { 2965 KnownBits Known(TyBits); 2966 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2967 2968 // If the input is known to be 0 or 1, the output is 0/-1, which is 2969 // all sign bits set. 2970 if ((Known.Zero | 1).isAllOnesValue()) 2971 return TyBits; 2972 2973 // If we are subtracting one from a positive number, there is no carry 2974 // out of the result. 2975 if (Known.isNonNegative()) 2976 return Tmp; 2977 } 2978 2979 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2980 if (Tmp2 == 1) break; 2981 return std::min(Tmp, Tmp2) - 1; 2982 2983 case Instruction::Sub: 2984 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2985 if (Tmp2 == 1) break; 2986 2987 // Handle NEG. 2988 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2989 if (CLHS->isNullValue()) { 2990 KnownBits Known(TyBits); 2991 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2992 // If the input is known to be 0 or 1, the output is 0/-1, which is 2993 // all sign bits set. 2994 if ((Known.Zero | 1).isAllOnesValue()) 2995 return TyBits; 2996 2997 // If the input is known to be positive (the sign bit is known clear), 2998 // the output of the NEG has the same number of sign bits as the 2999 // input. 3000 if (Known.isNonNegative()) 3001 return Tmp2; 3002 3003 // Otherwise, we treat this like a SUB. 3004 } 3005 3006 // Sub can have at most one carry bit. Thus we know that the output 3007 // is, at worst, one more bit than the inputs. 3008 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3009 if (Tmp == 1) break; 3010 return std::min(Tmp, Tmp2) - 1; 3011 3012 case Instruction::Mul: { 3013 // The output of the Mul can be at most twice the valid bits in the 3014 // inputs. 3015 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3016 if (SignBitsOp0 == 1) break; 3017 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3018 if (SignBitsOp1 == 1) break; 3019 unsigned OutValidBits = 3020 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3021 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3022 } 3023 3024 case Instruction::PHI: { 3025 const PHINode *PN = cast<PHINode>(U); 3026 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3027 // Don't analyze large in-degree PHIs. 3028 if (NumIncomingValues > 4) break; 3029 // Unreachable blocks may have zero-operand PHI nodes. 3030 if (NumIncomingValues == 0) break; 3031 3032 // Take the minimum of all incoming values. This can't infinitely loop 3033 // because of our depth threshold. 3034 Query RecQ = Q; 3035 Tmp = TyBits; 3036 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3037 if (Tmp == 1) return Tmp; 3038 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3039 Tmp = std::min( 3040 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3041 } 3042 return Tmp; 3043 } 3044 3045 case Instruction::Trunc: 3046 // FIXME: it's tricky to do anything useful for this, but it is an 3047 // important case for targets like X86. 3048 break; 3049 3050 case Instruction::ExtractElement: 3051 // Look through extract element. At the moment we keep this simple and 3052 // skip tracking the specific element. But at least we might find 3053 // information valid for all elements of the vector (for example if vector 3054 // is sign extended, shifted, etc). 3055 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3056 3057 case Instruction::ShuffleVector: { 3058 // Collect the minimum number of sign bits that are shared by every vector 3059 // element referenced by the shuffle. 3060 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3061 if (!Shuf) { 3062 // FIXME: Add support for shufflevector constant expressions. 3063 return 1; 3064 } 3065 APInt DemandedLHS, DemandedRHS; 3066 // For undef elements, we don't know anything about the common state of 3067 // the shuffle result. 3068 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3069 return 1; 3070 Tmp = std::numeric_limits<unsigned>::max(); 3071 if (!!DemandedLHS) { 3072 const Value *LHS = Shuf->getOperand(0); 3073 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3074 } 3075 // If we don't know anything, early out and try computeKnownBits 3076 // fall-back. 3077 if (Tmp == 1) 3078 break; 3079 if (!!DemandedRHS) { 3080 const Value *RHS = Shuf->getOperand(1); 3081 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3082 Tmp = std::min(Tmp, Tmp2); 3083 } 3084 // If we don't know anything, early out and try computeKnownBits 3085 // fall-back. 3086 if (Tmp == 1) 3087 break; 3088 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3089 return Tmp; 3090 } 3091 case Instruction::Call: { 3092 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3093 switch (II->getIntrinsicID()) { 3094 default: break; 3095 case Intrinsic::abs: 3096 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3097 if (Tmp == 1) break; 3098 3099 // Absolute value reduces number of sign bits by at most 1. 3100 return Tmp - 1; 3101 } 3102 } 3103 } 3104 } 3105 } 3106 3107 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3108 // use this information. 3109 3110 // If we can examine all elements of a vector constant successfully, we're 3111 // done (we can't do any better than that). If not, keep trying. 3112 if (unsigned VecSignBits = 3113 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3114 return VecSignBits; 3115 3116 KnownBits Known(TyBits); 3117 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3118 3119 // If we know that the sign bit is either zero or one, determine the number of 3120 // identical bits in the top of the input value. 3121 return std::max(FirstAnswer, Known.countMinSignBits()); 3122 } 3123 3124 /// This function computes the integer multiple of Base that equals V. 3125 /// If successful, it returns true and returns the multiple in 3126 /// Multiple. If unsuccessful, it returns false. It looks 3127 /// through SExt instructions only if LookThroughSExt is true. 3128 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3129 bool LookThroughSExt, unsigned Depth) { 3130 assert(V && "No Value?"); 3131 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3132 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3133 3134 Type *T = V->getType(); 3135 3136 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3137 3138 if (Base == 0) 3139 return false; 3140 3141 if (Base == 1) { 3142 Multiple = V; 3143 return true; 3144 } 3145 3146 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3147 Constant *BaseVal = ConstantInt::get(T, Base); 3148 if (CO && CO == BaseVal) { 3149 // Multiple is 1. 3150 Multiple = ConstantInt::get(T, 1); 3151 return true; 3152 } 3153 3154 if (CI && CI->getZExtValue() % Base == 0) { 3155 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3156 return true; 3157 } 3158 3159 if (Depth == MaxAnalysisRecursionDepth) return false; 3160 3161 Operator *I = dyn_cast<Operator>(V); 3162 if (!I) return false; 3163 3164 switch (I->getOpcode()) { 3165 default: break; 3166 case Instruction::SExt: 3167 if (!LookThroughSExt) return false; 3168 // otherwise fall through to ZExt 3169 LLVM_FALLTHROUGH; 3170 case Instruction::ZExt: 3171 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3172 LookThroughSExt, Depth+1); 3173 case Instruction::Shl: 3174 case Instruction::Mul: { 3175 Value *Op0 = I->getOperand(0); 3176 Value *Op1 = I->getOperand(1); 3177 3178 if (I->getOpcode() == Instruction::Shl) { 3179 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3180 if (!Op1CI) return false; 3181 // Turn Op0 << Op1 into Op0 * 2^Op1 3182 APInt Op1Int = Op1CI->getValue(); 3183 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3184 APInt API(Op1Int.getBitWidth(), 0); 3185 API.setBit(BitToSet); 3186 Op1 = ConstantInt::get(V->getContext(), API); 3187 } 3188 3189 Value *Mul0 = nullptr; 3190 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3191 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3192 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3193 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3194 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3195 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3196 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3197 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3198 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3199 3200 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3201 Multiple = ConstantExpr::getMul(MulC, Op1C); 3202 return true; 3203 } 3204 3205 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3206 if (Mul0CI->getValue() == 1) { 3207 // V == Base * Op1, so return Op1 3208 Multiple = Op1; 3209 return true; 3210 } 3211 } 3212 3213 Value *Mul1 = nullptr; 3214 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3215 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3216 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3217 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3218 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3219 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3220 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3221 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3222 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3223 3224 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3225 Multiple = ConstantExpr::getMul(MulC, Op0C); 3226 return true; 3227 } 3228 3229 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3230 if (Mul1CI->getValue() == 1) { 3231 // V == Base * Op0, so return Op0 3232 Multiple = Op0; 3233 return true; 3234 } 3235 } 3236 } 3237 } 3238 3239 // We could not determine if V is a multiple of Base. 3240 return false; 3241 } 3242 3243 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3244 const TargetLibraryInfo *TLI) { 3245 const Function *F = CB.getCalledFunction(); 3246 if (!F) 3247 return Intrinsic::not_intrinsic; 3248 3249 if (F->isIntrinsic()) 3250 return F->getIntrinsicID(); 3251 3252 // We are going to infer semantics of a library function based on mapping it 3253 // to an LLVM intrinsic. Check that the library function is available from 3254 // this callbase and in this environment. 3255 LibFunc Func; 3256 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3257 !CB.onlyReadsMemory()) 3258 return Intrinsic::not_intrinsic; 3259 3260 switch (Func) { 3261 default: 3262 break; 3263 case LibFunc_sin: 3264 case LibFunc_sinf: 3265 case LibFunc_sinl: 3266 return Intrinsic::sin; 3267 case LibFunc_cos: 3268 case LibFunc_cosf: 3269 case LibFunc_cosl: 3270 return Intrinsic::cos; 3271 case LibFunc_exp: 3272 case LibFunc_expf: 3273 case LibFunc_expl: 3274 return Intrinsic::exp; 3275 case LibFunc_exp2: 3276 case LibFunc_exp2f: 3277 case LibFunc_exp2l: 3278 return Intrinsic::exp2; 3279 case LibFunc_log: 3280 case LibFunc_logf: 3281 case LibFunc_logl: 3282 return Intrinsic::log; 3283 case LibFunc_log10: 3284 case LibFunc_log10f: 3285 case LibFunc_log10l: 3286 return Intrinsic::log10; 3287 case LibFunc_log2: 3288 case LibFunc_log2f: 3289 case LibFunc_log2l: 3290 return Intrinsic::log2; 3291 case LibFunc_fabs: 3292 case LibFunc_fabsf: 3293 case LibFunc_fabsl: 3294 return Intrinsic::fabs; 3295 case LibFunc_fmin: 3296 case LibFunc_fminf: 3297 case LibFunc_fminl: 3298 return Intrinsic::minnum; 3299 case LibFunc_fmax: 3300 case LibFunc_fmaxf: 3301 case LibFunc_fmaxl: 3302 return Intrinsic::maxnum; 3303 case LibFunc_copysign: 3304 case LibFunc_copysignf: 3305 case LibFunc_copysignl: 3306 return Intrinsic::copysign; 3307 case LibFunc_floor: 3308 case LibFunc_floorf: 3309 case LibFunc_floorl: 3310 return Intrinsic::floor; 3311 case LibFunc_ceil: 3312 case LibFunc_ceilf: 3313 case LibFunc_ceill: 3314 return Intrinsic::ceil; 3315 case LibFunc_trunc: 3316 case LibFunc_truncf: 3317 case LibFunc_truncl: 3318 return Intrinsic::trunc; 3319 case LibFunc_rint: 3320 case LibFunc_rintf: 3321 case LibFunc_rintl: 3322 return Intrinsic::rint; 3323 case LibFunc_nearbyint: 3324 case LibFunc_nearbyintf: 3325 case LibFunc_nearbyintl: 3326 return Intrinsic::nearbyint; 3327 case LibFunc_round: 3328 case LibFunc_roundf: 3329 case LibFunc_roundl: 3330 return Intrinsic::round; 3331 case LibFunc_roundeven: 3332 case LibFunc_roundevenf: 3333 case LibFunc_roundevenl: 3334 return Intrinsic::roundeven; 3335 case LibFunc_pow: 3336 case LibFunc_powf: 3337 case LibFunc_powl: 3338 return Intrinsic::pow; 3339 case LibFunc_sqrt: 3340 case LibFunc_sqrtf: 3341 case LibFunc_sqrtl: 3342 return Intrinsic::sqrt; 3343 } 3344 3345 return Intrinsic::not_intrinsic; 3346 } 3347 3348 /// Return true if we can prove that the specified FP value is never equal to 3349 /// -0.0. 3350 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3351 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3352 /// the same as +0.0 in floating-point ops. 3353 /// 3354 /// NOTE: this function will need to be revisited when we support non-default 3355 /// rounding modes! 3356 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3357 unsigned Depth) { 3358 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3359 return !CFP->getValueAPF().isNegZero(); 3360 3361 if (Depth == MaxAnalysisRecursionDepth) 3362 return false; 3363 3364 auto *Op = dyn_cast<Operator>(V); 3365 if (!Op) 3366 return false; 3367 3368 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3369 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3370 return true; 3371 3372 // sitofp and uitofp turn into +0.0 for zero. 3373 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3374 return true; 3375 3376 if (auto *Call = dyn_cast<CallInst>(Op)) { 3377 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3378 switch (IID) { 3379 default: 3380 break; 3381 // sqrt(-0.0) = -0.0, no other negative results are possible. 3382 case Intrinsic::sqrt: 3383 case Intrinsic::canonicalize: 3384 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3385 // fabs(x) != -0.0 3386 case Intrinsic::fabs: 3387 return true; 3388 } 3389 } 3390 3391 return false; 3392 } 3393 3394 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3395 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3396 /// bit despite comparing equal. 3397 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3398 const TargetLibraryInfo *TLI, 3399 bool SignBitOnly, 3400 unsigned Depth) { 3401 // TODO: This function does not do the right thing when SignBitOnly is true 3402 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3403 // which flips the sign bits of NaNs. See 3404 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3405 3406 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3407 return !CFP->getValueAPF().isNegative() || 3408 (!SignBitOnly && CFP->getValueAPF().isZero()); 3409 } 3410 3411 // Handle vector of constants. 3412 if (auto *CV = dyn_cast<Constant>(V)) { 3413 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3414 unsigned NumElts = CVFVTy->getNumElements(); 3415 for (unsigned i = 0; i != NumElts; ++i) { 3416 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3417 if (!CFP) 3418 return false; 3419 if (CFP->getValueAPF().isNegative() && 3420 (SignBitOnly || !CFP->getValueAPF().isZero())) 3421 return false; 3422 } 3423 3424 // All non-negative ConstantFPs. 3425 return true; 3426 } 3427 } 3428 3429 if (Depth == MaxAnalysisRecursionDepth) 3430 return false; 3431 3432 const Operator *I = dyn_cast<Operator>(V); 3433 if (!I) 3434 return false; 3435 3436 switch (I->getOpcode()) { 3437 default: 3438 break; 3439 // Unsigned integers are always nonnegative. 3440 case Instruction::UIToFP: 3441 return true; 3442 case Instruction::FMul: 3443 case Instruction::FDiv: 3444 // X * X is always non-negative or a NaN. 3445 // X / X is always exactly 1.0 or a NaN. 3446 if (I->getOperand(0) == I->getOperand(1) && 3447 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3448 return true; 3449 3450 LLVM_FALLTHROUGH; 3451 case Instruction::FAdd: 3452 case Instruction::FRem: 3453 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3454 Depth + 1) && 3455 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3456 Depth + 1); 3457 case Instruction::Select: 3458 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3459 Depth + 1) && 3460 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3461 Depth + 1); 3462 case Instruction::FPExt: 3463 case Instruction::FPTrunc: 3464 // Widening/narrowing never change sign. 3465 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3466 Depth + 1); 3467 case Instruction::ExtractElement: 3468 // Look through extract element. At the moment we keep this simple and skip 3469 // tracking the specific element. But at least we might find information 3470 // valid for all elements of the vector. 3471 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3472 Depth + 1); 3473 case Instruction::Call: 3474 const auto *CI = cast<CallInst>(I); 3475 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3476 switch (IID) { 3477 default: 3478 break; 3479 case Intrinsic::maxnum: { 3480 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3481 auto isPositiveNum = [&](Value *V) { 3482 if (SignBitOnly) { 3483 // With SignBitOnly, this is tricky because the result of 3484 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3485 // a constant strictly greater than 0.0. 3486 const APFloat *C; 3487 return match(V, m_APFloat(C)) && 3488 *C > APFloat::getZero(C->getSemantics()); 3489 } 3490 3491 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3492 // maxnum can't be ordered-less-than-zero. 3493 return isKnownNeverNaN(V, TLI) && 3494 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3495 }; 3496 3497 // TODO: This could be improved. We could also check that neither operand 3498 // has its sign bit set (and at least 1 is not-NAN?). 3499 return isPositiveNum(V0) || isPositiveNum(V1); 3500 } 3501 3502 case Intrinsic::maximum: 3503 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3504 Depth + 1) || 3505 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3506 Depth + 1); 3507 case Intrinsic::minnum: 3508 case Intrinsic::minimum: 3509 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3510 Depth + 1) && 3511 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3512 Depth + 1); 3513 case Intrinsic::exp: 3514 case Intrinsic::exp2: 3515 case Intrinsic::fabs: 3516 return true; 3517 3518 case Intrinsic::sqrt: 3519 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3520 if (!SignBitOnly) 3521 return true; 3522 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3523 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3524 3525 case Intrinsic::powi: 3526 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3527 // powi(x,n) is non-negative if n is even. 3528 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3529 return true; 3530 } 3531 // TODO: This is not correct. Given that exp is an integer, here are the 3532 // ways that pow can return a negative value: 3533 // 3534 // pow(x, exp) --> negative if exp is odd and x is negative. 3535 // pow(-0, exp) --> -inf if exp is negative odd. 3536 // pow(-0, exp) --> -0 if exp is positive odd. 3537 // pow(-inf, exp) --> -0 if exp is negative odd. 3538 // pow(-inf, exp) --> -inf if exp is positive odd. 3539 // 3540 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3541 // but we must return false if x == -0. Unfortunately we do not currently 3542 // have a way of expressing this constraint. See details in 3543 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3544 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3545 Depth + 1); 3546 3547 case Intrinsic::fma: 3548 case Intrinsic::fmuladd: 3549 // x*x+y is non-negative if y is non-negative. 3550 return I->getOperand(0) == I->getOperand(1) && 3551 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3552 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3553 Depth + 1); 3554 } 3555 break; 3556 } 3557 return false; 3558 } 3559 3560 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3561 const TargetLibraryInfo *TLI) { 3562 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3563 } 3564 3565 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3566 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3567 } 3568 3569 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3570 unsigned Depth) { 3571 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3572 3573 // If we're told that infinities won't happen, assume they won't. 3574 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3575 if (FPMathOp->hasNoInfs()) 3576 return true; 3577 3578 // Handle scalar constants. 3579 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3580 return !CFP->isInfinity(); 3581 3582 if (Depth == MaxAnalysisRecursionDepth) 3583 return false; 3584 3585 if (auto *Inst = dyn_cast<Instruction>(V)) { 3586 switch (Inst->getOpcode()) { 3587 case Instruction::Select: { 3588 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3589 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3590 } 3591 case Instruction::SIToFP: 3592 case Instruction::UIToFP: { 3593 // Get width of largest magnitude integer (remove a bit if signed). 3594 // This still works for a signed minimum value because the largest FP 3595 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3596 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3597 if (Inst->getOpcode() == Instruction::SIToFP) 3598 --IntSize; 3599 3600 // If the exponent of the largest finite FP value can hold the largest 3601 // integer, the result of the cast must be finite. 3602 Type *FPTy = Inst->getType()->getScalarType(); 3603 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3604 } 3605 default: 3606 break; 3607 } 3608 } 3609 3610 // try to handle fixed width vector constants 3611 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3612 if (VFVTy && isa<Constant>(V)) { 3613 // For vectors, verify that each element is not infinity. 3614 unsigned NumElts = VFVTy->getNumElements(); 3615 for (unsigned i = 0; i != NumElts; ++i) { 3616 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3617 if (!Elt) 3618 return false; 3619 if (isa<UndefValue>(Elt)) 3620 continue; 3621 auto *CElt = dyn_cast<ConstantFP>(Elt); 3622 if (!CElt || CElt->isInfinity()) 3623 return false; 3624 } 3625 // All elements were confirmed non-infinity or undefined. 3626 return true; 3627 } 3628 3629 // was not able to prove that V never contains infinity 3630 return false; 3631 } 3632 3633 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3634 unsigned Depth) { 3635 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3636 3637 // If we're told that NaNs won't happen, assume they won't. 3638 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3639 if (FPMathOp->hasNoNaNs()) 3640 return true; 3641 3642 // Handle scalar constants. 3643 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3644 return !CFP->isNaN(); 3645 3646 if (Depth == MaxAnalysisRecursionDepth) 3647 return false; 3648 3649 if (auto *Inst = dyn_cast<Instruction>(V)) { 3650 switch (Inst->getOpcode()) { 3651 case Instruction::FAdd: 3652 case Instruction::FSub: 3653 // Adding positive and negative infinity produces NaN. 3654 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3655 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3656 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3657 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3658 3659 case Instruction::FMul: 3660 // Zero multiplied with infinity produces NaN. 3661 // FIXME: If neither side can be zero fmul never produces NaN. 3662 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3663 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3664 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3665 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3666 3667 case Instruction::FDiv: 3668 case Instruction::FRem: 3669 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3670 return false; 3671 3672 case Instruction::Select: { 3673 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3674 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3675 } 3676 case Instruction::SIToFP: 3677 case Instruction::UIToFP: 3678 return true; 3679 case Instruction::FPTrunc: 3680 case Instruction::FPExt: 3681 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3682 default: 3683 break; 3684 } 3685 } 3686 3687 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3688 switch (II->getIntrinsicID()) { 3689 case Intrinsic::canonicalize: 3690 case Intrinsic::fabs: 3691 case Intrinsic::copysign: 3692 case Intrinsic::exp: 3693 case Intrinsic::exp2: 3694 case Intrinsic::floor: 3695 case Intrinsic::ceil: 3696 case Intrinsic::trunc: 3697 case Intrinsic::rint: 3698 case Intrinsic::nearbyint: 3699 case Intrinsic::round: 3700 case Intrinsic::roundeven: 3701 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3702 case Intrinsic::sqrt: 3703 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3704 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3705 case Intrinsic::minnum: 3706 case Intrinsic::maxnum: 3707 // If either operand is not NaN, the result is not NaN. 3708 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3709 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3710 default: 3711 return false; 3712 } 3713 } 3714 3715 // Try to handle fixed width vector constants 3716 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3717 if (VFVTy && isa<Constant>(V)) { 3718 // For vectors, verify that each element is not NaN. 3719 unsigned NumElts = VFVTy->getNumElements(); 3720 for (unsigned i = 0; i != NumElts; ++i) { 3721 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3722 if (!Elt) 3723 return false; 3724 if (isa<UndefValue>(Elt)) 3725 continue; 3726 auto *CElt = dyn_cast<ConstantFP>(Elt); 3727 if (!CElt || CElt->isNaN()) 3728 return false; 3729 } 3730 // All elements were confirmed not-NaN or undefined. 3731 return true; 3732 } 3733 3734 // Was not able to prove that V never contains NaN 3735 return false; 3736 } 3737 3738 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3739 3740 // All byte-wide stores are splatable, even of arbitrary variables. 3741 if (V->getType()->isIntegerTy(8)) 3742 return V; 3743 3744 LLVMContext &Ctx = V->getContext(); 3745 3746 // Undef don't care. 3747 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3748 if (isa<UndefValue>(V)) 3749 return UndefInt8; 3750 3751 // Return Undef for zero-sized type. 3752 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3753 return UndefInt8; 3754 3755 Constant *C = dyn_cast<Constant>(V); 3756 if (!C) { 3757 // Conceptually, we could handle things like: 3758 // %a = zext i8 %X to i16 3759 // %b = shl i16 %a, 8 3760 // %c = or i16 %a, %b 3761 // but until there is an example that actually needs this, it doesn't seem 3762 // worth worrying about. 3763 return nullptr; 3764 } 3765 3766 // Handle 'null' ConstantArrayZero etc. 3767 if (C->isNullValue()) 3768 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3769 3770 // Constant floating-point values can be handled as integer values if the 3771 // corresponding integer value is "byteable". An important case is 0.0. 3772 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3773 Type *Ty = nullptr; 3774 if (CFP->getType()->isHalfTy()) 3775 Ty = Type::getInt16Ty(Ctx); 3776 else if (CFP->getType()->isFloatTy()) 3777 Ty = Type::getInt32Ty(Ctx); 3778 else if (CFP->getType()->isDoubleTy()) 3779 Ty = Type::getInt64Ty(Ctx); 3780 // Don't handle long double formats, which have strange constraints. 3781 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3782 : nullptr; 3783 } 3784 3785 // We can handle constant integers that are multiple of 8 bits. 3786 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3787 if (CI->getBitWidth() % 8 == 0) { 3788 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3789 if (!CI->getValue().isSplat(8)) 3790 return nullptr; 3791 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3792 } 3793 } 3794 3795 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3796 if (CE->getOpcode() == Instruction::IntToPtr) { 3797 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3798 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3799 return isBytewiseValue( 3800 ConstantExpr::getIntegerCast(CE->getOperand(0), 3801 Type::getIntNTy(Ctx, BitWidth), false), 3802 DL); 3803 } 3804 } 3805 } 3806 3807 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3808 if (LHS == RHS) 3809 return LHS; 3810 if (!LHS || !RHS) 3811 return nullptr; 3812 if (LHS == UndefInt8) 3813 return RHS; 3814 if (RHS == UndefInt8) 3815 return LHS; 3816 return nullptr; 3817 }; 3818 3819 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3820 Value *Val = UndefInt8; 3821 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3822 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3823 return nullptr; 3824 return Val; 3825 } 3826 3827 if (isa<ConstantAggregate>(C)) { 3828 Value *Val = UndefInt8; 3829 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3830 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3831 return nullptr; 3832 return Val; 3833 } 3834 3835 // Don't try to handle the handful of other constants. 3836 return nullptr; 3837 } 3838 3839 // This is the recursive version of BuildSubAggregate. It takes a few different 3840 // arguments. Idxs is the index within the nested struct From that we are 3841 // looking at now (which is of type IndexedType). IdxSkip is the number of 3842 // indices from Idxs that should be left out when inserting into the resulting 3843 // struct. To is the result struct built so far, new insertvalue instructions 3844 // build on that. 3845 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3846 SmallVectorImpl<unsigned> &Idxs, 3847 unsigned IdxSkip, 3848 Instruction *InsertBefore) { 3849 StructType *STy = dyn_cast<StructType>(IndexedType); 3850 if (STy) { 3851 // Save the original To argument so we can modify it 3852 Value *OrigTo = To; 3853 // General case, the type indexed by Idxs is a struct 3854 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3855 // Process each struct element recursively 3856 Idxs.push_back(i); 3857 Value *PrevTo = To; 3858 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3859 InsertBefore); 3860 Idxs.pop_back(); 3861 if (!To) { 3862 // Couldn't find any inserted value for this index? Cleanup 3863 while (PrevTo != OrigTo) { 3864 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3865 PrevTo = Del->getAggregateOperand(); 3866 Del->eraseFromParent(); 3867 } 3868 // Stop processing elements 3869 break; 3870 } 3871 } 3872 // If we successfully found a value for each of our subaggregates 3873 if (To) 3874 return To; 3875 } 3876 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3877 // the struct's elements had a value that was inserted directly. In the latter 3878 // case, perhaps we can't determine each of the subelements individually, but 3879 // we might be able to find the complete struct somewhere. 3880 3881 // Find the value that is at that particular spot 3882 Value *V = FindInsertedValue(From, Idxs); 3883 3884 if (!V) 3885 return nullptr; 3886 3887 // Insert the value in the new (sub) aggregate 3888 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3889 "tmp", InsertBefore); 3890 } 3891 3892 // This helper takes a nested struct and extracts a part of it (which is again a 3893 // struct) into a new value. For example, given the struct: 3894 // { a, { b, { c, d }, e } } 3895 // and the indices "1, 1" this returns 3896 // { c, d }. 3897 // 3898 // It does this by inserting an insertvalue for each element in the resulting 3899 // struct, as opposed to just inserting a single struct. This will only work if 3900 // each of the elements of the substruct are known (ie, inserted into From by an 3901 // insertvalue instruction somewhere). 3902 // 3903 // All inserted insertvalue instructions are inserted before InsertBefore 3904 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3905 Instruction *InsertBefore) { 3906 assert(InsertBefore && "Must have someplace to insert!"); 3907 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3908 idx_range); 3909 Value *To = UndefValue::get(IndexedType); 3910 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3911 unsigned IdxSkip = Idxs.size(); 3912 3913 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3914 } 3915 3916 /// Given an aggregate and a sequence of indices, see if the scalar value 3917 /// indexed is already around as a register, for example if it was inserted 3918 /// directly into the aggregate. 3919 /// 3920 /// If InsertBefore is not null, this function will duplicate (modified) 3921 /// insertvalues when a part of a nested struct is extracted. 3922 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3923 Instruction *InsertBefore) { 3924 // Nothing to index? Just return V then (this is useful at the end of our 3925 // recursion). 3926 if (idx_range.empty()) 3927 return V; 3928 // We have indices, so V should have an indexable type. 3929 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3930 "Not looking at a struct or array?"); 3931 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3932 "Invalid indices for type?"); 3933 3934 if (Constant *C = dyn_cast<Constant>(V)) { 3935 C = C->getAggregateElement(idx_range[0]); 3936 if (!C) return nullptr; 3937 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3938 } 3939 3940 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3941 // Loop the indices for the insertvalue instruction in parallel with the 3942 // requested indices 3943 const unsigned *req_idx = idx_range.begin(); 3944 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3945 i != e; ++i, ++req_idx) { 3946 if (req_idx == idx_range.end()) { 3947 // We can't handle this without inserting insertvalues 3948 if (!InsertBefore) 3949 return nullptr; 3950 3951 // The requested index identifies a part of a nested aggregate. Handle 3952 // this specially. For example, 3953 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3954 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3955 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3956 // This can be changed into 3957 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3958 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3959 // which allows the unused 0,0 element from the nested struct to be 3960 // removed. 3961 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3962 InsertBefore); 3963 } 3964 3965 // This insert value inserts something else than what we are looking for. 3966 // See if the (aggregate) value inserted into has the value we are 3967 // looking for, then. 3968 if (*req_idx != *i) 3969 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3970 InsertBefore); 3971 } 3972 // If we end up here, the indices of the insertvalue match with those 3973 // requested (though possibly only partially). Now we recursively look at 3974 // the inserted value, passing any remaining indices. 3975 return FindInsertedValue(I->getInsertedValueOperand(), 3976 makeArrayRef(req_idx, idx_range.end()), 3977 InsertBefore); 3978 } 3979 3980 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3981 // If we're extracting a value from an aggregate that was extracted from 3982 // something else, we can extract from that something else directly instead. 3983 // However, we will need to chain I's indices with the requested indices. 3984 3985 // Calculate the number of indices required 3986 unsigned size = I->getNumIndices() + idx_range.size(); 3987 // Allocate some space to put the new indices in 3988 SmallVector<unsigned, 5> Idxs; 3989 Idxs.reserve(size); 3990 // Add indices from the extract value instruction 3991 Idxs.append(I->idx_begin(), I->idx_end()); 3992 3993 // Add requested indices 3994 Idxs.append(idx_range.begin(), idx_range.end()); 3995 3996 assert(Idxs.size() == size 3997 && "Number of indices added not correct?"); 3998 3999 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4000 } 4001 // Otherwise, we don't know (such as, extracting from a function return value 4002 // or load instruction) 4003 return nullptr; 4004 } 4005 4006 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4007 unsigned CharSize) { 4008 // Make sure the GEP has exactly three arguments. 4009 if (GEP->getNumOperands() != 3) 4010 return false; 4011 4012 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4013 // CharSize. 4014 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4015 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4016 return false; 4017 4018 // Check to make sure that the first operand of the GEP is an integer and 4019 // has value 0 so that we are sure we're indexing into the initializer. 4020 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4021 if (!FirstIdx || !FirstIdx->isZero()) 4022 return false; 4023 4024 return true; 4025 } 4026 4027 bool llvm::getConstantDataArrayInfo(const Value *V, 4028 ConstantDataArraySlice &Slice, 4029 unsigned ElementSize, uint64_t Offset) { 4030 assert(V); 4031 4032 // Look through bitcast instructions and geps. 4033 V = V->stripPointerCasts(); 4034 4035 // If the value is a GEP instruction or constant expression, treat it as an 4036 // offset. 4037 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4038 // The GEP operator should be based on a pointer to string constant, and is 4039 // indexing into the string constant. 4040 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4041 return false; 4042 4043 // If the second index isn't a ConstantInt, then this is a variable index 4044 // into the array. If this occurs, we can't say anything meaningful about 4045 // the string. 4046 uint64_t StartIdx = 0; 4047 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4048 StartIdx = CI->getZExtValue(); 4049 else 4050 return false; 4051 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4052 StartIdx + Offset); 4053 } 4054 4055 // The GEP instruction, constant or instruction, must reference a global 4056 // variable that is a constant and is initialized. The referenced constant 4057 // initializer is the array that we'll use for optimization. 4058 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4059 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4060 return false; 4061 4062 const ConstantDataArray *Array; 4063 ArrayType *ArrayTy; 4064 if (GV->getInitializer()->isNullValue()) { 4065 Type *GVTy = GV->getValueType(); 4066 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4067 // A zeroinitializer for the array; there is no ConstantDataArray. 4068 Array = nullptr; 4069 } else { 4070 const DataLayout &DL = GV->getParent()->getDataLayout(); 4071 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4072 uint64_t Length = SizeInBytes / (ElementSize / 8); 4073 if (Length <= Offset) 4074 return false; 4075 4076 Slice.Array = nullptr; 4077 Slice.Offset = 0; 4078 Slice.Length = Length - Offset; 4079 return true; 4080 } 4081 } else { 4082 // This must be a ConstantDataArray. 4083 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4084 if (!Array) 4085 return false; 4086 ArrayTy = Array->getType(); 4087 } 4088 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4089 return false; 4090 4091 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4092 if (Offset > NumElts) 4093 return false; 4094 4095 Slice.Array = Array; 4096 Slice.Offset = Offset; 4097 Slice.Length = NumElts - Offset; 4098 return true; 4099 } 4100 4101 /// This function computes the length of a null-terminated C string pointed to 4102 /// by V. If successful, it returns true and returns the string in Str. 4103 /// If unsuccessful, it returns false. 4104 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4105 uint64_t Offset, bool TrimAtNul) { 4106 ConstantDataArraySlice Slice; 4107 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4108 return false; 4109 4110 if (Slice.Array == nullptr) { 4111 if (TrimAtNul) { 4112 Str = StringRef(); 4113 return true; 4114 } 4115 if (Slice.Length == 1) { 4116 Str = StringRef("", 1); 4117 return true; 4118 } 4119 // We cannot instantiate a StringRef as we do not have an appropriate string 4120 // of 0s at hand. 4121 return false; 4122 } 4123 4124 // Start out with the entire array in the StringRef. 4125 Str = Slice.Array->getAsString(); 4126 // Skip over 'offset' bytes. 4127 Str = Str.substr(Slice.Offset); 4128 4129 if (TrimAtNul) { 4130 // Trim off the \0 and anything after it. If the array is not nul 4131 // terminated, we just return the whole end of string. The client may know 4132 // some other way that the string is length-bound. 4133 Str = Str.substr(0, Str.find('\0')); 4134 } 4135 return true; 4136 } 4137 4138 // These next two are very similar to the above, but also look through PHI 4139 // nodes. 4140 // TODO: See if we can integrate these two together. 4141 4142 /// If we can compute the length of the string pointed to by 4143 /// the specified pointer, return 'len+1'. If we can't, return 0. 4144 static uint64_t GetStringLengthH(const Value *V, 4145 SmallPtrSetImpl<const PHINode*> &PHIs, 4146 unsigned CharSize) { 4147 // Look through noop bitcast instructions. 4148 V = V->stripPointerCasts(); 4149 4150 // If this is a PHI node, there are two cases: either we have already seen it 4151 // or we haven't. 4152 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4153 if (!PHIs.insert(PN).second) 4154 return ~0ULL; // already in the set. 4155 4156 // If it was new, see if all the input strings are the same length. 4157 uint64_t LenSoFar = ~0ULL; 4158 for (Value *IncValue : PN->incoming_values()) { 4159 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4160 if (Len == 0) return 0; // Unknown length -> unknown. 4161 4162 if (Len == ~0ULL) continue; 4163 4164 if (Len != LenSoFar && LenSoFar != ~0ULL) 4165 return 0; // Disagree -> unknown. 4166 LenSoFar = Len; 4167 } 4168 4169 // Success, all agree. 4170 return LenSoFar; 4171 } 4172 4173 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4174 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4175 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4176 if (Len1 == 0) return 0; 4177 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4178 if (Len2 == 0) return 0; 4179 if (Len1 == ~0ULL) return Len2; 4180 if (Len2 == ~0ULL) return Len1; 4181 if (Len1 != Len2) return 0; 4182 return Len1; 4183 } 4184 4185 // Otherwise, see if we can read the string. 4186 ConstantDataArraySlice Slice; 4187 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4188 return 0; 4189 4190 if (Slice.Array == nullptr) 4191 return 1; 4192 4193 // Search for nul characters 4194 unsigned NullIndex = 0; 4195 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4196 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4197 break; 4198 } 4199 4200 return NullIndex + 1; 4201 } 4202 4203 /// If we can compute the length of the string pointed to by 4204 /// the specified pointer, return 'len+1'. If we can't, return 0. 4205 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4206 if (!V->getType()->isPointerTy()) 4207 return 0; 4208 4209 SmallPtrSet<const PHINode*, 32> PHIs; 4210 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4211 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4212 // an empty string as a length. 4213 return Len == ~0ULL ? 1 : Len; 4214 } 4215 4216 const Value * 4217 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4218 bool MustPreserveNullness) { 4219 assert(Call && 4220 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4221 if (const Value *RV = Call->getReturnedArgOperand()) 4222 return RV; 4223 // This can be used only as a aliasing property. 4224 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4225 Call, MustPreserveNullness)) 4226 return Call->getArgOperand(0); 4227 return nullptr; 4228 } 4229 4230 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4231 const CallBase *Call, bool MustPreserveNullness) { 4232 switch (Call->getIntrinsicID()) { 4233 case Intrinsic::launder_invariant_group: 4234 case Intrinsic::strip_invariant_group: 4235 case Intrinsic::aarch64_irg: 4236 case Intrinsic::aarch64_tagp: 4237 return true; 4238 case Intrinsic::ptrmask: 4239 return !MustPreserveNullness; 4240 default: 4241 return false; 4242 } 4243 } 4244 4245 /// \p PN defines a loop-variant pointer to an object. Check if the 4246 /// previous iteration of the loop was referring to the same object as \p PN. 4247 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4248 const LoopInfo *LI) { 4249 // Find the loop-defined value. 4250 Loop *L = LI->getLoopFor(PN->getParent()); 4251 if (PN->getNumIncomingValues() != 2) 4252 return true; 4253 4254 // Find the value from previous iteration. 4255 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4256 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4257 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4258 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4259 return true; 4260 4261 // If a new pointer is loaded in the loop, the pointer references a different 4262 // object in every iteration. E.g.: 4263 // for (i) 4264 // int *p = a[i]; 4265 // ... 4266 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4267 if (!L->isLoopInvariant(Load->getPointerOperand())) 4268 return false; 4269 return true; 4270 } 4271 4272 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4273 if (!V->getType()->isPointerTy()) 4274 return V; 4275 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4276 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4277 V = GEP->getPointerOperand(); 4278 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4279 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4280 V = cast<Operator>(V)->getOperand(0); 4281 if (!V->getType()->isPointerTy()) 4282 return V; 4283 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4284 if (GA->isInterposable()) 4285 return V; 4286 V = GA->getAliasee(); 4287 } else { 4288 if (auto *PHI = dyn_cast<PHINode>(V)) { 4289 // Look through single-arg phi nodes created by LCSSA. 4290 if (PHI->getNumIncomingValues() == 1) { 4291 V = PHI->getIncomingValue(0); 4292 continue; 4293 } 4294 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4295 // CaptureTracking can know about special capturing properties of some 4296 // intrinsics like launder.invariant.group, that can't be expressed with 4297 // the attributes, but have properties like returning aliasing pointer. 4298 // Because some analysis may assume that nocaptured pointer is not 4299 // returned from some special intrinsic (because function would have to 4300 // be marked with returns attribute), it is crucial to use this function 4301 // because it should be in sync with CaptureTracking. Not using it may 4302 // cause weird miscompilations where 2 aliasing pointers are assumed to 4303 // noalias. 4304 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4305 V = RP; 4306 continue; 4307 } 4308 } 4309 4310 return V; 4311 } 4312 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4313 } 4314 return V; 4315 } 4316 4317 void llvm::getUnderlyingObjects(const Value *V, 4318 SmallVectorImpl<const Value *> &Objects, 4319 LoopInfo *LI, unsigned MaxLookup) { 4320 SmallPtrSet<const Value *, 4> Visited; 4321 SmallVector<const Value *, 4> Worklist; 4322 Worklist.push_back(V); 4323 do { 4324 const Value *P = Worklist.pop_back_val(); 4325 P = getUnderlyingObject(P, MaxLookup); 4326 4327 if (!Visited.insert(P).second) 4328 continue; 4329 4330 if (auto *SI = dyn_cast<SelectInst>(P)) { 4331 Worklist.push_back(SI->getTrueValue()); 4332 Worklist.push_back(SI->getFalseValue()); 4333 continue; 4334 } 4335 4336 if (auto *PN = dyn_cast<PHINode>(P)) { 4337 // If this PHI changes the underlying object in every iteration of the 4338 // loop, don't look through it. Consider: 4339 // int **A; 4340 // for (i) { 4341 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4342 // Curr = A[i]; 4343 // *Prev, *Curr; 4344 // 4345 // Prev is tracking Curr one iteration behind so they refer to different 4346 // underlying objects. 4347 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4348 isSameUnderlyingObjectInLoop(PN, LI)) 4349 append_range(Worklist, PN->incoming_values()); 4350 continue; 4351 } 4352 4353 Objects.push_back(P); 4354 } while (!Worklist.empty()); 4355 } 4356 4357 /// This is the function that does the work of looking through basic 4358 /// ptrtoint+arithmetic+inttoptr sequences. 4359 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4360 do { 4361 if (const Operator *U = dyn_cast<Operator>(V)) { 4362 // If we find a ptrtoint, we can transfer control back to the 4363 // regular getUnderlyingObjectFromInt. 4364 if (U->getOpcode() == Instruction::PtrToInt) 4365 return U->getOperand(0); 4366 // If we find an add of a constant, a multiplied value, or a phi, it's 4367 // likely that the other operand will lead us to the base 4368 // object. We don't have to worry about the case where the 4369 // object address is somehow being computed by the multiply, 4370 // because our callers only care when the result is an 4371 // identifiable object. 4372 if (U->getOpcode() != Instruction::Add || 4373 (!isa<ConstantInt>(U->getOperand(1)) && 4374 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4375 !isa<PHINode>(U->getOperand(1)))) 4376 return V; 4377 V = U->getOperand(0); 4378 } else { 4379 return V; 4380 } 4381 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4382 } while (true); 4383 } 4384 4385 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4386 /// ptrtoint+arithmetic+inttoptr sequences. 4387 /// It returns false if unidentified object is found in getUnderlyingObjects. 4388 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4389 SmallVectorImpl<Value *> &Objects) { 4390 SmallPtrSet<const Value *, 16> Visited; 4391 SmallVector<const Value *, 4> Working(1, V); 4392 do { 4393 V = Working.pop_back_val(); 4394 4395 SmallVector<const Value *, 4> Objs; 4396 getUnderlyingObjects(V, Objs); 4397 4398 for (const Value *V : Objs) { 4399 if (!Visited.insert(V).second) 4400 continue; 4401 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4402 const Value *O = 4403 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4404 if (O->getType()->isPointerTy()) { 4405 Working.push_back(O); 4406 continue; 4407 } 4408 } 4409 // If getUnderlyingObjects fails to find an identifiable object, 4410 // getUnderlyingObjectsForCodeGen also fails for safety. 4411 if (!isIdentifiedObject(V)) { 4412 Objects.clear(); 4413 return false; 4414 } 4415 Objects.push_back(const_cast<Value *>(V)); 4416 } 4417 } while (!Working.empty()); 4418 return true; 4419 } 4420 4421 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4422 AllocaInst *Result = nullptr; 4423 SmallPtrSet<Value *, 4> Visited; 4424 SmallVector<Value *, 4> Worklist; 4425 4426 auto AddWork = [&](Value *V) { 4427 if (Visited.insert(V).second) 4428 Worklist.push_back(V); 4429 }; 4430 4431 AddWork(V); 4432 do { 4433 V = Worklist.pop_back_val(); 4434 assert(Visited.count(V)); 4435 4436 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4437 if (Result && Result != AI) 4438 return nullptr; 4439 Result = AI; 4440 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4441 AddWork(CI->getOperand(0)); 4442 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4443 for (Value *IncValue : PN->incoming_values()) 4444 AddWork(IncValue); 4445 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4446 AddWork(SI->getTrueValue()); 4447 AddWork(SI->getFalseValue()); 4448 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4449 if (OffsetZero && !GEP->hasAllZeroIndices()) 4450 return nullptr; 4451 AddWork(GEP->getPointerOperand()); 4452 } else { 4453 return nullptr; 4454 } 4455 } while (!Worklist.empty()); 4456 4457 return Result; 4458 } 4459 4460 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4461 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4462 for (const User *U : V->users()) { 4463 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4464 if (!II) 4465 return false; 4466 4467 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4468 continue; 4469 4470 if (AllowDroppable && II->isDroppable()) 4471 continue; 4472 4473 return false; 4474 } 4475 return true; 4476 } 4477 4478 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4479 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4480 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4481 } 4482 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4483 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4484 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4485 } 4486 4487 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4488 if (!LI.isUnordered()) 4489 return true; 4490 const Function &F = *LI.getFunction(); 4491 // Speculative load may create a race that did not exist in the source. 4492 return F.hasFnAttribute(Attribute::SanitizeThread) || 4493 // Speculative load may load data from dirty regions. 4494 F.hasFnAttribute(Attribute::SanitizeAddress) || 4495 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4496 } 4497 4498 4499 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4500 const Instruction *CtxI, 4501 const DominatorTree *DT, 4502 const TargetLibraryInfo *TLI) { 4503 const Operator *Inst = dyn_cast<Operator>(V); 4504 if (!Inst) 4505 return false; 4506 4507 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4508 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4509 if (C->canTrap()) 4510 return false; 4511 4512 switch (Inst->getOpcode()) { 4513 default: 4514 return true; 4515 case Instruction::UDiv: 4516 case Instruction::URem: { 4517 // x / y is undefined if y == 0. 4518 const APInt *V; 4519 if (match(Inst->getOperand(1), m_APInt(V))) 4520 return *V != 0; 4521 return false; 4522 } 4523 case Instruction::SDiv: 4524 case Instruction::SRem: { 4525 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4526 const APInt *Numerator, *Denominator; 4527 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4528 return false; 4529 // We cannot hoist this division if the denominator is 0. 4530 if (*Denominator == 0) 4531 return false; 4532 // It's safe to hoist if the denominator is not 0 or -1. 4533 if (!Denominator->isAllOnesValue()) 4534 return true; 4535 // At this point we know that the denominator is -1. It is safe to hoist as 4536 // long we know that the numerator is not INT_MIN. 4537 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4538 return !Numerator->isMinSignedValue(); 4539 // The numerator *might* be MinSignedValue. 4540 return false; 4541 } 4542 case Instruction::Load: { 4543 const LoadInst *LI = cast<LoadInst>(Inst); 4544 if (mustSuppressSpeculation(*LI)) 4545 return false; 4546 const DataLayout &DL = LI->getModule()->getDataLayout(); 4547 return isDereferenceableAndAlignedPointer( 4548 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4549 DL, CtxI, DT, TLI); 4550 } 4551 case Instruction::Call: { 4552 auto *CI = cast<const CallInst>(Inst); 4553 const Function *Callee = CI->getCalledFunction(); 4554 4555 // The called function could have undefined behavior or side-effects, even 4556 // if marked readnone nounwind. 4557 return Callee && Callee->isSpeculatable(); 4558 } 4559 case Instruction::VAArg: 4560 case Instruction::Alloca: 4561 case Instruction::Invoke: 4562 case Instruction::CallBr: 4563 case Instruction::PHI: 4564 case Instruction::Store: 4565 case Instruction::Ret: 4566 case Instruction::Br: 4567 case Instruction::IndirectBr: 4568 case Instruction::Switch: 4569 case Instruction::Unreachable: 4570 case Instruction::Fence: 4571 case Instruction::AtomicRMW: 4572 case Instruction::AtomicCmpXchg: 4573 case Instruction::LandingPad: 4574 case Instruction::Resume: 4575 case Instruction::CatchSwitch: 4576 case Instruction::CatchPad: 4577 case Instruction::CatchRet: 4578 case Instruction::CleanupPad: 4579 case Instruction::CleanupRet: 4580 return false; // Misc instructions which have effects 4581 } 4582 } 4583 4584 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4585 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4586 } 4587 4588 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4589 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4590 switch (OR) { 4591 case ConstantRange::OverflowResult::MayOverflow: 4592 return OverflowResult::MayOverflow; 4593 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4594 return OverflowResult::AlwaysOverflowsLow; 4595 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4596 return OverflowResult::AlwaysOverflowsHigh; 4597 case ConstantRange::OverflowResult::NeverOverflows: 4598 return OverflowResult::NeverOverflows; 4599 } 4600 llvm_unreachable("Unknown OverflowResult"); 4601 } 4602 4603 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4604 static ConstantRange computeConstantRangeIncludingKnownBits( 4605 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4606 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4607 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4608 KnownBits Known = computeKnownBits( 4609 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4610 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4611 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4612 ConstantRange::PreferredRangeType RangeType = 4613 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4614 return CR1.intersectWith(CR2, RangeType); 4615 } 4616 4617 OverflowResult llvm::computeOverflowForUnsignedMul( 4618 const Value *LHS, const Value *RHS, const DataLayout &DL, 4619 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4620 bool UseInstrInfo) { 4621 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4622 nullptr, UseInstrInfo); 4623 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4624 nullptr, UseInstrInfo); 4625 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4626 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4627 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4628 } 4629 4630 OverflowResult 4631 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4632 const DataLayout &DL, AssumptionCache *AC, 4633 const Instruction *CxtI, 4634 const DominatorTree *DT, bool UseInstrInfo) { 4635 // Multiplying n * m significant bits yields a result of n + m significant 4636 // bits. If the total number of significant bits does not exceed the 4637 // result bit width (minus 1), there is no overflow. 4638 // This means if we have enough leading sign bits in the operands 4639 // we can guarantee that the result does not overflow. 4640 // Ref: "Hacker's Delight" by Henry Warren 4641 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4642 4643 // Note that underestimating the number of sign bits gives a more 4644 // conservative answer. 4645 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4646 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4647 4648 // First handle the easy case: if we have enough sign bits there's 4649 // definitely no overflow. 4650 if (SignBits > BitWidth + 1) 4651 return OverflowResult::NeverOverflows; 4652 4653 // There are two ambiguous cases where there can be no overflow: 4654 // SignBits == BitWidth + 1 and 4655 // SignBits == BitWidth 4656 // The second case is difficult to check, therefore we only handle the 4657 // first case. 4658 if (SignBits == BitWidth + 1) { 4659 // It overflows only when both arguments are negative and the true 4660 // product is exactly the minimum negative number. 4661 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4662 // For simplicity we just check if at least one side is not negative. 4663 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4664 nullptr, UseInstrInfo); 4665 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4666 nullptr, UseInstrInfo); 4667 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4668 return OverflowResult::NeverOverflows; 4669 } 4670 return OverflowResult::MayOverflow; 4671 } 4672 4673 OverflowResult llvm::computeOverflowForUnsignedAdd( 4674 const Value *LHS, const Value *RHS, const DataLayout &DL, 4675 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4676 bool UseInstrInfo) { 4677 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4678 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4679 nullptr, UseInstrInfo); 4680 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4681 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4682 nullptr, UseInstrInfo); 4683 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4684 } 4685 4686 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4687 const Value *RHS, 4688 const AddOperator *Add, 4689 const DataLayout &DL, 4690 AssumptionCache *AC, 4691 const Instruction *CxtI, 4692 const DominatorTree *DT) { 4693 if (Add && Add->hasNoSignedWrap()) { 4694 return OverflowResult::NeverOverflows; 4695 } 4696 4697 // If LHS and RHS each have at least two sign bits, the addition will look 4698 // like 4699 // 4700 // XX..... + 4701 // YY..... 4702 // 4703 // If the carry into the most significant position is 0, X and Y can't both 4704 // be 1 and therefore the carry out of the addition is also 0. 4705 // 4706 // If the carry into the most significant position is 1, X and Y can't both 4707 // be 0 and therefore the carry out of the addition is also 1. 4708 // 4709 // Since the carry into the most significant position is always equal to 4710 // the carry out of the addition, there is no signed overflow. 4711 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4712 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4713 return OverflowResult::NeverOverflows; 4714 4715 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4716 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4717 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4718 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4719 OverflowResult OR = 4720 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4721 if (OR != OverflowResult::MayOverflow) 4722 return OR; 4723 4724 // The remaining code needs Add to be available. Early returns if not so. 4725 if (!Add) 4726 return OverflowResult::MayOverflow; 4727 4728 // If the sign of Add is the same as at least one of the operands, this add 4729 // CANNOT overflow. If this can be determined from the known bits of the 4730 // operands the above signedAddMayOverflow() check will have already done so. 4731 // The only other way to improve on the known bits is from an assumption, so 4732 // call computeKnownBitsFromAssume() directly. 4733 bool LHSOrRHSKnownNonNegative = 4734 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4735 bool LHSOrRHSKnownNegative = 4736 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4737 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4738 KnownBits AddKnown(LHSRange.getBitWidth()); 4739 computeKnownBitsFromAssume( 4740 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4741 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4742 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4743 return OverflowResult::NeverOverflows; 4744 } 4745 4746 return OverflowResult::MayOverflow; 4747 } 4748 4749 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4750 const Value *RHS, 4751 const DataLayout &DL, 4752 AssumptionCache *AC, 4753 const Instruction *CxtI, 4754 const DominatorTree *DT) { 4755 // Checking for conditions implied by dominating conditions may be expensive. 4756 // Limit it to usub_with_overflow calls for now. 4757 if (match(CxtI, 4758 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4759 if (auto C = 4760 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4761 if (*C) 4762 return OverflowResult::NeverOverflows; 4763 return OverflowResult::AlwaysOverflowsLow; 4764 } 4765 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4766 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4767 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4768 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4769 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4770 } 4771 4772 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4773 const Value *RHS, 4774 const DataLayout &DL, 4775 AssumptionCache *AC, 4776 const Instruction *CxtI, 4777 const DominatorTree *DT) { 4778 // If LHS and RHS each have at least two sign bits, the subtraction 4779 // cannot overflow. 4780 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4781 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4782 return OverflowResult::NeverOverflows; 4783 4784 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4785 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4786 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4787 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4788 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4789 } 4790 4791 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4792 const DominatorTree &DT) { 4793 SmallVector<const BranchInst *, 2> GuardingBranches; 4794 SmallVector<const ExtractValueInst *, 2> Results; 4795 4796 for (const User *U : WO->users()) { 4797 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4798 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4799 4800 if (EVI->getIndices()[0] == 0) 4801 Results.push_back(EVI); 4802 else { 4803 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4804 4805 for (const auto *U : EVI->users()) 4806 if (const auto *B = dyn_cast<BranchInst>(U)) { 4807 assert(B->isConditional() && "How else is it using an i1?"); 4808 GuardingBranches.push_back(B); 4809 } 4810 } 4811 } else { 4812 // We are using the aggregate directly in a way we don't want to analyze 4813 // here (storing it to a global, say). 4814 return false; 4815 } 4816 } 4817 4818 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4819 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4820 if (!NoWrapEdge.isSingleEdge()) 4821 return false; 4822 4823 // Check if all users of the add are provably no-wrap. 4824 for (const auto *Result : Results) { 4825 // If the extractvalue itself is not executed on overflow, the we don't 4826 // need to check each use separately, since domination is transitive. 4827 if (DT.dominates(NoWrapEdge, Result->getParent())) 4828 continue; 4829 4830 for (auto &RU : Result->uses()) 4831 if (!DT.dominates(NoWrapEdge, RU)) 4832 return false; 4833 } 4834 4835 return true; 4836 }; 4837 4838 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4839 } 4840 4841 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4842 // See whether I has flags that may create poison 4843 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4844 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4845 return true; 4846 } 4847 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4848 if (ExactOp->isExact()) 4849 return true; 4850 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4851 auto FMF = FP->getFastMathFlags(); 4852 if (FMF.noNaNs() || FMF.noInfs()) 4853 return true; 4854 } 4855 4856 unsigned Opcode = Op->getOpcode(); 4857 4858 // Check whether opcode is a poison/undef-generating operation 4859 switch (Opcode) { 4860 case Instruction::Shl: 4861 case Instruction::AShr: 4862 case Instruction::LShr: { 4863 // Shifts return poison if shiftwidth is larger than the bitwidth. 4864 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4865 SmallVector<Constant *, 4> ShiftAmounts; 4866 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4867 unsigned NumElts = FVTy->getNumElements(); 4868 for (unsigned i = 0; i < NumElts; ++i) 4869 ShiftAmounts.push_back(C->getAggregateElement(i)); 4870 } else if (isa<ScalableVectorType>(C->getType())) 4871 return true; // Can't tell, just return true to be safe 4872 else 4873 ShiftAmounts.push_back(C); 4874 4875 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4876 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4877 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4878 }); 4879 return !Safe; 4880 } 4881 return true; 4882 } 4883 case Instruction::FPToSI: 4884 case Instruction::FPToUI: 4885 // fptosi/ui yields poison if the resulting value does not fit in the 4886 // destination type. 4887 return true; 4888 case Instruction::Call: 4889 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4890 switch (II->getIntrinsicID()) { 4891 // TODO: Add more intrinsics. 4892 case Intrinsic::ctpop: 4893 case Intrinsic::sadd_with_overflow: 4894 case Intrinsic::ssub_with_overflow: 4895 case Intrinsic::smul_with_overflow: 4896 case Intrinsic::uadd_with_overflow: 4897 case Intrinsic::usub_with_overflow: 4898 case Intrinsic::umul_with_overflow: 4899 return false; 4900 } 4901 } 4902 LLVM_FALLTHROUGH; 4903 case Instruction::CallBr: 4904 case Instruction::Invoke: { 4905 const auto *CB = cast<CallBase>(Op); 4906 return !CB->hasRetAttr(Attribute::NoUndef); 4907 } 4908 case Instruction::InsertElement: 4909 case Instruction::ExtractElement: { 4910 // If index exceeds the length of the vector, it returns poison 4911 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4912 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4913 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4914 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4915 return true; 4916 return false; 4917 } 4918 case Instruction::ShuffleVector: { 4919 // shufflevector may return undef. 4920 if (PoisonOnly) 4921 return false; 4922 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4923 ? cast<ConstantExpr>(Op)->getShuffleMask() 4924 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4925 return is_contained(Mask, UndefMaskElem); 4926 } 4927 case Instruction::FNeg: 4928 case Instruction::PHI: 4929 case Instruction::Select: 4930 case Instruction::URem: 4931 case Instruction::SRem: 4932 case Instruction::ExtractValue: 4933 case Instruction::InsertValue: 4934 case Instruction::Freeze: 4935 case Instruction::ICmp: 4936 case Instruction::FCmp: 4937 return false; 4938 case Instruction::GetElementPtr: { 4939 const auto *GEP = cast<GEPOperator>(Op); 4940 return GEP->isInBounds(); 4941 } 4942 default: { 4943 const auto *CE = dyn_cast<ConstantExpr>(Op); 4944 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4945 return false; 4946 else if (Instruction::isBinaryOp(Opcode)) 4947 return false; 4948 // Be conservative and return true. 4949 return true; 4950 } 4951 } 4952 } 4953 4954 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4955 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4956 } 4957 4958 bool llvm::canCreatePoison(const Operator *Op) { 4959 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4960 } 4961 4962 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4963 const Value *V, unsigned Depth) { 4964 if (ValAssumedPoison == V) 4965 return true; 4966 4967 const unsigned MaxDepth = 2; 4968 if (Depth >= MaxDepth) 4969 return false; 4970 4971 if (const auto *I = dyn_cast<Instruction>(V)) { 4972 if (propagatesPoison(cast<Operator>(I))) 4973 return any_of(I->operands(), [=](const Value *Op) { 4974 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4975 }); 4976 4977 // 'select ValAssumedPoison, _, _' is poison. 4978 if (const auto *SI = dyn_cast<SelectInst>(I)) 4979 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 4980 Depth + 1); 4981 // V = extractvalue V0, idx 4982 // V2 = extractvalue V0, idx2 4983 // V0's elements are all poison or not. (e.g., add_with_overflow) 4984 const WithOverflowInst *II; 4985 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 4986 match(ValAssumedPoison, m_ExtractValue(m_Specific(II)))) 4987 return true; 4988 } 4989 return false; 4990 } 4991 4992 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4993 unsigned Depth) { 4994 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4995 return true; 4996 4997 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4998 return true; 4999 5000 const unsigned MaxDepth = 2; 5001 if (Depth >= MaxDepth) 5002 return false; 5003 5004 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5005 if (I && !canCreatePoison(cast<Operator>(I))) { 5006 return all_of(I->operands(), [=](const Value *Op) { 5007 return impliesPoison(Op, V, Depth + 1); 5008 }); 5009 } 5010 return false; 5011 } 5012 5013 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5014 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5015 } 5016 5017 static bool programUndefinedIfUndefOrPoison(const Value *V, 5018 bool PoisonOnly); 5019 5020 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5021 AssumptionCache *AC, 5022 const Instruction *CtxI, 5023 const DominatorTree *DT, 5024 unsigned Depth, bool PoisonOnly) { 5025 if (Depth >= MaxAnalysisRecursionDepth) 5026 return false; 5027 5028 if (isa<MetadataAsValue>(V)) 5029 return false; 5030 5031 if (const auto *A = dyn_cast<Argument>(V)) { 5032 if (A->hasAttribute(Attribute::NoUndef)) 5033 return true; 5034 } 5035 5036 if (auto *C = dyn_cast<Constant>(V)) { 5037 if (isa<UndefValue>(C)) 5038 return PoisonOnly && !isa<PoisonValue>(C); 5039 5040 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5041 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5042 return true; 5043 5044 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5045 return (PoisonOnly ? !C->containsPoisonElement() 5046 : !C->containsUndefOrPoisonElement()) && 5047 !C->containsConstantExpression(); 5048 } 5049 5050 // Strip cast operations from a pointer value. 5051 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5052 // inbounds with zero offset. To guarantee that the result isn't poison, the 5053 // stripped pointer is checked as it has to be pointing into an allocated 5054 // object or be null `null` to ensure `inbounds` getelement pointers with a 5055 // zero offset could not produce poison. 5056 // It can strip off addrspacecast that do not change bit representation as 5057 // well. We believe that such addrspacecast is equivalent to no-op. 5058 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5059 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5060 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5061 return true; 5062 5063 auto OpCheck = [&](const Value *V) { 5064 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5065 PoisonOnly); 5066 }; 5067 5068 if (auto *Opr = dyn_cast<Operator>(V)) { 5069 // If the value is a freeze instruction, then it can never 5070 // be undef or poison. 5071 if (isa<FreezeInst>(V)) 5072 return true; 5073 5074 if (const auto *CB = dyn_cast<CallBase>(V)) { 5075 if (CB->hasRetAttr(Attribute::NoUndef)) 5076 return true; 5077 } 5078 5079 if (const auto *PN = dyn_cast<PHINode>(V)) { 5080 unsigned Num = PN->getNumIncomingValues(); 5081 bool IsWellDefined = true; 5082 for (unsigned i = 0; i < Num; ++i) { 5083 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5084 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5085 DT, Depth + 1, PoisonOnly)) { 5086 IsWellDefined = false; 5087 break; 5088 } 5089 } 5090 if (IsWellDefined) 5091 return true; 5092 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5093 return true; 5094 } 5095 5096 if (auto *I = dyn_cast<LoadInst>(V)) 5097 if (I->getMetadata(LLVMContext::MD_noundef)) 5098 return true; 5099 5100 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5101 return true; 5102 5103 // CxtI may be null or a cloned instruction. 5104 if (!CtxI || !CtxI->getParent() || !DT) 5105 return false; 5106 5107 auto *DNode = DT->getNode(CtxI->getParent()); 5108 if (!DNode) 5109 // Unreachable block 5110 return false; 5111 5112 // If V is used as a branch condition before reaching CtxI, V cannot be 5113 // undef or poison. 5114 // br V, BB1, BB2 5115 // BB1: 5116 // CtxI ; V cannot be undef or poison here 5117 auto *Dominator = DNode->getIDom(); 5118 while (Dominator) { 5119 auto *TI = Dominator->getBlock()->getTerminator(); 5120 5121 Value *Cond = nullptr; 5122 if (auto BI = dyn_cast<BranchInst>(TI)) { 5123 if (BI->isConditional()) 5124 Cond = BI->getCondition(); 5125 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5126 Cond = SI->getCondition(); 5127 } 5128 5129 if (Cond) { 5130 if (Cond == V) 5131 return true; 5132 else if (PoisonOnly && isa<Operator>(Cond)) { 5133 // For poison, we can analyze further 5134 auto *Opr = cast<Operator>(Cond); 5135 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5136 return true; 5137 } 5138 } 5139 5140 Dominator = Dominator->getIDom(); 5141 } 5142 5143 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5144 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5145 return true; 5146 5147 return false; 5148 } 5149 5150 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5151 const Instruction *CtxI, 5152 const DominatorTree *DT, 5153 unsigned Depth) { 5154 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5155 } 5156 5157 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5158 const Instruction *CtxI, 5159 const DominatorTree *DT, unsigned Depth) { 5160 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5161 } 5162 5163 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5164 const DataLayout &DL, 5165 AssumptionCache *AC, 5166 const Instruction *CxtI, 5167 const DominatorTree *DT) { 5168 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5169 Add, DL, AC, CxtI, DT); 5170 } 5171 5172 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5173 const Value *RHS, 5174 const DataLayout &DL, 5175 AssumptionCache *AC, 5176 const Instruction *CxtI, 5177 const DominatorTree *DT) { 5178 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5179 } 5180 5181 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5182 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5183 // of time because it's possible for another thread to interfere with it for an 5184 // arbitrary length of time, but programs aren't allowed to rely on that. 5185 5186 // If there is no successor, then execution can't transfer to it. 5187 if (isa<ReturnInst>(I)) 5188 return false; 5189 if (isa<UnreachableInst>(I)) 5190 return false; 5191 5192 // An instruction that returns without throwing must transfer control flow 5193 // to a successor. 5194 return !I->mayThrow() && I->willReturn(); 5195 } 5196 5197 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5198 // TODO: This is slightly conservative for invoke instruction since exiting 5199 // via an exception *is* normal control for them. 5200 for (const Instruction &I : *BB) 5201 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5202 return false; 5203 return true; 5204 } 5205 5206 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5207 const Loop *L) { 5208 // The loop header is guaranteed to be executed for every iteration. 5209 // 5210 // FIXME: Relax this constraint to cover all basic blocks that are 5211 // guaranteed to be executed at every iteration. 5212 if (I->getParent() != L->getHeader()) return false; 5213 5214 for (const Instruction &LI : *L->getHeader()) { 5215 if (&LI == I) return true; 5216 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5217 } 5218 llvm_unreachable("Instruction not contained in its own parent basic block."); 5219 } 5220 5221 bool llvm::propagatesPoison(const Operator *I) { 5222 switch (I->getOpcode()) { 5223 case Instruction::Freeze: 5224 case Instruction::Select: 5225 case Instruction::PHI: 5226 case Instruction::Invoke: 5227 return false; 5228 case Instruction::Call: 5229 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5230 switch (II->getIntrinsicID()) { 5231 // TODO: Add more intrinsics. 5232 case Intrinsic::sadd_with_overflow: 5233 case Intrinsic::ssub_with_overflow: 5234 case Intrinsic::smul_with_overflow: 5235 case Intrinsic::uadd_with_overflow: 5236 case Intrinsic::usub_with_overflow: 5237 case Intrinsic::umul_with_overflow: 5238 // If an input is a vector containing a poison element, the 5239 // two output vectors (calculated results, overflow bits)' 5240 // corresponding lanes are poison. 5241 return true; 5242 } 5243 } 5244 return false; 5245 case Instruction::ICmp: 5246 case Instruction::FCmp: 5247 case Instruction::GetElementPtr: 5248 return true; 5249 default: 5250 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5251 return true; 5252 5253 // Be conservative and return false. 5254 return false; 5255 } 5256 } 5257 5258 void llvm::getGuaranteedWellDefinedOps( 5259 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5260 switch (I->getOpcode()) { 5261 case Instruction::Store: 5262 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5263 break; 5264 5265 case Instruction::Load: 5266 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5267 break; 5268 5269 // Since dereferenceable attribute imply noundef, atomic operations 5270 // also implicitly have noundef pointers too 5271 case Instruction::AtomicCmpXchg: 5272 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5273 break; 5274 5275 case Instruction::AtomicRMW: 5276 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5277 break; 5278 5279 case Instruction::Call: 5280 case Instruction::Invoke: { 5281 const CallBase *CB = cast<CallBase>(I); 5282 if (CB->isIndirectCall()) 5283 Operands.insert(CB->getCalledOperand()); 5284 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5285 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5286 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5287 Operands.insert(CB->getArgOperand(i)); 5288 } 5289 break; 5290 } 5291 5292 default: 5293 break; 5294 } 5295 } 5296 5297 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5298 SmallPtrSetImpl<const Value *> &Operands) { 5299 getGuaranteedWellDefinedOps(I, Operands); 5300 switch (I->getOpcode()) { 5301 // Divisors of these operations are allowed to be partially undef. 5302 case Instruction::UDiv: 5303 case Instruction::SDiv: 5304 case Instruction::URem: 5305 case Instruction::SRem: 5306 Operands.insert(I->getOperand(1)); 5307 break; 5308 5309 default: 5310 break; 5311 } 5312 } 5313 5314 bool llvm::mustTriggerUB(const Instruction *I, 5315 const SmallSet<const Value *, 16>& KnownPoison) { 5316 SmallPtrSet<const Value *, 4> NonPoisonOps; 5317 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5318 5319 for (const auto *V : NonPoisonOps) 5320 if (KnownPoison.count(V)) 5321 return true; 5322 5323 return false; 5324 } 5325 5326 static bool programUndefinedIfUndefOrPoison(const Value *V, 5327 bool PoisonOnly) { 5328 // We currently only look for uses of values within the same basic 5329 // block, as that makes it easier to guarantee that the uses will be 5330 // executed given that Inst is executed. 5331 // 5332 // FIXME: Expand this to consider uses beyond the same basic block. To do 5333 // this, look out for the distinction between post-dominance and strong 5334 // post-dominance. 5335 const BasicBlock *BB = nullptr; 5336 BasicBlock::const_iterator Begin; 5337 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5338 BB = Inst->getParent(); 5339 Begin = Inst->getIterator(); 5340 Begin++; 5341 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5342 BB = &Arg->getParent()->getEntryBlock(); 5343 Begin = BB->begin(); 5344 } else { 5345 return false; 5346 } 5347 5348 BasicBlock::const_iterator End = BB->end(); 5349 5350 if (!PoisonOnly) { 5351 // Since undef does not propagate eagerly, be conservative & just check 5352 // whether a value is directly passed to an instruction that must take 5353 // well-defined operands. 5354 5355 for (auto &I : make_range(Begin, End)) { 5356 SmallPtrSet<const Value *, 4> WellDefinedOps; 5357 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5358 for (auto *Op : WellDefinedOps) { 5359 if (Op == V) 5360 return true; 5361 } 5362 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5363 break; 5364 } 5365 return false; 5366 } 5367 5368 // Set of instructions that we have proved will yield poison if Inst 5369 // does. 5370 SmallSet<const Value *, 16> YieldsPoison; 5371 SmallSet<const BasicBlock *, 4> Visited; 5372 5373 YieldsPoison.insert(V); 5374 auto Propagate = [&](const User *User) { 5375 if (propagatesPoison(cast<Operator>(User))) 5376 YieldsPoison.insert(User); 5377 }; 5378 for_each(V->users(), Propagate); 5379 Visited.insert(BB); 5380 5381 unsigned Iter = 0; 5382 while (Iter++ < MaxAnalysisRecursionDepth) { 5383 for (auto &I : make_range(Begin, End)) { 5384 if (mustTriggerUB(&I, YieldsPoison)) 5385 return true; 5386 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5387 return false; 5388 5389 // Mark poison that propagates from I through uses of I. 5390 if (YieldsPoison.count(&I)) 5391 for_each(I.users(), Propagate); 5392 } 5393 5394 if (auto *NextBB = BB->getSingleSuccessor()) { 5395 if (Visited.insert(NextBB).second) { 5396 BB = NextBB; 5397 Begin = BB->getFirstNonPHI()->getIterator(); 5398 End = BB->end(); 5399 continue; 5400 } 5401 } 5402 5403 break; 5404 } 5405 return false; 5406 } 5407 5408 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5409 return ::programUndefinedIfUndefOrPoison(Inst, false); 5410 } 5411 5412 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5413 return ::programUndefinedIfUndefOrPoison(Inst, true); 5414 } 5415 5416 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5417 if (FMF.noNaNs()) 5418 return true; 5419 5420 if (auto *C = dyn_cast<ConstantFP>(V)) 5421 return !C->isNaN(); 5422 5423 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5424 if (!C->getElementType()->isFloatingPointTy()) 5425 return false; 5426 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5427 if (C->getElementAsAPFloat(I).isNaN()) 5428 return false; 5429 } 5430 return true; 5431 } 5432 5433 if (isa<ConstantAggregateZero>(V)) 5434 return true; 5435 5436 return false; 5437 } 5438 5439 static bool isKnownNonZero(const Value *V) { 5440 if (auto *C = dyn_cast<ConstantFP>(V)) 5441 return !C->isZero(); 5442 5443 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5444 if (!C->getElementType()->isFloatingPointTy()) 5445 return false; 5446 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5447 if (C->getElementAsAPFloat(I).isZero()) 5448 return false; 5449 } 5450 return true; 5451 } 5452 5453 return false; 5454 } 5455 5456 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5457 /// Given non-min/max outer cmp/select from the clamp pattern this 5458 /// function recognizes if it can be substitued by a "canonical" min/max 5459 /// pattern. 5460 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5461 Value *CmpLHS, Value *CmpRHS, 5462 Value *TrueVal, Value *FalseVal, 5463 Value *&LHS, Value *&RHS) { 5464 // Try to match 5465 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5466 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5467 // and return description of the outer Max/Min. 5468 5469 // First, check if select has inverse order: 5470 if (CmpRHS == FalseVal) { 5471 std::swap(TrueVal, FalseVal); 5472 Pred = CmpInst::getInversePredicate(Pred); 5473 } 5474 5475 // Assume success now. If there's no match, callers should not use these anyway. 5476 LHS = TrueVal; 5477 RHS = FalseVal; 5478 5479 const APFloat *FC1; 5480 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5481 return {SPF_UNKNOWN, SPNB_NA, false}; 5482 5483 const APFloat *FC2; 5484 switch (Pred) { 5485 case CmpInst::FCMP_OLT: 5486 case CmpInst::FCMP_OLE: 5487 case CmpInst::FCMP_ULT: 5488 case CmpInst::FCMP_ULE: 5489 if (match(FalseVal, 5490 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5491 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5492 *FC1 < *FC2) 5493 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5494 break; 5495 case CmpInst::FCMP_OGT: 5496 case CmpInst::FCMP_OGE: 5497 case CmpInst::FCMP_UGT: 5498 case CmpInst::FCMP_UGE: 5499 if (match(FalseVal, 5500 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5501 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5502 *FC1 > *FC2) 5503 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5504 break; 5505 default: 5506 break; 5507 } 5508 5509 return {SPF_UNKNOWN, SPNB_NA, false}; 5510 } 5511 5512 /// Recognize variations of: 5513 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5514 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5515 Value *CmpLHS, Value *CmpRHS, 5516 Value *TrueVal, Value *FalseVal) { 5517 // Swap the select operands and predicate to match the patterns below. 5518 if (CmpRHS != TrueVal) { 5519 Pred = ICmpInst::getSwappedPredicate(Pred); 5520 std::swap(TrueVal, FalseVal); 5521 } 5522 const APInt *C1; 5523 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5524 const APInt *C2; 5525 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5526 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5527 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5528 return {SPF_SMAX, SPNB_NA, false}; 5529 5530 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5531 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5532 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5533 return {SPF_SMIN, SPNB_NA, false}; 5534 5535 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5536 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5537 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5538 return {SPF_UMAX, SPNB_NA, false}; 5539 5540 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5541 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5542 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5543 return {SPF_UMIN, SPNB_NA, false}; 5544 } 5545 return {SPF_UNKNOWN, SPNB_NA, false}; 5546 } 5547 5548 /// Recognize variations of: 5549 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5550 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5551 Value *CmpLHS, Value *CmpRHS, 5552 Value *TVal, Value *FVal, 5553 unsigned Depth) { 5554 // TODO: Allow FP min/max with nnan/nsz. 5555 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5556 5557 Value *A = nullptr, *B = nullptr; 5558 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5559 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5560 return {SPF_UNKNOWN, SPNB_NA, false}; 5561 5562 Value *C = nullptr, *D = nullptr; 5563 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5564 if (L.Flavor != R.Flavor) 5565 return {SPF_UNKNOWN, SPNB_NA, false}; 5566 5567 // We have something like: x Pred y ? min(a, b) : min(c, d). 5568 // Try to match the compare to the min/max operations of the select operands. 5569 // First, make sure we have the right compare predicate. 5570 switch (L.Flavor) { 5571 case SPF_SMIN: 5572 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5573 Pred = ICmpInst::getSwappedPredicate(Pred); 5574 std::swap(CmpLHS, CmpRHS); 5575 } 5576 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5577 break; 5578 return {SPF_UNKNOWN, SPNB_NA, false}; 5579 case SPF_SMAX: 5580 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5581 Pred = ICmpInst::getSwappedPredicate(Pred); 5582 std::swap(CmpLHS, CmpRHS); 5583 } 5584 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5585 break; 5586 return {SPF_UNKNOWN, SPNB_NA, false}; 5587 case SPF_UMIN: 5588 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5589 Pred = ICmpInst::getSwappedPredicate(Pred); 5590 std::swap(CmpLHS, CmpRHS); 5591 } 5592 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5593 break; 5594 return {SPF_UNKNOWN, SPNB_NA, false}; 5595 case SPF_UMAX: 5596 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5597 Pred = ICmpInst::getSwappedPredicate(Pred); 5598 std::swap(CmpLHS, CmpRHS); 5599 } 5600 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5601 break; 5602 return {SPF_UNKNOWN, SPNB_NA, false}; 5603 default: 5604 return {SPF_UNKNOWN, SPNB_NA, false}; 5605 } 5606 5607 // If there is a common operand in the already matched min/max and the other 5608 // min/max operands match the compare operands (either directly or inverted), 5609 // then this is min/max of the same flavor. 5610 5611 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5612 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5613 if (D == B) { 5614 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5615 match(A, m_Not(m_Specific(CmpRHS))))) 5616 return {L.Flavor, SPNB_NA, false}; 5617 } 5618 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5619 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5620 if (C == B) { 5621 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5622 match(A, m_Not(m_Specific(CmpRHS))))) 5623 return {L.Flavor, SPNB_NA, false}; 5624 } 5625 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5626 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5627 if (D == A) { 5628 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5629 match(B, m_Not(m_Specific(CmpRHS))))) 5630 return {L.Flavor, SPNB_NA, false}; 5631 } 5632 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5633 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5634 if (C == A) { 5635 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5636 match(B, m_Not(m_Specific(CmpRHS))))) 5637 return {L.Flavor, SPNB_NA, false}; 5638 } 5639 5640 return {SPF_UNKNOWN, SPNB_NA, false}; 5641 } 5642 5643 /// If the input value is the result of a 'not' op, constant integer, or vector 5644 /// splat of a constant integer, return the bitwise-not source value. 5645 /// TODO: This could be extended to handle non-splat vector integer constants. 5646 static Value *getNotValue(Value *V) { 5647 Value *NotV; 5648 if (match(V, m_Not(m_Value(NotV)))) 5649 return NotV; 5650 5651 const APInt *C; 5652 if (match(V, m_APInt(C))) 5653 return ConstantInt::get(V->getType(), ~(*C)); 5654 5655 return nullptr; 5656 } 5657 5658 /// Match non-obvious integer minimum and maximum sequences. 5659 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5660 Value *CmpLHS, Value *CmpRHS, 5661 Value *TrueVal, Value *FalseVal, 5662 Value *&LHS, Value *&RHS, 5663 unsigned Depth) { 5664 // Assume success. If there's no match, callers should not use these anyway. 5665 LHS = TrueVal; 5666 RHS = FalseVal; 5667 5668 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5669 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5670 return SPR; 5671 5672 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5673 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5674 return SPR; 5675 5676 // Look through 'not' ops to find disguised min/max. 5677 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5678 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5679 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5680 switch (Pred) { 5681 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5682 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5683 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5684 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5685 default: break; 5686 } 5687 } 5688 5689 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5690 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5691 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5692 switch (Pred) { 5693 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5694 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5695 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5696 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5697 default: break; 5698 } 5699 } 5700 5701 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5702 return {SPF_UNKNOWN, SPNB_NA, false}; 5703 5704 // Z = X -nsw Y 5705 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5706 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5707 if (match(TrueVal, m_Zero()) && 5708 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5709 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5710 5711 // Z = X -nsw Y 5712 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5713 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5714 if (match(FalseVal, m_Zero()) && 5715 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5716 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5717 5718 const APInt *C1; 5719 if (!match(CmpRHS, m_APInt(C1))) 5720 return {SPF_UNKNOWN, SPNB_NA, false}; 5721 5722 // An unsigned min/max can be written with a signed compare. 5723 const APInt *C2; 5724 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5725 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5726 // Is the sign bit set? 5727 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5728 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5729 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5730 C2->isMaxSignedValue()) 5731 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5732 5733 // Is the sign bit clear? 5734 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5735 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5736 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5737 C2->isMinSignedValue()) 5738 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5739 } 5740 5741 return {SPF_UNKNOWN, SPNB_NA, false}; 5742 } 5743 5744 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5745 assert(X && Y && "Invalid operand"); 5746 5747 // X = sub (0, Y) || X = sub nsw (0, Y) 5748 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5749 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5750 return true; 5751 5752 // Y = sub (0, X) || Y = sub nsw (0, X) 5753 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5754 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5755 return true; 5756 5757 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5758 Value *A, *B; 5759 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5760 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5761 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5762 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5763 } 5764 5765 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5766 FastMathFlags FMF, 5767 Value *CmpLHS, Value *CmpRHS, 5768 Value *TrueVal, Value *FalseVal, 5769 Value *&LHS, Value *&RHS, 5770 unsigned Depth) { 5771 if (CmpInst::isFPPredicate(Pred)) { 5772 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5773 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5774 // purpose of identifying min/max. Disregard vector constants with undefined 5775 // elements because those can not be back-propagated for analysis. 5776 Value *OutputZeroVal = nullptr; 5777 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5778 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5779 OutputZeroVal = TrueVal; 5780 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5781 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5782 OutputZeroVal = FalseVal; 5783 5784 if (OutputZeroVal) { 5785 if (match(CmpLHS, m_AnyZeroFP())) 5786 CmpLHS = OutputZeroVal; 5787 if (match(CmpRHS, m_AnyZeroFP())) 5788 CmpRHS = OutputZeroVal; 5789 } 5790 } 5791 5792 LHS = CmpLHS; 5793 RHS = CmpRHS; 5794 5795 // Signed zero may return inconsistent results between implementations. 5796 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5797 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5798 // Therefore, we behave conservatively and only proceed if at least one of the 5799 // operands is known to not be zero or if we don't care about signed zero. 5800 switch (Pred) { 5801 default: break; 5802 // FIXME: Include OGT/OLT/UGT/ULT. 5803 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5804 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5805 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5806 !isKnownNonZero(CmpRHS)) 5807 return {SPF_UNKNOWN, SPNB_NA, false}; 5808 } 5809 5810 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5811 bool Ordered = false; 5812 5813 // When given one NaN and one non-NaN input: 5814 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5815 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5816 // ordered comparison fails), which could be NaN or non-NaN. 5817 // so here we discover exactly what NaN behavior is required/accepted. 5818 if (CmpInst::isFPPredicate(Pred)) { 5819 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5820 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5821 5822 if (LHSSafe && RHSSafe) { 5823 // Both operands are known non-NaN. 5824 NaNBehavior = SPNB_RETURNS_ANY; 5825 } else if (CmpInst::isOrdered(Pred)) { 5826 // An ordered comparison will return false when given a NaN, so it 5827 // returns the RHS. 5828 Ordered = true; 5829 if (LHSSafe) 5830 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5831 NaNBehavior = SPNB_RETURNS_NAN; 5832 else if (RHSSafe) 5833 NaNBehavior = SPNB_RETURNS_OTHER; 5834 else 5835 // Completely unsafe. 5836 return {SPF_UNKNOWN, SPNB_NA, false}; 5837 } else { 5838 Ordered = false; 5839 // An unordered comparison will return true when given a NaN, so it 5840 // returns the LHS. 5841 if (LHSSafe) 5842 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5843 NaNBehavior = SPNB_RETURNS_OTHER; 5844 else if (RHSSafe) 5845 NaNBehavior = SPNB_RETURNS_NAN; 5846 else 5847 // Completely unsafe. 5848 return {SPF_UNKNOWN, SPNB_NA, false}; 5849 } 5850 } 5851 5852 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5853 std::swap(CmpLHS, CmpRHS); 5854 Pred = CmpInst::getSwappedPredicate(Pred); 5855 if (NaNBehavior == SPNB_RETURNS_NAN) 5856 NaNBehavior = SPNB_RETURNS_OTHER; 5857 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5858 NaNBehavior = SPNB_RETURNS_NAN; 5859 Ordered = !Ordered; 5860 } 5861 5862 // ([if]cmp X, Y) ? X : Y 5863 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5864 switch (Pred) { 5865 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5866 case ICmpInst::ICMP_UGT: 5867 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5868 case ICmpInst::ICMP_SGT: 5869 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5870 case ICmpInst::ICMP_ULT: 5871 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5872 case ICmpInst::ICMP_SLT: 5873 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5874 case FCmpInst::FCMP_UGT: 5875 case FCmpInst::FCMP_UGE: 5876 case FCmpInst::FCMP_OGT: 5877 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5878 case FCmpInst::FCMP_ULT: 5879 case FCmpInst::FCMP_ULE: 5880 case FCmpInst::FCMP_OLT: 5881 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5882 } 5883 } 5884 5885 if (isKnownNegation(TrueVal, FalseVal)) { 5886 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5887 // match against either LHS or sext(LHS). 5888 auto MaybeSExtCmpLHS = 5889 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5890 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5891 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5892 if (match(TrueVal, MaybeSExtCmpLHS)) { 5893 // Set the return values. If the compare uses the negated value (-X >s 0), 5894 // swap the return values because the negated value is always 'RHS'. 5895 LHS = TrueVal; 5896 RHS = FalseVal; 5897 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5898 std::swap(LHS, RHS); 5899 5900 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5901 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5902 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5903 return {SPF_ABS, SPNB_NA, false}; 5904 5905 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5906 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5907 return {SPF_ABS, SPNB_NA, false}; 5908 5909 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5910 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5911 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5912 return {SPF_NABS, SPNB_NA, false}; 5913 } 5914 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5915 // Set the return values. If the compare uses the negated value (-X >s 0), 5916 // swap the return values because the negated value is always 'RHS'. 5917 LHS = FalseVal; 5918 RHS = TrueVal; 5919 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5920 std::swap(LHS, RHS); 5921 5922 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5923 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5924 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5925 return {SPF_NABS, SPNB_NA, false}; 5926 5927 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5928 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5929 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5930 return {SPF_ABS, SPNB_NA, false}; 5931 } 5932 } 5933 5934 if (CmpInst::isIntPredicate(Pred)) 5935 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5936 5937 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5938 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5939 // semantics than minNum. Be conservative in such case. 5940 if (NaNBehavior != SPNB_RETURNS_ANY || 5941 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5942 !isKnownNonZero(CmpRHS))) 5943 return {SPF_UNKNOWN, SPNB_NA, false}; 5944 5945 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5946 } 5947 5948 /// Helps to match a select pattern in case of a type mismatch. 5949 /// 5950 /// The function processes the case when type of true and false values of a 5951 /// select instruction differs from type of the cmp instruction operands because 5952 /// of a cast instruction. The function checks if it is legal to move the cast 5953 /// operation after "select". If yes, it returns the new second value of 5954 /// "select" (with the assumption that cast is moved): 5955 /// 1. As operand of cast instruction when both values of "select" are same cast 5956 /// instructions. 5957 /// 2. As restored constant (by applying reverse cast operation) when the first 5958 /// value of the "select" is a cast operation and the second value is a 5959 /// constant. 5960 /// NOTE: We return only the new second value because the first value could be 5961 /// accessed as operand of cast instruction. 5962 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5963 Instruction::CastOps *CastOp) { 5964 auto *Cast1 = dyn_cast<CastInst>(V1); 5965 if (!Cast1) 5966 return nullptr; 5967 5968 *CastOp = Cast1->getOpcode(); 5969 Type *SrcTy = Cast1->getSrcTy(); 5970 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5971 // If V1 and V2 are both the same cast from the same type, look through V1. 5972 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5973 return Cast2->getOperand(0); 5974 return nullptr; 5975 } 5976 5977 auto *C = dyn_cast<Constant>(V2); 5978 if (!C) 5979 return nullptr; 5980 5981 Constant *CastedTo = nullptr; 5982 switch (*CastOp) { 5983 case Instruction::ZExt: 5984 if (CmpI->isUnsigned()) 5985 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5986 break; 5987 case Instruction::SExt: 5988 if (CmpI->isSigned()) 5989 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5990 break; 5991 case Instruction::Trunc: 5992 Constant *CmpConst; 5993 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5994 CmpConst->getType() == SrcTy) { 5995 // Here we have the following case: 5996 // 5997 // %cond = cmp iN %x, CmpConst 5998 // %tr = trunc iN %x to iK 5999 // %narrowsel = select i1 %cond, iK %t, iK C 6000 // 6001 // We can always move trunc after select operation: 6002 // 6003 // %cond = cmp iN %x, CmpConst 6004 // %widesel = select i1 %cond, iN %x, iN CmpConst 6005 // %tr = trunc iN %widesel to iK 6006 // 6007 // Note that C could be extended in any way because we don't care about 6008 // upper bits after truncation. It can't be abs pattern, because it would 6009 // look like: 6010 // 6011 // select i1 %cond, x, -x. 6012 // 6013 // So only min/max pattern could be matched. Such match requires widened C 6014 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6015 // CmpConst == C is checked below. 6016 CastedTo = CmpConst; 6017 } else { 6018 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6019 } 6020 break; 6021 case Instruction::FPTrunc: 6022 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6023 break; 6024 case Instruction::FPExt: 6025 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6026 break; 6027 case Instruction::FPToUI: 6028 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6029 break; 6030 case Instruction::FPToSI: 6031 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6032 break; 6033 case Instruction::UIToFP: 6034 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6035 break; 6036 case Instruction::SIToFP: 6037 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6038 break; 6039 default: 6040 break; 6041 } 6042 6043 if (!CastedTo) 6044 return nullptr; 6045 6046 // Make sure the cast doesn't lose any information. 6047 Constant *CastedBack = 6048 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6049 if (CastedBack != C) 6050 return nullptr; 6051 6052 return CastedTo; 6053 } 6054 6055 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6056 Instruction::CastOps *CastOp, 6057 unsigned Depth) { 6058 if (Depth >= MaxAnalysisRecursionDepth) 6059 return {SPF_UNKNOWN, SPNB_NA, false}; 6060 6061 SelectInst *SI = dyn_cast<SelectInst>(V); 6062 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6063 6064 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6065 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6066 6067 Value *TrueVal = SI->getTrueValue(); 6068 Value *FalseVal = SI->getFalseValue(); 6069 6070 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6071 CastOp, Depth); 6072 } 6073 6074 SelectPatternResult llvm::matchDecomposedSelectPattern( 6075 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6076 Instruction::CastOps *CastOp, unsigned Depth) { 6077 CmpInst::Predicate Pred = CmpI->getPredicate(); 6078 Value *CmpLHS = CmpI->getOperand(0); 6079 Value *CmpRHS = CmpI->getOperand(1); 6080 FastMathFlags FMF; 6081 if (isa<FPMathOperator>(CmpI)) 6082 FMF = CmpI->getFastMathFlags(); 6083 6084 // Bail out early. 6085 if (CmpI->isEquality()) 6086 return {SPF_UNKNOWN, SPNB_NA, false}; 6087 6088 // Deal with type mismatches. 6089 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6090 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6091 // If this is a potential fmin/fmax with a cast to integer, then ignore 6092 // -0.0 because there is no corresponding integer value. 6093 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6094 FMF.setNoSignedZeros(); 6095 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6096 cast<CastInst>(TrueVal)->getOperand(0), C, 6097 LHS, RHS, Depth); 6098 } 6099 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6100 // If this is a potential fmin/fmax with a cast to integer, then ignore 6101 // -0.0 because there is no corresponding integer value. 6102 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6103 FMF.setNoSignedZeros(); 6104 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6105 C, cast<CastInst>(FalseVal)->getOperand(0), 6106 LHS, RHS, Depth); 6107 } 6108 } 6109 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6110 LHS, RHS, Depth); 6111 } 6112 6113 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6114 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6115 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6116 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6117 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6118 if (SPF == SPF_FMINNUM) 6119 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6120 if (SPF == SPF_FMAXNUM) 6121 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6122 llvm_unreachable("unhandled!"); 6123 } 6124 6125 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6126 if (SPF == SPF_SMIN) return SPF_SMAX; 6127 if (SPF == SPF_UMIN) return SPF_UMAX; 6128 if (SPF == SPF_SMAX) return SPF_SMIN; 6129 if (SPF == SPF_UMAX) return SPF_UMIN; 6130 llvm_unreachable("unhandled!"); 6131 } 6132 6133 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6134 switch (MinMaxID) { 6135 case Intrinsic::smax: return Intrinsic::smin; 6136 case Intrinsic::smin: return Intrinsic::smax; 6137 case Intrinsic::umax: return Intrinsic::umin; 6138 case Intrinsic::umin: return Intrinsic::umax; 6139 default: llvm_unreachable("Unexpected intrinsic"); 6140 } 6141 } 6142 6143 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6144 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6145 } 6146 6147 std::pair<Intrinsic::ID, bool> 6148 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6149 // Check if VL contains select instructions that can be folded into a min/max 6150 // vector intrinsic and return the intrinsic if it is possible. 6151 // TODO: Support floating point min/max. 6152 bool AllCmpSingleUse = true; 6153 SelectPatternResult SelectPattern; 6154 SelectPattern.Flavor = SPF_UNKNOWN; 6155 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6156 Value *LHS, *RHS; 6157 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6158 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6159 CurrentPattern.Flavor == SPF_FMINNUM || 6160 CurrentPattern.Flavor == SPF_FMAXNUM || 6161 !I->getType()->isIntOrIntVectorTy()) 6162 return false; 6163 if (SelectPattern.Flavor != SPF_UNKNOWN && 6164 SelectPattern.Flavor != CurrentPattern.Flavor) 6165 return false; 6166 SelectPattern = CurrentPattern; 6167 AllCmpSingleUse &= 6168 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6169 return true; 6170 })) { 6171 switch (SelectPattern.Flavor) { 6172 case SPF_SMIN: 6173 return {Intrinsic::smin, AllCmpSingleUse}; 6174 case SPF_UMIN: 6175 return {Intrinsic::umin, AllCmpSingleUse}; 6176 case SPF_SMAX: 6177 return {Intrinsic::smax, AllCmpSingleUse}; 6178 case SPF_UMAX: 6179 return {Intrinsic::umax, AllCmpSingleUse}; 6180 default: 6181 llvm_unreachable("unexpected select pattern flavor"); 6182 } 6183 } 6184 return {Intrinsic::not_intrinsic, false}; 6185 } 6186 6187 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6188 Value *&Start, Value *&Step) { 6189 // Handle the case of a simple two-predecessor recurrence PHI. 6190 // There's a lot more that could theoretically be done here, but 6191 // this is sufficient to catch some interesting cases. 6192 if (P->getNumIncomingValues() != 2) 6193 return false; 6194 6195 for (unsigned i = 0; i != 2; ++i) { 6196 Value *L = P->getIncomingValue(i); 6197 Value *R = P->getIncomingValue(!i); 6198 Operator *LU = dyn_cast<Operator>(L); 6199 if (!LU) 6200 continue; 6201 unsigned Opcode = LU->getOpcode(); 6202 6203 switch (Opcode) { 6204 default: 6205 continue; 6206 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6207 case Instruction::LShr: 6208 case Instruction::AShr: 6209 case Instruction::Shl: 6210 case Instruction::Add: 6211 case Instruction::Sub: 6212 case Instruction::And: 6213 case Instruction::Or: 6214 case Instruction::Mul: { 6215 Value *LL = LU->getOperand(0); 6216 Value *LR = LU->getOperand(1); 6217 // Find a recurrence. 6218 if (LL == P) 6219 L = LR; 6220 else if (LR == P) 6221 L = LL; 6222 else 6223 continue; // Check for recurrence with L and R flipped. 6224 6225 break; // Match! 6226 } 6227 }; 6228 6229 // We have matched a recurrence of the form: 6230 // %iv = [R, %entry], [%iv.next, %backedge] 6231 // %iv.next = binop %iv, L 6232 // OR 6233 // %iv = [R, %entry], [%iv.next, %backedge] 6234 // %iv.next = binop L, %iv 6235 BO = cast<BinaryOperator>(LU); 6236 Start = R; 6237 Step = L; 6238 return true; 6239 } 6240 return false; 6241 } 6242 6243 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6244 Value *&Start, Value *&Step) { 6245 BinaryOperator *BO = nullptr; 6246 P = dyn_cast<PHINode>(I->getOperand(0)); 6247 if (!P) 6248 P = dyn_cast<PHINode>(I->getOperand(1)); 6249 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6250 } 6251 6252 /// Return true if "icmp Pred LHS RHS" is always true. 6253 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6254 const Value *RHS, const DataLayout &DL, 6255 unsigned Depth) { 6256 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6257 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6258 return true; 6259 6260 switch (Pred) { 6261 default: 6262 return false; 6263 6264 case CmpInst::ICMP_SLE: { 6265 const APInt *C; 6266 6267 // LHS s<= LHS +_{nsw} C if C >= 0 6268 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6269 return !C->isNegative(); 6270 return false; 6271 } 6272 6273 case CmpInst::ICMP_ULE: { 6274 const APInt *C; 6275 6276 // LHS u<= LHS +_{nuw} C for any C 6277 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6278 return true; 6279 6280 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6281 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6282 const Value *&X, 6283 const APInt *&CA, const APInt *&CB) { 6284 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6285 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6286 return true; 6287 6288 // If X & C == 0 then (X | C) == X +_{nuw} C 6289 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6290 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6291 KnownBits Known(CA->getBitWidth()); 6292 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6293 /*CxtI*/ nullptr, /*DT*/ nullptr); 6294 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6295 return true; 6296 } 6297 6298 return false; 6299 }; 6300 6301 const Value *X; 6302 const APInt *CLHS, *CRHS; 6303 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6304 return CLHS->ule(*CRHS); 6305 6306 return false; 6307 } 6308 } 6309 } 6310 6311 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6312 /// ALHS ARHS" is true. Otherwise, return None. 6313 static Optional<bool> 6314 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6315 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6316 const DataLayout &DL, unsigned Depth) { 6317 switch (Pred) { 6318 default: 6319 return None; 6320 6321 case CmpInst::ICMP_SLT: 6322 case CmpInst::ICMP_SLE: 6323 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6324 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6325 return true; 6326 return None; 6327 6328 case CmpInst::ICMP_ULT: 6329 case CmpInst::ICMP_ULE: 6330 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6331 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6332 return true; 6333 return None; 6334 } 6335 } 6336 6337 /// Return true if the operands of the two compares match. IsSwappedOps is true 6338 /// when the operands match, but are swapped. 6339 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6340 const Value *BLHS, const Value *BRHS, 6341 bool &IsSwappedOps) { 6342 6343 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6344 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6345 return IsMatchingOps || IsSwappedOps; 6346 } 6347 6348 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6349 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6350 /// Otherwise, return None if we can't infer anything. 6351 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6352 CmpInst::Predicate BPred, 6353 bool AreSwappedOps) { 6354 // Canonicalize the predicate as if the operands were not commuted. 6355 if (AreSwappedOps) 6356 BPred = ICmpInst::getSwappedPredicate(BPred); 6357 6358 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6359 return true; 6360 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6361 return false; 6362 6363 return None; 6364 } 6365 6366 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6367 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6368 /// Otherwise, return None if we can't infer anything. 6369 static Optional<bool> 6370 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6371 const ConstantInt *C1, 6372 CmpInst::Predicate BPred, 6373 const ConstantInt *C2) { 6374 ConstantRange DomCR = 6375 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6376 ConstantRange CR = 6377 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6378 ConstantRange Intersection = DomCR.intersectWith(CR); 6379 ConstantRange Difference = DomCR.difference(CR); 6380 if (Intersection.isEmptySet()) 6381 return false; 6382 if (Difference.isEmptySet()) 6383 return true; 6384 return None; 6385 } 6386 6387 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6388 /// false. Otherwise, return None if we can't infer anything. 6389 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6390 CmpInst::Predicate BPred, 6391 const Value *BLHS, const Value *BRHS, 6392 const DataLayout &DL, bool LHSIsTrue, 6393 unsigned Depth) { 6394 Value *ALHS = LHS->getOperand(0); 6395 Value *ARHS = LHS->getOperand(1); 6396 6397 // The rest of the logic assumes the LHS condition is true. If that's not the 6398 // case, invert the predicate to make it so. 6399 CmpInst::Predicate APred = 6400 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6401 6402 // Can we infer anything when the two compares have matching operands? 6403 bool AreSwappedOps; 6404 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6405 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6406 APred, BPred, AreSwappedOps)) 6407 return Implication; 6408 // No amount of additional analysis will infer the second condition, so 6409 // early exit. 6410 return None; 6411 } 6412 6413 // Can we infer anything when the LHS operands match and the RHS operands are 6414 // constants (not necessarily matching)? 6415 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6416 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6417 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6418 return Implication; 6419 // No amount of additional analysis will infer the second condition, so 6420 // early exit. 6421 return None; 6422 } 6423 6424 if (APred == BPred) 6425 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6426 return None; 6427 } 6428 6429 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6430 /// false. Otherwise, return None if we can't infer anything. We expect the 6431 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6432 static Optional<bool> 6433 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6434 const Value *RHSOp0, const Value *RHSOp1, 6435 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6436 // The LHS must be an 'or', 'and', or a 'select' instruction. 6437 assert((LHS->getOpcode() == Instruction::And || 6438 LHS->getOpcode() == Instruction::Or || 6439 LHS->getOpcode() == Instruction::Select) && 6440 "Expected LHS to be 'and', 'or', or 'select'."); 6441 6442 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6443 6444 // If the result of an 'or' is false, then we know both legs of the 'or' are 6445 // false. Similarly, if the result of an 'and' is true, then we know both 6446 // legs of the 'and' are true. 6447 const Value *ALHS, *ARHS; 6448 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6449 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6450 // FIXME: Make this non-recursion. 6451 if (Optional<bool> Implication = isImpliedCondition( 6452 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6453 return Implication; 6454 if (Optional<bool> Implication = isImpliedCondition( 6455 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6456 return Implication; 6457 return None; 6458 } 6459 return None; 6460 } 6461 6462 Optional<bool> 6463 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6464 const Value *RHSOp0, const Value *RHSOp1, 6465 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6466 // Bail out when we hit the limit. 6467 if (Depth == MaxAnalysisRecursionDepth) 6468 return None; 6469 6470 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6471 // example. 6472 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6473 return None; 6474 6475 Type *OpTy = LHS->getType(); 6476 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6477 6478 // FIXME: Extending the code below to handle vectors. 6479 if (OpTy->isVectorTy()) 6480 return None; 6481 6482 assert(OpTy->isIntegerTy(1) && "implied by above"); 6483 6484 // Both LHS and RHS are icmps. 6485 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6486 if (LHSCmp) 6487 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6488 Depth); 6489 6490 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6491 /// the RHS to be an icmp. 6492 /// FIXME: Add support for and/or/select on the RHS. 6493 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6494 if ((LHSI->getOpcode() == Instruction::And || 6495 LHSI->getOpcode() == Instruction::Or || 6496 LHSI->getOpcode() == Instruction::Select)) 6497 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6498 Depth); 6499 } 6500 return None; 6501 } 6502 6503 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6504 const DataLayout &DL, bool LHSIsTrue, 6505 unsigned Depth) { 6506 // LHS ==> RHS by definition 6507 if (LHS == RHS) 6508 return LHSIsTrue; 6509 6510 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6511 if (RHSCmp) 6512 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6513 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6514 LHSIsTrue, Depth); 6515 return None; 6516 } 6517 6518 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6519 // condition dominating ContextI or nullptr, if no condition is found. 6520 static std::pair<Value *, bool> 6521 getDomPredecessorCondition(const Instruction *ContextI) { 6522 if (!ContextI || !ContextI->getParent()) 6523 return {nullptr, false}; 6524 6525 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6526 // dominator tree (eg, from a SimplifyQuery) instead? 6527 const BasicBlock *ContextBB = ContextI->getParent(); 6528 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6529 if (!PredBB) 6530 return {nullptr, false}; 6531 6532 // We need a conditional branch in the predecessor. 6533 Value *PredCond; 6534 BasicBlock *TrueBB, *FalseBB; 6535 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6536 return {nullptr, false}; 6537 6538 // The branch should get simplified. Don't bother simplifying this condition. 6539 if (TrueBB == FalseBB) 6540 return {nullptr, false}; 6541 6542 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6543 "Predecessor block does not point to successor?"); 6544 6545 // Is this condition implied by the predecessor condition? 6546 return {PredCond, TrueBB == ContextBB}; 6547 } 6548 6549 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6550 const Instruction *ContextI, 6551 const DataLayout &DL) { 6552 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6553 auto PredCond = getDomPredecessorCondition(ContextI); 6554 if (PredCond.first) 6555 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6556 return None; 6557 } 6558 6559 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6560 const Value *LHS, const Value *RHS, 6561 const Instruction *ContextI, 6562 const DataLayout &DL) { 6563 auto PredCond = getDomPredecessorCondition(ContextI); 6564 if (PredCond.first) 6565 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6566 PredCond.second); 6567 return None; 6568 } 6569 6570 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6571 APInt &Upper, const InstrInfoQuery &IIQ) { 6572 unsigned Width = Lower.getBitWidth(); 6573 const APInt *C; 6574 switch (BO.getOpcode()) { 6575 case Instruction::Add: 6576 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6577 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6578 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6579 // 'add nuw x, C' produces [C, UINT_MAX]. 6580 Lower = *C; 6581 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6582 if (C->isNegative()) { 6583 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6584 Lower = APInt::getSignedMinValue(Width); 6585 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6586 } else { 6587 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6588 Lower = APInt::getSignedMinValue(Width) + *C; 6589 Upper = APInt::getSignedMaxValue(Width) + 1; 6590 } 6591 } 6592 } 6593 break; 6594 6595 case Instruction::And: 6596 if (match(BO.getOperand(1), m_APInt(C))) 6597 // 'and x, C' produces [0, C]. 6598 Upper = *C + 1; 6599 break; 6600 6601 case Instruction::Or: 6602 if (match(BO.getOperand(1), m_APInt(C))) 6603 // 'or x, C' produces [C, UINT_MAX]. 6604 Lower = *C; 6605 break; 6606 6607 case Instruction::AShr: 6608 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6609 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6610 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6611 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6612 } else if (match(BO.getOperand(0), m_APInt(C))) { 6613 unsigned ShiftAmount = Width - 1; 6614 if (!C->isNullValue() && IIQ.isExact(&BO)) 6615 ShiftAmount = C->countTrailingZeros(); 6616 if (C->isNegative()) { 6617 // 'ashr C, x' produces [C, C >> (Width-1)] 6618 Lower = *C; 6619 Upper = C->ashr(ShiftAmount) + 1; 6620 } else { 6621 // 'ashr C, x' produces [C >> (Width-1), C] 6622 Lower = C->ashr(ShiftAmount); 6623 Upper = *C + 1; 6624 } 6625 } 6626 break; 6627 6628 case Instruction::LShr: 6629 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6630 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6631 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6632 } else if (match(BO.getOperand(0), m_APInt(C))) { 6633 // 'lshr C, x' produces [C >> (Width-1), C]. 6634 unsigned ShiftAmount = Width - 1; 6635 if (!C->isNullValue() && IIQ.isExact(&BO)) 6636 ShiftAmount = C->countTrailingZeros(); 6637 Lower = C->lshr(ShiftAmount); 6638 Upper = *C + 1; 6639 } 6640 break; 6641 6642 case Instruction::Shl: 6643 if (match(BO.getOperand(0), m_APInt(C))) { 6644 if (IIQ.hasNoUnsignedWrap(&BO)) { 6645 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6646 Lower = *C; 6647 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6648 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6649 if (C->isNegative()) { 6650 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6651 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6652 Lower = C->shl(ShiftAmount); 6653 Upper = *C + 1; 6654 } else { 6655 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6656 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6657 Lower = *C; 6658 Upper = C->shl(ShiftAmount) + 1; 6659 } 6660 } 6661 } 6662 break; 6663 6664 case Instruction::SDiv: 6665 if (match(BO.getOperand(1), m_APInt(C))) { 6666 APInt IntMin = APInt::getSignedMinValue(Width); 6667 APInt IntMax = APInt::getSignedMaxValue(Width); 6668 if (C->isAllOnesValue()) { 6669 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6670 // where C != -1 and C != 0 and C != 1 6671 Lower = IntMin + 1; 6672 Upper = IntMax + 1; 6673 } else if (C->countLeadingZeros() < Width - 1) { 6674 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6675 // where C != -1 and C != 0 and C != 1 6676 Lower = IntMin.sdiv(*C); 6677 Upper = IntMax.sdiv(*C); 6678 if (Lower.sgt(Upper)) 6679 std::swap(Lower, Upper); 6680 Upper = Upper + 1; 6681 assert(Upper != Lower && "Upper part of range has wrapped!"); 6682 } 6683 } else if (match(BO.getOperand(0), m_APInt(C))) { 6684 if (C->isMinSignedValue()) { 6685 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6686 Lower = *C; 6687 Upper = Lower.lshr(1) + 1; 6688 } else { 6689 // 'sdiv C, x' produces [-|C|, |C|]. 6690 Upper = C->abs() + 1; 6691 Lower = (-Upper) + 1; 6692 } 6693 } 6694 break; 6695 6696 case Instruction::UDiv: 6697 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6698 // 'udiv x, C' produces [0, UINT_MAX / C]. 6699 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6700 } else if (match(BO.getOperand(0), m_APInt(C))) { 6701 // 'udiv C, x' produces [0, C]. 6702 Upper = *C + 1; 6703 } 6704 break; 6705 6706 case Instruction::SRem: 6707 if (match(BO.getOperand(1), m_APInt(C))) { 6708 // 'srem x, C' produces (-|C|, |C|). 6709 Upper = C->abs(); 6710 Lower = (-Upper) + 1; 6711 } 6712 break; 6713 6714 case Instruction::URem: 6715 if (match(BO.getOperand(1), m_APInt(C))) 6716 // 'urem x, C' produces [0, C). 6717 Upper = *C; 6718 break; 6719 6720 default: 6721 break; 6722 } 6723 } 6724 6725 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6726 APInt &Upper) { 6727 unsigned Width = Lower.getBitWidth(); 6728 const APInt *C; 6729 switch (II.getIntrinsicID()) { 6730 case Intrinsic::ctpop: 6731 case Intrinsic::ctlz: 6732 case Intrinsic::cttz: 6733 // Maximum of set/clear bits is the bit width. 6734 assert(Lower == 0 && "Expected lower bound to be zero"); 6735 Upper = Width + 1; 6736 break; 6737 case Intrinsic::uadd_sat: 6738 // uadd.sat(x, C) produces [C, UINT_MAX]. 6739 if (match(II.getOperand(0), m_APInt(C)) || 6740 match(II.getOperand(1), m_APInt(C))) 6741 Lower = *C; 6742 break; 6743 case Intrinsic::sadd_sat: 6744 if (match(II.getOperand(0), m_APInt(C)) || 6745 match(II.getOperand(1), m_APInt(C))) { 6746 if (C->isNegative()) { 6747 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6748 Lower = APInt::getSignedMinValue(Width); 6749 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6750 } else { 6751 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6752 Lower = APInt::getSignedMinValue(Width) + *C; 6753 Upper = APInt::getSignedMaxValue(Width) + 1; 6754 } 6755 } 6756 break; 6757 case Intrinsic::usub_sat: 6758 // usub.sat(C, x) produces [0, C]. 6759 if (match(II.getOperand(0), m_APInt(C))) 6760 Upper = *C + 1; 6761 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6762 else if (match(II.getOperand(1), m_APInt(C))) 6763 Upper = APInt::getMaxValue(Width) - *C + 1; 6764 break; 6765 case Intrinsic::ssub_sat: 6766 if (match(II.getOperand(0), m_APInt(C))) { 6767 if (C->isNegative()) { 6768 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6769 Lower = APInt::getSignedMinValue(Width); 6770 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6771 } else { 6772 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6773 Lower = *C - APInt::getSignedMaxValue(Width); 6774 Upper = APInt::getSignedMaxValue(Width) + 1; 6775 } 6776 } else if (match(II.getOperand(1), m_APInt(C))) { 6777 if (C->isNegative()) { 6778 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6779 Lower = APInt::getSignedMinValue(Width) - *C; 6780 Upper = APInt::getSignedMaxValue(Width) + 1; 6781 } else { 6782 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6783 Lower = APInt::getSignedMinValue(Width); 6784 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6785 } 6786 } 6787 break; 6788 case Intrinsic::umin: 6789 case Intrinsic::umax: 6790 case Intrinsic::smin: 6791 case Intrinsic::smax: 6792 if (!match(II.getOperand(0), m_APInt(C)) && 6793 !match(II.getOperand(1), m_APInt(C))) 6794 break; 6795 6796 switch (II.getIntrinsicID()) { 6797 case Intrinsic::umin: 6798 Upper = *C + 1; 6799 break; 6800 case Intrinsic::umax: 6801 Lower = *C; 6802 break; 6803 case Intrinsic::smin: 6804 Lower = APInt::getSignedMinValue(Width); 6805 Upper = *C + 1; 6806 break; 6807 case Intrinsic::smax: 6808 Lower = *C; 6809 Upper = APInt::getSignedMaxValue(Width) + 1; 6810 break; 6811 default: 6812 llvm_unreachable("Must be min/max intrinsic"); 6813 } 6814 break; 6815 case Intrinsic::abs: 6816 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6817 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6818 if (match(II.getOperand(1), m_One())) 6819 Upper = APInt::getSignedMaxValue(Width) + 1; 6820 else 6821 Upper = APInt::getSignedMinValue(Width) + 1; 6822 break; 6823 default: 6824 break; 6825 } 6826 } 6827 6828 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6829 APInt &Upper, const InstrInfoQuery &IIQ) { 6830 const Value *LHS = nullptr, *RHS = nullptr; 6831 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6832 if (R.Flavor == SPF_UNKNOWN) 6833 return; 6834 6835 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6836 6837 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6838 // If the negation part of the abs (in RHS) has the NSW flag, 6839 // then the result of abs(X) is [0..SIGNED_MAX], 6840 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6841 Lower = APInt::getNullValue(BitWidth); 6842 if (match(RHS, m_Neg(m_Specific(LHS))) && 6843 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6844 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6845 else 6846 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6847 return; 6848 } 6849 6850 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6851 // The result of -abs(X) is <= 0. 6852 Lower = APInt::getSignedMinValue(BitWidth); 6853 Upper = APInt(BitWidth, 1); 6854 return; 6855 } 6856 6857 const APInt *C; 6858 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6859 return; 6860 6861 switch (R.Flavor) { 6862 case SPF_UMIN: 6863 Upper = *C + 1; 6864 break; 6865 case SPF_UMAX: 6866 Lower = *C; 6867 break; 6868 case SPF_SMIN: 6869 Lower = APInt::getSignedMinValue(BitWidth); 6870 Upper = *C + 1; 6871 break; 6872 case SPF_SMAX: 6873 Lower = *C; 6874 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6875 break; 6876 default: 6877 break; 6878 } 6879 } 6880 6881 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6882 AssumptionCache *AC, 6883 const Instruction *CtxI, 6884 unsigned Depth) { 6885 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6886 6887 if (Depth == MaxAnalysisRecursionDepth) 6888 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6889 6890 const APInt *C; 6891 if (match(V, m_APInt(C))) 6892 return ConstantRange(*C); 6893 6894 InstrInfoQuery IIQ(UseInstrInfo); 6895 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6896 APInt Lower = APInt(BitWidth, 0); 6897 APInt Upper = APInt(BitWidth, 0); 6898 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6899 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6900 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6901 setLimitsForIntrinsic(*II, Lower, Upper); 6902 else if (auto *SI = dyn_cast<SelectInst>(V)) 6903 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6904 6905 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6906 6907 if (auto *I = dyn_cast<Instruction>(V)) 6908 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6909 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6910 6911 if (CtxI && AC) { 6912 // Try to restrict the range based on information from assumptions. 6913 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6914 if (!AssumeVH) 6915 continue; 6916 CallInst *I = cast<CallInst>(AssumeVH); 6917 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6918 "Got assumption for the wrong function!"); 6919 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6920 "must be an assume intrinsic"); 6921 6922 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6923 continue; 6924 Value *Arg = I->getArgOperand(0); 6925 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6926 // Currently we just use information from comparisons. 6927 if (!Cmp || Cmp->getOperand(0) != V) 6928 continue; 6929 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6930 AC, I, Depth + 1); 6931 CR = CR.intersectWith( 6932 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6933 } 6934 } 6935 6936 return CR; 6937 } 6938 6939 static Optional<int64_t> 6940 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6941 // Skip over the first indices. 6942 gep_type_iterator GTI = gep_type_begin(GEP); 6943 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6944 /*skip along*/; 6945 6946 // Compute the offset implied by the rest of the indices. 6947 int64_t Offset = 0; 6948 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6949 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6950 if (!OpC) 6951 return None; 6952 if (OpC->isZero()) 6953 continue; // No offset. 6954 6955 // Handle struct indices, which add their field offset to the pointer. 6956 if (StructType *STy = GTI.getStructTypeOrNull()) { 6957 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6958 continue; 6959 } 6960 6961 // Otherwise, we have a sequential type like an array or fixed-length 6962 // vector. Multiply the index by the ElementSize. 6963 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6964 if (Size.isScalable()) 6965 return None; 6966 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6967 } 6968 6969 return Offset; 6970 } 6971 6972 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6973 const DataLayout &DL) { 6974 Ptr1 = Ptr1->stripPointerCasts(); 6975 Ptr2 = Ptr2->stripPointerCasts(); 6976 6977 // Handle the trivial case first. 6978 if (Ptr1 == Ptr2) { 6979 return 0; 6980 } 6981 6982 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6983 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6984 6985 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6986 // as in "P" and "gep P, 1". 6987 // Also do this iteratively to handle the the following case: 6988 // Ptr_t1 = GEP Ptr1, c1 6989 // Ptr_t2 = GEP Ptr_t1, c2 6990 // Ptr2 = GEP Ptr_t2, c3 6991 // where we will return c1+c2+c3. 6992 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6993 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6994 // are the same, and return the difference between offsets. 6995 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6996 const Value *Ptr) -> Optional<int64_t> { 6997 const GEPOperator *GEP_T = GEP; 6998 int64_t OffsetVal = 0; 6999 bool HasSameBase = false; 7000 while (GEP_T) { 7001 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7002 if (!Offset) 7003 return None; 7004 OffsetVal += *Offset; 7005 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7006 if (Op0 == Ptr) { 7007 HasSameBase = true; 7008 break; 7009 } 7010 GEP_T = dyn_cast<GEPOperator>(Op0); 7011 } 7012 if (!HasSameBase) 7013 return None; 7014 return OffsetVal; 7015 }; 7016 7017 if (GEP1) { 7018 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7019 if (Offset) 7020 return -*Offset; 7021 } 7022 if (GEP2) { 7023 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7024 if (Offset) 7025 return Offset; 7026 } 7027 7028 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7029 // base. After that base, they may have some number of common (and 7030 // potentially variable) indices. After that they handle some constant 7031 // offset, which determines their offset from each other. At this point, we 7032 // handle no other case. 7033 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7034 return None; 7035 7036 // Skip any common indices and track the GEP types. 7037 unsigned Idx = 1; 7038 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7039 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7040 break; 7041 7042 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7043 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7044 if (!Offset1 || !Offset2) 7045 return None; 7046 return *Offset2 - *Offset1; 7047 } 7048