1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
165   // If we've been provided with a context instruction, then use that (provided
166   // it has been inserted).
167   if (CxtI && CxtI->getParent())
168     return CxtI;
169 
170   // If the value is really an already-inserted instruction, then use that.
171   CxtI = dyn_cast<Instruction>(V1);
172   if (CxtI && CxtI->getParent())
173     return CxtI;
174 
175   CxtI = dyn_cast<Instruction>(V2);
176   if (CxtI && CxtI->getParent())
177     return CxtI;
178 
179   return nullptr;
180 }
181 
182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
183                                    const APInt &DemandedElts,
184                                    APInt &DemandedLHS, APInt &DemandedRHS) {
185   // The length of scalable vectors is unknown at compile time, thus we
186   // cannot check their values
187   if (isa<ScalableVectorType>(Shuf->getType()))
188     return false;
189 
190   int NumElts =
191       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
192   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
193   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
194   if (DemandedElts.isNullValue())
195     return true;
196   // Simple case of a shuffle with zeroinitializer.
197   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
198     DemandedLHS.setBit(0);
199     return true;
200   }
201   for (int i = 0; i != NumMaskElts; ++i) {
202     if (!DemandedElts[i])
203       continue;
204     int M = Shuf->getMaskValue(i);
205     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
206 
207     // For undef elements, we don't know anything about the common state of
208     // the shuffle result.
209     if (M == -1)
210       return false;
211     if (M < NumElts)
212       DemandedLHS.setBit(M % NumElts);
213     else
214       DemandedRHS.setBit(M % NumElts);
215   }
216 
217   return true;
218 }
219 
220 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
221                              KnownBits &Known, unsigned Depth, const Query &Q);
222 
223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
224                              const Query &Q) {
225   // FIXME: We currently have no way to represent the DemandedElts of a scalable
226   // vector
227   if (isa<ScalableVectorType>(V->getType())) {
228     Known.resetAll();
229     return;
230   }
231 
232   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
233   APInt DemandedElts =
234       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
235   computeKnownBits(V, DemandedElts, Known, Depth, Q);
236 }
237 
238 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
239                             const DataLayout &DL, unsigned Depth,
240                             AssumptionCache *AC, const Instruction *CxtI,
241                             const DominatorTree *DT,
242                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
243   ::computeKnownBits(V, Known, Depth,
244                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
245 }
246 
247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
248                             KnownBits &Known, const DataLayout &DL,
249                             unsigned Depth, AssumptionCache *AC,
250                             const Instruction *CxtI, const DominatorTree *DT,
251                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
252   ::computeKnownBits(V, DemandedElts, Known, Depth,
253                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
257                                   unsigned Depth, const Query &Q);
258 
259 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
260                                   const Query &Q);
261 
262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
263                                  unsigned Depth, AssumptionCache *AC,
264                                  const Instruction *CxtI,
265                                  const DominatorTree *DT,
266                                  OptimizationRemarkEmitter *ORE,
267                                  bool UseInstrInfo) {
268   return ::computeKnownBits(
269       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
270 }
271 
272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
273                                  const DataLayout &DL, unsigned Depth,
274                                  AssumptionCache *AC, const Instruction *CxtI,
275                                  const DominatorTree *DT,
276                                  OptimizationRemarkEmitter *ORE,
277                                  bool UseInstrInfo) {
278   return ::computeKnownBits(
279       V, DemandedElts, Depth,
280       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
281 }
282 
283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
284                                const DataLayout &DL, AssumptionCache *AC,
285                                const Instruction *CxtI, const DominatorTree *DT,
286                                bool UseInstrInfo) {
287   assert(LHS->getType() == RHS->getType() &&
288          "LHS and RHS should have the same type");
289   assert(LHS->getType()->isIntOrIntVectorTy() &&
290          "LHS and RHS should be integers");
291   // Look for an inverted mask: (X & ~M) op (Y & M).
292   Value *M;
293   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
294       match(RHS, m_c_And(m_Specific(M), m_Value())))
295     return true;
296   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
297       match(LHS, m_c_And(m_Specific(M), m_Value())))
298     return true;
299   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
300   KnownBits LHSKnown(IT->getBitWidth());
301   KnownBits RHSKnown(IT->getBitWidth());
302   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
303   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
304   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
305 }
306 
307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
308   for (const User *U : CxtI->users()) {
309     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
310       if (IC->isEquality())
311         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
312           if (C->isNullValue())
313             continue;
314     return false;
315   }
316   return true;
317 }
318 
319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
320                                    const Query &Q);
321 
322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
323                                   bool OrZero, unsigned Depth,
324                                   AssumptionCache *AC, const Instruction *CxtI,
325                                   const DominatorTree *DT, bool UseInstrInfo) {
326   return ::isKnownToBeAPowerOfTwo(
327       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
328 }
329 
330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
331                            unsigned Depth, const Query &Q);
332 
333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
334 
335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
336                           AssumptionCache *AC, const Instruction *CxtI,
337                           const DominatorTree *DT, bool UseInstrInfo) {
338   return ::isKnownNonZero(V, Depth,
339                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
340 }
341 
342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
343                               unsigned Depth, AssumptionCache *AC,
344                               const Instruction *CxtI, const DominatorTree *DT,
345                               bool UseInstrInfo) {
346   KnownBits Known =
347       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
348   return Known.isNonNegative();
349 }
350 
351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
352                            AssumptionCache *AC, const Instruction *CxtI,
353                            const DominatorTree *DT, bool UseInstrInfo) {
354   if (auto *CI = dyn_cast<ConstantInt>(V))
355     return CI->getValue().isStrictlyPositive();
356 
357   // TODO: We'd doing two recursive queries here.  We should factor this such
358   // that only a single query is needed.
359   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
360          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
361 }
362 
363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
364                            AssumptionCache *AC, const Instruction *CxtI,
365                            const DominatorTree *DT, bool UseInstrInfo) {
366   KnownBits Known =
367       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
368   return Known.isNegative();
369 }
370 
371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
372                             const Query &Q);
373 
374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
375                            const DataLayout &DL, AssumptionCache *AC,
376                            const Instruction *CxtI, const DominatorTree *DT,
377                            bool UseInstrInfo) {
378   return ::isKnownNonEqual(V1, V2, 0,
379                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
380                                  UseInstrInfo, /*ORE=*/nullptr));
381 }
382 
383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
384                               const Query &Q);
385 
386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
387                              const DataLayout &DL, unsigned Depth,
388                              AssumptionCache *AC, const Instruction *CxtI,
389                              const DominatorTree *DT, bool UseInstrInfo) {
390   return ::MaskedValueIsZero(
391       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
392 }
393 
394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
395                                    unsigned Depth, const Query &Q);
396 
397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
398                                    const Query &Q) {
399   // FIXME: We currently have no way to represent the DemandedElts of a scalable
400   // vector
401   if (isa<ScalableVectorType>(V->getType()))
402     return 1;
403 
404   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
405   APInt DemandedElts =
406       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
407   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
408 }
409 
410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
411                                   unsigned Depth, AssumptionCache *AC,
412                                   const Instruction *CxtI,
413                                   const DominatorTree *DT, bool UseInstrInfo) {
414   return ::ComputeNumSignBits(
415       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
416 }
417 
418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
419                                    bool NSW, const APInt &DemandedElts,
420                                    KnownBits &KnownOut, KnownBits &Known2,
421                                    unsigned Depth, const Query &Q) {
422   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
423 
424   // If one operand is unknown and we have no nowrap information,
425   // the result will be unknown independently of the second operand.
426   if (KnownOut.isUnknown() && !NSW)
427     return;
428 
429   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
430   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
431 }
432 
433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
434                                 const APInt &DemandedElts, KnownBits &Known,
435                                 KnownBits &Known2, unsigned Depth,
436                                 const Query &Q) {
437   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
438   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
439 
440   bool isKnownNegative = false;
441   bool isKnownNonNegative = false;
442   // If the multiplication is known not to overflow, compute the sign bit.
443   if (NSW) {
444     if (Op0 == Op1) {
445       // The product of a number with itself is non-negative.
446       isKnownNonNegative = true;
447     } else {
448       bool isKnownNonNegativeOp1 = Known.isNonNegative();
449       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
450       bool isKnownNegativeOp1 = Known.isNegative();
451       bool isKnownNegativeOp0 = Known2.isNegative();
452       // The product of two numbers with the same sign is non-negative.
453       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
454                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
455       // The product of a negative number and a non-negative number is either
456       // negative or zero.
457       if (!isKnownNonNegative)
458         isKnownNegative =
459             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
460              Known2.isNonZero()) ||
461             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
462     }
463   }
464 
465   Known = KnownBits::computeForMul(Known, Known2);
466 
467   // Only make use of no-wrap flags if we failed to compute the sign bit
468   // directly.  This matters if the multiplication always overflows, in
469   // which case we prefer to follow the result of the direct computation,
470   // though as the program is invoking undefined behaviour we can choose
471   // whatever we like here.
472   if (isKnownNonNegative && !Known.isNegative())
473     Known.makeNonNegative();
474   else if (isKnownNegative && !Known.isNonNegative())
475     Known.makeNegative();
476 }
477 
478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
479                                              KnownBits &Known) {
480   unsigned BitWidth = Known.getBitWidth();
481   unsigned NumRanges = Ranges.getNumOperands() / 2;
482   assert(NumRanges >= 1);
483 
484   Known.Zero.setAllBits();
485   Known.One.setAllBits();
486 
487   for (unsigned i = 0; i < NumRanges; ++i) {
488     ConstantInt *Lower =
489         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
490     ConstantInt *Upper =
491         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
492     ConstantRange Range(Lower->getValue(), Upper->getValue());
493 
494     // The first CommonPrefixBits of all values in Range are equal.
495     unsigned CommonPrefixBits =
496         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
497     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
498     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
499     Known.One &= UnsignedMax & Mask;
500     Known.Zero &= ~UnsignedMax & Mask;
501   }
502 }
503 
504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
505   SmallVector<const Value *, 16> WorkSet(1, I);
506   SmallPtrSet<const Value *, 32> Visited;
507   SmallPtrSet<const Value *, 16> EphValues;
508 
509   // The instruction defining an assumption's condition itself is always
510   // considered ephemeral to that assumption (even if it has other
511   // non-ephemeral users). See r246696's test case for an example.
512   if (is_contained(I->operands(), E))
513     return true;
514 
515   while (!WorkSet.empty()) {
516     const Value *V = WorkSet.pop_back_val();
517     if (!Visited.insert(V).second)
518       continue;
519 
520     // If all uses of this value are ephemeral, then so is this value.
521     if (llvm::all_of(V->users(), [&](const User *U) {
522                                    return EphValues.count(U);
523                                  })) {
524       if (V == E)
525         return true;
526 
527       if (V == I || isSafeToSpeculativelyExecute(V)) {
528        EphValues.insert(V);
529        if (const User *U = dyn_cast<User>(V))
530          append_range(WorkSet, U->operands());
531       }
532     }
533   }
534 
535   return false;
536 }
537 
538 // Is this an intrinsic that cannot be speculated but also cannot trap?
539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
540   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
541     return CI->isAssumeLikeIntrinsic();
542 
543   return false;
544 }
545 
546 bool llvm::isValidAssumeForContext(const Instruction *Inv,
547                                    const Instruction *CxtI,
548                                    const DominatorTree *DT) {
549   // There are two restrictions on the use of an assume:
550   //  1. The assume must dominate the context (or the control flow must
551   //     reach the assume whenever it reaches the context).
552   //  2. The context must not be in the assume's set of ephemeral values
553   //     (otherwise we will use the assume to prove that the condition
554   //     feeding the assume is trivially true, thus causing the removal of
555   //     the assume).
556 
557   if (Inv->getParent() == CxtI->getParent()) {
558     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
559     // in the BB.
560     if (Inv->comesBefore(CxtI))
561       return true;
562 
563     // Don't let an assume affect itself - this would cause the problems
564     // `isEphemeralValueOf` is trying to prevent, and it would also make
565     // the loop below go out of bounds.
566     if (Inv == CxtI)
567       return false;
568 
569     // The context comes first, but they're both in the same block.
570     // Make sure there is nothing in between that might interrupt
571     // the control flow, not even CxtI itself.
572     // We limit the scan distance between the assume and its context instruction
573     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
574     // it can be adjusted if needed (could be turned into a cl::opt).
575     unsigned ScanLimit = 15;
576     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
577       if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0)
578         return false;
579 
580     return !isEphemeralValueOf(Inv, CxtI);
581   }
582 
583   // Inv and CxtI are in different blocks.
584   if (DT) {
585     if (DT->dominates(Inv, CxtI))
586       return true;
587   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
588     // We don't have a DT, but this trivially dominates.
589     return true;
590   }
591 
592   return false;
593 }
594 
595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
596   // v u> y implies v != 0.
597   if (Pred == ICmpInst::ICMP_UGT)
598     return true;
599 
600   // Special-case v != 0 to also handle v != null.
601   if (Pred == ICmpInst::ICMP_NE)
602     return match(RHS, m_Zero());
603 
604   // All other predicates - rely on generic ConstantRange handling.
605   const APInt *C;
606   if (!match(RHS, m_APInt(C)))
607     return false;
608 
609   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
610   return !TrueValues.contains(APInt::getNullValue(C->getBitWidth()));
611 }
612 
613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
614   // Use of assumptions is context-sensitive. If we don't have a context, we
615   // cannot use them!
616   if (!Q.AC || !Q.CxtI)
617     return false;
618 
619   if (Q.CxtI && V->getType()->isPointerTy()) {
620     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
621     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
622                               V->getType()->getPointerAddressSpace()))
623       AttrKinds.push_back(Attribute::Dereferenceable);
624 
625     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
626       return true;
627   }
628 
629   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
630     if (!AssumeVH)
631       continue;
632     CallInst *I = cast<CallInst>(AssumeVH);
633     assert(I->getFunction() == Q.CxtI->getFunction() &&
634            "Got assumption for the wrong function!");
635     if (Q.isExcluded(I))
636       continue;
637 
638     // Warning: This loop can end up being somewhat performance sensitive.
639     // We're running this loop for once for each value queried resulting in a
640     // runtime of ~O(#assumes * #values).
641 
642     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
643            "must be an assume intrinsic");
644 
645     Value *RHS;
646     CmpInst::Predicate Pred;
647     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
648     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
649       return false;
650 
651     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
652       return true;
653   }
654 
655   return false;
656 }
657 
658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
659                                        unsigned Depth, const Query &Q) {
660   // Use of assumptions is context-sensitive. If we don't have a context, we
661   // cannot use them!
662   if (!Q.AC || !Q.CxtI)
663     return;
664 
665   unsigned BitWidth = Known.getBitWidth();
666 
667   // Refine Known set if the pointer alignment is set by assume bundles.
668   if (V->getType()->isPointerTy()) {
669     if (RetainedKnowledge RK = getKnowledgeValidInContext(
670             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
671       Known.Zero.setLowBits(Log2_32(RK.ArgValue));
672     }
673   }
674 
675   // Note that the patterns below need to be kept in sync with the code
676   // in AssumptionCache::updateAffectedValues.
677 
678   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
679     if (!AssumeVH)
680       continue;
681     CallInst *I = cast<CallInst>(AssumeVH);
682     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
683            "Got assumption for the wrong function!");
684     if (Q.isExcluded(I))
685       continue;
686 
687     // Warning: This loop can end up being somewhat performance sensitive.
688     // We're running this loop for once for each value queried resulting in a
689     // runtime of ~O(#assumes * #values).
690 
691     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
692            "must be an assume intrinsic");
693 
694     Value *Arg = I->getArgOperand(0);
695 
696     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
697       assert(BitWidth == 1 && "assume operand is not i1?");
698       Known.setAllOnes();
699       return;
700     }
701     if (match(Arg, m_Not(m_Specific(V))) &&
702         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
703       assert(BitWidth == 1 && "assume operand is not i1?");
704       Known.setAllZero();
705       return;
706     }
707 
708     // The remaining tests are all recursive, so bail out if we hit the limit.
709     if (Depth == MaxAnalysisRecursionDepth)
710       continue;
711 
712     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
713     if (!Cmp)
714       continue;
715 
716     // Note that ptrtoint may change the bitwidth.
717     Value *A, *B;
718     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
719 
720     CmpInst::Predicate Pred;
721     uint64_t C;
722     switch (Cmp->getPredicate()) {
723     default:
724       break;
725     case ICmpInst::ICMP_EQ:
726       // assume(v = a)
727       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
728           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
729         KnownBits RHSKnown =
730             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
731         Known.Zero |= RHSKnown.Zero;
732         Known.One  |= RHSKnown.One;
733       // assume(v & b = a)
734       } else if (match(Cmp,
735                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
736                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
737         KnownBits RHSKnown =
738             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
739         KnownBits MaskKnown =
740             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
741 
742         // For those bits in the mask that are known to be one, we can propagate
743         // known bits from the RHS to V.
744         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
745         Known.One  |= RHSKnown.One  & MaskKnown.One;
746       // assume(~(v & b) = a)
747       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
748                                      m_Value(A))) &&
749                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
750         KnownBits RHSKnown =
751             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
752         KnownBits MaskKnown =
753             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
754 
755         // For those bits in the mask that are known to be one, we can propagate
756         // inverted known bits from the RHS to V.
757         Known.Zero |= RHSKnown.One  & MaskKnown.One;
758         Known.One  |= RHSKnown.Zero & MaskKnown.One;
759       // assume(v | b = a)
760       } else if (match(Cmp,
761                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
762                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
763         KnownBits RHSKnown =
764             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
765         KnownBits BKnown =
766             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
767 
768         // For those bits in B that are known to be zero, we can propagate known
769         // bits from the RHS to V.
770         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
771         Known.One  |= RHSKnown.One  & BKnown.Zero;
772       // assume(~(v | b) = a)
773       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
774                                      m_Value(A))) &&
775                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
776         KnownBits RHSKnown =
777             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
778         KnownBits BKnown =
779             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
780 
781         // For those bits in B that are known to be zero, we can propagate
782         // inverted known bits from the RHS to V.
783         Known.Zero |= RHSKnown.One  & BKnown.Zero;
784         Known.One  |= RHSKnown.Zero & BKnown.Zero;
785       // assume(v ^ b = a)
786       } else if (match(Cmp,
787                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
788                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
789         KnownBits RHSKnown =
790             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
791         KnownBits BKnown =
792             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
793 
794         // For those bits in B that are known to be zero, we can propagate known
795         // bits from the RHS to V. For those bits in B that are known to be one,
796         // we can propagate inverted known bits from the RHS to V.
797         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
798         Known.One  |= RHSKnown.One  & BKnown.Zero;
799         Known.Zero |= RHSKnown.One  & BKnown.One;
800         Known.One  |= RHSKnown.Zero & BKnown.One;
801       // assume(~(v ^ b) = a)
802       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
803                                      m_Value(A))) &&
804                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
805         KnownBits RHSKnown =
806             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
807         KnownBits BKnown =
808             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
809 
810         // For those bits in B that are known to be zero, we can propagate
811         // inverted known bits from the RHS to V. For those bits in B that are
812         // known to be one, we can propagate known bits from the RHS to V.
813         Known.Zero |= RHSKnown.One  & BKnown.Zero;
814         Known.One  |= RHSKnown.Zero & BKnown.Zero;
815         Known.Zero |= RHSKnown.Zero & BKnown.One;
816         Known.One  |= RHSKnown.One  & BKnown.One;
817       // assume(v << c = a)
818       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
819                                      m_Value(A))) &&
820                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
821         KnownBits RHSKnown =
822             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
823 
824         // For those bits in RHS that are known, we can propagate them to known
825         // bits in V shifted to the right by C.
826         RHSKnown.Zero.lshrInPlace(C);
827         Known.Zero |= RHSKnown.Zero;
828         RHSKnown.One.lshrInPlace(C);
829         Known.One  |= RHSKnown.One;
830       // assume(~(v << c) = a)
831       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
832                                      m_Value(A))) &&
833                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
834         KnownBits RHSKnown =
835             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
836         // For those bits in RHS that are known, we can propagate them inverted
837         // to known bits in V shifted to the right by C.
838         RHSKnown.One.lshrInPlace(C);
839         Known.Zero |= RHSKnown.One;
840         RHSKnown.Zero.lshrInPlace(C);
841         Known.One  |= RHSKnown.Zero;
842       // assume(v >> c = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
848         // For those bits in RHS that are known, we can propagate them to known
849         // bits in V shifted to the right by C.
850         Known.Zero |= RHSKnown.Zero << C;
851         Known.One  |= RHSKnown.One  << C;
852       // assume(~(v >> c) = a)
853       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
854                                      m_Value(A))) &&
855                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
856         KnownBits RHSKnown =
857             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
858         // For those bits in RHS that are known, we can propagate them inverted
859         // to known bits in V shifted to the right by C.
860         Known.Zero |= RHSKnown.One  << C;
861         Known.One  |= RHSKnown.Zero << C;
862       }
863       break;
864     case ICmpInst::ICMP_SGE:
865       // assume(v >=_s c) where c is non-negative
866       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
867           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
868         KnownBits RHSKnown =
869             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
870 
871         if (RHSKnown.isNonNegative()) {
872           // We know that the sign bit is zero.
873           Known.makeNonNegative();
874         }
875       }
876       break;
877     case ICmpInst::ICMP_SGT:
878       // assume(v >_s c) where c is at least -1.
879       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
880           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
881         KnownBits RHSKnown =
882             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
883 
884         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
885           // We know that the sign bit is zero.
886           Known.makeNonNegative();
887         }
888       }
889       break;
890     case ICmpInst::ICMP_SLE:
891       // assume(v <=_s c) where c is negative
892       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
893           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
894         KnownBits RHSKnown =
895             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
896 
897         if (RHSKnown.isNegative()) {
898           // We know that the sign bit is one.
899           Known.makeNegative();
900         }
901       }
902       break;
903     case ICmpInst::ICMP_SLT:
904       // assume(v <_s c) where c is non-positive
905       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
906           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
907         KnownBits RHSKnown =
908             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
909 
910         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
911           // We know that the sign bit is one.
912           Known.makeNegative();
913         }
914       }
915       break;
916     case ICmpInst::ICMP_ULE:
917       // assume(v <=_u c)
918       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
919           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
920         KnownBits RHSKnown =
921             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
922 
923         // Whatever high bits in c are zero are known to be zero.
924         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
925       }
926       break;
927     case ICmpInst::ICMP_ULT:
928       // assume(v <_u c)
929       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
930           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
931         KnownBits RHSKnown =
932             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
933 
934         // If the RHS is known zero, then this assumption must be wrong (nothing
935         // is unsigned less than zero). Signal a conflict and get out of here.
936         if (RHSKnown.isZero()) {
937           Known.Zero.setAllBits();
938           Known.One.setAllBits();
939           break;
940         }
941 
942         // Whatever high bits in c are zero are known to be zero (if c is a power
943         // of 2, then one more).
944         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
945           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
946         else
947           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
948       }
949       break;
950     }
951   }
952 
953   // If assumptions conflict with each other or previous known bits, then we
954   // have a logical fallacy. It's possible that the assumption is not reachable,
955   // so this isn't a real bug. On the other hand, the program may have undefined
956   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
957   // clear out the known bits, try to warn the user, and hope for the best.
958   if (Known.Zero.intersects(Known.One)) {
959     Known.resetAll();
960 
961     if (Q.ORE)
962       Q.ORE->emit([&]() {
963         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
964         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
965                                           CxtI)
966                << "Detected conflicting code assumptions. Program may "
967                   "have undefined behavior, or compiler may have "
968                   "internal error.";
969       });
970   }
971 }
972 
973 /// Compute known bits from a shift operator, including those with a
974 /// non-constant shift amount. Known is the output of this function. Known2 is a
975 /// pre-allocated temporary with the same bit width as Known and on return
976 /// contains the known bit of the shift value source. KF is an
977 /// operator-specific function that, given the known-bits and a shift amount,
978 /// compute the implied known-bits of the shift operator's result respectively
979 /// for that shift amount. The results from calling KF are conservatively
980 /// combined for all permitted shift amounts.
981 static void computeKnownBitsFromShiftOperator(
982     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
983     KnownBits &Known2, unsigned Depth, const Query &Q,
984     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
985   unsigned BitWidth = Known.getBitWidth();
986   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
987   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
988 
989   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
990   // BitWidth > 64 and any upper bits are known, we'll end up returning the
991   // limit value (which implies all bits are known).
992   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
993   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
994   bool ShiftAmtIsConstant = Known.isConstant();
995   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
996 
997   if (ShiftAmtIsConstant) {
998     Known = KF(Known2, Known);
999 
1000     // If the known bits conflict, this must be an overflowing left shift, so
1001     // the shift result is poison. We can return anything we want. Choose 0 for
1002     // the best folding opportunity.
1003     if (Known.hasConflict())
1004       Known.setAllZero();
1005 
1006     return;
1007   }
1008 
1009   // If the shift amount could be greater than or equal to the bit-width of the
1010   // LHS, the value could be poison, but bail out because the check below is
1011   // expensive.
1012   // TODO: Should we just carry on?
1013   if (MaxShiftAmtIsOutOfRange) {
1014     Known.resetAll();
1015     return;
1016   }
1017 
1018   // It would be more-clearly correct to use the two temporaries for this
1019   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1020   Known.resetAll();
1021 
1022   // If we know the shifter operand is nonzero, we can sometimes infer more
1023   // known bits. However this is expensive to compute, so be lazy about it and
1024   // only compute it when absolutely necessary.
1025   Optional<bool> ShifterOperandIsNonZero;
1026 
1027   // Early exit if we can't constrain any well-defined shift amount.
1028   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1029       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1030     ShifterOperandIsNonZero =
1031         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1032     if (!*ShifterOperandIsNonZero)
1033       return;
1034   }
1035 
1036   Known.Zero.setAllBits();
1037   Known.One.setAllBits();
1038   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1039     // Combine the shifted known input bits only for those shift amounts
1040     // compatible with its known constraints.
1041     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1042       continue;
1043     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1044       continue;
1045     // If we know the shifter is nonzero, we may be able to infer more known
1046     // bits. This check is sunk down as far as possible to avoid the expensive
1047     // call to isKnownNonZero if the cheaper checks above fail.
1048     if (ShiftAmt == 0) {
1049       if (!ShifterOperandIsNonZero.hasValue())
1050         ShifterOperandIsNonZero =
1051             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1052       if (*ShifterOperandIsNonZero)
1053         continue;
1054     }
1055 
1056     Known = KnownBits::commonBits(
1057         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1058   }
1059 
1060   // If the known bits conflict, the result is poison. Return a 0 and hope the
1061   // caller can further optimize that.
1062   if (Known.hasConflict())
1063     Known.setAllZero();
1064 }
1065 
1066 static void computeKnownBitsFromOperator(const Operator *I,
1067                                          const APInt &DemandedElts,
1068                                          KnownBits &Known, unsigned Depth,
1069                                          const Query &Q) {
1070   unsigned BitWidth = Known.getBitWidth();
1071 
1072   KnownBits Known2(BitWidth);
1073   switch (I->getOpcode()) {
1074   default: break;
1075   case Instruction::Load:
1076     if (MDNode *MD =
1077             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1078       computeKnownBitsFromRangeMetadata(*MD, Known);
1079     break;
1080   case Instruction::And: {
1081     // If either the LHS or the RHS are Zero, the result is zero.
1082     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1083     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1084 
1085     Known &= Known2;
1086 
1087     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1088     // here we handle the more general case of adding any odd number by
1089     // matching the form add(x, add(x, y)) where y is odd.
1090     // TODO: This could be generalized to clearing any bit set in y where the
1091     // following bit is known to be unset in y.
1092     Value *X = nullptr, *Y = nullptr;
1093     if (!Known.Zero[0] && !Known.One[0] &&
1094         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1095       Known2.resetAll();
1096       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1097       if (Known2.countMinTrailingOnes() > 0)
1098         Known.Zero.setBit(0);
1099     }
1100     break;
1101   }
1102   case Instruction::Or:
1103     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1104     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1105 
1106     Known |= Known2;
1107     break;
1108   case Instruction::Xor:
1109     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1110     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1111 
1112     Known ^= Known2;
1113     break;
1114   case Instruction::Mul: {
1115     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1116     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1117                         Known, Known2, Depth, Q);
1118     break;
1119   }
1120   case Instruction::UDiv: {
1121     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1122     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1123     Known = KnownBits::udiv(Known, Known2);
1124     break;
1125   }
1126   case Instruction::Select: {
1127     const Value *LHS = nullptr, *RHS = nullptr;
1128     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1129     if (SelectPatternResult::isMinOrMax(SPF)) {
1130       computeKnownBits(RHS, Known, Depth + 1, Q);
1131       computeKnownBits(LHS, Known2, Depth + 1, Q);
1132       switch (SPF) {
1133       default:
1134         llvm_unreachable("Unhandled select pattern flavor!");
1135       case SPF_SMAX:
1136         Known = KnownBits::smax(Known, Known2);
1137         break;
1138       case SPF_SMIN:
1139         Known = KnownBits::smin(Known, Known2);
1140         break;
1141       case SPF_UMAX:
1142         Known = KnownBits::umax(Known, Known2);
1143         break;
1144       case SPF_UMIN:
1145         Known = KnownBits::umin(Known, Known2);
1146         break;
1147       }
1148       break;
1149     }
1150 
1151     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1152     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1153 
1154     // Only known if known in both the LHS and RHS.
1155     Known = KnownBits::commonBits(Known, Known2);
1156 
1157     if (SPF == SPF_ABS) {
1158       // RHS from matchSelectPattern returns the negation part of abs pattern.
1159       // If the negate has an NSW flag we can assume the sign bit of the result
1160       // will be 0 because that makes abs(INT_MIN) undefined.
1161       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1162           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1163         Known.Zero.setSignBit();
1164     }
1165 
1166     break;
1167   }
1168   case Instruction::FPTrunc:
1169   case Instruction::FPExt:
1170   case Instruction::FPToUI:
1171   case Instruction::FPToSI:
1172   case Instruction::SIToFP:
1173   case Instruction::UIToFP:
1174     break; // Can't work with floating point.
1175   case Instruction::PtrToInt:
1176   case Instruction::IntToPtr:
1177     // Fall through and handle them the same as zext/trunc.
1178     LLVM_FALLTHROUGH;
1179   case Instruction::ZExt:
1180   case Instruction::Trunc: {
1181     Type *SrcTy = I->getOperand(0)->getType();
1182 
1183     unsigned SrcBitWidth;
1184     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1185     // which fall through here.
1186     Type *ScalarTy = SrcTy->getScalarType();
1187     SrcBitWidth = ScalarTy->isPointerTy() ?
1188       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1189       Q.DL.getTypeSizeInBits(ScalarTy);
1190 
1191     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1192     Known = Known.anyextOrTrunc(SrcBitWidth);
1193     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1194     Known = Known.zextOrTrunc(BitWidth);
1195     break;
1196   }
1197   case Instruction::BitCast: {
1198     Type *SrcTy = I->getOperand(0)->getType();
1199     if (SrcTy->isIntOrPtrTy() &&
1200         // TODO: For now, not handling conversions like:
1201         // (bitcast i64 %x to <2 x i32>)
1202         !I->getType()->isVectorTy()) {
1203       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1204       break;
1205     }
1206     break;
1207   }
1208   case Instruction::SExt: {
1209     // Compute the bits in the result that are not present in the input.
1210     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1211 
1212     Known = Known.trunc(SrcBitWidth);
1213     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1214     // If the sign bit of the input is known set or clear, then we know the
1215     // top bits of the result.
1216     Known = Known.sext(BitWidth);
1217     break;
1218   }
1219   case Instruction::Shl: {
1220     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1221     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1222       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1223       // If this shift has "nsw" keyword, then the result is either a poison
1224       // value or has the same sign bit as the first operand.
1225       if (NSW) {
1226         if (KnownVal.Zero.isSignBitSet())
1227           Result.Zero.setSignBit();
1228         if (KnownVal.One.isSignBitSet())
1229           Result.One.setSignBit();
1230       }
1231       return Result;
1232     };
1233     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1234                                       KF);
1235     // Trailing zeros of a right-shifted constant never decrease.
1236     const APInt *C;
1237     if (match(I->getOperand(0), m_APInt(C)))
1238       Known.Zero.setLowBits(C->countTrailingZeros());
1239     break;
1240   }
1241   case Instruction::LShr: {
1242     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1243       return KnownBits::lshr(KnownVal, KnownAmt);
1244     };
1245     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1246                                       KF);
1247     // Leading zeros of a left-shifted constant never decrease.
1248     const APInt *C;
1249     if (match(I->getOperand(0), m_APInt(C)))
1250       Known.Zero.setHighBits(C->countLeadingZeros());
1251     break;
1252   }
1253   case Instruction::AShr: {
1254     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1255       return KnownBits::ashr(KnownVal, KnownAmt);
1256     };
1257     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1258                                       KF);
1259     break;
1260   }
1261   case Instruction::Sub: {
1262     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1263     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1264                            DemandedElts, Known, Known2, Depth, Q);
1265     break;
1266   }
1267   case Instruction::Add: {
1268     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1269     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1270                            DemandedElts, Known, Known2, Depth, Q);
1271     break;
1272   }
1273   case Instruction::SRem:
1274     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1276     Known = KnownBits::srem(Known, Known2);
1277     break;
1278 
1279   case Instruction::URem:
1280     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1281     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1282     Known = KnownBits::urem(Known, Known2);
1283     break;
1284   case Instruction::Alloca:
1285     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1286     break;
1287   case Instruction::GetElementPtr: {
1288     // Analyze all of the subscripts of this getelementptr instruction
1289     // to determine if we can prove known low zero bits.
1290     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1291     // Accumulate the constant indices in a separate variable
1292     // to minimize the number of calls to computeForAddSub.
1293     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1294 
1295     gep_type_iterator GTI = gep_type_begin(I);
1296     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1297       // TrailZ can only become smaller, short-circuit if we hit zero.
1298       if (Known.isUnknown())
1299         break;
1300 
1301       Value *Index = I->getOperand(i);
1302 
1303       // Handle case when index is zero.
1304       Constant *CIndex = dyn_cast<Constant>(Index);
1305       if (CIndex && CIndex->isZeroValue())
1306         continue;
1307 
1308       if (StructType *STy = GTI.getStructTypeOrNull()) {
1309         // Handle struct member offset arithmetic.
1310 
1311         assert(CIndex &&
1312                "Access to structure field must be known at compile time");
1313 
1314         if (CIndex->getType()->isVectorTy())
1315           Index = CIndex->getSplatValue();
1316 
1317         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1318         const StructLayout *SL = Q.DL.getStructLayout(STy);
1319         uint64_t Offset = SL->getElementOffset(Idx);
1320         AccConstIndices += Offset;
1321         continue;
1322       }
1323 
1324       // Handle array index arithmetic.
1325       Type *IndexedTy = GTI.getIndexedType();
1326       if (!IndexedTy->isSized()) {
1327         Known.resetAll();
1328         break;
1329       }
1330 
1331       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1332       KnownBits IndexBits(IndexBitWidth);
1333       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1334       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1335       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1336       KnownBits ScalingFactor(IndexBitWidth);
1337       // Multiply by current sizeof type.
1338       // &A[i] == A + i * sizeof(*A[i]).
1339       if (IndexTypeSize.isScalable()) {
1340         // For scalable types the only thing we know about sizeof is
1341         // that this is a multiple of the minimum size.
1342         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1343       } else if (IndexBits.isConstant()) {
1344         APInt IndexConst = IndexBits.getConstant();
1345         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1346         IndexConst *= ScalingFactor;
1347         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1348         continue;
1349       } else {
1350         ScalingFactor =
1351             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1352       }
1353       IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor);
1354 
1355       // If the offsets have a different width from the pointer, according
1356       // to the language reference we need to sign-extend or truncate them
1357       // to the width of the pointer.
1358       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1359 
1360       // Note that inbounds does *not* guarantee nsw for the addition, as only
1361       // the offset is signed, while the base address is unsigned.
1362       Known = KnownBits::computeForAddSub(
1363           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1364     }
1365     if (!Known.isUnknown() && !AccConstIndices.isNullValue()) {
1366       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1367       Known = KnownBits::computeForAddSub(
1368           /*Add=*/true, /*NSW=*/false, Known, Index);
1369     }
1370     break;
1371   }
1372   case Instruction::PHI: {
1373     const PHINode *P = cast<PHINode>(I);
1374     BinaryOperator *BO = nullptr;
1375     Value *R = nullptr, *L = nullptr;
1376     if (matchSimpleRecurrence(P, BO, R, L)) {
1377       // Handle the case of a simple two-predecessor recurrence PHI.
1378       // There's a lot more that could theoretically be done here, but
1379       // this is sufficient to catch some interesting cases.
1380       unsigned Opcode = BO->getOpcode();
1381 
1382       // If this is a shift recurrence, we know the bits being shifted in.
1383       // We can combine that with information about the start value of the
1384       // recurrence to conclude facts about the result.
1385       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1386            Opcode == Instruction::Shl) &&
1387           BO->getOperand(0) == I) {
1388 
1389         // We have matched a recurrence of the form:
1390         // %iv = [R, %entry], [%iv.next, %backedge]
1391         // %iv.next = shift_op %iv, L
1392 
1393         // Recurse with the phi context to avoid concern about whether facts
1394         // inferred hold at original context instruction.  TODO: It may be
1395         // correct to use the original context.  IF warranted, explore and
1396         // add sufficient tests to cover.
1397         Query RecQ = Q;
1398         RecQ.CxtI = P;
1399         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1400         switch (Opcode) {
1401         case Instruction::Shl:
1402           // A shl recurrence will only increase the tailing zeros
1403           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1404           break;
1405         case Instruction::LShr:
1406           // A lshr recurrence will preserve the leading zeros of the
1407           // start value
1408           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1409           break;
1410         case Instruction::AShr:
1411           // An ashr recurrence will extend the initial sign bit
1412           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1413           Known.One.setHighBits(Known2.countMinLeadingOnes());
1414           break;
1415         };
1416       }
1417 
1418       // Check for operations that have the property that if
1419       // both their operands have low zero bits, the result
1420       // will have low zero bits.
1421       if (Opcode == Instruction::Add ||
1422           Opcode == Instruction::Sub ||
1423           Opcode == Instruction::And ||
1424           Opcode == Instruction::Or ||
1425           Opcode == Instruction::Mul) {
1426         // Change the context instruction to the "edge" that flows into the
1427         // phi. This is important because that is where the value is actually
1428         // "evaluated" even though it is used later somewhere else. (see also
1429         // D69571).
1430         Query RecQ = Q;
1431 
1432         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1433         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1434         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1435 
1436         // Ok, we have a PHI of the form L op= R. Check for low
1437         // zero bits.
1438         RecQ.CxtI = RInst;
1439         computeKnownBits(R, Known2, Depth + 1, RecQ);
1440 
1441         // We need to take the minimum number of known bits
1442         KnownBits Known3(BitWidth);
1443         RecQ.CxtI = LInst;
1444         computeKnownBits(L, Known3, Depth + 1, RecQ);
1445 
1446         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1447                                        Known3.countMinTrailingZeros()));
1448 
1449         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1450         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1451           // If initial value of recurrence is nonnegative, and we are adding
1452           // a nonnegative number with nsw, the result can only be nonnegative
1453           // or poison value regardless of the number of times we execute the
1454           // add in phi recurrence. If initial value is negative and we are
1455           // adding a negative number with nsw, the result can only be
1456           // negative or poison value. Similar arguments apply to sub and mul.
1457           //
1458           // (add non-negative, non-negative) --> non-negative
1459           // (add negative, negative) --> negative
1460           if (Opcode == Instruction::Add) {
1461             if (Known2.isNonNegative() && Known3.isNonNegative())
1462               Known.makeNonNegative();
1463             else if (Known2.isNegative() && Known3.isNegative())
1464               Known.makeNegative();
1465           }
1466 
1467           // (sub nsw non-negative, negative) --> non-negative
1468           // (sub nsw negative, non-negative) --> negative
1469           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1470             if (Known2.isNonNegative() && Known3.isNegative())
1471               Known.makeNonNegative();
1472             else if (Known2.isNegative() && Known3.isNonNegative())
1473               Known.makeNegative();
1474           }
1475 
1476           // (mul nsw non-negative, non-negative) --> non-negative
1477           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1478                    Known3.isNonNegative())
1479             Known.makeNonNegative();
1480         }
1481 
1482         break;
1483       }
1484     }
1485 
1486     // Unreachable blocks may have zero-operand PHI nodes.
1487     if (P->getNumIncomingValues() == 0)
1488       break;
1489 
1490     // Otherwise take the unions of the known bit sets of the operands,
1491     // taking conservative care to avoid excessive recursion.
1492     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1493       // Skip if every incoming value references to ourself.
1494       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1495         break;
1496 
1497       Known.Zero.setAllBits();
1498       Known.One.setAllBits();
1499       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1500         Value *IncValue = P->getIncomingValue(u);
1501         // Skip direct self references.
1502         if (IncValue == P) continue;
1503 
1504         // Change the context instruction to the "edge" that flows into the
1505         // phi. This is important because that is where the value is actually
1506         // "evaluated" even though it is used later somewhere else. (see also
1507         // D69571).
1508         Query RecQ = Q;
1509         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1510 
1511         Known2 = KnownBits(BitWidth);
1512         // Recurse, but cap the recursion to one level, because we don't
1513         // want to waste time spinning around in loops.
1514         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1515         Known = KnownBits::commonBits(Known, Known2);
1516         // If all bits have been ruled out, there's no need to check
1517         // more operands.
1518         if (Known.isUnknown())
1519           break;
1520       }
1521     }
1522     break;
1523   }
1524   case Instruction::Call:
1525   case Instruction::Invoke:
1526     // If range metadata is attached to this call, set known bits from that,
1527     // and then intersect with known bits based on other properties of the
1528     // function.
1529     if (MDNode *MD =
1530             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1531       computeKnownBitsFromRangeMetadata(*MD, Known);
1532     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1533       computeKnownBits(RV, Known2, Depth + 1, Q);
1534       Known.Zero |= Known2.Zero;
1535       Known.One |= Known2.One;
1536     }
1537     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1538       switch (II->getIntrinsicID()) {
1539       default: break;
1540       case Intrinsic::abs: {
1541         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1542         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1543         Known = Known2.abs(IntMinIsPoison);
1544         break;
1545       }
1546       case Intrinsic::bitreverse:
1547         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1548         Known.Zero |= Known2.Zero.reverseBits();
1549         Known.One |= Known2.One.reverseBits();
1550         break;
1551       case Intrinsic::bswap:
1552         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1553         Known.Zero |= Known2.Zero.byteSwap();
1554         Known.One |= Known2.One.byteSwap();
1555         break;
1556       case Intrinsic::ctlz: {
1557         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1558         // If we have a known 1, its position is our upper bound.
1559         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1560         // If this call is undefined for 0, the result will be less than 2^n.
1561         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1562           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1563         unsigned LowBits = Log2_32(PossibleLZ)+1;
1564         Known.Zero.setBitsFrom(LowBits);
1565         break;
1566       }
1567       case Intrinsic::cttz: {
1568         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1569         // If we have a known 1, its position is our upper bound.
1570         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1571         // If this call is undefined for 0, the result will be less than 2^n.
1572         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1573           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1574         unsigned LowBits = Log2_32(PossibleTZ)+1;
1575         Known.Zero.setBitsFrom(LowBits);
1576         break;
1577       }
1578       case Intrinsic::ctpop: {
1579         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1580         // We can bound the space the count needs.  Also, bits known to be zero
1581         // can't contribute to the population.
1582         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1583         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1584         Known.Zero.setBitsFrom(LowBits);
1585         // TODO: we could bound KnownOne using the lower bound on the number
1586         // of bits which might be set provided by popcnt KnownOne2.
1587         break;
1588       }
1589       case Intrinsic::fshr:
1590       case Intrinsic::fshl: {
1591         const APInt *SA;
1592         if (!match(I->getOperand(2), m_APInt(SA)))
1593           break;
1594 
1595         // Normalize to funnel shift left.
1596         uint64_t ShiftAmt = SA->urem(BitWidth);
1597         if (II->getIntrinsicID() == Intrinsic::fshr)
1598           ShiftAmt = BitWidth - ShiftAmt;
1599 
1600         KnownBits Known3(BitWidth);
1601         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1602         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1603 
1604         Known.Zero =
1605             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1606         Known.One =
1607             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1608         break;
1609       }
1610       case Intrinsic::uadd_sat:
1611       case Intrinsic::usub_sat: {
1612         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1613         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1614         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1615 
1616         // Add: Leading ones of either operand are preserved.
1617         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1618         // as leading zeros in the result.
1619         unsigned LeadingKnown;
1620         if (IsAdd)
1621           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1622                                   Known2.countMinLeadingOnes());
1623         else
1624           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1625                                   Known2.countMinLeadingOnes());
1626 
1627         Known = KnownBits::computeForAddSub(
1628             IsAdd, /* NSW */ false, Known, Known2);
1629 
1630         // We select between the operation result and all-ones/zero
1631         // respectively, so we can preserve known ones/zeros.
1632         if (IsAdd) {
1633           Known.One.setHighBits(LeadingKnown);
1634           Known.Zero.clearAllBits();
1635         } else {
1636           Known.Zero.setHighBits(LeadingKnown);
1637           Known.One.clearAllBits();
1638         }
1639         break;
1640       }
1641       case Intrinsic::umin:
1642         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1643         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1644         Known = KnownBits::umin(Known, Known2);
1645         break;
1646       case Intrinsic::umax:
1647         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1648         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1649         Known = KnownBits::umax(Known, Known2);
1650         break;
1651       case Intrinsic::smin:
1652         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1653         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1654         Known = KnownBits::smin(Known, Known2);
1655         break;
1656       case Intrinsic::smax:
1657         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1658         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1659         Known = KnownBits::smax(Known, Known2);
1660         break;
1661       case Intrinsic::x86_sse42_crc32_64_64:
1662         Known.Zero.setBitsFrom(32);
1663         break;
1664       }
1665     }
1666     break;
1667   case Instruction::ShuffleVector: {
1668     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1669     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1670     if (!Shuf) {
1671       Known.resetAll();
1672       return;
1673     }
1674     // For undef elements, we don't know anything about the common state of
1675     // the shuffle result.
1676     APInt DemandedLHS, DemandedRHS;
1677     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1678       Known.resetAll();
1679       return;
1680     }
1681     Known.One.setAllBits();
1682     Known.Zero.setAllBits();
1683     if (!!DemandedLHS) {
1684       const Value *LHS = Shuf->getOperand(0);
1685       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1686       // If we don't know any bits, early out.
1687       if (Known.isUnknown())
1688         break;
1689     }
1690     if (!!DemandedRHS) {
1691       const Value *RHS = Shuf->getOperand(1);
1692       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1693       Known = KnownBits::commonBits(Known, Known2);
1694     }
1695     break;
1696   }
1697   case Instruction::InsertElement: {
1698     const Value *Vec = I->getOperand(0);
1699     const Value *Elt = I->getOperand(1);
1700     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1701     // Early out if the index is non-constant or out-of-range.
1702     unsigned NumElts = DemandedElts.getBitWidth();
1703     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1704       Known.resetAll();
1705       return;
1706     }
1707     Known.One.setAllBits();
1708     Known.Zero.setAllBits();
1709     unsigned EltIdx = CIdx->getZExtValue();
1710     // Do we demand the inserted element?
1711     if (DemandedElts[EltIdx]) {
1712       computeKnownBits(Elt, Known, Depth + 1, Q);
1713       // If we don't know any bits, early out.
1714       if (Known.isUnknown())
1715         break;
1716     }
1717     // We don't need the base vector element that has been inserted.
1718     APInt DemandedVecElts = DemandedElts;
1719     DemandedVecElts.clearBit(EltIdx);
1720     if (!!DemandedVecElts) {
1721       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1722       Known = KnownBits::commonBits(Known, Known2);
1723     }
1724     break;
1725   }
1726   case Instruction::ExtractElement: {
1727     // Look through extract element. If the index is non-constant or
1728     // out-of-range demand all elements, otherwise just the extracted element.
1729     const Value *Vec = I->getOperand(0);
1730     const Value *Idx = I->getOperand(1);
1731     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1732     if (isa<ScalableVectorType>(Vec->getType())) {
1733       // FIXME: there's probably *something* we can do with scalable vectors
1734       Known.resetAll();
1735       break;
1736     }
1737     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1738     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1739     if (CIdx && CIdx->getValue().ult(NumElts))
1740       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1741     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1742     break;
1743   }
1744   case Instruction::ExtractValue:
1745     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1746       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1747       if (EVI->getNumIndices() != 1) break;
1748       if (EVI->getIndices()[0] == 0) {
1749         switch (II->getIntrinsicID()) {
1750         default: break;
1751         case Intrinsic::uadd_with_overflow:
1752         case Intrinsic::sadd_with_overflow:
1753           computeKnownBitsAddSub(true, II->getArgOperand(0),
1754                                  II->getArgOperand(1), false, DemandedElts,
1755                                  Known, Known2, Depth, Q);
1756           break;
1757         case Intrinsic::usub_with_overflow:
1758         case Intrinsic::ssub_with_overflow:
1759           computeKnownBitsAddSub(false, II->getArgOperand(0),
1760                                  II->getArgOperand(1), false, DemandedElts,
1761                                  Known, Known2, Depth, Q);
1762           break;
1763         case Intrinsic::umul_with_overflow:
1764         case Intrinsic::smul_with_overflow:
1765           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1766                               DemandedElts, Known, Known2, Depth, Q);
1767           break;
1768         }
1769       }
1770     }
1771     break;
1772   case Instruction::Freeze:
1773     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1774                                   Depth + 1))
1775       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1776     break;
1777   }
1778 }
1779 
1780 /// Determine which bits of V are known to be either zero or one and return
1781 /// them.
1782 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1783                            unsigned Depth, const Query &Q) {
1784   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1785   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1786   return Known;
1787 }
1788 
1789 /// Determine which bits of V are known to be either zero or one and return
1790 /// them.
1791 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1792   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1793   computeKnownBits(V, Known, Depth, Q);
1794   return Known;
1795 }
1796 
1797 /// Determine which bits of V are known to be either zero or one and return
1798 /// them in the Known bit set.
1799 ///
1800 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1801 /// we cannot optimize based on the assumption that it is zero without changing
1802 /// it to be an explicit zero.  If we don't change it to zero, other code could
1803 /// optimized based on the contradictory assumption that it is non-zero.
1804 /// Because instcombine aggressively folds operations with undef args anyway,
1805 /// this won't lose us code quality.
1806 ///
1807 /// This function is defined on values with integer type, values with pointer
1808 /// type, and vectors of integers.  In the case
1809 /// where V is a vector, known zero, and known one values are the
1810 /// same width as the vector element, and the bit is set only if it is true
1811 /// for all of the demanded elements in the vector specified by DemandedElts.
1812 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1813                       KnownBits &Known, unsigned Depth, const Query &Q) {
1814   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1815     // No demanded elts or V is a scalable vector, better to assume we don't
1816     // know anything.
1817     Known.resetAll();
1818     return;
1819   }
1820 
1821   assert(V && "No Value?");
1822   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1823 
1824 #ifndef NDEBUG
1825   Type *Ty = V->getType();
1826   unsigned BitWidth = Known.getBitWidth();
1827 
1828   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1829          "Not integer or pointer type!");
1830 
1831   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1832     assert(
1833         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1834         "DemandedElt width should equal the fixed vector number of elements");
1835   } else {
1836     assert(DemandedElts == APInt(1, 1) &&
1837            "DemandedElt width should be 1 for scalars");
1838   }
1839 
1840   Type *ScalarTy = Ty->getScalarType();
1841   if (ScalarTy->isPointerTy()) {
1842     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1843            "V and Known should have same BitWidth");
1844   } else {
1845     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1846            "V and Known should have same BitWidth");
1847   }
1848 #endif
1849 
1850   const APInt *C;
1851   if (match(V, m_APInt(C))) {
1852     // We know all of the bits for a scalar constant or a splat vector constant!
1853     Known = KnownBits::makeConstant(*C);
1854     return;
1855   }
1856   // Null and aggregate-zero are all-zeros.
1857   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1858     Known.setAllZero();
1859     return;
1860   }
1861   // Handle a constant vector by taking the intersection of the known bits of
1862   // each element.
1863   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1864     // We know that CDV must be a vector of integers. Take the intersection of
1865     // each element.
1866     Known.Zero.setAllBits(); Known.One.setAllBits();
1867     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1868       if (!DemandedElts[i])
1869         continue;
1870       APInt Elt = CDV->getElementAsAPInt(i);
1871       Known.Zero &= ~Elt;
1872       Known.One &= Elt;
1873     }
1874     return;
1875   }
1876 
1877   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1878     // We know that CV must be a vector of integers. Take the intersection of
1879     // each element.
1880     Known.Zero.setAllBits(); Known.One.setAllBits();
1881     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1882       if (!DemandedElts[i])
1883         continue;
1884       Constant *Element = CV->getAggregateElement(i);
1885       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1886       if (!ElementCI) {
1887         Known.resetAll();
1888         return;
1889       }
1890       const APInt &Elt = ElementCI->getValue();
1891       Known.Zero &= ~Elt;
1892       Known.One &= Elt;
1893     }
1894     return;
1895   }
1896 
1897   // Start out not knowing anything.
1898   Known.resetAll();
1899 
1900   // We can't imply anything about undefs.
1901   if (isa<UndefValue>(V))
1902     return;
1903 
1904   // There's no point in looking through other users of ConstantData for
1905   // assumptions.  Confirm that we've handled them all.
1906   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1907 
1908   // All recursive calls that increase depth must come after this.
1909   if (Depth == MaxAnalysisRecursionDepth)
1910     return;
1911 
1912   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1913   // the bits of its aliasee.
1914   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1915     if (!GA->isInterposable())
1916       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1917     return;
1918   }
1919 
1920   if (const Operator *I = dyn_cast<Operator>(V))
1921     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1922 
1923   // Aligned pointers have trailing zeros - refine Known.Zero set
1924   if (isa<PointerType>(V->getType())) {
1925     Align Alignment = V->getPointerAlignment(Q.DL);
1926     Known.Zero.setLowBits(Log2(Alignment));
1927   }
1928 
1929   // computeKnownBitsFromAssume strictly refines Known.
1930   // Therefore, we run them after computeKnownBitsFromOperator.
1931 
1932   // Check whether a nearby assume intrinsic can determine some known bits.
1933   computeKnownBitsFromAssume(V, Known, Depth, Q);
1934 
1935   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1936 }
1937 
1938 /// Return true if the given value is known to have exactly one
1939 /// bit set when defined. For vectors return true if every element is known to
1940 /// be a power of two when defined. Supports values with integer or pointer
1941 /// types and vectors of integers.
1942 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1943                             const Query &Q) {
1944   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1945 
1946   // Attempt to match against constants.
1947   if (OrZero && match(V, m_Power2OrZero()))
1948       return true;
1949   if (match(V, m_Power2()))
1950       return true;
1951 
1952   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1953   // it is shifted off the end then the result is undefined.
1954   if (match(V, m_Shl(m_One(), m_Value())))
1955     return true;
1956 
1957   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1958   // the bottom.  If it is shifted off the bottom then the result is undefined.
1959   if (match(V, m_LShr(m_SignMask(), m_Value())))
1960     return true;
1961 
1962   // The remaining tests are all recursive, so bail out if we hit the limit.
1963   if (Depth++ == MaxAnalysisRecursionDepth)
1964     return false;
1965 
1966   Value *X = nullptr, *Y = nullptr;
1967   // A shift left or a logical shift right of a power of two is a power of two
1968   // or zero.
1969   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1970                  match(V, m_LShr(m_Value(X), m_Value()))))
1971     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1972 
1973   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1974     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1975 
1976   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1977     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1978            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1979 
1980   // Peek through min/max.
1981   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
1982     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
1983            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
1984   }
1985 
1986   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1987     // A power of two and'd with anything is a power of two or zero.
1988     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1989         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1990       return true;
1991     // X & (-X) is always a power of two or zero.
1992     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1993       return true;
1994     return false;
1995   }
1996 
1997   // Adding a power-of-two or zero to the same power-of-two or zero yields
1998   // either the original power-of-two, a larger power-of-two or zero.
1999   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2000     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2001     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2002         Q.IIQ.hasNoSignedWrap(VOBO)) {
2003       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2004           match(X, m_And(m_Value(), m_Specific(Y))))
2005         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2006           return true;
2007       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2008           match(Y, m_And(m_Value(), m_Specific(X))))
2009         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2010           return true;
2011 
2012       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2013       KnownBits LHSBits(BitWidth);
2014       computeKnownBits(X, LHSBits, Depth, Q);
2015 
2016       KnownBits RHSBits(BitWidth);
2017       computeKnownBits(Y, RHSBits, Depth, Q);
2018       // If i8 V is a power of two or zero:
2019       //  ZeroBits: 1 1 1 0 1 1 1 1
2020       // ~ZeroBits: 0 0 0 1 0 0 0 0
2021       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2022         // If OrZero isn't set, we cannot give back a zero result.
2023         // Make sure either the LHS or RHS has a bit set.
2024         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2025           return true;
2026     }
2027   }
2028 
2029   // An exact divide or right shift can only shift off zero bits, so the result
2030   // is a power of two only if the first operand is a power of two and not
2031   // copying a sign bit (sdiv int_min, 2).
2032   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2033       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2034     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2035                                   Depth, Q);
2036   }
2037 
2038   return false;
2039 }
2040 
2041 /// Test whether a GEP's result is known to be non-null.
2042 ///
2043 /// Uses properties inherent in a GEP to try to determine whether it is known
2044 /// to be non-null.
2045 ///
2046 /// Currently this routine does not support vector GEPs.
2047 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2048                               const Query &Q) {
2049   const Function *F = nullptr;
2050   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2051     F = I->getFunction();
2052 
2053   if (!GEP->isInBounds() ||
2054       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2055     return false;
2056 
2057   // FIXME: Support vector-GEPs.
2058   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2059 
2060   // If the base pointer is non-null, we cannot walk to a null address with an
2061   // inbounds GEP in address space zero.
2062   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2063     return true;
2064 
2065   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2066   // If so, then the GEP cannot produce a null pointer, as doing so would
2067   // inherently violate the inbounds contract within address space zero.
2068   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2069        GTI != GTE; ++GTI) {
2070     // Struct types are easy -- they must always be indexed by a constant.
2071     if (StructType *STy = GTI.getStructTypeOrNull()) {
2072       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2073       unsigned ElementIdx = OpC->getZExtValue();
2074       const StructLayout *SL = Q.DL.getStructLayout(STy);
2075       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2076       if (ElementOffset > 0)
2077         return true;
2078       continue;
2079     }
2080 
2081     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2082     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2083       continue;
2084 
2085     // Fast path the constant operand case both for efficiency and so we don't
2086     // increment Depth when just zipping down an all-constant GEP.
2087     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2088       if (!OpC->isZero())
2089         return true;
2090       continue;
2091     }
2092 
2093     // We post-increment Depth here because while isKnownNonZero increments it
2094     // as well, when we pop back up that increment won't persist. We don't want
2095     // to recurse 10k times just because we have 10k GEP operands. We don't
2096     // bail completely out because we want to handle constant GEPs regardless
2097     // of depth.
2098     if (Depth++ >= MaxAnalysisRecursionDepth)
2099       continue;
2100 
2101     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2102       return true;
2103   }
2104 
2105   return false;
2106 }
2107 
2108 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2109                                                   const Instruction *CtxI,
2110                                                   const DominatorTree *DT) {
2111   if (isa<Constant>(V))
2112     return false;
2113 
2114   if (!CtxI || !DT)
2115     return false;
2116 
2117   unsigned NumUsesExplored = 0;
2118   for (auto *U : V->users()) {
2119     // Avoid massive lists
2120     if (NumUsesExplored >= DomConditionsMaxUses)
2121       break;
2122     NumUsesExplored++;
2123 
2124     // If the value is used as an argument to a call or invoke, then argument
2125     // attributes may provide an answer about null-ness.
2126     if (const auto *CB = dyn_cast<CallBase>(U))
2127       if (auto *CalledFunc = CB->getCalledFunction())
2128         for (const Argument &Arg : CalledFunc->args())
2129           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2130               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2131               DT->dominates(CB, CtxI))
2132             return true;
2133 
2134     // If the value is used as a load/store, then the pointer must be non null.
2135     if (V == getLoadStorePointerOperand(U)) {
2136       const Instruction *I = cast<Instruction>(U);
2137       if (!NullPointerIsDefined(I->getFunction(),
2138                                 V->getType()->getPointerAddressSpace()) &&
2139           DT->dominates(I, CtxI))
2140         return true;
2141     }
2142 
2143     // Consider only compare instructions uniquely controlling a branch
2144     Value *RHS;
2145     CmpInst::Predicate Pred;
2146     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2147       continue;
2148 
2149     bool NonNullIfTrue;
2150     if (cmpExcludesZero(Pred, RHS))
2151       NonNullIfTrue = true;
2152     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2153       NonNullIfTrue = false;
2154     else
2155       continue;
2156 
2157     SmallVector<const User *, 4> WorkList;
2158     SmallPtrSet<const User *, 4> Visited;
2159     for (auto *CmpU : U->users()) {
2160       assert(WorkList.empty() && "Should be!");
2161       if (Visited.insert(CmpU).second)
2162         WorkList.push_back(CmpU);
2163 
2164       while (!WorkList.empty()) {
2165         auto *Curr = WorkList.pop_back_val();
2166 
2167         // If a user is an AND, add all its users to the work list. We only
2168         // propagate "pred != null" condition through AND because it is only
2169         // correct to assume that all conditions of AND are met in true branch.
2170         // TODO: Support similar logic of OR and EQ predicate?
2171         if (NonNullIfTrue)
2172           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2173             for (auto *CurrU : Curr->users())
2174               if (Visited.insert(CurrU).second)
2175                 WorkList.push_back(CurrU);
2176             continue;
2177           }
2178 
2179         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2180           assert(BI->isConditional() && "uses a comparison!");
2181 
2182           BasicBlock *NonNullSuccessor =
2183               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2184           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2185           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2186             return true;
2187         } else if (NonNullIfTrue && isGuard(Curr) &&
2188                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2189           return true;
2190         }
2191       }
2192     }
2193   }
2194 
2195   return false;
2196 }
2197 
2198 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2199 /// ensure that the value it's attached to is never Value?  'RangeType' is
2200 /// is the type of the value described by the range.
2201 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2202   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2203   assert(NumRanges >= 1);
2204   for (unsigned i = 0; i < NumRanges; ++i) {
2205     ConstantInt *Lower =
2206         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2207     ConstantInt *Upper =
2208         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2209     ConstantRange Range(Lower->getValue(), Upper->getValue());
2210     if (Range.contains(Value))
2211       return false;
2212   }
2213   return true;
2214 }
2215 
2216 static bool isNonZeroRecurrence(const PHINode *PN) {
2217   // Try and detect a recurrence that monotonically increases from a
2218   // starting value, as these are common as induction variables.
2219   BinaryOperator *BO = nullptr;
2220   Value *Start = nullptr, *Step = nullptr;
2221   const APInt *StartC, *StepC;
2222   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2223       !match(Start, m_APInt(StartC)))
2224     return false;
2225 
2226   switch (BO->getOpcode()) {
2227   case Instruction::Add:
2228     return match(Step, m_APInt(StepC)) &&
2229            ((BO->hasNoUnsignedWrap() && !StartC->isNullValue() &&
2230              !StepC->isNullValue()) ||
2231             (BO->hasNoSignedWrap() && StartC->isStrictlyPositive() &&
2232              StepC->isNonNegative()));
2233   case Instruction::Mul:
2234     return !StartC->isNullValue() && match(Step, m_APInt(StepC)) &&
2235            ((BO->hasNoUnsignedWrap() && !StepC->isNullValue()) ||
2236             (BO->hasNoSignedWrap() && StepC->isStrictlyPositive()));
2237   case Instruction::Shl:
2238     return !StartC->isNullValue() &&
2239            (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap());
2240   case Instruction::AShr:
2241   case Instruction::LShr:
2242     return !StartC->isNullValue() && BO->isExact();
2243   default:
2244     return false;
2245   }
2246 }
2247 
2248 /// Return true if the given value is known to be non-zero when defined. For
2249 /// vectors, return true if every demanded element is known to be non-zero when
2250 /// defined. For pointers, if the context instruction and dominator tree are
2251 /// specified, perform context-sensitive analysis and return true if the
2252 /// pointer couldn't possibly be null at the specified instruction.
2253 /// Supports values with integer or pointer type and vectors of integers.
2254 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2255                     const Query &Q) {
2256   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2257   // vector
2258   if (isa<ScalableVectorType>(V->getType()))
2259     return false;
2260 
2261   if (auto *C = dyn_cast<Constant>(V)) {
2262     if (C->isNullValue())
2263       return false;
2264     if (isa<ConstantInt>(C))
2265       // Must be non-zero due to null test above.
2266       return true;
2267 
2268     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2269       // See the comment for IntToPtr/PtrToInt instructions below.
2270       if (CE->getOpcode() == Instruction::IntToPtr ||
2271           CE->getOpcode() == Instruction::PtrToInt)
2272         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2273                 .getFixedSize() <=
2274             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2275           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2276     }
2277 
2278     // For constant vectors, check that all elements are undefined or known
2279     // non-zero to determine that the whole vector is known non-zero.
2280     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2281       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2282         if (!DemandedElts[i])
2283           continue;
2284         Constant *Elt = C->getAggregateElement(i);
2285         if (!Elt || Elt->isNullValue())
2286           return false;
2287         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2288           return false;
2289       }
2290       return true;
2291     }
2292 
2293     // A global variable in address space 0 is non null unless extern weak
2294     // or an absolute symbol reference. Other address spaces may have null as a
2295     // valid address for a global, so we can't assume anything.
2296     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2297       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2298           GV->getType()->getAddressSpace() == 0)
2299         return true;
2300     } else
2301       return false;
2302   }
2303 
2304   if (auto *I = dyn_cast<Instruction>(V)) {
2305     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2306       // If the possible ranges don't contain zero, then the value is
2307       // definitely non-zero.
2308       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2309         const APInt ZeroValue(Ty->getBitWidth(), 0);
2310         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2311           return true;
2312       }
2313     }
2314   }
2315 
2316   if (isKnownNonZeroFromAssume(V, Q))
2317     return true;
2318 
2319   // Some of the tests below are recursive, so bail out if we hit the limit.
2320   if (Depth++ >= MaxAnalysisRecursionDepth)
2321     return false;
2322 
2323   // Check for pointer simplifications.
2324 
2325   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2326     // Alloca never returns null, malloc might.
2327     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2328       return true;
2329 
2330     // A byval, inalloca may not be null in a non-default addres space. A
2331     // nonnull argument is assumed never 0.
2332     if (const Argument *A = dyn_cast<Argument>(V)) {
2333       if (((A->hasPassPointeeByValueCopyAttr() &&
2334             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2335            A->hasNonNullAttr()))
2336         return true;
2337     }
2338 
2339     // A Load tagged with nonnull metadata is never null.
2340     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2341       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2342         return true;
2343 
2344     if (const auto *Call = dyn_cast<CallBase>(V)) {
2345       if (Call->isReturnNonNull())
2346         return true;
2347       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2348         return isKnownNonZero(RP, Depth, Q);
2349     }
2350   }
2351 
2352   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2353     return true;
2354 
2355   // Check for recursive pointer simplifications.
2356   if (V->getType()->isPointerTy()) {
2357     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2358     // do not alter the value, or at least not the nullness property of the
2359     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2360     //
2361     // Note that we have to take special care to avoid looking through
2362     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2363     // as casts that can alter the value, e.g., AddrSpaceCasts.
2364     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2365       return isGEPKnownNonNull(GEP, Depth, Q);
2366 
2367     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2368       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2369 
2370     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2371       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2372           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2373         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2374   }
2375 
2376   // Similar to int2ptr above, we can look through ptr2int here if the cast
2377   // is a no-op or an extend and not a truncate.
2378   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2379     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2380         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2381       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2382 
2383   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2384 
2385   // X | Y != 0 if X != 0 or Y != 0.
2386   Value *X = nullptr, *Y = nullptr;
2387   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2388     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2389            isKnownNonZero(Y, DemandedElts, Depth, Q);
2390 
2391   // ext X != 0 if X != 0.
2392   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2393     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2394 
2395   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2396   // if the lowest bit is shifted off the end.
2397   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2398     // shl nuw can't remove any non-zero bits.
2399     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2400     if (Q.IIQ.hasNoUnsignedWrap(BO))
2401       return isKnownNonZero(X, Depth, Q);
2402 
2403     KnownBits Known(BitWidth);
2404     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2405     if (Known.One[0])
2406       return true;
2407   }
2408   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2409   // defined if the sign bit is shifted off the end.
2410   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2411     // shr exact can only shift out zero bits.
2412     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2413     if (BO->isExact())
2414       return isKnownNonZero(X, Depth, Q);
2415 
2416     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2417     if (Known.isNegative())
2418       return true;
2419 
2420     // If the shifter operand is a constant, and all of the bits shifted
2421     // out are known to be zero, and X is known non-zero then at least one
2422     // non-zero bit must remain.
2423     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2424       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2425       // Is there a known one in the portion not shifted out?
2426       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2427         return true;
2428       // Are all the bits to be shifted out known zero?
2429       if (Known.countMinTrailingZeros() >= ShiftVal)
2430         return isKnownNonZero(X, DemandedElts, Depth, Q);
2431     }
2432   }
2433   // div exact can only produce a zero if the dividend is zero.
2434   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2435     return isKnownNonZero(X, DemandedElts, Depth, Q);
2436   }
2437   // X + Y.
2438   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2439     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2440     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2441 
2442     // If X and Y are both non-negative (as signed values) then their sum is not
2443     // zero unless both X and Y are zero.
2444     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2445       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2446           isKnownNonZero(Y, DemandedElts, Depth, Q))
2447         return true;
2448 
2449     // If X and Y are both negative (as signed values) then their sum is not
2450     // zero unless both X and Y equal INT_MIN.
2451     if (XKnown.isNegative() && YKnown.isNegative()) {
2452       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2453       // The sign bit of X is set.  If some other bit is set then X is not equal
2454       // to INT_MIN.
2455       if (XKnown.One.intersects(Mask))
2456         return true;
2457       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2458       // to INT_MIN.
2459       if (YKnown.One.intersects(Mask))
2460         return true;
2461     }
2462 
2463     // The sum of a non-negative number and a power of two is not zero.
2464     if (XKnown.isNonNegative() &&
2465         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2466       return true;
2467     if (YKnown.isNonNegative() &&
2468         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2469       return true;
2470   }
2471   // X * Y.
2472   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2473     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2474     // If X and Y are non-zero then so is X * Y as long as the multiplication
2475     // does not overflow.
2476     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2477         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2478         isKnownNonZero(Y, DemandedElts, Depth, Q))
2479       return true;
2480   }
2481   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2482   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2483     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2484         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2485       return true;
2486   }
2487   // PHI
2488   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2489     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2490       return true;
2491 
2492     // Check if all incoming values are non-zero using recursion.
2493     Query RecQ = Q;
2494     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2495     return llvm::all_of(PN->operands(), [&](const Use &U) {
2496       if (U.get() == PN)
2497         return true;
2498       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2499       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2500     });
2501   }
2502   // ExtractElement
2503   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2504     const Value *Vec = EEI->getVectorOperand();
2505     const Value *Idx = EEI->getIndexOperand();
2506     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2507     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2508       unsigned NumElts = VecTy->getNumElements();
2509       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2510       if (CIdx && CIdx->getValue().ult(NumElts))
2511         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2512       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2513     }
2514   }
2515   // Freeze
2516   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2517     auto *Op = FI->getOperand(0);
2518     if (isKnownNonZero(Op, Depth, Q) &&
2519         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2520       return true;
2521   }
2522 
2523   KnownBits Known(BitWidth);
2524   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2525   return Known.One != 0;
2526 }
2527 
2528 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2529   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2530   // vector
2531   if (isa<ScalableVectorType>(V->getType()))
2532     return false;
2533 
2534   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2535   APInt DemandedElts =
2536       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2537   return isKnownNonZero(V, DemandedElts, Depth, Q);
2538 }
2539 
2540 /// Return true if V2 == V1 + X, where X is known non-zero.
2541 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2542                            const Query &Q) {
2543   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2544   if (!BO || BO->getOpcode() != Instruction::Add)
2545     return false;
2546   Value *Op = nullptr;
2547   if (V2 == BO->getOperand(0))
2548     Op = BO->getOperand(1);
2549   else if (V2 == BO->getOperand(1))
2550     Op = BO->getOperand(0);
2551   else
2552     return false;
2553   return isKnownNonZero(Op, Depth + 1, Q);
2554 }
2555 
2556 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2557 /// the multiplication is nuw or nsw.
2558 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2559                           const Query &Q) {
2560   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2561     const APInt *C;
2562     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2563            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2564            !C->isNullValue() && !C->isOneValue() &&
2565            isKnownNonZero(V1, Depth + 1, Q);
2566   }
2567   return false;
2568 }
2569 
2570 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2571 /// the shift is nuw or nsw.
2572 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2573                           const Query &Q) {
2574   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2575     const APInt *C;
2576     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2577            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2578            !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q);
2579   }
2580   return false;
2581 }
2582 
2583 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2584                            unsigned Depth, const Query &Q) {
2585   // Check two PHIs are in same block.
2586   if (PN1->getParent() != PN2->getParent())
2587     return false;
2588 
2589   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2590   bool UsedFullRecursion = false;
2591   for (const BasicBlock *IncomBB : PN1->blocks()) {
2592     if (!VisitedBBs.insert(IncomBB).second)
2593       continue; // Don't reprocess blocks that we have dealt with already.
2594     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2595     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2596     const APInt *C1, *C2;
2597     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2598       continue;
2599 
2600     // Only one pair of phi operands is allowed for full recursion.
2601     if (UsedFullRecursion)
2602       return false;
2603 
2604     Query RecQ = Q;
2605     RecQ.CxtI = IncomBB->getTerminator();
2606     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2607       return false;
2608     UsedFullRecursion = true;
2609   }
2610   return true;
2611 }
2612 
2613 /// Return true if it is known that V1 != V2.
2614 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2615                             const Query &Q) {
2616   if (V1 == V2)
2617     return false;
2618   if (V1->getType() != V2->getType())
2619     // We can't look through casts yet.
2620     return false;
2621 
2622   if (Depth >= MaxAnalysisRecursionDepth)
2623     return false;
2624 
2625   // See if we can recurse through (exactly one of) our operands.  This
2626   // requires our operation be 1-to-1 and map every input value to exactly
2627   // one output value.  Such an operation is invertible.
2628   auto *O1 = dyn_cast<Operator>(V1);
2629   auto *O2 = dyn_cast<Operator>(V2);
2630   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2631     switch (O1->getOpcode()) {
2632     default: break;
2633     case Instruction::Add:
2634     case Instruction::Sub:
2635       // Assume operand order has been canonicalized
2636       if (O1->getOperand(0) == O2->getOperand(0))
2637         return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1),
2638                                Depth + 1, Q);
2639       if (O1->getOperand(1) == O2->getOperand(1))
2640         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2641                                Depth + 1, Q);
2642       break;
2643     case Instruction::Mul: {
2644       // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2645       // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2646       // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2647       auto *OBO1 = cast<OverflowingBinaryOperator>(O1);
2648       auto *OBO2 = cast<OverflowingBinaryOperator>(O2);
2649       if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2650           (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2651         break;
2652 
2653       // Assume operand order has been canonicalized
2654       if (O1->getOperand(1) == O2->getOperand(1) &&
2655           isa<ConstantInt>(O1->getOperand(1)) &&
2656           !cast<ConstantInt>(O1->getOperand(1))->isZero())
2657         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2658                                Depth + 1, Q);
2659       break;
2660     }
2661     case Instruction::Shl: {
2662       // Same as multiplies, with the difference that we don't need to check
2663       // for a non-zero multiply. Shifts always multiply by non-zero.
2664       auto *OBO1 = cast<OverflowingBinaryOperator>(O1);
2665       auto *OBO2 = cast<OverflowingBinaryOperator>(O2);
2666       if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2667           (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2668         break;
2669 
2670       if (O1->getOperand(1) == O2->getOperand(1))
2671         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0),
2672                                Depth + 1, Q);
2673       break;
2674     }
2675     case Instruction::SExt:
2676     case Instruction::ZExt:
2677       if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType())
2678         return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), Depth + 1,
2679                                Q);
2680       break;
2681     case Instruction::PHI:
2682       const PHINode *PN1 = cast<PHINode>(V1);
2683       const PHINode *PN2 = cast<PHINode>(V2);
2684       // FIXME: This is missing a generalization to handle the case where one is
2685       // a PHI and another one isn't.
2686       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2687         return true;
2688       break;
2689     };
2690   }
2691 
2692   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2693     return true;
2694 
2695   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2696     return true;
2697 
2698   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2699     return true;
2700 
2701   if (V1->getType()->isIntOrIntVectorTy()) {
2702     // Are any known bits in V1 contradictory to known bits in V2? If V1
2703     // has a known zero where V2 has a known one, they must not be equal.
2704     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2705     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2706 
2707     if (Known1.Zero.intersects(Known2.One) ||
2708         Known2.Zero.intersects(Known1.One))
2709       return true;
2710   }
2711   return false;
2712 }
2713 
2714 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2715 /// simplify operations downstream. Mask is known to be zero for bits that V
2716 /// cannot have.
2717 ///
2718 /// This function is defined on values with integer type, values with pointer
2719 /// type, and vectors of integers.  In the case
2720 /// where V is a vector, the mask, known zero, and known one values are the
2721 /// same width as the vector element, and the bit is set only if it is true
2722 /// for all of the elements in the vector.
2723 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2724                        const Query &Q) {
2725   KnownBits Known(Mask.getBitWidth());
2726   computeKnownBits(V, Known, Depth, Q);
2727   return Mask.isSubsetOf(Known.Zero);
2728 }
2729 
2730 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2731 // Returns the input and lower/upper bounds.
2732 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2733                                 const APInt *&CLow, const APInt *&CHigh) {
2734   assert(isa<Operator>(Select) &&
2735          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2736          "Input should be a Select!");
2737 
2738   const Value *LHS = nullptr, *RHS = nullptr;
2739   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2740   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2741     return false;
2742 
2743   if (!match(RHS, m_APInt(CLow)))
2744     return false;
2745 
2746   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2747   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2748   if (getInverseMinMaxFlavor(SPF) != SPF2)
2749     return false;
2750 
2751   if (!match(RHS2, m_APInt(CHigh)))
2752     return false;
2753 
2754   if (SPF == SPF_SMIN)
2755     std::swap(CLow, CHigh);
2756 
2757   In = LHS2;
2758   return CLow->sle(*CHigh);
2759 }
2760 
2761 /// For vector constants, loop over the elements and find the constant with the
2762 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2763 /// or if any element was not analyzed; otherwise, return the count for the
2764 /// element with the minimum number of sign bits.
2765 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2766                                                  const APInt &DemandedElts,
2767                                                  unsigned TyBits) {
2768   const auto *CV = dyn_cast<Constant>(V);
2769   if (!CV || !isa<FixedVectorType>(CV->getType()))
2770     return 0;
2771 
2772   unsigned MinSignBits = TyBits;
2773   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2774   for (unsigned i = 0; i != NumElts; ++i) {
2775     if (!DemandedElts[i])
2776       continue;
2777     // If we find a non-ConstantInt, bail out.
2778     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2779     if (!Elt)
2780       return 0;
2781 
2782     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2783   }
2784 
2785   return MinSignBits;
2786 }
2787 
2788 static unsigned ComputeNumSignBitsImpl(const Value *V,
2789                                        const APInt &DemandedElts,
2790                                        unsigned Depth, const Query &Q);
2791 
2792 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2793                                    unsigned Depth, const Query &Q) {
2794   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2795   assert(Result > 0 && "At least one sign bit needs to be present!");
2796   return Result;
2797 }
2798 
2799 /// Return the number of times the sign bit of the register is replicated into
2800 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2801 /// (itself), but other cases can give us information. For example, immediately
2802 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2803 /// other, so we return 3. For vectors, return the number of sign bits for the
2804 /// vector element with the minimum number of known sign bits of the demanded
2805 /// elements in the vector specified by DemandedElts.
2806 static unsigned ComputeNumSignBitsImpl(const Value *V,
2807                                        const APInt &DemandedElts,
2808                                        unsigned Depth, const Query &Q) {
2809   Type *Ty = V->getType();
2810 
2811   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2812   // vector
2813   if (isa<ScalableVectorType>(Ty))
2814     return 1;
2815 
2816 #ifndef NDEBUG
2817   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2818 
2819   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2820     assert(
2821         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2822         "DemandedElt width should equal the fixed vector number of elements");
2823   } else {
2824     assert(DemandedElts == APInt(1, 1) &&
2825            "DemandedElt width should be 1 for scalars");
2826   }
2827 #endif
2828 
2829   // We return the minimum number of sign bits that are guaranteed to be present
2830   // in V, so for undef we have to conservatively return 1.  We don't have the
2831   // same behavior for poison though -- that's a FIXME today.
2832 
2833   Type *ScalarTy = Ty->getScalarType();
2834   unsigned TyBits = ScalarTy->isPointerTy() ?
2835     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2836     Q.DL.getTypeSizeInBits(ScalarTy);
2837 
2838   unsigned Tmp, Tmp2;
2839   unsigned FirstAnswer = 1;
2840 
2841   // Note that ConstantInt is handled by the general computeKnownBits case
2842   // below.
2843 
2844   if (Depth == MaxAnalysisRecursionDepth)
2845     return 1;
2846 
2847   if (auto *U = dyn_cast<Operator>(V)) {
2848     switch (Operator::getOpcode(V)) {
2849     default: break;
2850     case Instruction::SExt:
2851       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2852       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2853 
2854     case Instruction::SDiv: {
2855       const APInt *Denominator;
2856       // sdiv X, C -> adds log(C) sign bits.
2857       if (match(U->getOperand(1), m_APInt(Denominator))) {
2858 
2859         // Ignore non-positive denominator.
2860         if (!Denominator->isStrictlyPositive())
2861           break;
2862 
2863         // Calculate the incoming numerator bits.
2864         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2865 
2866         // Add floor(log(C)) bits to the numerator bits.
2867         return std::min(TyBits, NumBits + Denominator->logBase2());
2868       }
2869       break;
2870     }
2871 
2872     case Instruction::SRem: {
2873       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2874 
2875       const APInt *Denominator;
2876       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2877       // positive constant.  This let us put a lower bound on the number of sign
2878       // bits.
2879       if (match(U->getOperand(1), m_APInt(Denominator))) {
2880 
2881         // Ignore non-positive denominator.
2882         if (Denominator->isStrictlyPositive()) {
2883           // Calculate the leading sign bit constraints by examining the
2884           // denominator.  Given that the denominator is positive, there are two
2885           // cases:
2886           //
2887           //  1. The numerator is positive. The result range is [0,C) and
2888           //     [0,C) u< (1 << ceilLogBase2(C)).
2889           //
2890           //  2. The numerator is negative. Then the result range is (-C,0] and
2891           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2892           //
2893           // Thus a lower bound on the number of sign bits is `TyBits -
2894           // ceilLogBase2(C)`.
2895 
2896           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2897           Tmp = std::max(Tmp, ResBits);
2898         }
2899       }
2900       return Tmp;
2901     }
2902 
2903     case Instruction::AShr: {
2904       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2905       // ashr X, C   -> adds C sign bits.  Vectors too.
2906       const APInt *ShAmt;
2907       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2908         if (ShAmt->uge(TyBits))
2909           break; // Bad shift.
2910         unsigned ShAmtLimited = ShAmt->getZExtValue();
2911         Tmp += ShAmtLimited;
2912         if (Tmp > TyBits) Tmp = TyBits;
2913       }
2914       return Tmp;
2915     }
2916     case Instruction::Shl: {
2917       const APInt *ShAmt;
2918       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2919         // shl destroys sign bits.
2920         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2921         if (ShAmt->uge(TyBits) ||   // Bad shift.
2922             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2923         Tmp2 = ShAmt->getZExtValue();
2924         return Tmp - Tmp2;
2925       }
2926       break;
2927     }
2928     case Instruction::And:
2929     case Instruction::Or:
2930     case Instruction::Xor: // NOT is handled here.
2931       // Logical binary ops preserve the number of sign bits at the worst.
2932       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2933       if (Tmp != 1) {
2934         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2935         FirstAnswer = std::min(Tmp, Tmp2);
2936         // We computed what we know about the sign bits as our first
2937         // answer. Now proceed to the generic code that uses
2938         // computeKnownBits, and pick whichever answer is better.
2939       }
2940       break;
2941 
2942     case Instruction::Select: {
2943       // If we have a clamp pattern, we know that the number of sign bits will
2944       // be the minimum of the clamp min/max range.
2945       const Value *X;
2946       const APInt *CLow, *CHigh;
2947       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2948         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2949 
2950       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2951       if (Tmp == 1) break;
2952       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2953       return std::min(Tmp, Tmp2);
2954     }
2955 
2956     case Instruction::Add:
2957       // Add can have at most one carry bit.  Thus we know that the output
2958       // is, at worst, one more bit than the inputs.
2959       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2960       if (Tmp == 1) break;
2961 
2962       // Special case decrementing a value (ADD X, -1):
2963       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2964         if (CRHS->isAllOnesValue()) {
2965           KnownBits Known(TyBits);
2966           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2967 
2968           // If the input is known to be 0 or 1, the output is 0/-1, which is
2969           // all sign bits set.
2970           if ((Known.Zero | 1).isAllOnesValue())
2971             return TyBits;
2972 
2973           // If we are subtracting one from a positive number, there is no carry
2974           // out of the result.
2975           if (Known.isNonNegative())
2976             return Tmp;
2977         }
2978 
2979       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2980       if (Tmp2 == 1) break;
2981       return std::min(Tmp, Tmp2) - 1;
2982 
2983     case Instruction::Sub:
2984       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2985       if (Tmp2 == 1) break;
2986 
2987       // Handle NEG.
2988       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2989         if (CLHS->isNullValue()) {
2990           KnownBits Known(TyBits);
2991           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2992           // If the input is known to be 0 or 1, the output is 0/-1, which is
2993           // all sign bits set.
2994           if ((Known.Zero | 1).isAllOnesValue())
2995             return TyBits;
2996 
2997           // If the input is known to be positive (the sign bit is known clear),
2998           // the output of the NEG has the same number of sign bits as the
2999           // input.
3000           if (Known.isNonNegative())
3001             return Tmp2;
3002 
3003           // Otherwise, we treat this like a SUB.
3004         }
3005 
3006       // Sub can have at most one carry bit.  Thus we know that the output
3007       // is, at worst, one more bit than the inputs.
3008       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3009       if (Tmp == 1) break;
3010       return std::min(Tmp, Tmp2) - 1;
3011 
3012     case Instruction::Mul: {
3013       // The output of the Mul can be at most twice the valid bits in the
3014       // inputs.
3015       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3016       if (SignBitsOp0 == 1) break;
3017       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3018       if (SignBitsOp1 == 1) break;
3019       unsigned OutValidBits =
3020           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3021       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3022     }
3023 
3024     case Instruction::PHI: {
3025       const PHINode *PN = cast<PHINode>(U);
3026       unsigned NumIncomingValues = PN->getNumIncomingValues();
3027       // Don't analyze large in-degree PHIs.
3028       if (NumIncomingValues > 4) break;
3029       // Unreachable blocks may have zero-operand PHI nodes.
3030       if (NumIncomingValues == 0) break;
3031 
3032       // Take the minimum of all incoming values.  This can't infinitely loop
3033       // because of our depth threshold.
3034       Query RecQ = Q;
3035       Tmp = TyBits;
3036       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3037         if (Tmp == 1) return Tmp;
3038         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3039         Tmp = std::min(
3040             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3041       }
3042       return Tmp;
3043     }
3044 
3045     case Instruction::Trunc:
3046       // FIXME: it's tricky to do anything useful for this, but it is an
3047       // important case for targets like X86.
3048       break;
3049 
3050     case Instruction::ExtractElement:
3051       // Look through extract element. At the moment we keep this simple and
3052       // skip tracking the specific element. But at least we might find
3053       // information valid for all elements of the vector (for example if vector
3054       // is sign extended, shifted, etc).
3055       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3056 
3057     case Instruction::ShuffleVector: {
3058       // Collect the minimum number of sign bits that are shared by every vector
3059       // element referenced by the shuffle.
3060       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3061       if (!Shuf) {
3062         // FIXME: Add support for shufflevector constant expressions.
3063         return 1;
3064       }
3065       APInt DemandedLHS, DemandedRHS;
3066       // For undef elements, we don't know anything about the common state of
3067       // the shuffle result.
3068       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3069         return 1;
3070       Tmp = std::numeric_limits<unsigned>::max();
3071       if (!!DemandedLHS) {
3072         const Value *LHS = Shuf->getOperand(0);
3073         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3074       }
3075       // If we don't know anything, early out and try computeKnownBits
3076       // fall-back.
3077       if (Tmp == 1)
3078         break;
3079       if (!!DemandedRHS) {
3080         const Value *RHS = Shuf->getOperand(1);
3081         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3082         Tmp = std::min(Tmp, Tmp2);
3083       }
3084       // If we don't know anything, early out and try computeKnownBits
3085       // fall-back.
3086       if (Tmp == 1)
3087         break;
3088       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3089       return Tmp;
3090     }
3091     case Instruction::Call: {
3092       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3093         switch (II->getIntrinsicID()) {
3094         default: break;
3095         case Intrinsic::abs:
3096           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3097           if (Tmp == 1) break;
3098 
3099           // Absolute value reduces number of sign bits by at most 1.
3100           return Tmp - 1;
3101         }
3102       }
3103     }
3104     }
3105   }
3106 
3107   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3108   // use this information.
3109 
3110   // If we can examine all elements of a vector constant successfully, we're
3111   // done (we can't do any better than that). If not, keep trying.
3112   if (unsigned VecSignBits =
3113           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3114     return VecSignBits;
3115 
3116   KnownBits Known(TyBits);
3117   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3118 
3119   // If we know that the sign bit is either zero or one, determine the number of
3120   // identical bits in the top of the input value.
3121   return std::max(FirstAnswer, Known.countMinSignBits());
3122 }
3123 
3124 /// This function computes the integer multiple of Base that equals V.
3125 /// If successful, it returns true and returns the multiple in
3126 /// Multiple. If unsuccessful, it returns false. It looks
3127 /// through SExt instructions only if LookThroughSExt is true.
3128 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3129                            bool LookThroughSExt, unsigned Depth) {
3130   assert(V && "No Value?");
3131   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3132   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3133 
3134   Type *T = V->getType();
3135 
3136   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3137 
3138   if (Base == 0)
3139     return false;
3140 
3141   if (Base == 1) {
3142     Multiple = V;
3143     return true;
3144   }
3145 
3146   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3147   Constant *BaseVal = ConstantInt::get(T, Base);
3148   if (CO && CO == BaseVal) {
3149     // Multiple is 1.
3150     Multiple = ConstantInt::get(T, 1);
3151     return true;
3152   }
3153 
3154   if (CI && CI->getZExtValue() % Base == 0) {
3155     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3156     return true;
3157   }
3158 
3159   if (Depth == MaxAnalysisRecursionDepth) return false;
3160 
3161   Operator *I = dyn_cast<Operator>(V);
3162   if (!I) return false;
3163 
3164   switch (I->getOpcode()) {
3165   default: break;
3166   case Instruction::SExt:
3167     if (!LookThroughSExt) return false;
3168     // otherwise fall through to ZExt
3169     LLVM_FALLTHROUGH;
3170   case Instruction::ZExt:
3171     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3172                            LookThroughSExt, Depth+1);
3173   case Instruction::Shl:
3174   case Instruction::Mul: {
3175     Value *Op0 = I->getOperand(0);
3176     Value *Op1 = I->getOperand(1);
3177 
3178     if (I->getOpcode() == Instruction::Shl) {
3179       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3180       if (!Op1CI) return false;
3181       // Turn Op0 << Op1 into Op0 * 2^Op1
3182       APInt Op1Int = Op1CI->getValue();
3183       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3184       APInt API(Op1Int.getBitWidth(), 0);
3185       API.setBit(BitToSet);
3186       Op1 = ConstantInt::get(V->getContext(), API);
3187     }
3188 
3189     Value *Mul0 = nullptr;
3190     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3191       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3192         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3193           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3194               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3195             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3196           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3197               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3198             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3199 
3200           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3201           Multiple = ConstantExpr::getMul(MulC, Op1C);
3202           return true;
3203         }
3204 
3205       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3206         if (Mul0CI->getValue() == 1) {
3207           // V == Base * Op1, so return Op1
3208           Multiple = Op1;
3209           return true;
3210         }
3211     }
3212 
3213     Value *Mul1 = nullptr;
3214     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3215       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3216         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3217           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3218               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3219             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3220           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3221               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3222             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3223 
3224           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3225           Multiple = ConstantExpr::getMul(MulC, Op0C);
3226           return true;
3227         }
3228 
3229       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3230         if (Mul1CI->getValue() == 1) {
3231           // V == Base * Op0, so return Op0
3232           Multiple = Op0;
3233           return true;
3234         }
3235     }
3236   }
3237   }
3238 
3239   // We could not determine if V is a multiple of Base.
3240   return false;
3241 }
3242 
3243 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3244                                             const TargetLibraryInfo *TLI) {
3245   const Function *F = CB.getCalledFunction();
3246   if (!F)
3247     return Intrinsic::not_intrinsic;
3248 
3249   if (F->isIntrinsic())
3250     return F->getIntrinsicID();
3251 
3252   // We are going to infer semantics of a library function based on mapping it
3253   // to an LLVM intrinsic. Check that the library function is available from
3254   // this callbase and in this environment.
3255   LibFunc Func;
3256   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3257       !CB.onlyReadsMemory())
3258     return Intrinsic::not_intrinsic;
3259 
3260   switch (Func) {
3261   default:
3262     break;
3263   case LibFunc_sin:
3264   case LibFunc_sinf:
3265   case LibFunc_sinl:
3266     return Intrinsic::sin;
3267   case LibFunc_cos:
3268   case LibFunc_cosf:
3269   case LibFunc_cosl:
3270     return Intrinsic::cos;
3271   case LibFunc_exp:
3272   case LibFunc_expf:
3273   case LibFunc_expl:
3274     return Intrinsic::exp;
3275   case LibFunc_exp2:
3276   case LibFunc_exp2f:
3277   case LibFunc_exp2l:
3278     return Intrinsic::exp2;
3279   case LibFunc_log:
3280   case LibFunc_logf:
3281   case LibFunc_logl:
3282     return Intrinsic::log;
3283   case LibFunc_log10:
3284   case LibFunc_log10f:
3285   case LibFunc_log10l:
3286     return Intrinsic::log10;
3287   case LibFunc_log2:
3288   case LibFunc_log2f:
3289   case LibFunc_log2l:
3290     return Intrinsic::log2;
3291   case LibFunc_fabs:
3292   case LibFunc_fabsf:
3293   case LibFunc_fabsl:
3294     return Intrinsic::fabs;
3295   case LibFunc_fmin:
3296   case LibFunc_fminf:
3297   case LibFunc_fminl:
3298     return Intrinsic::minnum;
3299   case LibFunc_fmax:
3300   case LibFunc_fmaxf:
3301   case LibFunc_fmaxl:
3302     return Intrinsic::maxnum;
3303   case LibFunc_copysign:
3304   case LibFunc_copysignf:
3305   case LibFunc_copysignl:
3306     return Intrinsic::copysign;
3307   case LibFunc_floor:
3308   case LibFunc_floorf:
3309   case LibFunc_floorl:
3310     return Intrinsic::floor;
3311   case LibFunc_ceil:
3312   case LibFunc_ceilf:
3313   case LibFunc_ceill:
3314     return Intrinsic::ceil;
3315   case LibFunc_trunc:
3316   case LibFunc_truncf:
3317   case LibFunc_truncl:
3318     return Intrinsic::trunc;
3319   case LibFunc_rint:
3320   case LibFunc_rintf:
3321   case LibFunc_rintl:
3322     return Intrinsic::rint;
3323   case LibFunc_nearbyint:
3324   case LibFunc_nearbyintf:
3325   case LibFunc_nearbyintl:
3326     return Intrinsic::nearbyint;
3327   case LibFunc_round:
3328   case LibFunc_roundf:
3329   case LibFunc_roundl:
3330     return Intrinsic::round;
3331   case LibFunc_roundeven:
3332   case LibFunc_roundevenf:
3333   case LibFunc_roundevenl:
3334     return Intrinsic::roundeven;
3335   case LibFunc_pow:
3336   case LibFunc_powf:
3337   case LibFunc_powl:
3338     return Intrinsic::pow;
3339   case LibFunc_sqrt:
3340   case LibFunc_sqrtf:
3341   case LibFunc_sqrtl:
3342     return Intrinsic::sqrt;
3343   }
3344 
3345   return Intrinsic::not_intrinsic;
3346 }
3347 
3348 /// Return true if we can prove that the specified FP value is never equal to
3349 /// -0.0.
3350 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3351 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3352 ///       the same as +0.0 in floating-point ops.
3353 ///
3354 /// NOTE: this function will need to be revisited when we support non-default
3355 /// rounding modes!
3356 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3357                                 unsigned Depth) {
3358   if (auto *CFP = dyn_cast<ConstantFP>(V))
3359     return !CFP->getValueAPF().isNegZero();
3360 
3361   if (Depth == MaxAnalysisRecursionDepth)
3362     return false;
3363 
3364   auto *Op = dyn_cast<Operator>(V);
3365   if (!Op)
3366     return false;
3367 
3368   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3369   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3370     return true;
3371 
3372   // sitofp and uitofp turn into +0.0 for zero.
3373   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3374     return true;
3375 
3376   if (auto *Call = dyn_cast<CallInst>(Op)) {
3377     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3378     switch (IID) {
3379     default:
3380       break;
3381     // sqrt(-0.0) = -0.0, no other negative results are possible.
3382     case Intrinsic::sqrt:
3383     case Intrinsic::canonicalize:
3384       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3385     // fabs(x) != -0.0
3386     case Intrinsic::fabs:
3387       return true;
3388     }
3389   }
3390 
3391   return false;
3392 }
3393 
3394 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3395 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3396 /// bit despite comparing equal.
3397 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3398                                             const TargetLibraryInfo *TLI,
3399                                             bool SignBitOnly,
3400                                             unsigned Depth) {
3401   // TODO: This function does not do the right thing when SignBitOnly is true
3402   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3403   // which flips the sign bits of NaNs.  See
3404   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3405 
3406   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3407     return !CFP->getValueAPF().isNegative() ||
3408            (!SignBitOnly && CFP->getValueAPF().isZero());
3409   }
3410 
3411   // Handle vector of constants.
3412   if (auto *CV = dyn_cast<Constant>(V)) {
3413     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3414       unsigned NumElts = CVFVTy->getNumElements();
3415       for (unsigned i = 0; i != NumElts; ++i) {
3416         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3417         if (!CFP)
3418           return false;
3419         if (CFP->getValueAPF().isNegative() &&
3420             (SignBitOnly || !CFP->getValueAPF().isZero()))
3421           return false;
3422       }
3423 
3424       // All non-negative ConstantFPs.
3425       return true;
3426     }
3427   }
3428 
3429   if (Depth == MaxAnalysisRecursionDepth)
3430     return false;
3431 
3432   const Operator *I = dyn_cast<Operator>(V);
3433   if (!I)
3434     return false;
3435 
3436   switch (I->getOpcode()) {
3437   default:
3438     break;
3439   // Unsigned integers are always nonnegative.
3440   case Instruction::UIToFP:
3441     return true;
3442   case Instruction::FMul:
3443   case Instruction::FDiv:
3444     // X * X is always non-negative or a NaN.
3445     // X / X is always exactly 1.0 or a NaN.
3446     if (I->getOperand(0) == I->getOperand(1) &&
3447         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3448       return true;
3449 
3450     LLVM_FALLTHROUGH;
3451   case Instruction::FAdd:
3452   case Instruction::FRem:
3453     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3454                                            Depth + 1) &&
3455            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3456                                            Depth + 1);
3457   case Instruction::Select:
3458     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3459                                            Depth + 1) &&
3460            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3461                                            Depth + 1);
3462   case Instruction::FPExt:
3463   case Instruction::FPTrunc:
3464     // Widening/narrowing never change sign.
3465     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3466                                            Depth + 1);
3467   case Instruction::ExtractElement:
3468     // Look through extract element. At the moment we keep this simple and skip
3469     // tracking the specific element. But at least we might find information
3470     // valid for all elements of the vector.
3471     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3472                                            Depth + 1);
3473   case Instruction::Call:
3474     const auto *CI = cast<CallInst>(I);
3475     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3476     switch (IID) {
3477     default:
3478       break;
3479     case Intrinsic::maxnum: {
3480       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3481       auto isPositiveNum = [&](Value *V) {
3482         if (SignBitOnly) {
3483           // With SignBitOnly, this is tricky because the result of
3484           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3485           // a constant strictly greater than 0.0.
3486           const APFloat *C;
3487           return match(V, m_APFloat(C)) &&
3488                  *C > APFloat::getZero(C->getSemantics());
3489         }
3490 
3491         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3492         // maxnum can't be ordered-less-than-zero.
3493         return isKnownNeverNaN(V, TLI) &&
3494                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3495       };
3496 
3497       // TODO: This could be improved. We could also check that neither operand
3498       //       has its sign bit set (and at least 1 is not-NAN?).
3499       return isPositiveNum(V0) || isPositiveNum(V1);
3500     }
3501 
3502     case Intrinsic::maximum:
3503       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3504                                              Depth + 1) ||
3505              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3506                                              Depth + 1);
3507     case Intrinsic::minnum:
3508     case Intrinsic::minimum:
3509       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3510                                              Depth + 1) &&
3511              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3512                                              Depth + 1);
3513     case Intrinsic::exp:
3514     case Intrinsic::exp2:
3515     case Intrinsic::fabs:
3516       return true;
3517 
3518     case Intrinsic::sqrt:
3519       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3520       if (!SignBitOnly)
3521         return true;
3522       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3523                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3524 
3525     case Intrinsic::powi:
3526       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3527         // powi(x,n) is non-negative if n is even.
3528         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3529           return true;
3530       }
3531       // TODO: This is not correct.  Given that exp is an integer, here are the
3532       // ways that pow can return a negative value:
3533       //
3534       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3535       //   pow(-0, exp)   --> -inf if exp is negative odd.
3536       //   pow(-0, exp)   --> -0 if exp is positive odd.
3537       //   pow(-inf, exp) --> -0 if exp is negative odd.
3538       //   pow(-inf, exp) --> -inf if exp is positive odd.
3539       //
3540       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3541       // but we must return false if x == -0.  Unfortunately we do not currently
3542       // have a way of expressing this constraint.  See details in
3543       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3544       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3545                                              Depth + 1);
3546 
3547     case Intrinsic::fma:
3548     case Intrinsic::fmuladd:
3549       // x*x+y is non-negative if y is non-negative.
3550       return I->getOperand(0) == I->getOperand(1) &&
3551              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3552              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3553                                              Depth + 1);
3554     }
3555     break;
3556   }
3557   return false;
3558 }
3559 
3560 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3561                                        const TargetLibraryInfo *TLI) {
3562   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3563 }
3564 
3565 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3566   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3567 }
3568 
3569 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3570                                 unsigned Depth) {
3571   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3572 
3573   // If we're told that infinities won't happen, assume they won't.
3574   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3575     if (FPMathOp->hasNoInfs())
3576       return true;
3577 
3578   // Handle scalar constants.
3579   if (auto *CFP = dyn_cast<ConstantFP>(V))
3580     return !CFP->isInfinity();
3581 
3582   if (Depth == MaxAnalysisRecursionDepth)
3583     return false;
3584 
3585   if (auto *Inst = dyn_cast<Instruction>(V)) {
3586     switch (Inst->getOpcode()) {
3587     case Instruction::Select: {
3588       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3589              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3590     }
3591     case Instruction::SIToFP:
3592     case Instruction::UIToFP: {
3593       // Get width of largest magnitude integer (remove a bit if signed).
3594       // This still works for a signed minimum value because the largest FP
3595       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3596       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3597       if (Inst->getOpcode() == Instruction::SIToFP)
3598         --IntSize;
3599 
3600       // If the exponent of the largest finite FP value can hold the largest
3601       // integer, the result of the cast must be finite.
3602       Type *FPTy = Inst->getType()->getScalarType();
3603       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3604     }
3605     default:
3606       break;
3607     }
3608   }
3609 
3610   // try to handle fixed width vector constants
3611   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3612   if (VFVTy && isa<Constant>(V)) {
3613     // For vectors, verify that each element is not infinity.
3614     unsigned NumElts = VFVTy->getNumElements();
3615     for (unsigned i = 0; i != NumElts; ++i) {
3616       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3617       if (!Elt)
3618         return false;
3619       if (isa<UndefValue>(Elt))
3620         continue;
3621       auto *CElt = dyn_cast<ConstantFP>(Elt);
3622       if (!CElt || CElt->isInfinity())
3623         return false;
3624     }
3625     // All elements were confirmed non-infinity or undefined.
3626     return true;
3627   }
3628 
3629   // was not able to prove that V never contains infinity
3630   return false;
3631 }
3632 
3633 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3634                            unsigned Depth) {
3635   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3636 
3637   // If we're told that NaNs won't happen, assume they won't.
3638   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3639     if (FPMathOp->hasNoNaNs())
3640       return true;
3641 
3642   // Handle scalar constants.
3643   if (auto *CFP = dyn_cast<ConstantFP>(V))
3644     return !CFP->isNaN();
3645 
3646   if (Depth == MaxAnalysisRecursionDepth)
3647     return false;
3648 
3649   if (auto *Inst = dyn_cast<Instruction>(V)) {
3650     switch (Inst->getOpcode()) {
3651     case Instruction::FAdd:
3652     case Instruction::FSub:
3653       // Adding positive and negative infinity produces NaN.
3654       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3655              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3656              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3657               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3658 
3659     case Instruction::FMul:
3660       // Zero multiplied with infinity produces NaN.
3661       // FIXME: If neither side can be zero fmul never produces NaN.
3662       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3663              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3664              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3665              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3666 
3667     case Instruction::FDiv:
3668     case Instruction::FRem:
3669       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3670       return false;
3671 
3672     case Instruction::Select: {
3673       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3674              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3675     }
3676     case Instruction::SIToFP:
3677     case Instruction::UIToFP:
3678       return true;
3679     case Instruction::FPTrunc:
3680     case Instruction::FPExt:
3681       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3682     default:
3683       break;
3684     }
3685   }
3686 
3687   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3688     switch (II->getIntrinsicID()) {
3689     case Intrinsic::canonicalize:
3690     case Intrinsic::fabs:
3691     case Intrinsic::copysign:
3692     case Intrinsic::exp:
3693     case Intrinsic::exp2:
3694     case Intrinsic::floor:
3695     case Intrinsic::ceil:
3696     case Intrinsic::trunc:
3697     case Intrinsic::rint:
3698     case Intrinsic::nearbyint:
3699     case Intrinsic::round:
3700     case Intrinsic::roundeven:
3701       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3702     case Intrinsic::sqrt:
3703       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3704              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3705     case Intrinsic::minnum:
3706     case Intrinsic::maxnum:
3707       // If either operand is not NaN, the result is not NaN.
3708       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3709              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3710     default:
3711       return false;
3712     }
3713   }
3714 
3715   // Try to handle fixed width vector constants
3716   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3717   if (VFVTy && isa<Constant>(V)) {
3718     // For vectors, verify that each element is not NaN.
3719     unsigned NumElts = VFVTy->getNumElements();
3720     for (unsigned i = 0; i != NumElts; ++i) {
3721       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3722       if (!Elt)
3723         return false;
3724       if (isa<UndefValue>(Elt))
3725         continue;
3726       auto *CElt = dyn_cast<ConstantFP>(Elt);
3727       if (!CElt || CElt->isNaN())
3728         return false;
3729     }
3730     // All elements were confirmed not-NaN or undefined.
3731     return true;
3732   }
3733 
3734   // Was not able to prove that V never contains NaN
3735   return false;
3736 }
3737 
3738 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3739 
3740   // All byte-wide stores are splatable, even of arbitrary variables.
3741   if (V->getType()->isIntegerTy(8))
3742     return V;
3743 
3744   LLVMContext &Ctx = V->getContext();
3745 
3746   // Undef don't care.
3747   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3748   if (isa<UndefValue>(V))
3749     return UndefInt8;
3750 
3751   // Return Undef for zero-sized type.
3752   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3753     return UndefInt8;
3754 
3755   Constant *C = dyn_cast<Constant>(V);
3756   if (!C) {
3757     // Conceptually, we could handle things like:
3758     //   %a = zext i8 %X to i16
3759     //   %b = shl i16 %a, 8
3760     //   %c = or i16 %a, %b
3761     // but until there is an example that actually needs this, it doesn't seem
3762     // worth worrying about.
3763     return nullptr;
3764   }
3765 
3766   // Handle 'null' ConstantArrayZero etc.
3767   if (C->isNullValue())
3768     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3769 
3770   // Constant floating-point values can be handled as integer values if the
3771   // corresponding integer value is "byteable".  An important case is 0.0.
3772   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3773     Type *Ty = nullptr;
3774     if (CFP->getType()->isHalfTy())
3775       Ty = Type::getInt16Ty(Ctx);
3776     else if (CFP->getType()->isFloatTy())
3777       Ty = Type::getInt32Ty(Ctx);
3778     else if (CFP->getType()->isDoubleTy())
3779       Ty = Type::getInt64Ty(Ctx);
3780     // Don't handle long double formats, which have strange constraints.
3781     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3782               : nullptr;
3783   }
3784 
3785   // We can handle constant integers that are multiple of 8 bits.
3786   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3787     if (CI->getBitWidth() % 8 == 0) {
3788       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3789       if (!CI->getValue().isSplat(8))
3790         return nullptr;
3791       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3792     }
3793   }
3794 
3795   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3796     if (CE->getOpcode() == Instruction::IntToPtr) {
3797       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3798         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3799         return isBytewiseValue(
3800             ConstantExpr::getIntegerCast(CE->getOperand(0),
3801                                          Type::getIntNTy(Ctx, BitWidth), false),
3802             DL);
3803       }
3804     }
3805   }
3806 
3807   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3808     if (LHS == RHS)
3809       return LHS;
3810     if (!LHS || !RHS)
3811       return nullptr;
3812     if (LHS == UndefInt8)
3813       return RHS;
3814     if (RHS == UndefInt8)
3815       return LHS;
3816     return nullptr;
3817   };
3818 
3819   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3820     Value *Val = UndefInt8;
3821     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3822       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3823         return nullptr;
3824     return Val;
3825   }
3826 
3827   if (isa<ConstantAggregate>(C)) {
3828     Value *Val = UndefInt8;
3829     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3830       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3831         return nullptr;
3832     return Val;
3833   }
3834 
3835   // Don't try to handle the handful of other constants.
3836   return nullptr;
3837 }
3838 
3839 // This is the recursive version of BuildSubAggregate. It takes a few different
3840 // arguments. Idxs is the index within the nested struct From that we are
3841 // looking at now (which is of type IndexedType). IdxSkip is the number of
3842 // indices from Idxs that should be left out when inserting into the resulting
3843 // struct. To is the result struct built so far, new insertvalue instructions
3844 // build on that.
3845 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3846                                 SmallVectorImpl<unsigned> &Idxs,
3847                                 unsigned IdxSkip,
3848                                 Instruction *InsertBefore) {
3849   StructType *STy = dyn_cast<StructType>(IndexedType);
3850   if (STy) {
3851     // Save the original To argument so we can modify it
3852     Value *OrigTo = To;
3853     // General case, the type indexed by Idxs is a struct
3854     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3855       // Process each struct element recursively
3856       Idxs.push_back(i);
3857       Value *PrevTo = To;
3858       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3859                              InsertBefore);
3860       Idxs.pop_back();
3861       if (!To) {
3862         // Couldn't find any inserted value for this index? Cleanup
3863         while (PrevTo != OrigTo) {
3864           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3865           PrevTo = Del->getAggregateOperand();
3866           Del->eraseFromParent();
3867         }
3868         // Stop processing elements
3869         break;
3870       }
3871     }
3872     // If we successfully found a value for each of our subaggregates
3873     if (To)
3874       return To;
3875   }
3876   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3877   // the struct's elements had a value that was inserted directly. In the latter
3878   // case, perhaps we can't determine each of the subelements individually, but
3879   // we might be able to find the complete struct somewhere.
3880 
3881   // Find the value that is at that particular spot
3882   Value *V = FindInsertedValue(From, Idxs);
3883 
3884   if (!V)
3885     return nullptr;
3886 
3887   // Insert the value in the new (sub) aggregate
3888   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3889                                  "tmp", InsertBefore);
3890 }
3891 
3892 // This helper takes a nested struct and extracts a part of it (which is again a
3893 // struct) into a new value. For example, given the struct:
3894 // { a, { b, { c, d }, e } }
3895 // and the indices "1, 1" this returns
3896 // { c, d }.
3897 //
3898 // It does this by inserting an insertvalue for each element in the resulting
3899 // struct, as opposed to just inserting a single struct. This will only work if
3900 // each of the elements of the substruct are known (ie, inserted into From by an
3901 // insertvalue instruction somewhere).
3902 //
3903 // All inserted insertvalue instructions are inserted before InsertBefore
3904 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3905                                 Instruction *InsertBefore) {
3906   assert(InsertBefore && "Must have someplace to insert!");
3907   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3908                                                              idx_range);
3909   Value *To = UndefValue::get(IndexedType);
3910   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3911   unsigned IdxSkip = Idxs.size();
3912 
3913   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3914 }
3915 
3916 /// Given an aggregate and a sequence of indices, see if the scalar value
3917 /// indexed is already around as a register, for example if it was inserted
3918 /// directly into the aggregate.
3919 ///
3920 /// If InsertBefore is not null, this function will duplicate (modified)
3921 /// insertvalues when a part of a nested struct is extracted.
3922 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3923                                Instruction *InsertBefore) {
3924   // Nothing to index? Just return V then (this is useful at the end of our
3925   // recursion).
3926   if (idx_range.empty())
3927     return V;
3928   // We have indices, so V should have an indexable type.
3929   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3930          "Not looking at a struct or array?");
3931   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3932          "Invalid indices for type?");
3933 
3934   if (Constant *C = dyn_cast<Constant>(V)) {
3935     C = C->getAggregateElement(idx_range[0]);
3936     if (!C) return nullptr;
3937     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3938   }
3939 
3940   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3941     // Loop the indices for the insertvalue instruction in parallel with the
3942     // requested indices
3943     const unsigned *req_idx = idx_range.begin();
3944     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3945          i != e; ++i, ++req_idx) {
3946       if (req_idx == idx_range.end()) {
3947         // We can't handle this without inserting insertvalues
3948         if (!InsertBefore)
3949           return nullptr;
3950 
3951         // The requested index identifies a part of a nested aggregate. Handle
3952         // this specially. For example,
3953         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3954         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3955         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3956         // This can be changed into
3957         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3958         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3959         // which allows the unused 0,0 element from the nested struct to be
3960         // removed.
3961         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3962                                  InsertBefore);
3963       }
3964 
3965       // This insert value inserts something else than what we are looking for.
3966       // See if the (aggregate) value inserted into has the value we are
3967       // looking for, then.
3968       if (*req_idx != *i)
3969         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3970                                  InsertBefore);
3971     }
3972     // If we end up here, the indices of the insertvalue match with those
3973     // requested (though possibly only partially). Now we recursively look at
3974     // the inserted value, passing any remaining indices.
3975     return FindInsertedValue(I->getInsertedValueOperand(),
3976                              makeArrayRef(req_idx, idx_range.end()),
3977                              InsertBefore);
3978   }
3979 
3980   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3981     // If we're extracting a value from an aggregate that was extracted from
3982     // something else, we can extract from that something else directly instead.
3983     // However, we will need to chain I's indices with the requested indices.
3984 
3985     // Calculate the number of indices required
3986     unsigned size = I->getNumIndices() + idx_range.size();
3987     // Allocate some space to put the new indices in
3988     SmallVector<unsigned, 5> Idxs;
3989     Idxs.reserve(size);
3990     // Add indices from the extract value instruction
3991     Idxs.append(I->idx_begin(), I->idx_end());
3992 
3993     // Add requested indices
3994     Idxs.append(idx_range.begin(), idx_range.end());
3995 
3996     assert(Idxs.size() == size
3997            && "Number of indices added not correct?");
3998 
3999     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4000   }
4001   // Otherwise, we don't know (such as, extracting from a function return value
4002   // or load instruction)
4003   return nullptr;
4004 }
4005 
4006 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4007                                        unsigned CharSize) {
4008   // Make sure the GEP has exactly three arguments.
4009   if (GEP->getNumOperands() != 3)
4010     return false;
4011 
4012   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4013   // CharSize.
4014   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4015   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4016     return false;
4017 
4018   // Check to make sure that the first operand of the GEP is an integer and
4019   // has value 0 so that we are sure we're indexing into the initializer.
4020   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4021   if (!FirstIdx || !FirstIdx->isZero())
4022     return false;
4023 
4024   return true;
4025 }
4026 
4027 bool llvm::getConstantDataArrayInfo(const Value *V,
4028                                     ConstantDataArraySlice &Slice,
4029                                     unsigned ElementSize, uint64_t Offset) {
4030   assert(V);
4031 
4032   // Look through bitcast instructions and geps.
4033   V = V->stripPointerCasts();
4034 
4035   // If the value is a GEP instruction or constant expression, treat it as an
4036   // offset.
4037   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4038     // The GEP operator should be based on a pointer to string constant, and is
4039     // indexing into the string constant.
4040     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4041       return false;
4042 
4043     // If the second index isn't a ConstantInt, then this is a variable index
4044     // into the array.  If this occurs, we can't say anything meaningful about
4045     // the string.
4046     uint64_t StartIdx = 0;
4047     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4048       StartIdx = CI->getZExtValue();
4049     else
4050       return false;
4051     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4052                                     StartIdx + Offset);
4053   }
4054 
4055   // The GEP instruction, constant or instruction, must reference a global
4056   // variable that is a constant and is initialized. The referenced constant
4057   // initializer is the array that we'll use for optimization.
4058   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4059   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4060     return false;
4061 
4062   const ConstantDataArray *Array;
4063   ArrayType *ArrayTy;
4064   if (GV->getInitializer()->isNullValue()) {
4065     Type *GVTy = GV->getValueType();
4066     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4067       // A zeroinitializer for the array; there is no ConstantDataArray.
4068       Array = nullptr;
4069     } else {
4070       const DataLayout &DL = GV->getParent()->getDataLayout();
4071       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4072       uint64_t Length = SizeInBytes / (ElementSize / 8);
4073       if (Length <= Offset)
4074         return false;
4075 
4076       Slice.Array = nullptr;
4077       Slice.Offset = 0;
4078       Slice.Length = Length - Offset;
4079       return true;
4080     }
4081   } else {
4082     // This must be a ConstantDataArray.
4083     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4084     if (!Array)
4085       return false;
4086     ArrayTy = Array->getType();
4087   }
4088   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4089     return false;
4090 
4091   uint64_t NumElts = ArrayTy->getArrayNumElements();
4092   if (Offset > NumElts)
4093     return false;
4094 
4095   Slice.Array = Array;
4096   Slice.Offset = Offset;
4097   Slice.Length = NumElts - Offset;
4098   return true;
4099 }
4100 
4101 /// This function computes the length of a null-terminated C string pointed to
4102 /// by V. If successful, it returns true and returns the string in Str.
4103 /// If unsuccessful, it returns false.
4104 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4105                                  uint64_t Offset, bool TrimAtNul) {
4106   ConstantDataArraySlice Slice;
4107   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4108     return false;
4109 
4110   if (Slice.Array == nullptr) {
4111     if (TrimAtNul) {
4112       Str = StringRef();
4113       return true;
4114     }
4115     if (Slice.Length == 1) {
4116       Str = StringRef("", 1);
4117       return true;
4118     }
4119     // We cannot instantiate a StringRef as we do not have an appropriate string
4120     // of 0s at hand.
4121     return false;
4122   }
4123 
4124   // Start out with the entire array in the StringRef.
4125   Str = Slice.Array->getAsString();
4126   // Skip over 'offset' bytes.
4127   Str = Str.substr(Slice.Offset);
4128 
4129   if (TrimAtNul) {
4130     // Trim off the \0 and anything after it.  If the array is not nul
4131     // terminated, we just return the whole end of string.  The client may know
4132     // some other way that the string is length-bound.
4133     Str = Str.substr(0, Str.find('\0'));
4134   }
4135   return true;
4136 }
4137 
4138 // These next two are very similar to the above, but also look through PHI
4139 // nodes.
4140 // TODO: See if we can integrate these two together.
4141 
4142 /// If we can compute the length of the string pointed to by
4143 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4144 static uint64_t GetStringLengthH(const Value *V,
4145                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4146                                  unsigned CharSize) {
4147   // Look through noop bitcast instructions.
4148   V = V->stripPointerCasts();
4149 
4150   // If this is a PHI node, there are two cases: either we have already seen it
4151   // or we haven't.
4152   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4153     if (!PHIs.insert(PN).second)
4154       return ~0ULL;  // already in the set.
4155 
4156     // If it was new, see if all the input strings are the same length.
4157     uint64_t LenSoFar = ~0ULL;
4158     for (Value *IncValue : PN->incoming_values()) {
4159       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4160       if (Len == 0) return 0; // Unknown length -> unknown.
4161 
4162       if (Len == ~0ULL) continue;
4163 
4164       if (Len != LenSoFar && LenSoFar != ~0ULL)
4165         return 0;    // Disagree -> unknown.
4166       LenSoFar = Len;
4167     }
4168 
4169     // Success, all agree.
4170     return LenSoFar;
4171   }
4172 
4173   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4174   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4175     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4176     if (Len1 == 0) return 0;
4177     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4178     if (Len2 == 0) return 0;
4179     if (Len1 == ~0ULL) return Len2;
4180     if (Len2 == ~0ULL) return Len1;
4181     if (Len1 != Len2) return 0;
4182     return Len1;
4183   }
4184 
4185   // Otherwise, see if we can read the string.
4186   ConstantDataArraySlice Slice;
4187   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4188     return 0;
4189 
4190   if (Slice.Array == nullptr)
4191     return 1;
4192 
4193   // Search for nul characters
4194   unsigned NullIndex = 0;
4195   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4196     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4197       break;
4198   }
4199 
4200   return NullIndex + 1;
4201 }
4202 
4203 /// If we can compute the length of the string pointed to by
4204 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4205 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4206   if (!V->getType()->isPointerTy())
4207     return 0;
4208 
4209   SmallPtrSet<const PHINode*, 32> PHIs;
4210   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4211   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4212   // an empty string as a length.
4213   return Len == ~0ULL ? 1 : Len;
4214 }
4215 
4216 const Value *
4217 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4218                                            bool MustPreserveNullness) {
4219   assert(Call &&
4220          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4221   if (const Value *RV = Call->getReturnedArgOperand())
4222     return RV;
4223   // This can be used only as a aliasing property.
4224   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4225           Call, MustPreserveNullness))
4226     return Call->getArgOperand(0);
4227   return nullptr;
4228 }
4229 
4230 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4231     const CallBase *Call, bool MustPreserveNullness) {
4232   switch (Call->getIntrinsicID()) {
4233   case Intrinsic::launder_invariant_group:
4234   case Intrinsic::strip_invariant_group:
4235   case Intrinsic::aarch64_irg:
4236   case Intrinsic::aarch64_tagp:
4237     return true;
4238   case Intrinsic::ptrmask:
4239     return !MustPreserveNullness;
4240   default:
4241     return false;
4242   }
4243 }
4244 
4245 /// \p PN defines a loop-variant pointer to an object.  Check if the
4246 /// previous iteration of the loop was referring to the same object as \p PN.
4247 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4248                                          const LoopInfo *LI) {
4249   // Find the loop-defined value.
4250   Loop *L = LI->getLoopFor(PN->getParent());
4251   if (PN->getNumIncomingValues() != 2)
4252     return true;
4253 
4254   // Find the value from previous iteration.
4255   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4256   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4257     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4258   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4259     return true;
4260 
4261   // If a new pointer is loaded in the loop, the pointer references a different
4262   // object in every iteration.  E.g.:
4263   //    for (i)
4264   //       int *p = a[i];
4265   //       ...
4266   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4267     if (!L->isLoopInvariant(Load->getPointerOperand()))
4268       return false;
4269   return true;
4270 }
4271 
4272 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4273   if (!V->getType()->isPointerTy())
4274     return V;
4275   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4276     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4277       V = GEP->getPointerOperand();
4278     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4279                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4280       V = cast<Operator>(V)->getOperand(0);
4281       if (!V->getType()->isPointerTy())
4282         return V;
4283     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4284       if (GA->isInterposable())
4285         return V;
4286       V = GA->getAliasee();
4287     } else {
4288       if (auto *PHI = dyn_cast<PHINode>(V)) {
4289         // Look through single-arg phi nodes created by LCSSA.
4290         if (PHI->getNumIncomingValues() == 1) {
4291           V = PHI->getIncomingValue(0);
4292           continue;
4293         }
4294       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4295         // CaptureTracking can know about special capturing properties of some
4296         // intrinsics like launder.invariant.group, that can't be expressed with
4297         // the attributes, but have properties like returning aliasing pointer.
4298         // Because some analysis may assume that nocaptured pointer is not
4299         // returned from some special intrinsic (because function would have to
4300         // be marked with returns attribute), it is crucial to use this function
4301         // because it should be in sync with CaptureTracking. Not using it may
4302         // cause weird miscompilations where 2 aliasing pointers are assumed to
4303         // noalias.
4304         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4305           V = RP;
4306           continue;
4307         }
4308       }
4309 
4310       return V;
4311     }
4312     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4313   }
4314   return V;
4315 }
4316 
4317 void llvm::getUnderlyingObjects(const Value *V,
4318                                 SmallVectorImpl<const Value *> &Objects,
4319                                 LoopInfo *LI, unsigned MaxLookup) {
4320   SmallPtrSet<const Value *, 4> Visited;
4321   SmallVector<const Value *, 4> Worklist;
4322   Worklist.push_back(V);
4323   do {
4324     const Value *P = Worklist.pop_back_val();
4325     P = getUnderlyingObject(P, MaxLookup);
4326 
4327     if (!Visited.insert(P).second)
4328       continue;
4329 
4330     if (auto *SI = dyn_cast<SelectInst>(P)) {
4331       Worklist.push_back(SI->getTrueValue());
4332       Worklist.push_back(SI->getFalseValue());
4333       continue;
4334     }
4335 
4336     if (auto *PN = dyn_cast<PHINode>(P)) {
4337       // If this PHI changes the underlying object in every iteration of the
4338       // loop, don't look through it.  Consider:
4339       //   int **A;
4340       //   for (i) {
4341       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4342       //     Curr = A[i];
4343       //     *Prev, *Curr;
4344       //
4345       // Prev is tracking Curr one iteration behind so they refer to different
4346       // underlying objects.
4347       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4348           isSameUnderlyingObjectInLoop(PN, LI))
4349         append_range(Worklist, PN->incoming_values());
4350       continue;
4351     }
4352 
4353     Objects.push_back(P);
4354   } while (!Worklist.empty());
4355 }
4356 
4357 /// This is the function that does the work of looking through basic
4358 /// ptrtoint+arithmetic+inttoptr sequences.
4359 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4360   do {
4361     if (const Operator *U = dyn_cast<Operator>(V)) {
4362       // If we find a ptrtoint, we can transfer control back to the
4363       // regular getUnderlyingObjectFromInt.
4364       if (U->getOpcode() == Instruction::PtrToInt)
4365         return U->getOperand(0);
4366       // If we find an add of a constant, a multiplied value, or a phi, it's
4367       // likely that the other operand will lead us to the base
4368       // object. We don't have to worry about the case where the
4369       // object address is somehow being computed by the multiply,
4370       // because our callers only care when the result is an
4371       // identifiable object.
4372       if (U->getOpcode() != Instruction::Add ||
4373           (!isa<ConstantInt>(U->getOperand(1)) &&
4374            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4375            !isa<PHINode>(U->getOperand(1))))
4376         return V;
4377       V = U->getOperand(0);
4378     } else {
4379       return V;
4380     }
4381     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4382   } while (true);
4383 }
4384 
4385 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4386 /// ptrtoint+arithmetic+inttoptr sequences.
4387 /// It returns false if unidentified object is found in getUnderlyingObjects.
4388 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4389                                           SmallVectorImpl<Value *> &Objects) {
4390   SmallPtrSet<const Value *, 16> Visited;
4391   SmallVector<const Value *, 4> Working(1, V);
4392   do {
4393     V = Working.pop_back_val();
4394 
4395     SmallVector<const Value *, 4> Objs;
4396     getUnderlyingObjects(V, Objs);
4397 
4398     for (const Value *V : Objs) {
4399       if (!Visited.insert(V).second)
4400         continue;
4401       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4402         const Value *O =
4403           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4404         if (O->getType()->isPointerTy()) {
4405           Working.push_back(O);
4406           continue;
4407         }
4408       }
4409       // If getUnderlyingObjects fails to find an identifiable object,
4410       // getUnderlyingObjectsForCodeGen also fails for safety.
4411       if (!isIdentifiedObject(V)) {
4412         Objects.clear();
4413         return false;
4414       }
4415       Objects.push_back(const_cast<Value *>(V));
4416     }
4417   } while (!Working.empty());
4418   return true;
4419 }
4420 
4421 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4422   AllocaInst *Result = nullptr;
4423   SmallPtrSet<Value *, 4> Visited;
4424   SmallVector<Value *, 4> Worklist;
4425 
4426   auto AddWork = [&](Value *V) {
4427     if (Visited.insert(V).second)
4428       Worklist.push_back(V);
4429   };
4430 
4431   AddWork(V);
4432   do {
4433     V = Worklist.pop_back_val();
4434     assert(Visited.count(V));
4435 
4436     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4437       if (Result && Result != AI)
4438         return nullptr;
4439       Result = AI;
4440     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4441       AddWork(CI->getOperand(0));
4442     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4443       for (Value *IncValue : PN->incoming_values())
4444         AddWork(IncValue);
4445     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4446       AddWork(SI->getTrueValue());
4447       AddWork(SI->getFalseValue());
4448     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4449       if (OffsetZero && !GEP->hasAllZeroIndices())
4450         return nullptr;
4451       AddWork(GEP->getPointerOperand());
4452     } else {
4453       return nullptr;
4454     }
4455   } while (!Worklist.empty());
4456 
4457   return Result;
4458 }
4459 
4460 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4461     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4462   for (const User *U : V->users()) {
4463     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4464     if (!II)
4465       return false;
4466 
4467     if (AllowLifetime && II->isLifetimeStartOrEnd())
4468       continue;
4469 
4470     if (AllowDroppable && II->isDroppable())
4471       continue;
4472 
4473     return false;
4474   }
4475   return true;
4476 }
4477 
4478 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4479   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4480       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4481 }
4482 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4483   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4484       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4485 }
4486 
4487 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4488   if (!LI.isUnordered())
4489     return true;
4490   const Function &F = *LI.getFunction();
4491   // Speculative load may create a race that did not exist in the source.
4492   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4493     // Speculative load may load data from dirty regions.
4494     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4495     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4496 }
4497 
4498 
4499 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4500                                         const Instruction *CtxI,
4501                                         const DominatorTree *DT,
4502                                         const TargetLibraryInfo *TLI) {
4503   const Operator *Inst = dyn_cast<Operator>(V);
4504   if (!Inst)
4505     return false;
4506 
4507   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4508     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4509       if (C->canTrap())
4510         return false;
4511 
4512   switch (Inst->getOpcode()) {
4513   default:
4514     return true;
4515   case Instruction::UDiv:
4516   case Instruction::URem: {
4517     // x / y is undefined if y == 0.
4518     const APInt *V;
4519     if (match(Inst->getOperand(1), m_APInt(V)))
4520       return *V != 0;
4521     return false;
4522   }
4523   case Instruction::SDiv:
4524   case Instruction::SRem: {
4525     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4526     const APInt *Numerator, *Denominator;
4527     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4528       return false;
4529     // We cannot hoist this division if the denominator is 0.
4530     if (*Denominator == 0)
4531       return false;
4532     // It's safe to hoist if the denominator is not 0 or -1.
4533     if (!Denominator->isAllOnesValue())
4534       return true;
4535     // At this point we know that the denominator is -1.  It is safe to hoist as
4536     // long we know that the numerator is not INT_MIN.
4537     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4538       return !Numerator->isMinSignedValue();
4539     // The numerator *might* be MinSignedValue.
4540     return false;
4541   }
4542   case Instruction::Load: {
4543     const LoadInst *LI = cast<LoadInst>(Inst);
4544     if (mustSuppressSpeculation(*LI))
4545       return false;
4546     const DataLayout &DL = LI->getModule()->getDataLayout();
4547     return isDereferenceableAndAlignedPointer(
4548         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4549         DL, CtxI, DT, TLI);
4550   }
4551   case Instruction::Call: {
4552     auto *CI = cast<const CallInst>(Inst);
4553     const Function *Callee = CI->getCalledFunction();
4554 
4555     // The called function could have undefined behavior or side-effects, even
4556     // if marked readnone nounwind.
4557     return Callee && Callee->isSpeculatable();
4558   }
4559   case Instruction::VAArg:
4560   case Instruction::Alloca:
4561   case Instruction::Invoke:
4562   case Instruction::CallBr:
4563   case Instruction::PHI:
4564   case Instruction::Store:
4565   case Instruction::Ret:
4566   case Instruction::Br:
4567   case Instruction::IndirectBr:
4568   case Instruction::Switch:
4569   case Instruction::Unreachable:
4570   case Instruction::Fence:
4571   case Instruction::AtomicRMW:
4572   case Instruction::AtomicCmpXchg:
4573   case Instruction::LandingPad:
4574   case Instruction::Resume:
4575   case Instruction::CatchSwitch:
4576   case Instruction::CatchPad:
4577   case Instruction::CatchRet:
4578   case Instruction::CleanupPad:
4579   case Instruction::CleanupRet:
4580     return false; // Misc instructions which have effects
4581   }
4582 }
4583 
4584 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4585   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4586 }
4587 
4588 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4589 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4590   switch (OR) {
4591     case ConstantRange::OverflowResult::MayOverflow:
4592       return OverflowResult::MayOverflow;
4593     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4594       return OverflowResult::AlwaysOverflowsLow;
4595     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4596       return OverflowResult::AlwaysOverflowsHigh;
4597     case ConstantRange::OverflowResult::NeverOverflows:
4598       return OverflowResult::NeverOverflows;
4599   }
4600   llvm_unreachable("Unknown OverflowResult");
4601 }
4602 
4603 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4604 static ConstantRange computeConstantRangeIncludingKnownBits(
4605     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4606     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4607     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4608   KnownBits Known = computeKnownBits(
4609       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4610   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4611   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4612   ConstantRange::PreferredRangeType RangeType =
4613       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4614   return CR1.intersectWith(CR2, RangeType);
4615 }
4616 
4617 OverflowResult llvm::computeOverflowForUnsignedMul(
4618     const Value *LHS, const Value *RHS, const DataLayout &DL,
4619     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4620     bool UseInstrInfo) {
4621   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4622                                         nullptr, UseInstrInfo);
4623   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4624                                         nullptr, UseInstrInfo);
4625   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4626   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4627   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4628 }
4629 
4630 OverflowResult
4631 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4632                                   const DataLayout &DL, AssumptionCache *AC,
4633                                   const Instruction *CxtI,
4634                                   const DominatorTree *DT, bool UseInstrInfo) {
4635   // Multiplying n * m significant bits yields a result of n + m significant
4636   // bits. If the total number of significant bits does not exceed the
4637   // result bit width (minus 1), there is no overflow.
4638   // This means if we have enough leading sign bits in the operands
4639   // we can guarantee that the result does not overflow.
4640   // Ref: "Hacker's Delight" by Henry Warren
4641   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4642 
4643   // Note that underestimating the number of sign bits gives a more
4644   // conservative answer.
4645   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4646                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4647 
4648   // First handle the easy case: if we have enough sign bits there's
4649   // definitely no overflow.
4650   if (SignBits > BitWidth + 1)
4651     return OverflowResult::NeverOverflows;
4652 
4653   // There are two ambiguous cases where there can be no overflow:
4654   //   SignBits == BitWidth + 1    and
4655   //   SignBits == BitWidth
4656   // The second case is difficult to check, therefore we only handle the
4657   // first case.
4658   if (SignBits == BitWidth + 1) {
4659     // It overflows only when both arguments are negative and the true
4660     // product is exactly the minimum negative number.
4661     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4662     // For simplicity we just check if at least one side is not negative.
4663     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4664                                           nullptr, UseInstrInfo);
4665     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4666                                           nullptr, UseInstrInfo);
4667     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4668       return OverflowResult::NeverOverflows;
4669   }
4670   return OverflowResult::MayOverflow;
4671 }
4672 
4673 OverflowResult llvm::computeOverflowForUnsignedAdd(
4674     const Value *LHS, const Value *RHS, const DataLayout &DL,
4675     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4676     bool UseInstrInfo) {
4677   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4678       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4679       nullptr, UseInstrInfo);
4680   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4681       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4682       nullptr, UseInstrInfo);
4683   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4684 }
4685 
4686 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4687                                                   const Value *RHS,
4688                                                   const AddOperator *Add,
4689                                                   const DataLayout &DL,
4690                                                   AssumptionCache *AC,
4691                                                   const Instruction *CxtI,
4692                                                   const DominatorTree *DT) {
4693   if (Add && Add->hasNoSignedWrap()) {
4694     return OverflowResult::NeverOverflows;
4695   }
4696 
4697   // If LHS and RHS each have at least two sign bits, the addition will look
4698   // like
4699   //
4700   // XX..... +
4701   // YY.....
4702   //
4703   // If the carry into the most significant position is 0, X and Y can't both
4704   // be 1 and therefore the carry out of the addition is also 0.
4705   //
4706   // If the carry into the most significant position is 1, X and Y can't both
4707   // be 0 and therefore the carry out of the addition is also 1.
4708   //
4709   // Since the carry into the most significant position is always equal to
4710   // the carry out of the addition, there is no signed overflow.
4711   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4712       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4713     return OverflowResult::NeverOverflows;
4714 
4715   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4716       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4717   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4718       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4719   OverflowResult OR =
4720       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4721   if (OR != OverflowResult::MayOverflow)
4722     return OR;
4723 
4724   // The remaining code needs Add to be available. Early returns if not so.
4725   if (!Add)
4726     return OverflowResult::MayOverflow;
4727 
4728   // If the sign of Add is the same as at least one of the operands, this add
4729   // CANNOT overflow. If this can be determined from the known bits of the
4730   // operands the above signedAddMayOverflow() check will have already done so.
4731   // The only other way to improve on the known bits is from an assumption, so
4732   // call computeKnownBitsFromAssume() directly.
4733   bool LHSOrRHSKnownNonNegative =
4734       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4735   bool LHSOrRHSKnownNegative =
4736       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4737   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4738     KnownBits AddKnown(LHSRange.getBitWidth());
4739     computeKnownBitsFromAssume(
4740         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4741     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4742         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4743       return OverflowResult::NeverOverflows;
4744   }
4745 
4746   return OverflowResult::MayOverflow;
4747 }
4748 
4749 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4750                                                    const Value *RHS,
4751                                                    const DataLayout &DL,
4752                                                    AssumptionCache *AC,
4753                                                    const Instruction *CxtI,
4754                                                    const DominatorTree *DT) {
4755   // Checking for conditions implied by dominating conditions may be expensive.
4756   // Limit it to usub_with_overflow calls for now.
4757   if (match(CxtI,
4758             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4759     if (auto C =
4760             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4761       if (*C)
4762         return OverflowResult::NeverOverflows;
4763       return OverflowResult::AlwaysOverflowsLow;
4764     }
4765   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4766       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4767   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4768       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4769   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4770 }
4771 
4772 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4773                                                  const Value *RHS,
4774                                                  const DataLayout &DL,
4775                                                  AssumptionCache *AC,
4776                                                  const Instruction *CxtI,
4777                                                  const DominatorTree *DT) {
4778   // If LHS and RHS each have at least two sign bits, the subtraction
4779   // cannot overflow.
4780   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4781       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4782     return OverflowResult::NeverOverflows;
4783 
4784   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4785       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4786   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4787       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4788   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4789 }
4790 
4791 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4792                                      const DominatorTree &DT) {
4793   SmallVector<const BranchInst *, 2> GuardingBranches;
4794   SmallVector<const ExtractValueInst *, 2> Results;
4795 
4796   for (const User *U : WO->users()) {
4797     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4798       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4799 
4800       if (EVI->getIndices()[0] == 0)
4801         Results.push_back(EVI);
4802       else {
4803         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4804 
4805         for (const auto *U : EVI->users())
4806           if (const auto *B = dyn_cast<BranchInst>(U)) {
4807             assert(B->isConditional() && "How else is it using an i1?");
4808             GuardingBranches.push_back(B);
4809           }
4810       }
4811     } else {
4812       // We are using the aggregate directly in a way we don't want to analyze
4813       // here (storing it to a global, say).
4814       return false;
4815     }
4816   }
4817 
4818   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4819     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4820     if (!NoWrapEdge.isSingleEdge())
4821       return false;
4822 
4823     // Check if all users of the add are provably no-wrap.
4824     for (const auto *Result : Results) {
4825       // If the extractvalue itself is not executed on overflow, the we don't
4826       // need to check each use separately, since domination is transitive.
4827       if (DT.dominates(NoWrapEdge, Result->getParent()))
4828         continue;
4829 
4830       for (auto &RU : Result->uses())
4831         if (!DT.dominates(NoWrapEdge, RU))
4832           return false;
4833     }
4834 
4835     return true;
4836   };
4837 
4838   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4839 }
4840 
4841 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4842   // See whether I has flags that may create poison
4843   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4844     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4845       return true;
4846   }
4847   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4848     if (ExactOp->isExact())
4849       return true;
4850   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4851     auto FMF = FP->getFastMathFlags();
4852     if (FMF.noNaNs() || FMF.noInfs())
4853       return true;
4854   }
4855 
4856   unsigned Opcode = Op->getOpcode();
4857 
4858   // Check whether opcode is a poison/undef-generating operation
4859   switch (Opcode) {
4860   case Instruction::Shl:
4861   case Instruction::AShr:
4862   case Instruction::LShr: {
4863     // Shifts return poison if shiftwidth is larger than the bitwidth.
4864     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4865       SmallVector<Constant *, 4> ShiftAmounts;
4866       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4867         unsigned NumElts = FVTy->getNumElements();
4868         for (unsigned i = 0; i < NumElts; ++i)
4869           ShiftAmounts.push_back(C->getAggregateElement(i));
4870       } else if (isa<ScalableVectorType>(C->getType()))
4871         return true; // Can't tell, just return true to be safe
4872       else
4873         ShiftAmounts.push_back(C);
4874 
4875       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4876         auto *CI = dyn_cast_or_null<ConstantInt>(C);
4877         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4878       });
4879       return !Safe;
4880     }
4881     return true;
4882   }
4883   case Instruction::FPToSI:
4884   case Instruction::FPToUI:
4885     // fptosi/ui yields poison if the resulting value does not fit in the
4886     // destination type.
4887     return true;
4888   case Instruction::Call:
4889     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
4890       switch (II->getIntrinsicID()) {
4891       // TODO: Add more intrinsics.
4892       case Intrinsic::ctpop:
4893       case Intrinsic::sadd_with_overflow:
4894       case Intrinsic::ssub_with_overflow:
4895       case Intrinsic::smul_with_overflow:
4896       case Intrinsic::uadd_with_overflow:
4897       case Intrinsic::usub_with_overflow:
4898       case Intrinsic::umul_with_overflow:
4899         return false;
4900       }
4901     }
4902     LLVM_FALLTHROUGH;
4903   case Instruction::CallBr:
4904   case Instruction::Invoke: {
4905     const auto *CB = cast<CallBase>(Op);
4906     return !CB->hasRetAttr(Attribute::NoUndef);
4907   }
4908   case Instruction::InsertElement:
4909   case Instruction::ExtractElement: {
4910     // If index exceeds the length of the vector, it returns poison
4911     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4912     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4913     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4914     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4915       return true;
4916     return false;
4917   }
4918   case Instruction::ShuffleVector: {
4919     // shufflevector may return undef.
4920     if (PoisonOnly)
4921       return false;
4922     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4923                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4924                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4925     return is_contained(Mask, UndefMaskElem);
4926   }
4927   case Instruction::FNeg:
4928   case Instruction::PHI:
4929   case Instruction::Select:
4930   case Instruction::URem:
4931   case Instruction::SRem:
4932   case Instruction::ExtractValue:
4933   case Instruction::InsertValue:
4934   case Instruction::Freeze:
4935   case Instruction::ICmp:
4936   case Instruction::FCmp:
4937     return false;
4938   case Instruction::GetElementPtr: {
4939     const auto *GEP = cast<GEPOperator>(Op);
4940     return GEP->isInBounds();
4941   }
4942   default: {
4943     const auto *CE = dyn_cast<ConstantExpr>(Op);
4944     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4945       return false;
4946     else if (Instruction::isBinaryOp(Opcode))
4947       return false;
4948     // Be conservative and return true.
4949     return true;
4950   }
4951   }
4952 }
4953 
4954 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4955   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4956 }
4957 
4958 bool llvm::canCreatePoison(const Operator *Op) {
4959   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4960 }
4961 
4962 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
4963                                   const Value *V, unsigned Depth) {
4964   if (ValAssumedPoison == V)
4965     return true;
4966 
4967   const unsigned MaxDepth = 2;
4968   if (Depth >= MaxDepth)
4969     return false;
4970 
4971   if (const auto *I = dyn_cast<Instruction>(V)) {
4972     if (propagatesPoison(cast<Operator>(I)))
4973       return any_of(I->operands(), [=](const Value *Op) {
4974         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
4975       });
4976 
4977     // 'select ValAssumedPoison, _, _' is poison.
4978     if (const auto *SI = dyn_cast<SelectInst>(I))
4979       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
4980                                    Depth + 1);
4981     // V  = extractvalue V0, idx
4982     // V2 = extractvalue V0, idx2
4983     // V0's elements are all poison or not. (e.g., add_with_overflow)
4984     const WithOverflowInst *II;
4985     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
4986         match(ValAssumedPoison, m_ExtractValue(m_Specific(II))))
4987       return true;
4988   }
4989   return false;
4990 }
4991 
4992 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
4993                           unsigned Depth) {
4994   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
4995     return true;
4996 
4997   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
4998     return true;
4999 
5000   const unsigned MaxDepth = 2;
5001   if (Depth >= MaxDepth)
5002     return false;
5003 
5004   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5005   if (I && !canCreatePoison(cast<Operator>(I))) {
5006     return all_of(I->operands(), [=](const Value *Op) {
5007       return impliesPoison(Op, V, Depth + 1);
5008     });
5009   }
5010   return false;
5011 }
5012 
5013 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5014   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5015 }
5016 
5017 static bool programUndefinedIfUndefOrPoison(const Value *V,
5018                                             bool PoisonOnly);
5019 
5020 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5021                                              AssumptionCache *AC,
5022                                              const Instruction *CtxI,
5023                                              const DominatorTree *DT,
5024                                              unsigned Depth, bool PoisonOnly) {
5025   if (Depth >= MaxAnalysisRecursionDepth)
5026     return false;
5027 
5028   if (isa<MetadataAsValue>(V))
5029     return false;
5030 
5031   if (const auto *A = dyn_cast<Argument>(V)) {
5032     if (A->hasAttribute(Attribute::NoUndef))
5033       return true;
5034   }
5035 
5036   if (auto *C = dyn_cast<Constant>(V)) {
5037     if (isa<UndefValue>(C))
5038       return PoisonOnly && !isa<PoisonValue>(C);
5039 
5040     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5041         isa<ConstantPointerNull>(C) || isa<Function>(C))
5042       return true;
5043 
5044     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5045       return (PoisonOnly ? !C->containsPoisonElement()
5046                          : !C->containsUndefOrPoisonElement()) &&
5047              !C->containsConstantExpression();
5048   }
5049 
5050   // Strip cast operations from a pointer value.
5051   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5052   // inbounds with zero offset. To guarantee that the result isn't poison, the
5053   // stripped pointer is checked as it has to be pointing into an allocated
5054   // object or be null `null` to ensure `inbounds` getelement pointers with a
5055   // zero offset could not produce poison.
5056   // It can strip off addrspacecast that do not change bit representation as
5057   // well. We believe that such addrspacecast is equivalent to no-op.
5058   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5059   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5060       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5061     return true;
5062 
5063   auto OpCheck = [&](const Value *V) {
5064     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5065                                             PoisonOnly);
5066   };
5067 
5068   if (auto *Opr = dyn_cast<Operator>(V)) {
5069     // If the value is a freeze instruction, then it can never
5070     // be undef or poison.
5071     if (isa<FreezeInst>(V))
5072       return true;
5073 
5074     if (const auto *CB = dyn_cast<CallBase>(V)) {
5075       if (CB->hasRetAttr(Attribute::NoUndef))
5076         return true;
5077     }
5078 
5079     if (const auto *PN = dyn_cast<PHINode>(V)) {
5080       unsigned Num = PN->getNumIncomingValues();
5081       bool IsWellDefined = true;
5082       for (unsigned i = 0; i < Num; ++i) {
5083         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5084         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5085                                               DT, Depth + 1, PoisonOnly)) {
5086           IsWellDefined = false;
5087           break;
5088         }
5089       }
5090       if (IsWellDefined)
5091         return true;
5092     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5093       return true;
5094   }
5095 
5096   if (auto *I = dyn_cast<LoadInst>(V))
5097     if (I->getMetadata(LLVMContext::MD_noundef))
5098       return true;
5099 
5100   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5101     return true;
5102 
5103   // CxtI may be null or a cloned instruction.
5104   if (!CtxI || !CtxI->getParent() || !DT)
5105     return false;
5106 
5107   auto *DNode = DT->getNode(CtxI->getParent());
5108   if (!DNode)
5109     // Unreachable block
5110     return false;
5111 
5112   // If V is used as a branch condition before reaching CtxI, V cannot be
5113   // undef or poison.
5114   //   br V, BB1, BB2
5115   // BB1:
5116   //   CtxI ; V cannot be undef or poison here
5117   auto *Dominator = DNode->getIDom();
5118   while (Dominator) {
5119     auto *TI = Dominator->getBlock()->getTerminator();
5120 
5121     Value *Cond = nullptr;
5122     if (auto BI = dyn_cast<BranchInst>(TI)) {
5123       if (BI->isConditional())
5124         Cond = BI->getCondition();
5125     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
5126       Cond = SI->getCondition();
5127     }
5128 
5129     if (Cond) {
5130       if (Cond == V)
5131         return true;
5132       else if (PoisonOnly && isa<Operator>(Cond)) {
5133         // For poison, we can analyze further
5134         auto *Opr = cast<Operator>(Cond);
5135         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5136           return true;
5137       }
5138     }
5139 
5140     Dominator = Dominator->getIDom();
5141   }
5142 
5143   SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
5144   if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
5145     return true;
5146 
5147   return false;
5148 }
5149 
5150 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5151                                             const Instruction *CtxI,
5152                                             const DominatorTree *DT,
5153                                             unsigned Depth) {
5154   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5155 }
5156 
5157 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5158                                      const Instruction *CtxI,
5159                                      const DominatorTree *DT, unsigned Depth) {
5160   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5161 }
5162 
5163 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5164                                                  const DataLayout &DL,
5165                                                  AssumptionCache *AC,
5166                                                  const Instruction *CxtI,
5167                                                  const DominatorTree *DT) {
5168   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5169                                        Add, DL, AC, CxtI, DT);
5170 }
5171 
5172 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5173                                                  const Value *RHS,
5174                                                  const DataLayout &DL,
5175                                                  AssumptionCache *AC,
5176                                                  const Instruction *CxtI,
5177                                                  const DominatorTree *DT) {
5178   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5179 }
5180 
5181 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5182   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5183   // of time because it's possible for another thread to interfere with it for an
5184   // arbitrary length of time, but programs aren't allowed to rely on that.
5185 
5186   // If there is no successor, then execution can't transfer to it.
5187   if (isa<ReturnInst>(I))
5188     return false;
5189   if (isa<UnreachableInst>(I))
5190     return false;
5191 
5192   // An instruction that returns without throwing must transfer control flow
5193   // to a successor.
5194   return !I->mayThrow() && I->willReturn();
5195 }
5196 
5197 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5198   // TODO: This is slightly conservative for invoke instruction since exiting
5199   // via an exception *is* normal control for them.
5200   for (const Instruction &I : *BB)
5201     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5202       return false;
5203   return true;
5204 }
5205 
5206 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5207                                                   const Loop *L) {
5208   // The loop header is guaranteed to be executed for every iteration.
5209   //
5210   // FIXME: Relax this constraint to cover all basic blocks that are
5211   // guaranteed to be executed at every iteration.
5212   if (I->getParent() != L->getHeader()) return false;
5213 
5214   for (const Instruction &LI : *L->getHeader()) {
5215     if (&LI == I) return true;
5216     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5217   }
5218   llvm_unreachable("Instruction not contained in its own parent basic block.");
5219 }
5220 
5221 bool llvm::propagatesPoison(const Operator *I) {
5222   switch (I->getOpcode()) {
5223   case Instruction::Freeze:
5224   case Instruction::Select:
5225   case Instruction::PHI:
5226   case Instruction::Invoke:
5227     return false;
5228   case Instruction::Call:
5229     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5230       switch (II->getIntrinsicID()) {
5231       // TODO: Add more intrinsics.
5232       case Intrinsic::sadd_with_overflow:
5233       case Intrinsic::ssub_with_overflow:
5234       case Intrinsic::smul_with_overflow:
5235       case Intrinsic::uadd_with_overflow:
5236       case Intrinsic::usub_with_overflow:
5237       case Intrinsic::umul_with_overflow:
5238         // If an input is a vector containing a poison element, the
5239         // two output vectors (calculated results, overflow bits)'
5240         // corresponding lanes are poison.
5241         return true;
5242       }
5243     }
5244     return false;
5245   case Instruction::ICmp:
5246   case Instruction::FCmp:
5247   case Instruction::GetElementPtr:
5248     return true;
5249   default:
5250     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5251       return true;
5252 
5253     // Be conservative and return false.
5254     return false;
5255   }
5256 }
5257 
5258 void llvm::getGuaranteedWellDefinedOps(
5259     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5260   switch (I->getOpcode()) {
5261     case Instruction::Store:
5262       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5263       break;
5264 
5265     case Instruction::Load:
5266       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5267       break;
5268 
5269     // Since dereferenceable attribute imply noundef, atomic operations
5270     // also implicitly have noundef pointers too
5271     case Instruction::AtomicCmpXchg:
5272       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5273       break;
5274 
5275     case Instruction::AtomicRMW:
5276       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5277       break;
5278 
5279     case Instruction::Call:
5280     case Instruction::Invoke: {
5281       const CallBase *CB = cast<CallBase>(I);
5282       if (CB->isIndirectCall())
5283         Operands.insert(CB->getCalledOperand());
5284       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5285         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5286             CB->paramHasAttr(i, Attribute::Dereferenceable))
5287           Operands.insert(CB->getArgOperand(i));
5288       }
5289       break;
5290     }
5291 
5292     default:
5293       break;
5294   }
5295 }
5296 
5297 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5298                                      SmallPtrSetImpl<const Value *> &Operands) {
5299   getGuaranteedWellDefinedOps(I, Operands);
5300   switch (I->getOpcode()) {
5301   // Divisors of these operations are allowed to be partially undef.
5302   case Instruction::UDiv:
5303   case Instruction::SDiv:
5304   case Instruction::URem:
5305   case Instruction::SRem:
5306     Operands.insert(I->getOperand(1));
5307     break;
5308 
5309   default:
5310     break;
5311   }
5312 }
5313 
5314 bool llvm::mustTriggerUB(const Instruction *I,
5315                          const SmallSet<const Value *, 16>& KnownPoison) {
5316   SmallPtrSet<const Value *, 4> NonPoisonOps;
5317   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5318 
5319   for (const auto *V : NonPoisonOps)
5320     if (KnownPoison.count(V))
5321       return true;
5322 
5323   return false;
5324 }
5325 
5326 static bool programUndefinedIfUndefOrPoison(const Value *V,
5327                                             bool PoisonOnly) {
5328   // We currently only look for uses of values within the same basic
5329   // block, as that makes it easier to guarantee that the uses will be
5330   // executed given that Inst is executed.
5331   //
5332   // FIXME: Expand this to consider uses beyond the same basic block. To do
5333   // this, look out for the distinction between post-dominance and strong
5334   // post-dominance.
5335   const BasicBlock *BB = nullptr;
5336   BasicBlock::const_iterator Begin;
5337   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5338     BB = Inst->getParent();
5339     Begin = Inst->getIterator();
5340     Begin++;
5341   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5342     BB = &Arg->getParent()->getEntryBlock();
5343     Begin = BB->begin();
5344   } else {
5345     return false;
5346   }
5347 
5348   BasicBlock::const_iterator End = BB->end();
5349 
5350   if (!PoisonOnly) {
5351     // Since undef does not propagate eagerly, be conservative & just check
5352     // whether a value is directly passed to an instruction that must take
5353     // well-defined operands.
5354 
5355     for (auto &I : make_range(Begin, End)) {
5356       SmallPtrSet<const Value *, 4> WellDefinedOps;
5357       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5358       for (auto *Op : WellDefinedOps) {
5359         if (Op == V)
5360           return true;
5361       }
5362       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5363         break;
5364     }
5365     return false;
5366   }
5367 
5368   // Set of instructions that we have proved will yield poison if Inst
5369   // does.
5370   SmallSet<const Value *, 16> YieldsPoison;
5371   SmallSet<const BasicBlock *, 4> Visited;
5372 
5373   YieldsPoison.insert(V);
5374   auto Propagate = [&](const User *User) {
5375     if (propagatesPoison(cast<Operator>(User)))
5376       YieldsPoison.insert(User);
5377   };
5378   for_each(V->users(), Propagate);
5379   Visited.insert(BB);
5380 
5381   unsigned Iter = 0;
5382   while (Iter++ < MaxAnalysisRecursionDepth) {
5383     for (auto &I : make_range(Begin, End)) {
5384       if (mustTriggerUB(&I, YieldsPoison))
5385         return true;
5386       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5387         return false;
5388 
5389       // Mark poison that propagates from I through uses of I.
5390       if (YieldsPoison.count(&I))
5391         for_each(I.users(), Propagate);
5392     }
5393 
5394     if (auto *NextBB = BB->getSingleSuccessor()) {
5395       if (Visited.insert(NextBB).second) {
5396         BB = NextBB;
5397         Begin = BB->getFirstNonPHI()->getIterator();
5398         End = BB->end();
5399         continue;
5400       }
5401     }
5402 
5403     break;
5404   }
5405   return false;
5406 }
5407 
5408 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5409   return ::programUndefinedIfUndefOrPoison(Inst, false);
5410 }
5411 
5412 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5413   return ::programUndefinedIfUndefOrPoison(Inst, true);
5414 }
5415 
5416 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5417   if (FMF.noNaNs())
5418     return true;
5419 
5420   if (auto *C = dyn_cast<ConstantFP>(V))
5421     return !C->isNaN();
5422 
5423   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5424     if (!C->getElementType()->isFloatingPointTy())
5425       return false;
5426     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5427       if (C->getElementAsAPFloat(I).isNaN())
5428         return false;
5429     }
5430     return true;
5431   }
5432 
5433   if (isa<ConstantAggregateZero>(V))
5434     return true;
5435 
5436   return false;
5437 }
5438 
5439 static bool isKnownNonZero(const Value *V) {
5440   if (auto *C = dyn_cast<ConstantFP>(V))
5441     return !C->isZero();
5442 
5443   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5444     if (!C->getElementType()->isFloatingPointTy())
5445       return false;
5446     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5447       if (C->getElementAsAPFloat(I).isZero())
5448         return false;
5449     }
5450     return true;
5451   }
5452 
5453   return false;
5454 }
5455 
5456 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5457 /// Given non-min/max outer cmp/select from the clamp pattern this
5458 /// function recognizes if it can be substitued by a "canonical" min/max
5459 /// pattern.
5460 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5461                                                Value *CmpLHS, Value *CmpRHS,
5462                                                Value *TrueVal, Value *FalseVal,
5463                                                Value *&LHS, Value *&RHS) {
5464   // Try to match
5465   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5466   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5467   // and return description of the outer Max/Min.
5468 
5469   // First, check if select has inverse order:
5470   if (CmpRHS == FalseVal) {
5471     std::swap(TrueVal, FalseVal);
5472     Pred = CmpInst::getInversePredicate(Pred);
5473   }
5474 
5475   // Assume success now. If there's no match, callers should not use these anyway.
5476   LHS = TrueVal;
5477   RHS = FalseVal;
5478 
5479   const APFloat *FC1;
5480   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5481     return {SPF_UNKNOWN, SPNB_NA, false};
5482 
5483   const APFloat *FC2;
5484   switch (Pred) {
5485   case CmpInst::FCMP_OLT:
5486   case CmpInst::FCMP_OLE:
5487   case CmpInst::FCMP_ULT:
5488   case CmpInst::FCMP_ULE:
5489     if (match(FalseVal,
5490               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5491                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5492         *FC1 < *FC2)
5493       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5494     break;
5495   case CmpInst::FCMP_OGT:
5496   case CmpInst::FCMP_OGE:
5497   case CmpInst::FCMP_UGT:
5498   case CmpInst::FCMP_UGE:
5499     if (match(FalseVal,
5500               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5501                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5502         *FC1 > *FC2)
5503       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5504     break;
5505   default:
5506     break;
5507   }
5508 
5509   return {SPF_UNKNOWN, SPNB_NA, false};
5510 }
5511 
5512 /// Recognize variations of:
5513 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5514 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5515                                       Value *CmpLHS, Value *CmpRHS,
5516                                       Value *TrueVal, Value *FalseVal) {
5517   // Swap the select operands and predicate to match the patterns below.
5518   if (CmpRHS != TrueVal) {
5519     Pred = ICmpInst::getSwappedPredicate(Pred);
5520     std::swap(TrueVal, FalseVal);
5521   }
5522   const APInt *C1;
5523   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5524     const APInt *C2;
5525     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5526     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5527         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5528       return {SPF_SMAX, SPNB_NA, false};
5529 
5530     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5531     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5532         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5533       return {SPF_SMIN, SPNB_NA, false};
5534 
5535     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5536     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5537         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5538       return {SPF_UMAX, SPNB_NA, false};
5539 
5540     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5541     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5542         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5543       return {SPF_UMIN, SPNB_NA, false};
5544   }
5545   return {SPF_UNKNOWN, SPNB_NA, false};
5546 }
5547 
5548 /// Recognize variations of:
5549 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5550 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5551                                                Value *CmpLHS, Value *CmpRHS,
5552                                                Value *TVal, Value *FVal,
5553                                                unsigned Depth) {
5554   // TODO: Allow FP min/max with nnan/nsz.
5555   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5556 
5557   Value *A = nullptr, *B = nullptr;
5558   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5559   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5560     return {SPF_UNKNOWN, SPNB_NA, false};
5561 
5562   Value *C = nullptr, *D = nullptr;
5563   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5564   if (L.Flavor != R.Flavor)
5565     return {SPF_UNKNOWN, SPNB_NA, false};
5566 
5567   // We have something like: x Pred y ? min(a, b) : min(c, d).
5568   // Try to match the compare to the min/max operations of the select operands.
5569   // First, make sure we have the right compare predicate.
5570   switch (L.Flavor) {
5571   case SPF_SMIN:
5572     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5573       Pred = ICmpInst::getSwappedPredicate(Pred);
5574       std::swap(CmpLHS, CmpRHS);
5575     }
5576     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5577       break;
5578     return {SPF_UNKNOWN, SPNB_NA, false};
5579   case SPF_SMAX:
5580     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5581       Pred = ICmpInst::getSwappedPredicate(Pred);
5582       std::swap(CmpLHS, CmpRHS);
5583     }
5584     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5585       break;
5586     return {SPF_UNKNOWN, SPNB_NA, false};
5587   case SPF_UMIN:
5588     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5589       Pred = ICmpInst::getSwappedPredicate(Pred);
5590       std::swap(CmpLHS, CmpRHS);
5591     }
5592     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5593       break;
5594     return {SPF_UNKNOWN, SPNB_NA, false};
5595   case SPF_UMAX:
5596     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5597       Pred = ICmpInst::getSwappedPredicate(Pred);
5598       std::swap(CmpLHS, CmpRHS);
5599     }
5600     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5601       break;
5602     return {SPF_UNKNOWN, SPNB_NA, false};
5603   default:
5604     return {SPF_UNKNOWN, SPNB_NA, false};
5605   }
5606 
5607   // If there is a common operand in the already matched min/max and the other
5608   // min/max operands match the compare operands (either directly or inverted),
5609   // then this is min/max of the same flavor.
5610 
5611   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5612   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5613   if (D == B) {
5614     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5615                                          match(A, m_Not(m_Specific(CmpRHS)))))
5616       return {L.Flavor, SPNB_NA, false};
5617   }
5618   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5619   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5620   if (C == B) {
5621     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5622                                          match(A, m_Not(m_Specific(CmpRHS)))))
5623       return {L.Flavor, SPNB_NA, false};
5624   }
5625   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5626   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5627   if (D == A) {
5628     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5629                                          match(B, m_Not(m_Specific(CmpRHS)))))
5630       return {L.Flavor, SPNB_NA, false};
5631   }
5632   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5633   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5634   if (C == A) {
5635     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5636                                          match(B, m_Not(m_Specific(CmpRHS)))))
5637       return {L.Flavor, SPNB_NA, false};
5638   }
5639 
5640   return {SPF_UNKNOWN, SPNB_NA, false};
5641 }
5642 
5643 /// If the input value is the result of a 'not' op, constant integer, or vector
5644 /// splat of a constant integer, return the bitwise-not source value.
5645 /// TODO: This could be extended to handle non-splat vector integer constants.
5646 static Value *getNotValue(Value *V) {
5647   Value *NotV;
5648   if (match(V, m_Not(m_Value(NotV))))
5649     return NotV;
5650 
5651   const APInt *C;
5652   if (match(V, m_APInt(C)))
5653     return ConstantInt::get(V->getType(), ~(*C));
5654 
5655   return nullptr;
5656 }
5657 
5658 /// Match non-obvious integer minimum and maximum sequences.
5659 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5660                                        Value *CmpLHS, Value *CmpRHS,
5661                                        Value *TrueVal, Value *FalseVal,
5662                                        Value *&LHS, Value *&RHS,
5663                                        unsigned Depth) {
5664   // Assume success. If there's no match, callers should not use these anyway.
5665   LHS = TrueVal;
5666   RHS = FalseVal;
5667 
5668   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5669   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5670     return SPR;
5671 
5672   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5673   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5674     return SPR;
5675 
5676   // Look through 'not' ops to find disguised min/max.
5677   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5678   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5679   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5680     switch (Pred) {
5681     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5682     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5683     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5684     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5685     default: break;
5686     }
5687   }
5688 
5689   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5690   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5691   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5692     switch (Pred) {
5693     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5694     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5695     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5696     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5697     default: break;
5698     }
5699   }
5700 
5701   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5702     return {SPF_UNKNOWN, SPNB_NA, false};
5703 
5704   // Z = X -nsw Y
5705   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5706   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5707   if (match(TrueVal, m_Zero()) &&
5708       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5709     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5710 
5711   // Z = X -nsw Y
5712   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5713   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5714   if (match(FalseVal, m_Zero()) &&
5715       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5716     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5717 
5718   const APInt *C1;
5719   if (!match(CmpRHS, m_APInt(C1)))
5720     return {SPF_UNKNOWN, SPNB_NA, false};
5721 
5722   // An unsigned min/max can be written with a signed compare.
5723   const APInt *C2;
5724   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5725       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5726     // Is the sign bit set?
5727     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5728     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5729     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5730         C2->isMaxSignedValue())
5731       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5732 
5733     // Is the sign bit clear?
5734     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5735     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5736     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5737         C2->isMinSignedValue())
5738       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5739   }
5740 
5741   return {SPF_UNKNOWN, SPNB_NA, false};
5742 }
5743 
5744 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5745   assert(X && Y && "Invalid operand");
5746 
5747   // X = sub (0, Y) || X = sub nsw (0, Y)
5748   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5749       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5750     return true;
5751 
5752   // Y = sub (0, X) || Y = sub nsw (0, X)
5753   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5754       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5755     return true;
5756 
5757   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5758   Value *A, *B;
5759   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5760                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5761          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5762                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5763 }
5764 
5765 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5766                                               FastMathFlags FMF,
5767                                               Value *CmpLHS, Value *CmpRHS,
5768                                               Value *TrueVal, Value *FalseVal,
5769                                               Value *&LHS, Value *&RHS,
5770                                               unsigned Depth) {
5771   if (CmpInst::isFPPredicate(Pred)) {
5772     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5773     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5774     // purpose of identifying min/max. Disregard vector constants with undefined
5775     // elements because those can not be back-propagated for analysis.
5776     Value *OutputZeroVal = nullptr;
5777     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5778         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5779       OutputZeroVal = TrueVal;
5780     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5781              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5782       OutputZeroVal = FalseVal;
5783 
5784     if (OutputZeroVal) {
5785       if (match(CmpLHS, m_AnyZeroFP()))
5786         CmpLHS = OutputZeroVal;
5787       if (match(CmpRHS, m_AnyZeroFP()))
5788         CmpRHS = OutputZeroVal;
5789     }
5790   }
5791 
5792   LHS = CmpLHS;
5793   RHS = CmpRHS;
5794 
5795   // Signed zero may return inconsistent results between implementations.
5796   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5797   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5798   // Therefore, we behave conservatively and only proceed if at least one of the
5799   // operands is known to not be zero or if we don't care about signed zero.
5800   switch (Pred) {
5801   default: break;
5802   // FIXME: Include OGT/OLT/UGT/ULT.
5803   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5804   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5805     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5806         !isKnownNonZero(CmpRHS))
5807       return {SPF_UNKNOWN, SPNB_NA, false};
5808   }
5809 
5810   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5811   bool Ordered = false;
5812 
5813   // When given one NaN and one non-NaN input:
5814   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5815   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5816   //     ordered comparison fails), which could be NaN or non-NaN.
5817   // so here we discover exactly what NaN behavior is required/accepted.
5818   if (CmpInst::isFPPredicate(Pred)) {
5819     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5820     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5821 
5822     if (LHSSafe && RHSSafe) {
5823       // Both operands are known non-NaN.
5824       NaNBehavior = SPNB_RETURNS_ANY;
5825     } else if (CmpInst::isOrdered(Pred)) {
5826       // An ordered comparison will return false when given a NaN, so it
5827       // returns the RHS.
5828       Ordered = true;
5829       if (LHSSafe)
5830         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5831         NaNBehavior = SPNB_RETURNS_NAN;
5832       else if (RHSSafe)
5833         NaNBehavior = SPNB_RETURNS_OTHER;
5834       else
5835         // Completely unsafe.
5836         return {SPF_UNKNOWN, SPNB_NA, false};
5837     } else {
5838       Ordered = false;
5839       // An unordered comparison will return true when given a NaN, so it
5840       // returns the LHS.
5841       if (LHSSafe)
5842         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5843         NaNBehavior = SPNB_RETURNS_OTHER;
5844       else if (RHSSafe)
5845         NaNBehavior = SPNB_RETURNS_NAN;
5846       else
5847         // Completely unsafe.
5848         return {SPF_UNKNOWN, SPNB_NA, false};
5849     }
5850   }
5851 
5852   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5853     std::swap(CmpLHS, CmpRHS);
5854     Pred = CmpInst::getSwappedPredicate(Pred);
5855     if (NaNBehavior == SPNB_RETURNS_NAN)
5856       NaNBehavior = SPNB_RETURNS_OTHER;
5857     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5858       NaNBehavior = SPNB_RETURNS_NAN;
5859     Ordered = !Ordered;
5860   }
5861 
5862   // ([if]cmp X, Y) ? X : Y
5863   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5864     switch (Pred) {
5865     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5866     case ICmpInst::ICMP_UGT:
5867     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5868     case ICmpInst::ICMP_SGT:
5869     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5870     case ICmpInst::ICMP_ULT:
5871     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5872     case ICmpInst::ICMP_SLT:
5873     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5874     case FCmpInst::FCMP_UGT:
5875     case FCmpInst::FCMP_UGE:
5876     case FCmpInst::FCMP_OGT:
5877     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5878     case FCmpInst::FCMP_ULT:
5879     case FCmpInst::FCMP_ULE:
5880     case FCmpInst::FCMP_OLT:
5881     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5882     }
5883   }
5884 
5885   if (isKnownNegation(TrueVal, FalseVal)) {
5886     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5887     // match against either LHS or sext(LHS).
5888     auto MaybeSExtCmpLHS =
5889         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5890     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5891     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5892     if (match(TrueVal, MaybeSExtCmpLHS)) {
5893       // Set the return values. If the compare uses the negated value (-X >s 0),
5894       // swap the return values because the negated value is always 'RHS'.
5895       LHS = TrueVal;
5896       RHS = FalseVal;
5897       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5898         std::swap(LHS, RHS);
5899 
5900       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5901       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5902       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5903         return {SPF_ABS, SPNB_NA, false};
5904 
5905       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5906       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5907         return {SPF_ABS, SPNB_NA, false};
5908 
5909       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5910       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5911       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5912         return {SPF_NABS, SPNB_NA, false};
5913     }
5914     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5915       // Set the return values. If the compare uses the negated value (-X >s 0),
5916       // swap the return values because the negated value is always 'RHS'.
5917       LHS = FalseVal;
5918       RHS = TrueVal;
5919       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5920         std::swap(LHS, RHS);
5921 
5922       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5923       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5924       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5925         return {SPF_NABS, SPNB_NA, false};
5926 
5927       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5928       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5929       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5930         return {SPF_ABS, SPNB_NA, false};
5931     }
5932   }
5933 
5934   if (CmpInst::isIntPredicate(Pred))
5935     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5936 
5937   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5938   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5939   // semantics than minNum. Be conservative in such case.
5940   if (NaNBehavior != SPNB_RETURNS_ANY ||
5941       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5942        !isKnownNonZero(CmpRHS)))
5943     return {SPF_UNKNOWN, SPNB_NA, false};
5944 
5945   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5946 }
5947 
5948 /// Helps to match a select pattern in case of a type mismatch.
5949 ///
5950 /// The function processes the case when type of true and false values of a
5951 /// select instruction differs from type of the cmp instruction operands because
5952 /// of a cast instruction. The function checks if it is legal to move the cast
5953 /// operation after "select". If yes, it returns the new second value of
5954 /// "select" (with the assumption that cast is moved):
5955 /// 1. As operand of cast instruction when both values of "select" are same cast
5956 /// instructions.
5957 /// 2. As restored constant (by applying reverse cast operation) when the first
5958 /// value of the "select" is a cast operation and the second value is a
5959 /// constant.
5960 /// NOTE: We return only the new second value because the first value could be
5961 /// accessed as operand of cast instruction.
5962 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5963                               Instruction::CastOps *CastOp) {
5964   auto *Cast1 = dyn_cast<CastInst>(V1);
5965   if (!Cast1)
5966     return nullptr;
5967 
5968   *CastOp = Cast1->getOpcode();
5969   Type *SrcTy = Cast1->getSrcTy();
5970   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5971     // If V1 and V2 are both the same cast from the same type, look through V1.
5972     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5973       return Cast2->getOperand(0);
5974     return nullptr;
5975   }
5976 
5977   auto *C = dyn_cast<Constant>(V2);
5978   if (!C)
5979     return nullptr;
5980 
5981   Constant *CastedTo = nullptr;
5982   switch (*CastOp) {
5983   case Instruction::ZExt:
5984     if (CmpI->isUnsigned())
5985       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5986     break;
5987   case Instruction::SExt:
5988     if (CmpI->isSigned())
5989       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5990     break;
5991   case Instruction::Trunc:
5992     Constant *CmpConst;
5993     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5994         CmpConst->getType() == SrcTy) {
5995       // Here we have the following case:
5996       //
5997       //   %cond = cmp iN %x, CmpConst
5998       //   %tr = trunc iN %x to iK
5999       //   %narrowsel = select i1 %cond, iK %t, iK C
6000       //
6001       // We can always move trunc after select operation:
6002       //
6003       //   %cond = cmp iN %x, CmpConst
6004       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6005       //   %tr = trunc iN %widesel to iK
6006       //
6007       // Note that C could be extended in any way because we don't care about
6008       // upper bits after truncation. It can't be abs pattern, because it would
6009       // look like:
6010       //
6011       //   select i1 %cond, x, -x.
6012       //
6013       // So only min/max pattern could be matched. Such match requires widened C
6014       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6015       // CmpConst == C is checked below.
6016       CastedTo = CmpConst;
6017     } else {
6018       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6019     }
6020     break;
6021   case Instruction::FPTrunc:
6022     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6023     break;
6024   case Instruction::FPExt:
6025     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6026     break;
6027   case Instruction::FPToUI:
6028     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6029     break;
6030   case Instruction::FPToSI:
6031     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6032     break;
6033   case Instruction::UIToFP:
6034     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6035     break;
6036   case Instruction::SIToFP:
6037     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6038     break;
6039   default:
6040     break;
6041   }
6042 
6043   if (!CastedTo)
6044     return nullptr;
6045 
6046   // Make sure the cast doesn't lose any information.
6047   Constant *CastedBack =
6048       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6049   if (CastedBack != C)
6050     return nullptr;
6051 
6052   return CastedTo;
6053 }
6054 
6055 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6056                                              Instruction::CastOps *CastOp,
6057                                              unsigned Depth) {
6058   if (Depth >= MaxAnalysisRecursionDepth)
6059     return {SPF_UNKNOWN, SPNB_NA, false};
6060 
6061   SelectInst *SI = dyn_cast<SelectInst>(V);
6062   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6063 
6064   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6065   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6066 
6067   Value *TrueVal = SI->getTrueValue();
6068   Value *FalseVal = SI->getFalseValue();
6069 
6070   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6071                                             CastOp, Depth);
6072 }
6073 
6074 SelectPatternResult llvm::matchDecomposedSelectPattern(
6075     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6076     Instruction::CastOps *CastOp, unsigned Depth) {
6077   CmpInst::Predicate Pred = CmpI->getPredicate();
6078   Value *CmpLHS = CmpI->getOperand(0);
6079   Value *CmpRHS = CmpI->getOperand(1);
6080   FastMathFlags FMF;
6081   if (isa<FPMathOperator>(CmpI))
6082     FMF = CmpI->getFastMathFlags();
6083 
6084   // Bail out early.
6085   if (CmpI->isEquality())
6086     return {SPF_UNKNOWN, SPNB_NA, false};
6087 
6088   // Deal with type mismatches.
6089   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6090     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6091       // If this is a potential fmin/fmax with a cast to integer, then ignore
6092       // -0.0 because there is no corresponding integer value.
6093       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6094         FMF.setNoSignedZeros();
6095       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6096                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6097                                   LHS, RHS, Depth);
6098     }
6099     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6100       // If this is a potential fmin/fmax with a cast to integer, then ignore
6101       // -0.0 because there is no corresponding integer value.
6102       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6103         FMF.setNoSignedZeros();
6104       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6105                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6106                                   LHS, RHS, Depth);
6107     }
6108   }
6109   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6110                               LHS, RHS, Depth);
6111 }
6112 
6113 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6114   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6115   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6116   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6117   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6118   if (SPF == SPF_FMINNUM)
6119     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6120   if (SPF == SPF_FMAXNUM)
6121     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6122   llvm_unreachable("unhandled!");
6123 }
6124 
6125 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6126   if (SPF == SPF_SMIN) return SPF_SMAX;
6127   if (SPF == SPF_UMIN) return SPF_UMAX;
6128   if (SPF == SPF_SMAX) return SPF_SMIN;
6129   if (SPF == SPF_UMAX) return SPF_UMIN;
6130   llvm_unreachable("unhandled!");
6131 }
6132 
6133 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6134   switch (MinMaxID) {
6135   case Intrinsic::smax: return Intrinsic::smin;
6136   case Intrinsic::smin: return Intrinsic::smax;
6137   case Intrinsic::umax: return Intrinsic::umin;
6138   case Intrinsic::umin: return Intrinsic::umax;
6139   default: llvm_unreachable("Unexpected intrinsic");
6140   }
6141 }
6142 
6143 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6144   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6145 }
6146 
6147 std::pair<Intrinsic::ID, bool>
6148 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6149   // Check if VL contains select instructions that can be folded into a min/max
6150   // vector intrinsic and return the intrinsic if it is possible.
6151   // TODO: Support floating point min/max.
6152   bool AllCmpSingleUse = true;
6153   SelectPatternResult SelectPattern;
6154   SelectPattern.Flavor = SPF_UNKNOWN;
6155   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6156         Value *LHS, *RHS;
6157         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6158         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6159             CurrentPattern.Flavor == SPF_FMINNUM ||
6160             CurrentPattern.Flavor == SPF_FMAXNUM ||
6161             !I->getType()->isIntOrIntVectorTy())
6162           return false;
6163         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6164             SelectPattern.Flavor != CurrentPattern.Flavor)
6165           return false;
6166         SelectPattern = CurrentPattern;
6167         AllCmpSingleUse &=
6168             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6169         return true;
6170       })) {
6171     switch (SelectPattern.Flavor) {
6172     case SPF_SMIN:
6173       return {Intrinsic::smin, AllCmpSingleUse};
6174     case SPF_UMIN:
6175       return {Intrinsic::umin, AllCmpSingleUse};
6176     case SPF_SMAX:
6177       return {Intrinsic::smax, AllCmpSingleUse};
6178     case SPF_UMAX:
6179       return {Intrinsic::umax, AllCmpSingleUse};
6180     default:
6181       llvm_unreachable("unexpected select pattern flavor");
6182     }
6183   }
6184   return {Intrinsic::not_intrinsic, false};
6185 }
6186 
6187 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6188                                  Value *&Start, Value *&Step) {
6189   // Handle the case of a simple two-predecessor recurrence PHI.
6190   // There's a lot more that could theoretically be done here, but
6191   // this is sufficient to catch some interesting cases.
6192   if (P->getNumIncomingValues() != 2)
6193     return false;
6194 
6195   for (unsigned i = 0; i != 2; ++i) {
6196     Value *L = P->getIncomingValue(i);
6197     Value *R = P->getIncomingValue(!i);
6198     Operator *LU = dyn_cast<Operator>(L);
6199     if (!LU)
6200       continue;
6201     unsigned Opcode = LU->getOpcode();
6202 
6203     switch (Opcode) {
6204     default:
6205       continue;
6206     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6207     case Instruction::LShr:
6208     case Instruction::AShr:
6209     case Instruction::Shl:
6210     case Instruction::Add:
6211     case Instruction::Sub:
6212     case Instruction::And:
6213     case Instruction::Or:
6214     case Instruction::Mul: {
6215       Value *LL = LU->getOperand(0);
6216       Value *LR = LU->getOperand(1);
6217       // Find a recurrence.
6218       if (LL == P)
6219         L = LR;
6220       else if (LR == P)
6221         L = LL;
6222       else
6223         continue; // Check for recurrence with L and R flipped.
6224 
6225       break; // Match!
6226     }
6227     };
6228 
6229     // We have matched a recurrence of the form:
6230     //   %iv = [R, %entry], [%iv.next, %backedge]
6231     //   %iv.next = binop %iv, L
6232     // OR
6233     //   %iv = [R, %entry], [%iv.next, %backedge]
6234     //   %iv.next = binop L, %iv
6235     BO = cast<BinaryOperator>(LU);
6236     Start = R;
6237     Step = L;
6238     return true;
6239   }
6240   return false;
6241 }
6242 
6243 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6244                                  Value *&Start, Value *&Step) {
6245   BinaryOperator *BO = nullptr;
6246   P = dyn_cast<PHINode>(I->getOperand(0));
6247   if (!P)
6248     P = dyn_cast<PHINode>(I->getOperand(1));
6249   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6250 }
6251 
6252 /// Return true if "icmp Pred LHS RHS" is always true.
6253 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6254                             const Value *RHS, const DataLayout &DL,
6255                             unsigned Depth) {
6256   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6257   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6258     return true;
6259 
6260   switch (Pred) {
6261   default:
6262     return false;
6263 
6264   case CmpInst::ICMP_SLE: {
6265     const APInt *C;
6266 
6267     // LHS s<= LHS +_{nsw} C   if C >= 0
6268     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6269       return !C->isNegative();
6270     return false;
6271   }
6272 
6273   case CmpInst::ICMP_ULE: {
6274     const APInt *C;
6275 
6276     // LHS u<= LHS +_{nuw} C   for any C
6277     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6278       return true;
6279 
6280     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6281     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6282                                        const Value *&X,
6283                                        const APInt *&CA, const APInt *&CB) {
6284       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6285           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6286         return true;
6287 
6288       // If X & C == 0 then (X | C) == X +_{nuw} C
6289       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6290           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6291         KnownBits Known(CA->getBitWidth());
6292         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6293                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6294         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6295           return true;
6296       }
6297 
6298       return false;
6299     };
6300 
6301     const Value *X;
6302     const APInt *CLHS, *CRHS;
6303     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6304       return CLHS->ule(*CRHS);
6305 
6306     return false;
6307   }
6308   }
6309 }
6310 
6311 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6312 /// ALHS ARHS" is true.  Otherwise, return None.
6313 static Optional<bool>
6314 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6315                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6316                       const DataLayout &DL, unsigned Depth) {
6317   switch (Pred) {
6318   default:
6319     return None;
6320 
6321   case CmpInst::ICMP_SLT:
6322   case CmpInst::ICMP_SLE:
6323     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6324         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6325       return true;
6326     return None;
6327 
6328   case CmpInst::ICMP_ULT:
6329   case CmpInst::ICMP_ULE:
6330     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6331         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6332       return true;
6333     return None;
6334   }
6335 }
6336 
6337 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6338 /// when the operands match, but are swapped.
6339 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6340                           const Value *BLHS, const Value *BRHS,
6341                           bool &IsSwappedOps) {
6342 
6343   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6344   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6345   return IsMatchingOps || IsSwappedOps;
6346 }
6347 
6348 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6349 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6350 /// Otherwise, return None if we can't infer anything.
6351 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6352                                                     CmpInst::Predicate BPred,
6353                                                     bool AreSwappedOps) {
6354   // Canonicalize the predicate as if the operands were not commuted.
6355   if (AreSwappedOps)
6356     BPred = ICmpInst::getSwappedPredicate(BPred);
6357 
6358   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6359     return true;
6360   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6361     return false;
6362 
6363   return None;
6364 }
6365 
6366 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6367 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6368 /// Otherwise, return None if we can't infer anything.
6369 static Optional<bool>
6370 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6371                                  const ConstantInt *C1,
6372                                  CmpInst::Predicate BPred,
6373                                  const ConstantInt *C2) {
6374   ConstantRange DomCR =
6375       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6376   ConstantRange CR =
6377       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6378   ConstantRange Intersection = DomCR.intersectWith(CR);
6379   ConstantRange Difference = DomCR.difference(CR);
6380   if (Intersection.isEmptySet())
6381     return false;
6382   if (Difference.isEmptySet())
6383     return true;
6384   return None;
6385 }
6386 
6387 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6388 /// false.  Otherwise, return None if we can't infer anything.
6389 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6390                                          CmpInst::Predicate BPred,
6391                                          const Value *BLHS, const Value *BRHS,
6392                                          const DataLayout &DL, bool LHSIsTrue,
6393                                          unsigned Depth) {
6394   Value *ALHS = LHS->getOperand(0);
6395   Value *ARHS = LHS->getOperand(1);
6396 
6397   // The rest of the logic assumes the LHS condition is true.  If that's not the
6398   // case, invert the predicate to make it so.
6399   CmpInst::Predicate APred =
6400       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6401 
6402   // Can we infer anything when the two compares have matching operands?
6403   bool AreSwappedOps;
6404   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6405     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6406             APred, BPred, AreSwappedOps))
6407       return Implication;
6408     // No amount of additional analysis will infer the second condition, so
6409     // early exit.
6410     return None;
6411   }
6412 
6413   // Can we infer anything when the LHS operands match and the RHS operands are
6414   // constants (not necessarily matching)?
6415   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6416     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6417             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6418       return Implication;
6419     // No amount of additional analysis will infer the second condition, so
6420     // early exit.
6421     return None;
6422   }
6423 
6424   if (APred == BPred)
6425     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6426   return None;
6427 }
6428 
6429 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6430 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6431 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6432 static Optional<bool>
6433 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6434                    const Value *RHSOp0, const Value *RHSOp1,
6435                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6436   // The LHS must be an 'or', 'and', or a 'select' instruction.
6437   assert((LHS->getOpcode() == Instruction::And ||
6438           LHS->getOpcode() == Instruction::Or ||
6439           LHS->getOpcode() == Instruction::Select) &&
6440          "Expected LHS to be 'and', 'or', or 'select'.");
6441 
6442   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6443 
6444   // If the result of an 'or' is false, then we know both legs of the 'or' are
6445   // false.  Similarly, if the result of an 'and' is true, then we know both
6446   // legs of the 'and' are true.
6447   const Value *ALHS, *ARHS;
6448   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6449       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6450     // FIXME: Make this non-recursion.
6451     if (Optional<bool> Implication = isImpliedCondition(
6452             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6453       return Implication;
6454     if (Optional<bool> Implication = isImpliedCondition(
6455             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6456       return Implication;
6457     return None;
6458   }
6459   return None;
6460 }
6461 
6462 Optional<bool>
6463 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6464                          const Value *RHSOp0, const Value *RHSOp1,
6465                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6466   // Bail out when we hit the limit.
6467   if (Depth == MaxAnalysisRecursionDepth)
6468     return None;
6469 
6470   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6471   // example.
6472   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6473     return None;
6474 
6475   Type *OpTy = LHS->getType();
6476   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6477 
6478   // FIXME: Extending the code below to handle vectors.
6479   if (OpTy->isVectorTy())
6480     return None;
6481 
6482   assert(OpTy->isIntegerTy(1) && "implied by above");
6483 
6484   // Both LHS and RHS are icmps.
6485   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6486   if (LHSCmp)
6487     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6488                               Depth);
6489 
6490   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6491   /// the RHS to be an icmp.
6492   /// FIXME: Add support for and/or/select on the RHS.
6493   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6494     if ((LHSI->getOpcode() == Instruction::And ||
6495          LHSI->getOpcode() == Instruction::Or ||
6496          LHSI->getOpcode() == Instruction::Select))
6497       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6498                                 Depth);
6499   }
6500   return None;
6501 }
6502 
6503 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6504                                         const DataLayout &DL, bool LHSIsTrue,
6505                                         unsigned Depth) {
6506   // LHS ==> RHS by definition
6507   if (LHS == RHS)
6508     return LHSIsTrue;
6509 
6510   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6511   if (RHSCmp)
6512     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6513                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6514                               LHSIsTrue, Depth);
6515   return None;
6516 }
6517 
6518 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6519 // condition dominating ContextI or nullptr, if no condition is found.
6520 static std::pair<Value *, bool>
6521 getDomPredecessorCondition(const Instruction *ContextI) {
6522   if (!ContextI || !ContextI->getParent())
6523     return {nullptr, false};
6524 
6525   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6526   // dominator tree (eg, from a SimplifyQuery) instead?
6527   const BasicBlock *ContextBB = ContextI->getParent();
6528   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6529   if (!PredBB)
6530     return {nullptr, false};
6531 
6532   // We need a conditional branch in the predecessor.
6533   Value *PredCond;
6534   BasicBlock *TrueBB, *FalseBB;
6535   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6536     return {nullptr, false};
6537 
6538   // The branch should get simplified. Don't bother simplifying this condition.
6539   if (TrueBB == FalseBB)
6540     return {nullptr, false};
6541 
6542   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6543          "Predecessor block does not point to successor?");
6544 
6545   // Is this condition implied by the predecessor condition?
6546   return {PredCond, TrueBB == ContextBB};
6547 }
6548 
6549 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6550                                              const Instruction *ContextI,
6551                                              const DataLayout &DL) {
6552   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6553   auto PredCond = getDomPredecessorCondition(ContextI);
6554   if (PredCond.first)
6555     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6556   return None;
6557 }
6558 
6559 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6560                                              const Value *LHS, const Value *RHS,
6561                                              const Instruction *ContextI,
6562                                              const DataLayout &DL) {
6563   auto PredCond = getDomPredecessorCondition(ContextI);
6564   if (PredCond.first)
6565     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6566                               PredCond.second);
6567   return None;
6568 }
6569 
6570 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6571                               APInt &Upper, const InstrInfoQuery &IIQ) {
6572   unsigned Width = Lower.getBitWidth();
6573   const APInt *C;
6574   switch (BO.getOpcode()) {
6575   case Instruction::Add:
6576     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6577       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6578       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6579         // 'add nuw x, C' produces [C, UINT_MAX].
6580         Lower = *C;
6581       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6582         if (C->isNegative()) {
6583           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6584           Lower = APInt::getSignedMinValue(Width);
6585           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6586         } else {
6587           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6588           Lower = APInt::getSignedMinValue(Width) + *C;
6589           Upper = APInt::getSignedMaxValue(Width) + 1;
6590         }
6591       }
6592     }
6593     break;
6594 
6595   case Instruction::And:
6596     if (match(BO.getOperand(1), m_APInt(C)))
6597       // 'and x, C' produces [0, C].
6598       Upper = *C + 1;
6599     break;
6600 
6601   case Instruction::Or:
6602     if (match(BO.getOperand(1), m_APInt(C)))
6603       // 'or x, C' produces [C, UINT_MAX].
6604       Lower = *C;
6605     break;
6606 
6607   case Instruction::AShr:
6608     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6609       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6610       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6611       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6612     } else if (match(BO.getOperand(0), m_APInt(C))) {
6613       unsigned ShiftAmount = Width - 1;
6614       if (!C->isNullValue() && IIQ.isExact(&BO))
6615         ShiftAmount = C->countTrailingZeros();
6616       if (C->isNegative()) {
6617         // 'ashr C, x' produces [C, C >> (Width-1)]
6618         Lower = *C;
6619         Upper = C->ashr(ShiftAmount) + 1;
6620       } else {
6621         // 'ashr C, x' produces [C >> (Width-1), C]
6622         Lower = C->ashr(ShiftAmount);
6623         Upper = *C + 1;
6624       }
6625     }
6626     break;
6627 
6628   case Instruction::LShr:
6629     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6630       // 'lshr x, C' produces [0, UINT_MAX >> C].
6631       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6632     } else if (match(BO.getOperand(0), m_APInt(C))) {
6633       // 'lshr C, x' produces [C >> (Width-1), C].
6634       unsigned ShiftAmount = Width - 1;
6635       if (!C->isNullValue() && IIQ.isExact(&BO))
6636         ShiftAmount = C->countTrailingZeros();
6637       Lower = C->lshr(ShiftAmount);
6638       Upper = *C + 1;
6639     }
6640     break;
6641 
6642   case Instruction::Shl:
6643     if (match(BO.getOperand(0), m_APInt(C))) {
6644       if (IIQ.hasNoUnsignedWrap(&BO)) {
6645         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6646         Lower = *C;
6647         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6648       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6649         if (C->isNegative()) {
6650           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6651           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6652           Lower = C->shl(ShiftAmount);
6653           Upper = *C + 1;
6654         } else {
6655           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6656           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6657           Lower = *C;
6658           Upper = C->shl(ShiftAmount) + 1;
6659         }
6660       }
6661     }
6662     break;
6663 
6664   case Instruction::SDiv:
6665     if (match(BO.getOperand(1), m_APInt(C))) {
6666       APInt IntMin = APInt::getSignedMinValue(Width);
6667       APInt IntMax = APInt::getSignedMaxValue(Width);
6668       if (C->isAllOnesValue()) {
6669         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6670         //    where C != -1 and C != 0 and C != 1
6671         Lower = IntMin + 1;
6672         Upper = IntMax + 1;
6673       } else if (C->countLeadingZeros() < Width - 1) {
6674         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6675         //    where C != -1 and C != 0 and C != 1
6676         Lower = IntMin.sdiv(*C);
6677         Upper = IntMax.sdiv(*C);
6678         if (Lower.sgt(Upper))
6679           std::swap(Lower, Upper);
6680         Upper = Upper + 1;
6681         assert(Upper != Lower && "Upper part of range has wrapped!");
6682       }
6683     } else if (match(BO.getOperand(0), m_APInt(C))) {
6684       if (C->isMinSignedValue()) {
6685         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6686         Lower = *C;
6687         Upper = Lower.lshr(1) + 1;
6688       } else {
6689         // 'sdiv C, x' produces [-|C|, |C|].
6690         Upper = C->abs() + 1;
6691         Lower = (-Upper) + 1;
6692       }
6693     }
6694     break;
6695 
6696   case Instruction::UDiv:
6697     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6698       // 'udiv x, C' produces [0, UINT_MAX / C].
6699       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6700     } else if (match(BO.getOperand(0), m_APInt(C))) {
6701       // 'udiv C, x' produces [0, C].
6702       Upper = *C + 1;
6703     }
6704     break;
6705 
6706   case Instruction::SRem:
6707     if (match(BO.getOperand(1), m_APInt(C))) {
6708       // 'srem x, C' produces (-|C|, |C|).
6709       Upper = C->abs();
6710       Lower = (-Upper) + 1;
6711     }
6712     break;
6713 
6714   case Instruction::URem:
6715     if (match(BO.getOperand(1), m_APInt(C)))
6716       // 'urem x, C' produces [0, C).
6717       Upper = *C;
6718     break;
6719 
6720   default:
6721     break;
6722   }
6723 }
6724 
6725 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6726                                   APInt &Upper) {
6727   unsigned Width = Lower.getBitWidth();
6728   const APInt *C;
6729   switch (II.getIntrinsicID()) {
6730   case Intrinsic::ctpop:
6731   case Intrinsic::ctlz:
6732   case Intrinsic::cttz:
6733     // Maximum of set/clear bits is the bit width.
6734     assert(Lower == 0 && "Expected lower bound to be zero");
6735     Upper = Width + 1;
6736     break;
6737   case Intrinsic::uadd_sat:
6738     // uadd.sat(x, C) produces [C, UINT_MAX].
6739     if (match(II.getOperand(0), m_APInt(C)) ||
6740         match(II.getOperand(1), m_APInt(C)))
6741       Lower = *C;
6742     break;
6743   case Intrinsic::sadd_sat:
6744     if (match(II.getOperand(0), m_APInt(C)) ||
6745         match(II.getOperand(1), m_APInt(C))) {
6746       if (C->isNegative()) {
6747         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6748         Lower = APInt::getSignedMinValue(Width);
6749         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6750       } else {
6751         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6752         Lower = APInt::getSignedMinValue(Width) + *C;
6753         Upper = APInt::getSignedMaxValue(Width) + 1;
6754       }
6755     }
6756     break;
6757   case Intrinsic::usub_sat:
6758     // usub.sat(C, x) produces [0, C].
6759     if (match(II.getOperand(0), m_APInt(C)))
6760       Upper = *C + 1;
6761     // usub.sat(x, C) produces [0, UINT_MAX - C].
6762     else if (match(II.getOperand(1), m_APInt(C)))
6763       Upper = APInt::getMaxValue(Width) - *C + 1;
6764     break;
6765   case Intrinsic::ssub_sat:
6766     if (match(II.getOperand(0), m_APInt(C))) {
6767       if (C->isNegative()) {
6768         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6769         Lower = APInt::getSignedMinValue(Width);
6770         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6771       } else {
6772         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6773         Lower = *C - APInt::getSignedMaxValue(Width);
6774         Upper = APInt::getSignedMaxValue(Width) + 1;
6775       }
6776     } else if (match(II.getOperand(1), m_APInt(C))) {
6777       if (C->isNegative()) {
6778         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6779         Lower = APInt::getSignedMinValue(Width) - *C;
6780         Upper = APInt::getSignedMaxValue(Width) + 1;
6781       } else {
6782         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6783         Lower = APInt::getSignedMinValue(Width);
6784         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6785       }
6786     }
6787     break;
6788   case Intrinsic::umin:
6789   case Intrinsic::umax:
6790   case Intrinsic::smin:
6791   case Intrinsic::smax:
6792     if (!match(II.getOperand(0), m_APInt(C)) &&
6793         !match(II.getOperand(1), m_APInt(C)))
6794       break;
6795 
6796     switch (II.getIntrinsicID()) {
6797     case Intrinsic::umin:
6798       Upper = *C + 1;
6799       break;
6800     case Intrinsic::umax:
6801       Lower = *C;
6802       break;
6803     case Intrinsic::smin:
6804       Lower = APInt::getSignedMinValue(Width);
6805       Upper = *C + 1;
6806       break;
6807     case Intrinsic::smax:
6808       Lower = *C;
6809       Upper = APInt::getSignedMaxValue(Width) + 1;
6810       break;
6811     default:
6812       llvm_unreachable("Must be min/max intrinsic");
6813     }
6814     break;
6815   case Intrinsic::abs:
6816     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6817     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6818     if (match(II.getOperand(1), m_One()))
6819       Upper = APInt::getSignedMaxValue(Width) + 1;
6820     else
6821       Upper = APInt::getSignedMinValue(Width) + 1;
6822     break;
6823   default:
6824     break;
6825   }
6826 }
6827 
6828 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6829                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6830   const Value *LHS = nullptr, *RHS = nullptr;
6831   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6832   if (R.Flavor == SPF_UNKNOWN)
6833     return;
6834 
6835   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6836 
6837   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6838     // If the negation part of the abs (in RHS) has the NSW flag,
6839     // then the result of abs(X) is [0..SIGNED_MAX],
6840     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6841     Lower = APInt::getNullValue(BitWidth);
6842     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6843         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6844       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6845     else
6846       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6847     return;
6848   }
6849 
6850   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6851     // The result of -abs(X) is <= 0.
6852     Lower = APInt::getSignedMinValue(BitWidth);
6853     Upper = APInt(BitWidth, 1);
6854     return;
6855   }
6856 
6857   const APInt *C;
6858   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6859     return;
6860 
6861   switch (R.Flavor) {
6862     case SPF_UMIN:
6863       Upper = *C + 1;
6864       break;
6865     case SPF_UMAX:
6866       Lower = *C;
6867       break;
6868     case SPF_SMIN:
6869       Lower = APInt::getSignedMinValue(BitWidth);
6870       Upper = *C + 1;
6871       break;
6872     case SPF_SMAX:
6873       Lower = *C;
6874       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6875       break;
6876     default:
6877       break;
6878   }
6879 }
6880 
6881 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6882                                          AssumptionCache *AC,
6883                                          const Instruction *CtxI,
6884                                          unsigned Depth) {
6885   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6886 
6887   if (Depth == MaxAnalysisRecursionDepth)
6888     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6889 
6890   const APInt *C;
6891   if (match(V, m_APInt(C)))
6892     return ConstantRange(*C);
6893 
6894   InstrInfoQuery IIQ(UseInstrInfo);
6895   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6896   APInt Lower = APInt(BitWidth, 0);
6897   APInt Upper = APInt(BitWidth, 0);
6898   if (auto *BO = dyn_cast<BinaryOperator>(V))
6899     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6900   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6901     setLimitsForIntrinsic(*II, Lower, Upper);
6902   else if (auto *SI = dyn_cast<SelectInst>(V))
6903     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6904 
6905   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6906 
6907   if (auto *I = dyn_cast<Instruction>(V))
6908     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6909       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6910 
6911   if (CtxI && AC) {
6912     // Try to restrict the range based on information from assumptions.
6913     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6914       if (!AssumeVH)
6915         continue;
6916       CallInst *I = cast<CallInst>(AssumeVH);
6917       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6918              "Got assumption for the wrong function!");
6919       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6920              "must be an assume intrinsic");
6921 
6922       if (!isValidAssumeForContext(I, CtxI, nullptr))
6923         continue;
6924       Value *Arg = I->getArgOperand(0);
6925       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6926       // Currently we just use information from comparisons.
6927       if (!Cmp || Cmp->getOperand(0) != V)
6928         continue;
6929       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6930                                                AC, I, Depth + 1);
6931       CR = CR.intersectWith(
6932           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6933     }
6934   }
6935 
6936   return CR;
6937 }
6938 
6939 static Optional<int64_t>
6940 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6941   // Skip over the first indices.
6942   gep_type_iterator GTI = gep_type_begin(GEP);
6943   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6944     /*skip along*/;
6945 
6946   // Compute the offset implied by the rest of the indices.
6947   int64_t Offset = 0;
6948   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6949     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6950     if (!OpC)
6951       return None;
6952     if (OpC->isZero())
6953       continue; // No offset.
6954 
6955     // Handle struct indices, which add their field offset to the pointer.
6956     if (StructType *STy = GTI.getStructTypeOrNull()) {
6957       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6958       continue;
6959     }
6960 
6961     // Otherwise, we have a sequential type like an array or fixed-length
6962     // vector. Multiply the index by the ElementSize.
6963     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6964     if (Size.isScalable())
6965       return None;
6966     Offset += Size.getFixedSize() * OpC->getSExtValue();
6967   }
6968 
6969   return Offset;
6970 }
6971 
6972 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6973                                         const DataLayout &DL) {
6974   Ptr1 = Ptr1->stripPointerCasts();
6975   Ptr2 = Ptr2->stripPointerCasts();
6976 
6977   // Handle the trivial case first.
6978   if (Ptr1 == Ptr2) {
6979     return 0;
6980   }
6981 
6982   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6983   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6984 
6985   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6986   // as in "P" and "gep P, 1".
6987   // Also do this iteratively to handle the the following case:
6988   //   Ptr_t1 = GEP Ptr1, c1
6989   //   Ptr_t2 = GEP Ptr_t1, c2
6990   //   Ptr2 = GEP Ptr_t2, c3
6991   // where we will return c1+c2+c3.
6992   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6993   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6994   // are the same, and return the difference between offsets.
6995   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6996                                  const Value *Ptr) -> Optional<int64_t> {
6997     const GEPOperator *GEP_T = GEP;
6998     int64_t OffsetVal = 0;
6999     bool HasSameBase = false;
7000     while (GEP_T) {
7001       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
7002       if (!Offset)
7003         return None;
7004       OffsetVal += *Offset;
7005       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
7006       if (Op0 == Ptr) {
7007         HasSameBase = true;
7008         break;
7009       }
7010       GEP_T = dyn_cast<GEPOperator>(Op0);
7011     }
7012     if (!HasSameBase)
7013       return None;
7014     return OffsetVal;
7015   };
7016 
7017   if (GEP1) {
7018     auto Offset = getOffsetFromBase(GEP1, Ptr2);
7019     if (Offset)
7020       return -*Offset;
7021   }
7022   if (GEP2) {
7023     auto Offset = getOffsetFromBase(GEP2, Ptr1);
7024     if (Offset)
7025       return Offset;
7026   }
7027 
7028   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7029   // base.  After that base, they may have some number of common (and
7030   // potentially variable) indices.  After that they handle some constant
7031   // offset, which determines their offset from each other.  At this point, we
7032   // handle no other case.
7033   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
7034     return None;
7035 
7036   // Skip any common indices and track the GEP types.
7037   unsigned Idx = 1;
7038   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7039     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7040       break;
7041 
7042   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
7043   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
7044   if (!Offset1 || !Offset2)
7045     return None;
7046   return *Offset2 - *Offset1;
7047 }
7048