1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 unsigned BitWidth = Known.getBitWidth(); 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 isKnownNonZero(Op0, Depth, Q)) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 443 isKnownNonZero(Op1, Depth, Q)); 444 } 445 } 446 447 assert(!Known.hasConflict() && !Known2.hasConflict()); 448 // Compute a conservative estimate for high known-0 bits. 449 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 450 Known2.countMinLeadingZeros(), 451 BitWidth) - BitWidth; 452 LeadZ = std::min(LeadZ, BitWidth); 453 454 // The result of the bottom bits of an integer multiply can be 455 // inferred by looking at the bottom bits of both operands and 456 // multiplying them together. 457 // We can infer at least the minimum number of known trailing bits 458 // of both operands. Depending on number of trailing zeros, we can 459 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 460 // a and b are divisible by m and n respectively. 461 // We then calculate how many of those bits are inferrable and set 462 // the output. For example, the i8 mul: 463 // a = XXXX1100 (12) 464 // b = XXXX1110 (14) 465 // We know the bottom 3 bits are zero since the first can be divided by 466 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 467 // Applying the multiplication to the trimmed arguments gets: 468 // XX11 (3) 469 // X111 (7) 470 // ------- 471 // XX11 472 // XX11 473 // XX11 474 // XX11 475 // ------- 476 // XXXXX01 477 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 478 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 479 // The proof for this can be described as: 480 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 481 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 482 // umin(countTrailingZeros(C2), C6) + 483 // umin(C5 - umin(countTrailingZeros(C1), C5), 484 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 485 // %aa = shl i8 %a, C5 486 // %bb = shl i8 %b, C6 487 // %aaa = or i8 %aa, C1 488 // %bbb = or i8 %bb, C2 489 // %mul = mul i8 %aaa, %bbb 490 // %mask = and i8 %mul, C7 491 // => 492 // %mask = i8 ((C1*C2)&C7) 493 // Where C5, C6 describe the known bits of %a, %b 494 // C1, C2 describe the known bottom bits of %a, %b. 495 // C7 describes the mask of the known bits of the result. 496 APInt Bottom0 = Known.One; 497 APInt Bottom1 = Known2.One; 498 499 // How many times we'd be able to divide each argument by 2 (shr by 1). 500 // This gives us the number of trailing zeros on the multiplication result. 501 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 502 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 503 unsigned TrailZero0 = Known.countMinTrailingZeros(); 504 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 505 unsigned TrailZ = TrailZero0 + TrailZero1; 506 507 // Figure out the fewest known-bits operand. 508 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 509 TrailBitsKnown1 - TrailZero1); 510 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 511 512 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 513 Bottom1.getLoBits(TrailBitsKnown1); 514 515 Known.resetAll(); 516 Known.Zero.setHighBits(LeadZ); 517 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 518 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 519 520 // Only make use of no-wrap flags if we failed to compute the sign bit 521 // directly. This matters if the multiplication always overflows, in 522 // which case we prefer to follow the result of the direct computation, 523 // though as the program is invoking undefined behaviour we can choose 524 // whatever we like here. 525 if (isKnownNonNegative && !Known.isNegative()) 526 Known.makeNonNegative(); 527 else if (isKnownNegative && !Known.isNonNegative()) 528 Known.makeNegative(); 529 } 530 531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 532 KnownBits &Known) { 533 unsigned BitWidth = Known.getBitWidth(); 534 unsigned NumRanges = Ranges.getNumOperands() / 2; 535 assert(NumRanges >= 1); 536 537 Known.Zero.setAllBits(); 538 Known.One.setAllBits(); 539 540 for (unsigned i = 0; i < NumRanges; ++i) { 541 ConstantInt *Lower = 542 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 543 ConstantInt *Upper = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 545 ConstantRange Range(Lower->getValue(), Upper->getValue()); 546 547 // The first CommonPrefixBits of all values in Range are equal. 548 unsigned CommonPrefixBits = 549 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 550 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 551 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 552 Known.One &= UnsignedMax & Mask; 553 Known.Zero &= ~UnsignedMax & Mask; 554 } 555 } 556 557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 558 SmallVector<const Value *, 16> WorkSet(1, I); 559 SmallPtrSet<const Value *, 32> Visited; 560 SmallPtrSet<const Value *, 16> EphValues; 561 562 // The instruction defining an assumption's condition itself is always 563 // considered ephemeral to that assumption (even if it has other 564 // non-ephemeral users). See r246696's test case for an example. 565 if (is_contained(I->operands(), E)) 566 return true; 567 568 while (!WorkSet.empty()) { 569 const Value *V = WorkSet.pop_back_val(); 570 if (!Visited.insert(V).second) 571 continue; 572 573 // If all uses of this value are ephemeral, then so is this value. 574 if (llvm::all_of(V->users(), [&](const User *U) { 575 return EphValues.count(U); 576 })) { 577 if (V == E) 578 return true; 579 580 if (V == I || isSafeToSpeculativelyExecute(V)) { 581 EphValues.insert(V); 582 if (const User *U = dyn_cast<User>(V)) 583 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 584 J != JE; ++J) 585 WorkSet.push_back(*J); 586 } 587 } 588 } 589 590 return false; 591 } 592 593 // Is this an intrinsic that cannot be speculated but also cannot trap? 594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 595 if (const CallInst *CI = dyn_cast<CallInst>(I)) 596 if (Function *F = CI->getCalledFunction()) 597 switch (F->getIntrinsicID()) { 598 default: break; 599 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 600 case Intrinsic::assume: 601 case Intrinsic::sideeffect: 602 case Intrinsic::dbg_declare: 603 case Intrinsic::dbg_value: 604 case Intrinsic::dbg_label: 605 case Intrinsic::invariant_start: 606 case Intrinsic::invariant_end: 607 case Intrinsic::lifetime_start: 608 case Intrinsic::lifetime_end: 609 case Intrinsic::objectsize: 610 case Intrinsic::ptr_annotation: 611 case Intrinsic::var_annotation: 612 return true; 613 } 614 615 return false; 616 } 617 618 bool llvm::isValidAssumeForContext(const Instruction *Inv, 619 const Instruction *CxtI, 620 const DominatorTree *DT) { 621 // There are two restrictions on the use of an assume: 622 // 1. The assume must dominate the context (or the control flow must 623 // reach the assume whenever it reaches the context). 624 // 2. The context must not be in the assume's set of ephemeral values 625 // (otherwise we will use the assume to prove that the condition 626 // feeding the assume is trivially true, thus causing the removal of 627 // the assume). 628 629 if (Inv->getParent() == CxtI->getParent()) { 630 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 631 // in the BB. 632 if (Inv->comesBefore(CxtI)) 633 return true; 634 635 // Don't let an assume affect itself - this would cause the problems 636 // `isEphemeralValueOf` is trying to prevent, and it would also make 637 // the loop below go out of bounds. 638 if (Inv == CxtI) 639 return false; 640 641 // The context comes first, but they're both in the same block. 642 // Make sure there is nothing in between that might interrupt 643 // the control flow, not even CxtI itself. 644 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 645 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 646 return false; 647 648 return !isEphemeralValueOf(Inv, CxtI); 649 } 650 651 // Inv and CxtI are in different blocks. 652 if (DT) { 653 if (DT->dominates(Inv, CxtI)) 654 return true; 655 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 656 // We don't have a DT, but this trivially dominates. 657 return true; 658 } 659 660 return false; 661 } 662 663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 664 // Use of assumptions is context-sensitive. If we don't have a context, we 665 // cannot use them! 666 if (!Q.AC || !Q.CxtI) 667 return false; 668 669 // Note that the patterns below need to be kept in sync with the code 670 // in AssumptionCache::updateAffectedValues. 671 672 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 673 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 674 675 Value *RHS; 676 CmpInst::Predicate Pred; 677 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 678 return false; 679 // assume(v u> y) -> assume(v != 0) 680 if (Pred == ICmpInst::ICMP_UGT) 681 return true; 682 683 // assume(v != 0) 684 // We special-case this one to ensure that we handle `assume(v != null)`. 685 if (Pred == ICmpInst::ICMP_NE) 686 return match(RHS, m_Zero()); 687 688 // All other predicates - rely on generic ConstantRange handling. 689 ConstantInt *CI; 690 if (!match(RHS, m_ConstantInt(CI))) 691 return false; 692 ConstantRange RHSRange(CI->getValue()); 693 ConstantRange TrueValues = 694 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 695 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 696 }; 697 698 if (Q.CxtI && V->getType()->isPointerTy()) { 699 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 700 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 701 V->getType()->getPointerAddressSpace())) 702 AttrKinds.push_back(Attribute::Dereferenceable); 703 704 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 705 return true; 706 } 707 708 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 709 if (!AssumeVH) 710 continue; 711 CallInst *I = cast<CallInst>(AssumeVH); 712 assert(I->getFunction() == Q.CxtI->getFunction() && 713 "Got assumption for the wrong function!"); 714 if (Q.isExcluded(I)) 715 continue; 716 717 // Warning: This loop can end up being somewhat performance sensitive. 718 // We're running this loop for once for each value queried resulting in a 719 // runtime of ~O(#assumes * #values). 720 721 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 722 "must be an assume intrinsic"); 723 724 Value *Arg = I->getArgOperand(0); 725 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 726 if (!Cmp) 727 continue; 728 729 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 730 return true; 731 } 732 733 return false; 734 } 735 736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 737 unsigned Depth, const Query &Q) { 738 // Use of assumptions is context-sensitive. If we don't have a context, we 739 // cannot use them! 740 if (!Q.AC || !Q.CxtI) 741 return; 742 743 unsigned BitWidth = Known.getBitWidth(); 744 745 // Note that the patterns below need to be kept in sync with the code 746 // in AssumptionCache::updateAffectedValues. 747 748 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 749 if (!AssumeVH) 750 continue; 751 CallInst *I = cast<CallInst>(AssumeVH); 752 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 753 "Got assumption for the wrong function!"); 754 if (Q.isExcluded(I)) 755 continue; 756 757 // Warning: This loop can end up being somewhat performance sensitive. 758 // We're running this loop for once for each value queried resulting in a 759 // runtime of ~O(#assumes * #values). 760 761 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 762 "must be an assume intrinsic"); 763 764 Value *Arg = I->getArgOperand(0); 765 766 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllOnes(); 769 return; 770 } 771 if (match(Arg, m_Not(m_Specific(V))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 assert(BitWidth == 1 && "assume operand is not i1?"); 774 Known.setAllZero(); 775 return; 776 } 777 778 // The remaining tests are all recursive, so bail out if we hit the limit. 779 if (Depth == MaxAnalysisRecursionDepth) 780 continue; 781 782 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 783 if (!Cmp) 784 continue; 785 786 // Note that ptrtoint may change the bitwidth. 787 Value *A, *B; 788 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 789 790 CmpInst::Predicate Pred; 791 uint64_t C; 792 switch (Cmp->getPredicate()) { 793 default: 794 break; 795 case ICmpInst::ICMP_EQ: 796 // assume(v = a) 797 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 Known.Zero |= RHSKnown.Zero; 802 Known.One |= RHSKnown.One; 803 // assume(v & b = a) 804 } else if (match(Cmp, 805 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown = 808 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 KnownBits MaskKnown = 810 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 812 // For those bits in the mask that are known to be one, we can propagate 813 // known bits from the RHS to V. 814 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 815 Known.One |= RHSKnown.One & MaskKnown.One; 816 // assume(~(v & b) = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 KnownBits MaskKnown = 823 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 825 // For those bits in the mask that are known to be one, we can propagate 826 // inverted known bits from the RHS to V. 827 Known.Zero |= RHSKnown.One & MaskKnown.One; 828 Known.One |= RHSKnown.Zero & MaskKnown.One; 829 // assume(v | b = a) 830 } else if (match(Cmp, 831 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 KnownBits BKnown = 836 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 838 // For those bits in B that are known to be zero, we can propagate known 839 // bits from the RHS to V. 840 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 841 Known.One |= RHSKnown.One & BKnown.Zero; 842 // assume(~(v | b) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 KnownBits BKnown = 849 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 851 // For those bits in B that are known to be zero, we can propagate 852 // inverted known bits from the RHS to V. 853 Known.Zero |= RHSKnown.One & BKnown.Zero; 854 Known.One |= RHSKnown.Zero & BKnown.Zero; 855 // assume(v ^ b = a) 856 } else if (match(Cmp, 857 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 861 KnownBits BKnown = 862 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 864 // For those bits in B that are known to be zero, we can propagate known 865 // bits from the RHS to V. For those bits in B that are known to be one, 866 // we can propagate inverted known bits from the RHS to V. 867 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 868 Known.One |= RHSKnown.One & BKnown.Zero; 869 Known.Zero |= RHSKnown.One & BKnown.One; 870 Known.One |= RHSKnown.Zero & BKnown.One; 871 // assume(~(v ^ b) = a) 872 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 873 m_Value(A))) && 874 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 875 KnownBits RHSKnown = 876 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 877 KnownBits BKnown = 878 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 880 // For those bits in B that are known to be zero, we can propagate 881 // inverted known bits from the RHS to V. For those bits in B that are 882 // known to be one, we can propagate known bits from the RHS to V. 883 Known.Zero |= RHSKnown.One & BKnown.Zero; 884 Known.One |= RHSKnown.Zero & BKnown.Zero; 885 Known.Zero |= RHSKnown.Zero & BKnown.One; 886 Known.One |= RHSKnown.One & BKnown.One; 887 // assume(v << c = a) 888 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 889 m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 891 KnownBits RHSKnown = 892 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 893 894 // For those bits in RHS that are known, we can propagate them to known 895 // bits in V shifted to the right by C. 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.Zero |= RHSKnown.Zero; 898 RHSKnown.One.lshrInPlace(C); 899 Known.One |= RHSKnown.One; 900 // assume(~(v << c) = a) 901 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 902 m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 904 KnownBits RHSKnown = 905 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 906 // For those bits in RHS that are known, we can propagate them inverted 907 // to known bits in V shifted to the right by C. 908 RHSKnown.One.lshrInPlace(C); 909 Known.Zero |= RHSKnown.One; 910 RHSKnown.Zero.lshrInPlace(C); 911 Known.One |= RHSKnown.Zero; 912 // assume(v >> c = a) 913 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 914 m_Value(A))) && 915 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 916 KnownBits RHSKnown = 917 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 918 // For those bits in RHS that are known, we can propagate them to known 919 // bits in V shifted to the right by C. 920 Known.Zero |= RHSKnown.Zero << C; 921 Known.One |= RHSKnown.One << C; 922 // assume(~(v >> c) = a) 923 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 924 m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 // For those bits in RHS that are known, we can propagate them inverted 929 // to known bits in V shifted to the right by C. 930 Known.Zero |= RHSKnown.One << C; 931 Known.One |= RHSKnown.Zero << C; 932 } 933 break; 934 case ICmpInst::ICMP_SGE: 935 // assume(v >=_s c) where c is non-negative 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown = 939 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 940 941 if (RHSKnown.isNonNegative()) { 942 // We know that the sign bit is zero. 943 Known.makeNonNegative(); 944 } 945 } 946 break; 947 case ICmpInst::ICMP_SGT: 948 // assume(v >_s c) where c is at least -1. 949 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 950 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 951 KnownBits RHSKnown = 952 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 953 954 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 955 // We know that the sign bit is zero. 956 Known.makeNonNegative(); 957 } 958 } 959 break; 960 case ICmpInst::ICMP_SLE: 961 // assume(v <=_s c) where c is negative 962 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 963 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 964 KnownBits RHSKnown = 965 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 966 967 if (RHSKnown.isNegative()) { 968 // We know that the sign bit is one. 969 Known.makeNegative(); 970 } 971 } 972 break; 973 case ICmpInst::ICMP_SLT: 974 // assume(v <_s c) where c is non-positive 975 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 976 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 977 KnownBits RHSKnown = 978 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 979 980 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 981 // We know that the sign bit is one. 982 Known.makeNegative(); 983 } 984 } 985 break; 986 case ICmpInst::ICMP_ULE: 987 // assume(v <=_u c) 988 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 989 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 990 KnownBits RHSKnown = 991 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 992 993 // Whatever high bits in c are zero are known to be zero. 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 995 } 996 break; 997 case ICmpInst::ICMP_ULT: 998 // assume(v <_u c) 999 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1000 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1001 KnownBits RHSKnown = 1002 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1003 1004 // If the RHS is known zero, then this assumption must be wrong (nothing 1005 // is unsigned less than zero). Signal a conflict and get out of here. 1006 if (RHSKnown.isZero()) { 1007 Known.Zero.setAllBits(); 1008 Known.One.setAllBits(); 1009 break; 1010 } 1011 1012 // Whatever high bits in c are zero are known to be zero (if c is a power 1013 // of 2, then one more). 1014 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1015 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1016 else 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1018 } 1019 break; 1020 } 1021 } 1022 1023 // If assumptions conflict with each other or previous known bits, then we 1024 // have a logical fallacy. It's possible that the assumption is not reachable, 1025 // so this isn't a real bug. On the other hand, the program may have undefined 1026 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1027 // clear out the known bits, try to warn the user, and hope for the best. 1028 if (Known.Zero.intersects(Known.One)) { 1029 Known.resetAll(); 1030 1031 if (Q.ORE) 1032 Q.ORE->emit([&]() { 1033 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1034 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1035 CxtI) 1036 << "Detected conflicting code assumptions. Program may " 1037 "have undefined behavior, or compiler may have " 1038 "internal error."; 1039 }); 1040 } 1041 } 1042 1043 /// Compute known bits from a shift operator, including those with a 1044 /// non-constant shift amount. Known is the output of this function. Known2 is a 1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1046 /// operator-specific functions that, given the known-zero or known-one bits 1047 /// respectively, and a shift amount, compute the implied known-zero or 1048 /// known-one bits of the shift operator's result respectively for that shift 1049 /// amount. The results from calling KZF and KOF are conservatively combined for 1050 /// all permitted shift amounts. 1051 static void computeKnownBitsFromShiftOperator( 1052 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1053 KnownBits &Known2, unsigned Depth, const Query &Q, 1054 function_ref<APInt(const APInt &, unsigned)> KZF, 1055 function_ref<APInt(const APInt &, unsigned)> KOF) { 1056 unsigned BitWidth = Known.getBitWidth(); 1057 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 if (Known.isConstant()) { 1060 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1061 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1063 Known.Zero = KZF(Known.Zero, ShiftAmt); 1064 Known.One = KOF(Known.One, ShiftAmt); 1065 // If the known bits conflict, this must be an overflowing left shift, so 1066 // the shift result is poison. We can return anything we want. Choose 0 for 1067 // the best folding opportunity. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 1071 return; 1072 } 1073 1074 // If the shift amount could be greater than or equal to the bit-width of the 1075 // LHS, the value could be poison, but bail out because the check below is 1076 // expensive. 1077 // TODO: Should we just carry on? 1078 if (Known.getMaxValue().uge(BitWidth)) { 1079 Known.resetAll(); 1080 return; 1081 } 1082 1083 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1084 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1085 // limit value (which implies all bits are known). 1086 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1087 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1088 1089 // It would be more-clearly correct to use the two temporaries for this 1090 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1091 Known.resetAll(); 1092 1093 // If we know the shifter operand is nonzero, we can sometimes infer more 1094 // known bits. However this is expensive to compute, so be lazy about it and 1095 // only compute it when absolutely necessary. 1096 Optional<bool> ShifterOperandIsNonZero; 1097 1098 // Early exit if we can't constrain any well-defined shift amount. 1099 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1100 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1101 ShifterOperandIsNonZero = 1102 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1103 if (!*ShifterOperandIsNonZero) 1104 return; 1105 } 1106 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1112 // Combine the shifted known input bits only for those shift amounts 1113 // compatible with its known constraints. 1114 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1115 continue; 1116 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1117 continue; 1118 // If we know the shifter is nonzero, we may be able to infer more known 1119 // bits. This check is sunk down as far as possible to avoid the expensive 1120 // call to isKnownNonZero if the cheaper checks above fail. 1121 if (ShiftAmt == 0) { 1122 if (!ShifterOperandIsNonZero.hasValue()) 1123 ShifterOperandIsNonZero = 1124 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1125 if (*ShifterOperandIsNonZero) 1126 continue; 1127 } 1128 1129 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1130 Known.One &= KOF(Known2.One, ShiftAmt); 1131 } 1132 1133 // If the known bits conflict, the result is poison. Return a 0 and hope the 1134 // caller can further optimize that. 1135 if (Known.hasConflict()) 1136 Known.setAllZero(); 1137 } 1138 1139 static void computeKnownBitsFromOperator(const Operator *I, 1140 const APInt &DemandedElts, 1141 KnownBits &Known, unsigned Depth, 1142 const Query &Q) { 1143 unsigned BitWidth = Known.getBitWidth(); 1144 1145 KnownBits Known2(BitWidth); 1146 switch (I->getOpcode()) { 1147 default: break; 1148 case Instruction::Load: 1149 if (MDNode *MD = 1150 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1151 computeKnownBitsFromRangeMetadata(*MD, Known); 1152 break; 1153 case Instruction::And: { 1154 // If either the LHS or the RHS are Zero, the result is zero. 1155 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1157 1158 Known &= Known2; 1159 1160 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1161 // here we handle the more general case of adding any odd number by 1162 // matching the form add(x, add(x, y)) where y is odd. 1163 // TODO: This could be generalized to clearing any bit set in y where the 1164 // following bit is known to be unset in y. 1165 Value *X = nullptr, *Y = nullptr; 1166 if (!Known.Zero[0] && !Known.One[0] && 1167 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1168 Known2.resetAll(); 1169 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1170 if (Known2.countMinTrailingOnes() > 0) 1171 Known.Zero.setBit(0); 1172 } 1173 break; 1174 } 1175 case Instruction::Or: 1176 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1178 1179 Known |= Known2; 1180 break; 1181 case Instruction::Xor: 1182 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1183 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1184 1185 Known ^= Known2; 1186 break; 1187 case Instruction::Mul: { 1188 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1189 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::UDiv: { 1194 // For the purposes of computing leading zeros we can conservatively 1195 // treat a udiv as a logical right shift by the power of 2 known to 1196 // be less than the denominator. 1197 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1198 unsigned LeadZ = Known2.countMinLeadingZeros(); 1199 1200 Known2.resetAll(); 1201 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1202 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1203 if (RHSMaxLeadingZeros != BitWidth) 1204 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1205 1206 Known.Zero.setHighBits(LeadZ); 1207 break; 1208 } 1209 case Instruction::Select: { 1210 const Value *LHS = nullptr, *RHS = nullptr; 1211 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1212 if (SelectPatternResult::isMinOrMax(SPF)) { 1213 computeKnownBits(RHS, Known, Depth + 1, Q); 1214 computeKnownBits(LHS, Known2, Depth + 1, Q); 1215 switch (SPF) { 1216 default: 1217 llvm_unreachable("Unhandled select pattern flavor!"); 1218 case SPF_SMAX: 1219 Known = KnownBits::smax(Known, Known2); 1220 break; 1221 case SPF_SMIN: 1222 Known = KnownBits::smin(Known, Known2); 1223 break; 1224 case SPF_UMAX: 1225 Known = KnownBits::umax(Known, Known2); 1226 break; 1227 case SPF_UMIN: 1228 Known = KnownBits::umin(Known, Known2); 1229 break; 1230 } 1231 break; 1232 } 1233 1234 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1235 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1236 1237 // Only known if known in both the LHS and RHS. 1238 Known.One &= Known2.One; 1239 Known.Zero &= Known2.Zero; 1240 1241 if (SPF == SPF_ABS) { 1242 // RHS from matchSelectPattern returns the negation part of abs pattern. 1243 // If the negate has an NSW flag we can assume the sign bit of the result 1244 // will be 0 because that makes abs(INT_MIN) undefined. 1245 if (match(RHS, m_Neg(m_Specific(LHS))) && 1246 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1247 Known.Zero.setSignBit(); 1248 } 1249 1250 break; 1251 } 1252 case Instruction::FPTrunc: 1253 case Instruction::FPExt: 1254 case Instruction::FPToUI: 1255 case Instruction::FPToSI: 1256 case Instruction::SIToFP: 1257 case Instruction::UIToFP: 1258 break; // Can't work with floating point. 1259 case Instruction::PtrToInt: 1260 case Instruction::IntToPtr: 1261 // Fall through and handle them the same as zext/trunc. 1262 LLVM_FALLTHROUGH; 1263 case Instruction::ZExt: 1264 case Instruction::Trunc: { 1265 Type *SrcTy = I->getOperand(0)->getType(); 1266 1267 unsigned SrcBitWidth; 1268 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1269 // which fall through here. 1270 Type *ScalarTy = SrcTy->getScalarType(); 1271 SrcBitWidth = ScalarTy->isPointerTy() ? 1272 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1273 Q.DL.getTypeSizeInBits(ScalarTy); 1274 1275 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1276 Known = Known.anyextOrTrunc(SrcBitWidth); 1277 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1278 Known = Known.zextOrTrunc(BitWidth); 1279 break; 1280 } 1281 case Instruction::BitCast: { 1282 Type *SrcTy = I->getOperand(0)->getType(); 1283 if (SrcTy->isIntOrPtrTy() && 1284 // TODO: For now, not handling conversions like: 1285 // (bitcast i64 %x to <2 x i32>) 1286 !I->getType()->isVectorTy()) { 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 break; 1289 } 1290 break; 1291 } 1292 case Instruction::SExt: { 1293 // Compute the bits in the result that are not present in the input. 1294 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1295 1296 Known = Known.trunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 // If the sign bit of the input is known set or clear, then we know the 1299 // top bits of the result. 1300 Known = Known.sext(BitWidth); 1301 break; 1302 } 1303 case Instruction::Shl: { 1304 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1305 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1306 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1307 APInt KZResult = KnownZero << ShiftAmt; 1308 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1309 // If this shift has "nsw" keyword, then the result is either a poison 1310 // value or has the same sign bit as the first operand. 1311 if (NSW && KnownZero.isSignBitSet()) 1312 KZResult.setSignBit(); 1313 return KZResult; 1314 }; 1315 1316 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1317 APInt KOResult = KnownOne << ShiftAmt; 1318 if (NSW && KnownOne.isSignBitSet()) 1319 KOResult.setSignBit(); 1320 return KOResult; 1321 }; 1322 1323 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1324 KZF, KOF); 1325 break; 1326 } 1327 case Instruction::LShr: { 1328 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1329 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1330 APInt KZResult = KnownZero.lshr(ShiftAmt); 1331 // High bits known zero. 1332 KZResult.setHighBits(ShiftAmt); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1337 return KnownOne.lshr(ShiftAmt); 1338 }; 1339 1340 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1341 KZF, KOF); 1342 break; 1343 } 1344 case Instruction::AShr: { 1345 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1346 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1347 return KnownZero.ashr(ShiftAmt); 1348 }; 1349 1350 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1351 return KnownOne.ashr(ShiftAmt); 1352 }; 1353 1354 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1355 KZF, KOF); 1356 break; 1357 } 1358 case Instruction::Sub: { 1359 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1360 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1361 DemandedElts, Known, Known2, Depth, Q); 1362 break; 1363 } 1364 case Instruction::Add: { 1365 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1366 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1367 DemandedElts, Known, Known2, Depth, Q); 1368 break; 1369 } 1370 case Instruction::SRem: 1371 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1372 APInt RA = Rem->getValue().abs(); 1373 if (RA.isPowerOf2()) { 1374 APInt LowBits = RA - 1; 1375 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1376 1377 // The low bits of the first operand are unchanged by the srem. 1378 Known.Zero = Known2.Zero & LowBits; 1379 Known.One = Known2.One & LowBits; 1380 1381 // If the first operand is non-negative or has all low bits zero, then 1382 // the upper bits are all zero. 1383 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1384 Known.Zero |= ~LowBits; 1385 1386 // If the first operand is negative and not all low bits are zero, then 1387 // the upper bits are all one. 1388 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1389 Known.One |= ~LowBits; 1390 1391 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1392 break; 1393 } 1394 } 1395 1396 // The sign bit is the LHS's sign bit, except when the result of the 1397 // remainder is zero. 1398 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1399 // If it's known zero, our sign bit is also zero. 1400 if (Known2.isNonNegative()) 1401 Known.makeNonNegative(); 1402 1403 break; 1404 case Instruction::URem: { 1405 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1406 const APInt &RA = Rem->getValue(); 1407 if (RA.isPowerOf2()) { 1408 APInt LowBits = (RA - 1); 1409 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1410 Known.Zero |= ~LowBits; 1411 Known.One &= LowBits; 1412 break; 1413 } 1414 } 1415 1416 // Since the result is less than or equal to either operand, any leading 1417 // zero bits in either operand must also exist in the result. 1418 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1419 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1420 1421 unsigned Leaders = 1422 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1423 Known.resetAll(); 1424 Known.Zero.setHighBits(Leaders); 1425 break; 1426 } 1427 case Instruction::Alloca: 1428 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1429 break; 1430 case Instruction::GetElementPtr: { 1431 // Analyze all of the subscripts of this getelementptr instruction 1432 // to determine if we can prove known low zero bits. 1433 KnownBits LocalKnown(BitWidth); 1434 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1435 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1436 1437 gep_type_iterator GTI = gep_type_begin(I); 1438 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1439 // TrailZ can only become smaller, short-circuit if we hit zero. 1440 if (TrailZ == 0) 1441 break; 1442 1443 Value *Index = I->getOperand(i); 1444 if (StructType *STy = GTI.getStructTypeOrNull()) { 1445 // Handle struct member offset arithmetic. 1446 1447 // Handle case when index is vector zeroinitializer 1448 Constant *CIndex = cast<Constant>(Index); 1449 if (CIndex->isZeroValue()) 1450 continue; 1451 1452 if (CIndex->getType()->isVectorTy()) 1453 Index = CIndex->getSplatValue(); 1454 1455 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1456 const StructLayout *SL = Q.DL.getStructLayout(STy); 1457 uint64_t Offset = SL->getElementOffset(Idx); 1458 TrailZ = std::min<unsigned>(TrailZ, 1459 countTrailingZeros(Offset)); 1460 } else { 1461 // Handle array index arithmetic. 1462 Type *IndexedTy = GTI.getIndexedType(); 1463 if (!IndexedTy->isSized()) { 1464 TrailZ = 0; 1465 break; 1466 } 1467 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1468 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1469 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1470 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1471 TrailZ = std::min(TrailZ, 1472 unsigned(countTrailingZeros(TypeSize) + 1473 LocalKnown.countMinTrailingZeros())); 1474 } 1475 } 1476 1477 Known.Zero.setLowBits(TrailZ); 1478 break; 1479 } 1480 case Instruction::PHI: { 1481 const PHINode *P = cast<PHINode>(I); 1482 // Handle the case of a simple two-predecessor recurrence PHI. 1483 // There's a lot more that could theoretically be done here, but 1484 // this is sufficient to catch some interesting cases. 1485 if (P->getNumIncomingValues() == 2) { 1486 for (unsigned i = 0; i != 2; ++i) { 1487 Value *L = P->getIncomingValue(i); 1488 Value *R = P->getIncomingValue(!i); 1489 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1490 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1491 Operator *LU = dyn_cast<Operator>(L); 1492 if (!LU) 1493 continue; 1494 unsigned Opcode = LU->getOpcode(); 1495 // Check for operations that have the property that if 1496 // both their operands have low zero bits, the result 1497 // will have low zero bits. 1498 if (Opcode == Instruction::Add || 1499 Opcode == Instruction::Sub || 1500 Opcode == Instruction::And || 1501 Opcode == Instruction::Or || 1502 Opcode == Instruction::Mul) { 1503 Value *LL = LU->getOperand(0); 1504 Value *LR = LU->getOperand(1); 1505 // Find a recurrence. 1506 if (LL == I) 1507 L = LR; 1508 else if (LR == I) 1509 L = LL; 1510 else 1511 continue; // Check for recurrence with L and R flipped. 1512 1513 // Change the context instruction to the "edge" that flows into the 1514 // phi. This is important because that is where the value is actually 1515 // "evaluated" even though it is used later somewhere else. (see also 1516 // D69571). 1517 Query RecQ = Q; 1518 1519 // Ok, we have a PHI of the form L op= R. Check for low 1520 // zero bits. 1521 RecQ.CxtI = RInst; 1522 computeKnownBits(R, Known2, Depth + 1, RecQ); 1523 1524 // We need to take the minimum number of known bits 1525 KnownBits Known3(BitWidth); 1526 RecQ.CxtI = LInst; 1527 computeKnownBits(L, Known3, Depth + 1, RecQ); 1528 1529 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1530 Known3.countMinTrailingZeros())); 1531 1532 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1533 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1534 // If initial value of recurrence is nonnegative, and we are adding 1535 // a nonnegative number with nsw, the result can only be nonnegative 1536 // or poison value regardless of the number of times we execute the 1537 // add in phi recurrence. If initial value is negative and we are 1538 // adding a negative number with nsw, the result can only be 1539 // negative or poison value. Similar arguments apply to sub and mul. 1540 // 1541 // (add non-negative, non-negative) --> non-negative 1542 // (add negative, negative) --> negative 1543 if (Opcode == Instruction::Add) { 1544 if (Known2.isNonNegative() && Known3.isNonNegative()) 1545 Known.makeNonNegative(); 1546 else if (Known2.isNegative() && Known3.isNegative()) 1547 Known.makeNegative(); 1548 } 1549 1550 // (sub nsw non-negative, negative) --> non-negative 1551 // (sub nsw negative, non-negative) --> negative 1552 else if (Opcode == Instruction::Sub && LL == I) { 1553 if (Known2.isNonNegative() && Known3.isNegative()) 1554 Known.makeNonNegative(); 1555 else if (Known2.isNegative() && Known3.isNonNegative()) 1556 Known.makeNegative(); 1557 } 1558 1559 // (mul nsw non-negative, non-negative) --> non-negative 1560 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1561 Known3.isNonNegative()) 1562 Known.makeNonNegative(); 1563 } 1564 1565 break; 1566 } 1567 } 1568 } 1569 1570 // Unreachable blocks may have zero-operand PHI nodes. 1571 if (P->getNumIncomingValues() == 0) 1572 break; 1573 1574 // Otherwise take the unions of the known bit sets of the operands, 1575 // taking conservative care to avoid excessive recursion. 1576 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1577 // Skip if every incoming value references to ourself. 1578 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1579 break; 1580 1581 Known.Zero.setAllBits(); 1582 Known.One.setAllBits(); 1583 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1584 Value *IncValue = P->getIncomingValue(u); 1585 // Skip direct self references. 1586 if (IncValue == P) continue; 1587 1588 // Change the context instruction to the "edge" that flows into the 1589 // phi. This is important because that is where the value is actually 1590 // "evaluated" even though it is used later somewhere else. (see also 1591 // D69571). 1592 Query RecQ = Q; 1593 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1594 1595 Known2 = KnownBits(BitWidth); 1596 // Recurse, but cap the recursion to one level, because we don't 1597 // want to waste time spinning around in loops. 1598 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1599 Known.Zero &= Known2.Zero; 1600 Known.One &= Known2.One; 1601 // If all bits have been ruled out, there's no need to check 1602 // more operands. 1603 if (!Known.Zero && !Known.One) 1604 break; 1605 } 1606 } 1607 break; 1608 } 1609 case Instruction::Call: 1610 case Instruction::Invoke: 1611 // If range metadata is attached to this call, set known bits from that, 1612 // and then intersect with known bits based on other properties of the 1613 // function. 1614 if (MDNode *MD = 1615 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1616 computeKnownBitsFromRangeMetadata(*MD, Known); 1617 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1618 computeKnownBits(RV, Known2, Depth + 1, Q); 1619 Known.Zero |= Known2.Zero; 1620 Known.One |= Known2.One; 1621 } 1622 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1623 switch (II->getIntrinsicID()) { 1624 default: break; 1625 case Intrinsic::abs: 1626 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1627 1628 // If the source's MSB is zero then we know the rest of the bits. 1629 if (Known2.isNonNegative()) { 1630 Known.Zero |= Known2.Zero; 1631 Known.One |= Known2.One; 1632 break; 1633 } 1634 1635 // Absolute value preserves trailing zero count. 1636 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1637 1638 // If this call is undefined for INT_MIN, the result is positive. We 1639 // also know it can't be INT_MIN if there is a set bit that isn't the 1640 // sign bit. 1641 Known2.One.clearSignBit(); 1642 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1643 Known.Zero.setSignBit(); 1644 // FIXME: Handle known negative input? 1645 // FIXME: Calculate the negated Known bits and combine them? 1646 break; 1647 case Intrinsic::bitreverse: 1648 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1649 Known.Zero |= Known2.Zero.reverseBits(); 1650 Known.One |= Known2.One.reverseBits(); 1651 break; 1652 case Intrinsic::bswap: 1653 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1654 Known.Zero |= Known2.Zero.byteSwap(); 1655 Known.One |= Known2.One.byteSwap(); 1656 break; 1657 case Intrinsic::ctlz: { 1658 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1659 // If we have a known 1, its position is our upper bound. 1660 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1661 // If this call is undefined for 0, the result will be less than 2^n. 1662 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1663 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1664 unsigned LowBits = Log2_32(PossibleLZ)+1; 1665 Known.Zero.setBitsFrom(LowBits); 1666 break; 1667 } 1668 case Intrinsic::cttz: { 1669 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1670 // If we have a known 1, its position is our upper bound. 1671 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1672 // If this call is undefined for 0, the result will be less than 2^n. 1673 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1674 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1675 unsigned LowBits = Log2_32(PossibleTZ)+1; 1676 Known.Zero.setBitsFrom(LowBits); 1677 break; 1678 } 1679 case Intrinsic::ctpop: { 1680 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1681 // We can bound the space the count needs. Also, bits known to be zero 1682 // can't contribute to the population. 1683 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1684 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1685 Known.Zero.setBitsFrom(LowBits); 1686 // TODO: we could bound KnownOne using the lower bound on the number 1687 // of bits which might be set provided by popcnt KnownOne2. 1688 break; 1689 } 1690 case Intrinsic::fshr: 1691 case Intrinsic::fshl: { 1692 const APInt *SA; 1693 if (!match(I->getOperand(2), m_APInt(SA))) 1694 break; 1695 1696 // Normalize to funnel shift left. 1697 uint64_t ShiftAmt = SA->urem(BitWidth); 1698 if (II->getIntrinsicID() == Intrinsic::fshr) 1699 ShiftAmt = BitWidth - ShiftAmt; 1700 1701 KnownBits Known3(BitWidth); 1702 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1703 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1704 1705 Known.Zero = 1706 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1707 Known.One = 1708 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1709 break; 1710 } 1711 case Intrinsic::uadd_sat: 1712 case Intrinsic::usub_sat: { 1713 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1714 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1715 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1716 1717 // Add: Leading ones of either operand are preserved. 1718 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1719 // as leading zeros in the result. 1720 unsigned LeadingKnown; 1721 if (IsAdd) 1722 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1723 Known2.countMinLeadingOnes()); 1724 else 1725 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1726 Known2.countMinLeadingOnes()); 1727 1728 Known = KnownBits::computeForAddSub( 1729 IsAdd, /* NSW */ false, Known, Known2); 1730 1731 // We select between the operation result and all-ones/zero 1732 // respectively, so we can preserve known ones/zeros. 1733 if (IsAdd) { 1734 Known.One.setHighBits(LeadingKnown); 1735 Known.Zero.clearAllBits(); 1736 } else { 1737 Known.Zero.setHighBits(LeadingKnown); 1738 Known.One.clearAllBits(); 1739 } 1740 break; 1741 } 1742 case Intrinsic::umin: 1743 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1744 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1745 Known = KnownBits::umin(Known, Known2); 1746 break; 1747 case Intrinsic::umax: 1748 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1749 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1750 Known = KnownBits::umax(Known, Known2); 1751 break; 1752 case Intrinsic::smin: 1753 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1754 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1755 Known = KnownBits::smin(Known, Known2); 1756 break; 1757 case Intrinsic::smax: 1758 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1759 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1760 Known = KnownBits::smax(Known, Known2); 1761 break; 1762 case Intrinsic::x86_sse42_crc32_64_64: 1763 Known.Zero.setBitsFrom(32); 1764 break; 1765 } 1766 } 1767 break; 1768 case Instruction::ShuffleVector: { 1769 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1770 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1771 if (!Shuf) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 // For undef elements, we don't know anything about the common state of 1776 // the shuffle result. 1777 APInt DemandedLHS, DemandedRHS; 1778 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1779 Known.resetAll(); 1780 return; 1781 } 1782 Known.One.setAllBits(); 1783 Known.Zero.setAllBits(); 1784 if (!!DemandedLHS) { 1785 const Value *LHS = Shuf->getOperand(0); 1786 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1787 // If we don't know any bits, early out. 1788 if (Known.isUnknown()) 1789 break; 1790 } 1791 if (!!DemandedRHS) { 1792 const Value *RHS = Shuf->getOperand(1); 1793 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1794 Known.One &= Known2.One; 1795 Known.Zero &= Known2.Zero; 1796 } 1797 break; 1798 } 1799 case Instruction::InsertElement: { 1800 const Value *Vec = I->getOperand(0); 1801 const Value *Elt = I->getOperand(1); 1802 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1803 // Early out if the index is non-constant or out-of-range. 1804 unsigned NumElts = DemandedElts.getBitWidth(); 1805 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1806 Known.resetAll(); 1807 return; 1808 } 1809 Known.One.setAllBits(); 1810 Known.Zero.setAllBits(); 1811 unsigned EltIdx = CIdx->getZExtValue(); 1812 // Do we demand the inserted element? 1813 if (DemandedElts[EltIdx]) { 1814 computeKnownBits(Elt, Known, Depth + 1, Q); 1815 // If we don't know any bits, early out. 1816 if (Known.isUnknown()) 1817 break; 1818 } 1819 // We don't need the base vector element that has been inserted. 1820 APInt DemandedVecElts = DemandedElts; 1821 DemandedVecElts.clearBit(EltIdx); 1822 if (!!DemandedVecElts) { 1823 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1824 Known.One &= Known2.One; 1825 Known.Zero &= Known2.Zero; 1826 } 1827 break; 1828 } 1829 case Instruction::ExtractElement: { 1830 // Look through extract element. If the index is non-constant or 1831 // out-of-range demand all elements, otherwise just the extracted element. 1832 const Value *Vec = I->getOperand(0); 1833 const Value *Idx = I->getOperand(1); 1834 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1835 if (isa<ScalableVectorType>(Vec->getType())) { 1836 // FIXME: there's probably *something* we can do with scalable vectors 1837 Known.resetAll(); 1838 break; 1839 } 1840 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1841 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1842 if (CIdx && CIdx->getValue().ult(NumElts)) 1843 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1844 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1845 break; 1846 } 1847 case Instruction::ExtractValue: 1848 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1849 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1850 if (EVI->getNumIndices() != 1) break; 1851 if (EVI->getIndices()[0] == 0) { 1852 switch (II->getIntrinsicID()) { 1853 default: break; 1854 case Intrinsic::uadd_with_overflow: 1855 case Intrinsic::sadd_with_overflow: 1856 computeKnownBitsAddSub(true, II->getArgOperand(0), 1857 II->getArgOperand(1), false, DemandedElts, 1858 Known, Known2, Depth, Q); 1859 break; 1860 case Intrinsic::usub_with_overflow: 1861 case Intrinsic::ssub_with_overflow: 1862 computeKnownBitsAddSub(false, II->getArgOperand(0), 1863 II->getArgOperand(1), false, DemandedElts, 1864 Known, Known2, Depth, Q); 1865 break; 1866 case Intrinsic::umul_with_overflow: 1867 case Intrinsic::smul_with_overflow: 1868 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1869 DemandedElts, Known, Known2, Depth, Q); 1870 break; 1871 } 1872 } 1873 } 1874 break; 1875 } 1876 } 1877 1878 /// Determine which bits of V are known to be either zero or one and return 1879 /// them. 1880 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1881 unsigned Depth, const Query &Q) { 1882 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1883 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1884 return Known; 1885 } 1886 1887 /// Determine which bits of V are known to be either zero or one and return 1888 /// them. 1889 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1890 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1891 computeKnownBits(V, Known, Depth, Q); 1892 return Known; 1893 } 1894 1895 /// Determine which bits of V are known to be either zero or one and return 1896 /// them in the Known bit set. 1897 /// 1898 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1899 /// we cannot optimize based on the assumption that it is zero without changing 1900 /// it to be an explicit zero. If we don't change it to zero, other code could 1901 /// optimized based on the contradictory assumption that it is non-zero. 1902 /// Because instcombine aggressively folds operations with undef args anyway, 1903 /// this won't lose us code quality. 1904 /// 1905 /// This function is defined on values with integer type, values with pointer 1906 /// type, and vectors of integers. In the case 1907 /// where V is a vector, known zero, and known one values are the 1908 /// same width as the vector element, and the bit is set only if it is true 1909 /// for all of the demanded elements in the vector specified by DemandedElts. 1910 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1911 KnownBits &Known, unsigned Depth, const Query &Q) { 1912 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1913 // No demanded elts or V is a scalable vector, better to assume we don't 1914 // know anything. 1915 Known.resetAll(); 1916 return; 1917 } 1918 1919 assert(V && "No Value?"); 1920 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1921 1922 #ifndef NDEBUG 1923 Type *Ty = V->getType(); 1924 unsigned BitWidth = Known.getBitWidth(); 1925 1926 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1927 "Not integer or pointer type!"); 1928 1929 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1930 assert( 1931 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1932 "DemandedElt width should equal the fixed vector number of elements"); 1933 } else { 1934 assert(DemandedElts == APInt(1, 1) && 1935 "DemandedElt width should be 1 for scalars"); 1936 } 1937 1938 Type *ScalarTy = Ty->getScalarType(); 1939 if (ScalarTy->isPointerTy()) { 1940 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1941 "V and Known should have same BitWidth"); 1942 } else { 1943 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1944 "V and Known should have same BitWidth"); 1945 } 1946 #endif 1947 1948 const APInt *C; 1949 if (match(V, m_APInt(C))) { 1950 // We know all of the bits for a scalar constant or a splat vector constant! 1951 Known.One = *C; 1952 Known.Zero = ~Known.One; 1953 return; 1954 } 1955 // Null and aggregate-zero are all-zeros. 1956 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1957 Known.setAllZero(); 1958 return; 1959 } 1960 // Handle a constant vector by taking the intersection of the known bits of 1961 // each element. 1962 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1963 // We know that CDV must be a vector of integers. Take the intersection of 1964 // each element. 1965 Known.Zero.setAllBits(); Known.One.setAllBits(); 1966 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1967 if (!DemandedElts[i]) 1968 continue; 1969 APInt Elt = CDV->getElementAsAPInt(i); 1970 Known.Zero &= ~Elt; 1971 Known.One &= Elt; 1972 } 1973 return; 1974 } 1975 1976 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1977 // We know that CV must be a vector of integers. Take the intersection of 1978 // each element. 1979 Known.Zero.setAllBits(); Known.One.setAllBits(); 1980 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1981 if (!DemandedElts[i]) 1982 continue; 1983 Constant *Element = CV->getAggregateElement(i); 1984 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1985 if (!ElementCI) { 1986 Known.resetAll(); 1987 return; 1988 } 1989 const APInt &Elt = ElementCI->getValue(); 1990 Known.Zero &= ~Elt; 1991 Known.One &= Elt; 1992 } 1993 return; 1994 } 1995 1996 // Start out not knowing anything. 1997 Known.resetAll(); 1998 1999 // We can't imply anything about undefs. 2000 if (isa<UndefValue>(V)) 2001 return; 2002 2003 // There's no point in looking through other users of ConstantData for 2004 // assumptions. Confirm that we've handled them all. 2005 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2006 2007 // All recursive calls that increase depth must come after this. 2008 if (Depth == MaxAnalysisRecursionDepth) 2009 return; 2010 2011 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2012 // the bits of its aliasee. 2013 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2014 if (!GA->isInterposable()) 2015 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2016 return; 2017 } 2018 2019 if (const Operator *I = dyn_cast<Operator>(V)) 2020 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2021 2022 // Aligned pointers have trailing zeros - refine Known.Zero set 2023 if (isa<PointerType>(V->getType())) { 2024 Align Alignment = V->getPointerAlignment(Q.DL); 2025 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2026 } 2027 2028 // computeKnownBitsFromAssume strictly refines Known. 2029 // Therefore, we run them after computeKnownBitsFromOperator. 2030 2031 // Check whether a nearby assume intrinsic can determine some known bits. 2032 computeKnownBitsFromAssume(V, Known, Depth, Q); 2033 2034 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2035 } 2036 2037 /// Return true if the given value is known to have exactly one 2038 /// bit set when defined. For vectors return true if every element is known to 2039 /// be a power of two when defined. Supports values with integer or pointer 2040 /// types and vectors of integers. 2041 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2042 const Query &Q) { 2043 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2044 2045 // Attempt to match against constants. 2046 if (OrZero && match(V, m_Power2OrZero())) 2047 return true; 2048 if (match(V, m_Power2())) 2049 return true; 2050 2051 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2052 // it is shifted off the end then the result is undefined. 2053 if (match(V, m_Shl(m_One(), m_Value()))) 2054 return true; 2055 2056 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2057 // the bottom. If it is shifted off the bottom then the result is undefined. 2058 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2059 return true; 2060 2061 // The remaining tests are all recursive, so bail out if we hit the limit. 2062 if (Depth++ == MaxAnalysisRecursionDepth) 2063 return false; 2064 2065 Value *X = nullptr, *Y = nullptr; 2066 // A shift left or a logical shift right of a power of two is a power of two 2067 // or zero. 2068 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2069 match(V, m_LShr(m_Value(X), m_Value())))) 2070 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2071 2072 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2073 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2074 2075 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2076 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2077 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2078 2079 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2080 // A power of two and'd with anything is a power of two or zero. 2081 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2082 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2083 return true; 2084 // X & (-X) is always a power of two or zero. 2085 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2086 return true; 2087 return false; 2088 } 2089 2090 // Adding a power-of-two or zero to the same power-of-two or zero yields 2091 // either the original power-of-two, a larger power-of-two or zero. 2092 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2093 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2094 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2095 Q.IIQ.hasNoSignedWrap(VOBO)) { 2096 if (match(X, m_And(m_Specific(Y), m_Value())) || 2097 match(X, m_And(m_Value(), m_Specific(Y)))) 2098 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2099 return true; 2100 if (match(Y, m_And(m_Specific(X), m_Value())) || 2101 match(Y, m_And(m_Value(), m_Specific(X)))) 2102 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2103 return true; 2104 2105 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2106 KnownBits LHSBits(BitWidth); 2107 computeKnownBits(X, LHSBits, Depth, Q); 2108 2109 KnownBits RHSBits(BitWidth); 2110 computeKnownBits(Y, RHSBits, Depth, Q); 2111 // If i8 V is a power of two or zero: 2112 // ZeroBits: 1 1 1 0 1 1 1 1 2113 // ~ZeroBits: 0 0 0 1 0 0 0 0 2114 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2115 // If OrZero isn't set, we cannot give back a zero result. 2116 // Make sure either the LHS or RHS has a bit set. 2117 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2118 return true; 2119 } 2120 } 2121 2122 // An exact divide or right shift can only shift off zero bits, so the result 2123 // is a power of two only if the first operand is a power of two and not 2124 // copying a sign bit (sdiv int_min, 2). 2125 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2126 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2127 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2128 Depth, Q); 2129 } 2130 2131 return false; 2132 } 2133 2134 /// Test whether a GEP's result is known to be non-null. 2135 /// 2136 /// Uses properties inherent in a GEP to try to determine whether it is known 2137 /// to be non-null. 2138 /// 2139 /// Currently this routine does not support vector GEPs. 2140 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2141 const Query &Q) { 2142 const Function *F = nullptr; 2143 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2144 F = I->getFunction(); 2145 2146 if (!GEP->isInBounds() || 2147 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2148 return false; 2149 2150 // FIXME: Support vector-GEPs. 2151 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2152 2153 // If the base pointer is non-null, we cannot walk to a null address with an 2154 // inbounds GEP in address space zero. 2155 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2156 return true; 2157 2158 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2159 // If so, then the GEP cannot produce a null pointer, as doing so would 2160 // inherently violate the inbounds contract within address space zero. 2161 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2162 GTI != GTE; ++GTI) { 2163 // Struct types are easy -- they must always be indexed by a constant. 2164 if (StructType *STy = GTI.getStructTypeOrNull()) { 2165 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2166 unsigned ElementIdx = OpC->getZExtValue(); 2167 const StructLayout *SL = Q.DL.getStructLayout(STy); 2168 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2169 if (ElementOffset > 0) 2170 return true; 2171 continue; 2172 } 2173 2174 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2175 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2176 continue; 2177 2178 // Fast path the constant operand case both for efficiency and so we don't 2179 // increment Depth when just zipping down an all-constant GEP. 2180 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2181 if (!OpC->isZero()) 2182 return true; 2183 continue; 2184 } 2185 2186 // We post-increment Depth here because while isKnownNonZero increments it 2187 // as well, when we pop back up that increment won't persist. We don't want 2188 // to recurse 10k times just because we have 10k GEP operands. We don't 2189 // bail completely out because we want to handle constant GEPs regardless 2190 // of depth. 2191 if (Depth++ >= MaxAnalysisRecursionDepth) 2192 continue; 2193 2194 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2195 return true; 2196 } 2197 2198 return false; 2199 } 2200 2201 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2202 const Instruction *CtxI, 2203 const DominatorTree *DT) { 2204 if (isa<Constant>(V)) 2205 return false; 2206 2207 if (!CtxI || !DT) 2208 return false; 2209 2210 unsigned NumUsesExplored = 0; 2211 for (auto *U : V->users()) { 2212 // Avoid massive lists 2213 if (NumUsesExplored >= DomConditionsMaxUses) 2214 break; 2215 NumUsesExplored++; 2216 2217 // If the value is used as an argument to a call or invoke, then argument 2218 // attributes may provide an answer about null-ness. 2219 if (const auto *CB = dyn_cast<CallBase>(U)) 2220 if (auto *CalledFunc = CB->getCalledFunction()) 2221 for (const Argument &Arg : CalledFunc->args()) 2222 if (CB->getArgOperand(Arg.getArgNo()) == V && 2223 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2224 return true; 2225 2226 // If the value is used as a load/store, then the pointer must be non null. 2227 if (V == getLoadStorePointerOperand(U)) { 2228 const Instruction *I = cast<Instruction>(U); 2229 if (!NullPointerIsDefined(I->getFunction(), 2230 V->getType()->getPointerAddressSpace()) && 2231 DT->dominates(I, CtxI)) 2232 return true; 2233 } 2234 2235 // Consider only compare instructions uniquely controlling a branch 2236 CmpInst::Predicate Pred; 2237 if (!match(const_cast<User *>(U), 2238 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2239 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2240 continue; 2241 2242 SmallVector<const User *, 4> WorkList; 2243 SmallPtrSet<const User *, 4> Visited; 2244 for (auto *CmpU : U->users()) { 2245 assert(WorkList.empty() && "Should be!"); 2246 if (Visited.insert(CmpU).second) 2247 WorkList.push_back(CmpU); 2248 2249 while (!WorkList.empty()) { 2250 auto *Curr = WorkList.pop_back_val(); 2251 2252 // If a user is an AND, add all its users to the work list. We only 2253 // propagate "pred != null" condition through AND because it is only 2254 // correct to assume that all conditions of AND are met in true branch. 2255 // TODO: Support similar logic of OR and EQ predicate? 2256 if (Pred == ICmpInst::ICMP_NE) 2257 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2258 if (BO->getOpcode() == Instruction::And) { 2259 for (auto *BOU : BO->users()) 2260 if (Visited.insert(BOU).second) 2261 WorkList.push_back(BOU); 2262 continue; 2263 } 2264 2265 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2266 assert(BI->isConditional() && "uses a comparison!"); 2267 2268 BasicBlock *NonNullSuccessor = 2269 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2270 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2271 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2272 return true; 2273 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2274 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2275 return true; 2276 } 2277 } 2278 } 2279 } 2280 2281 return false; 2282 } 2283 2284 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2285 /// ensure that the value it's attached to is never Value? 'RangeType' is 2286 /// is the type of the value described by the range. 2287 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2288 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2289 assert(NumRanges >= 1); 2290 for (unsigned i = 0; i < NumRanges; ++i) { 2291 ConstantInt *Lower = 2292 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2293 ConstantInt *Upper = 2294 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2295 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2296 if (Range.contains(Value)) 2297 return false; 2298 } 2299 return true; 2300 } 2301 2302 /// Return true if the given value is known to be non-zero when defined. For 2303 /// vectors, return true if every demanded element is known to be non-zero when 2304 /// defined. For pointers, if the context instruction and dominator tree are 2305 /// specified, perform context-sensitive analysis and return true if the 2306 /// pointer couldn't possibly be null at the specified instruction. 2307 /// Supports values with integer or pointer type and vectors of integers. 2308 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2309 const Query &Q) { 2310 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2311 // vector 2312 if (isa<ScalableVectorType>(V->getType())) 2313 return false; 2314 2315 if (auto *C = dyn_cast<Constant>(V)) { 2316 if (C->isNullValue()) 2317 return false; 2318 if (isa<ConstantInt>(C)) 2319 // Must be non-zero due to null test above. 2320 return true; 2321 2322 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2323 // See the comment for IntToPtr/PtrToInt instructions below. 2324 if (CE->getOpcode() == Instruction::IntToPtr || 2325 CE->getOpcode() == Instruction::PtrToInt) 2326 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2327 Q.DL.getTypeSizeInBits(CE->getType())) 2328 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2329 } 2330 2331 // For constant vectors, check that all elements are undefined or known 2332 // non-zero to determine that the whole vector is known non-zero. 2333 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2334 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2335 if (!DemandedElts[i]) 2336 continue; 2337 Constant *Elt = C->getAggregateElement(i); 2338 if (!Elt || Elt->isNullValue()) 2339 return false; 2340 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2341 return false; 2342 } 2343 return true; 2344 } 2345 2346 // A global variable in address space 0 is non null unless extern weak 2347 // or an absolute symbol reference. Other address spaces may have null as a 2348 // valid address for a global, so we can't assume anything. 2349 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2350 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2351 GV->getType()->getAddressSpace() == 0) 2352 return true; 2353 } else 2354 return false; 2355 } 2356 2357 if (auto *I = dyn_cast<Instruction>(V)) { 2358 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2359 // If the possible ranges don't contain zero, then the value is 2360 // definitely non-zero. 2361 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2362 const APInt ZeroValue(Ty->getBitWidth(), 0); 2363 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2364 return true; 2365 } 2366 } 2367 } 2368 2369 if (isKnownNonZeroFromAssume(V, Q)) 2370 return true; 2371 2372 // Some of the tests below are recursive, so bail out if we hit the limit. 2373 if (Depth++ >= MaxAnalysisRecursionDepth) 2374 return false; 2375 2376 // Check for pointer simplifications. 2377 2378 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2379 // Alloca never returns null, malloc might. 2380 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2381 return true; 2382 2383 // A byval, inalloca may not be null in a non-default addres space. A 2384 // nonnull argument is assumed never 0. 2385 if (const Argument *A = dyn_cast<Argument>(V)) { 2386 if (((A->hasPassPointeeByValueCopyAttr() && 2387 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2388 A->hasNonNullAttr())) 2389 return true; 2390 } 2391 2392 // A Load tagged with nonnull metadata is never null. 2393 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2394 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2395 return true; 2396 2397 if (const auto *Call = dyn_cast<CallBase>(V)) { 2398 if (Call->isReturnNonNull()) 2399 return true; 2400 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2401 return isKnownNonZero(RP, Depth, Q); 2402 } 2403 } 2404 2405 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2406 return true; 2407 2408 // Check for recursive pointer simplifications. 2409 if (V->getType()->isPointerTy()) { 2410 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2411 // do not alter the value, or at least not the nullness property of the 2412 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2413 // 2414 // Note that we have to take special care to avoid looking through 2415 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2416 // as casts that can alter the value, e.g., AddrSpaceCasts. 2417 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2418 return isGEPKnownNonNull(GEP, Depth, Q); 2419 2420 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2421 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2422 2423 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2424 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2425 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2426 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2427 } 2428 2429 // Similar to int2ptr above, we can look through ptr2int here if the cast 2430 // is a no-op or an extend and not a truncate. 2431 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2432 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2433 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2434 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2435 2436 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2437 2438 // X | Y != 0 if X != 0 or Y != 0. 2439 Value *X = nullptr, *Y = nullptr; 2440 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2441 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2442 isKnownNonZero(Y, DemandedElts, Depth, Q); 2443 2444 // ext X != 0 if X != 0. 2445 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2446 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2447 2448 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2449 // if the lowest bit is shifted off the end. 2450 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2451 // shl nuw can't remove any non-zero bits. 2452 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2453 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2454 return isKnownNonZero(X, Depth, Q); 2455 2456 KnownBits Known(BitWidth); 2457 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2458 if (Known.One[0]) 2459 return true; 2460 } 2461 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2462 // defined if the sign bit is shifted off the end. 2463 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2464 // shr exact can only shift out zero bits. 2465 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2466 if (BO->isExact()) 2467 return isKnownNonZero(X, Depth, Q); 2468 2469 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2470 if (Known.isNegative()) 2471 return true; 2472 2473 // If the shifter operand is a constant, and all of the bits shifted 2474 // out are known to be zero, and X is known non-zero then at least one 2475 // non-zero bit must remain. 2476 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2477 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2478 // Is there a known one in the portion not shifted out? 2479 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2480 return true; 2481 // Are all the bits to be shifted out known zero? 2482 if (Known.countMinTrailingZeros() >= ShiftVal) 2483 return isKnownNonZero(X, DemandedElts, Depth, Q); 2484 } 2485 } 2486 // div exact can only produce a zero if the dividend is zero. 2487 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2488 return isKnownNonZero(X, DemandedElts, Depth, Q); 2489 } 2490 // X + Y. 2491 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2492 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2493 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2494 2495 // If X and Y are both non-negative (as signed values) then their sum is not 2496 // zero unless both X and Y are zero. 2497 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2498 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2499 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2500 return true; 2501 2502 // If X and Y are both negative (as signed values) then their sum is not 2503 // zero unless both X and Y equal INT_MIN. 2504 if (XKnown.isNegative() && YKnown.isNegative()) { 2505 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2506 // The sign bit of X is set. If some other bit is set then X is not equal 2507 // to INT_MIN. 2508 if (XKnown.One.intersects(Mask)) 2509 return true; 2510 // The sign bit of Y is set. If some other bit is set then Y is not equal 2511 // to INT_MIN. 2512 if (YKnown.One.intersects(Mask)) 2513 return true; 2514 } 2515 2516 // The sum of a non-negative number and a power of two is not zero. 2517 if (XKnown.isNonNegative() && 2518 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2519 return true; 2520 if (YKnown.isNonNegative() && 2521 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2522 return true; 2523 } 2524 // X * Y. 2525 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2526 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2527 // If X and Y are non-zero then so is X * Y as long as the multiplication 2528 // does not overflow. 2529 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2530 isKnownNonZero(X, DemandedElts, Depth, Q) && 2531 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2532 return true; 2533 } 2534 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2535 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2536 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2537 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2538 return true; 2539 } 2540 // PHI 2541 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2542 // Try and detect a recurrence that monotonically increases from a 2543 // starting value, as these are common as induction variables. 2544 if (PN->getNumIncomingValues() == 2) { 2545 Value *Start = PN->getIncomingValue(0); 2546 Value *Induction = PN->getIncomingValue(1); 2547 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2548 std::swap(Start, Induction); 2549 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2550 if (!C->isZero() && !C->isNegative()) { 2551 ConstantInt *X; 2552 if (Q.IIQ.UseInstrInfo && 2553 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2554 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2555 !X->isNegative()) 2556 return true; 2557 } 2558 } 2559 } 2560 // Check if all incoming values are non-zero constant. 2561 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2562 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2563 }); 2564 if (AllNonZeroConstants) 2565 return true; 2566 } 2567 // ExtractElement 2568 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2569 const Value *Vec = EEI->getVectorOperand(); 2570 const Value *Idx = EEI->getIndexOperand(); 2571 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2572 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2573 unsigned NumElts = VecTy->getNumElements(); 2574 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2575 if (CIdx && CIdx->getValue().ult(NumElts)) 2576 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2577 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2578 } 2579 } 2580 2581 KnownBits Known(BitWidth); 2582 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2583 return Known.One != 0; 2584 } 2585 2586 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2587 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2588 // vector 2589 if (isa<ScalableVectorType>(V->getType())) 2590 return false; 2591 2592 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2593 APInt DemandedElts = 2594 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2595 return isKnownNonZero(V, DemandedElts, Depth, Q); 2596 } 2597 2598 /// Return true if V2 == V1 + X, where X is known non-zero. 2599 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2600 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2601 if (!BO || BO->getOpcode() != Instruction::Add) 2602 return false; 2603 Value *Op = nullptr; 2604 if (V2 == BO->getOperand(0)) 2605 Op = BO->getOperand(1); 2606 else if (V2 == BO->getOperand(1)) 2607 Op = BO->getOperand(0); 2608 else 2609 return false; 2610 return isKnownNonZero(Op, 0, Q); 2611 } 2612 2613 /// Return true if it is known that V1 != V2. 2614 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2615 if (V1 == V2) 2616 return false; 2617 if (V1->getType() != V2->getType()) 2618 // We can't look through casts yet. 2619 return false; 2620 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2621 return true; 2622 2623 if (V1->getType()->isIntOrIntVectorTy()) { 2624 // Are any known bits in V1 contradictory to known bits in V2? If V1 2625 // has a known zero where V2 has a known one, they must not be equal. 2626 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2627 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2628 2629 if (Known1.Zero.intersects(Known2.One) || 2630 Known2.Zero.intersects(Known1.One)) 2631 return true; 2632 } 2633 return false; 2634 } 2635 2636 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2637 /// simplify operations downstream. Mask is known to be zero for bits that V 2638 /// cannot have. 2639 /// 2640 /// This function is defined on values with integer type, values with pointer 2641 /// type, and vectors of integers. In the case 2642 /// where V is a vector, the mask, known zero, and known one values are the 2643 /// same width as the vector element, and the bit is set only if it is true 2644 /// for all of the elements in the vector. 2645 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2646 const Query &Q) { 2647 KnownBits Known(Mask.getBitWidth()); 2648 computeKnownBits(V, Known, Depth, Q); 2649 return Mask.isSubsetOf(Known.Zero); 2650 } 2651 2652 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2653 // Returns the input and lower/upper bounds. 2654 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2655 const APInt *&CLow, const APInt *&CHigh) { 2656 assert(isa<Operator>(Select) && 2657 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2658 "Input should be a Select!"); 2659 2660 const Value *LHS = nullptr, *RHS = nullptr; 2661 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2662 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2663 return false; 2664 2665 if (!match(RHS, m_APInt(CLow))) 2666 return false; 2667 2668 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2669 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2670 if (getInverseMinMaxFlavor(SPF) != SPF2) 2671 return false; 2672 2673 if (!match(RHS2, m_APInt(CHigh))) 2674 return false; 2675 2676 if (SPF == SPF_SMIN) 2677 std::swap(CLow, CHigh); 2678 2679 In = LHS2; 2680 return CLow->sle(*CHigh); 2681 } 2682 2683 /// For vector constants, loop over the elements and find the constant with the 2684 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2685 /// or if any element was not analyzed; otherwise, return the count for the 2686 /// element with the minimum number of sign bits. 2687 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2688 const APInt &DemandedElts, 2689 unsigned TyBits) { 2690 const auto *CV = dyn_cast<Constant>(V); 2691 if (!CV || !isa<FixedVectorType>(CV->getType())) 2692 return 0; 2693 2694 unsigned MinSignBits = TyBits; 2695 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2696 for (unsigned i = 0; i != NumElts; ++i) { 2697 if (!DemandedElts[i]) 2698 continue; 2699 // If we find a non-ConstantInt, bail out. 2700 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2701 if (!Elt) 2702 return 0; 2703 2704 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2705 } 2706 2707 return MinSignBits; 2708 } 2709 2710 static unsigned ComputeNumSignBitsImpl(const Value *V, 2711 const APInt &DemandedElts, 2712 unsigned Depth, const Query &Q); 2713 2714 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2715 unsigned Depth, const Query &Q) { 2716 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2717 assert(Result > 0 && "At least one sign bit needs to be present!"); 2718 return Result; 2719 } 2720 2721 /// Return the number of times the sign bit of the register is replicated into 2722 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2723 /// (itself), but other cases can give us information. For example, immediately 2724 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2725 /// other, so we return 3. For vectors, return the number of sign bits for the 2726 /// vector element with the minimum number of known sign bits of the demanded 2727 /// elements in the vector specified by DemandedElts. 2728 static unsigned ComputeNumSignBitsImpl(const Value *V, 2729 const APInt &DemandedElts, 2730 unsigned Depth, const Query &Q) { 2731 Type *Ty = V->getType(); 2732 2733 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2734 // vector 2735 if (isa<ScalableVectorType>(Ty)) 2736 return 1; 2737 2738 #ifndef NDEBUG 2739 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2740 2741 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2742 assert( 2743 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2744 "DemandedElt width should equal the fixed vector number of elements"); 2745 } else { 2746 assert(DemandedElts == APInt(1, 1) && 2747 "DemandedElt width should be 1 for scalars"); 2748 } 2749 #endif 2750 2751 // We return the minimum number of sign bits that are guaranteed to be present 2752 // in V, so for undef we have to conservatively return 1. We don't have the 2753 // same behavior for poison though -- that's a FIXME today. 2754 2755 Type *ScalarTy = Ty->getScalarType(); 2756 unsigned TyBits = ScalarTy->isPointerTy() ? 2757 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2758 Q.DL.getTypeSizeInBits(ScalarTy); 2759 2760 unsigned Tmp, Tmp2; 2761 unsigned FirstAnswer = 1; 2762 2763 // Note that ConstantInt is handled by the general computeKnownBits case 2764 // below. 2765 2766 if (Depth == MaxAnalysisRecursionDepth) 2767 return 1; 2768 2769 if (auto *U = dyn_cast<Operator>(V)) { 2770 switch (Operator::getOpcode(V)) { 2771 default: break; 2772 case Instruction::SExt: 2773 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2774 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2775 2776 case Instruction::SDiv: { 2777 const APInt *Denominator; 2778 // sdiv X, C -> adds log(C) sign bits. 2779 if (match(U->getOperand(1), m_APInt(Denominator))) { 2780 2781 // Ignore non-positive denominator. 2782 if (!Denominator->isStrictlyPositive()) 2783 break; 2784 2785 // Calculate the incoming numerator bits. 2786 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2787 2788 // Add floor(log(C)) bits to the numerator bits. 2789 return std::min(TyBits, NumBits + Denominator->logBase2()); 2790 } 2791 break; 2792 } 2793 2794 case Instruction::SRem: { 2795 const APInt *Denominator; 2796 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2797 // positive constant. This let us put a lower bound on the number of sign 2798 // bits. 2799 if (match(U->getOperand(1), m_APInt(Denominator))) { 2800 2801 // Ignore non-positive denominator. 2802 if (!Denominator->isStrictlyPositive()) 2803 break; 2804 2805 // Calculate the incoming numerator bits. SRem by a positive constant 2806 // can't lower the number of sign bits. 2807 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2808 2809 // Calculate the leading sign bit constraints by examining the 2810 // denominator. Given that the denominator is positive, there are two 2811 // cases: 2812 // 2813 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2814 // (1 << ceilLogBase2(C)). 2815 // 2816 // 2. the numerator is negative. Then the result range is (-C,0] and 2817 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2818 // 2819 // Thus a lower bound on the number of sign bits is `TyBits - 2820 // ceilLogBase2(C)`. 2821 2822 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2823 return std::max(NumrBits, ResBits); 2824 } 2825 break; 2826 } 2827 2828 case Instruction::AShr: { 2829 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2830 // ashr X, C -> adds C sign bits. Vectors too. 2831 const APInt *ShAmt; 2832 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2833 if (ShAmt->uge(TyBits)) 2834 break; // Bad shift. 2835 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2836 Tmp += ShAmtLimited; 2837 if (Tmp > TyBits) Tmp = TyBits; 2838 } 2839 return Tmp; 2840 } 2841 case Instruction::Shl: { 2842 const APInt *ShAmt; 2843 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2844 // shl destroys sign bits. 2845 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2846 if (ShAmt->uge(TyBits) || // Bad shift. 2847 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2848 Tmp2 = ShAmt->getZExtValue(); 2849 return Tmp - Tmp2; 2850 } 2851 break; 2852 } 2853 case Instruction::And: 2854 case Instruction::Or: 2855 case Instruction::Xor: // NOT is handled here. 2856 // Logical binary ops preserve the number of sign bits at the worst. 2857 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2858 if (Tmp != 1) { 2859 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2860 FirstAnswer = std::min(Tmp, Tmp2); 2861 // We computed what we know about the sign bits as our first 2862 // answer. Now proceed to the generic code that uses 2863 // computeKnownBits, and pick whichever answer is better. 2864 } 2865 break; 2866 2867 case Instruction::Select: { 2868 // If we have a clamp pattern, we know that the number of sign bits will 2869 // be the minimum of the clamp min/max range. 2870 const Value *X; 2871 const APInt *CLow, *CHigh; 2872 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2873 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2874 2875 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2876 if (Tmp == 1) break; 2877 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2878 return std::min(Tmp, Tmp2); 2879 } 2880 2881 case Instruction::Add: 2882 // Add can have at most one carry bit. Thus we know that the output 2883 // is, at worst, one more bit than the inputs. 2884 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2885 if (Tmp == 1) break; 2886 2887 // Special case decrementing a value (ADD X, -1): 2888 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2889 if (CRHS->isAllOnesValue()) { 2890 KnownBits Known(TyBits); 2891 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2892 2893 // If the input is known to be 0 or 1, the output is 0/-1, which is 2894 // all sign bits set. 2895 if ((Known.Zero | 1).isAllOnesValue()) 2896 return TyBits; 2897 2898 // If we are subtracting one from a positive number, there is no carry 2899 // out of the result. 2900 if (Known.isNonNegative()) 2901 return Tmp; 2902 } 2903 2904 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2905 if (Tmp2 == 1) break; 2906 return std::min(Tmp, Tmp2) - 1; 2907 2908 case Instruction::Sub: 2909 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2910 if (Tmp2 == 1) break; 2911 2912 // Handle NEG. 2913 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2914 if (CLHS->isNullValue()) { 2915 KnownBits Known(TyBits); 2916 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2917 // If the input is known to be 0 or 1, the output is 0/-1, which is 2918 // all sign bits set. 2919 if ((Known.Zero | 1).isAllOnesValue()) 2920 return TyBits; 2921 2922 // If the input is known to be positive (the sign bit is known clear), 2923 // the output of the NEG has the same number of sign bits as the 2924 // input. 2925 if (Known.isNonNegative()) 2926 return Tmp2; 2927 2928 // Otherwise, we treat this like a SUB. 2929 } 2930 2931 // Sub can have at most one carry bit. Thus we know that the output 2932 // is, at worst, one more bit than the inputs. 2933 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2934 if (Tmp == 1) break; 2935 return std::min(Tmp, Tmp2) - 1; 2936 2937 case Instruction::Mul: { 2938 // The output of the Mul can be at most twice the valid bits in the 2939 // inputs. 2940 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2941 if (SignBitsOp0 == 1) break; 2942 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2943 if (SignBitsOp1 == 1) break; 2944 unsigned OutValidBits = 2945 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2946 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2947 } 2948 2949 case Instruction::PHI: { 2950 const PHINode *PN = cast<PHINode>(U); 2951 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2952 // Don't analyze large in-degree PHIs. 2953 if (NumIncomingValues > 4) break; 2954 // Unreachable blocks may have zero-operand PHI nodes. 2955 if (NumIncomingValues == 0) break; 2956 2957 // Take the minimum of all incoming values. This can't infinitely loop 2958 // because of our depth threshold. 2959 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2960 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2961 if (Tmp == 1) return Tmp; 2962 Tmp = std::min( 2963 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2964 } 2965 return Tmp; 2966 } 2967 2968 case Instruction::Trunc: 2969 // FIXME: it's tricky to do anything useful for this, but it is an 2970 // important case for targets like X86. 2971 break; 2972 2973 case Instruction::ExtractElement: 2974 // Look through extract element. At the moment we keep this simple and 2975 // skip tracking the specific element. But at least we might find 2976 // information valid for all elements of the vector (for example if vector 2977 // is sign extended, shifted, etc). 2978 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2979 2980 case Instruction::ShuffleVector: { 2981 // Collect the minimum number of sign bits that are shared by every vector 2982 // element referenced by the shuffle. 2983 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2984 if (!Shuf) { 2985 // FIXME: Add support for shufflevector constant expressions. 2986 return 1; 2987 } 2988 APInt DemandedLHS, DemandedRHS; 2989 // For undef elements, we don't know anything about the common state of 2990 // the shuffle result. 2991 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2992 return 1; 2993 Tmp = std::numeric_limits<unsigned>::max(); 2994 if (!!DemandedLHS) { 2995 const Value *LHS = Shuf->getOperand(0); 2996 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2997 } 2998 // If we don't know anything, early out and try computeKnownBits 2999 // fall-back. 3000 if (Tmp == 1) 3001 break; 3002 if (!!DemandedRHS) { 3003 const Value *RHS = Shuf->getOperand(1); 3004 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3005 Tmp = std::min(Tmp, Tmp2); 3006 } 3007 // If we don't know anything, early out and try computeKnownBits 3008 // fall-back. 3009 if (Tmp == 1) 3010 break; 3011 assert(Tmp <= Ty->getScalarSizeInBits() && 3012 "Failed to determine minimum sign bits"); 3013 return Tmp; 3014 } 3015 case Instruction::Call: { 3016 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3017 switch (II->getIntrinsicID()) { 3018 default: break; 3019 case Intrinsic::abs: 3020 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3021 if (Tmp == 1) break; 3022 3023 // Absolute value reduces number of sign bits by at most 1. 3024 return Tmp - 1; 3025 } 3026 } 3027 } 3028 } 3029 } 3030 3031 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3032 // use this information. 3033 3034 // If we can examine all elements of a vector constant successfully, we're 3035 // done (we can't do any better than that). If not, keep trying. 3036 if (unsigned VecSignBits = 3037 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3038 return VecSignBits; 3039 3040 KnownBits Known(TyBits); 3041 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3042 3043 // If we know that the sign bit is either zero or one, determine the number of 3044 // identical bits in the top of the input value. 3045 return std::max(FirstAnswer, Known.countMinSignBits()); 3046 } 3047 3048 /// This function computes the integer multiple of Base that equals V. 3049 /// If successful, it returns true and returns the multiple in 3050 /// Multiple. If unsuccessful, it returns false. It looks 3051 /// through SExt instructions only if LookThroughSExt is true. 3052 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3053 bool LookThroughSExt, unsigned Depth) { 3054 assert(V && "No Value?"); 3055 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3056 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3057 3058 Type *T = V->getType(); 3059 3060 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3061 3062 if (Base == 0) 3063 return false; 3064 3065 if (Base == 1) { 3066 Multiple = V; 3067 return true; 3068 } 3069 3070 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3071 Constant *BaseVal = ConstantInt::get(T, Base); 3072 if (CO && CO == BaseVal) { 3073 // Multiple is 1. 3074 Multiple = ConstantInt::get(T, 1); 3075 return true; 3076 } 3077 3078 if (CI && CI->getZExtValue() % Base == 0) { 3079 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3080 return true; 3081 } 3082 3083 if (Depth == MaxAnalysisRecursionDepth) return false; 3084 3085 Operator *I = dyn_cast<Operator>(V); 3086 if (!I) return false; 3087 3088 switch (I->getOpcode()) { 3089 default: break; 3090 case Instruction::SExt: 3091 if (!LookThroughSExt) return false; 3092 // otherwise fall through to ZExt 3093 LLVM_FALLTHROUGH; 3094 case Instruction::ZExt: 3095 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3096 LookThroughSExt, Depth+1); 3097 case Instruction::Shl: 3098 case Instruction::Mul: { 3099 Value *Op0 = I->getOperand(0); 3100 Value *Op1 = I->getOperand(1); 3101 3102 if (I->getOpcode() == Instruction::Shl) { 3103 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3104 if (!Op1CI) return false; 3105 // Turn Op0 << Op1 into Op0 * 2^Op1 3106 APInt Op1Int = Op1CI->getValue(); 3107 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3108 APInt API(Op1Int.getBitWidth(), 0); 3109 API.setBit(BitToSet); 3110 Op1 = ConstantInt::get(V->getContext(), API); 3111 } 3112 3113 Value *Mul0 = nullptr; 3114 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3115 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3116 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3117 if (Op1C->getType()->getPrimitiveSizeInBits() < 3118 MulC->getType()->getPrimitiveSizeInBits()) 3119 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3120 if (Op1C->getType()->getPrimitiveSizeInBits() > 3121 MulC->getType()->getPrimitiveSizeInBits()) 3122 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3123 3124 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3125 Multiple = ConstantExpr::getMul(MulC, Op1C); 3126 return true; 3127 } 3128 3129 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3130 if (Mul0CI->getValue() == 1) { 3131 // V == Base * Op1, so return Op1 3132 Multiple = Op1; 3133 return true; 3134 } 3135 } 3136 3137 Value *Mul1 = nullptr; 3138 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3139 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3140 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3141 if (Op0C->getType()->getPrimitiveSizeInBits() < 3142 MulC->getType()->getPrimitiveSizeInBits()) 3143 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3144 if (Op0C->getType()->getPrimitiveSizeInBits() > 3145 MulC->getType()->getPrimitiveSizeInBits()) 3146 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3147 3148 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3149 Multiple = ConstantExpr::getMul(MulC, Op0C); 3150 return true; 3151 } 3152 3153 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3154 if (Mul1CI->getValue() == 1) { 3155 // V == Base * Op0, so return Op0 3156 Multiple = Op0; 3157 return true; 3158 } 3159 } 3160 } 3161 } 3162 3163 // We could not determine if V is a multiple of Base. 3164 return false; 3165 } 3166 3167 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3168 const TargetLibraryInfo *TLI) { 3169 const Function *F = CB.getCalledFunction(); 3170 if (!F) 3171 return Intrinsic::not_intrinsic; 3172 3173 if (F->isIntrinsic()) 3174 return F->getIntrinsicID(); 3175 3176 // We are going to infer semantics of a library function based on mapping it 3177 // to an LLVM intrinsic. Check that the library function is available from 3178 // this callbase and in this environment. 3179 LibFunc Func; 3180 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3181 !CB.onlyReadsMemory()) 3182 return Intrinsic::not_intrinsic; 3183 3184 switch (Func) { 3185 default: 3186 break; 3187 case LibFunc_sin: 3188 case LibFunc_sinf: 3189 case LibFunc_sinl: 3190 return Intrinsic::sin; 3191 case LibFunc_cos: 3192 case LibFunc_cosf: 3193 case LibFunc_cosl: 3194 return Intrinsic::cos; 3195 case LibFunc_exp: 3196 case LibFunc_expf: 3197 case LibFunc_expl: 3198 return Intrinsic::exp; 3199 case LibFunc_exp2: 3200 case LibFunc_exp2f: 3201 case LibFunc_exp2l: 3202 return Intrinsic::exp2; 3203 case LibFunc_log: 3204 case LibFunc_logf: 3205 case LibFunc_logl: 3206 return Intrinsic::log; 3207 case LibFunc_log10: 3208 case LibFunc_log10f: 3209 case LibFunc_log10l: 3210 return Intrinsic::log10; 3211 case LibFunc_log2: 3212 case LibFunc_log2f: 3213 case LibFunc_log2l: 3214 return Intrinsic::log2; 3215 case LibFunc_fabs: 3216 case LibFunc_fabsf: 3217 case LibFunc_fabsl: 3218 return Intrinsic::fabs; 3219 case LibFunc_fmin: 3220 case LibFunc_fminf: 3221 case LibFunc_fminl: 3222 return Intrinsic::minnum; 3223 case LibFunc_fmax: 3224 case LibFunc_fmaxf: 3225 case LibFunc_fmaxl: 3226 return Intrinsic::maxnum; 3227 case LibFunc_copysign: 3228 case LibFunc_copysignf: 3229 case LibFunc_copysignl: 3230 return Intrinsic::copysign; 3231 case LibFunc_floor: 3232 case LibFunc_floorf: 3233 case LibFunc_floorl: 3234 return Intrinsic::floor; 3235 case LibFunc_ceil: 3236 case LibFunc_ceilf: 3237 case LibFunc_ceill: 3238 return Intrinsic::ceil; 3239 case LibFunc_trunc: 3240 case LibFunc_truncf: 3241 case LibFunc_truncl: 3242 return Intrinsic::trunc; 3243 case LibFunc_rint: 3244 case LibFunc_rintf: 3245 case LibFunc_rintl: 3246 return Intrinsic::rint; 3247 case LibFunc_nearbyint: 3248 case LibFunc_nearbyintf: 3249 case LibFunc_nearbyintl: 3250 return Intrinsic::nearbyint; 3251 case LibFunc_round: 3252 case LibFunc_roundf: 3253 case LibFunc_roundl: 3254 return Intrinsic::round; 3255 case LibFunc_roundeven: 3256 case LibFunc_roundevenf: 3257 case LibFunc_roundevenl: 3258 return Intrinsic::roundeven; 3259 case LibFunc_pow: 3260 case LibFunc_powf: 3261 case LibFunc_powl: 3262 return Intrinsic::pow; 3263 case LibFunc_sqrt: 3264 case LibFunc_sqrtf: 3265 case LibFunc_sqrtl: 3266 return Intrinsic::sqrt; 3267 } 3268 3269 return Intrinsic::not_intrinsic; 3270 } 3271 3272 /// Return true if we can prove that the specified FP value is never equal to 3273 /// -0.0. 3274 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3275 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3276 /// the same as +0.0 in floating-point ops. 3277 /// 3278 /// NOTE: this function will need to be revisited when we support non-default 3279 /// rounding modes! 3280 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3281 unsigned Depth) { 3282 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3283 return !CFP->getValueAPF().isNegZero(); 3284 3285 if (Depth == MaxAnalysisRecursionDepth) 3286 return false; 3287 3288 auto *Op = dyn_cast<Operator>(V); 3289 if (!Op) 3290 return false; 3291 3292 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3293 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3294 return true; 3295 3296 // sitofp and uitofp turn into +0.0 for zero. 3297 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3298 return true; 3299 3300 if (auto *Call = dyn_cast<CallInst>(Op)) { 3301 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3302 switch (IID) { 3303 default: 3304 break; 3305 // sqrt(-0.0) = -0.0, no other negative results are possible. 3306 case Intrinsic::sqrt: 3307 case Intrinsic::canonicalize: 3308 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3309 // fabs(x) != -0.0 3310 case Intrinsic::fabs: 3311 return true; 3312 } 3313 } 3314 3315 return false; 3316 } 3317 3318 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3319 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3320 /// bit despite comparing equal. 3321 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3322 const TargetLibraryInfo *TLI, 3323 bool SignBitOnly, 3324 unsigned Depth) { 3325 // TODO: This function does not do the right thing when SignBitOnly is true 3326 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3327 // which flips the sign bits of NaNs. See 3328 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3329 3330 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3331 return !CFP->getValueAPF().isNegative() || 3332 (!SignBitOnly && CFP->getValueAPF().isZero()); 3333 } 3334 3335 // Handle vector of constants. 3336 if (auto *CV = dyn_cast<Constant>(V)) { 3337 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3338 unsigned NumElts = CVFVTy->getNumElements(); 3339 for (unsigned i = 0; i != NumElts; ++i) { 3340 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3341 if (!CFP) 3342 return false; 3343 if (CFP->getValueAPF().isNegative() && 3344 (SignBitOnly || !CFP->getValueAPF().isZero())) 3345 return false; 3346 } 3347 3348 // All non-negative ConstantFPs. 3349 return true; 3350 } 3351 } 3352 3353 if (Depth == MaxAnalysisRecursionDepth) 3354 return false; 3355 3356 const Operator *I = dyn_cast<Operator>(V); 3357 if (!I) 3358 return false; 3359 3360 switch (I->getOpcode()) { 3361 default: 3362 break; 3363 // Unsigned integers are always nonnegative. 3364 case Instruction::UIToFP: 3365 return true; 3366 case Instruction::FMul: 3367 case Instruction::FDiv: 3368 // X * X is always non-negative or a NaN. 3369 // X / X is always exactly 1.0 or a NaN. 3370 if (I->getOperand(0) == I->getOperand(1) && 3371 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3372 return true; 3373 3374 LLVM_FALLTHROUGH; 3375 case Instruction::FAdd: 3376 case Instruction::FRem: 3377 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3378 Depth + 1) && 3379 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3380 Depth + 1); 3381 case Instruction::Select: 3382 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3383 Depth + 1) && 3384 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3385 Depth + 1); 3386 case Instruction::FPExt: 3387 case Instruction::FPTrunc: 3388 // Widening/narrowing never change sign. 3389 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3390 Depth + 1); 3391 case Instruction::ExtractElement: 3392 // Look through extract element. At the moment we keep this simple and skip 3393 // tracking the specific element. But at least we might find information 3394 // valid for all elements of the vector. 3395 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3396 Depth + 1); 3397 case Instruction::Call: 3398 const auto *CI = cast<CallInst>(I); 3399 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3400 switch (IID) { 3401 default: 3402 break; 3403 case Intrinsic::maxnum: { 3404 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3405 auto isPositiveNum = [&](Value *V) { 3406 if (SignBitOnly) { 3407 // With SignBitOnly, this is tricky because the result of 3408 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3409 // a constant strictly greater than 0.0. 3410 const APFloat *C; 3411 return match(V, m_APFloat(C)) && 3412 *C > APFloat::getZero(C->getSemantics()); 3413 } 3414 3415 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3416 // maxnum can't be ordered-less-than-zero. 3417 return isKnownNeverNaN(V, TLI) && 3418 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3419 }; 3420 3421 // TODO: This could be improved. We could also check that neither operand 3422 // has its sign bit set (and at least 1 is not-NAN?). 3423 return isPositiveNum(V0) || isPositiveNum(V1); 3424 } 3425 3426 case Intrinsic::maximum: 3427 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3428 Depth + 1) || 3429 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3430 Depth + 1); 3431 case Intrinsic::minnum: 3432 case Intrinsic::minimum: 3433 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3434 Depth + 1) && 3435 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3436 Depth + 1); 3437 case Intrinsic::exp: 3438 case Intrinsic::exp2: 3439 case Intrinsic::fabs: 3440 return true; 3441 3442 case Intrinsic::sqrt: 3443 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3444 if (!SignBitOnly) 3445 return true; 3446 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3447 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3448 3449 case Intrinsic::powi: 3450 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3451 // powi(x,n) is non-negative if n is even. 3452 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3453 return true; 3454 } 3455 // TODO: This is not correct. Given that exp is an integer, here are the 3456 // ways that pow can return a negative value: 3457 // 3458 // pow(x, exp) --> negative if exp is odd and x is negative. 3459 // pow(-0, exp) --> -inf if exp is negative odd. 3460 // pow(-0, exp) --> -0 if exp is positive odd. 3461 // pow(-inf, exp) --> -0 if exp is negative odd. 3462 // pow(-inf, exp) --> -inf if exp is positive odd. 3463 // 3464 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3465 // but we must return false if x == -0. Unfortunately we do not currently 3466 // have a way of expressing this constraint. See details in 3467 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3468 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3469 Depth + 1); 3470 3471 case Intrinsic::fma: 3472 case Intrinsic::fmuladd: 3473 // x*x+y is non-negative if y is non-negative. 3474 return I->getOperand(0) == I->getOperand(1) && 3475 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3476 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3477 Depth + 1); 3478 } 3479 break; 3480 } 3481 return false; 3482 } 3483 3484 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3485 const TargetLibraryInfo *TLI) { 3486 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3487 } 3488 3489 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3490 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3491 } 3492 3493 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3494 unsigned Depth) { 3495 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3496 3497 // If we're told that infinities won't happen, assume they won't. 3498 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3499 if (FPMathOp->hasNoInfs()) 3500 return true; 3501 3502 // Handle scalar constants. 3503 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3504 return !CFP->isInfinity(); 3505 3506 if (Depth == MaxAnalysisRecursionDepth) 3507 return false; 3508 3509 if (auto *Inst = dyn_cast<Instruction>(V)) { 3510 switch (Inst->getOpcode()) { 3511 case Instruction::Select: { 3512 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3513 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3514 } 3515 case Instruction::UIToFP: 3516 // If the input type fits into the floating type the result is finite. 3517 return ilogb(APFloat::getLargest( 3518 Inst->getType()->getScalarType()->getFltSemantics())) >= 3519 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3520 default: 3521 break; 3522 } 3523 } 3524 3525 // try to handle fixed width vector constants 3526 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3527 if (VFVTy && isa<Constant>(V)) { 3528 // For vectors, verify that each element is not infinity. 3529 unsigned NumElts = VFVTy->getNumElements(); 3530 for (unsigned i = 0; i != NumElts; ++i) { 3531 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3532 if (!Elt) 3533 return false; 3534 if (isa<UndefValue>(Elt)) 3535 continue; 3536 auto *CElt = dyn_cast<ConstantFP>(Elt); 3537 if (!CElt || CElt->isInfinity()) 3538 return false; 3539 } 3540 // All elements were confirmed non-infinity or undefined. 3541 return true; 3542 } 3543 3544 // was not able to prove that V never contains infinity 3545 return false; 3546 } 3547 3548 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3549 unsigned Depth) { 3550 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3551 3552 // If we're told that NaNs won't happen, assume they won't. 3553 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3554 if (FPMathOp->hasNoNaNs()) 3555 return true; 3556 3557 // Handle scalar constants. 3558 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3559 return !CFP->isNaN(); 3560 3561 if (Depth == MaxAnalysisRecursionDepth) 3562 return false; 3563 3564 if (auto *Inst = dyn_cast<Instruction>(V)) { 3565 switch (Inst->getOpcode()) { 3566 case Instruction::FAdd: 3567 case Instruction::FSub: 3568 // Adding positive and negative infinity produces NaN. 3569 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3570 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3571 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3572 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3573 3574 case Instruction::FMul: 3575 // Zero multiplied with infinity produces NaN. 3576 // FIXME: If neither side can be zero fmul never produces NaN. 3577 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3578 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3579 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3580 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3581 3582 case Instruction::FDiv: 3583 case Instruction::FRem: 3584 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3585 return false; 3586 3587 case Instruction::Select: { 3588 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3589 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3590 } 3591 case Instruction::SIToFP: 3592 case Instruction::UIToFP: 3593 return true; 3594 case Instruction::FPTrunc: 3595 case Instruction::FPExt: 3596 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3597 default: 3598 break; 3599 } 3600 } 3601 3602 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3603 switch (II->getIntrinsicID()) { 3604 case Intrinsic::canonicalize: 3605 case Intrinsic::fabs: 3606 case Intrinsic::copysign: 3607 case Intrinsic::exp: 3608 case Intrinsic::exp2: 3609 case Intrinsic::floor: 3610 case Intrinsic::ceil: 3611 case Intrinsic::trunc: 3612 case Intrinsic::rint: 3613 case Intrinsic::nearbyint: 3614 case Intrinsic::round: 3615 case Intrinsic::roundeven: 3616 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3617 case Intrinsic::sqrt: 3618 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3619 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3620 case Intrinsic::minnum: 3621 case Intrinsic::maxnum: 3622 // If either operand is not NaN, the result is not NaN. 3623 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3624 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3625 default: 3626 return false; 3627 } 3628 } 3629 3630 // Try to handle fixed width vector constants 3631 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3632 if (VFVTy && isa<Constant>(V)) { 3633 // For vectors, verify that each element is not NaN. 3634 unsigned NumElts = VFVTy->getNumElements(); 3635 for (unsigned i = 0; i != NumElts; ++i) { 3636 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3637 if (!Elt) 3638 return false; 3639 if (isa<UndefValue>(Elt)) 3640 continue; 3641 auto *CElt = dyn_cast<ConstantFP>(Elt); 3642 if (!CElt || CElt->isNaN()) 3643 return false; 3644 } 3645 // All elements were confirmed not-NaN or undefined. 3646 return true; 3647 } 3648 3649 // Was not able to prove that V never contains NaN 3650 return false; 3651 } 3652 3653 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3654 3655 // All byte-wide stores are splatable, even of arbitrary variables. 3656 if (V->getType()->isIntegerTy(8)) 3657 return V; 3658 3659 LLVMContext &Ctx = V->getContext(); 3660 3661 // Undef don't care. 3662 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3663 if (isa<UndefValue>(V)) 3664 return UndefInt8; 3665 3666 // Return Undef for zero-sized type. 3667 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3668 return UndefInt8; 3669 3670 Constant *C = dyn_cast<Constant>(V); 3671 if (!C) { 3672 // Conceptually, we could handle things like: 3673 // %a = zext i8 %X to i16 3674 // %b = shl i16 %a, 8 3675 // %c = or i16 %a, %b 3676 // but until there is an example that actually needs this, it doesn't seem 3677 // worth worrying about. 3678 return nullptr; 3679 } 3680 3681 // Handle 'null' ConstantArrayZero etc. 3682 if (C->isNullValue()) 3683 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3684 3685 // Constant floating-point values can be handled as integer values if the 3686 // corresponding integer value is "byteable". An important case is 0.0. 3687 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3688 Type *Ty = nullptr; 3689 if (CFP->getType()->isHalfTy()) 3690 Ty = Type::getInt16Ty(Ctx); 3691 else if (CFP->getType()->isFloatTy()) 3692 Ty = Type::getInt32Ty(Ctx); 3693 else if (CFP->getType()->isDoubleTy()) 3694 Ty = Type::getInt64Ty(Ctx); 3695 // Don't handle long double formats, which have strange constraints. 3696 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3697 : nullptr; 3698 } 3699 3700 // We can handle constant integers that are multiple of 8 bits. 3701 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3702 if (CI->getBitWidth() % 8 == 0) { 3703 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3704 if (!CI->getValue().isSplat(8)) 3705 return nullptr; 3706 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3707 } 3708 } 3709 3710 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3711 if (CE->getOpcode() == Instruction::IntToPtr) { 3712 auto PS = DL.getPointerSizeInBits( 3713 cast<PointerType>(CE->getType())->getAddressSpace()); 3714 return isBytewiseValue( 3715 ConstantExpr::getIntegerCast(CE->getOperand(0), 3716 Type::getIntNTy(Ctx, PS), false), 3717 DL); 3718 } 3719 } 3720 3721 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3722 if (LHS == RHS) 3723 return LHS; 3724 if (!LHS || !RHS) 3725 return nullptr; 3726 if (LHS == UndefInt8) 3727 return RHS; 3728 if (RHS == UndefInt8) 3729 return LHS; 3730 return nullptr; 3731 }; 3732 3733 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3734 Value *Val = UndefInt8; 3735 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3736 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3737 return nullptr; 3738 return Val; 3739 } 3740 3741 if (isa<ConstantAggregate>(C)) { 3742 Value *Val = UndefInt8; 3743 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3744 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3745 return nullptr; 3746 return Val; 3747 } 3748 3749 // Don't try to handle the handful of other constants. 3750 return nullptr; 3751 } 3752 3753 // This is the recursive version of BuildSubAggregate. It takes a few different 3754 // arguments. Idxs is the index within the nested struct From that we are 3755 // looking at now (which is of type IndexedType). IdxSkip is the number of 3756 // indices from Idxs that should be left out when inserting into the resulting 3757 // struct. To is the result struct built so far, new insertvalue instructions 3758 // build on that. 3759 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3760 SmallVectorImpl<unsigned> &Idxs, 3761 unsigned IdxSkip, 3762 Instruction *InsertBefore) { 3763 StructType *STy = dyn_cast<StructType>(IndexedType); 3764 if (STy) { 3765 // Save the original To argument so we can modify it 3766 Value *OrigTo = To; 3767 // General case, the type indexed by Idxs is a struct 3768 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3769 // Process each struct element recursively 3770 Idxs.push_back(i); 3771 Value *PrevTo = To; 3772 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3773 InsertBefore); 3774 Idxs.pop_back(); 3775 if (!To) { 3776 // Couldn't find any inserted value for this index? Cleanup 3777 while (PrevTo != OrigTo) { 3778 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3779 PrevTo = Del->getAggregateOperand(); 3780 Del->eraseFromParent(); 3781 } 3782 // Stop processing elements 3783 break; 3784 } 3785 } 3786 // If we successfully found a value for each of our subaggregates 3787 if (To) 3788 return To; 3789 } 3790 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3791 // the struct's elements had a value that was inserted directly. In the latter 3792 // case, perhaps we can't determine each of the subelements individually, but 3793 // we might be able to find the complete struct somewhere. 3794 3795 // Find the value that is at that particular spot 3796 Value *V = FindInsertedValue(From, Idxs); 3797 3798 if (!V) 3799 return nullptr; 3800 3801 // Insert the value in the new (sub) aggregate 3802 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3803 "tmp", InsertBefore); 3804 } 3805 3806 // This helper takes a nested struct and extracts a part of it (which is again a 3807 // struct) into a new value. For example, given the struct: 3808 // { a, { b, { c, d }, e } } 3809 // and the indices "1, 1" this returns 3810 // { c, d }. 3811 // 3812 // It does this by inserting an insertvalue for each element in the resulting 3813 // struct, as opposed to just inserting a single struct. This will only work if 3814 // each of the elements of the substruct are known (ie, inserted into From by an 3815 // insertvalue instruction somewhere). 3816 // 3817 // All inserted insertvalue instructions are inserted before InsertBefore 3818 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3819 Instruction *InsertBefore) { 3820 assert(InsertBefore && "Must have someplace to insert!"); 3821 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3822 idx_range); 3823 Value *To = UndefValue::get(IndexedType); 3824 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3825 unsigned IdxSkip = Idxs.size(); 3826 3827 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3828 } 3829 3830 /// Given an aggregate and a sequence of indices, see if the scalar value 3831 /// indexed is already around as a register, for example if it was inserted 3832 /// directly into the aggregate. 3833 /// 3834 /// If InsertBefore is not null, this function will duplicate (modified) 3835 /// insertvalues when a part of a nested struct is extracted. 3836 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3837 Instruction *InsertBefore) { 3838 // Nothing to index? Just return V then (this is useful at the end of our 3839 // recursion). 3840 if (idx_range.empty()) 3841 return V; 3842 // We have indices, so V should have an indexable type. 3843 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3844 "Not looking at a struct or array?"); 3845 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3846 "Invalid indices for type?"); 3847 3848 if (Constant *C = dyn_cast<Constant>(V)) { 3849 C = C->getAggregateElement(idx_range[0]); 3850 if (!C) return nullptr; 3851 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3852 } 3853 3854 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3855 // Loop the indices for the insertvalue instruction in parallel with the 3856 // requested indices 3857 const unsigned *req_idx = idx_range.begin(); 3858 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3859 i != e; ++i, ++req_idx) { 3860 if (req_idx == idx_range.end()) { 3861 // We can't handle this without inserting insertvalues 3862 if (!InsertBefore) 3863 return nullptr; 3864 3865 // The requested index identifies a part of a nested aggregate. Handle 3866 // this specially. For example, 3867 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3868 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3869 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3870 // This can be changed into 3871 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3872 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3873 // which allows the unused 0,0 element from the nested struct to be 3874 // removed. 3875 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3876 InsertBefore); 3877 } 3878 3879 // This insert value inserts something else than what we are looking for. 3880 // See if the (aggregate) value inserted into has the value we are 3881 // looking for, then. 3882 if (*req_idx != *i) 3883 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3884 InsertBefore); 3885 } 3886 // If we end up here, the indices of the insertvalue match with those 3887 // requested (though possibly only partially). Now we recursively look at 3888 // the inserted value, passing any remaining indices. 3889 return FindInsertedValue(I->getInsertedValueOperand(), 3890 makeArrayRef(req_idx, idx_range.end()), 3891 InsertBefore); 3892 } 3893 3894 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3895 // If we're extracting a value from an aggregate that was extracted from 3896 // something else, we can extract from that something else directly instead. 3897 // However, we will need to chain I's indices with the requested indices. 3898 3899 // Calculate the number of indices required 3900 unsigned size = I->getNumIndices() + idx_range.size(); 3901 // Allocate some space to put the new indices in 3902 SmallVector<unsigned, 5> Idxs; 3903 Idxs.reserve(size); 3904 // Add indices from the extract value instruction 3905 Idxs.append(I->idx_begin(), I->idx_end()); 3906 3907 // Add requested indices 3908 Idxs.append(idx_range.begin(), idx_range.end()); 3909 3910 assert(Idxs.size() == size 3911 && "Number of indices added not correct?"); 3912 3913 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3914 } 3915 // Otherwise, we don't know (such as, extracting from a function return value 3916 // or load instruction) 3917 return nullptr; 3918 } 3919 3920 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3921 unsigned CharSize) { 3922 // Make sure the GEP has exactly three arguments. 3923 if (GEP->getNumOperands() != 3) 3924 return false; 3925 3926 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3927 // CharSize. 3928 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3929 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3930 return false; 3931 3932 // Check to make sure that the first operand of the GEP is an integer and 3933 // has value 0 so that we are sure we're indexing into the initializer. 3934 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3935 if (!FirstIdx || !FirstIdx->isZero()) 3936 return false; 3937 3938 return true; 3939 } 3940 3941 bool llvm::getConstantDataArrayInfo(const Value *V, 3942 ConstantDataArraySlice &Slice, 3943 unsigned ElementSize, uint64_t Offset) { 3944 assert(V); 3945 3946 // Look through bitcast instructions and geps. 3947 V = V->stripPointerCasts(); 3948 3949 // If the value is a GEP instruction or constant expression, treat it as an 3950 // offset. 3951 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3952 // The GEP operator should be based on a pointer to string constant, and is 3953 // indexing into the string constant. 3954 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3955 return false; 3956 3957 // If the second index isn't a ConstantInt, then this is a variable index 3958 // into the array. If this occurs, we can't say anything meaningful about 3959 // the string. 3960 uint64_t StartIdx = 0; 3961 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3962 StartIdx = CI->getZExtValue(); 3963 else 3964 return false; 3965 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3966 StartIdx + Offset); 3967 } 3968 3969 // The GEP instruction, constant or instruction, must reference a global 3970 // variable that is a constant and is initialized. The referenced constant 3971 // initializer is the array that we'll use for optimization. 3972 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3973 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3974 return false; 3975 3976 const ConstantDataArray *Array; 3977 ArrayType *ArrayTy; 3978 if (GV->getInitializer()->isNullValue()) { 3979 Type *GVTy = GV->getValueType(); 3980 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3981 // A zeroinitializer for the array; there is no ConstantDataArray. 3982 Array = nullptr; 3983 } else { 3984 const DataLayout &DL = GV->getParent()->getDataLayout(); 3985 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3986 uint64_t Length = SizeInBytes / (ElementSize / 8); 3987 if (Length <= Offset) 3988 return false; 3989 3990 Slice.Array = nullptr; 3991 Slice.Offset = 0; 3992 Slice.Length = Length - Offset; 3993 return true; 3994 } 3995 } else { 3996 // This must be a ConstantDataArray. 3997 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3998 if (!Array) 3999 return false; 4000 ArrayTy = Array->getType(); 4001 } 4002 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4003 return false; 4004 4005 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4006 if (Offset > NumElts) 4007 return false; 4008 4009 Slice.Array = Array; 4010 Slice.Offset = Offset; 4011 Slice.Length = NumElts - Offset; 4012 return true; 4013 } 4014 4015 /// This function computes the length of a null-terminated C string pointed to 4016 /// by V. If successful, it returns true and returns the string in Str. 4017 /// If unsuccessful, it returns false. 4018 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4019 uint64_t Offset, bool TrimAtNul) { 4020 ConstantDataArraySlice Slice; 4021 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4022 return false; 4023 4024 if (Slice.Array == nullptr) { 4025 if (TrimAtNul) { 4026 Str = StringRef(); 4027 return true; 4028 } 4029 if (Slice.Length == 1) { 4030 Str = StringRef("", 1); 4031 return true; 4032 } 4033 // We cannot instantiate a StringRef as we do not have an appropriate string 4034 // of 0s at hand. 4035 return false; 4036 } 4037 4038 // Start out with the entire array in the StringRef. 4039 Str = Slice.Array->getAsString(); 4040 // Skip over 'offset' bytes. 4041 Str = Str.substr(Slice.Offset); 4042 4043 if (TrimAtNul) { 4044 // Trim off the \0 and anything after it. If the array is not nul 4045 // terminated, we just return the whole end of string. The client may know 4046 // some other way that the string is length-bound. 4047 Str = Str.substr(0, Str.find('\0')); 4048 } 4049 return true; 4050 } 4051 4052 // These next two are very similar to the above, but also look through PHI 4053 // nodes. 4054 // TODO: See if we can integrate these two together. 4055 4056 /// If we can compute the length of the string pointed to by 4057 /// the specified pointer, return 'len+1'. If we can't, return 0. 4058 static uint64_t GetStringLengthH(const Value *V, 4059 SmallPtrSetImpl<const PHINode*> &PHIs, 4060 unsigned CharSize) { 4061 // Look through noop bitcast instructions. 4062 V = V->stripPointerCasts(); 4063 4064 // If this is a PHI node, there are two cases: either we have already seen it 4065 // or we haven't. 4066 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4067 if (!PHIs.insert(PN).second) 4068 return ~0ULL; // already in the set. 4069 4070 // If it was new, see if all the input strings are the same length. 4071 uint64_t LenSoFar = ~0ULL; 4072 for (Value *IncValue : PN->incoming_values()) { 4073 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4074 if (Len == 0) return 0; // Unknown length -> unknown. 4075 4076 if (Len == ~0ULL) continue; 4077 4078 if (Len != LenSoFar && LenSoFar != ~0ULL) 4079 return 0; // Disagree -> unknown. 4080 LenSoFar = Len; 4081 } 4082 4083 // Success, all agree. 4084 return LenSoFar; 4085 } 4086 4087 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4088 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4089 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4090 if (Len1 == 0) return 0; 4091 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4092 if (Len2 == 0) return 0; 4093 if (Len1 == ~0ULL) return Len2; 4094 if (Len2 == ~0ULL) return Len1; 4095 if (Len1 != Len2) return 0; 4096 return Len1; 4097 } 4098 4099 // Otherwise, see if we can read the string. 4100 ConstantDataArraySlice Slice; 4101 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4102 return 0; 4103 4104 if (Slice.Array == nullptr) 4105 return 1; 4106 4107 // Search for nul characters 4108 unsigned NullIndex = 0; 4109 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4110 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4111 break; 4112 } 4113 4114 return NullIndex + 1; 4115 } 4116 4117 /// If we can compute the length of the string pointed to by 4118 /// the specified pointer, return 'len+1'. If we can't, return 0. 4119 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4120 if (!V->getType()->isPointerTy()) 4121 return 0; 4122 4123 SmallPtrSet<const PHINode*, 32> PHIs; 4124 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4125 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4126 // an empty string as a length. 4127 return Len == ~0ULL ? 1 : Len; 4128 } 4129 4130 const Value * 4131 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4132 bool MustPreserveNullness) { 4133 assert(Call && 4134 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4135 if (const Value *RV = Call->getReturnedArgOperand()) 4136 return RV; 4137 // This can be used only as a aliasing property. 4138 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4139 Call, MustPreserveNullness)) 4140 return Call->getArgOperand(0); 4141 return nullptr; 4142 } 4143 4144 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4145 const CallBase *Call, bool MustPreserveNullness) { 4146 switch (Call->getIntrinsicID()) { 4147 case Intrinsic::launder_invariant_group: 4148 case Intrinsic::strip_invariant_group: 4149 case Intrinsic::aarch64_irg: 4150 case Intrinsic::aarch64_tagp: 4151 return true; 4152 case Intrinsic::ptrmask: 4153 return !MustPreserveNullness; 4154 default: 4155 return false; 4156 } 4157 } 4158 4159 /// \p PN defines a loop-variant pointer to an object. Check if the 4160 /// previous iteration of the loop was referring to the same object as \p PN. 4161 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4162 const LoopInfo *LI) { 4163 // Find the loop-defined value. 4164 Loop *L = LI->getLoopFor(PN->getParent()); 4165 if (PN->getNumIncomingValues() != 2) 4166 return true; 4167 4168 // Find the value from previous iteration. 4169 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4170 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4171 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4172 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4173 return true; 4174 4175 // If a new pointer is loaded in the loop, the pointer references a different 4176 // object in every iteration. E.g.: 4177 // for (i) 4178 // int *p = a[i]; 4179 // ... 4180 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4181 if (!L->isLoopInvariant(Load->getPointerOperand())) 4182 return false; 4183 return true; 4184 } 4185 4186 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4187 if (!V->getType()->isPointerTy()) 4188 return V; 4189 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4190 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4191 V = GEP->getPointerOperand(); 4192 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4193 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4194 V = cast<Operator>(V)->getOperand(0); 4195 if (!V->getType()->isPointerTy()) 4196 return V; 4197 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4198 if (GA->isInterposable()) 4199 return V; 4200 V = GA->getAliasee(); 4201 } else { 4202 if (auto *PHI = dyn_cast<PHINode>(V)) { 4203 // Look through single-arg phi nodes created by LCSSA. 4204 if (PHI->getNumIncomingValues() == 1) { 4205 V = PHI->getIncomingValue(0); 4206 continue; 4207 } 4208 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4209 // CaptureTracking can know about special capturing properties of some 4210 // intrinsics like launder.invariant.group, that can't be expressed with 4211 // the attributes, but have properties like returning aliasing pointer. 4212 // Because some analysis may assume that nocaptured pointer is not 4213 // returned from some special intrinsic (because function would have to 4214 // be marked with returns attribute), it is crucial to use this function 4215 // because it should be in sync with CaptureTracking. Not using it may 4216 // cause weird miscompilations where 2 aliasing pointers are assumed to 4217 // noalias. 4218 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4219 V = RP; 4220 continue; 4221 } 4222 } 4223 4224 return V; 4225 } 4226 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4227 } 4228 return V; 4229 } 4230 4231 void llvm::getUnderlyingObjects(const Value *V, 4232 SmallVectorImpl<const Value *> &Objects, 4233 LoopInfo *LI, unsigned MaxLookup) { 4234 SmallPtrSet<const Value *, 4> Visited; 4235 SmallVector<const Value *, 4> Worklist; 4236 Worklist.push_back(V); 4237 do { 4238 const Value *P = Worklist.pop_back_val(); 4239 P = getUnderlyingObject(P, MaxLookup); 4240 4241 if (!Visited.insert(P).second) 4242 continue; 4243 4244 if (auto *SI = dyn_cast<SelectInst>(P)) { 4245 Worklist.push_back(SI->getTrueValue()); 4246 Worklist.push_back(SI->getFalseValue()); 4247 continue; 4248 } 4249 4250 if (auto *PN = dyn_cast<PHINode>(P)) { 4251 // If this PHI changes the underlying object in every iteration of the 4252 // loop, don't look through it. Consider: 4253 // int **A; 4254 // for (i) { 4255 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4256 // Curr = A[i]; 4257 // *Prev, *Curr; 4258 // 4259 // Prev is tracking Curr one iteration behind so they refer to different 4260 // underlying objects. 4261 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4262 isSameUnderlyingObjectInLoop(PN, LI)) 4263 for (Value *IncValue : PN->incoming_values()) 4264 Worklist.push_back(IncValue); 4265 continue; 4266 } 4267 4268 Objects.push_back(P); 4269 } while (!Worklist.empty()); 4270 } 4271 4272 /// This is the function that does the work of looking through basic 4273 /// ptrtoint+arithmetic+inttoptr sequences. 4274 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4275 do { 4276 if (const Operator *U = dyn_cast<Operator>(V)) { 4277 // If we find a ptrtoint, we can transfer control back to the 4278 // regular getUnderlyingObjectFromInt. 4279 if (U->getOpcode() == Instruction::PtrToInt) 4280 return U->getOperand(0); 4281 // If we find an add of a constant, a multiplied value, or a phi, it's 4282 // likely that the other operand will lead us to the base 4283 // object. We don't have to worry about the case where the 4284 // object address is somehow being computed by the multiply, 4285 // because our callers only care when the result is an 4286 // identifiable object. 4287 if (U->getOpcode() != Instruction::Add || 4288 (!isa<ConstantInt>(U->getOperand(1)) && 4289 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4290 !isa<PHINode>(U->getOperand(1)))) 4291 return V; 4292 V = U->getOperand(0); 4293 } else { 4294 return V; 4295 } 4296 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4297 } while (true); 4298 } 4299 4300 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4301 /// ptrtoint+arithmetic+inttoptr sequences. 4302 /// It returns false if unidentified object is found in getUnderlyingObjects. 4303 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4304 SmallVectorImpl<Value *> &Objects) { 4305 SmallPtrSet<const Value *, 16> Visited; 4306 SmallVector<const Value *, 4> Working(1, V); 4307 do { 4308 V = Working.pop_back_val(); 4309 4310 SmallVector<const Value *, 4> Objs; 4311 getUnderlyingObjects(V, Objs); 4312 4313 for (const Value *V : Objs) { 4314 if (!Visited.insert(V).second) 4315 continue; 4316 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4317 const Value *O = 4318 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4319 if (O->getType()->isPointerTy()) { 4320 Working.push_back(O); 4321 continue; 4322 } 4323 } 4324 // If getUnderlyingObjects fails to find an identifiable object, 4325 // getUnderlyingObjectsForCodeGen also fails for safety. 4326 if (!isIdentifiedObject(V)) { 4327 Objects.clear(); 4328 return false; 4329 } 4330 Objects.push_back(const_cast<Value *>(V)); 4331 } 4332 } while (!Working.empty()); 4333 return true; 4334 } 4335 4336 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4337 AllocaInst *Result = nullptr; 4338 SmallPtrSet<Value *, 4> Visited; 4339 SmallVector<Value *, 4> Worklist; 4340 4341 auto AddWork = [&](Value *V) { 4342 if (Visited.insert(V).second) 4343 Worklist.push_back(V); 4344 }; 4345 4346 AddWork(V); 4347 do { 4348 V = Worklist.pop_back_val(); 4349 assert(Visited.count(V)); 4350 4351 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4352 if (Result && Result != AI) 4353 return nullptr; 4354 Result = AI; 4355 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4356 AddWork(CI->getOperand(0)); 4357 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4358 for (Value *IncValue : PN->incoming_values()) 4359 AddWork(IncValue); 4360 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4361 AddWork(SI->getTrueValue()); 4362 AddWork(SI->getFalseValue()); 4363 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4364 if (OffsetZero && !GEP->hasAllZeroIndices()) 4365 return nullptr; 4366 AddWork(GEP->getPointerOperand()); 4367 } else { 4368 return nullptr; 4369 } 4370 } while (!Worklist.empty()); 4371 4372 return Result; 4373 } 4374 4375 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4376 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4377 for (const User *U : V->users()) { 4378 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4379 if (!II) 4380 return false; 4381 4382 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4383 continue; 4384 4385 if (AllowDroppable && II->isDroppable()) 4386 continue; 4387 4388 return false; 4389 } 4390 return true; 4391 } 4392 4393 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4394 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4395 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4396 } 4397 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4398 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4399 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4400 } 4401 4402 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4403 if (!LI.isUnordered()) 4404 return true; 4405 const Function &F = *LI.getFunction(); 4406 // Speculative load may create a race that did not exist in the source. 4407 return F.hasFnAttribute(Attribute::SanitizeThread) || 4408 // Speculative load may load data from dirty regions. 4409 F.hasFnAttribute(Attribute::SanitizeAddress) || 4410 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4411 } 4412 4413 4414 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4415 const Instruction *CtxI, 4416 const DominatorTree *DT) { 4417 const Operator *Inst = dyn_cast<Operator>(V); 4418 if (!Inst) 4419 return false; 4420 4421 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4422 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4423 if (C->canTrap()) 4424 return false; 4425 4426 switch (Inst->getOpcode()) { 4427 default: 4428 return true; 4429 case Instruction::UDiv: 4430 case Instruction::URem: { 4431 // x / y is undefined if y == 0. 4432 const APInt *V; 4433 if (match(Inst->getOperand(1), m_APInt(V))) 4434 return *V != 0; 4435 return false; 4436 } 4437 case Instruction::SDiv: 4438 case Instruction::SRem: { 4439 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4440 const APInt *Numerator, *Denominator; 4441 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4442 return false; 4443 // We cannot hoist this division if the denominator is 0. 4444 if (*Denominator == 0) 4445 return false; 4446 // It's safe to hoist if the denominator is not 0 or -1. 4447 if (*Denominator != -1) 4448 return true; 4449 // At this point we know that the denominator is -1. It is safe to hoist as 4450 // long we know that the numerator is not INT_MIN. 4451 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4452 return !Numerator->isMinSignedValue(); 4453 // The numerator *might* be MinSignedValue. 4454 return false; 4455 } 4456 case Instruction::Load: { 4457 const LoadInst *LI = cast<LoadInst>(Inst); 4458 if (mustSuppressSpeculation(*LI)) 4459 return false; 4460 const DataLayout &DL = LI->getModule()->getDataLayout(); 4461 return isDereferenceableAndAlignedPointer( 4462 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4463 DL, CtxI, DT); 4464 } 4465 case Instruction::Call: { 4466 auto *CI = cast<const CallInst>(Inst); 4467 const Function *Callee = CI->getCalledFunction(); 4468 4469 // The called function could have undefined behavior or side-effects, even 4470 // if marked readnone nounwind. 4471 return Callee && Callee->isSpeculatable(); 4472 } 4473 case Instruction::VAArg: 4474 case Instruction::Alloca: 4475 case Instruction::Invoke: 4476 case Instruction::CallBr: 4477 case Instruction::PHI: 4478 case Instruction::Store: 4479 case Instruction::Ret: 4480 case Instruction::Br: 4481 case Instruction::IndirectBr: 4482 case Instruction::Switch: 4483 case Instruction::Unreachable: 4484 case Instruction::Fence: 4485 case Instruction::AtomicRMW: 4486 case Instruction::AtomicCmpXchg: 4487 case Instruction::LandingPad: 4488 case Instruction::Resume: 4489 case Instruction::CatchSwitch: 4490 case Instruction::CatchPad: 4491 case Instruction::CatchRet: 4492 case Instruction::CleanupPad: 4493 case Instruction::CleanupRet: 4494 return false; // Misc instructions which have effects 4495 } 4496 } 4497 4498 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4499 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4500 } 4501 4502 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4503 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4504 switch (OR) { 4505 case ConstantRange::OverflowResult::MayOverflow: 4506 return OverflowResult::MayOverflow; 4507 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4508 return OverflowResult::AlwaysOverflowsLow; 4509 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4510 return OverflowResult::AlwaysOverflowsHigh; 4511 case ConstantRange::OverflowResult::NeverOverflows: 4512 return OverflowResult::NeverOverflows; 4513 } 4514 llvm_unreachable("Unknown OverflowResult"); 4515 } 4516 4517 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4518 static ConstantRange computeConstantRangeIncludingKnownBits( 4519 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4520 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4521 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4522 KnownBits Known = computeKnownBits( 4523 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4524 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4525 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4526 ConstantRange::PreferredRangeType RangeType = 4527 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4528 return CR1.intersectWith(CR2, RangeType); 4529 } 4530 4531 OverflowResult llvm::computeOverflowForUnsignedMul( 4532 const Value *LHS, const Value *RHS, const DataLayout &DL, 4533 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4534 bool UseInstrInfo) { 4535 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4536 nullptr, UseInstrInfo); 4537 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4538 nullptr, UseInstrInfo); 4539 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4540 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4541 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4542 } 4543 4544 OverflowResult 4545 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4546 const DataLayout &DL, AssumptionCache *AC, 4547 const Instruction *CxtI, 4548 const DominatorTree *DT, bool UseInstrInfo) { 4549 // Multiplying n * m significant bits yields a result of n + m significant 4550 // bits. If the total number of significant bits does not exceed the 4551 // result bit width (minus 1), there is no overflow. 4552 // This means if we have enough leading sign bits in the operands 4553 // we can guarantee that the result does not overflow. 4554 // Ref: "Hacker's Delight" by Henry Warren 4555 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4556 4557 // Note that underestimating the number of sign bits gives a more 4558 // conservative answer. 4559 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4560 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4561 4562 // First handle the easy case: if we have enough sign bits there's 4563 // definitely no overflow. 4564 if (SignBits > BitWidth + 1) 4565 return OverflowResult::NeverOverflows; 4566 4567 // There are two ambiguous cases where there can be no overflow: 4568 // SignBits == BitWidth + 1 and 4569 // SignBits == BitWidth 4570 // The second case is difficult to check, therefore we only handle the 4571 // first case. 4572 if (SignBits == BitWidth + 1) { 4573 // It overflows only when both arguments are negative and the true 4574 // product is exactly the minimum negative number. 4575 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4576 // For simplicity we just check if at least one side is not negative. 4577 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4578 nullptr, UseInstrInfo); 4579 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4580 nullptr, UseInstrInfo); 4581 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4582 return OverflowResult::NeverOverflows; 4583 } 4584 return OverflowResult::MayOverflow; 4585 } 4586 4587 OverflowResult llvm::computeOverflowForUnsignedAdd( 4588 const Value *LHS, const Value *RHS, const DataLayout &DL, 4589 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4590 bool UseInstrInfo) { 4591 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4592 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4593 nullptr, UseInstrInfo); 4594 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4595 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4596 nullptr, UseInstrInfo); 4597 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4598 } 4599 4600 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4601 const Value *RHS, 4602 const AddOperator *Add, 4603 const DataLayout &DL, 4604 AssumptionCache *AC, 4605 const Instruction *CxtI, 4606 const DominatorTree *DT) { 4607 if (Add && Add->hasNoSignedWrap()) { 4608 return OverflowResult::NeverOverflows; 4609 } 4610 4611 // If LHS and RHS each have at least two sign bits, the addition will look 4612 // like 4613 // 4614 // XX..... + 4615 // YY..... 4616 // 4617 // If the carry into the most significant position is 0, X and Y can't both 4618 // be 1 and therefore the carry out of the addition is also 0. 4619 // 4620 // If the carry into the most significant position is 1, X and Y can't both 4621 // be 0 and therefore the carry out of the addition is also 1. 4622 // 4623 // Since the carry into the most significant position is always equal to 4624 // the carry out of the addition, there is no signed overflow. 4625 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4626 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4627 return OverflowResult::NeverOverflows; 4628 4629 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4630 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4631 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4632 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4633 OverflowResult OR = 4634 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4635 if (OR != OverflowResult::MayOverflow) 4636 return OR; 4637 4638 // The remaining code needs Add to be available. Early returns if not so. 4639 if (!Add) 4640 return OverflowResult::MayOverflow; 4641 4642 // If the sign of Add is the same as at least one of the operands, this add 4643 // CANNOT overflow. If this can be determined from the known bits of the 4644 // operands the above signedAddMayOverflow() check will have already done so. 4645 // The only other way to improve on the known bits is from an assumption, so 4646 // call computeKnownBitsFromAssume() directly. 4647 bool LHSOrRHSKnownNonNegative = 4648 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4649 bool LHSOrRHSKnownNegative = 4650 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4651 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4652 KnownBits AddKnown(LHSRange.getBitWidth()); 4653 computeKnownBitsFromAssume( 4654 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4655 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4656 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4657 return OverflowResult::NeverOverflows; 4658 } 4659 4660 return OverflowResult::MayOverflow; 4661 } 4662 4663 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4664 const Value *RHS, 4665 const DataLayout &DL, 4666 AssumptionCache *AC, 4667 const Instruction *CxtI, 4668 const DominatorTree *DT) { 4669 // Checking for conditions implied by dominating conditions may be expensive. 4670 // Limit it to usub_with_overflow calls for now. 4671 if (match(CxtI, 4672 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4673 if (auto C = 4674 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4675 if (*C) 4676 return OverflowResult::NeverOverflows; 4677 return OverflowResult::AlwaysOverflowsLow; 4678 } 4679 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4680 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4681 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4682 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4683 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4684 } 4685 4686 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4687 const Value *RHS, 4688 const DataLayout &DL, 4689 AssumptionCache *AC, 4690 const Instruction *CxtI, 4691 const DominatorTree *DT) { 4692 // If LHS and RHS each have at least two sign bits, the subtraction 4693 // cannot overflow. 4694 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4695 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4696 return OverflowResult::NeverOverflows; 4697 4698 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4699 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4700 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4701 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4702 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4703 } 4704 4705 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4706 const DominatorTree &DT) { 4707 SmallVector<const BranchInst *, 2> GuardingBranches; 4708 SmallVector<const ExtractValueInst *, 2> Results; 4709 4710 for (const User *U : WO->users()) { 4711 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4712 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4713 4714 if (EVI->getIndices()[0] == 0) 4715 Results.push_back(EVI); 4716 else { 4717 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4718 4719 for (const auto *U : EVI->users()) 4720 if (const auto *B = dyn_cast<BranchInst>(U)) { 4721 assert(B->isConditional() && "How else is it using an i1?"); 4722 GuardingBranches.push_back(B); 4723 } 4724 } 4725 } else { 4726 // We are using the aggregate directly in a way we don't want to analyze 4727 // here (storing it to a global, say). 4728 return false; 4729 } 4730 } 4731 4732 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4733 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4734 if (!NoWrapEdge.isSingleEdge()) 4735 return false; 4736 4737 // Check if all users of the add are provably no-wrap. 4738 for (const auto *Result : Results) { 4739 // If the extractvalue itself is not executed on overflow, the we don't 4740 // need to check each use separately, since domination is transitive. 4741 if (DT.dominates(NoWrapEdge, Result->getParent())) 4742 continue; 4743 4744 for (auto &RU : Result->uses()) 4745 if (!DT.dominates(NoWrapEdge, RU)) 4746 return false; 4747 } 4748 4749 return true; 4750 }; 4751 4752 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4753 } 4754 4755 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4756 // See whether I has flags that may create poison 4757 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4758 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4759 return true; 4760 } 4761 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4762 if (ExactOp->isExact()) 4763 return true; 4764 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4765 auto FMF = FP->getFastMathFlags(); 4766 if (FMF.noNaNs() || FMF.noInfs()) 4767 return true; 4768 } 4769 4770 unsigned Opcode = Op->getOpcode(); 4771 4772 // Check whether opcode is a poison/undef-generating operation 4773 switch (Opcode) { 4774 case Instruction::Shl: 4775 case Instruction::AShr: 4776 case Instruction::LShr: { 4777 // Shifts return poison if shiftwidth is larger than the bitwidth. 4778 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4779 SmallVector<Constant *, 4> ShiftAmounts; 4780 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4781 unsigned NumElts = FVTy->getNumElements(); 4782 for (unsigned i = 0; i < NumElts; ++i) 4783 ShiftAmounts.push_back(C->getAggregateElement(i)); 4784 } else if (isa<ScalableVectorType>(C->getType())) 4785 return true; // Can't tell, just return true to be safe 4786 else 4787 ShiftAmounts.push_back(C); 4788 4789 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4790 auto *CI = dyn_cast<ConstantInt>(C); 4791 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4792 }); 4793 return !Safe; 4794 } 4795 return true; 4796 } 4797 case Instruction::FPToSI: 4798 case Instruction::FPToUI: 4799 // fptosi/ui yields poison if the resulting value does not fit in the 4800 // destination type. 4801 return true; 4802 case Instruction::Call: 4803 case Instruction::CallBr: 4804 case Instruction::Invoke: { 4805 const auto *CB = cast<CallBase>(Op); 4806 return !CB->hasRetAttr(Attribute::NoUndef); 4807 } 4808 case Instruction::InsertElement: 4809 case Instruction::ExtractElement: { 4810 // If index exceeds the length of the vector, it returns poison 4811 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4812 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4813 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4814 if (!Idx || 4815 Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue()) 4816 return true; 4817 return false; 4818 } 4819 case Instruction::ShuffleVector: { 4820 // shufflevector may return undef. 4821 if (PoisonOnly) 4822 return false; 4823 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4824 ? cast<ConstantExpr>(Op)->getShuffleMask() 4825 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4826 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4827 } 4828 case Instruction::FNeg: 4829 case Instruction::PHI: 4830 case Instruction::Select: 4831 case Instruction::URem: 4832 case Instruction::SRem: 4833 case Instruction::ExtractValue: 4834 case Instruction::InsertValue: 4835 case Instruction::Freeze: 4836 case Instruction::ICmp: 4837 case Instruction::FCmp: 4838 return false; 4839 case Instruction::GetElementPtr: { 4840 const auto *GEP = cast<GEPOperator>(Op); 4841 return GEP->isInBounds(); 4842 } 4843 default: { 4844 const auto *CE = dyn_cast<ConstantExpr>(Op); 4845 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4846 return false; 4847 else if (Instruction::isBinaryOp(Opcode)) 4848 return false; 4849 // Be conservative and return true. 4850 return true; 4851 } 4852 } 4853 } 4854 4855 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4856 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4857 } 4858 4859 bool llvm::canCreatePoison(const Operator *Op) { 4860 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4861 } 4862 4863 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4864 const Instruction *CtxI, 4865 const DominatorTree *DT, 4866 unsigned Depth) { 4867 if (Depth >= MaxAnalysisRecursionDepth) 4868 return false; 4869 4870 if (const auto *A = dyn_cast<Argument>(V)) { 4871 if (A->hasAttribute(Attribute::NoUndef)) 4872 return true; 4873 } 4874 4875 if (auto *C = dyn_cast<Constant>(V)) { 4876 if (isa<UndefValue>(C)) 4877 return false; 4878 4879 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4880 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4881 return true; 4882 4883 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4884 return !C->containsConstantExpression() && !C->containsUndefElement(); 4885 } 4886 4887 // Strip cast operations from a pointer value. 4888 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4889 // inbounds with zero offset. To guarantee that the result isn't poison, the 4890 // stripped pointer is checked as it has to be pointing into an allocated 4891 // object or be null `null` to ensure `inbounds` getelement pointers with a 4892 // zero offset could not produce poison. 4893 // It can strip off addrspacecast that do not change bit representation as 4894 // well. We believe that such addrspacecast is equivalent to no-op. 4895 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4896 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4897 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4898 return true; 4899 4900 auto OpCheck = [&](const Value *V) { 4901 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4902 }; 4903 4904 if (auto *Opr = dyn_cast<Operator>(V)) { 4905 // If the value is a freeze instruction, then it can never 4906 // be undef or poison. 4907 if (isa<FreezeInst>(V)) 4908 return true; 4909 4910 if (const auto *CB = dyn_cast<CallBase>(V)) { 4911 if (CB->hasRetAttr(Attribute::NoUndef)) 4912 return true; 4913 } 4914 4915 if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4916 return true; 4917 } 4918 4919 if (auto *I = dyn_cast<Instruction>(V)) { 4920 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4921 // Note: once we have an agreement that poison is a value-wise concept, 4922 // we can remove the isIntegerTy(1) constraint. 4923 return true; 4924 } 4925 4926 // CxtI may be null or a cloned instruction. 4927 if (!CtxI || !CtxI->getParent() || !DT) 4928 return false; 4929 4930 auto *DNode = DT->getNode(CtxI->getParent()); 4931 if (!DNode) 4932 // Unreachable block 4933 return false; 4934 4935 // If V is used as a branch condition before reaching CtxI, V cannot be 4936 // undef or poison. 4937 // br V, BB1, BB2 4938 // BB1: 4939 // CtxI ; V cannot be undef or poison here 4940 auto *Dominator = DNode->getIDom(); 4941 while (Dominator) { 4942 auto *TI = Dominator->getBlock()->getTerminator(); 4943 4944 if (auto BI = dyn_cast<BranchInst>(TI)) { 4945 if (BI->isConditional() && BI->getCondition() == V) 4946 return true; 4947 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4948 if (SI->getCondition() == V) 4949 return true; 4950 } 4951 4952 Dominator = Dominator->getIDom(); 4953 } 4954 4955 return false; 4956 } 4957 4958 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4959 const DataLayout &DL, 4960 AssumptionCache *AC, 4961 const Instruction *CxtI, 4962 const DominatorTree *DT) { 4963 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4964 Add, DL, AC, CxtI, DT); 4965 } 4966 4967 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4968 const Value *RHS, 4969 const DataLayout &DL, 4970 AssumptionCache *AC, 4971 const Instruction *CxtI, 4972 const DominatorTree *DT) { 4973 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4974 } 4975 4976 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4977 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4978 // of time because it's possible for another thread to interfere with it for an 4979 // arbitrary length of time, but programs aren't allowed to rely on that. 4980 4981 // If there is no successor, then execution can't transfer to it. 4982 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4983 return !CRI->unwindsToCaller(); 4984 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4985 return !CatchSwitch->unwindsToCaller(); 4986 if (isa<ResumeInst>(I)) 4987 return false; 4988 if (isa<ReturnInst>(I)) 4989 return false; 4990 if (isa<UnreachableInst>(I)) 4991 return false; 4992 4993 // Calls can throw, or contain an infinite loop, or kill the process. 4994 if (const auto *CB = dyn_cast<CallBase>(I)) { 4995 // Call sites that throw have implicit non-local control flow. 4996 if (!CB->doesNotThrow()) 4997 return false; 4998 4999 // A function which doens't throw and has "willreturn" attribute will 5000 // always return. 5001 if (CB->hasFnAttr(Attribute::WillReturn)) 5002 return true; 5003 5004 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5005 // etc. and thus not return. However, LLVM already assumes that 5006 // 5007 // - Thread exiting actions are modeled as writes to memory invisible to 5008 // the program. 5009 // 5010 // - Loops that don't have side effects (side effects are volatile/atomic 5011 // stores and IO) always terminate (see http://llvm.org/PR965). 5012 // Furthermore IO itself is also modeled as writes to memory invisible to 5013 // the program. 5014 // 5015 // We rely on those assumptions here, and use the memory effects of the call 5016 // target as a proxy for checking that it always returns. 5017 5018 // FIXME: This isn't aggressive enough; a call which only writes to a global 5019 // is guaranteed to return. 5020 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5021 } 5022 5023 // Other instructions return normally. 5024 return true; 5025 } 5026 5027 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5028 // TODO: This is slightly conservative for invoke instruction since exiting 5029 // via an exception *is* normal control for them. 5030 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5031 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5032 return false; 5033 return true; 5034 } 5035 5036 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5037 const Loop *L) { 5038 // The loop header is guaranteed to be executed for every iteration. 5039 // 5040 // FIXME: Relax this constraint to cover all basic blocks that are 5041 // guaranteed to be executed at every iteration. 5042 if (I->getParent() != L->getHeader()) return false; 5043 5044 for (const Instruction &LI : *L->getHeader()) { 5045 if (&LI == I) return true; 5046 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5047 } 5048 llvm_unreachable("Instruction not contained in its own parent basic block."); 5049 } 5050 5051 bool llvm::propagatesPoison(const Instruction *I) { 5052 switch (I->getOpcode()) { 5053 case Instruction::Freeze: 5054 case Instruction::Select: 5055 case Instruction::PHI: 5056 case Instruction::Call: 5057 case Instruction::Invoke: 5058 return false; 5059 case Instruction::ICmp: 5060 case Instruction::FCmp: 5061 case Instruction::GetElementPtr: 5062 return true; 5063 default: 5064 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5065 return true; 5066 5067 // Be conservative and return false. 5068 return false; 5069 } 5070 } 5071 5072 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5073 SmallPtrSetImpl<const Value *> &Operands) { 5074 switch (I->getOpcode()) { 5075 case Instruction::Store: 5076 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5077 break; 5078 5079 case Instruction::Load: 5080 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5081 break; 5082 5083 case Instruction::AtomicCmpXchg: 5084 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5085 break; 5086 5087 case Instruction::AtomicRMW: 5088 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5089 break; 5090 5091 case Instruction::UDiv: 5092 case Instruction::SDiv: 5093 case Instruction::URem: 5094 case Instruction::SRem: 5095 Operands.insert(I->getOperand(1)); 5096 break; 5097 5098 case Instruction::Call: 5099 case Instruction::Invoke: { 5100 const CallBase *CB = cast<CallBase>(I); 5101 if (CB->isIndirectCall()) 5102 Operands.insert(CB->getCalledOperand()); 5103 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5104 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5105 Operands.insert(CB->getArgOperand(i)); 5106 } 5107 break; 5108 } 5109 5110 default: 5111 break; 5112 } 5113 } 5114 5115 bool llvm::mustTriggerUB(const Instruction *I, 5116 const SmallSet<const Value *, 16>& KnownPoison) { 5117 SmallPtrSet<const Value *, 4> NonPoisonOps; 5118 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5119 5120 for (const auto *V : NonPoisonOps) 5121 if (KnownPoison.count(V)) 5122 return true; 5123 5124 return false; 5125 } 5126 5127 5128 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 5129 // We currently only look for uses of poison values within the same basic 5130 // block, as that makes it easier to guarantee that the uses will be 5131 // executed given that PoisonI is executed. 5132 // 5133 // FIXME: Expand this to consider uses beyond the same basic block. To do 5134 // this, look out for the distinction between post-dominance and strong 5135 // post-dominance. 5136 const BasicBlock *BB = PoisonI->getParent(); 5137 5138 // Set of instructions that we have proved will yield poison if PoisonI 5139 // does. 5140 SmallSet<const Value *, 16> YieldsPoison; 5141 SmallSet<const BasicBlock *, 4> Visited; 5142 YieldsPoison.insert(PoisonI); 5143 Visited.insert(PoisonI->getParent()); 5144 5145 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 5146 5147 unsigned Iter = 0; 5148 while (Iter++ < MaxAnalysisRecursionDepth) { 5149 for (auto &I : make_range(Begin, End)) { 5150 if (&I != PoisonI) { 5151 if (mustTriggerUB(&I, YieldsPoison)) 5152 return true; 5153 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5154 return false; 5155 } 5156 5157 // Mark poison that propagates from I through uses of I. 5158 if (YieldsPoison.count(&I)) { 5159 for (const User *User : I.users()) { 5160 const Instruction *UserI = cast<Instruction>(User); 5161 if (propagatesPoison(UserI)) 5162 YieldsPoison.insert(User); 5163 } 5164 } 5165 } 5166 5167 if (auto *NextBB = BB->getSingleSuccessor()) { 5168 if (Visited.insert(NextBB).second) { 5169 BB = NextBB; 5170 Begin = BB->getFirstNonPHI()->getIterator(); 5171 End = BB->end(); 5172 continue; 5173 } 5174 } 5175 5176 break; 5177 } 5178 return false; 5179 } 5180 5181 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5182 if (FMF.noNaNs()) 5183 return true; 5184 5185 if (auto *C = dyn_cast<ConstantFP>(V)) 5186 return !C->isNaN(); 5187 5188 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5189 if (!C->getElementType()->isFloatingPointTy()) 5190 return false; 5191 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5192 if (C->getElementAsAPFloat(I).isNaN()) 5193 return false; 5194 } 5195 return true; 5196 } 5197 5198 if (isa<ConstantAggregateZero>(V)) 5199 return true; 5200 5201 return false; 5202 } 5203 5204 static bool isKnownNonZero(const Value *V) { 5205 if (auto *C = dyn_cast<ConstantFP>(V)) 5206 return !C->isZero(); 5207 5208 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5209 if (!C->getElementType()->isFloatingPointTy()) 5210 return false; 5211 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5212 if (C->getElementAsAPFloat(I).isZero()) 5213 return false; 5214 } 5215 return true; 5216 } 5217 5218 return false; 5219 } 5220 5221 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5222 /// Given non-min/max outer cmp/select from the clamp pattern this 5223 /// function recognizes if it can be substitued by a "canonical" min/max 5224 /// pattern. 5225 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5226 Value *CmpLHS, Value *CmpRHS, 5227 Value *TrueVal, Value *FalseVal, 5228 Value *&LHS, Value *&RHS) { 5229 // Try to match 5230 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5231 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5232 // and return description of the outer Max/Min. 5233 5234 // First, check if select has inverse order: 5235 if (CmpRHS == FalseVal) { 5236 std::swap(TrueVal, FalseVal); 5237 Pred = CmpInst::getInversePredicate(Pred); 5238 } 5239 5240 // Assume success now. If there's no match, callers should not use these anyway. 5241 LHS = TrueVal; 5242 RHS = FalseVal; 5243 5244 const APFloat *FC1; 5245 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5246 return {SPF_UNKNOWN, SPNB_NA, false}; 5247 5248 const APFloat *FC2; 5249 switch (Pred) { 5250 case CmpInst::FCMP_OLT: 5251 case CmpInst::FCMP_OLE: 5252 case CmpInst::FCMP_ULT: 5253 case CmpInst::FCMP_ULE: 5254 if (match(FalseVal, 5255 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5256 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5257 *FC1 < *FC2) 5258 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5259 break; 5260 case CmpInst::FCMP_OGT: 5261 case CmpInst::FCMP_OGE: 5262 case CmpInst::FCMP_UGT: 5263 case CmpInst::FCMP_UGE: 5264 if (match(FalseVal, 5265 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5266 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5267 *FC1 > *FC2) 5268 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5269 break; 5270 default: 5271 break; 5272 } 5273 5274 return {SPF_UNKNOWN, SPNB_NA, false}; 5275 } 5276 5277 /// Recognize variations of: 5278 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5279 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5280 Value *CmpLHS, Value *CmpRHS, 5281 Value *TrueVal, Value *FalseVal) { 5282 // Swap the select operands and predicate to match the patterns below. 5283 if (CmpRHS != TrueVal) { 5284 Pred = ICmpInst::getSwappedPredicate(Pred); 5285 std::swap(TrueVal, FalseVal); 5286 } 5287 const APInt *C1; 5288 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5289 const APInt *C2; 5290 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5291 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5292 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5293 return {SPF_SMAX, SPNB_NA, false}; 5294 5295 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5296 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5297 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5298 return {SPF_SMIN, SPNB_NA, false}; 5299 5300 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5301 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5302 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5303 return {SPF_UMAX, SPNB_NA, false}; 5304 5305 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5306 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5307 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5308 return {SPF_UMIN, SPNB_NA, false}; 5309 } 5310 return {SPF_UNKNOWN, SPNB_NA, false}; 5311 } 5312 5313 /// Recognize variations of: 5314 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5315 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5316 Value *CmpLHS, Value *CmpRHS, 5317 Value *TVal, Value *FVal, 5318 unsigned Depth) { 5319 // TODO: Allow FP min/max with nnan/nsz. 5320 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5321 5322 Value *A = nullptr, *B = nullptr; 5323 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5324 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5325 return {SPF_UNKNOWN, SPNB_NA, false}; 5326 5327 Value *C = nullptr, *D = nullptr; 5328 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5329 if (L.Flavor != R.Flavor) 5330 return {SPF_UNKNOWN, SPNB_NA, false}; 5331 5332 // We have something like: x Pred y ? min(a, b) : min(c, d). 5333 // Try to match the compare to the min/max operations of the select operands. 5334 // First, make sure we have the right compare predicate. 5335 switch (L.Flavor) { 5336 case SPF_SMIN: 5337 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5338 Pred = ICmpInst::getSwappedPredicate(Pred); 5339 std::swap(CmpLHS, CmpRHS); 5340 } 5341 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5342 break; 5343 return {SPF_UNKNOWN, SPNB_NA, false}; 5344 case SPF_SMAX: 5345 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5346 Pred = ICmpInst::getSwappedPredicate(Pred); 5347 std::swap(CmpLHS, CmpRHS); 5348 } 5349 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5350 break; 5351 return {SPF_UNKNOWN, SPNB_NA, false}; 5352 case SPF_UMIN: 5353 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5354 Pred = ICmpInst::getSwappedPredicate(Pred); 5355 std::swap(CmpLHS, CmpRHS); 5356 } 5357 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5358 break; 5359 return {SPF_UNKNOWN, SPNB_NA, false}; 5360 case SPF_UMAX: 5361 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5362 Pred = ICmpInst::getSwappedPredicate(Pred); 5363 std::swap(CmpLHS, CmpRHS); 5364 } 5365 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5366 break; 5367 return {SPF_UNKNOWN, SPNB_NA, false}; 5368 default: 5369 return {SPF_UNKNOWN, SPNB_NA, false}; 5370 } 5371 5372 // If there is a common operand in the already matched min/max and the other 5373 // min/max operands match the compare operands (either directly or inverted), 5374 // then this is min/max of the same flavor. 5375 5376 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5377 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5378 if (D == B) { 5379 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5380 match(A, m_Not(m_Specific(CmpRHS))))) 5381 return {L.Flavor, SPNB_NA, false}; 5382 } 5383 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5384 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5385 if (C == B) { 5386 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5387 match(A, m_Not(m_Specific(CmpRHS))))) 5388 return {L.Flavor, SPNB_NA, false}; 5389 } 5390 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5391 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5392 if (D == A) { 5393 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5394 match(B, m_Not(m_Specific(CmpRHS))))) 5395 return {L.Flavor, SPNB_NA, false}; 5396 } 5397 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5398 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5399 if (C == A) { 5400 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5401 match(B, m_Not(m_Specific(CmpRHS))))) 5402 return {L.Flavor, SPNB_NA, false}; 5403 } 5404 5405 return {SPF_UNKNOWN, SPNB_NA, false}; 5406 } 5407 5408 /// If the input value is the result of a 'not' op, constant integer, or vector 5409 /// splat of a constant integer, return the bitwise-not source value. 5410 /// TODO: This could be extended to handle non-splat vector integer constants. 5411 static Value *getNotValue(Value *V) { 5412 Value *NotV; 5413 if (match(V, m_Not(m_Value(NotV)))) 5414 return NotV; 5415 5416 const APInt *C; 5417 if (match(V, m_APInt(C))) 5418 return ConstantInt::get(V->getType(), ~(*C)); 5419 5420 return nullptr; 5421 } 5422 5423 /// Match non-obvious integer minimum and maximum sequences. 5424 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5425 Value *CmpLHS, Value *CmpRHS, 5426 Value *TrueVal, Value *FalseVal, 5427 Value *&LHS, Value *&RHS, 5428 unsigned Depth) { 5429 // Assume success. If there's no match, callers should not use these anyway. 5430 LHS = TrueVal; 5431 RHS = FalseVal; 5432 5433 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5434 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5435 return SPR; 5436 5437 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5438 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5439 return SPR; 5440 5441 // Look through 'not' ops to find disguised min/max. 5442 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5443 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5444 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5445 switch (Pred) { 5446 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5447 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5448 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5449 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5450 default: break; 5451 } 5452 } 5453 5454 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5455 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5456 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5457 switch (Pred) { 5458 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5459 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5460 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5461 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5462 default: break; 5463 } 5464 } 5465 5466 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5467 return {SPF_UNKNOWN, SPNB_NA, false}; 5468 5469 // Z = X -nsw Y 5470 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5471 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5472 if (match(TrueVal, m_Zero()) && 5473 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5474 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5475 5476 // Z = X -nsw Y 5477 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5478 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5479 if (match(FalseVal, m_Zero()) && 5480 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5481 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5482 5483 const APInt *C1; 5484 if (!match(CmpRHS, m_APInt(C1))) 5485 return {SPF_UNKNOWN, SPNB_NA, false}; 5486 5487 // An unsigned min/max can be written with a signed compare. 5488 const APInt *C2; 5489 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5490 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5491 // Is the sign bit set? 5492 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5493 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5494 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5495 C2->isMaxSignedValue()) 5496 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5497 5498 // Is the sign bit clear? 5499 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5500 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5501 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5502 C2->isMinSignedValue()) 5503 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5504 } 5505 5506 return {SPF_UNKNOWN, SPNB_NA, false}; 5507 } 5508 5509 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5510 assert(X && Y && "Invalid operand"); 5511 5512 // X = sub (0, Y) || X = sub nsw (0, Y) 5513 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5514 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5515 return true; 5516 5517 // Y = sub (0, X) || Y = sub nsw (0, X) 5518 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5519 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5520 return true; 5521 5522 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5523 Value *A, *B; 5524 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5525 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5526 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5527 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5528 } 5529 5530 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5531 FastMathFlags FMF, 5532 Value *CmpLHS, Value *CmpRHS, 5533 Value *TrueVal, Value *FalseVal, 5534 Value *&LHS, Value *&RHS, 5535 unsigned Depth) { 5536 if (CmpInst::isFPPredicate(Pred)) { 5537 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5538 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5539 // purpose of identifying min/max. Disregard vector constants with undefined 5540 // elements because those can not be back-propagated for analysis. 5541 Value *OutputZeroVal = nullptr; 5542 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5543 !cast<Constant>(TrueVal)->containsUndefElement()) 5544 OutputZeroVal = TrueVal; 5545 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5546 !cast<Constant>(FalseVal)->containsUndefElement()) 5547 OutputZeroVal = FalseVal; 5548 5549 if (OutputZeroVal) { 5550 if (match(CmpLHS, m_AnyZeroFP())) 5551 CmpLHS = OutputZeroVal; 5552 if (match(CmpRHS, m_AnyZeroFP())) 5553 CmpRHS = OutputZeroVal; 5554 } 5555 } 5556 5557 LHS = CmpLHS; 5558 RHS = CmpRHS; 5559 5560 // Signed zero may return inconsistent results between implementations. 5561 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5562 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5563 // Therefore, we behave conservatively and only proceed if at least one of the 5564 // operands is known to not be zero or if we don't care about signed zero. 5565 switch (Pred) { 5566 default: break; 5567 // FIXME: Include OGT/OLT/UGT/ULT. 5568 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5569 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5570 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5571 !isKnownNonZero(CmpRHS)) 5572 return {SPF_UNKNOWN, SPNB_NA, false}; 5573 } 5574 5575 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5576 bool Ordered = false; 5577 5578 // When given one NaN and one non-NaN input: 5579 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5580 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5581 // ordered comparison fails), which could be NaN or non-NaN. 5582 // so here we discover exactly what NaN behavior is required/accepted. 5583 if (CmpInst::isFPPredicate(Pred)) { 5584 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5585 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5586 5587 if (LHSSafe && RHSSafe) { 5588 // Both operands are known non-NaN. 5589 NaNBehavior = SPNB_RETURNS_ANY; 5590 } else if (CmpInst::isOrdered(Pred)) { 5591 // An ordered comparison will return false when given a NaN, so it 5592 // returns the RHS. 5593 Ordered = true; 5594 if (LHSSafe) 5595 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5596 NaNBehavior = SPNB_RETURNS_NAN; 5597 else if (RHSSafe) 5598 NaNBehavior = SPNB_RETURNS_OTHER; 5599 else 5600 // Completely unsafe. 5601 return {SPF_UNKNOWN, SPNB_NA, false}; 5602 } else { 5603 Ordered = false; 5604 // An unordered comparison will return true when given a NaN, so it 5605 // returns the LHS. 5606 if (LHSSafe) 5607 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5608 NaNBehavior = SPNB_RETURNS_OTHER; 5609 else if (RHSSafe) 5610 NaNBehavior = SPNB_RETURNS_NAN; 5611 else 5612 // Completely unsafe. 5613 return {SPF_UNKNOWN, SPNB_NA, false}; 5614 } 5615 } 5616 5617 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5618 std::swap(CmpLHS, CmpRHS); 5619 Pred = CmpInst::getSwappedPredicate(Pred); 5620 if (NaNBehavior == SPNB_RETURNS_NAN) 5621 NaNBehavior = SPNB_RETURNS_OTHER; 5622 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5623 NaNBehavior = SPNB_RETURNS_NAN; 5624 Ordered = !Ordered; 5625 } 5626 5627 // ([if]cmp X, Y) ? X : Y 5628 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5629 switch (Pred) { 5630 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5631 case ICmpInst::ICMP_UGT: 5632 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5633 case ICmpInst::ICMP_SGT: 5634 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5635 case ICmpInst::ICMP_ULT: 5636 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5637 case ICmpInst::ICMP_SLT: 5638 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5639 case FCmpInst::FCMP_UGT: 5640 case FCmpInst::FCMP_UGE: 5641 case FCmpInst::FCMP_OGT: 5642 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5643 case FCmpInst::FCMP_ULT: 5644 case FCmpInst::FCMP_ULE: 5645 case FCmpInst::FCMP_OLT: 5646 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5647 } 5648 } 5649 5650 if (isKnownNegation(TrueVal, FalseVal)) { 5651 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5652 // match against either LHS or sext(LHS). 5653 auto MaybeSExtCmpLHS = 5654 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5655 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5656 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5657 if (match(TrueVal, MaybeSExtCmpLHS)) { 5658 // Set the return values. If the compare uses the negated value (-X >s 0), 5659 // swap the return values because the negated value is always 'RHS'. 5660 LHS = TrueVal; 5661 RHS = FalseVal; 5662 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5663 std::swap(LHS, RHS); 5664 5665 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5666 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5667 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5668 return {SPF_ABS, SPNB_NA, false}; 5669 5670 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5671 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5672 return {SPF_ABS, SPNB_NA, false}; 5673 5674 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5675 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5676 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5677 return {SPF_NABS, SPNB_NA, false}; 5678 } 5679 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5680 // Set the return values. If the compare uses the negated value (-X >s 0), 5681 // swap the return values because the negated value is always 'RHS'. 5682 LHS = FalseVal; 5683 RHS = TrueVal; 5684 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5685 std::swap(LHS, RHS); 5686 5687 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5688 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5689 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5690 return {SPF_NABS, SPNB_NA, false}; 5691 5692 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5693 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5694 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5695 return {SPF_ABS, SPNB_NA, false}; 5696 } 5697 } 5698 5699 if (CmpInst::isIntPredicate(Pred)) 5700 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5701 5702 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5703 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5704 // semantics than minNum. Be conservative in such case. 5705 if (NaNBehavior != SPNB_RETURNS_ANY || 5706 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5707 !isKnownNonZero(CmpRHS))) 5708 return {SPF_UNKNOWN, SPNB_NA, false}; 5709 5710 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5711 } 5712 5713 /// Helps to match a select pattern in case of a type mismatch. 5714 /// 5715 /// The function processes the case when type of true and false values of a 5716 /// select instruction differs from type of the cmp instruction operands because 5717 /// of a cast instruction. The function checks if it is legal to move the cast 5718 /// operation after "select". If yes, it returns the new second value of 5719 /// "select" (with the assumption that cast is moved): 5720 /// 1. As operand of cast instruction when both values of "select" are same cast 5721 /// instructions. 5722 /// 2. As restored constant (by applying reverse cast operation) when the first 5723 /// value of the "select" is a cast operation and the second value is a 5724 /// constant. 5725 /// NOTE: We return only the new second value because the first value could be 5726 /// accessed as operand of cast instruction. 5727 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5728 Instruction::CastOps *CastOp) { 5729 auto *Cast1 = dyn_cast<CastInst>(V1); 5730 if (!Cast1) 5731 return nullptr; 5732 5733 *CastOp = Cast1->getOpcode(); 5734 Type *SrcTy = Cast1->getSrcTy(); 5735 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5736 // If V1 and V2 are both the same cast from the same type, look through V1. 5737 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5738 return Cast2->getOperand(0); 5739 return nullptr; 5740 } 5741 5742 auto *C = dyn_cast<Constant>(V2); 5743 if (!C) 5744 return nullptr; 5745 5746 Constant *CastedTo = nullptr; 5747 switch (*CastOp) { 5748 case Instruction::ZExt: 5749 if (CmpI->isUnsigned()) 5750 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5751 break; 5752 case Instruction::SExt: 5753 if (CmpI->isSigned()) 5754 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5755 break; 5756 case Instruction::Trunc: 5757 Constant *CmpConst; 5758 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5759 CmpConst->getType() == SrcTy) { 5760 // Here we have the following case: 5761 // 5762 // %cond = cmp iN %x, CmpConst 5763 // %tr = trunc iN %x to iK 5764 // %narrowsel = select i1 %cond, iK %t, iK C 5765 // 5766 // We can always move trunc after select operation: 5767 // 5768 // %cond = cmp iN %x, CmpConst 5769 // %widesel = select i1 %cond, iN %x, iN CmpConst 5770 // %tr = trunc iN %widesel to iK 5771 // 5772 // Note that C could be extended in any way because we don't care about 5773 // upper bits after truncation. It can't be abs pattern, because it would 5774 // look like: 5775 // 5776 // select i1 %cond, x, -x. 5777 // 5778 // So only min/max pattern could be matched. Such match requires widened C 5779 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5780 // CmpConst == C is checked below. 5781 CastedTo = CmpConst; 5782 } else { 5783 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5784 } 5785 break; 5786 case Instruction::FPTrunc: 5787 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5788 break; 5789 case Instruction::FPExt: 5790 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5791 break; 5792 case Instruction::FPToUI: 5793 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5794 break; 5795 case Instruction::FPToSI: 5796 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5797 break; 5798 case Instruction::UIToFP: 5799 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5800 break; 5801 case Instruction::SIToFP: 5802 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5803 break; 5804 default: 5805 break; 5806 } 5807 5808 if (!CastedTo) 5809 return nullptr; 5810 5811 // Make sure the cast doesn't lose any information. 5812 Constant *CastedBack = 5813 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5814 if (CastedBack != C) 5815 return nullptr; 5816 5817 return CastedTo; 5818 } 5819 5820 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5821 Instruction::CastOps *CastOp, 5822 unsigned Depth) { 5823 if (Depth >= MaxAnalysisRecursionDepth) 5824 return {SPF_UNKNOWN, SPNB_NA, false}; 5825 5826 SelectInst *SI = dyn_cast<SelectInst>(V); 5827 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5828 5829 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5830 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5831 5832 Value *TrueVal = SI->getTrueValue(); 5833 Value *FalseVal = SI->getFalseValue(); 5834 5835 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5836 CastOp, Depth); 5837 } 5838 5839 SelectPatternResult llvm::matchDecomposedSelectPattern( 5840 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5841 Instruction::CastOps *CastOp, unsigned Depth) { 5842 CmpInst::Predicate Pred = CmpI->getPredicate(); 5843 Value *CmpLHS = CmpI->getOperand(0); 5844 Value *CmpRHS = CmpI->getOperand(1); 5845 FastMathFlags FMF; 5846 if (isa<FPMathOperator>(CmpI)) 5847 FMF = CmpI->getFastMathFlags(); 5848 5849 // Bail out early. 5850 if (CmpI->isEquality()) 5851 return {SPF_UNKNOWN, SPNB_NA, false}; 5852 5853 // Deal with type mismatches. 5854 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5855 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5856 // If this is a potential fmin/fmax with a cast to integer, then ignore 5857 // -0.0 because there is no corresponding integer value. 5858 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5859 FMF.setNoSignedZeros(); 5860 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5861 cast<CastInst>(TrueVal)->getOperand(0), C, 5862 LHS, RHS, Depth); 5863 } 5864 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5865 // If this is a potential fmin/fmax with a cast to integer, then ignore 5866 // -0.0 because there is no corresponding integer value. 5867 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5868 FMF.setNoSignedZeros(); 5869 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5870 C, cast<CastInst>(FalseVal)->getOperand(0), 5871 LHS, RHS, Depth); 5872 } 5873 } 5874 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5875 LHS, RHS, Depth); 5876 } 5877 5878 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5879 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5880 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5881 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5882 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5883 if (SPF == SPF_FMINNUM) 5884 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5885 if (SPF == SPF_FMAXNUM) 5886 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5887 llvm_unreachable("unhandled!"); 5888 } 5889 5890 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5891 if (SPF == SPF_SMIN) return SPF_SMAX; 5892 if (SPF == SPF_UMIN) return SPF_UMAX; 5893 if (SPF == SPF_SMAX) return SPF_SMIN; 5894 if (SPF == SPF_UMAX) return SPF_UMIN; 5895 llvm_unreachable("unhandled!"); 5896 } 5897 5898 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5899 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5900 } 5901 5902 /// Return true if "icmp Pred LHS RHS" is always true. 5903 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5904 const Value *RHS, const DataLayout &DL, 5905 unsigned Depth) { 5906 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5907 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5908 return true; 5909 5910 switch (Pred) { 5911 default: 5912 return false; 5913 5914 case CmpInst::ICMP_SLE: { 5915 const APInt *C; 5916 5917 // LHS s<= LHS +_{nsw} C if C >= 0 5918 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5919 return !C->isNegative(); 5920 return false; 5921 } 5922 5923 case CmpInst::ICMP_ULE: { 5924 const APInt *C; 5925 5926 // LHS u<= LHS +_{nuw} C for any C 5927 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5928 return true; 5929 5930 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5931 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5932 const Value *&X, 5933 const APInt *&CA, const APInt *&CB) { 5934 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5935 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5936 return true; 5937 5938 // If X & C == 0 then (X | C) == X +_{nuw} C 5939 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5940 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5941 KnownBits Known(CA->getBitWidth()); 5942 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5943 /*CxtI*/ nullptr, /*DT*/ nullptr); 5944 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5945 return true; 5946 } 5947 5948 return false; 5949 }; 5950 5951 const Value *X; 5952 const APInt *CLHS, *CRHS; 5953 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5954 return CLHS->ule(*CRHS); 5955 5956 return false; 5957 } 5958 } 5959 } 5960 5961 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5962 /// ALHS ARHS" is true. Otherwise, return None. 5963 static Optional<bool> 5964 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5965 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5966 const DataLayout &DL, unsigned Depth) { 5967 switch (Pred) { 5968 default: 5969 return None; 5970 5971 case CmpInst::ICMP_SLT: 5972 case CmpInst::ICMP_SLE: 5973 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5974 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5975 return true; 5976 return None; 5977 5978 case CmpInst::ICMP_ULT: 5979 case CmpInst::ICMP_ULE: 5980 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5981 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5982 return true; 5983 return None; 5984 } 5985 } 5986 5987 /// Return true if the operands of the two compares match. IsSwappedOps is true 5988 /// when the operands match, but are swapped. 5989 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5990 const Value *BLHS, const Value *BRHS, 5991 bool &IsSwappedOps) { 5992 5993 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5994 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5995 return IsMatchingOps || IsSwappedOps; 5996 } 5997 5998 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5999 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6000 /// Otherwise, return None if we can't infer anything. 6001 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6002 CmpInst::Predicate BPred, 6003 bool AreSwappedOps) { 6004 // Canonicalize the predicate as if the operands were not commuted. 6005 if (AreSwappedOps) 6006 BPred = ICmpInst::getSwappedPredicate(BPred); 6007 6008 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6009 return true; 6010 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6011 return false; 6012 6013 return None; 6014 } 6015 6016 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6017 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6018 /// Otherwise, return None if we can't infer anything. 6019 static Optional<bool> 6020 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6021 const ConstantInt *C1, 6022 CmpInst::Predicate BPred, 6023 const ConstantInt *C2) { 6024 ConstantRange DomCR = 6025 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6026 ConstantRange CR = 6027 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6028 ConstantRange Intersection = DomCR.intersectWith(CR); 6029 ConstantRange Difference = DomCR.difference(CR); 6030 if (Intersection.isEmptySet()) 6031 return false; 6032 if (Difference.isEmptySet()) 6033 return true; 6034 return None; 6035 } 6036 6037 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6038 /// false. Otherwise, return None if we can't infer anything. 6039 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6040 CmpInst::Predicate BPred, 6041 const Value *BLHS, const Value *BRHS, 6042 const DataLayout &DL, bool LHSIsTrue, 6043 unsigned Depth) { 6044 Value *ALHS = LHS->getOperand(0); 6045 Value *ARHS = LHS->getOperand(1); 6046 6047 // The rest of the logic assumes the LHS condition is true. If that's not the 6048 // case, invert the predicate to make it so. 6049 CmpInst::Predicate APred = 6050 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6051 6052 // Can we infer anything when the two compares have matching operands? 6053 bool AreSwappedOps; 6054 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6055 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6056 APred, BPred, AreSwappedOps)) 6057 return Implication; 6058 // No amount of additional analysis will infer the second condition, so 6059 // early exit. 6060 return None; 6061 } 6062 6063 // Can we infer anything when the LHS operands match and the RHS operands are 6064 // constants (not necessarily matching)? 6065 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6066 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6067 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6068 return Implication; 6069 // No amount of additional analysis will infer the second condition, so 6070 // early exit. 6071 return None; 6072 } 6073 6074 if (APred == BPred) 6075 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6076 return None; 6077 } 6078 6079 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6080 /// false. Otherwise, return None if we can't infer anything. We expect the 6081 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6082 static Optional<bool> 6083 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6084 const Value *RHSOp0, const Value *RHSOp1, 6085 6086 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6087 // The LHS must be an 'or' or an 'and' instruction. 6088 assert((LHS->getOpcode() == Instruction::And || 6089 LHS->getOpcode() == Instruction::Or) && 6090 "Expected LHS to be 'and' or 'or'."); 6091 6092 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6093 6094 // If the result of an 'or' is false, then we know both legs of the 'or' are 6095 // false. Similarly, if the result of an 'and' is true, then we know both 6096 // legs of the 'and' are true. 6097 Value *ALHS, *ARHS; 6098 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6099 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6100 // FIXME: Make this non-recursion. 6101 if (Optional<bool> Implication = isImpliedCondition( 6102 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6103 return Implication; 6104 if (Optional<bool> Implication = isImpliedCondition( 6105 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6106 return Implication; 6107 return None; 6108 } 6109 return None; 6110 } 6111 6112 Optional<bool> 6113 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6114 const Value *RHSOp0, const Value *RHSOp1, 6115 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6116 // Bail out when we hit the limit. 6117 if (Depth == MaxAnalysisRecursionDepth) 6118 return None; 6119 6120 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6121 // example. 6122 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6123 return None; 6124 6125 Type *OpTy = LHS->getType(); 6126 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6127 6128 // FIXME: Extending the code below to handle vectors. 6129 if (OpTy->isVectorTy()) 6130 return None; 6131 6132 assert(OpTy->isIntegerTy(1) && "implied by above"); 6133 6134 // Both LHS and RHS are icmps. 6135 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6136 if (LHSCmp) 6137 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6138 Depth); 6139 6140 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6141 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6142 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6143 if (LHSBO) { 6144 if ((LHSBO->getOpcode() == Instruction::And || 6145 LHSBO->getOpcode() == Instruction::Or)) 6146 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6147 Depth); 6148 } 6149 return None; 6150 } 6151 6152 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6153 const DataLayout &DL, bool LHSIsTrue, 6154 unsigned Depth) { 6155 // LHS ==> RHS by definition 6156 if (LHS == RHS) 6157 return LHSIsTrue; 6158 6159 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6160 if (RHSCmp) 6161 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6162 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6163 LHSIsTrue, Depth); 6164 return None; 6165 } 6166 6167 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6168 // condition dominating ContextI or nullptr, if no condition is found. 6169 static std::pair<Value *, bool> 6170 getDomPredecessorCondition(const Instruction *ContextI) { 6171 if (!ContextI || !ContextI->getParent()) 6172 return {nullptr, false}; 6173 6174 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6175 // dominator tree (eg, from a SimplifyQuery) instead? 6176 const BasicBlock *ContextBB = ContextI->getParent(); 6177 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6178 if (!PredBB) 6179 return {nullptr, false}; 6180 6181 // We need a conditional branch in the predecessor. 6182 Value *PredCond; 6183 BasicBlock *TrueBB, *FalseBB; 6184 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6185 return {nullptr, false}; 6186 6187 // The branch should get simplified. Don't bother simplifying this condition. 6188 if (TrueBB == FalseBB) 6189 return {nullptr, false}; 6190 6191 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6192 "Predecessor block does not point to successor?"); 6193 6194 // Is this condition implied by the predecessor condition? 6195 return {PredCond, TrueBB == ContextBB}; 6196 } 6197 6198 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6199 const Instruction *ContextI, 6200 const DataLayout &DL) { 6201 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6202 auto PredCond = getDomPredecessorCondition(ContextI); 6203 if (PredCond.first) 6204 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6205 return None; 6206 } 6207 6208 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6209 const Value *LHS, const Value *RHS, 6210 const Instruction *ContextI, 6211 const DataLayout &DL) { 6212 auto PredCond = getDomPredecessorCondition(ContextI); 6213 if (PredCond.first) 6214 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6215 PredCond.second); 6216 return None; 6217 } 6218 6219 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6220 APInt &Upper, const InstrInfoQuery &IIQ) { 6221 unsigned Width = Lower.getBitWidth(); 6222 const APInt *C; 6223 switch (BO.getOpcode()) { 6224 case Instruction::Add: 6225 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6226 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6227 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6228 // 'add nuw x, C' produces [C, UINT_MAX]. 6229 Lower = *C; 6230 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6231 if (C->isNegative()) { 6232 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6233 Lower = APInt::getSignedMinValue(Width); 6234 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6235 } else { 6236 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6237 Lower = APInt::getSignedMinValue(Width) + *C; 6238 Upper = APInt::getSignedMaxValue(Width) + 1; 6239 } 6240 } 6241 } 6242 break; 6243 6244 case Instruction::And: 6245 if (match(BO.getOperand(1), m_APInt(C))) 6246 // 'and x, C' produces [0, C]. 6247 Upper = *C + 1; 6248 break; 6249 6250 case Instruction::Or: 6251 if (match(BO.getOperand(1), m_APInt(C))) 6252 // 'or x, C' produces [C, UINT_MAX]. 6253 Lower = *C; 6254 break; 6255 6256 case Instruction::AShr: 6257 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6258 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6259 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6260 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6261 } else if (match(BO.getOperand(0), m_APInt(C))) { 6262 unsigned ShiftAmount = Width - 1; 6263 if (!C->isNullValue() && IIQ.isExact(&BO)) 6264 ShiftAmount = C->countTrailingZeros(); 6265 if (C->isNegative()) { 6266 // 'ashr C, x' produces [C, C >> (Width-1)] 6267 Lower = *C; 6268 Upper = C->ashr(ShiftAmount) + 1; 6269 } else { 6270 // 'ashr C, x' produces [C >> (Width-1), C] 6271 Lower = C->ashr(ShiftAmount); 6272 Upper = *C + 1; 6273 } 6274 } 6275 break; 6276 6277 case Instruction::LShr: 6278 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6279 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6280 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6281 } else if (match(BO.getOperand(0), m_APInt(C))) { 6282 // 'lshr C, x' produces [C >> (Width-1), C]. 6283 unsigned ShiftAmount = Width - 1; 6284 if (!C->isNullValue() && IIQ.isExact(&BO)) 6285 ShiftAmount = C->countTrailingZeros(); 6286 Lower = C->lshr(ShiftAmount); 6287 Upper = *C + 1; 6288 } 6289 break; 6290 6291 case Instruction::Shl: 6292 if (match(BO.getOperand(0), m_APInt(C))) { 6293 if (IIQ.hasNoUnsignedWrap(&BO)) { 6294 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6295 Lower = *C; 6296 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6297 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6298 if (C->isNegative()) { 6299 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6300 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6301 Lower = C->shl(ShiftAmount); 6302 Upper = *C + 1; 6303 } else { 6304 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6305 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6306 Lower = *C; 6307 Upper = C->shl(ShiftAmount) + 1; 6308 } 6309 } 6310 } 6311 break; 6312 6313 case Instruction::SDiv: 6314 if (match(BO.getOperand(1), m_APInt(C))) { 6315 APInt IntMin = APInt::getSignedMinValue(Width); 6316 APInt IntMax = APInt::getSignedMaxValue(Width); 6317 if (C->isAllOnesValue()) { 6318 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6319 // where C != -1 and C != 0 and C != 1 6320 Lower = IntMin + 1; 6321 Upper = IntMax + 1; 6322 } else if (C->countLeadingZeros() < Width - 1) { 6323 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6324 // where C != -1 and C != 0 and C != 1 6325 Lower = IntMin.sdiv(*C); 6326 Upper = IntMax.sdiv(*C); 6327 if (Lower.sgt(Upper)) 6328 std::swap(Lower, Upper); 6329 Upper = Upper + 1; 6330 assert(Upper != Lower && "Upper part of range has wrapped!"); 6331 } 6332 } else if (match(BO.getOperand(0), m_APInt(C))) { 6333 if (C->isMinSignedValue()) { 6334 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6335 Lower = *C; 6336 Upper = Lower.lshr(1) + 1; 6337 } else { 6338 // 'sdiv C, x' produces [-|C|, |C|]. 6339 Upper = C->abs() + 1; 6340 Lower = (-Upper) + 1; 6341 } 6342 } 6343 break; 6344 6345 case Instruction::UDiv: 6346 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6347 // 'udiv x, C' produces [0, UINT_MAX / C]. 6348 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6349 } else if (match(BO.getOperand(0), m_APInt(C))) { 6350 // 'udiv C, x' produces [0, C]. 6351 Upper = *C + 1; 6352 } 6353 break; 6354 6355 case Instruction::SRem: 6356 if (match(BO.getOperand(1), m_APInt(C))) { 6357 // 'srem x, C' produces (-|C|, |C|). 6358 Upper = C->abs(); 6359 Lower = (-Upper) + 1; 6360 } 6361 break; 6362 6363 case Instruction::URem: 6364 if (match(BO.getOperand(1), m_APInt(C))) 6365 // 'urem x, C' produces [0, C). 6366 Upper = *C; 6367 break; 6368 6369 default: 6370 break; 6371 } 6372 } 6373 6374 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6375 APInt &Upper) { 6376 unsigned Width = Lower.getBitWidth(); 6377 const APInt *C; 6378 switch (II.getIntrinsicID()) { 6379 case Intrinsic::uadd_sat: 6380 // uadd.sat(x, C) produces [C, UINT_MAX]. 6381 if (match(II.getOperand(0), m_APInt(C)) || 6382 match(II.getOperand(1), m_APInt(C))) 6383 Lower = *C; 6384 break; 6385 case Intrinsic::sadd_sat: 6386 if (match(II.getOperand(0), m_APInt(C)) || 6387 match(II.getOperand(1), m_APInt(C))) { 6388 if (C->isNegative()) { 6389 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6390 Lower = APInt::getSignedMinValue(Width); 6391 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6392 } else { 6393 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6394 Lower = APInt::getSignedMinValue(Width) + *C; 6395 Upper = APInt::getSignedMaxValue(Width) + 1; 6396 } 6397 } 6398 break; 6399 case Intrinsic::usub_sat: 6400 // usub.sat(C, x) produces [0, C]. 6401 if (match(II.getOperand(0), m_APInt(C))) 6402 Upper = *C + 1; 6403 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6404 else if (match(II.getOperand(1), m_APInt(C))) 6405 Upper = APInt::getMaxValue(Width) - *C + 1; 6406 break; 6407 case Intrinsic::ssub_sat: 6408 if (match(II.getOperand(0), m_APInt(C))) { 6409 if (C->isNegative()) { 6410 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6411 Lower = APInt::getSignedMinValue(Width); 6412 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6413 } else { 6414 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6415 Lower = *C - APInt::getSignedMaxValue(Width); 6416 Upper = APInt::getSignedMaxValue(Width) + 1; 6417 } 6418 } else if (match(II.getOperand(1), m_APInt(C))) { 6419 if (C->isNegative()) { 6420 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6421 Lower = APInt::getSignedMinValue(Width) - *C; 6422 Upper = APInt::getSignedMaxValue(Width) + 1; 6423 } else { 6424 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6425 Lower = APInt::getSignedMinValue(Width); 6426 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6427 } 6428 } 6429 break; 6430 case Intrinsic::umin: 6431 case Intrinsic::umax: 6432 case Intrinsic::smin: 6433 case Intrinsic::smax: 6434 if (!match(II.getOperand(0), m_APInt(C)) && 6435 !match(II.getOperand(1), m_APInt(C))) 6436 break; 6437 6438 switch (II.getIntrinsicID()) { 6439 case Intrinsic::umin: 6440 Upper = *C + 1; 6441 break; 6442 case Intrinsic::umax: 6443 Lower = *C; 6444 break; 6445 case Intrinsic::smin: 6446 Lower = APInt::getSignedMinValue(Width); 6447 Upper = *C + 1; 6448 break; 6449 case Intrinsic::smax: 6450 Lower = *C; 6451 Upper = APInt::getSignedMaxValue(Width) + 1; 6452 break; 6453 default: 6454 llvm_unreachable("Must be min/max intrinsic"); 6455 } 6456 break; 6457 case Intrinsic::abs: 6458 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6459 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6460 if (match(II.getOperand(1), m_One())) 6461 Upper = APInt::getSignedMaxValue(Width) + 1; 6462 else 6463 Upper = APInt::getSignedMinValue(Width) + 1; 6464 break; 6465 default: 6466 break; 6467 } 6468 } 6469 6470 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6471 APInt &Upper, const InstrInfoQuery &IIQ) { 6472 const Value *LHS = nullptr, *RHS = nullptr; 6473 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6474 if (R.Flavor == SPF_UNKNOWN) 6475 return; 6476 6477 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6478 6479 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6480 // If the negation part of the abs (in RHS) has the NSW flag, 6481 // then the result of abs(X) is [0..SIGNED_MAX], 6482 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6483 Lower = APInt::getNullValue(BitWidth); 6484 if (match(RHS, m_Neg(m_Specific(LHS))) && 6485 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6486 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6487 else 6488 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6489 return; 6490 } 6491 6492 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6493 // The result of -abs(X) is <= 0. 6494 Lower = APInt::getSignedMinValue(BitWidth); 6495 Upper = APInt(BitWidth, 1); 6496 return; 6497 } 6498 6499 const APInt *C; 6500 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6501 return; 6502 6503 switch (R.Flavor) { 6504 case SPF_UMIN: 6505 Upper = *C + 1; 6506 break; 6507 case SPF_UMAX: 6508 Lower = *C; 6509 break; 6510 case SPF_SMIN: 6511 Lower = APInt::getSignedMinValue(BitWidth); 6512 Upper = *C + 1; 6513 break; 6514 case SPF_SMAX: 6515 Lower = *C; 6516 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6517 break; 6518 default: 6519 break; 6520 } 6521 } 6522 6523 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6524 AssumptionCache *AC, 6525 const Instruction *CtxI, 6526 unsigned Depth) { 6527 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6528 6529 if (Depth == MaxAnalysisRecursionDepth) 6530 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6531 6532 const APInt *C; 6533 if (match(V, m_APInt(C))) 6534 return ConstantRange(*C); 6535 6536 InstrInfoQuery IIQ(UseInstrInfo); 6537 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6538 APInt Lower = APInt(BitWidth, 0); 6539 APInt Upper = APInt(BitWidth, 0); 6540 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6541 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6542 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6543 setLimitsForIntrinsic(*II, Lower, Upper); 6544 else if (auto *SI = dyn_cast<SelectInst>(V)) 6545 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6546 6547 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6548 6549 if (auto *I = dyn_cast<Instruction>(V)) 6550 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6551 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6552 6553 if (CtxI && AC) { 6554 // Try to restrict the range based on information from assumptions. 6555 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6556 if (!AssumeVH) 6557 continue; 6558 CallInst *I = cast<CallInst>(AssumeVH); 6559 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6560 "Got assumption for the wrong function!"); 6561 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6562 "must be an assume intrinsic"); 6563 6564 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6565 continue; 6566 Value *Arg = I->getArgOperand(0); 6567 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6568 // Currently we just use information from comparisons. 6569 if (!Cmp || Cmp->getOperand(0) != V) 6570 continue; 6571 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6572 AC, I, Depth + 1); 6573 CR = CR.intersectWith( 6574 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6575 } 6576 } 6577 6578 return CR; 6579 } 6580 6581 static Optional<int64_t> 6582 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6583 // Skip over the first indices. 6584 gep_type_iterator GTI = gep_type_begin(GEP); 6585 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6586 /*skip along*/; 6587 6588 // Compute the offset implied by the rest of the indices. 6589 int64_t Offset = 0; 6590 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6591 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6592 if (!OpC) 6593 return None; 6594 if (OpC->isZero()) 6595 continue; // No offset. 6596 6597 // Handle struct indices, which add their field offset to the pointer. 6598 if (StructType *STy = GTI.getStructTypeOrNull()) { 6599 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6600 continue; 6601 } 6602 6603 // Otherwise, we have a sequential type like an array or fixed-length 6604 // vector. Multiply the index by the ElementSize. 6605 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6606 if (Size.isScalable()) 6607 return None; 6608 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6609 } 6610 6611 return Offset; 6612 } 6613 6614 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6615 const DataLayout &DL) { 6616 Ptr1 = Ptr1->stripPointerCasts(); 6617 Ptr2 = Ptr2->stripPointerCasts(); 6618 6619 // Handle the trivial case first. 6620 if (Ptr1 == Ptr2) { 6621 return 0; 6622 } 6623 6624 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6625 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6626 6627 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6628 // as in "P" and "gep P, 1". 6629 // Also do this iteratively to handle the the following case: 6630 // Ptr_t1 = GEP Ptr1, c1 6631 // Ptr_t2 = GEP Ptr_t1, c2 6632 // Ptr2 = GEP Ptr_t2, c3 6633 // where we will return c1+c2+c3. 6634 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6635 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6636 // are the same, and return the difference between offsets. 6637 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6638 const Value *Ptr) -> Optional<int64_t> { 6639 const GEPOperator *GEP_T = GEP; 6640 int64_t OffsetVal = 0; 6641 bool HasSameBase = false; 6642 while (GEP_T) { 6643 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6644 if (!Offset) 6645 return None; 6646 OffsetVal += *Offset; 6647 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6648 if (Op0 == Ptr) { 6649 HasSameBase = true; 6650 break; 6651 } 6652 GEP_T = dyn_cast<GEPOperator>(Op0); 6653 } 6654 if (!HasSameBase) 6655 return None; 6656 return OffsetVal; 6657 }; 6658 6659 if (GEP1) { 6660 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6661 if (Offset) 6662 return -*Offset; 6663 } 6664 if (GEP2) { 6665 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6666 if (Offset) 6667 return Offset; 6668 } 6669 6670 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6671 // base. After that base, they may have some number of common (and 6672 // potentially variable) indices. After that they handle some constant 6673 // offset, which determines their offset from each other. At this point, we 6674 // handle no other case. 6675 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6676 return None; 6677 6678 // Skip any common indices and track the GEP types. 6679 unsigned Idx = 1; 6680 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6681 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6682 break; 6683 6684 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6685 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6686 if (!Offset1 || !Offset2) 6687 return None; 6688 return *Offset2 - *Offset1; 6689 } 6690