1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2,
360                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                    bool NSW, const APInt &DemandedElts,
401                                    KnownBits &KnownOut, KnownBits &Known2,
402                                    unsigned Depth, const Query &Q) {
403   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404 
405   // If one operand is unknown and we have no nowrap information,
406   // the result will be unknown independently of the second operand.
407   if (KnownOut.isUnknown() && !NSW)
408     return;
409 
410   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412 }
413 
414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                 const APInt &DemandedElts, KnownBits &Known,
416                                 KnownBits &Known2, unsigned Depth,
417                                 const Query &Q) {
418   unsigned BitWidth = Known.getBitWidth();
419   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
420   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
421 
422   bool isKnownNegative = false;
423   bool isKnownNonNegative = false;
424   // If the multiplication is known not to overflow, compute the sign bit.
425   if (NSW) {
426     if (Op0 == Op1) {
427       // The product of a number with itself is non-negative.
428       isKnownNonNegative = true;
429     } else {
430       bool isKnownNonNegativeOp1 = Known.isNonNegative();
431       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
432       bool isKnownNegativeOp1 = Known.isNegative();
433       bool isKnownNegativeOp0 = Known2.isNegative();
434       // The product of two numbers with the same sign is non-negative.
435       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
436         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
437       // The product of a negative number and a non-negative number is either
438       // negative or zero.
439       if (!isKnownNonNegative)
440         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
441                            isKnownNonZero(Op0, Depth, Q)) ||
442                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
443                            isKnownNonZero(Op1, Depth, Q));
444     }
445   }
446 
447   assert(!Known.hasConflict() && !Known2.hasConflict());
448   // Compute a conservative estimate for high known-0 bits.
449   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
450                              Known2.countMinLeadingZeros(),
451                              BitWidth) - BitWidth;
452   LeadZ = std::min(LeadZ, BitWidth);
453 
454   // The result of the bottom bits of an integer multiply can be
455   // inferred by looking at the bottom bits of both operands and
456   // multiplying them together.
457   // We can infer at least the minimum number of known trailing bits
458   // of both operands. Depending on number of trailing zeros, we can
459   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
460   // a and b are divisible by m and n respectively.
461   // We then calculate how many of those bits are inferrable and set
462   // the output. For example, the i8 mul:
463   //  a = XXXX1100 (12)
464   //  b = XXXX1110 (14)
465   // We know the bottom 3 bits are zero since the first can be divided by
466   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
467   // Applying the multiplication to the trimmed arguments gets:
468   //    XX11 (3)
469   //    X111 (7)
470   // -------
471   //    XX11
472   //   XX11
473   //  XX11
474   // XX11
475   // -------
476   // XXXXX01
477   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
478   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
479   // The proof for this can be described as:
480   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
481   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
482   //                    umin(countTrailingZeros(C2), C6) +
483   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
484   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
485   // %aa = shl i8 %a, C5
486   // %bb = shl i8 %b, C6
487   // %aaa = or i8 %aa, C1
488   // %bbb = or i8 %bb, C2
489   // %mul = mul i8 %aaa, %bbb
490   // %mask = and i8 %mul, C7
491   //   =>
492   // %mask = i8 ((C1*C2)&C7)
493   // Where C5, C6 describe the known bits of %a, %b
494   // C1, C2 describe the known bottom bits of %a, %b.
495   // C7 describes the mask of the known bits of the result.
496   APInt Bottom0 = Known.One;
497   APInt Bottom1 = Known2.One;
498 
499   // How many times we'd be able to divide each argument by 2 (shr by 1).
500   // This gives us the number of trailing zeros on the multiplication result.
501   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
502   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
503   unsigned TrailZero0 = Known.countMinTrailingZeros();
504   unsigned TrailZero1 = Known2.countMinTrailingZeros();
505   unsigned TrailZ = TrailZero0 + TrailZero1;
506 
507   // Figure out the fewest known-bits operand.
508   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
509                                       TrailBitsKnown1 - TrailZero1);
510   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
511 
512   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
513                       Bottom1.getLoBits(TrailBitsKnown1);
514 
515   Known.resetAll();
516   Known.Zero.setHighBits(LeadZ);
517   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
518   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
519 
520   // Only make use of no-wrap flags if we failed to compute the sign bit
521   // directly.  This matters if the multiplication always overflows, in
522   // which case we prefer to follow the result of the direct computation,
523   // though as the program is invoking undefined behaviour we can choose
524   // whatever we like here.
525   if (isKnownNonNegative && !Known.isNegative())
526     Known.makeNonNegative();
527   else if (isKnownNegative && !Known.isNonNegative())
528     Known.makeNegative();
529 }
530 
531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
532                                              KnownBits &Known) {
533   unsigned BitWidth = Known.getBitWidth();
534   unsigned NumRanges = Ranges.getNumOperands() / 2;
535   assert(NumRanges >= 1);
536 
537   Known.Zero.setAllBits();
538   Known.One.setAllBits();
539 
540   for (unsigned i = 0; i < NumRanges; ++i) {
541     ConstantInt *Lower =
542         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
543     ConstantInt *Upper =
544         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
545     ConstantRange Range(Lower->getValue(), Upper->getValue());
546 
547     // The first CommonPrefixBits of all values in Range are equal.
548     unsigned CommonPrefixBits =
549         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
550     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
551     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
552     Known.One &= UnsignedMax & Mask;
553     Known.Zero &= ~UnsignedMax & Mask;
554   }
555 }
556 
557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
558   SmallVector<const Value *, 16> WorkSet(1, I);
559   SmallPtrSet<const Value *, 32> Visited;
560   SmallPtrSet<const Value *, 16> EphValues;
561 
562   // The instruction defining an assumption's condition itself is always
563   // considered ephemeral to that assumption (even if it has other
564   // non-ephemeral users). See r246696's test case for an example.
565   if (is_contained(I->operands(), E))
566     return true;
567 
568   while (!WorkSet.empty()) {
569     const Value *V = WorkSet.pop_back_val();
570     if (!Visited.insert(V).second)
571       continue;
572 
573     // If all uses of this value are ephemeral, then so is this value.
574     if (llvm::all_of(V->users(), [&](const User *U) {
575                                    return EphValues.count(U);
576                                  })) {
577       if (V == E)
578         return true;
579 
580       if (V == I || isSafeToSpeculativelyExecute(V)) {
581        EphValues.insert(V);
582        if (const User *U = dyn_cast<User>(V))
583          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
584               J != JE; ++J)
585            WorkSet.push_back(*J);
586       }
587     }
588   }
589 
590   return false;
591 }
592 
593 // Is this an intrinsic that cannot be speculated but also cannot trap?
594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
595   if (const CallInst *CI = dyn_cast<CallInst>(I))
596     if (Function *F = CI->getCalledFunction())
597       switch (F->getIntrinsicID()) {
598       default: break;
599       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
600       case Intrinsic::assume:
601       case Intrinsic::sideeffect:
602       case Intrinsic::dbg_declare:
603       case Intrinsic::dbg_value:
604       case Intrinsic::dbg_label:
605       case Intrinsic::invariant_start:
606       case Intrinsic::invariant_end:
607       case Intrinsic::lifetime_start:
608       case Intrinsic::lifetime_end:
609       case Intrinsic::objectsize:
610       case Intrinsic::ptr_annotation:
611       case Intrinsic::var_annotation:
612         return true;
613       }
614 
615   return false;
616 }
617 
618 bool llvm::isValidAssumeForContext(const Instruction *Inv,
619                                    const Instruction *CxtI,
620                                    const DominatorTree *DT) {
621   // There are two restrictions on the use of an assume:
622   //  1. The assume must dominate the context (or the control flow must
623   //     reach the assume whenever it reaches the context).
624   //  2. The context must not be in the assume's set of ephemeral values
625   //     (otherwise we will use the assume to prove that the condition
626   //     feeding the assume is trivially true, thus causing the removal of
627   //     the assume).
628 
629   if (Inv->getParent() == CxtI->getParent()) {
630     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
631     // in the BB.
632     if (Inv->comesBefore(CxtI))
633       return true;
634 
635     // Don't let an assume affect itself - this would cause the problems
636     // `isEphemeralValueOf` is trying to prevent, and it would also make
637     // the loop below go out of bounds.
638     if (Inv == CxtI)
639       return false;
640 
641     // The context comes first, but they're both in the same block.
642     // Make sure there is nothing in between that might interrupt
643     // the control flow, not even CxtI itself.
644     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
645       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
646         return false;
647 
648     return !isEphemeralValueOf(Inv, CxtI);
649   }
650 
651   // Inv and CxtI are in different blocks.
652   if (DT) {
653     if (DT->dominates(Inv, CxtI))
654       return true;
655   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
656     // We don't have a DT, but this trivially dominates.
657     return true;
658   }
659 
660   return false;
661 }
662 
663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
664   // Use of assumptions is context-sensitive. If we don't have a context, we
665   // cannot use them!
666   if (!Q.AC || !Q.CxtI)
667     return false;
668 
669   // Note that the patterns below need to be kept in sync with the code
670   // in AssumptionCache::updateAffectedValues.
671 
672   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
673     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
674 
675     Value *RHS;
676     CmpInst::Predicate Pred;
677     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
678       return false;
679     // assume(v u> y) -> assume(v != 0)
680     if (Pred == ICmpInst::ICMP_UGT)
681       return true;
682 
683     // assume(v != 0)
684     // We special-case this one to ensure that we handle `assume(v != null)`.
685     if (Pred == ICmpInst::ICMP_NE)
686       return match(RHS, m_Zero());
687 
688     // All other predicates - rely on generic ConstantRange handling.
689     ConstantInt *CI;
690     if (!match(RHS, m_ConstantInt(CI)))
691       return false;
692     ConstantRange RHSRange(CI->getValue());
693     ConstantRange TrueValues =
694         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
695     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
696   };
697 
698   if (Q.CxtI && V->getType()->isPointerTy()) {
699     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
700     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
701                               V->getType()->getPointerAddressSpace()))
702       AttrKinds.push_back(Attribute::Dereferenceable);
703 
704     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
705       return true;
706   }
707 
708   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
709     if (!AssumeVH)
710       continue;
711     CallInst *I = cast<CallInst>(AssumeVH);
712     assert(I->getFunction() == Q.CxtI->getFunction() &&
713            "Got assumption for the wrong function!");
714     if (Q.isExcluded(I))
715       continue;
716 
717     // Warning: This loop can end up being somewhat performance sensitive.
718     // We're running this loop for once for each value queried resulting in a
719     // runtime of ~O(#assumes * #values).
720 
721     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
722            "must be an assume intrinsic");
723 
724     Value *Arg = I->getArgOperand(0);
725     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
726     if (!Cmp)
727       continue;
728 
729     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
730       return true;
731   }
732 
733   return false;
734 }
735 
736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
737                                        unsigned Depth, const Query &Q) {
738   // Use of assumptions is context-sensitive. If we don't have a context, we
739   // cannot use them!
740   if (!Q.AC || !Q.CxtI)
741     return;
742 
743   unsigned BitWidth = Known.getBitWidth();
744 
745   // Note that the patterns below need to be kept in sync with the code
746   // in AssumptionCache::updateAffectedValues.
747 
748   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
749     if (!AssumeVH)
750       continue;
751     CallInst *I = cast<CallInst>(AssumeVH);
752     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
753            "Got assumption for the wrong function!");
754     if (Q.isExcluded(I))
755       continue;
756 
757     // Warning: This loop can end up being somewhat performance sensitive.
758     // We're running this loop for once for each value queried resulting in a
759     // runtime of ~O(#assumes * #values).
760 
761     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
762            "must be an assume intrinsic");
763 
764     Value *Arg = I->getArgOperand(0);
765 
766     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
767       assert(BitWidth == 1 && "assume operand is not i1?");
768       Known.setAllOnes();
769       return;
770     }
771     if (match(Arg, m_Not(m_Specific(V))) &&
772         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
773       assert(BitWidth == 1 && "assume operand is not i1?");
774       Known.setAllZero();
775       return;
776     }
777 
778     // The remaining tests are all recursive, so bail out if we hit the limit.
779     if (Depth == MaxAnalysisRecursionDepth)
780       continue;
781 
782     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
783     if (!Cmp)
784       continue;
785 
786     // Note that ptrtoint may change the bitwidth.
787     Value *A, *B;
788     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
789 
790     CmpInst::Predicate Pred;
791     uint64_t C;
792     switch (Cmp->getPredicate()) {
793     default:
794       break;
795     case ICmpInst::ICMP_EQ:
796       // assume(v = a)
797       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
798           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
799         KnownBits RHSKnown =
800             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
801         Known.Zero |= RHSKnown.Zero;
802         Known.One  |= RHSKnown.One;
803       // assume(v & b = a)
804       } else if (match(Cmp,
805                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
806                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
807         KnownBits RHSKnown =
808             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
809         KnownBits MaskKnown =
810             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
811 
812         // For those bits in the mask that are known to be one, we can propagate
813         // known bits from the RHS to V.
814         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
815         Known.One  |= RHSKnown.One  & MaskKnown.One;
816       // assume(~(v & b) = a)
817       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
818                                      m_Value(A))) &&
819                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
820         KnownBits RHSKnown =
821             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
822         KnownBits MaskKnown =
823             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
824 
825         // For those bits in the mask that are known to be one, we can propagate
826         // inverted known bits from the RHS to V.
827         Known.Zero |= RHSKnown.One  & MaskKnown.One;
828         Known.One  |= RHSKnown.Zero & MaskKnown.One;
829       // assume(v | b = a)
830       } else if (match(Cmp,
831                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
832                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
833         KnownBits RHSKnown =
834             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
835         KnownBits BKnown =
836             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
837 
838         // For those bits in B that are known to be zero, we can propagate known
839         // bits from the RHS to V.
840         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
841         Known.One  |= RHSKnown.One  & BKnown.Zero;
842       // assume(~(v | b) = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
848         KnownBits BKnown =
849             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
850 
851         // For those bits in B that are known to be zero, we can propagate
852         // inverted known bits from the RHS to V.
853         Known.Zero |= RHSKnown.One  & BKnown.Zero;
854         Known.One  |= RHSKnown.Zero & BKnown.Zero;
855       // assume(v ^ b = a)
856       } else if (match(Cmp,
857                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
861         KnownBits BKnown =
862             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
863 
864         // For those bits in B that are known to be zero, we can propagate known
865         // bits from the RHS to V. For those bits in B that are known to be one,
866         // we can propagate inverted known bits from the RHS to V.
867         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
868         Known.One  |= RHSKnown.One  & BKnown.Zero;
869         Known.Zero |= RHSKnown.One  & BKnown.One;
870         Known.One  |= RHSKnown.Zero & BKnown.One;
871       // assume(~(v ^ b) = a)
872       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
873                                      m_Value(A))) &&
874                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
875         KnownBits RHSKnown =
876             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
877         KnownBits BKnown =
878             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
879 
880         // For those bits in B that are known to be zero, we can propagate
881         // inverted known bits from the RHS to V. For those bits in B that are
882         // known to be one, we can propagate known bits from the RHS to V.
883         Known.Zero |= RHSKnown.One  & BKnown.Zero;
884         Known.One  |= RHSKnown.Zero & BKnown.Zero;
885         Known.Zero |= RHSKnown.Zero & BKnown.One;
886         Known.One  |= RHSKnown.One  & BKnown.One;
887       // assume(v << c = a)
888       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
889                                      m_Value(A))) &&
890                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
891         KnownBits RHSKnown =
892             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
893 
894         // For those bits in RHS that are known, we can propagate them to known
895         // bits in V shifted to the right by C.
896         RHSKnown.Zero.lshrInPlace(C);
897         Known.Zero |= RHSKnown.Zero;
898         RHSKnown.One.lshrInPlace(C);
899         Known.One  |= RHSKnown.One;
900       // assume(~(v << c) = a)
901       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
902                                      m_Value(A))) &&
903                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
904         KnownBits RHSKnown =
905             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
906         // For those bits in RHS that are known, we can propagate them inverted
907         // to known bits in V shifted to the right by C.
908         RHSKnown.One.lshrInPlace(C);
909         Known.Zero |= RHSKnown.One;
910         RHSKnown.Zero.lshrInPlace(C);
911         Known.One  |= RHSKnown.Zero;
912       // assume(v >> c = a)
913       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
914                                      m_Value(A))) &&
915                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
916         KnownBits RHSKnown =
917             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
918         // For those bits in RHS that are known, we can propagate them to known
919         // bits in V shifted to the right by C.
920         Known.Zero |= RHSKnown.Zero << C;
921         Known.One  |= RHSKnown.One  << C;
922       // assume(~(v >> c) = a)
923       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
924                                      m_Value(A))) &&
925                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
926         KnownBits RHSKnown =
927             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
928         // For those bits in RHS that are known, we can propagate them inverted
929         // to known bits in V shifted to the right by C.
930         Known.Zero |= RHSKnown.One  << C;
931         Known.One  |= RHSKnown.Zero << C;
932       }
933       break;
934     case ICmpInst::ICMP_SGE:
935       // assume(v >=_s c) where c is non-negative
936       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
937           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
938         KnownBits RHSKnown =
939             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
940 
941         if (RHSKnown.isNonNegative()) {
942           // We know that the sign bit is zero.
943           Known.makeNonNegative();
944         }
945       }
946       break;
947     case ICmpInst::ICMP_SGT:
948       // assume(v >_s c) where c is at least -1.
949       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
950           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
951         KnownBits RHSKnown =
952             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
953 
954         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
955           // We know that the sign bit is zero.
956           Known.makeNonNegative();
957         }
958       }
959       break;
960     case ICmpInst::ICMP_SLE:
961       // assume(v <=_s c) where c is negative
962       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
963           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
964         KnownBits RHSKnown =
965             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
966 
967         if (RHSKnown.isNegative()) {
968           // We know that the sign bit is one.
969           Known.makeNegative();
970         }
971       }
972       break;
973     case ICmpInst::ICMP_SLT:
974       // assume(v <_s c) where c is non-positive
975       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
976           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
977         KnownBits RHSKnown =
978             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
979 
980         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
981           // We know that the sign bit is one.
982           Known.makeNegative();
983         }
984       }
985       break;
986     case ICmpInst::ICMP_ULE:
987       // assume(v <=_u c)
988       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
989           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
990         KnownBits RHSKnown =
991             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
992 
993         // Whatever high bits in c are zero are known to be zero.
994         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
995       }
996       break;
997     case ICmpInst::ICMP_ULT:
998       // assume(v <_u c)
999       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1000           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1001         KnownBits RHSKnown =
1002             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1003 
1004         // If the RHS is known zero, then this assumption must be wrong (nothing
1005         // is unsigned less than zero). Signal a conflict and get out of here.
1006         if (RHSKnown.isZero()) {
1007           Known.Zero.setAllBits();
1008           Known.One.setAllBits();
1009           break;
1010         }
1011 
1012         // Whatever high bits in c are zero are known to be zero (if c is a power
1013         // of 2, then one more).
1014         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
1015           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
1016         else
1017           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
1018       }
1019       break;
1020     }
1021   }
1022 
1023   // If assumptions conflict with each other or previous known bits, then we
1024   // have a logical fallacy. It's possible that the assumption is not reachable,
1025   // so this isn't a real bug. On the other hand, the program may have undefined
1026   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
1027   // clear out the known bits, try to warn the user, and hope for the best.
1028   if (Known.Zero.intersects(Known.One)) {
1029     Known.resetAll();
1030 
1031     if (Q.ORE)
1032       Q.ORE->emit([&]() {
1033         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
1034         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
1035                                           CxtI)
1036                << "Detected conflicting code assumptions. Program may "
1037                   "have undefined behavior, or compiler may have "
1038                   "internal error.";
1039       });
1040   }
1041 }
1042 
1043 /// Compute known bits from a shift operator, including those with a
1044 /// non-constant shift amount. Known is the output of this function. Known2 is a
1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
1046 /// operator-specific functions that, given the known-zero or known-one bits
1047 /// respectively, and a shift amount, compute the implied known-zero or
1048 /// known-one bits of the shift operator's result respectively for that shift
1049 /// amount. The results from calling KZF and KOF are conservatively combined for
1050 /// all permitted shift amounts.
1051 static void computeKnownBitsFromShiftOperator(
1052     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1053     KnownBits &Known2, unsigned Depth, const Query &Q,
1054     function_ref<APInt(const APInt &, unsigned)> KZF,
1055     function_ref<APInt(const APInt &, unsigned)> KOF) {
1056   unsigned BitWidth = Known.getBitWidth();
1057 
1058   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1059   if (Known.isConstant()) {
1060     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
1061 
1062     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1063     Known.Zero = KZF(Known.Zero, ShiftAmt);
1064     Known.One  = KOF(Known.One, ShiftAmt);
1065     // If the known bits conflict, this must be an overflowing left shift, so
1066     // the shift result is poison. We can return anything we want. Choose 0 for
1067     // the best folding opportunity.
1068     if (Known.hasConflict())
1069       Known.setAllZero();
1070 
1071     return;
1072   }
1073 
1074   // If the shift amount could be greater than or equal to the bit-width of the
1075   // LHS, the value could be poison, but bail out because the check below is
1076   // expensive.
1077   // TODO: Should we just carry on?
1078   if (Known.getMaxValue().uge(BitWidth)) {
1079     Known.resetAll();
1080     return;
1081   }
1082 
1083   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1084   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1085   // limit value (which implies all bits are known).
1086   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1087   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1088 
1089   // It would be more-clearly correct to use the two temporaries for this
1090   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1091   Known.resetAll();
1092 
1093   // If we know the shifter operand is nonzero, we can sometimes infer more
1094   // known bits. However this is expensive to compute, so be lazy about it and
1095   // only compute it when absolutely necessary.
1096   Optional<bool> ShifterOperandIsNonZero;
1097 
1098   // Early exit if we can't constrain any well-defined shift amount.
1099   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1100       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1101     ShifterOperandIsNonZero =
1102         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1103     if (!*ShifterOperandIsNonZero)
1104       return;
1105   }
1106 
1107   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1108 
1109   Known.Zero.setAllBits();
1110   Known.One.setAllBits();
1111   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1112     // Combine the shifted known input bits only for those shift amounts
1113     // compatible with its known constraints.
1114     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1115       continue;
1116     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1117       continue;
1118     // If we know the shifter is nonzero, we may be able to infer more known
1119     // bits. This check is sunk down as far as possible to avoid the expensive
1120     // call to isKnownNonZero if the cheaper checks above fail.
1121     if (ShiftAmt == 0) {
1122       if (!ShifterOperandIsNonZero.hasValue())
1123         ShifterOperandIsNonZero =
1124             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1125       if (*ShifterOperandIsNonZero)
1126         continue;
1127     }
1128 
1129     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1130     Known.One  &= KOF(Known2.One, ShiftAmt);
1131   }
1132 
1133   // If the known bits conflict, the result is poison. Return a 0 and hope the
1134   // caller can further optimize that.
1135   if (Known.hasConflict())
1136     Known.setAllZero();
1137 }
1138 
1139 static void computeKnownBitsFromOperator(const Operator *I,
1140                                          const APInt &DemandedElts,
1141                                          KnownBits &Known, unsigned Depth,
1142                                          const Query &Q) {
1143   unsigned BitWidth = Known.getBitWidth();
1144 
1145   KnownBits Known2(BitWidth);
1146   switch (I->getOpcode()) {
1147   default: break;
1148   case Instruction::Load:
1149     if (MDNode *MD =
1150             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1151       computeKnownBitsFromRangeMetadata(*MD, Known);
1152     break;
1153   case Instruction::And: {
1154     // If either the LHS or the RHS are Zero, the result is zero.
1155     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1156     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1157 
1158     Known &= Known2;
1159 
1160     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1161     // here we handle the more general case of adding any odd number by
1162     // matching the form add(x, add(x, y)) where y is odd.
1163     // TODO: This could be generalized to clearing any bit set in y where the
1164     // following bit is known to be unset in y.
1165     Value *X = nullptr, *Y = nullptr;
1166     if (!Known.Zero[0] && !Known.One[0] &&
1167         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1168       Known2.resetAll();
1169       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1170       if (Known2.countMinTrailingOnes() > 0)
1171         Known.Zero.setBit(0);
1172     }
1173     break;
1174   }
1175   case Instruction::Or:
1176     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1178 
1179     Known |= Known2;
1180     break;
1181   case Instruction::Xor:
1182     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1183     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1184 
1185     Known ^= Known2;
1186     break;
1187   case Instruction::Mul: {
1188     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1189     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1190                         Known, Known2, Depth, Q);
1191     break;
1192   }
1193   case Instruction::UDiv: {
1194     // For the purposes of computing leading zeros we can conservatively
1195     // treat a udiv as a logical right shift by the power of 2 known to
1196     // be less than the denominator.
1197     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1198     unsigned LeadZ = Known2.countMinLeadingZeros();
1199 
1200     Known2.resetAll();
1201     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1202     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1203     if (RHSMaxLeadingZeros != BitWidth)
1204       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1205 
1206     Known.Zero.setHighBits(LeadZ);
1207     break;
1208   }
1209   case Instruction::Select: {
1210     const Value *LHS = nullptr, *RHS = nullptr;
1211     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1212     if (SelectPatternResult::isMinOrMax(SPF)) {
1213       computeKnownBits(RHS, Known, Depth + 1, Q);
1214       computeKnownBits(LHS, Known2, Depth + 1, Q);
1215       switch (SPF) {
1216       default:
1217         llvm_unreachable("Unhandled select pattern flavor!");
1218       case SPF_SMAX:
1219         Known = KnownBits::smax(Known, Known2);
1220         break;
1221       case SPF_SMIN:
1222         Known = KnownBits::smin(Known, Known2);
1223         break;
1224       case SPF_UMAX:
1225         Known = KnownBits::umax(Known, Known2);
1226         break;
1227       case SPF_UMIN:
1228         Known = KnownBits::umin(Known, Known2);
1229         break;
1230       }
1231       break;
1232     }
1233 
1234     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1235     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1236 
1237     // Only known if known in both the LHS and RHS.
1238     Known.One &= Known2.One;
1239     Known.Zero &= Known2.Zero;
1240 
1241     if (SPF == SPF_ABS) {
1242       // RHS from matchSelectPattern returns the negation part of abs pattern.
1243       // If the negate has an NSW flag we can assume the sign bit of the result
1244       // will be 0 because that makes abs(INT_MIN) undefined.
1245       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1246           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1247         Known.Zero.setSignBit();
1248     }
1249 
1250     break;
1251   }
1252   case Instruction::FPTrunc:
1253   case Instruction::FPExt:
1254   case Instruction::FPToUI:
1255   case Instruction::FPToSI:
1256   case Instruction::SIToFP:
1257   case Instruction::UIToFP:
1258     break; // Can't work with floating point.
1259   case Instruction::PtrToInt:
1260   case Instruction::IntToPtr:
1261     // Fall through and handle them the same as zext/trunc.
1262     LLVM_FALLTHROUGH;
1263   case Instruction::ZExt:
1264   case Instruction::Trunc: {
1265     Type *SrcTy = I->getOperand(0)->getType();
1266 
1267     unsigned SrcBitWidth;
1268     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1269     // which fall through here.
1270     Type *ScalarTy = SrcTy->getScalarType();
1271     SrcBitWidth = ScalarTy->isPointerTy() ?
1272       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1273       Q.DL.getTypeSizeInBits(ScalarTy);
1274 
1275     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1276     Known = Known.anyextOrTrunc(SrcBitWidth);
1277     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1278     Known = Known.zextOrTrunc(BitWidth);
1279     break;
1280   }
1281   case Instruction::BitCast: {
1282     Type *SrcTy = I->getOperand(0)->getType();
1283     if (SrcTy->isIntOrPtrTy() &&
1284         // TODO: For now, not handling conversions like:
1285         // (bitcast i64 %x to <2 x i32>)
1286         !I->getType()->isVectorTy()) {
1287       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1288       break;
1289     }
1290     break;
1291   }
1292   case Instruction::SExt: {
1293     // Compute the bits in the result that are not present in the input.
1294     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1295 
1296     Known = Known.trunc(SrcBitWidth);
1297     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1298     // If the sign bit of the input is known set or clear, then we know the
1299     // top bits of the result.
1300     Known = Known.sext(BitWidth);
1301     break;
1302   }
1303   case Instruction::Shl: {
1304     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1305     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1306     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1307       APInt KZResult = KnownZero << ShiftAmt;
1308       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1309       // If this shift has "nsw" keyword, then the result is either a poison
1310       // value or has the same sign bit as the first operand.
1311       if (NSW && KnownZero.isSignBitSet())
1312         KZResult.setSignBit();
1313       return KZResult;
1314     };
1315 
1316     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1317       APInt KOResult = KnownOne << ShiftAmt;
1318       if (NSW && KnownOne.isSignBitSet())
1319         KOResult.setSignBit();
1320       return KOResult;
1321     };
1322 
1323     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1324                                       KZF, KOF);
1325     break;
1326   }
1327   case Instruction::LShr: {
1328     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1329     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1330       APInt KZResult = KnownZero.lshr(ShiftAmt);
1331       // High bits known zero.
1332       KZResult.setHighBits(ShiftAmt);
1333       return KZResult;
1334     };
1335 
1336     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1337       return KnownOne.lshr(ShiftAmt);
1338     };
1339 
1340     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1341                                       KZF, KOF);
1342     break;
1343   }
1344   case Instruction::AShr: {
1345     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1346     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1347       return KnownZero.ashr(ShiftAmt);
1348     };
1349 
1350     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1351       return KnownOne.ashr(ShiftAmt);
1352     };
1353 
1354     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1355                                       KZF, KOF);
1356     break;
1357   }
1358   case Instruction::Sub: {
1359     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1360     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1361                            DemandedElts, Known, Known2, Depth, Q);
1362     break;
1363   }
1364   case Instruction::Add: {
1365     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1366     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1367                            DemandedElts, Known, Known2, Depth, Q);
1368     break;
1369   }
1370   case Instruction::SRem:
1371     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1372       APInt RA = Rem->getValue().abs();
1373       if (RA.isPowerOf2()) {
1374         APInt LowBits = RA - 1;
1375         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1376 
1377         // The low bits of the first operand are unchanged by the srem.
1378         Known.Zero = Known2.Zero & LowBits;
1379         Known.One = Known2.One & LowBits;
1380 
1381         // If the first operand is non-negative or has all low bits zero, then
1382         // the upper bits are all zero.
1383         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1384           Known.Zero |= ~LowBits;
1385 
1386         // If the first operand is negative and not all low bits are zero, then
1387         // the upper bits are all one.
1388         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1389           Known.One |= ~LowBits;
1390 
1391         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1392         break;
1393       }
1394     }
1395 
1396     // The sign bit is the LHS's sign bit, except when the result of the
1397     // remainder is zero.
1398     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1399     // If it's known zero, our sign bit is also zero.
1400     if (Known2.isNonNegative())
1401       Known.makeNonNegative();
1402 
1403     break;
1404   case Instruction::URem: {
1405     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1406       const APInt &RA = Rem->getValue();
1407       if (RA.isPowerOf2()) {
1408         APInt LowBits = (RA - 1);
1409         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1410         Known.Zero |= ~LowBits;
1411         Known.One &= LowBits;
1412         break;
1413       }
1414     }
1415 
1416     // Since the result is less than or equal to either operand, any leading
1417     // zero bits in either operand must also exist in the result.
1418     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1419     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1420 
1421     unsigned Leaders =
1422         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1423     Known.resetAll();
1424     Known.Zero.setHighBits(Leaders);
1425     break;
1426   }
1427   case Instruction::Alloca:
1428     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1429     break;
1430   case Instruction::GetElementPtr: {
1431     // Analyze all of the subscripts of this getelementptr instruction
1432     // to determine if we can prove known low zero bits.
1433     KnownBits LocalKnown(BitWidth);
1434     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1435     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1436 
1437     gep_type_iterator GTI = gep_type_begin(I);
1438     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1439       // TrailZ can only become smaller, short-circuit if we hit zero.
1440       if (TrailZ == 0)
1441         break;
1442 
1443       Value *Index = I->getOperand(i);
1444       if (StructType *STy = GTI.getStructTypeOrNull()) {
1445         // Handle struct member offset arithmetic.
1446 
1447         // Handle case when index is vector zeroinitializer
1448         Constant *CIndex = cast<Constant>(Index);
1449         if (CIndex->isZeroValue())
1450           continue;
1451 
1452         if (CIndex->getType()->isVectorTy())
1453           Index = CIndex->getSplatValue();
1454 
1455         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1456         const StructLayout *SL = Q.DL.getStructLayout(STy);
1457         uint64_t Offset = SL->getElementOffset(Idx);
1458         TrailZ = std::min<unsigned>(TrailZ,
1459                                     countTrailingZeros(Offset));
1460       } else {
1461         // Handle array index arithmetic.
1462         Type *IndexedTy = GTI.getIndexedType();
1463         if (!IndexedTy->isSized()) {
1464           TrailZ = 0;
1465           break;
1466         }
1467         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1468         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1469         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1470         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1471         TrailZ = std::min(TrailZ,
1472                           unsigned(countTrailingZeros(TypeSize) +
1473                                    LocalKnown.countMinTrailingZeros()));
1474       }
1475     }
1476 
1477     Known.Zero.setLowBits(TrailZ);
1478     break;
1479   }
1480   case Instruction::PHI: {
1481     const PHINode *P = cast<PHINode>(I);
1482     // Handle the case of a simple two-predecessor recurrence PHI.
1483     // There's a lot more that could theoretically be done here, but
1484     // this is sufficient to catch some interesting cases.
1485     if (P->getNumIncomingValues() == 2) {
1486       for (unsigned i = 0; i != 2; ++i) {
1487         Value *L = P->getIncomingValue(i);
1488         Value *R = P->getIncomingValue(!i);
1489         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1490         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1491         Operator *LU = dyn_cast<Operator>(L);
1492         if (!LU)
1493           continue;
1494         unsigned Opcode = LU->getOpcode();
1495         // Check for operations that have the property that if
1496         // both their operands have low zero bits, the result
1497         // will have low zero bits.
1498         if (Opcode == Instruction::Add ||
1499             Opcode == Instruction::Sub ||
1500             Opcode == Instruction::And ||
1501             Opcode == Instruction::Or ||
1502             Opcode == Instruction::Mul) {
1503           Value *LL = LU->getOperand(0);
1504           Value *LR = LU->getOperand(1);
1505           // Find a recurrence.
1506           if (LL == I)
1507             L = LR;
1508           else if (LR == I)
1509             L = LL;
1510           else
1511             continue; // Check for recurrence with L and R flipped.
1512 
1513           // Change the context instruction to the "edge" that flows into the
1514           // phi. This is important because that is where the value is actually
1515           // "evaluated" even though it is used later somewhere else. (see also
1516           // D69571).
1517           Query RecQ = Q;
1518 
1519           // Ok, we have a PHI of the form L op= R. Check for low
1520           // zero bits.
1521           RecQ.CxtI = RInst;
1522           computeKnownBits(R, Known2, Depth + 1, RecQ);
1523 
1524           // We need to take the minimum number of known bits
1525           KnownBits Known3(BitWidth);
1526           RecQ.CxtI = LInst;
1527           computeKnownBits(L, Known3, Depth + 1, RecQ);
1528 
1529           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1530                                          Known3.countMinTrailingZeros()));
1531 
1532           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1533           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1534             // If initial value of recurrence is nonnegative, and we are adding
1535             // a nonnegative number with nsw, the result can only be nonnegative
1536             // or poison value regardless of the number of times we execute the
1537             // add in phi recurrence. If initial value is negative and we are
1538             // adding a negative number with nsw, the result can only be
1539             // negative or poison value. Similar arguments apply to sub and mul.
1540             //
1541             // (add non-negative, non-negative) --> non-negative
1542             // (add negative, negative) --> negative
1543             if (Opcode == Instruction::Add) {
1544               if (Known2.isNonNegative() && Known3.isNonNegative())
1545                 Known.makeNonNegative();
1546               else if (Known2.isNegative() && Known3.isNegative())
1547                 Known.makeNegative();
1548             }
1549 
1550             // (sub nsw non-negative, negative) --> non-negative
1551             // (sub nsw negative, non-negative) --> negative
1552             else if (Opcode == Instruction::Sub && LL == I) {
1553               if (Known2.isNonNegative() && Known3.isNegative())
1554                 Known.makeNonNegative();
1555               else if (Known2.isNegative() && Known3.isNonNegative())
1556                 Known.makeNegative();
1557             }
1558 
1559             // (mul nsw non-negative, non-negative) --> non-negative
1560             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1561                      Known3.isNonNegative())
1562               Known.makeNonNegative();
1563           }
1564 
1565           break;
1566         }
1567       }
1568     }
1569 
1570     // Unreachable blocks may have zero-operand PHI nodes.
1571     if (P->getNumIncomingValues() == 0)
1572       break;
1573 
1574     // Otherwise take the unions of the known bit sets of the operands,
1575     // taking conservative care to avoid excessive recursion.
1576     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1577       // Skip if every incoming value references to ourself.
1578       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1579         break;
1580 
1581       Known.Zero.setAllBits();
1582       Known.One.setAllBits();
1583       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1584         Value *IncValue = P->getIncomingValue(u);
1585         // Skip direct self references.
1586         if (IncValue == P) continue;
1587 
1588         // Change the context instruction to the "edge" that flows into the
1589         // phi. This is important because that is where the value is actually
1590         // "evaluated" even though it is used later somewhere else. (see also
1591         // D69571).
1592         Query RecQ = Q;
1593         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1594 
1595         Known2 = KnownBits(BitWidth);
1596         // Recurse, but cap the recursion to one level, because we don't
1597         // want to waste time spinning around in loops.
1598         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1599         Known.Zero &= Known2.Zero;
1600         Known.One &= Known2.One;
1601         // If all bits have been ruled out, there's no need to check
1602         // more operands.
1603         if (!Known.Zero && !Known.One)
1604           break;
1605       }
1606     }
1607     break;
1608   }
1609   case Instruction::Call:
1610   case Instruction::Invoke:
1611     // If range metadata is attached to this call, set known bits from that,
1612     // and then intersect with known bits based on other properties of the
1613     // function.
1614     if (MDNode *MD =
1615             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1616       computeKnownBitsFromRangeMetadata(*MD, Known);
1617     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1618       computeKnownBits(RV, Known2, Depth + 1, Q);
1619       Known.Zero |= Known2.Zero;
1620       Known.One |= Known2.One;
1621     }
1622     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1623       switch (II->getIntrinsicID()) {
1624       default: break;
1625       case Intrinsic::abs:
1626         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1627 
1628         // If the source's MSB is zero then we know the rest of the bits.
1629         if (Known2.isNonNegative()) {
1630           Known.Zero |= Known2.Zero;
1631           Known.One |= Known2.One;
1632           break;
1633         }
1634 
1635         // Absolute value preserves trailing zero count.
1636         Known.Zero.setLowBits(Known2.Zero.countTrailingOnes());
1637 
1638         // If this call is undefined for INT_MIN, the result is positive. We
1639         // also know it can't be INT_MIN if there is a set bit that isn't the
1640         // sign bit.
1641         Known2.One.clearSignBit();
1642         if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue())
1643           Known.Zero.setSignBit();
1644         // FIXME: Handle known negative input?
1645         // FIXME: Calculate the negated Known bits and combine them?
1646         break;
1647       case Intrinsic::bitreverse:
1648         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1649         Known.Zero |= Known2.Zero.reverseBits();
1650         Known.One |= Known2.One.reverseBits();
1651         break;
1652       case Intrinsic::bswap:
1653         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1654         Known.Zero |= Known2.Zero.byteSwap();
1655         Known.One |= Known2.One.byteSwap();
1656         break;
1657       case Intrinsic::ctlz: {
1658         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1659         // If we have a known 1, its position is our upper bound.
1660         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1661         // If this call is undefined for 0, the result will be less than 2^n.
1662         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1663           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1664         unsigned LowBits = Log2_32(PossibleLZ)+1;
1665         Known.Zero.setBitsFrom(LowBits);
1666         break;
1667       }
1668       case Intrinsic::cttz: {
1669         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1670         // If we have a known 1, its position is our upper bound.
1671         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1672         // If this call is undefined for 0, the result will be less than 2^n.
1673         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1674           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1675         unsigned LowBits = Log2_32(PossibleTZ)+1;
1676         Known.Zero.setBitsFrom(LowBits);
1677         break;
1678       }
1679       case Intrinsic::ctpop: {
1680         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1681         // We can bound the space the count needs.  Also, bits known to be zero
1682         // can't contribute to the population.
1683         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1684         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1685         Known.Zero.setBitsFrom(LowBits);
1686         // TODO: we could bound KnownOne using the lower bound on the number
1687         // of bits which might be set provided by popcnt KnownOne2.
1688         break;
1689       }
1690       case Intrinsic::fshr:
1691       case Intrinsic::fshl: {
1692         const APInt *SA;
1693         if (!match(I->getOperand(2), m_APInt(SA)))
1694           break;
1695 
1696         // Normalize to funnel shift left.
1697         uint64_t ShiftAmt = SA->urem(BitWidth);
1698         if (II->getIntrinsicID() == Intrinsic::fshr)
1699           ShiftAmt = BitWidth - ShiftAmt;
1700 
1701         KnownBits Known3(BitWidth);
1702         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1703         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1704 
1705         Known.Zero =
1706             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1707         Known.One =
1708             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1709         break;
1710       }
1711       case Intrinsic::uadd_sat:
1712       case Intrinsic::usub_sat: {
1713         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1714         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1715         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1716 
1717         // Add: Leading ones of either operand are preserved.
1718         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1719         // as leading zeros in the result.
1720         unsigned LeadingKnown;
1721         if (IsAdd)
1722           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1723                                   Known2.countMinLeadingOnes());
1724         else
1725           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1726                                   Known2.countMinLeadingOnes());
1727 
1728         Known = KnownBits::computeForAddSub(
1729             IsAdd, /* NSW */ false, Known, Known2);
1730 
1731         // We select between the operation result and all-ones/zero
1732         // respectively, so we can preserve known ones/zeros.
1733         if (IsAdd) {
1734           Known.One.setHighBits(LeadingKnown);
1735           Known.Zero.clearAllBits();
1736         } else {
1737           Known.Zero.setHighBits(LeadingKnown);
1738           Known.One.clearAllBits();
1739         }
1740         break;
1741       }
1742       case Intrinsic::umin:
1743         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1744         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1745         Known = KnownBits::umin(Known, Known2);
1746         break;
1747       case Intrinsic::umax:
1748         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1749         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1750         Known = KnownBits::umax(Known, Known2);
1751         break;
1752       case Intrinsic::smin:
1753         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1754         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1755         Known = KnownBits::smin(Known, Known2);
1756         break;
1757       case Intrinsic::smax:
1758         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1759         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1760         Known = KnownBits::smax(Known, Known2);
1761         break;
1762       case Intrinsic::x86_sse42_crc32_64_64:
1763         Known.Zero.setBitsFrom(32);
1764         break;
1765       }
1766     }
1767     break;
1768   case Instruction::ShuffleVector: {
1769     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1770     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1771     if (!Shuf) {
1772       Known.resetAll();
1773       return;
1774     }
1775     // For undef elements, we don't know anything about the common state of
1776     // the shuffle result.
1777     APInt DemandedLHS, DemandedRHS;
1778     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1779       Known.resetAll();
1780       return;
1781     }
1782     Known.One.setAllBits();
1783     Known.Zero.setAllBits();
1784     if (!!DemandedLHS) {
1785       const Value *LHS = Shuf->getOperand(0);
1786       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1787       // If we don't know any bits, early out.
1788       if (Known.isUnknown())
1789         break;
1790     }
1791     if (!!DemandedRHS) {
1792       const Value *RHS = Shuf->getOperand(1);
1793       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1794       Known.One &= Known2.One;
1795       Known.Zero &= Known2.Zero;
1796     }
1797     break;
1798   }
1799   case Instruction::InsertElement: {
1800     const Value *Vec = I->getOperand(0);
1801     const Value *Elt = I->getOperand(1);
1802     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1803     // Early out if the index is non-constant or out-of-range.
1804     unsigned NumElts = DemandedElts.getBitWidth();
1805     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1806       Known.resetAll();
1807       return;
1808     }
1809     Known.One.setAllBits();
1810     Known.Zero.setAllBits();
1811     unsigned EltIdx = CIdx->getZExtValue();
1812     // Do we demand the inserted element?
1813     if (DemandedElts[EltIdx]) {
1814       computeKnownBits(Elt, Known, Depth + 1, Q);
1815       // If we don't know any bits, early out.
1816       if (Known.isUnknown())
1817         break;
1818     }
1819     // We don't need the base vector element that has been inserted.
1820     APInt DemandedVecElts = DemandedElts;
1821     DemandedVecElts.clearBit(EltIdx);
1822     if (!!DemandedVecElts) {
1823       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1824       Known.One &= Known2.One;
1825       Known.Zero &= Known2.Zero;
1826     }
1827     break;
1828   }
1829   case Instruction::ExtractElement: {
1830     // Look through extract element. If the index is non-constant or
1831     // out-of-range demand all elements, otherwise just the extracted element.
1832     const Value *Vec = I->getOperand(0);
1833     const Value *Idx = I->getOperand(1);
1834     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1835     if (isa<ScalableVectorType>(Vec->getType())) {
1836       // FIXME: there's probably *something* we can do with scalable vectors
1837       Known.resetAll();
1838       break;
1839     }
1840     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1841     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1842     if (CIdx && CIdx->getValue().ult(NumElts))
1843       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1844     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1845     break;
1846   }
1847   case Instruction::ExtractValue:
1848     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1849       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1850       if (EVI->getNumIndices() != 1) break;
1851       if (EVI->getIndices()[0] == 0) {
1852         switch (II->getIntrinsicID()) {
1853         default: break;
1854         case Intrinsic::uadd_with_overflow:
1855         case Intrinsic::sadd_with_overflow:
1856           computeKnownBitsAddSub(true, II->getArgOperand(0),
1857                                  II->getArgOperand(1), false, DemandedElts,
1858                                  Known, Known2, Depth, Q);
1859           break;
1860         case Intrinsic::usub_with_overflow:
1861         case Intrinsic::ssub_with_overflow:
1862           computeKnownBitsAddSub(false, II->getArgOperand(0),
1863                                  II->getArgOperand(1), false, DemandedElts,
1864                                  Known, Known2, Depth, Q);
1865           break;
1866         case Intrinsic::umul_with_overflow:
1867         case Intrinsic::smul_with_overflow:
1868           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1869                               DemandedElts, Known, Known2, Depth, Q);
1870           break;
1871         }
1872       }
1873     }
1874     break;
1875   }
1876 }
1877 
1878 /// Determine which bits of V are known to be either zero or one and return
1879 /// them.
1880 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1881                            unsigned Depth, const Query &Q) {
1882   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1883   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1884   return Known;
1885 }
1886 
1887 /// Determine which bits of V are known to be either zero or one and return
1888 /// them.
1889 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1890   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1891   computeKnownBits(V, Known, Depth, Q);
1892   return Known;
1893 }
1894 
1895 /// Determine which bits of V are known to be either zero or one and return
1896 /// them in the Known bit set.
1897 ///
1898 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1899 /// we cannot optimize based on the assumption that it is zero without changing
1900 /// it to be an explicit zero.  If we don't change it to zero, other code could
1901 /// optimized based on the contradictory assumption that it is non-zero.
1902 /// Because instcombine aggressively folds operations with undef args anyway,
1903 /// this won't lose us code quality.
1904 ///
1905 /// This function is defined on values with integer type, values with pointer
1906 /// type, and vectors of integers.  In the case
1907 /// where V is a vector, known zero, and known one values are the
1908 /// same width as the vector element, and the bit is set only if it is true
1909 /// for all of the demanded elements in the vector specified by DemandedElts.
1910 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1911                       KnownBits &Known, unsigned Depth, const Query &Q) {
1912   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1913     // No demanded elts or V is a scalable vector, better to assume we don't
1914     // know anything.
1915     Known.resetAll();
1916     return;
1917   }
1918 
1919   assert(V && "No Value?");
1920   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1921 
1922 #ifndef NDEBUG
1923   Type *Ty = V->getType();
1924   unsigned BitWidth = Known.getBitWidth();
1925 
1926   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1927          "Not integer or pointer type!");
1928 
1929   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1930     assert(
1931         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1932         "DemandedElt width should equal the fixed vector number of elements");
1933   } else {
1934     assert(DemandedElts == APInt(1, 1) &&
1935            "DemandedElt width should be 1 for scalars");
1936   }
1937 
1938   Type *ScalarTy = Ty->getScalarType();
1939   if (ScalarTy->isPointerTy()) {
1940     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1941            "V and Known should have same BitWidth");
1942   } else {
1943     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1944            "V and Known should have same BitWidth");
1945   }
1946 #endif
1947 
1948   const APInt *C;
1949   if (match(V, m_APInt(C))) {
1950     // We know all of the bits for a scalar constant or a splat vector constant!
1951     Known.One = *C;
1952     Known.Zero = ~Known.One;
1953     return;
1954   }
1955   // Null and aggregate-zero are all-zeros.
1956   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1957     Known.setAllZero();
1958     return;
1959   }
1960   // Handle a constant vector by taking the intersection of the known bits of
1961   // each element.
1962   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1963     // We know that CDV must be a vector of integers. Take the intersection of
1964     // each element.
1965     Known.Zero.setAllBits(); Known.One.setAllBits();
1966     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1967       if (!DemandedElts[i])
1968         continue;
1969       APInt Elt = CDV->getElementAsAPInt(i);
1970       Known.Zero &= ~Elt;
1971       Known.One &= Elt;
1972     }
1973     return;
1974   }
1975 
1976   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1977     // We know that CV must be a vector of integers. Take the intersection of
1978     // each element.
1979     Known.Zero.setAllBits(); Known.One.setAllBits();
1980     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1981       if (!DemandedElts[i])
1982         continue;
1983       Constant *Element = CV->getAggregateElement(i);
1984       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1985       if (!ElementCI) {
1986         Known.resetAll();
1987         return;
1988       }
1989       const APInt &Elt = ElementCI->getValue();
1990       Known.Zero &= ~Elt;
1991       Known.One &= Elt;
1992     }
1993     return;
1994   }
1995 
1996   // Start out not knowing anything.
1997   Known.resetAll();
1998 
1999   // We can't imply anything about undefs.
2000   if (isa<UndefValue>(V))
2001     return;
2002 
2003   // There's no point in looking through other users of ConstantData for
2004   // assumptions.  Confirm that we've handled them all.
2005   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2006 
2007   // All recursive calls that increase depth must come after this.
2008   if (Depth == MaxAnalysisRecursionDepth)
2009     return;
2010 
2011   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2012   // the bits of its aliasee.
2013   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2014     if (!GA->isInterposable())
2015       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2016     return;
2017   }
2018 
2019   if (const Operator *I = dyn_cast<Operator>(V))
2020     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2021 
2022   // Aligned pointers have trailing zeros - refine Known.Zero set
2023   if (isa<PointerType>(V->getType())) {
2024     Align Alignment = V->getPointerAlignment(Q.DL);
2025     Known.Zero.setLowBits(countTrailingZeros(Alignment.value()));
2026   }
2027 
2028   // computeKnownBitsFromAssume strictly refines Known.
2029   // Therefore, we run them after computeKnownBitsFromOperator.
2030 
2031   // Check whether a nearby assume intrinsic can determine some known bits.
2032   computeKnownBitsFromAssume(V, Known, Depth, Q);
2033 
2034   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2035 }
2036 
2037 /// Return true if the given value is known to have exactly one
2038 /// bit set when defined. For vectors return true if every element is known to
2039 /// be a power of two when defined. Supports values with integer or pointer
2040 /// types and vectors of integers.
2041 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2042                             const Query &Q) {
2043   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2044 
2045   // Attempt to match against constants.
2046   if (OrZero && match(V, m_Power2OrZero()))
2047       return true;
2048   if (match(V, m_Power2()))
2049       return true;
2050 
2051   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2052   // it is shifted off the end then the result is undefined.
2053   if (match(V, m_Shl(m_One(), m_Value())))
2054     return true;
2055 
2056   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2057   // the bottom.  If it is shifted off the bottom then the result is undefined.
2058   if (match(V, m_LShr(m_SignMask(), m_Value())))
2059     return true;
2060 
2061   // The remaining tests are all recursive, so bail out if we hit the limit.
2062   if (Depth++ == MaxAnalysisRecursionDepth)
2063     return false;
2064 
2065   Value *X = nullptr, *Y = nullptr;
2066   // A shift left or a logical shift right of a power of two is a power of two
2067   // or zero.
2068   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2069                  match(V, m_LShr(m_Value(X), m_Value()))))
2070     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2071 
2072   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2073     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2074 
2075   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2076     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2077            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2078 
2079   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2080     // A power of two and'd with anything is a power of two or zero.
2081     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2082         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2083       return true;
2084     // X & (-X) is always a power of two or zero.
2085     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2086       return true;
2087     return false;
2088   }
2089 
2090   // Adding a power-of-two or zero to the same power-of-two or zero yields
2091   // either the original power-of-two, a larger power-of-two or zero.
2092   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2093     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2094     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2095         Q.IIQ.hasNoSignedWrap(VOBO)) {
2096       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2097           match(X, m_And(m_Value(), m_Specific(Y))))
2098         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2099           return true;
2100       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2101           match(Y, m_And(m_Value(), m_Specific(X))))
2102         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2103           return true;
2104 
2105       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2106       KnownBits LHSBits(BitWidth);
2107       computeKnownBits(X, LHSBits, Depth, Q);
2108 
2109       KnownBits RHSBits(BitWidth);
2110       computeKnownBits(Y, RHSBits, Depth, Q);
2111       // If i8 V is a power of two or zero:
2112       //  ZeroBits: 1 1 1 0 1 1 1 1
2113       // ~ZeroBits: 0 0 0 1 0 0 0 0
2114       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2115         // If OrZero isn't set, we cannot give back a zero result.
2116         // Make sure either the LHS or RHS has a bit set.
2117         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2118           return true;
2119     }
2120   }
2121 
2122   // An exact divide or right shift can only shift off zero bits, so the result
2123   // is a power of two only if the first operand is a power of two and not
2124   // copying a sign bit (sdiv int_min, 2).
2125   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2126       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2127     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2128                                   Depth, Q);
2129   }
2130 
2131   return false;
2132 }
2133 
2134 /// Test whether a GEP's result is known to be non-null.
2135 ///
2136 /// Uses properties inherent in a GEP to try to determine whether it is known
2137 /// to be non-null.
2138 ///
2139 /// Currently this routine does not support vector GEPs.
2140 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2141                               const Query &Q) {
2142   const Function *F = nullptr;
2143   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2144     F = I->getFunction();
2145 
2146   if (!GEP->isInBounds() ||
2147       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2148     return false;
2149 
2150   // FIXME: Support vector-GEPs.
2151   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2152 
2153   // If the base pointer is non-null, we cannot walk to a null address with an
2154   // inbounds GEP in address space zero.
2155   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2156     return true;
2157 
2158   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2159   // If so, then the GEP cannot produce a null pointer, as doing so would
2160   // inherently violate the inbounds contract within address space zero.
2161   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2162        GTI != GTE; ++GTI) {
2163     // Struct types are easy -- they must always be indexed by a constant.
2164     if (StructType *STy = GTI.getStructTypeOrNull()) {
2165       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2166       unsigned ElementIdx = OpC->getZExtValue();
2167       const StructLayout *SL = Q.DL.getStructLayout(STy);
2168       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2169       if (ElementOffset > 0)
2170         return true;
2171       continue;
2172     }
2173 
2174     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2175     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2176       continue;
2177 
2178     // Fast path the constant operand case both for efficiency and so we don't
2179     // increment Depth when just zipping down an all-constant GEP.
2180     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2181       if (!OpC->isZero())
2182         return true;
2183       continue;
2184     }
2185 
2186     // We post-increment Depth here because while isKnownNonZero increments it
2187     // as well, when we pop back up that increment won't persist. We don't want
2188     // to recurse 10k times just because we have 10k GEP operands. We don't
2189     // bail completely out because we want to handle constant GEPs regardless
2190     // of depth.
2191     if (Depth++ >= MaxAnalysisRecursionDepth)
2192       continue;
2193 
2194     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2195       return true;
2196   }
2197 
2198   return false;
2199 }
2200 
2201 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2202                                                   const Instruction *CtxI,
2203                                                   const DominatorTree *DT) {
2204   if (isa<Constant>(V))
2205     return false;
2206 
2207   if (!CtxI || !DT)
2208     return false;
2209 
2210   unsigned NumUsesExplored = 0;
2211   for (auto *U : V->users()) {
2212     // Avoid massive lists
2213     if (NumUsesExplored >= DomConditionsMaxUses)
2214       break;
2215     NumUsesExplored++;
2216 
2217     // If the value is used as an argument to a call or invoke, then argument
2218     // attributes may provide an answer about null-ness.
2219     if (const auto *CB = dyn_cast<CallBase>(U))
2220       if (auto *CalledFunc = CB->getCalledFunction())
2221         for (const Argument &Arg : CalledFunc->args())
2222           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2223               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2224             return true;
2225 
2226     // If the value is used as a load/store, then the pointer must be non null.
2227     if (V == getLoadStorePointerOperand(U)) {
2228       const Instruction *I = cast<Instruction>(U);
2229       if (!NullPointerIsDefined(I->getFunction(),
2230                                 V->getType()->getPointerAddressSpace()) &&
2231           DT->dominates(I, CtxI))
2232         return true;
2233     }
2234 
2235     // Consider only compare instructions uniquely controlling a branch
2236     CmpInst::Predicate Pred;
2237     if (!match(const_cast<User *>(U),
2238                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2239         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2240       continue;
2241 
2242     SmallVector<const User *, 4> WorkList;
2243     SmallPtrSet<const User *, 4> Visited;
2244     for (auto *CmpU : U->users()) {
2245       assert(WorkList.empty() && "Should be!");
2246       if (Visited.insert(CmpU).second)
2247         WorkList.push_back(CmpU);
2248 
2249       while (!WorkList.empty()) {
2250         auto *Curr = WorkList.pop_back_val();
2251 
2252         // If a user is an AND, add all its users to the work list. We only
2253         // propagate "pred != null" condition through AND because it is only
2254         // correct to assume that all conditions of AND are met in true branch.
2255         // TODO: Support similar logic of OR and EQ predicate?
2256         if (Pred == ICmpInst::ICMP_NE)
2257           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2258             if (BO->getOpcode() == Instruction::And) {
2259               for (auto *BOU : BO->users())
2260                 if (Visited.insert(BOU).second)
2261                   WorkList.push_back(BOU);
2262               continue;
2263             }
2264 
2265         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2266           assert(BI->isConditional() && "uses a comparison!");
2267 
2268           BasicBlock *NonNullSuccessor =
2269               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2270           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2271           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2272             return true;
2273         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2274                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2275           return true;
2276         }
2277       }
2278     }
2279   }
2280 
2281   return false;
2282 }
2283 
2284 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2285 /// ensure that the value it's attached to is never Value?  'RangeType' is
2286 /// is the type of the value described by the range.
2287 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2288   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2289   assert(NumRanges >= 1);
2290   for (unsigned i = 0; i < NumRanges; ++i) {
2291     ConstantInt *Lower =
2292         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2293     ConstantInt *Upper =
2294         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2295     ConstantRange Range(Lower->getValue(), Upper->getValue());
2296     if (Range.contains(Value))
2297       return false;
2298   }
2299   return true;
2300 }
2301 
2302 /// Return true if the given value is known to be non-zero when defined. For
2303 /// vectors, return true if every demanded element is known to be non-zero when
2304 /// defined. For pointers, if the context instruction and dominator tree are
2305 /// specified, perform context-sensitive analysis and return true if the
2306 /// pointer couldn't possibly be null at the specified instruction.
2307 /// Supports values with integer or pointer type and vectors of integers.
2308 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2309                     const Query &Q) {
2310   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2311   // vector
2312   if (isa<ScalableVectorType>(V->getType()))
2313     return false;
2314 
2315   if (auto *C = dyn_cast<Constant>(V)) {
2316     if (C->isNullValue())
2317       return false;
2318     if (isa<ConstantInt>(C))
2319       // Must be non-zero due to null test above.
2320       return true;
2321 
2322     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2323       // See the comment for IntToPtr/PtrToInt instructions below.
2324       if (CE->getOpcode() == Instruction::IntToPtr ||
2325           CE->getOpcode() == Instruction::PtrToInt)
2326         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2327             Q.DL.getTypeSizeInBits(CE->getType()))
2328           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2329     }
2330 
2331     // For constant vectors, check that all elements are undefined or known
2332     // non-zero to determine that the whole vector is known non-zero.
2333     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2334       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2335         if (!DemandedElts[i])
2336           continue;
2337         Constant *Elt = C->getAggregateElement(i);
2338         if (!Elt || Elt->isNullValue())
2339           return false;
2340         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2341           return false;
2342       }
2343       return true;
2344     }
2345 
2346     // A global variable in address space 0 is non null unless extern weak
2347     // or an absolute symbol reference. Other address spaces may have null as a
2348     // valid address for a global, so we can't assume anything.
2349     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2350       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2351           GV->getType()->getAddressSpace() == 0)
2352         return true;
2353     } else
2354       return false;
2355   }
2356 
2357   if (auto *I = dyn_cast<Instruction>(V)) {
2358     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2359       // If the possible ranges don't contain zero, then the value is
2360       // definitely non-zero.
2361       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2362         const APInt ZeroValue(Ty->getBitWidth(), 0);
2363         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2364           return true;
2365       }
2366     }
2367   }
2368 
2369   if (isKnownNonZeroFromAssume(V, Q))
2370     return true;
2371 
2372   // Some of the tests below are recursive, so bail out if we hit the limit.
2373   if (Depth++ >= MaxAnalysisRecursionDepth)
2374     return false;
2375 
2376   // Check for pointer simplifications.
2377 
2378   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2379     // Alloca never returns null, malloc might.
2380     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2381       return true;
2382 
2383     // A byval, inalloca may not be null in a non-default addres space. A
2384     // nonnull argument is assumed never 0.
2385     if (const Argument *A = dyn_cast<Argument>(V)) {
2386       if (((A->hasPassPointeeByValueCopyAttr() &&
2387             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2388            A->hasNonNullAttr()))
2389         return true;
2390     }
2391 
2392     // A Load tagged with nonnull metadata is never null.
2393     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2394       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2395         return true;
2396 
2397     if (const auto *Call = dyn_cast<CallBase>(V)) {
2398       if (Call->isReturnNonNull())
2399         return true;
2400       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2401         return isKnownNonZero(RP, Depth, Q);
2402     }
2403   }
2404 
2405   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2406     return true;
2407 
2408   // Check for recursive pointer simplifications.
2409   if (V->getType()->isPointerTy()) {
2410     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2411     // do not alter the value, or at least not the nullness property of the
2412     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2413     //
2414     // Note that we have to take special care to avoid looking through
2415     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2416     // as casts that can alter the value, e.g., AddrSpaceCasts.
2417     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2418       return isGEPKnownNonNull(GEP, Depth, Q);
2419 
2420     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2421       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2422 
2423     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2424       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2425           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2426         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2427   }
2428 
2429   // Similar to int2ptr above, we can look through ptr2int here if the cast
2430   // is a no-op or an extend and not a truncate.
2431   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2432     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2433         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2434       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2435 
2436   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2437 
2438   // X | Y != 0 if X != 0 or Y != 0.
2439   Value *X = nullptr, *Y = nullptr;
2440   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2441     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2442            isKnownNonZero(Y, DemandedElts, Depth, Q);
2443 
2444   // ext X != 0 if X != 0.
2445   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2446     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2447 
2448   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2449   // if the lowest bit is shifted off the end.
2450   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2451     // shl nuw can't remove any non-zero bits.
2452     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2453     if (Q.IIQ.hasNoUnsignedWrap(BO))
2454       return isKnownNonZero(X, Depth, Q);
2455 
2456     KnownBits Known(BitWidth);
2457     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2458     if (Known.One[0])
2459       return true;
2460   }
2461   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2462   // defined if the sign bit is shifted off the end.
2463   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2464     // shr exact can only shift out zero bits.
2465     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2466     if (BO->isExact())
2467       return isKnownNonZero(X, Depth, Q);
2468 
2469     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2470     if (Known.isNegative())
2471       return true;
2472 
2473     // If the shifter operand is a constant, and all of the bits shifted
2474     // out are known to be zero, and X is known non-zero then at least one
2475     // non-zero bit must remain.
2476     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2477       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2478       // Is there a known one in the portion not shifted out?
2479       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2480         return true;
2481       // Are all the bits to be shifted out known zero?
2482       if (Known.countMinTrailingZeros() >= ShiftVal)
2483         return isKnownNonZero(X, DemandedElts, Depth, Q);
2484     }
2485   }
2486   // div exact can only produce a zero if the dividend is zero.
2487   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2488     return isKnownNonZero(X, DemandedElts, Depth, Q);
2489   }
2490   // X + Y.
2491   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2492     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2493     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2494 
2495     // If X and Y are both non-negative (as signed values) then their sum is not
2496     // zero unless both X and Y are zero.
2497     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2498       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2499           isKnownNonZero(Y, DemandedElts, Depth, Q))
2500         return true;
2501 
2502     // If X and Y are both negative (as signed values) then their sum is not
2503     // zero unless both X and Y equal INT_MIN.
2504     if (XKnown.isNegative() && YKnown.isNegative()) {
2505       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2506       // The sign bit of X is set.  If some other bit is set then X is not equal
2507       // to INT_MIN.
2508       if (XKnown.One.intersects(Mask))
2509         return true;
2510       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2511       // to INT_MIN.
2512       if (YKnown.One.intersects(Mask))
2513         return true;
2514     }
2515 
2516     // The sum of a non-negative number and a power of two is not zero.
2517     if (XKnown.isNonNegative() &&
2518         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2519       return true;
2520     if (YKnown.isNonNegative() &&
2521         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2522       return true;
2523   }
2524   // X * Y.
2525   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2526     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2527     // If X and Y are non-zero then so is X * Y as long as the multiplication
2528     // does not overflow.
2529     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2530         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2531         isKnownNonZero(Y, DemandedElts, Depth, Q))
2532       return true;
2533   }
2534   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2535   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2536     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2537         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2538       return true;
2539   }
2540   // PHI
2541   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2542     // Try and detect a recurrence that monotonically increases from a
2543     // starting value, as these are common as induction variables.
2544     if (PN->getNumIncomingValues() == 2) {
2545       Value *Start = PN->getIncomingValue(0);
2546       Value *Induction = PN->getIncomingValue(1);
2547       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2548         std::swap(Start, Induction);
2549       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2550         if (!C->isZero() && !C->isNegative()) {
2551           ConstantInt *X;
2552           if (Q.IIQ.UseInstrInfo &&
2553               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2554                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2555               !X->isNegative())
2556             return true;
2557         }
2558       }
2559     }
2560     // Check if all incoming values are non-zero constant.
2561     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2562       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2563     });
2564     if (AllNonZeroConstants)
2565       return true;
2566   }
2567   // ExtractElement
2568   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2569     const Value *Vec = EEI->getVectorOperand();
2570     const Value *Idx = EEI->getIndexOperand();
2571     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2572     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2573       unsigned NumElts = VecTy->getNumElements();
2574       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2575       if (CIdx && CIdx->getValue().ult(NumElts))
2576         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2577       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2578     }
2579   }
2580 
2581   KnownBits Known(BitWidth);
2582   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2583   return Known.One != 0;
2584 }
2585 
2586 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2587   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2588   // vector
2589   if (isa<ScalableVectorType>(V->getType()))
2590     return false;
2591 
2592   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2593   APInt DemandedElts =
2594       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2595   return isKnownNonZero(V, DemandedElts, Depth, Q);
2596 }
2597 
2598 /// Return true if V2 == V1 + X, where X is known non-zero.
2599 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2600   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2601   if (!BO || BO->getOpcode() != Instruction::Add)
2602     return false;
2603   Value *Op = nullptr;
2604   if (V2 == BO->getOperand(0))
2605     Op = BO->getOperand(1);
2606   else if (V2 == BO->getOperand(1))
2607     Op = BO->getOperand(0);
2608   else
2609     return false;
2610   return isKnownNonZero(Op, 0, Q);
2611 }
2612 
2613 /// Return true if it is known that V1 != V2.
2614 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2615   if (V1 == V2)
2616     return false;
2617   if (V1->getType() != V2->getType())
2618     // We can't look through casts yet.
2619     return false;
2620   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2621     return true;
2622 
2623   if (V1->getType()->isIntOrIntVectorTy()) {
2624     // Are any known bits in V1 contradictory to known bits in V2? If V1
2625     // has a known zero where V2 has a known one, they must not be equal.
2626     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2627     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2628 
2629     if (Known1.Zero.intersects(Known2.One) ||
2630         Known2.Zero.intersects(Known1.One))
2631       return true;
2632   }
2633   return false;
2634 }
2635 
2636 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2637 /// simplify operations downstream. Mask is known to be zero for bits that V
2638 /// cannot have.
2639 ///
2640 /// This function is defined on values with integer type, values with pointer
2641 /// type, and vectors of integers.  In the case
2642 /// where V is a vector, the mask, known zero, and known one values are the
2643 /// same width as the vector element, and the bit is set only if it is true
2644 /// for all of the elements in the vector.
2645 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2646                        const Query &Q) {
2647   KnownBits Known(Mask.getBitWidth());
2648   computeKnownBits(V, Known, Depth, Q);
2649   return Mask.isSubsetOf(Known.Zero);
2650 }
2651 
2652 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2653 // Returns the input and lower/upper bounds.
2654 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2655                                 const APInt *&CLow, const APInt *&CHigh) {
2656   assert(isa<Operator>(Select) &&
2657          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2658          "Input should be a Select!");
2659 
2660   const Value *LHS = nullptr, *RHS = nullptr;
2661   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2662   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2663     return false;
2664 
2665   if (!match(RHS, m_APInt(CLow)))
2666     return false;
2667 
2668   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2669   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2670   if (getInverseMinMaxFlavor(SPF) != SPF2)
2671     return false;
2672 
2673   if (!match(RHS2, m_APInt(CHigh)))
2674     return false;
2675 
2676   if (SPF == SPF_SMIN)
2677     std::swap(CLow, CHigh);
2678 
2679   In = LHS2;
2680   return CLow->sle(*CHigh);
2681 }
2682 
2683 /// For vector constants, loop over the elements and find the constant with the
2684 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2685 /// or if any element was not analyzed; otherwise, return the count for the
2686 /// element with the minimum number of sign bits.
2687 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2688                                                  const APInt &DemandedElts,
2689                                                  unsigned TyBits) {
2690   const auto *CV = dyn_cast<Constant>(V);
2691   if (!CV || !isa<FixedVectorType>(CV->getType()))
2692     return 0;
2693 
2694   unsigned MinSignBits = TyBits;
2695   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2696   for (unsigned i = 0; i != NumElts; ++i) {
2697     if (!DemandedElts[i])
2698       continue;
2699     // If we find a non-ConstantInt, bail out.
2700     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2701     if (!Elt)
2702       return 0;
2703 
2704     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2705   }
2706 
2707   return MinSignBits;
2708 }
2709 
2710 static unsigned ComputeNumSignBitsImpl(const Value *V,
2711                                        const APInt &DemandedElts,
2712                                        unsigned Depth, const Query &Q);
2713 
2714 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2715                                    unsigned Depth, const Query &Q) {
2716   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2717   assert(Result > 0 && "At least one sign bit needs to be present!");
2718   return Result;
2719 }
2720 
2721 /// Return the number of times the sign bit of the register is replicated into
2722 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2723 /// (itself), but other cases can give us information. For example, immediately
2724 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2725 /// other, so we return 3. For vectors, return the number of sign bits for the
2726 /// vector element with the minimum number of known sign bits of the demanded
2727 /// elements in the vector specified by DemandedElts.
2728 static unsigned ComputeNumSignBitsImpl(const Value *V,
2729                                        const APInt &DemandedElts,
2730                                        unsigned Depth, const Query &Q) {
2731   Type *Ty = V->getType();
2732 
2733   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2734   // vector
2735   if (isa<ScalableVectorType>(Ty))
2736     return 1;
2737 
2738 #ifndef NDEBUG
2739   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2740 
2741   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2742     assert(
2743         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2744         "DemandedElt width should equal the fixed vector number of elements");
2745   } else {
2746     assert(DemandedElts == APInt(1, 1) &&
2747            "DemandedElt width should be 1 for scalars");
2748   }
2749 #endif
2750 
2751   // We return the minimum number of sign bits that are guaranteed to be present
2752   // in V, so for undef we have to conservatively return 1.  We don't have the
2753   // same behavior for poison though -- that's a FIXME today.
2754 
2755   Type *ScalarTy = Ty->getScalarType();
2756   unsigned TyBits = ScalarTy->isPointerTy() ?
2757     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2758     Q.DL.getTypeSizeInBits(ScalarTy);
2759 
2760   unsigned Tmp, Tmp2;
2761   unsigned FirstAnswer = 1;
2762 
2763   // Note that ConstantInt is handled by the general computeKnownBits case
2764   // below.
2765 
2766   if (Depth == MaxAnalysisRecursionDepth)
2767     return 1;
2768 
2769   if (auto *U = dyn_cast<Operator>(V)) {
2770     switch (Operator::getOpcode(V)) {
2771     default: break;
2772     case Instruction::SExt:
2773       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2774       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2775 
2776     case Instruction::SDiv: {
2777       const APInt *Denominator;
2778       // sdiv X, C -> adds log(C) sign bits.
2779       if (match(U->getOperand(1), m_APInt(Denominator))) {
2780 
2781         // Ignore non-positive denominator.
2782         if (!Denominator->isStrictlyPositive())
2783           break;
2784 
2785         // Calculate the incoming numerator bits.
2786         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2787 
2788         // Add floor(log(C)) bits to the numerator bits.
2789         return std::min(TyBits, NumBits + Denominator->logBase2());
2790       }
2791       break;
2792     }
2793 
2794     case Instruction::SRem: {
2795       const APInt *Denominator;
2796       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2797       // positive constant.  This let us put a lower bound on the number of sign
2798       // bits.
2799       if (match(U->getOperand(1), m_APInt(Denominator))) {
2800 
2801         // Ignore non-positive denominator.
2802         if (!Denominator->isStrictlyPositive())
2803           break;
2804 
2805         // Calculate the incoming numerator bits. SRem by a positive constant
2806         // can't lower the number of sign bits.
2807         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2808 
2809         // Calculate the leading sign bit constraints by examining the
2810         // denominator.  Given that the denominator is positive, there are two
2811         // cases:
2812         //
2813         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2814         //     (1 << ceilLogBase2(C)).
2815         //
2816         //  2. the numerator is negative. Then the result range is (-C,0] and
2817         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2818         //
2819         // Thus a lower bound on the number of sign bits is `TyBits -
2820         // ceilLogBase2(C)`.
2821 
2822         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2823         return std::max(NumrBits, ResBits);
2824       }
2825       break;
2826     }
2827 
2828     case Instruction::AShr: {
2829       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2830       // ashr X, C   -> adds C sign bits.  Vectors too.
2831       const APInt *ShAmt;
2832       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2833         if (ShAmt->uge(TyBits))
2834           break; // Bad shift.
2835         unsigned ShAmtLimited = ShAmt->getZExtValue();
2836         Tmp += ShAmtLimited;
2837         if (Tmp > TyBits) Tmp = TyBits;
2838       }
2839       return Tmp;
2840     }
2841     case Instruction::Shl: {
2842       const APInt *ShAmt;
2843       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2844         // shl destroys sign bits.
2845         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2846         if (ShAmt->uge(TyBits) ||   // Bad shift.
2847             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2848         Tmp2 = ShAmt->getZExtValue();
2849         return Tmp - Tmp2;
2850       }
2851       break;
2852     }
2853     case Instruction::And:
2854     case Instruction::Or:
2855     case Instruction::Xor: // NOT is handled here.
2856       // Logical binary ops preserve the number of sign bits at the worst.
2857       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2858       if (Tmp != 1) {
2859         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2860         FirstAnswer = std::min(Tmp, Tmp2);
2861         // We computed what we know about the sign bits as our first
2862         // answer. Now proceed to the generic code that uses
2863         // computeKnownBits, and pick whichever answer is better.
2864       }
2865       break;
2866 
2867     case Instruction::Select: {
2868       // If we have a clamp pattern, we know that the number of sign bits will
2869       // be the minimum of the clamp min/max range.
2870       const Value *X;
2871       const APInt *CLow, *CHigh;
2872       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2873         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2874 
2875       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2876       if (Tmp == 1) break;
2877       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2878       return std::min(Tmp, Tmp2);
2879     }
2880 
2881     case Instruction::Add:
2882       // Add can have at most one carry bit.  Thus we know that the output
2883       // is, at worst, one more bit than the inputs.
2884       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2885       if (Tmp == 1) break;
2886 
2887       // Special case decrementing a value (ADD X, -1):
2888       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2889         if (CRHS->isAllOnesValue()) {
2890           KnownBits Known(TyBits);
2891           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2892 
2893           // If the input is known to be 0 or 1, the output is 0/-1, which is
2894           // all sign bits set.
2895           if ((Known.Zero | 1).isAllOnesValue())
2896             return TyBits;
2897 
2898           // If we are subtracting one from a positive number, there is no carry
2899           // out of the result.
2900           if (Known.isNonNegative())
2901             return Tmp;
2902         }
2903 
2904       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2905       if (Tmp2 == 1) break;
2906       return std::min(Tmp, Tmp2) - 1;
2907 
2908     case Instruction::Sub:
2909       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2910       if (Tmp2 == 1) break;
2911 
2912       // Handle NEG.
2913       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2914         if (CLHS->isNullValue()) {
2915           KnownBits Known(TyBits);
2916           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2917           // If the input is known to be 0 or 1, the output is 0/-1, which is
2918           // all sign bits set.
2919           if ((Known.Zero | 1).isAllOnesValue())
2920             return TyBits;
2921 
2922           // If the input is known to be positive (the sign bit is known clear),
2923           // the output of the NEG has the same number of sign bits as the
2924           // input.
2925           if (Known.isNonNegative())
2926             return Tmp2;
2927 
2928           // Otherwise, we treat this like a SUB.
2929         }
2930 
2931       // Sub can have at most one carry bit.  Thus we know that the output
2932       // is, at worst, one more bit than the inputs.
2933       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2934       if (Tmp == 1) break;
2935       return std::min(Tmp, Tmp2) - 1;
2936 
2937     case Instruction::Mul: {
2938       // The output of the Mul can be at most twice the valid bits in the
2939       // inputs.
2940       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2941       if (SignBitsOp0 == 1) break;
2942       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2943       if (SignBitsOp1 == 1) break;
2944       unsigned OutValidBits =
2945           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2946       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2947     }
2948 
2949     case Instruction::PHI: {
2950       const PHINode *PN = cast<PHINode>(U);
2951       unsigned NumIncomingValues = PN->getNumIncomingValues();
2952       // Don't analyze large in-degree PHIs.
2953       if (NumIncomingValues > 4) break;
2954       // Unreachable blocks may have zero-operand PHI nodes.
2955       if (NumIncomingValues == 0) break;
2956 
2957       // Take the minimum of all incoming values.  This can't infinitely loop
2958       // because of our depth threshold.
2959       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2960       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2961         if (Tmp == 1) return Tmp;
2962         Tmp = std::min(
2963             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2964       }
2965       return Tmp;
2966     }
2967 
2968     case Instruction::Trunc:
2969       // FIXME: it's tricky to do anything useful for this, but it is an
2970       // important case for targets like X86.
2971       break;
2972 
2973     case Instruction::ExtractElement:
2974       // Look through extract element. At the moment we keep this simple and
2975       // skip tracking the specific element. But at least we might find
2976       // information valid for all elements of the vector (for example if vector
2977       // is sign extended, shifted, etc).
2978       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2979 
2980     case Instruction::ShuffleVector: {
2981       // Collect the minimum number of sign bits that are shared by every vector
2982       // element referenced by the shuffle.
2983       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2984       if (!Shuf) {
2985         // FIXME: Add support for shufflevector constant expressions.
2986         return 1;
2987       }
2988       APInt DemandedLHS, DemandedRHS;
2989       // For undef elements, we don't know anything about the common state of
2990       // the shuffle result.
2991       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
2992         return 1;
2993       Tmp = std::numeric_limits<unsigned>::max();
2994       if (!!DemandedLHS) {
2995         const Value *LHS = Shuf->getOperand(0);
2996         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
2997       }
2998       // If we don't know anything, early out and try computeKnownBits
2999       // fall-back.
3000       if (Tmp == 1)
3001         break;
3002       if (!!DemandedRHS) {
3003         const Value *RHS = Shuf->getOperand(1);
3004         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3005         Tmp = std::min(Tmp, Tmp2);
3006       }
3007       // If we don't know anything, early out and try computeKnownBits
3008       // fall-back.
3009       if (Tmp == 1)
3010         break;
3011       assert(Tmp <= Ty->getScalarSizeInBits() &&
3012              "Failed to determine minimum sign bits");
3013       return Tmp;
3014     }
3015     case Instruction::Call: {
3016       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3017         switch (II->getIntrinsicID()) {
3018         default: break;
3019         case Intrinsic::abs:
3020           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3021           if (Tmp == 1) break;
3022 
3023           // Absolute value reduces number of sign bits by at most 1.
3024           return Tmp - 1;
3025         }
3026       }
3027     }
3028     }
3029   }
3030 
3031   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3032   // use this information.
3033 
3034   // If we can examine all elements of a vector constant successfully, we're
3035   // done (we can't do any better than that). If not, keep trying.
3036   if (unsigned VecSignBits =
3037           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3038     return VecSignBits;
3039 
3040   KnownBits Known(TyBits);
3041   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3042 
3043   // If we know that the sign bit is either zero or one, determine the number of
3044   // identical bits in the top of the input value.
3045   return std::max(FirstAnswer, Known.countMinSignBits());
3046 }
3047 
3048 /// This function computes the integer multiple of Base that equals V.
3049 /// If successful, it returns true and returns the multiple in
3050 /// Multiple. If unsuccessful, it returns false. It looks
3051 /// through SExt instructions only if LookThroughSExt is true.
3052 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3053                            bool LookThroughSExt, unsigned Depth) {
3054   assert(V && "No Value?");
3055   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3056   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3057 
3058   Type *T = V->getType();
3059 
3060   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3061 
3062   if (Base == 0)
3063     return false;
3064 
3065   if (Base == 1) {
3066     Multiple = V;
3067     return true;
3068   }
3069 
3070   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3071   Constant *BaseVal = ConstantInt::get(T, Base);
3072   if (CO && CO == BaseVal) {
3073     // Multiple is 1.
3074     Multiple = ConstantInt::get(T, 1);
3075     return true;
3076   }
3077 
3078   if (CI && CI->getZExtValue() % Base == 0) {
3079     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3080     return true;
3081   }
3082 
3083   if (Depth == MaxAnalysisRecursionDepth) return false;
3084 
3085   Operator *I = dyn_cast<Operator>(V);
3086   if (!I) return false;
3087 
3088   switch (I->getOpcode()) {
3089   default: break;
3090   case Instruction::SExt:
3091     if (!LookThroughSExt) return false;
3092     // otherwise fall through to ZExt
3093     LLVM_FALLTHROUGH;
3094   case Instruction::ZExt:
3095     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3096                            LookThroughSExt, Depth+1);
3097   case Instruction::Shl:
3098   case Instruction::Mul: {
3099     Value *Op0 = I->getOperand(0);
3100     Value *Op1 = I->getOperand(1);
3101 
3102     if (I->getOpcode() == Instruction::Shl) {
3103       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3104       if (!Op1CI) return false;
3105       // Turn Op0 << Op1 into Op0 * 2^Op1
3106       APInt Op1Int = Op1CI->getValue();
3107       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3108       APInt API(Op1Int.getBitWidth(), 0);
3109       API.setBit(BitToSet);
3110       Op1 = ConstantInt::get(V->getContext(), API);
3111     }
3112 
3113     Value *Mul0 = nullptr;
3114     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3115       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3116         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3117           if (Op1C->getType()->getPrimitiveSizeInBits() <
3118               MulC->getType()->getPrimitiveSizeInBits())
3119             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3120           if (Op1C->getType()->getPrimitiveSizeInBits() >
3121               MulC->getType()->getPrimitiveSizeInBits())
3122             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3123 
3124           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3125           Multiple = ConstantExpr::getMul(MulC, Op1C);
3126           return true;
3127         }
3128 
3129       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3130         if (Mul0CI->getValue() == 1) {
3131           // V == Base * Op1, so return Op1
3132           Multiple = Op1;
3133           return true;
3134         }
3135     }
3136 
3137     Value *Mul1 = nullptr;
3138     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3139       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3140         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3141           if (Op0C->getType()->getPrimitiveSizeInBits() <
3142               MulC->getType()->getPrimitiveSizeInBits())
3143             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3144           if (Op0C->getType()->getPrimitiveSizeInBits() >
3145               MulC->getType()->getPrimitiveSizeInBits())
3146             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3147 
3148           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3149           Multiple = ConstantExpr::getMul(MulC, Op0C);
3150           return true;
3151         }
3152 
3153       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3154         if (Mul1CI->getValue() == 1) {
3155           // V == Base * Op0, so return Op0
3156           Multiple = Op0;
3157           return true;
3158         }
3159     }
3160   }
3161   }
3162 
3163   // We could not determine if V is a multiple of Base.
3164   return false;
3165 }
3166 
3167 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3168                                             const TargetLibraryInfo *TLI) {
3169   const Function *F = CB.getCalledFunction();
3170   if (!F)
3171     return Intrinsic::not_intrinsic;
3172 
3173   if (F->isIntrinsic())
3174     return F->getIntrinsicID();
3175 
3176   // We are going to infer semantics of a library function based on mapping it
3177   // to an LLVM intrinsic. Check that the library function is available from
3178   // this callbase and in this environment.
3179   LibFunc Func;
3180   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3181       !CB.onlyReadsMemory())
3182     return Intrinsic::not_intrinsic;
3183 
3184   switch (Func) {
3185   default:
3186     break;
3187   case LibFunc_sin:
3188   case LibFunc_sinf:
3189   case LibFunc_sinl:
3190     return Intrinsic::sin;
3191   case LibFunc_cos:
3192   case LibFunc_cosf:
3193   case LibFunc_cosl:
3194     return Intrinsic::cos;
3195   case LibFunc_exp:
3196   case LibFunc_expf:
3197   case LibFunc_expl:
3198     return Intrinsic::exp;
3199   case LibFunc_exp2:
3200   case LibFunc_exp2f:
3201   case LibFunc_exp2l:
3202     return Intrinsic::exp2;
3203   case LibFunc_log:
3204   case LibFunc_logf:
3205   case LibFunc_logl:
3206     return Intrinsic::log;
3207   case LibFunc_log10:
3208   case LibFunc_log10f:
3209   case LibFunc_log10l:
3210     return Intrinsic::log10;
3211   case LibFunc_log2:
3212   case LibFunc_log2f:
3213   case LibFunc_log2l:
3214     return Intrinsic::log2;
3215   case LibFunc_fabs:
3216   case LibFunc_fabsf:
3217   case LibFunc_fabsl:
3218     return Intrinsic::fabs;
3219   case LibFunc_fmin:
3220   case LibFunc_fminf:
3221   case LibFunc_fminl:
3222     return Intrinsic::minnum;
3223   case LibFunc_fmax:
3224   case LibFunc_fmaxf:
3225   case LibFunc_fmaxl:
3226     return Intrinsic::maxnum;
3227   case LibFunc_copysign:
3228   case LibFunc_copysignf:
3229   case LibFunc_copysignl:
3230     return Intrinsic::copysign;
3231   case LibFunc_floor:
3232   case LibFunc_floorf:
3233   case LibFunc_floorl:
3234     return Intrinsic::floor;
3235   case LibFunc_ceil:
3236   case LibFunc_ceilf:
3237   case LibFunc_ceill:
3238     return Intrinsic::ceil;
3239   case LibFunc_trunc:
3240   case LibFunc_truncf:
3241   case LibFunc_truncl:
3242     return Intrinsic::trunc;
3243   case LibFunc_rint:
3244   case LibFunc_rintf:
3245   case LibFunc_rintl:
3246     return Intrinsic::rint;
3247   case LibFunc_nearbyint:
3248   case LibFunc_nearbyintf:
3249   case LibFunc_nearbyintl:
3250     return Intrinsic::nearbyint;
3251   case LibFunc_round:
3252   case LibFunc_roundf:
3253   case LibFunc_roundl:
3254     return Intrinsic::round;
3255   case LibFunc_roundeven:
3256   case LibFunc_roundevenf:
3257   case LibFunc_roundevenl:
3258     return Intrinsic::roundeven;
3259   case LibFunc_pow:
3260   case LibFunc_powf:
3261   case LibFunc_powl:
3262     return Intrinsic::pow;
3263   case LibFunc_sqrt:
3264   case LibFunc_sqrtf:
3265   case LibFunc_sqrtl:
3266     return Intrinsic::sqrt;
3267   }
3268 
3269   return Intrinsic::not_intrinsic;
3270 }
3271 
3272 /// Return true if we can prove that the specified FP value is never equal to
3273 /// -0.0.
3274 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3275 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3276 ///       the same as +0.0 in floating-point ops.
3277 ///
3278 /// NOTE: this function will need to be revisited when we support non-default
3279 /// rounding modes!
3280 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3281                                 unsigned Depth) {
3282   if (auto *CFP = dyn_cast<ConstantFP>(V))
3283     return !CFP->getValueAPF().isNegZero();
3284 
3285   if (Depth == MaxAnalysisRecursionDepth)
3286     return false;
3287 
3288   auto *Op = dyn_cast<Operator>(V);
3289   if (!Op)
3290     return false;
3291 
3292   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3293   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3294     return true;
3295 
3296   // sitofp and uitofp turn into +0.0 for zero.
3297   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3298     return true;
3299 
3300   if (auto *Call = dyn_cast<CallInst>(Op)) {
3301     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3302     switch (IID) {
3303     default:
3304       break;
3305     // sqrt(-0.0) = -0.0, no other negative results are possible.
3306     case Intrinsic::sqrt:
3307     case Intrinsic::canonicalize:
3308       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3309     // fabs(x) != -0.0
3310     case Intrinsic::fabs:
3311       return true;
3312     }
3313   }
3314 
3315   return false;
3316 }
3317 
3318 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3319 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3320 /// bit despite comparing equal.
3321 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3322                                             const TargetLibraryInfo *TLI,
3323                                             bool SignBitOnly,
3324                                             unsigned Depth) {
3325   // TODO: This function does not do the right thing when SignBitOnly is true
3326   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3327   // which flips the sign bits of NaNs.  See
3328   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3329 
3330   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3331     return !CFP->getValueAPF().isNegative() ||
3332            (!SignBitOnly && CFP->getValueAPF().isZero());
3333   }
3334 
3335   // Handle vector of constants.
3336   if (auto *CV = dyn_cast<Constant>(V)) {
3337     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3338       unsigned NumElts = CVFVTy->getNumElements();
3339       for (unsigned i = 0; i != NumElts; ++i) {
3340         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3341         if (!CFP)
3342           return false;
3343         if (CFP->getValueAPF().isNegative() &&
3344             (SignBitOnly || !CFP->getValueAPF().isZero()))
3345           return false;
3346       }
3347 
3348       // All non-negative ConstantFPs.
3349       return true;
3350     }
3351   }
3352 
3353   if (Depth == MaxAnalysisRecursionDepth)
3354     return false;
3355 
3356   const Operator *I = dyn_cast<Operator>(V);
3357   if (!I)
3358     return false;
3359 
3360   switch (I->getOpcode()) {
3361   default:
3362     break;
3363   // Unsigned integers are always nonnegative.
3364   case Instruction::UIToFP:
3365     return true;
3366   case Instruction::FMul:
3367   case Instruction::FDiv:
3368     // X * X is always non-negative or a NaN.
3369     // X / X is always exactly 1.0 or a NaN.
3370     if (I->getOperand(0) == I->getOperand(1) &&
3371         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3372       return true;
3373 
3374     LLVM_FALLTHROUGH;
3375   case Instruction::FAdd:
3376   case Instruction::FRem:
3377     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3378                                            Depth + 1) &&
3379            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3380                                            Depth + 1);
3381   case Instruction::Select:
3382     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3383                                            Depth + 1) &&
3384            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3385                                            Depth + 1);
3386   case Instruction::FPExt:
3387   case Instruction::FPTrunc:
3388     // Widening/narrowing never change sign.
3389     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3390                                            Depth + 1);
3391   case Instruction::ExtractElement:
3392     // Look through extract element. At the moment we keep this simple and skip
3393     // tracking the specific element. But at least we might find information
3394     // valid for all elements of the vector.
3395     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3396                                            Depth + 1);
3397   case Instruction::Call:
3398     const auto *CI = cast<CallInst>(I);
3399     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3400     switch (IID) {
3401     default:
3402       break;
3403     case Intrinsic::maxnum: {
3404       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3405       auto isPositiveNum = [&](Value *V) {
3406         if (SignBitOnly) {
3407           // With SignBitOnly, this is tricky because the result of
3408           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3409           // a constant strictly greater than 0.0.
3410           const APFloat *C;
3411           return match(V, m_APFloat(C)) &&
3412                  *C > APFloat::getZero(C->getSemantics());
3413         }
3414 
3415         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3416         // maxnum can't be ordered-less-than-zero.
3417         return isKnownNeverNaN(V, TLI) &&
3418                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3419       };
3420 
3421       // TODO: This could be improved. We could also check that neither operand
3422       //       has its sign bit set (and at least 1 is not-NAN?).
3423       return isPositiveNum(V0) || isPositiveNum(V1);
3424     }
3425 
3426     case Intrinsic::maximum:
3427       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3428                                              Depth + 1) ||
3429              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3430                                              Depth + 1);
3431     case Intrinsic::minnum:
3432     case Intrinsic::minimum:
3433       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3434                                              Depth + 1) &&
3435              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3436                                              Depth + 1);
3437     case Intrinsic::exp:
3438     case Intrinsic::exp2:
3439     case Intrinsic::fabs:
3440       return true;
3441 
3442     case Intrinsic::sqrt:
3443       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3444       if (!SignBitOnly)
3445         return true;
3446       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3447                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3448 
3449     case Intrinsic::powi:
3450       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3451         // powi(x,n) is non-negative if n is even.
3452         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3453           return true;
3454       }
3455       // TODO: This is not correct.  Given that exp is an integer, here are the
3456       // ways that pow can return a negative value:
3457       //
3458       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3459       //   pow(-0, exp)   --> -inf if exp is negative odd.
3460       //   pow(-0, exp)   --> -0 if exp is positive odd.
3461       //   pow(-inf, exp) --> -0 if exp is negative odd.
3462       //   pow(-inf, exp) --> -inf if exp is positive odd.
3463       //
3464       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3465       // but we must return false if x == -0.  Unfortunately we do not currently
3466       // have a way of expressing this constraint.  See details in
3467       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3468       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3469                                              Depth + 1);
3470 
3471     case Intrinsic::fma:
3472     case Intrinsic::fmuladd:
3473       // x*x+y is non-negative if y is non-negative.
3474       return I->getOperand(0) == I->getOperand(1) &&
3475              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3476              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3477                                              Depth + 1);
3478     }
3479     break;
3480   }
3481   return false;
3482 }
3483 
3484 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3485                                        const TargetLibraryInfo *TLI) {
3486   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3487 }
3488 
3489 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3490   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3491 }
3492 
3493 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3494                                 unsigned Depth) {
3495   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3496 
3497   // If we're told that infinities won't happen, assume they won't.
3498   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3499     if (FPMathOp->hasNoInfs())
3500       return true;
3501 
3502   // Handle scalar constants.
3503   if (auto *CFP = dyn_cast<ConstantFP>(V))
3504     return !CFP->isInfinity();
3505 
3506   if (Depth == MaxAnalysisRecursionDepth)
3507     return false;
3508 
3509   if (auto *Inst = dyn_cast<Instruction>(V)) {
3510     switch (Inst->getOpcode()) {
3511     case Instruction::Select: {
3512       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3513              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3514     }
3515     case Instruction::UIToFP:
3516       // If the input type fits into the floating type the result is finite.
3517       return ilogb(APFloat::getLargest(
3518                  Inst->getType()->getScalarType()->getFltSemantics())) >=
3519              (int)Inst->getOperand(0)->getType()->getScalarSizeInBits();
3520     default:
3521       break;
3522     }
3523   }
3524 
3525   // try to handle fixed width vector constants
3526   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3527   if (VFVTy && isa<Constant>(V)) {
3528     // For vectors, verify that each element is not infinity.
3529     unsigned NumElts = VFVTy->getNumElements();
3530     for (unsigned i = 0; i != NumElts; ++i) {
3531       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3532       if (!Elt)
3533         return false;
3534       if (isa<UndefValue>(Elt))
3535         continue;
3536       auto *CElt = dyn_cast<ConstantFP>(Elt);
3537       if (!CElt || CElt->isInfinity())
3538         return false;
3539     }
3540     // All elements were confirmed non-infinity or undefined.
3541     return true;
3542   }
3543 
3544   // was not able to prove that V never contains infinity
3545   return false;
3546 }
3547 
3548 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3549                            unsigned Depth) {
3550   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3551 
3552   // If we're told that NaNs won't happen, assume they won't.
3553   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3554     if (FPMathOp->hasNoNaNs())
3555       return true;
3556 
3557   // Handle scalar constants.
3558   if (auto *CFP = dyn_cast<ConstantFP>(V))
3559     return !CFP->isNaN();
3560 
3561   if (Depth == MaxAnalysisRecursionDepth)
3562     return false;
3563 
3564   if (auto *Inst = dyn_cast<Instruction>(V)) {
3565     switch (Inst->getOpcode()) {
3566     case Instruction::FAdd:
3567     case Instruction::FSub:
3568       // Adding positive and negative infinity produces NaN.
3569       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3570              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3571              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3572               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3573 
3574     case Instruction::FMul:
3575       // Zero multiplied with infinity produces NaN.
3576       // FIXME: If neither side can be zero fmul never produces NaN.
3577       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3578              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3579              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3580              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3581 
3582     case Instruction::FDiv:
3583     case Instruction::FRem:
3584       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3585       return false;
3586 
3587     case Instruction::Select: {
3588       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3589              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3590     }
3591     case Instruction::SIToFP:
3592     case Instruction::UIToFP:
3593       return true;
3594     case Instruction::FPTrunc:
3595     case Instruction::FPExt:
3596       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3597     default:
3598       break;
3599     }
3600   }
3601 
3602   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3603     switch (II->getIntrinsicID()) {
3604     case Intrinsic::canonicalize:
3605     case Intrinsic::fabs:
3606     case Intrinsic::copysign:
3607     case Intrinsic::exp:
3608     case Intrinsic::exp2:
3609     case Intrinsic::floor:
3610     case Intrinsic::ceil:
3611     case Intrinsic::trunc:
3612     case Intrinsic::rint:
3613     case Intrinsic::nearbyint:
3614     case Intrinsic::round:
3615     case Intrinsic::roundeven:
3616       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3617     case Intrinsic::sqrt:
3618       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3619              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3620     case Intrinsic::minnum:
3621     case Intrinsic::maxnum:
3622       // If either operand is not NaN, the result is not NaN.
3623       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3624              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3625     default:
3626       return false;
3627     }
3628   }
3629 
3630   // Try to handle fixed width vector constants
3631   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3632   if (VFVTy && isa<Constant>(V)) {
3633     // For vectors, verify that each element is not NaN.
3634     unsigned NumElts = VFVTy->getNumElements();
3635     for (unsigned i = 0; i != NumElts; ++i) {
3636       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3637       if (!Elt)
3638         return false;
3639       if (isa<UndefValue>(Elt))
3640         continue;
3641       auto *CElt = dyn_cast<ConstantFP>(Elt);
3642       if (!CElt || CElt->isNaN())
3643         return false;
3644     }
3645     // All elements were confirmed not-NaN or undefined.
3646     return true;
3647   }
3648 
3649   // Was not able to prove that V never contains NaN
3650   return false;
3651 }
3652 
3653 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3654 
3655   // All byte-wide stores are splatable, even of arbitrary variables.
3656   if (V->getType()->isIntegerTy(8))
3657     return V;
3658 
3659   LLVMContext &Ctx = V->getContext();
3660 
3661   // Undef don't care.
3662   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3663   if (isa<UndefValue>(V))
3664     return UndefInt8;
3665 
3666   // Return Undef for zero-sized type.
3667   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3668     return UndefInt8;
3669 
3670   Constant *C = dyn_cast<Constant>(V);
3671   if (!C) {
3672     // Conceptually, we could handle things like:
3673     //   %a = zext i8 %X to i16
3674     //   %b = shl i16 %a, 8
3675     //   %c = or i16 %a, %b
3676     // but until there is an example that actually needs this, it doesn't seem
3677     // worth worrying about.
3678     return nullptr;
3679   }
3680 
3681   // Handle 'null' ConstantArrayZero etc.
3682   if (C->isNullValue())
3683     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3684 
3685   // Constant floating-point values can be handled as integer values if the
3686   // corresponding integer value is "byteable".  An important case is 0.0.
3687   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3688     Type *Ty = nullptr;
3689     if (CFP->getType()->isHalfTy())
3690       Ty = Type::getInt16Ty(Ctx);
3691     else if (CFP->getType()->isFloatTy())
3692       Ty = Type::getInt32Ty(Ctx);
3693     else if (CFP->getType()->isDoubleTy())
3694       Ty = Type::getInt64Ty(Ctx);
3695     // Don't handle long double formats, which have strange constraints.
3696     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3697               : nullptr;
3698   }
3699 
3700   // We can handle constant integers that are multiple of 8 bits.
3701   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3702     if (CI->getBitWidth() % 8 == 0) {
3703       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3704       if (!CI->getValue().isSplat(8))
3705         return nullptr;
3706       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3707     }
3708   }
3709 
3710   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3711     if (CE->getOpcode() == Instruction::IntToPtr) {
3712       auto PS = DL.getPointerSizeInBits(
3713           cast<PointerType>(CE->getType())->getAddressSpace());
3714       return isBytewiseValue(
3715           ConstantExpr::getIntegerCast(CE->getOperand(0),
3716                                        Type::getIntNTy(Ctx, PS), false),
3717           DL);
3718     }
3719   }
3720 
3721   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3722     if (LHS == RHS)
3723       return LHS;
3724     if (!LHS || !RHS)
3725       return nullptr;
3726     if (LHS == UndefInt8)
3727       return RHS;
3728     if (RHS == UndefInt8)
3729       return LHS;
3730     return nullptr;
3731   };
3732 
3733   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3734     Value *Val = UndefInt8;
3735     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3736       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3737         return nullptr;
3738     return Val;
3739   }
3740 
3741   if (isa<ConstantAggregate>(C)) {
3742     Value *Val = UndefInt8;
3743     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3744       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3745         return nullptr;
3746     return Val;
3747   }
3748 
3749   // Don't try to handle the handful of other constants.
3750   return nullptr;
3751 }
3752 
3753 // This is the recursive version of BuildSubAggregate. It takes a few different
3754 // arguments. Idxs is the index within the nested struct From that we are
3755 // looking at now (which is of type IndexedType). IdxSkip is the number of
3756 // indices from Idxs that should be left out when inserting into the resulting
3757 // struct. To is the result struct built so far, new insertvalue instructions
3758 // build on that.
3759 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3760                                 SmallVectorImpl<unsigned> &Idxs,
3761                                 unsigned IdxSkip,
3762                                 Instruction *InsertBefore) {
3763   StructType *STy = dyn_cast<StructType>(IndexedType);
3764   if (STy) {
3765     // Save the original To argument so we can modify it
3766     Value *OrigTo = To;
3767     // General case, the type indexed by Idxs is a struct
3768     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3769       // Process each struct element recursively
3770       Idxs.push_back(i);
3771       Value *PrevTo = To;
3772       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3773                              InsertBefore);
3774       Idxs.pop_back();
3775       if (!To) {
3776         // Couldn't find any inserted value for this index? Cleanup
3777         while (PrevTo != OrigTo) {
3778           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3779           PrevTo = Del->getAggregateOperand();
3780           Del->eraseFromParent();
3781         }
3782         // Stop processing elements
3783         break;
3784       }
3785     }
3786     // If we successfully found a value for each of our subaggregates
3787     if (To)
3788       return To;
3789   }
3790   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3791   // the struct's elements had a value that was inserted directly. In the latter
3792   // case, perhaps we can't determine each of the subelements individually, but
3793   // we might be able to find the complete struct somewhere.
3794 
3795   // Find the value that is at that particular spot
3796   Value *V = FindInsertedValue(From, Idxs);
3797 
3798   if (!V)
3799     return nullptr;
3800 
3801   // Insert the value in the new (sub) aggregate
3802   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3803                                  "tmp", InsertBefore);
3804 }
3805 
3806 // This helper takes a nested struct and extracts a part of it (which is again a
3807 // struct) into a new value. For example, given the struct:
3808 // { a, { b, { c, d }, e } }
3809 // and the indices "1, 1" this returns
3810 // { c, d }.
3811 //
3812 // It does this by inserting an insertvalue for each element in the resulting
3813 // struct, as opposed to just inserting a single struct. This will only work if
3814 // each of the elements of the substruct are known (ie, inserted into From by an
3815 // insertvalue instruction somewhere).
3816 //
3817 // All inserted insertvalue instructions are inserted before InsertBefore
3818 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3819                                 Instruction *InsertBefore) {
3820   assert(InsertBefore && "Must have someplace to insert!");
3821   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3822                                                              idx_range);
3823   Value *To = UndefValue::get(IndexedType);
3824   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3825   unsigned IdxSkip = Idxs.size();
3826 
3827   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3828 }
3829 
3830 /// Given an aggregate and a sequence of indices, see if the scalar value
3831 /// indexed is already around as a register, for example if it was inserted
3832 /// directly into the aggregate.
3833 ///
3834 /// If InsertBefore is not null, this function will duplicate (modified)
3835 /// insertvalues when a part of a nested struct is extracted.
3836 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3837                                Instruction *InsertBefore) {
3838   // Nothing to index? Just return V then (this is useful at the end of our
3839   // recursion).
3840   if (idx_range.empty())
3841     return V;
3842   // We have indices, so V should have an indexable type.
3843   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3844          "Not looking at a struct or array?");
3845   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3846          "Invalid indices for type?");
3847 
3848   if (Constant *C = dyn_cast<Constant>(V)) {
3849     C = C->getAggregateElement(idx_range[0]);
3850     if (!C) return nullptr;
3851     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3852   }
3853 
3854   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3855     // Loop the indices for the insertvalue instruction in parallel with the
3856     // requested indices
3857     const unsigned *req_idx = idx_range.begin();
3858     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3859          i != e; ++i, ++req_idx) {
3860       if (req_idx == idx_range.end()) {
3861         // We can't handle this without inserting insertvalues
3862         if (!InsertBefore)
3863           return nullptr;
3864 
3865         // The requested index identifies a part of a nested aggregate. Handle
3866         // this specially. For example,
3867         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3868         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3869         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3870         // This can be changed into
3871         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3872         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3873         // which allows the unused 0,0 element from the nested struct to be
3874         // removed.
3875         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3876                                  InsertBefore);
3877       }
3878 
3879       // This insert value inserts something else than what we are looking for.
3880       // See if the (aggregate) value inserted into has the value we are
3881       // looking for, then.
3882       if (*req_idx != *i)
3883         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3884                                  InsertBefore);
3885     }
3886     // If we end up here, the indices of the insertvalue match with those
3887     // requested (though possibly only partially). Now we recursively look at
3888     // the inserted value, passing any remaining indices.
3889     return FindInsertedValue(I->getInsertedValueOperand(),
3890                              makeArrayRef(req_idx, idx_range.end()),
3891                              InsertBefore);
3892   }
3893 
3894   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3895     // If we're extracting a value from an aggregate that was extracted from
3896     // something else, we can extract from that something else directly instead.
3897     // However, we will need to chain I's indices with the requested indices.
3898 
3899     // Calculate the number of indices required
3900     unsigned size = I->getNumIndices() + idx_range.size();
3901     // Allocate some space to put the new indices in
3902     SmallVector<unsigned, 5> Idxs;
3903     Idxs.reserve(size);
3904     // Add indices from the extract value instruction
3905     Idxs.append(I->idx_begin(), I->idx_end());
3906 
3907     // Add requested indices
3908     Idxs.append(idx_range.begin(), idx_range.end());
3909 
3910     assert(Idxs.size() == size
3911            && "Number of indices added not correct?");
3912 
3913     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3914   }
3915   // Otherwise, we don't know (such as, extracting from a function return value
3916   // or load instruction)
3917   return nullptr;
3918 }
3919 
3920 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3921                                        unsigned CharSize) {
3922   // Make sure the GEP has exactly three arguments.
3923   if (GEP->getNumOperands() != 3)
3924     return false;
3925 
3926   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3927   // CharSize.
3928   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3929   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3930     return false;
3931 
3932   // Check to make sure that the first operand of the GEP is an integer and
3933   // has value 0 so that we are sure we're indexing into the initializer.
3934   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3935   if (!FirstIdx || !FirstIdx->isZero())
3936     return false;
3937 
3938   return true;
3939 }
3940 
3941 bool llvm::getConstantDataArrayInfo(const Value *V,
3942                                     ConstantDataArraySlice &Slice,
3943                                     unsigned ElementSize, uint64_t Offset) {
3944   assert(V);
3945 
3946   // Look through bitcast instructions and geps.
3947   V = V->stripPointerCasts();
3948 
3949   // If the value is a GEP instruction or constant expression, treat it as an
3950   // offset.
3951   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3952     // The GEP operator should be based on a pointer to string constant, and is
3953     // indexing into the string constant.
3954     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3955       return false;
3956 
3957     // If the second index isn't a ConstantInt, then this is a variable index
3958     // into the array.  If this occurs, we can't say anything meaningful about
3959     // the string.
3960     uint64_t StartIdx = 0;
3961     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3962       StartIdx = CI->getZExtValue();
3963     else
3964       return false;
3965     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3966                                     StartIdx + Offset);
3967   }
3968 
3969   // The GEP instruction, constant or instruction, must reference a global
3970   // variable that is a constant and is initialized. The referenced constant
3971   // initializer is the array that we'll use for optimization.
3972   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3973   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3974     return false;
3975 
3976   const ConstantDataArray *Array;
3977   ArrayType *ArrayTy;
3978   if (GV->getInitializer()->isNullValue()) {
3979     Type *GVTy = GV->getValueType();
3980     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3981       // A zeroinitializer for the array; there is no ConstantDataArray.
3982       Array = nullptr;
3983     } else {
3984       const DataLayout &DL = GV->getParent()->getDataLayout();
3985       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3986       uint64_t Length = SizeInBytes / (ElementSize / 8);
3987       if (Length <= Offset)
3988         return false;
3989 
3990       Slice.Array = nullptr;
3991       Slice.Offset = 0;
3992       Slice.Length = Length - Offset;
3993       return true;
3994     }
3995   } else {
3996     // This must be a ConstantDataArray.
3997     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3998     if (!Array)
3999       return false;
4000     ArrayTy = Array->getType();
4001   }
4002   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4003     return false;
4004 
4005   uint64_t NumElts = ArrayTy->getArrayNumElements();
4006   if (Offset > NumElts)
4007     return false;
4008 
4009   Slice.Array = Array;
4010   Slice.Offset = Offset;
4011   Slice.Length = NumElts - Offset;
4012   return true;
4013 }
4014 
4015 /// This function computes the length of a null-terminated C string pointed to
4016 /// by V. If successful, it returns true and returns the string in Str.
4017 /// If unsuccessful, it returns false.
4018 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4019                                  uint64_t Offset, bool TrimAtNul) {
4020   ConstantDataArraySlice Slice;
4021   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4022     return false;
4023 
4024   if (Slice.Array == nullptr) {
4025     if (TrimAtNul) {
4026       Str = StringRef();
4027       return true;
4028     }
4029     if (Slice.Length == 1) {
4030       Str = StringRef("", 1);
4031       return true;
4032     }
4033     // We cannot instantiate a StringRef as we do not have an appropriate string
4034     // of 0s at hand.
4035     return false;
4036   }
4037 
4038   // Start out with the entire array in the StringRef.
4039   Str = Slice.Array->getAsString();
4040   // Skip over 'offset' bytes.
4041   Str = Str.substr(Slice.Offset);
4042 
4043   if (TrimAtNul) {
4044     // Trim off the \0 and anything after it.  If the array is not nul
4045     // terminated, we just return the whole end of string.  The client may know
4046     // some other way that the string is length-bound.
4047     Str = Str.substr(0, Str.find('\0'));
4048   }
4049   return true;
4050 }
4051 
4052 // These next two are very similar to the above, but also look through PHI
4053 // nodes.
4054 // TODO: See if we can integrate these two together.
4055 
4056 /// If we can compute the length of the string pointed to by
4057 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4058 static uint64_t GetStringLengthH(const Value *V,
4059                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4060                                  unsigned CharSize) {
4061   // Look through noop bitcast instructions.
4062   V = V->stripPointerCasts();
4063 
4064   // If this is a PHI node, there are two cases: either we have already seen it
4065   // or we haven't.
4066   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4067     if (!PHIs.insert(PN).second)
4068       return ~0ULL;  // already in the set.
4069 
4070     // If it was new, see if all the input strings are the same length.
4071     uint64_t LenSoFar = ~0ULL;
4072     for (Value *IncValue : PN->incoming_values()) {
4073       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4074       if (Len == 0) return 0; // Unknown length -> unknown.
4075 
4076       if (Len == ~0ULL) continue;
4077 
4078       if (Len != LenSoFar && LenSoFar != ~0ULL)
4079         return 0;    // Disagree -> unknown.
4080       LenSoFar = Len;
4081     }
4082 
4083     // Success, all agree.
4084     return LenSoFar;
4085   }
4086 
4087   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4088   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4089     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4090     if (Len1 == 0) return 0;
4091     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4092     if (Len2 == 0) return 0;
4093     if (Len1 == ~0ULL) return Len2;
4094     if (Len2 == ~0ULL) return Len1;
4095     if (Len1 != Len2) return 0;
4096     return Len1;
4097   }
4098 
4099   // Otherwise, see if we can read the string.
4100   ConstantDataArraySlice Slice;
4101   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4102     return 0;
4103 
4104   if (Slice.Array == nullptr)
4105     return 1;
4106 
4107   // Search for nul characters
4108   unsigned NullIndex = 0;
4109   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4110     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4111       break;
4112   }
4113 
4114   return NullIndex + 1;
4115 }
4116 
4117 /// If we can compute the length of the string pointed to by
4118 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4119 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4120   if (!V->getType()->isPointerTy())
4121     return 0;
4122 
4123   SmallPtrSet<const PHINode*, 32> PHIs;
4124   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4125   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4126   // an empty string as a length.
4127   return Len == ~0ULL ? 1 : Len;
4128 }
4129 
4130 const Value *
4131 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4132                                            bool MustPreserveNullness) {
4133   assert(Call &&
4134          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4135   if (const Value *RV = Call->getReturnedArgOperand())
4136     return RV;
4137   // This can be used only as a aliasing property.
4138   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4139           Call, MustPreserveNullness))
4140     return Call->getArgOperand(0);
4141   return nullptr;
4142 }
4143 
4144 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4145     const CallBase *Call, bool MustPreserveNullness) {
4146   switch (Call->getIntrinsicID()) {
4147   case Intrinsic::launder_invariant_group:
4148   case Intrinsic::strip_invariant_group:
4149   case Intrinsic::aarch64_irg:
4150   case Intrinsic::aarch64_tagp:
4151     return true;
4152   case Intrinsic::ptrmask:
4153     return !MustPreserveNullness;
4154   default:
4155     return false;
4156   }
4157 }
4158 
4159 /// \p PN defines a loop-variant pointer to an object.  Check if the
4160 /// previous iteration of the loop was referring to the same object as \p PN.
4161 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4162                                          const LoopInfo *LI) {
4163   // Find the loop-defined value.
4164   Loop *L = LI->getLoopFor(PN->getParent());
4165   if (PN->getNumIncomingValues() != 2)
4166     return true;
4167 
4168   // Find the value from previous iteration.
4169   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4170   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4171     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4172   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4173     return true;
4174 
4175   // If a new pointer is loaded in the loop, the pointer references a different
4176   // object in every iteration.  E.g.:
4177   //    for (i)
4178   //       int *p = a[i];
4179   //       ...
4180   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4181     if (!L->isLoopInvariant(Load->getPointerOperand()))
4182       return false;
4183   return true;
4184 }
4185 
4186 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4187   if (!V->getType()->isPointerTy())
4188     return V;
4189   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4190     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4191       V = GEP->getPointerOperand();
4192     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4193                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4194       V = cast<Operator>(V)->getOperand(0);
4195       if (!V->getType()->isPointerTy())
4196         return V;
4197     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4198       if (GA->isInterposable())
4199         return V;
4200       V = GA->getAliasee();
4201     } else {
4202       if (auto *PHI = dyn_cast<PHINode>(V)) {
4203         // Look through single-arg phi nodes created by LCSSA.
4204         if (PHI->getNumIncomingValues() == 1) {
4205           V = PHI->getIncomingValue(0);
4206           continue;
4207         }
4208       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4209         // CaptureTracking can know about special capturing properties of some
4210         // intrinsics like launder.invariant.group, that can't be expressed with
4211         // the attributes, but have properties like returning aliasing pointer.
4212         // Because some analysis may assume that nocaptured pointer is not
4213         // returned from some special intrinsic (because function would have to
4214         // be marked with returns attribute), it is crucial to use this function
4215         // because it should be in sync with CaptureTracking. Not using it may
4216         // cause weird miscompilations where 2 aliasing pointers are assumed to
4217         // noalias.
4218         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4219           V = RP;
4220           continue;
4221         }
4222       }
4223 
4224       return V;
4225     }
4226     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4227   }
4228   return V;
4229 }
4230 
4231 void llvm::getUnderlyingObjects(const Value *V,
4232                                 SmallVectorImpl<const Value *> &Objects,
4233                                 LoopInfo *LI, unsigned MaxLookup) {
4234   SmallPtrSet<const Value *, 4> Visited;
4235   SmallVector<const Value *, 4> Worklist;
4236   Worklist.push_back(V);
4237   do {
4238     const Value *P = Worklist.pop_back_val();
4239     P = getUnderlyingObject(P, MaxLookup);
4240 
4241     if (!Visited.insert(P).second)
4242       continue;
4243 
4244     if (auto *SI = dyn_cast<SelectInst>(P)) {
4245       Worklist.push_back(SI->getTrueValue());
4246       Worklist.push_back(SI->getFalseValue());
4247       continue;
4248     }
4249 
4250     if (auto *PN = dyn_cast<PHINode>(P)) {
4251       // If this PHI changes the underlying object in every iteration of the
4252       // loop, don't look through it.  Consider:
4253       //   int **A;
4254       //   for (i) {
4255       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4256       //     Curr = A[i];
4257       //     *Prev, *Curr;
4258       //
4259       // Prev is tracking Curr one iteration behind so they refer to different
4260       // underlying objects.
4261       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4262           isSameUnderlyingObjectInLoop(PN, LI))
4263         for (Value *IncValue : PN->incoming_values())
4264           Worklist.push_back(IncValue);
4265       continue;
4266     }
4267 
4268     Objects.push_back(P);
4269   } while (!Worklist.empty());
4270 }
4271 
4272 /// This is the function that does the work of looking through basic
4273 /// ptrtoint+arithmetic+inttoptr sequences.
4274 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4275   do {
4276     if (const Operator *U = dyn_cast<Operator>(V)) {
4277       // If we find a ptrtoint, we can transfer control back to the
4278       // regular getUnderlyingObjectFromInt.
4279       if (U->getOpcode() == Instruction::PtrToInt)
4280         return U->getOperand(0);
4281       // If we find an add of a constant, a multiplied value, or a phi, it's
4282       // likely that the other operand will lead us to the base
4283       // object. We don't have to worry about the case where the
4284       // object address is somehow being computed by the multiply,
4285       // because our callers only care when the result is an
4286       // identifiable object.
4287       if (U->getOpcode() != Instruction::Add ||
4288           (!isa<ConstantInt>(U->getOperand(1)) &&
4289            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4290            !isa<PHINode>(U->getOperand(1))))
4291         return V;
4292       V = U->getOperand(0);
4293     } else {
4294       return V;
4295     }
4296     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4297   } while (true);
4298 }
4299 
4300 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4301 /// ptrtoint+arithmetic+inttoptr sequences.
4302 /// It returns false if unidentified object is found in getUnderlyingObjects.
4303 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4304                                           SmallVectorImpl<Value *> &Objects) {
4305   SmallPtrSet<const Value *, 16> Visited;
4306   SmallVector<const Value *, 4> Working(1, V);
4307   do {
4308     V = Working.pop_back_val();
4309 
4310     SmallVector<const Value *, 4> Objs;
4311     getUnderlyingObjects(V, Objs);
4312 
4313     for (const Value *V : Objs) {
4314       if (!Visited.insert(V).second)
4315         continue;
4316       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4317         const Value *O =
4318           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4319         if (O->getType()->isPointerTy()) {
4320           Working.push_back(O);
4321           continue;
4322         }
4323       }
4324       // If getUnderlyingObjects fails to find an identifiable object,
4325       // getUnderlyingObjectsForCodeGen also fails for safety.
4326       if (!isIdentifiedObject(V)) {
4327         Objects.clear();
4328         return false;
4329       }
4330       Objects.push_back(const_cast<Value *>(V));
4331     }
4332   } while (!Working.empty());
4333   return true;
4334 }
4335 
4336 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4337   AllocaInst *Result = nullptr;
4338   SmallPtrSet<Value *, 4> Visited;
4339   SmallVector<Value *, 4> Worklist;
4340 
4341   auto AddWork = [&](Value *V) {
4342     if (Visited.insert(V).second)
4343       Worklist.push_back(V);
4344   };
4345 
4346   AddWork(V);
4347   do {
4348     V = Worklist.pop_back_val();
4349     assert(Visited.count(V));
4350 
4351     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4352       if (Result && Result != AI)
4353         return nullptr;
4354       Result = AI;
4355     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4356       AddWork(CI->getOperand(0));
4357     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4358       for (Value *IncValue : PN->incoming_values())
4359         AddWork(IncValue);
4360     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4361       AddWork(SI->getTrueValue());
4362       AddWork(SI->getFalseValue());
4363     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4364       if (OffsetZero && !GEP->hasAllZeroIndices())
4365         return nullptr;
4366       AddWork(GEP->getPointerOperand());
4367     } else {
4368       return nullptr;
4369     }
4370   } while (!Worklist.empty());
4371 
4372   return Result;
4373 }
4374 
4375 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4376     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4377   for (const User *U : V->users()) {
4378     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4379     if (!II)
4380       return false;
4381 
4382     if (AllowLifetime && II->isLifetimeStartOrEnd())
4383       continue;
4384 
4385     if (AllowDroppable && II->isDroppable())
4386       continue;
4387 
4388     return false;
4389   }
4390   return true;
4391 }
4392 
4393 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4394   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4395       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4396 }
4397 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4398   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4399       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4400 }
4401 
4402 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4403   if (!LI.isUnordered())
4404     return true;
4405   const Function &F = *LI.getFunction();
4406   // Speculative load may create a race that did not exist in the source.
4407   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4408     // Speculative load may load data from dirty regions.
4409     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4410     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4411 }
4412 
4413 
4414 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4415                                         const Instruction *CtxI,
4416                                         const DominatorTree *DT) {
4417   const Operator *Inst = dyn_cast<Operator>(V);
4418   if (!Inst)
4419     return false;
4420 
4421   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4422     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4423       if (C->canTrap())
4424         return false;
4425 
4426   switch (Inst->getOpcode()) {
4427   default:
4428     return true;
4429   case Instruction::UDiv:
4430   case Instruction::URem: {
4431     // x / y is undefined if y == 0.
4432     const APInt *V;
4433     if (match(Inst->getOperand(1), m_APInt(V)))
4434       return *V != 0;
4435     return false;
4436   }
4437   case Instruction::SDiv:
4438   case Instruction::SRem: {
4439     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4440     const APInt *Numerator, *Denominator;
4441     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4442       return false;
4443     // We cannot hoist this division if the denominator is 0.
4444     if (*Denominator == 0)
4445       return false;
4446     // It's safe to hoist if the denominator is not 0 or -1.
4447     if (*Denominator != -1)
4448       return true;
4449     // At this point we know that the denominator is -1.  It is safe to hoist as
4450     // long we know that the numerator is not INT_MIN.
4451     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4452       return !Numerator->isMinSignedValue();
4453     // The numerator *might* be MinSignedValue.
4454     return false;
4455   }
4456   case Instruction::Load: {
4457     const LoadInst *LI = cast<LoadInst>(Inst);
4458     if (mustSuppressSpeculation(*LI))
4459       return false;
4460     const DataLayout &DL = LI->getModule()->getDataLayout();
4461     return isDereferenceableAndAlignedPointer(
4462         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4463         DL, CtxI, DT);
4464   }
4465   case Instruction::Call: {
4466     auto *CI = cast<const CallInst>(Inst);
4467     const Function *Callee = CI->getCalledFunction();
4468 
4469     // The called function could have undefined behavior or side-effects, even
4470     // if marked readnone nounwind.
4471     return Callee && Callee->isSpeculatable();
4472   }
4473   case Instruction::VAArg:
4474   case Instruction::Alloca:
4475   case Instruction::Invoke:
4476   case Instruction::CallBr:
4477   case Instruction::PHI:
4478   case Instruction::Store:
4479   case Instruction::Ret:
4480   case Instruction::Br:
4481   case Instruction::IndirectBr:
4482   case Instruction::Switch:
4483   case Instruction::Unreachable:
4484   case Instruction::Fence:
4485   case Instruction::AtomicRMW:
4486   case Instruction::AtomicCmpXchg:
4487   case Instruction::LandingPad:
4488   case Instruction::Resume:
4489   case Instruction::CatchSwitch:
4490   case Instruction::CatchPad:
4491   case Instruction::CatchRet:
4492   case Instruction::CleanupPad:
4493   case Instruction::CleanupRet:
4494     return false; // Misc instructions which have effects
4495   }
4496 }
4497 
4498 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4499   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4500 }
4501 
4502 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4503 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4504   switch (OR) {
4505     case ConstantRange::OverflowResult::MayOverflow:
4506       return OverflowResult::MayOverflow;
4507     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4508       return OverflowResult::AlwaysOverflowsLow;
4509     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4510       return OverflowResult::AlwaysOverflowsHigh;
4511     case ConstantRange::OverflowResult::NeverOverflows:
4512       return OverflowResult::NeverOverflows;
4513   }
4514   llvm_unreachable("Unknown OverflowResult");
4515 }
4516 
4517 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4518 static ConstantRange computeConstantRangeIncludingKnownBits(
4519     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4520     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4521     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4522   KnownBits Known = computeKnownBits(
4523       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4524   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4525   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4526   ConstantRange::PreferredRangeType RangeType =
4527       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4528   return CR1.intersectWith(CR2, RangeType);
4529 }
4530 
4531 OverflowResult llvm::computeOverflowForUnsignedMul(
4532     const Value *LHS, const Value *RHS, const DataLayout &DL,
4533     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4534     bool UseInstrInfo) {
4535   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4536                                         nullptr, UseInstrInfo);
4537   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4538                                         nullptr, UseInstrInfo);
4539   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4540   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4541   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4542 }
4543 
4544 OverflowResult
4545 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4546                                   const DataLayout &DL, AssumptionCache *AC,
4547                                   const Instruction *CxtI,
4548                                   const DominatorTree *DT, bool UseInstrInfo) {
4549   // Multiplying n * m significant bits yields a result of n + m significant
4550   // bits. If the total number of significant bits does not exceed the
4551   // result bit width (minus 1), there is no overflow.
4552   // This means if we have enough leading sign bits in the operands
4553   // we can guarantee that the result does not overflow.
4554   // Ref: "Hacker's Delight" by Henry Warren
4555   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4556 
4557   // Note that underestimating the number of sign bits gives a more
4558   // conservative answer.
4559   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4560                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4561 
4562   // First handle the easy case: if we have enough sign bits there's
4563   // definitely no overflow.
4564   if (SignBits > BitWidth + 1)
4565     return OverflowResult::NeverOverflows;
4566 
4567   // There are two ambiguous cases where there can be no overflow:
4568   //   SignBits == BitWidth + 1    and
4569   //   SignBits == BitWidth
4570   // The second case is difficult to check, therefore we only handle the
4571   // first case.
4572   if (SignBits == BitWidth + 1) {
4573     // It overflows only when both arguments are negative and the true
4574     // product is exactly the minimum negative number.
4575     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4576     // For simplicity we just check if at least one side is not negative.
4577     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4578                                           nullptr, UseInstrInfo);
4579     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4580                                           nullptr, UseInstrInfo);
4581     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4582       return OverflowResult::NeverOverflows;
4583   }
4584   return OverflowResult::MayOverflow;
4585 }
4586 
4587 OverflowResult llvm::computeOverflowForUnsignedAdd(
4588     const Value *LHS, const Value *RHS, const DataLayout &DL,
4589     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4590     bool UseInstrInfo) {
4591   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4592       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4593       nullptr, UseInstrInfo);
4594   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4595       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4596       nullptr, UseInstrInfo);
4597   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4598 }
4599 
4600 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4601                                                   const Value *RHS,
4602                                                   const AddOperator *Add,
4603                                                   const DataLayout &DL,
4604                                                   AssumptionCache *AC,
4605                                                   const Instruction *CxtI,
4606                                                   const DominatorTree *DT) {
4607   if (Add && Add->hasNoSignedWrap()) {
4608     return OverflowResult::NeverOverflows;
4609   }
4610 
4611   // If LHS and RHS each have at least two sign bits, the addition will look
4612   // like
4613   //
4614   // XX..... +
4615   // YY.....
4616   //
4617   // If the carry into the most significant position is 0, X and Y can't both
4618   // be 1 and therefore the carry out of the addition is also 0.
4619   //
4620   // If the carry into the most significant position is 1, X and Y can't both
4621   // be 0 and therefore the carry out of the addition is also 1.
4622   //
4623   // Since the carry into the most significant position is always equal to
4624   // the carry out of the addition, there is no signed overflow.
4625   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4626       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4627     return OverflowResult::NeverOverflows;
4628 
4629   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4630       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4631   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4632       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4633   OverflowResult OR =
4634       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4635   if (OR != OverflowResult::MayOverflow)
4636     return OR;
4637 
4638   // The remaining code needs Add to be available. Early returns if not so.
4639   if (!Add)
4640     return OverflowResult::MayOverflow;
4641 
4642   // If the sign of Add is the same as at least one of the operands, this add
4643   // CANNOT overflow. If this can be determined from the known bits of the
4644   // operands the above signedAddMayOverflow() check will have already done so.
4645   // The only other way to improve on the known bits is from an assumption, so
4646   // call computeKnownBitsFromAssume() directly.
4647   bool LHSOrRHSKnownNonNegative =
4648       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4649   bool LHSOrRHSKnownNegative =
4650       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4651   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4652     KnownBits AddKnown(LHSRange.getBitWidth());
4653     computeKnownBitsFromAssume(
4654         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4655     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4656         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4657       return OverflowResult::NeverOverflows;
4658   }
4659 
4660   return OverflowResult::MayOverflow;
4661 }
4662 
4663 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4664                                                    const Value *RHS,
4665                                                    const DataLayout &DL,
4666                                                    AssumptionCache *AC,
4667                                                    const Instruction *CxtI,
4668                                                    const DominatorTree *DT) {
4669   // Checking for conditions implied by dominating conditions may be expensive.
4670   // Limit it to usub_with_overflow calls for now.
4671   if (match(CxtI,
4672             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4673     if (auto C =
4674             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4675       if (*C)
4676         return OverflowResult::NeverOverflows;
4677       return OverflowResult::AlwaysOverflowsLow;
4678     }
4679   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4680       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4681   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4682       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4683   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4684 }
4685 
4686 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4687                                                  const Value *RHS,
4688                                                  const DataLayout &DL,
4689                                                  AssumptionCache *AC,
4690                                                  const Instruction *CxtI,
4691                                                  const DominatorTree *DT) {
4692   // If LHS and RHS each have at least two sign bits, the subtraction
4693   // cannot overflow.
4694   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4695       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4696     return OverflowResult::NeverOverflows;
4697 
4698   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4699       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4700   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4701       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4702   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4703 }
4704 
4705 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4706                                      const DominatorTree &DT) {
4707   SmallVector<const BranchInst *, 2> GuardingBranches;
4708   SmallVector<const ExtractValueInst *, 2> Results;
4709 
4710   for (const User *U : WO->users()) {
4711     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4712       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4713 
4714       if (EVI->getIndices()[0] == 0)
4715         Results.push_back(EVI);
4716       else {
4717         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4718 
4719         for (const auto *U : EVI->users())
4720           if (const auto *B = dyn_cast<BranchInst>(U)) {
4721             assert(B->isConditional() && "How else is it using an i1?");
4722             GuardingBranches.push_back(B);
4723           }
4724       }
4725     } else {
4726       // We are using the aggregate directly in a way we don't want to analyze
4727       // here (storing it to a global, say).
4728       return false;
4729     }
4730   }
4731 
4732   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4733     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4734     if (!NoWrapEdge.isSingleEdge())
4735       return false;
4736 
4737     // Check if all users of the add are provably no-wrap.
4738     for (const auto *Result : Results) {
4739       // If the extractvalue itself is not executed on overflow, the we don't
4740       // need to check each use separately, since domination is transitive.
4741       if (DT.dominates(NoWrapEdge, Result->getParent()))
4742         continue;
4743 
4744       for (auto &RU : Result->uses())
4745         if (!DT.dominates(NoWrapEdge, RU))
4746           return false;
4747     }
4748 
4749     return true;
4750   };
4751 
4752   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4753 }
4754 
4755 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4756   // See whether I has flags that may create poison
4757   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4758     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4759       return true;
4760   }
4761   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4762     if (ExactOp->isExact())
4763       return true;
4764   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4765     auto FMF = FP->getFastMathFlags();
4766     if (FMF.noNaNs() || FMF.noInfs())
4767       return true;
4768   }
4769 
4770   unsigned Opcode = Op->getOpcode();
4771 
4772   // Check whether opcode is a poison/undef-generating operation
4773   switch (Opcode) {
4774   case Instruction::Shl:
4775   case Instruction::AShr:
4776   case Instruction::LShr: {
4777     // Shifts return poison if shiftwidth is larger than the bitwidth.
4778     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4779       SmallVector<Constant *, 4> ShiftAmounts;
4780       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4781         unsigned NumElts = FVTy->getNumElements();
4782         for (unsigned i = 0; i < NumElts; ++i)
4783           ShiftAmounts.push_back(C->getAggregateElement(i));
4784       } else if (isa<ScalableVectorType>(C->getType()))
4785         return true; // Can't tell, just return true to be safe
4786       else
4787         ShiftAmounts.push_back(C);
4788 
4789       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4790         auto *CI = dyn_cast<ConstantInt>(C);
4791         return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth();
4792       });
4793       return !Safe;
4794     }
4795     return true;
4796   }
4797   case Instruction::FPToSI:
4798   case Instruction::FPToUI:
4799     // fptosi/ui yields poison if the resulting value does not fit in the
4800     // destination type.
4801     return true;
4802   case Instruction::Call:
4803   case Instruction::CallBr:
4804   case Instruction::Invoke: {
4805     const auto *CB = cast<CallBase>(Op);
4806     return !CB->hasRetAttr(Attribute::NoUndef);
4807   }
4808   case Instruction::InsertElement:
4809   case Instruction::ExtractElement: {
4810     // If index exceeds the length of the vector, it returns poison
4811     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4812     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4813     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4814     if (!Idx ||
4815         Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue())
4816       return true;
4817     return false;
4818   }
4819   case Instruction::ShuffleVector: {
4820     // shufflevector may return undef.
4821     if (PoisonOnly)
4822       return false;
4823     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4824                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4825                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4826     return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; });
4827   }
4828   case Instruction::FNeg:
4829   case Instruction::PHI:
4830   case Instruction::Select:
4831   case Instruction::URem:
4832   case Instruction::SRem:
4833   case Instruction::ExtractValue:
4834   case Instruction::InsertValue:
4835   case Instruction::Freeze:
4836   case Instruction::ICmp:
4837   case Instruction::FCmp:
4838     return false;
4839   case Instruction::GetElementPtr: {
4840     const auto *GEP = cast<GEPOperator>(Op);
4841     return GEP->isInBounds();
4842   }
4843   default: {
4844     const auto *CE = dyn_cast<ConstantExpr>(Op);
4845     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4846       return false;
4847     else if (Instruction::isBinaryOp(Opcode))
4848       return false;
4849     // Be conservative and return true.
4850     return true;
4851   }
4852   }
4853 }
4854 
4855 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4856   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4857 }
4858 
4859 bool llvm::canCreatePoison(const Operator *Op) {
4860   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4861 }
4862 
4863 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V,
4864                                             const Instruction *CtxI,
4865                                             const DominatorTree *DT,
4866                                             unsigned Depth) {
4867   if (Depth >= MaxAnalysisRecursionDepth)
4868     return false;
4869 
4870   if (const auto *A = dyn_cast<Argument>(V)) {
4871     if (A->hasAttribute(Attribute::NoUndef))
4872       return true;
4873   }
4874 
4875   if (auto *C = dyn_cast<Constant>(V)) {
4876     if (isa<UndefValue>(C))
4877       return false;
4878 
4879     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4880         isa<ConstantPointerNull>(C) || isa<Function>(C))
4881       return true;
4882 
4883     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4884       return !C->containsConstantExpression() && !C->containsUndefElement();
4885   }
4886 
4887   // Strip cast operations from a pointer value.
4888   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4889   // inbounds with zero offset. To guarantee that the result isn't poison, the
4890   // stripped pointer is checked as it has to be pointing into an allocated
4891   // object or be null `null` to ensure `inbounds` getelement pointers with a
4892   // zero offset could not produce poison.
4893   // It can strip off addrspacecast that do not change bit representation as
4894   // well. We believe that such addrspacecast is equivalent to no-op.
4895   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4896   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4897       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4898     return true;
4899 
4900   auto OpCheck = [&](const Value *V) {
4901     return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1);
4902   };
4903 
4904   if (auto *Opr = dyn_cast<Operator>(V)) {
4905     // If the value is a freeze instruction, then it can never
4906     // be undef or poison.
4907     if (isa<FreezeInst>(V))
4908       return true;
4909 
4910     if (const auto *CB = dyn_cast<CallBase>(V)) {
4911       if (CB->hasRetAttr(Attribute::NoUndef))
4912         return true;
4913     }
4914 
4915     if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4916       return true;
4917   }
4918 
4919   if (auto *I = dyn_cast<Instruction>(V)) {
4920     if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1))
4921       // Note: once we have an agreement that poison is a value-wise concept,
4922       // we can remove the isIntegerTy(1) constraint.
4923       return true;
4924   }
4925 
4926   // CxtI may be null or a cloned instruction.
4927   if (!CtxI || !CtxI->getParent() || !DT)
4928     return false;
4929 
4930   auto *DNode = DT->getNode(CtxI->getParent());
4931   if (!DNode)
4932     // Unreachable block
4933     return false;
4934 
4935   // If V is used as a branch condition before reaching CtxI, V cannot be
4936   // undef or poison.
4937   //   br V, BB1, BB2
4938   // BB1:
4939   //   CtxI ; V cannot be undef or poison here
4940   auto *Dominator = DNode->getIDom();
4941   while (Dominator) {
4942     auto *TI = Dominator->getBlock()->getTerminator();
4943 
4944     if (auto BI = dyn_cast<BranchInst>(TI)) {
4945       if (BI->isConditional() && BI->getCondition() == V)
4946         return true;
4947     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4948       if (SI->getCondition() == V)
4949         return true;
4950     }
4951 
4952     Dominator = Dominator->getIDom();
4953   }
4954 
4955   return false;
4956 }
4957 
4958 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4959                                                  const DataLayout &DL,
4960                                                  AssumptionCache *AC,
4961                                                  const Instruction *CxtI,
4962                                                  const DominatorTree *DT) {
4963   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4964                                        Add, DL, AC, CxtI, DT);
4965 }
4966 
4967 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4968                                                  const Value *RHS,
4969                                                  const DataLayout &DL,
4970                                                  AssumptionCache *AC,
4971                                                  const Instruction *CxtI,
4972                                                  const DominatorTree *DT) {
4973   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4974 }
4975 
4976 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4977   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4978   // of time because it's possible for another thread to interfere with it for an
4979   // arbitrary length of time, but programs aren't allowed to rely on that.
4980 
4981   // If there is no successor, then execution can't transfer to it.
4982   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4983     return !CRI->unwindsToCaller();
4984   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4985     return !CatchSwitch->unwindsToCaller();
4986   if (isa<ResumeInst>(I))
4987     return false;
4988   if (isa<ReturnInst>(I))
4989     return false;
4990   if (isa<UnreachableInst>(I))
4991     return false;
4992 
4993   // Calls can throw, or contain an infinite loop, or kill the process.
4994   if (const auto *CB = dyn_cast<CallBase>(I)) {
4995     // Call sites that throw have implicit non-local control flow.
4996     if (!CB->doesNotThrow())
4997       return false;
4998 
4999     // A function which doens't throw and has "willreturn" attribute will
5000     // always return.
5001     if (CB->hasFnAttr(Attribute::WillReturn))
5002       return true;
5003 
5004     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
5005     // etc. and thus not return.  However, LLVM already assumes that
5006     //
5007     //  - Thread exiting actions are modeled as writes to memory invisible to
5008     //    the program.
5009     //
5010     //  - Loops that don't have side effects (side effects are volatile/atomic
5011     //    stores and IO) always terminate (see http://llvm.org/PR965).
5012     //    Furthermore IO itself is also modeled as writes to memory invisible to
5013     //    the program.
5014     //
5015     // We rely on those assumptions here, and use the memory effects of the call
5016     // target as a proxy for checking that it always returns.
5017 
5018     // FIXME: This isn't aggressive enough; a call which only writes to a global
5019     // is guaranteed to return.
5020     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5021   }
5022 
5023   // Other instructions return normally.
5024   return true;
5025 }
5026 
5027 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5028   // TODO: This is slightly conservative for invoke instruction since exiting
5029   // via an exception *is* normal control for them.
5030   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5031     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5032       return false;
5033   return true;
5034 }
5035 
5036 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5037                                                   const Loop *L) {
5038   // The loop header is guaranteed to be executed for every iteration.
5039   //
5040   // FIXME: Relax this constraint to cover all basic blocks that are
5041   // guaranteed to be executed at every iteration.
5042   if (I->getParent() != L->getHeader()) return false;
5043 
5044   for (const Instruction &LI : *L->getHeader()) {
5045     if (&LI == I) return true;
5046     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5047   }
5048   llvm_unreachable("Instruction not contained in its own parent basic block.");
5049 }
5050 
5051 bool llvm::propagatesPoison(const Instruction *I) {
5052   switch (I->getOpcode()) {
5053   case Instruction::Freeze:
5054   case Instruction::Select:
5055   case Instruction::PHI:
5056   case Instruction::Call:
5057   case Instruction::Invoke:
5058     return false;
5059   case Instruction::ICmp:
5060   case Instruction::FCmp:
5061   case Instruction::GetElementPtr:
5062     return true;
5063   default:
5064     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5065       return true;
5066 
5067     // Be conservative and return false.
5068     return false;
5069   }
5070 }
5071 
5072 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5073                                      SmallPtrSetImpl<const Value *> &Operands) {
5074   switch (I->getOpcode()) {
5075     case Instruction::Store:
5076       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5077       break;
5078 
5079     case Instruction::Load:
5080       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5081       break;
5082 
5083     case Instruction::AtomicCmpXchg:
5084       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5085       break;
5086 
5087     case Instruction::AtomicRMW:
5088       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5089       break;
5090 
5091     case Instruction::UDiv:
5092     case Instruction::SDiv:
5093     case Instruction::URem:
5094     case Instruction::SRem:
5095       Operands.insert(I->getOperand(1));
5096       break;
5097 
5098     case Instruction::Call:
5099     case Instruction::Invoke: {
5100       const CallBase *CB = cast<CallBase>(I);
5101       if (CB->isIndirectCall())
5102         Operands.insert(CB->getCalledOperand());
5103       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5104         if (CB->paramHasAttr(i, Attribute::NoUndef))
5105           Operands.insert(CB->getArgOperand(i));
5106       }
5107       break;
5108     }
5109 
5110     default:
5111       break;
5112   }
5113 }
5114 
5115 bool llvm::mustTriggerUB(const Instruction *I,
5116                          const SmallSet<const Value *, 16>& KnownPoison) {
5117   SmallPtrSet<const Value *, 4> NonPoisonOps;
5118   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5119 
5120   for (const auto *V : NonPoisonOps)
5121     if (KnownPoison.count(V))
5122       return true;
5123 
5124   return false;
5125 }
5126 
5127 
5128 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) {
5129   // We currently only look for uses of poison values within the same basic
5130   // block, as that makes it easier to guarantee that the uses will be
5131   // executed given that PoisonI is executed.
5132   //
5133   // FIXME: Expand this to consider uses beyond the same basic block. To do
5134   // this, look out for the distinction between post-dominance and strong
5135   // post-dominance.
5136   const BasicBlock *BB = PoisonI->getParent();
5137 
5138   // Set of instructions that we have proved will yield poison if PoisonI
5139   // does.
5140   SmallSet<const Value *, 16> YieldsPoison;
5141   SmallSet<const BasicBlock *, 4> Visited;
5142   YieldsPoison.insert(PoisonI);
5143   Visited.insert(PoisonI->getParent());
5144 
5145   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
5146 
5147   unsigned Iter = 0;
5148   while (Iter++ < MaxAnalysisRecursionDepth) {
5149     for (auto &I : make_range(Begin, End)) {
5150       if (&I != PoisonI) {
5151         if (mustTriggerUB(&I, YieldsPoison))
5152           return true;
5153         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5154           return false;
5155       }
5156 
5157       // Mark poison that propagates from I through uses of I.
5158       if (YieldsPoison.count(&I)) {
5159         for (const User *User : I.users()) {
5160           const Instruction *UserI = cast<Instruction>(User);
5161           if (propagatesPoison(UserI))
5162             YieldsPoison.insert(User);
5163         }
5164       }
5165     }
5166 
5167     if (auto *NextBB = BB->getSingleSuccessor()) {
5168       if (Visited.insert(NextBB).second) {
5169         BB = NextBB;
5170         Begin = BB->getFirstNonPHI()->getIterator();
5171         End = BB->end();
5172         continue;
5173       }
5174     }
5175 
5176     break;
5177   }
5178   return false;
5179 }
5180 
5181 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5182   if (FMF.noNaNs())
5183     return true;
5184 
5185   if (auto *C = dyn_cast<ConstantFP>(V))
5186     return !C->isNaN();
5187 
5188   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5189     if (!C->getElementType()->isFloatingPointTy())
5190       return false;
5191     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5192       if (C->getElementAsAPFloat(I).isNaN())
5193         return false;
5194     }
5195     return true;
5196   }
5197 
5198   if (isa<ConstantAggregateZero>(V))
5199     return true;
5200 
5201   return false;
5202 }
5203 
5204 static bool isKnownNonZero(const Value *V) {
5205   if (auto *C = dyn_cast<ConstantFP>(V))
5206     return !C->isZero();
5207 
5208   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5209     if (!C->getElementType()->isFloatingPointTy())
5210       return false;
5211     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5212       if (C->getElementAsAPFloat(I).isZero())
5213         return false;
5214     }
5215     return true;
5216   }
5217 
5218   return false;
5219 }
5220 
5221 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5222 /// Given non-min/max outer cmp/select from the clamp pattern this
5223 /// function recognizes if it can be substitued by a "canonical" min/max
5224 /// pattern.
5225 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5226                                                Value *CmpLHS, Value *CmpRHS,
5227                                                Value *TrueVal, Value *FalseVal,
5228                                                Value *&LHS, Value *&RHS) {
5229   // Try to match
5230   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5231   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5232   // and return description of the outer Max/Min.
5233 
5234   // First, check if select has inverse order:
5235   if (CmpRHS == FalseVal) {
5236     std::swap(TrueVal, FalseVal);
5237     Pred = CmpInst::getInversePredicate(Pred);
5238   }
5239 
5240   // Assume success now. If there's no match, callers should not use these anyway.
5241   LHS = TrueVal;
5242   RHS = FalseVal;
5243 
5244   const APFloat *FC1;
5245   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5246     return {SPF_UNKNOWN, SPNB_NA, false};
5247 
5248   const APFloat *FC2;
5249   switch (Pred) {
5250   case CmpInst::FCMP_OLT:
5251   case CmpInst::FCMP_OLE:
5252   case CmpInst::FCMP_ULT:
5253   case CmpInst::FCMP_ULE:
5254     if (match(FalseVal,
5255               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5256                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5257         *FC1 < *FC2)
5258       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5259     break;
5260   case CmpInst::FCMP_OGT:
5261   case CmpInst::FCMP_OGE:
5262   case CmpInst::FCMP_UGT:
5263   case CmpInst::FCMP_UGE:
5264     if (match(FalseVal,
5265               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5266                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5267         *FC1 > *FC2)
5268       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5269     break;
5270   default:
5271     break;
5272   }
5273 
5274   return {SPF_UNKNOWN, SPNB_NA, false};
5275 }
5276 
5277 /// Recognize variations of:
5278 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5279 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5280                                       Value *CmpLHS, Value *CmpRHS,
5281                                       Value *TrueVal, Value *FalseVal) {
5282   // Swap the select operands and predicate to match the patterns below.
5283   if (CmpRHS != TrueVal) {
5284     Pred = ICmpInst::getSwappedPredicate(Pred);
5285     std::swap(TrueVal, FalseVal);
5286   }
5287   const APInt *C1;
5288   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5289     const APInt *C2;
5290     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5291     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5292         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5293       return {SPF_SMAX, SPNB_NA, false};
5294 
5295     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5296     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5297         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5298       return {SPF_SMIN, SPNB_NA, false};
5299 
5300     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5301     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5302         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5303       return {SPF_UMAX, SPNB_NA, false};
5304 
5305     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5306     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5307         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5308       return {SPF_UMIN, SPNB_NA, false};
5309   }
5310   return {SPF_UNKNOWN, SPNB_NA, false};
5311 }
5312 
5313 /// Recognize variations of:
5314 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5315 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5316                                                Value *CmpLHS, Value *CmpRHS,
5317                                                Value *TVal, Value *FVal,
5318                                                unsigned Depth) {
5319   // TODO: Allow FP min/max with nnan/nsz.
5320   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5321 
5322   Value *A = nullptr, *B = nullptr;
5323   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5324   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5325     return {SPF_UNKNOWN, SPNB_NA, false};
5326 
5327   Value *C = nullptr, *D = nullptr;
5328   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5329   if (L.Flavor != R.Flavor)
5330     return {SPF_UNKNOWN, SPNB_NA, false};
5331 
5332   // We have something like: x Pred y ? min(a, b) : min(c, d).
5333   // Try to match the compare to the min/max operations of the select operands.
5334   // First, make sure we have the right compare predicate.
5335   switch (L.Flavor) {
5336   case SPF_SMIN:
5337     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5338       Pred = ICmpInst::getSwappedPredicate(Pred);
5339       std::swap(CmpLHS, CmpRHS);
5340     }
5341     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5342       break;
5343     return {SPF_UNKNOWN, SPNB_NA, false};
5344   case SPF_SMAX:
5345     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5346       Pred = ICmpInst::getSwappedPredicate(Pred);
5347       std::swap(CmpLHS, CmpRHS);
5348     }
5349     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5350       break;
5351     return {SPF_UNKNOWN, SPNB_NA, false};
5352   case SPF_UMIN:
5353     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5354       Pred = ICmpInst::getSwappedPredicate(Pred);
5355       std::swap(CmpLHS, CmpRHS);
5356     }
5357     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5358       break;
5359     return {SPF_UNKNOWN, SPNB_NA, false};
5360   case SPF_UMAX:
5361     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5362       Pred = ICmpInst::getSwappedPredicate(Pred);
5363       std::swap(CmpLHS, CmpRHS);
5364     }
5365     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5366       break;
5367     return {SPF_UNKNOWN, SPNB_NA, false};
5368   default:
5369     return {SPF_UNKNOWN, SPNB_NA, false};
5370   }
5371 
5372   // If there is a common operand in the already matched min/max and the other
5373   // min/max operands match the compare operands (either directly or inverted),
5374   // then this is min/max of the same flavor.
5375 
5376   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5377   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5378   if (D == B) {
5379     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5380                                          match(A, m_Not(m_Specific(CmpRHS)))))
5381       return {L.Flavor, SPNB_NA, false};
5382   }
5383   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5384   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5385   if (C == B) {
5386     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5387                                          match(A, m_Not(m_Specific(CmpRHS)))))
5388       return {L.Flavor, SPNB_NA, false};
5389   }
5390   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5391   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5392   if (D == A) {
5393     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5394                                          match(B, m_Not(m_Specific(CmpRHS)))))
5395       return {L.Flavor, SPNB_NA, false};
5396   }
5397   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5398   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5399   if (C == A) {
5400     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5401                                          match(B, m_Not(m_Specific(CmpRHS)))))
5402       return {L.Flavor, SPNB_NA, false};
5403   }
5404 
5405   return {SPF_UNKNOWN, SPNB_NA, false};
5406 }
5407 
5408 /// If the input value is the result of a 'not' op, constant integer, or vector
5409 /// splat of a constant integer, return the bitwise-not source value.
5410 /// TODO: This could be extended to handle non-splat vector integer constants.
5411 static Value *getNotValue(Value *V) {
5412   Value *NotV;
5413   if (match(V, m_Not(m_Value(NotV))))
5414     return NotV;
5415 
5416   const APInt *C;
5417   if (match(V, m_APInt(C)))
5418     return ConstantInt::get(V->getType(), ~(*C));
5419 
5420   return nullptr;
5421 }
5422 
5423 /// Match non-obvious integer minimum and maximum sequences.
5424 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5425                                        Value *CmpLHS, Value *CmpRHS,
5426                                        Value *TrueVal, Value *FalseVal,
5427                                        Value *&LHS, Value *&RHS,
5428                                        unsigned Depth) {
5429   // Assume success. If there's no match, callers should not use these anyway.
5430   LHS = TrueVal;
5431   RHS = FalseVal;
5432 
5433   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5434   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5435     return SPR;
5436 
5437   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5438   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5439     return SPR;
5440 
5441   // Look through 'not' ops to find disguised min/max.
5442   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5443   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5444   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5445     switch (Pred) {
5446     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5447     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5448     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5449     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5450     default: break;
5451     }
5452   }
5453 
5454   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5455   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5456   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5457     switch (Pred) {
5458     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5459     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5460     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5461     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5462     default: break;
5463     }
5464   }
5465 
5466   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5467     return {SPF_UNKNOWN, SPNB_NA, false};
5468 
5469   // Z = X -nsw Y
5470   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5471   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5472   if (match(TrueVal, m_Zero()) &&
5473       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5474     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5475 
5476   // Z = X -nsw Y
5477   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5478   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5479   if (match(FalseVal, m_Zero()) &&
5480       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5481     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5482 
5483   const APInt *C1;
5484   if (!match(CmpRHS, m_APInt(C1)))
5485     return {SPF_UNKNOWN, SPNB_NA, false};
5486 
5487   // An unsigned min/max can be written with a signed compare.
5488   const APInt *C2;
5489   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5490       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5491     // Is the sign bit set?
5492     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5493     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5494     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5495         C2->isMaxSignedValue())
5496       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5497 
5498     // Is the sign bit clear?
5499     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5500     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5501     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5502         C2->isMinSignedValue())
5503       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5504   }
5505 
5506   return {SPF_UNKNOWN, SPNB_NA, false};
5507 }
5508 
5509 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5510   assert(X && Y && "Invalid operand");
5511 
5512   // X = sub (0, Y) || X = sub nsw (0, Y)
5513   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5514       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5515     return true;
5516 
5517   // Y = sub (0, X) || Y = sub nsw (0, X)
5518   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5519       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5520     return true;
5521 
5522   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5523   Value *A, *B;
5524   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5525                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5526          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5527                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5528 }
5529 
5530 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5531                                               FastMathFlags FMF,
5532                                               Value *CmpLHS, Value *CmpRHS,
5533                                               Value *TrueVal, Value *FalseVal,
5534                                               Value *&LHS, Value *&RHS,
5535                                               unsigned Depth) {
5536   if (CmpInst::isFPPredicate(Pred)) {
5537     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5538     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5539     // purpose of identifying min/max. Disregard vector constants with undefined
5540     // elements because those can not be back-propagated for analysis.
5541     Value *OutputZeroVal = nullptr;
5542     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5543         !cast<Constant>(TrueVal)->containsUndefElement())
5544       OutputZeroVal = TrueVal;
5545     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5546              !cast<Constant>(FalseVal)->containsUndefElement())
5547       OutputZeroVal = FalseVal;
5548 
5549     if (OutputZeroVal) {
5550       if (match(CmpLHS, m_AnyZeroFP()))
5551         CmpLHS = OutputZeroVal;
5552       if (match(CmpRHS, m_AnyZeroFP()))
5553         CmpRHS = OutputZeroVal;
5554     }
5555   }
5556 
5557   LHS = CmpLHS;
5558   RHS = CmpRHS;
5559 
5560   // Signed zero may return inconsistent results between implementations.
5561   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5562   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5563   // Therefore, we behave conservatively and only proceed if at least one of the
5564   // operands is known to not be zero or if we don't care about signed zero.
5565   switch (Pred) {
5566   default: break;
5567   // FIXME: Include OGT/OLT/UGT/ULT.
5568   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5569   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5570     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5571         !isKnownNonZero(CmpRHS))
5572       return {SPF_UNKNOWN, SPNB_NA, false};
5573   }
5574 
5575   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5576   bool Ordered = false;
5577 
5578   // When given one NaN and one non-NaN input:
5579   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5580   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5581   //     ordered comparison fails), which could be NaN or non-NaN.
5582   // so here we discover exactly what NaN behavior is required/accepted.
5583   if (CmpInst::isFPPredicate(Pred)) {
5584     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5585     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5586 
5587     if (LHSSafe && RHSSafe) {
5588       // Both operands are known non-NaN.
5589       NaNBehavior = SPNB_RETURNS_ANY;
5590     } else if (CmpInst::isOrdered(Pred)) {
5591       // An ordered comparison will return false when given a NaN, so it
5592       // returns the RHS.
5593       Ordered = true;
5594       if (LHSSafe)
5595         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5596         NaNBehavior = SPNB_RETURNS_NAN;
5597       else if (RHSSafe)
5598         NaNBehavior = SPNB_RETURNS_OTHER;
5599       else
5600         // Completely unsafe.
5601         return {SPF_UNKNOWN, SPNB_NA, false};
5602     } else {
5603       Ordered = false;
5604       // An unordered comparison will return true when given a NaN, so it
5605       // returns the LHS.
5606       if (LHSSafe)
5607         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5608         NaNBehavior = SPNB_RETURNS_OTHER;
5609       else if (RHSSafe)
5610         NaNBehavior = SPNB_RETURNS_NAN;
5611       else
5612         // Completely unsafe.
5613         return {SPF_UNKNOWN, SPNB_NA, false};
5614     }
5615   }
5616 
5617   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5618     std::swap(CmpLHS, CmpRHS);
5619     Pred = CmpInst::getSwappedPredicate(Pred);
5620     if (NaNBehavior == SPNB_RETURNS_NAN)
5621       NaNBehavior = SPNB_RETURNS_OTHER;
5622     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5623       NaNBehavior = SPNB_RETURNS_NAN;
5624     Ordered = !Ordered;
5625   }
5626 
5627   // ([if]cmp X, Y) ? X : Y
5628   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5629     switch (Pred) {
5630     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5631     case ICmpInst::ICMP_UGT:
5632     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5633     case ICmpInst::ICMP_SGT:
5634     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5635     case ICmpInst::ICMP_ULT:
5636     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5637     case ICmpInst::ICMP_SLT:
5638     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5639     case FCmpInst::FCMP_UGT:
5640     case FCmpInst::FCMP_UGE:
5641     case FCmpInst::FCMP_OGT:
5642     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5643     case FCmpInst::FCMP_ULT:
5644     case FCmpInst::FCMP_ULE:
5645     case FCmpInst::FCMP_OLT:
5646     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5647     }
5648   }
5649 
5650   if (isKnownNegation(TrueVal, FalseVal)) {
5651     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5652     // match against either LHS or sext(LHS).
5653     auto MaybeSExtCmpLHS =
5654         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5655     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5656     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5657     if (match(TrueVal, MaybeSExtCmpLHS)) {
5658       // Set the return values. If the compare uses the negated value (-X >s 0),
5659       // swap the return values because the negated value is always 'RHS'.
5660       LHS = TrueVal;
5661       RHS = FalseVal;
5662       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5663         std::swap(LHS, RHS);
5664 
5665       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5666       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5667       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5668         return {SPF_ABS, SPNB_NA, false};
5669 
5670       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5671       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5672         return {SPF_ABS, SPNB_NA, false};
5673 
5674       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5675       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5676       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5677         return {SPF_NABS, SPNB_NA, false};
5678     }
5679     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5680       // Set the return values. If the compare uses the negated value (-X >s 0),
5681       // swap the return values because the negated value is always 'RHS'.
5682       LHS = FalseVal;
5683       RHS = TrueVal;
5684       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5685         std::swap(LHS, RHS);
5686 
5687       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5688       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5689       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5690         return {SPF_NABS, SPNB_NA, false};
5691 
5692       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5693       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5694       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5695         return {SPF_ABS, SPNB_NA, false};
5696     }
5697   }
5698 
5699   if (CmpInst::isIntPredicate(Pred))
5700     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5701 
5702   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5703   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5704   // semantics than minNum. Be conservative in such case.
5705   if (NaNBehavior != SPNB_RETURNS_ANY ||
5706       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5707        !isKnownNonZero(CmpRHS)))
5708     return {SPF_UNKNOWN, SPNB_NA, false};
5709 
5710   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5711 }
5712 
5713 /// Helps to match a select pattern in case of a type mismatch.
5714 ///
5715 /// The function processes the case when type of true and false values of a
5716 /// select instruction differs from type of the cmp instruction operands because
5717 /// of a cast instruction. The function checks if it is legal to move the cast
5718 /// operation after "select". If yes, it returns the new second value of
5719 /// "select" (with the assumption that cast is moved):
5720 /// 1. As operand of cast instruction when both values of "select" are same cast
5721 /// instructions.
5722 /// 2. As restored constant (by applying reverse cast operation) when the first
5723 /// value of the "select" is a cast operation and the second value is a
5724 /// constant.
5725 /// NOTE: We return only the new second value because the first value could be
5726 /// accessed as operand of cast instruction.
5727 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5728                               Instruction::CastOps *CastOp) {
5729   auto *Cast1 = dyn_cast<CastInst>(V1);
5730   if (!Cast1)
5731     return nullptr;
5732 
5733   *CastOp = Cast1->getOpcode();
5734   Type *SrcTy = Cast1->getSrcTy();
5735   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5736     // If V1 and V2 are both the same cast from the same type, look through V1.
5737     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5738       return Cast2->getOperand(0);
5739     return nullptr;
5740   }
5741 
5742   auto *C = dyn_cast<Constant>(V2);
5743   if (!C)
5744     return nullptr;
5745 
5746   Constant *CastedTo = nullptr;
5747   switch (*CastOp) {
5748   case Instruction::ZExt:
5749     if (CmpI->isUnsigned())
5750       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5751     break;
5752   case Instruction::SExt:
5753     if (CmpI->isSigned())
5754       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5755     break;
5756   case Instruction::Trunc:
5757     Constant *CmpConst;
5758     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5759         CmpConst->getType() == SrcTy) {
5760       // Here we have the following case:
5761       //
5762       //   %cond = cmp iN %x, CmpConst
5763       //   %tr = trunc iN %x to iK
5764       //   %narrowsel = select i1 %cond, iK %t, iK C
5765       //
5766       // We can always move trunc after select operation:
5767       //
5768       //   %cond = cmp iN %x, CmpConst
5769       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5770       //   %tr = trunc iN %widesel to iK
5771       //
5772       // Note that C could be extended in any way because we don't care about
5773       // upper bits after truncation. It can't be abs pattern, because it would
5774       // look like:
5775       //
5776       //   select i1 %cond, x, -x.
5777       //
5778       // So only min/max pattern could be matched. Such match requires widened C
5779       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5780       // CmpConst == C is checked below.
5781       CastedTo = CmpConst;
5782     } else {
5783       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5784     }
5785     break;
5786   case Instruction::FPTrunc:
5787     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5788     break;
5789   case Instruction::FPExt:
5790     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5791     break;
5792   case Instruction::FPToUI:
5793     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5794     break;
5795   case Instruction::FPToSI:
5796     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5797     break;
5798   case Instruction::UIToFP:
5799     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5800     break;
5801   case Instruction::SIToFP:
5802     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5803     break;
5804   default:
5805     break;
5806   }
5807 
5808   if (!CastedTo)
5809     return nullptr;
5810 
5811   // Make sure the cast doesn't lose any information.
5812   Constant *CastedBack =
5813       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5814   if (CastedBack != C)
5815     return nullptr;
5816 
5817   return CastedTo;
5818 }
5819 
5820 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5821                                              Instruction::CastOps *CastOp,
5822                                              unsigned Depth) {
5823   if (Depth >= MaxAnalysisRecursionDepth)
5824     return {SPF_UNKNOWN, SPNB_NA, false};
5825 
5826   SelectInst *SI = dyn_cast<SelectInst>(V);
5827   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5828 
5829   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5830   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5831 
5832   Value *TrueVal = SI->getTrueValue();
5833   Value *FalseVal = SI->getFalseValue();
5834 
5835   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5836                                             CastOp, Depth);
5837 }
5838 
5839 SelectPatternResult llvm::matchDecomposedSelectPattern(
5840     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5841     Instruction::CastOps *CastOp, unsigned Depth) {
5842   CmpInst::Predicate Pred = CmpI->getPredicate();
5843   Value *CmpLHS = CmpI->getOperand(0);
5844   Value *CmpRHS = CmpI->getOperand(1);
5845   FastMathFlags FMF;
5846   if (isa<FPMathOperator>(CmpI))
5847     FMF = CmpI->getFastMathFlags();
5848 
5849   // Bail out early.
5850   if (CmpI->isEquality())
5851     return {SPF_UNKNOWN, SPNB_NA, false};
5852 
5853   // Deal with type mismatches.
5854   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5855     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5856       // If this is a potential fmin/fmax with a cast to integer, then ignore
5857       // -0.0 because there is no corresponding integer value.
5858       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5859         FMF.setNoSignedZeros();
5860       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5861                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5862                                   LHS, RHS, Depth);
5863     }
5864     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5865       // If this is a potential fmin/fmax with a cast to integer, then ignore
5866       // -0.0 because there is no corresponding integer value.
5867       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5868         FMF.setNoSignedZeros();
5869       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5870                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5871                                   LHS, RHS, Depth);
5872     }
5873   }
5874   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5875                               LHS, RHS, Depth);
5876 }
5877 
5878 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5879   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5880   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5881   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5882   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5883   if (SPF == SPF_FMINNUM)
5884     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5885   if (SPF == SPF_FMAXNUM)
5886     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5887   llvm_unreachable("unhandled!");
5888 }
5889 
5890 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5891   if (SPF == SPF_SMIN) return SPF_SMAX;
5892   if (SPF == SPF_UMIN) return SPF_UMAX;
5893   if (SPF == SPF_SMAX) return SPF_SMIN;
5894   if (SPF == SPF_UMAX) return SPF_UMIN;
5895   llvm_unreachable("unhandled!");
5896 }
5897 
5898 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5899   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5900 }
5901 
5902 /// Return true if "icmp Pred LHS RHS" is always true.
5903 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5904                             const Value *RHS, const DataLayout &DL,
5905                             unsigned Depth) {
5906   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5907   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5908     return true;
5909 
5910   switch (Pred) {
5911   default:
5912     return false;
5913 
5914   case CmpInst::ICMP_SLE: {
5915     const APInt *C;
5916 
5917     // LHS s<= LHS +_{nsw} C   if C >= 0
5918     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5919       return !C->isNegative();
5920     return false;
5921   }
5922 
5923   case CmpInst::ICMP_ULE: {
5924     const APInt *C;
5925 
5926     // LHS u<= LHS +_{nuw} C   for any C
5927     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5928       return true;
5929 
5930     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5931     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5932                                        const Value *&X,
5933                                        const APInt *&CA, const APInt *&CB) {
5934       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5935           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5936         return true;
5937 
5938       // If X & C == 0 then (X | C) == X +_{nuw} C
5939       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5940           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5941         KnownBits Known(CA->getBitWidth());
5942         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5943                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5944         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5945           return true;
5946       }
5947 
5948       return false;
5949     };
5950 
5951     const Value *X;
5952     const APInt *CLHS, *CRHS;
5953     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5954       return CLHS->ule(*CRHS);
5955 
5956     return false;
5957   }
5958   }
5959 }
5960 
5961 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5962 /// ALHS ARHS" is true.  Otherwise, return None.
5963 static Optional<bool>
5964 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5965                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5966                       const DataLayout &DL, unsigned Depth) {
5967   switch (Pred) {
5968   default:
5969     return None;
5970 
5971   case CmpInst::ICMP_SLT:
5972   case CmpInst::ICMP_SLE:
5973     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5974         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5975       return true;
5976     return None;
5977 
5978   case CmpInst::ICMP_ULT:
5979   case CmpInst::ICMP_ULE:
5980     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5981         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5982       return true;
5983     return None;
5984   }
5985 }
5986 
5987 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5988 /// when the operands match, but are swapped.
5989 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5990                           const Value *BLHS, const Value *BRHS,
5991                           bool &IsSwappedOps) {
5992 
5993   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5994   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5995   return IsMatchingOps || IsSwappedOps;
5996 }
5997 
5998 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5999 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6000 /// Otherwise, return None if we can't infer anything.
6001 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6002                                                     CmpInst::Predicate BPred,
6003                                                     bool AreSwappedOps) {
6004   // Canonicalize the predicate as if the operands were not commuted.
6005   if (AreSwappedOps)
6006     BPred = ICmpInst::getSwappedPredicate(BPred);
6007 
6008   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6009     return true;
6010   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6011     return false;
6012 
6013   return None;
6014 }
6015 
6016 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6017 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6018 /// Otherwise, return None if we can't infer anything.
6019 static Optional<bool>
6020 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6021                                  const ConstantInt *C1,
6022                                  CmpInst::Predicate BPred,
6023                                  const ConstantInt *C2) {
6024   ConstantRange DomCR =
6025       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6026   ConstantRange CR =
6027       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6028   ConstantRange Intersection = DomCR.intersectWith(CR);
6029   ConstantRange Difference = DomCR.difference(CR);
6030   if (Intersection.isEmptySet())
6031     return false;
6032   if (Difference.isEmptySet())
6033     return true;
6034   return None;
6035 }
6036 
6037 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6038 /// false.  Otherwise, return None if we can't infer anything.
6039 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6040                                          CmpInst::Predicate BPred,
6041                                          const Value *BLHS, const Value *BRHS,
6042                                          const DataLayout &DL, bool LHSIsTrue,
6043                                          unsigned Depth) {
6044   Value *ALHS = LHS->getOperand(0);
6045   Value *ARHS = LHS->getOperand(1);
6046 
6047   // The rest of the logic assumes the LHS condition is true.  If that's not the
6048   // case, invert the predicate to make it so.
6049   CmpInst::Predicate APred =
6050       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6051 
6052   // Can we infer anything when the two compares have matching operands?
6053   bool AreSwappedOps;
6054   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6055     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6056             APred, BPred, AreSwappedOps))
6057       return Implication;
6058     // No amount of additional analysis will infer the second condition, so
6059     // early exit.
6060     return None;
6061   }
6062 
6063   // Can we infer anything when the LHS operands match and the RHS operands are
6064   // constants (not necessarily matching)?
6065   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6066     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6067             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6068       return Implication;
6069     // No amount of additional analysis will infer the second condition, so
6070     // early exit.
6071     return None;
6072   }
6073 
6074   if (APred == BPred)
6075     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6076   return None;
6077 }
6078 
6079 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6080 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6081 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6082 static Optional<bool>
6083 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6084                    const Value *RHSOp0, const Value *RHSOp1,
6085 
6086                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6087   // The LHS must be an 'or' or an 'and' instruction.
6088   assert((LHS->getOpcode() == Instruction::And ||
6089           LHS->getOpcode() == Instruction::Or) &&
6090          "Expected LHS to be 'and' or 'or'.");
6091 
6092   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6093 
6094   // If the result of an 'or' is false, then we know both legs of the 'or' are
6095   // false.  Similarly, if the result of an 'and' is true, then we know both
6096   // legs of the 'and' are true.
6097   Value *ALHS, *ARHS;
6098   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6099       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6100     // FIXME: Make this non-recursion.
6101     if (Optional<bool> Implication = isImpliedCondition(
6102             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6103       return Implication;
6104     if (Optional<bool> Implication = isImpliedCondition(
6105             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6106       return Implication;
6107     return None;
6108   }
6109   return None;
6110 }
6111 
6112 Optional<bool>
6113 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6114                          const Value *RHSOp0, const Value *RHSOp1,
6115                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6116   // Bail out when we hit the limit.
6117   if (Depth == MaxAnalysisRecursionDepth)
6118     return None;
6119 
6120   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6121   // example.
6122   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6123     return None;
6124 
6125   Type *OpTy = LHS->getType();
6126   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6127 
6128   // FIXME: Extending the code below to handle vectors.
6129   if (OpTy->isVectorTy())
6130     return None;
6131 
6132   assert(OpTy->isIntegerTy(1) && "implied by above");
6133 
6134   // Both LHS and RHS are icmps.
6135   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6136   if (LHSCmp)
6137     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6138                               Depth);
6139 
6140   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6141   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6142   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6143   if (LHSBO) {
6144     if ((LHSBO->getOpcode() == Instruction::And ||
6145          LHSBO->getOpcode() == Instruction::Or))
6146       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6147                                 Depth);
6148   }
6149   return None;
6150 }
6151 
6152 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6153                                         const DataLayout &DL, bool LHSIsTrue,
6154                                         unsigned Depth) {
6155   // LHS ==> RHS by definition
6156   if (LHS == RHS)
6157     return LHSIsTrue;
6158 
6159   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6160   if (RHSCmp)
6161     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6162                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6163                               LHSIsTrue, Depth);
6164   return None;
6165 }
6166 
6167 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6168 // condition dominating ContextI or nullptr, if no condition is found.
6169 static std::pair<Value *, bool>
6170 getDomPredecessorCondition(const Instruction *ContextI) {
6171   if (!ContextI || !ContextI->getParent())
6172     return {nullptr, false};
6173 
6174   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6175   // dominator tree (eg, from a SimplifyQuery) instead?
6176   const BasicBlock *ContextBB = ContextI->getParent();
6177   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6178   if (!PredBB)
6179     return {nullptr, false};
6180 
6181   // We need a conditional branch in the predecessor.
6182   Value *PredCond;
6183   BasicBlock *TrueBB, *FalseBB;
6184   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6185     return {nullptr, false};
6186 
6187   // The branch should get simplified. Don't bother simplifying this condition.
6188   if (TrueBB == FalseBB)
6189     return {nullptr, false};
6190 
6191   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6192          "Predecessor block does not point to successor?");
6193 
6194   // Is this condition implied by the predecessor condition?
6195   return {PredCond, TrueBB == ContextBB};
6196 }
6197 
6198 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6199                                              const Instruction *ContextI,
6200                                              const DataLayout &DL) {
6201   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6202   auto PredCond = getDomPredecessorCondition(ContextI);
6203   if (PredCond.first)
6204     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6205   return None;
6206 }
6207 
6208 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6209                                              const Value *LHS, const Value *RHS,
6210                                              const Instruction *ContextI,
6211                                              const DataLayout &DL) {
6212   auto PredCond = getDomPredecessorCondition(ContextI);
6213   if (PredCond.first)
6214     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6215                               PredCond.second);
6216   return None;
6217 }
6218 
6219 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6220                               APInt &Upper, const InstrInfoQuery &IIQ) {
6221   unsigned Width = Lower.getBitWidth();
6222   const APInt *C;
6223   switch (BO.getOpcode()) {
6224   case Instruction::Add:
6225     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6226       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6227       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6228         // 'add nuw x, C' produces [C, UINT_MAX].
6229         Lower = *C;
6230       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6231         if (C->isNegative()) {
6232           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6233           Lower = APInt::getSignedMinValue(Width);
6234           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6235         } else {
6236           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6237           Lower = APInt::getSignedMinValue(Width) + *C;
6238           Upper = APInt::getSignedMaxValue(Width) + 1;
6239         }
6240       }
6241     }
6242     break;
6243 
6244   case Instruction::And:
6245     if (match(BO.getOperand(1), m_APInt(C)))
6246       // 'and x, C' produces [0, C].
6247       Upper = *C + 1;
6248     break;
6249 
6250   case Instruction::Or:
6251     if (match(BO.getOperand(1), m_APInt(C)))
6252       // 'or x, C' produces [C, UINT_MAX].
6253       Lower = *C;
6254     break;
6255 
6256   case Instruction::AShr:
6257     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6258       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6259       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6260       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6261     } else if (match(BO.getOperand(0), m_APInt(C))) {
6262       unsigned ShiftAmount = Width - 1;
6263       if (!C->isNullValue() && IIQ.isExact(&BO))
6264         ShiftAmount = C->countTrailingZeros();
6265       if (C->isNegative()) {
6266         // 'ashr C, x' produces [C, C >> (Width-1)]
6267         Lower = *C;
6268         Upper = C->ashr(ShiftAmount) + 1;
6269       } else {
6270         // 'ashr C, x' produces [C >> (Width-1), C]
6271         Lower = C->ashr(ShiftAmount);
6272         Upper = *C + 1;
6273       }
6274     }
6275     break;
6276 
6277   case Instruction::LShr:
6278     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6279       // 'lshr x, C' produces [0, UINT_MAX >> C].
6280       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6281     } else if (match(BO.getOperand(0), m_APInt(C))) {
6282       // 'lshr C, x' produces [C >> (Width-1), C].
6283       unsigned ShiftAmount = Width - 1;
6284       if (!C->isNullValue() && IIQ.isExact(&BO))
6285         ShiftAmount = C->countTrailingZeros();
6286       Lower = C->lshr(ShiftAmount);
6287       Upper = *C + 1;
6288     }
6289     break;
6290 
6291   case Instruction::Shl:
6292     if (match(BO.getOperand(0), m_APInt(C))) {
6293       if (IIQ.hasNoUnsignedWrap(&BO)) {
6294         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6295         Lower = *C;
6296         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6297       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6298         if (C->isNegative()) {
6299           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6300           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6301           Lower = C->shl(ShiftAmount);
6302           Upper = *C + 1;
6303         } else {
6304           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6305           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6306           Lower = *C;
6307           Upper = C->shl(ShiftAmount) + 1;
6308         }
6309       }
6310     }
6311     break;
6312 
6313   case Instruction::SDiv:
6314     if (match(BO.getOperand(1), m_APInt(C))) {
6315       APInt IntMin = APInt::getSignedMinValue(Width);
6316       APInt IntMax = APInt::getSignedMaxValue(Width);
6317       if (C->isAllOnesValue()) {
6318         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6319         //    where C != -1 and C != 0 and C != 1
6320         Lower = IntMin + 1;
6321         Upper = IntMax + 1;
6322       } else if (C->countLeadingZeros() < Width - 1) {
6323         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6324         //    where C != -1 and C != 0 and C != 1
6325         Lower = IntMin.sdiv(*C);
6326         Upper = IntMax.sdiv(*C);
6327         if (Lower.sgt(Upper))
6328           std::swap(Lower, Upper);
6329         Upper = Upper + 1;
6330         assert(Upper != Lower && "Upper part of range has wrapped!");
6331       }
6332     } else if (match(BO.getOperand(0), m_APInt(C))) {
6333       if (C->isMinSignedValue()) {
6334         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6335         Lower = *C;
6336         Upper = Lower.lshr(1) + 1;
6337       } else {
6338         // 'sdiv C, x' produces [-|C|, |C|].
6339         Upper = C->abs() + 1;
6340         Lower = (-Upper) + 1;
6341       }
6342     }
6343     break;
6344 
6345   case Instruction::UDiv:
6346     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6347       // 'udiv x, C' produces [0, UINT_MAX / C].
6348       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6349     } else if (match(BO.getOperand(0), m_APInt(C))) {
6350       // 'udiv C, x' produces [0, C].
6351       Upper = *C + 1;
6352     }
6353     break;
6354 
6355   case Instruction::SRem:
6356     if (match(BO.getOperand(1), m_APInt(C))) {
6357       // 'srem x, C' produces (-|C|, |C|).
6358       Upper = C->abs();
6359       Lower = (-Upper) + 1;
6360     }
6361     break;
6362 
6363   case Instruction::URem:
6364     if (match(BO.getOperand(1), m_APInt(C)))
6365       // 'urem x, C' produces [0, C).
6366       Upper = *C;
6367     break;
6368 
6369   default:
6370     break;
6371   }
6372 }
6373 
6374 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6375                                   APInt &Upper) {
6376   unsigned Width = Lower.getBitWidth();
6377   const APInt *C;
6378   switch (II.getIntrinsicID()) {
6379   case Intrinsic::uadd_sat:
6380     // uadd.sat(x, C) produces [C, UINT_MAX].
6381     if (match(II.getOperand(0), m_APInt(C)) ||
6382         match(II.getOperand(1), m_APInt(C)))
6383       Lower = *C;
6384     break;
6385   case Intrinsic::sadd_sat:
6386     if (match(II.getOperand(0), m_APInt(C)) ||
6387         match(II.getOperand(1), m_APInt(C))) {
6388       if (C->isNegative()) {
6389         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6390         Lower = APInt::getSignedMinValue(Width);
6391         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6392       } else {
6393         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6394         Lower = APInt::getSignedMinValue(Width) + *C;
6395         Upper = APInt::getSignedMaxValue(Width) + 1;
6396       }
6397     }
6398     break;
6399   case Intrinsic::usub_sat:
6400     // usub.sat(C, x) produces [0, C].
6401     if (match(II.getOperand(0), m_APInt(C)))
6402       Upper = *C + 1;
6403     // usub.sat(x, C) produces [0, UINT_MAX - C].
6404     else if (match(II.getOperand(1), m_APInt(C)))
6405       Upper = APInt::getMaxValue(Width) - *C + 1;
6406     break;
6407   case Intrinsic::ssub_sat:
6408     if (match(II.getOperand(0), m_APInt(C))) {
6409       if (C->isNegative()) {
6410         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6411         Lower = APInt::getSignedMinValue(Width);
6412         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6413       } else {
6414         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6415         Lower = *C - APInt::getSignedMaxValue(Width);
6416         Upper = APInt::getSignedMaxValue(Width) + 1;
6417       }
6418     } else if (match(II.getOperand(1), m_APInt(C))) {
6419       if (C->isNegative()) {
6420         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6421         Lower = APInt::getSignedMinValue(Width) - *C;
6422         Upper = APInt::getSignedMaxValue(Width) + 1;
6423       } else {
6424         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6425         Lower = APInt::getSignedMinValue(Width);
6426         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6427       }
6428     }
6429     break;
6430   case Intrinsic::umin:
6431   case Intrinsic::umax:
6432   case Intrinsic::smin:
6433   case Intrinsic::smax:
6434     if (!match(II.getOperand(0), m_APInt(C)) &&
6435         !match(II.getOperand(1), m_APInt(C)))
6436       break;
6437 
6438     switch (II.getIntrinsicID()) {
6439     case Intrinsic::umin:
6440       Upper = *C + 1;
6441       break;
6442     case Intrinsic::umax:
6443       Lower = *C;
6444       break;
6445     case Intrinsic::smin:
6446       Lower = APInt::getSignedMinValue(Width);
6447       Upper = *C + 1;
6448       break;
6449     case Intrinsic::smax:
6450       Lower = *C;
6451       Upper = APInt::getSignedMaxValue(Width) + 1;
6452       break;
6453     default:
6454       llvm_unreachable("Must be min/max intrinsic");
6455     }
6456     break;
6457   case Intrinsic::abs:
6458     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6459     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6460     if (match(II.getOperand(1), m_One()))
6461       Upper = APInt::getSignedMaxValue(Width) + 1;
6462     else
6463       Upper = APInt::getSignedMinValue(Width) + 1;
6464     break;
6465   default:
6466     break;
6467   }
6468 }
6469 
6470 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6471                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6472   const Value *LHS = nullptr, *RHS = nullptr;
6473   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6474   if (R.Flavor == SPF_UNKNOWN)
6475     return;
6476 
6477   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6478 
6479   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6480     // If the negation part of the abs (in RHS) has the NSW flag,
6481     // then the result of abs(X) is [0..SIGNED_MAX],
6482     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6483     Lower = APInt::getNullValue(BitWidth);
6484     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6485         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6486       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6487     else
6488       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6489     return;
6490   }
6491 
6492   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6493     // The result of -abs(X) is <= 0.
6494     Lower = APInt::getSignedMinValue(BitWidth);
6495     Upper = APInt(BitWidth, 1);
6496     return;
6497   }
6498 
6499   const APInt *C;
6500   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6501     return;
6502 
6503   switch (R.Flavor) {
6504     case SPF_UMIN:
6505       Upper = *C + 1;
6506       break;
6507     case SPF_UMAX:
6508       Lower = *C;
6509       break;
6510     case SPF_SMIN:
6511       Lower = APInt::getSignedMinValue(BitWidth);
6512       Upper = *C + 1;
6513       break;
6514     case SPF_SMAX:
6515       Lower = *C;
6516       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6517       break;
6518     default:
6519       break;
6520   }
6521 }
6522 
6523 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6524                                          AssumptionCache *AC,
6525                                          const Instruction *CtxI,
6526                                          unsigned Depth) {
6527   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6528 
6529   if (Depth == MaxAnalysisRecursionDepth)
6530     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6531 
6532   const APInt *C;
6533   if (match(V, m_APInt(C)))
6534     return ConstantRange(*C);
6535 
6536   InstrInfoQuery IIQ(UseInstrInfo);
6537   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6538   APInt Lower = APInt(BitWidth, 0);
6539   APInt Upper = APInt(BitWidth, 0);
6540   if (auto *BO = dyn_cast<BinaryOperator>(V))
6541     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6542   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6543     setLimitsForIntrinsic(*II, Lower, Upper);
6544   else if (auto *SI = dyn_cast<SelectInst>(V))
6545     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6546 
6547   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6548 
6549   if (auto *I = dyn_cast<Instruction>(V))
6550     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6551       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6552 
6553   if (CtxI && AC) {
6554     // Try to restrict the range based on information from assumptions.
6555     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6556       if (!AssumeVH)
6557         continue;
6558       CallInst *I = cast<CallInst>(AssumeVH);
6559       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6560              "Got assumption for the wrong function!");
6561       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6562              "must be an assume intrinsic");
6563 
6564       if (!isValidAssumeForContext(I, CtxI, nullptr))
6565         continue;
6566       Value *Arg = I->getArgOperand(0);
6567       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6568       // Currently we just use information from comparisons.
6569       if (!Cmp || Cmp->getOperand(0) != V)
6570         continue;
6571       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6572                                                AC, I, Depth + 1);
6573       CR = CR.intersectWith(
6574           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6575     }
6576   }
6577 
6578   return CR;
6579 }
6580 
6581 static Optional<int64_t>
6582 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6583   // Skip over the first indices.
6584   gep_type_iterator GTI = gep_type_begin(GEP);
6585   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6586     /*skip along*/;
6587 
6588   // Compute the offset implied by the rest of the indices.
6589   int64_t Offset = 0;
6590   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6591     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6592     if (!OpC)
6593       return None;
6594     if (OpC->isZero())
6595       continue; // No offset.
6596 
6597     // Handle struct indices, which add their field offset to the pointer.
6598     if (StructType *STy = GTI.getStructTypeOrNull()) {
6599       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6600       continue;
6601     }
6602 
6603     // Otherwise, we have a sequential type like an array or fixed-length
6604     // vector. Multiply the index by the ElementSize.
6605     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6606     if (Size.isScalable())
6607       return None;
6608     Offset += Size.getFixedSize() * OpC->getSExtValue();
6609   }
6610 
6611   return Offset;
6612 }
6613 
6614 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6615                                         const DataLayout &DL) {
6616   Ptr1 = Ptr1->stripPointerCasts();
6617   Ptr2 = Ptr2->stripPointerCasts();
6618 
6619   // Handle the trivial case first.
6620   if (Ptr1 == Ptr2) {
6621     return 0;
6622   }
6623 
6624   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6625   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6626 
6627   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6628   // as in "P" and "gep P, 1".
6629   // Also do this iteratively to handle the the following case:
6630   //   Ptr_t1 = GEP Ptr1, c1
6631   //   Ptr_t2 = GEP Ptr_t1, c2
6632   //   Ptr2 = GEP Ptr_t2, c3
6633   // where we will return c1+c2+c3.
6634   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6635   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6636   // are the same, and return the difference between offsets.
6637   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6638                                  const Value *Ptr) -> Optional<int64_t> {
6639     const GEPOperator *GEP_T = GEP;
6640     int64_t OffsetVal = 0;
6641     bool HasSameBase = false;
6642     while (GEP_T) {
6643       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6644       if (!Offset)
6645         return None;
6646       OffsetVal += *Offset;
6647       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6648       if (Op0 == Ptr) {
6649         HasSameBase = true;
6650         break;
6651       }
6652       GEP_T = dyn_cast<GEPOperator>(Op0);
6653     }
6654     if (!HasSameBase)
6655       return None;
6656     return OffsetVal;
6657   };
6658 
6659   if (GEP1) {
6660     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6661     if (Offset)
6662       return -*Offset;
6663   }
6664   if (GEP2) {
6665     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6666     if (Offset)
6667       return Offset;
6668   }
6669 
6670   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6671   // base.  After that base, they may have some number of common (and
6672   // potentially variable) indices.  After that they handle some constant
6673   // offset, which determines their offset from each other.  At this point, we
6674   // handle no other case.
6675   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6676     return None;
6677 
6678   // Skip any common indices and track the GEP types.
6679   unsigned Idx = 1;
6680   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6681     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6682       break;
6683 
6684   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6685   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6686   if (!Offset1 || !Offset2)
6687     return None;
6688   return *Offset2 - *Offset1;
6689 }
6690