1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <cstring> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 const unsigned MaxDepth = 6; 43 44 /// Enable an experimental feature to leverage information about dominating 45 /// conditions to compute known bits. The individual options below control how 46 /// hard we search. The defaults are chosen to be fairly aggressive. If you 47 /// run into compile time problems when testing, scale them back and report 48 /// your findings. 49 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 50 cl::Hidden, cl::init(false)); 51 52 // This is expensive, so we only do it for the top level query value. 53 // (TODO: evaluate cost vs profit, consider higher thresholds) 54 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 55 cl::Hidden, cl::init(1)); 56 57 /// How many dominating blocks should be scanned looking for dominating 58 /// conditions? 59 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 60 cl::Hidden, 61 cl::init(20)); 62 63 // Controls the number of uses of the value searched for possible 64 // dominating comparisons. 65 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 66 cl::Hidden, cl::init(20)); 67 68 // If true, don't consider only compares whose only use is a branch. 69 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 70 cl::Hidden, cl::init(false)); 71 72 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 73 /// 0). For vector types, returns the element type's bitwidth. 74 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 75 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 76 return BitWidth; 77 78 return DL.getPointerTypeSizeInBits(Ty); 79 } 80 81 // Many of these functions have internal versions that take an assumption 82 // exclusion set. This is because of the potential for mutual recursion to 83 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 84 // classic case of this is assume(x = y), which will attempt to determine 85 // bits in x from bits in y, which will attempt to determine bits in y from 86 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 87 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 88 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 89 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 90 91 namespace { 92 // Simplifying using an assume can only be done in a particular control-flow 93 // context (the context instruction provides that context). If an assume and 94 // the context instruction are not in the same block then the DT helps in 95 // figuring out if we can use it. 96 struct Query { 97 ExclInvsSet ExclInvs; 98 AssumptionCache *AC; 99 const Instruction *CxtI; 100 const DominatorTree *DT; 101 102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 103 const DominatorTree *DT = nullptr) 104 : AC(AC), CxtI(CxtI), DT(DT) {} 105 106 Query(const Query &Q, const Value *NewExcl) 107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 108 ExclInvs.insert(NewExcl); 109 } 110 }; 111 } // end anonymous namespace 112 113 // Given the provided Value and, potentially, a context instruction, return 114 // the preferred context instruction (if any). 115 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 116 // If we've been provided with a context instruction, then use that (provided 117 // it has been inserted). 118 if (CxtI && CxtI->getParent()) 119 return CxtI; 120 121 // If the value is really an already-inserted instruction, then use that. 122 CxtI = dyn_cast<Instruction>(V); 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 return nullptr; 127 } 128 129 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 130 const DataLayout &DL, unsigned Depth, 131 const Query &Q); 132 133 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 134 const DataLayout &DL, unsigned Depth, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 138 Query(AC, safeCxtI(V, CxtI), DT)); 139 } 140 141 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 142 AssumptionCache *AC, const Instruction *CxtI, 143 const DominatorTree *DT) { 144 assert(LHS->getType() == RHS->getType() && 145 "LHS and RHS should have the same type"); 146 assert(LHS->getType()->isIntOrIntVectorTy() && 147 "LHS and RHS should be integers"); 148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 154 } 155 156 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 157 const DataLayout &DL, unsigned Depth, 158 const Query &Q); 159 160 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 161 const DataLayout &DL, unsigned Depth, 162 AssumptionCache *AC, const Instruction *CxtI, 163 const DominatorTree *DT) { 164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 165 Query(AC, safeCxtI(V, CxtI), DT)); 166 } 167 168 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 169 const Query &Q, const DataLayout &DL); 170 171 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 172 unsigned Depth, AssumptionCache *AC, 173 const Instruction *CxtI, 174 const DominatorTree *DT) { 175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 176 Query(AC, safeCxtI(V, CxtI), DT), DL); 177 } 178 179 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 180 const Query &Q); 181 182 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 183 AssumptionCache *AC, const Instruction *CxtI, 184 const DominatorTree *DT) { 185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 186 } 187 188 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 189 AssumptionCache *AC, const Instruction *CxtI, 190 const DominatorTree *DT) { 191 bool NonNegative, Negative; 192 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 193 return NonNegative; 194 } 195 196 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 197 unsigned Depth, const Query &Q); 198 199 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 200 unsigned Depth, AssumptionCache *AC, 201 const Instruction *CxtI, const DominatorTree *DT) { 202 return ::MaskedValueIsZero(V, Mask, DL, Depth, 203 Query(AC, safeCxtI(V, CxtI), DT)); 204 } 205 206 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 207 unsigned Depth, const Query &Q); 208 209 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 210 unsigned Depth, AssumptionCache *AC, 211 const Instruction *CxtI, 212 const DominatorTree *DT) { 213 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 214 } 215 216 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 217 APInt &KnownZero, APInt &KnownOne, 218 APInt &KnownZero2, APInt &KnownOne2, 219 const DataLayout &DL, unsigned Depth, 220 const Query &Q) { 221 if (!Add) { 222 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 223 // We know that the top bits of C-X are clear if X contains less bits 224 // than C (i.e. no wrap-around can happen). For example, 20-X is 225 // positive if we can prove that X is >= 0 and < 16. 226 if (!CLHS->getValue().isNegative()) { 227 unsigned BitWidth = KnownZero.getBitWidth(); 228 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 229 // NLZ can't be BitWidth with no sign bit 230 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 231 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 232 233 // If all of the MaskV bits are known to be zero, then we know the 234 // output top bits are zero, because we now know that the output is 235 // from [0-C]. 236 if ((KnownZero2 & MaskV) == MaskV) { 237 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 238 // Top bits known zero. 239 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 240 } 241 } 242 } 243 } 244 245 unsigned BitWidth = KnownZero.getBitWidth(); 246 247 // If an initial sequence of bits in the result is not needed, the 248 // corresponding bits in the operands are not needed. 249 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 250 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 251 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 252 253 // Carry in a 1 for a subtract, rather than a 0. 254 APInt CarryIn(BitWidth, 0); 255 if (!Add) { 256 // Sum = LHS + ~RHS + 1 257 std::swap(KnownZero2, KnownOne2); 258 CarryIn.setBit(0); 259 } 260 261 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 262 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 263 264 // Compute known bits of the carry. 265 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 266 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 267 268 // Compute set of known bits (where all three relevant bits are known). 269 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 270 APInt RHSKnown = KnownZero2 | KnownOne2; 271 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 272 APInt Known = LHSKnown & RHSKnown & CarryKnown; 273 274 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 275 "known bits of sum differ"); 276 277 // Compute known bits of the result. 278 KnownZero = ~PossibleSumOne & Known; 279 KnownOne = PossibleSumOne & Known; 280 281 // Are we still trying to solve for the sign bit? 282 if (!Known.isNegative()) { 283 if (NSW) { 284 // Adding two non-negative numbers, or subtracting a negative number from 285 // a non-negative one, can't wrap into negative. 286 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 287 KnownZero |= APInt::getSignBit(BitWidth); 288 // Adding two negative numbers, or subtracting a non-negative number from 289 // a negative one, can't wrap into non-negative. 290 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 291 KnownOne |= APInt::getSignBit(BitWidth); 292 } 293 } 294 } 295 296 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 297 APInt &KnownZero, APInt &KnownOne, 298 APInt &KnownZero2, APInt &KnownOne2, 299 const DataLayout &DL, unsigned Depth, 300 const Query &Q) { 301 unsigned BitWidth = KnownZero.getBitWidth(); 302 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 303 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 304 305 bool isKnownNegative = false; 306 bool isKnownNonNegative = false; 307 // If the multiplication is known not to overflow, compute the sign bit. 308 if (NSW) { 309 if (Op0 == Op1) { 310 // The product of a number with itself is non-negative. 311 isKnownNonNegative = true; 312 } else { 313 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 314 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 315 bool isKnownNegativeOp1 = KnownOne.isNegative(); 316 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 317 // The product of two numbers with the same sign is non-negative. 318 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 319 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 320 // The product of a negative number and a non-negative number is either 321 // negative or zero. 322 if (!isKnownNonNegative) 323 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 324 isKnownNonZero(Op0, DL, Depth, Q)) || 325 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 326 isKnownNonZero(Op1, DL, Depth, Q)); 327 } 328 } 329 330 // If low bits are zero in either operand, output low known-0 bits. 331 // Also compute a conservative estimate for high known-0 bits. 332 // More trickiness is possible, but this is sufficient for the 333 // interesting case of alignment computation. 334 KnownOne.clearAllBits(); 335 unsigned TrailZ = KnownZero.countTrailingOnes() + 336 KnownZero2.countTrailingOnes(); 337 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 338 KnownZero2.countLeadingOnes(), 339 BitWidth) - BitWidth; 340 341 TrailZ = std::min(TrailZ, BitWidth); 342 LeadZ = std::min(LeadZ, BitWidth); 343 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 344 APInt::getHighBitsSet(BitWidth, LeadZ); 345 346 // Only make use of no-wrap flags if we failed to compute the sign bit 347 // directly. This matters if the multiplication always overflows, in 348 // which case we prefer to follow the result of the direct computation, 349 // though as the program is invoking undefined behaviour we can choose 350 // whatever we like here. 351 if (isKnownNonNegative && !KnownOne.isNegative()) 352 KnownZero.setBit(BitWidth - 1); 353 else if (isKnownNegative && !KnownZero.isNegative()) 354 KnownOne.setBit(BitWidth - 1); 355 } 356 357 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 358 APInt &KnownZero) { 359 unsigned BitWidth = KnownZero.getBitWidth(); 360 unsigned NumRanges = Ranges.getNumOperands() / 2; 361 assert(NumRanges >= 1); 362 363 // Use the high end of the ranges to find leading zeros. 364 unsigned MinLeadingZeros = BitWidth; 365 for (unsigned i = 0; i < NumRanges; ++i) { 366 ConstantInt *Lower = 367 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 368 ConstantInt *Upper = 369 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 370 ConstantRange Range(Lower->getValue(), Upper->getValue()); 371 if (Range.isWrappedSet()) 372 MinLeadingZeros = 0; // -1 has no zeros 373 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 374 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 375 } 376 377 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 378 } 379 380 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 381 SmallVector<const Value *, 16> WorkSet(1, I); 382 SmallPtrSet<const Value *, 32> Visited; 383 SmallPtrSet<const Value *, 16> EphValues; 384 385 while (!WorkSet.empty()) { 386 const Value *V = WorkSet.pop_back_val(); 387 if (!Visited.insert(V).second) 388 continue; 389 390 // If all uses of this value are ephemeral, then so is this value. 391 bool FoundNEUse = false; 392 for (const User *I : V->users()) 393 if (!EphValues.count(I)) { 394 FoundNEUse = true; 395 break; 396 } 397 398 if (!FoundNEUse) { 399 if (V == E) 400 return true; 401 402 EphValues.insert(V); 403 if (const User *U = dyn_cast<User>(V)) 404 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 405 J != JE; ++J) { 406 if (isSafeToSpeculativelyExecute(*J)) 407 WorkSet.push_back(*J); 408 } 409 } 410 } 411 412 return false; 413 } 414 415 // Is this an intrinsic that cannot be speculated but also cannot trap? 416 static bool isAssumeLikeIntrinsic(const Instruction *I) { 417 if (const CallInst *CI = dyn_cast<CallInst>(I)) 418 if (Function *F = CI->getCalledFunction()) 419 switch (F->getIntrinsicID()) { 420 default: break; 421 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 422 case Intrinsic::assume: 423 case Intrinsic::dbg_declare: 424 case Intrinsic::dbg_value: 425 case Intrinsic::invariant_start: 426 case Intrinsic::invariant_end: 427 case Intrinsic::lifetime_start: 428 case Intrinsic::lifetime_end: 429 case Intrinsic::objectsize: 430 case Intrinsic::ptr_annotation: 431 case Intrinsic::var_annotation: 432 return true; 433 } 434 435 return false; 436 } 437 438 static bool isValidAssumeForContext(Value *V, const Query &Q) { 439 Instruction *Inv = cast<Instruction>(V); 440 441 // There are two restrictions on the use of an assume: 442 // 1. The assume must dominate the context (or the control flow must 443 // reach the assume whenever it reaches the context). 444 // 2. The context must not be in the assume's set of ephemeral values 445 // (otherwise we will use the assume to prove that the condition 446 // feeding the assume is trivially true, thus causing the removal of 447 // the assume). 448 449 if (Q.DT) { 450 if (Q.DT->dominates(Inv, Q.CxtI)) { 451 return true; 452 } else if (Inv->getParent() == Q.CxtI->getParent()) { 453 // The context comes first, but they're both in the same block. Make sure 454 // there is nothing in between that might interrupt the control flow. 455 for (BasicBlock::const_iterator I = 456 std::next(BasicBlock::const_iterator(Q.CxtI)), 457 IE(Inv); I != IE; ++I) 458 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I)) 459 return false; 460 461 return !isEphemeralValueOf(Inv, Q.CxtI); 462 } 463 464 return false; 465 } 466 467 // When we don't have a DT, we do a limited search... 468 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 469 return true; 470 } else if (Inv->getParent() == Q.CxtI->getParent()) { 471 // Search forward from the assume until we reach the context (or the end 472 // of the block); the common case is that the assume will come first. 473 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 474 IE = Inv->getParent()->end(); I != IE; ++I) 475 if (I == Q.CxtI) 476 return true; 477 478 // The context must come first... 479 for (BasicBlock::const_iterator I = 480 std::next(BasicBlock::const_iterator(Q.CxtI)), 481 IE(Inv); I != IE; ++I) 482 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I)) 483 return false; 484 485 return !isEphemeralValueOf(Inv, Q.CxtI); 486 } 487 488 return false; 489 } 490 491 bool llvm::isValidAssumeForContext(const Instruction *I, 492 const Instruction *CxtI, 493 const DominatorTree *DT) { 494 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 495 Query(nullptr, CxtI, DT)); 496 } 497 498 template<typename LHS, typename RHS> 499 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 500 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 501 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 502 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 503 } 504 505 template<typename LHS, typename RHS> 506 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 507 BinaryOp_match<RHS, LHS, Instruction::And>> 508 m_c_And(const LHS &L, const RHS &R) { 509 return m_CombineOr(m_And(L, R), m_And(R, L)); 510 } 511 512 template<typename LHS, typename RHS> 513 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 514 BinaryOp_match<RHS, LHS, Instruction::Or>> 515 m_c_Or(const LHS &L, const RHS &R) { 516 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 517 } 518 519 template<typename LHS, typename RHS> 520 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 521 BinaryOp_match<RHS, LHS, Instruction::Xor>> 522 m_c_Xor(const LHS &L, const RHS &R) { 523 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 524 } 525 526 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 527 /// true (at the context instruction.) This is mostly a utility function for 528 /// the prototype dominating conditions reasoning below. 529 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 530 APInt &KnownZero, 531 APInt &KnownOne, 532 const DataLayout &DL, 533 unsigned Depth, const Query &Q) { 534 Value *LHS = Cmp->getOperand(0); 535 Value *RHS = Cmp->getOperand(1); 536 // TODO: We could potentially be more aggressive here. This would be worth 537 // evaluating. If we can, explore commoning this code with the assume 538 // handling logic. 539 if (LHS != V && RHS != V) 540 return; 541 542 const unsigned BitWidth = KnownZero.getBitWidth(); 543 544 switch (Cmp->getPredicate()) { 545 default: 546 // We know nothing from this condition 547 break; 548 // TODO: implement unsigned bound from below (known one bits) 549 // TODO: common condition check implementations with assumes 550 // TODO: implement other patterns from assume (e.g. V & B == A) 551 case ICmpInst::ICMP_SGT: 552 if (LHS == V) { 553 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 554 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 555 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 556 // We know that the sign bit is zero. 557 KnownZero |= APInt::getSignBit(BitWidth); 558 } 559 } 560 break; 561 case ICmpInst::ICMP_EQ: 562 { 563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 564 if (LHS == V) 565 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 566 else if (RHS == V) 567 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 568 else 569 llvm_unreachable("missing use?"); 570 KnownZero |= KnownZeroTemp; 571 KnownOne |= KnownOneTemp; 572 } 573 break; 574 case ICmpInst::ICMP_ULE: 575 if (LHS == V) { 576 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 577 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 578 // The known zero bits carry over 579 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 580 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 581 } 582 break; 583 case ICmpInst::ICMP_ULT: 584 if (LHS == V) { 585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 587 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 588 // power of 2, then one more). 589 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 590 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 591 SignBits++; 592 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 593 } 594 break; 595 }; 596 } 597 598 /// Compute known bits in 'V' from conditions which are known to be true along 599 /// all paths leading to the context instruction. In particular, look for 600 /// cases where one branch of an interesting condition dominates the context 601 /// instruction. This does not do general dataflow. 602 /// NOTE: This code is EXPERIMENTAL and currently off by default. 603 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 604 APInt &KnownOne, 605 const DataLayout &DL, 606 unsigned Depth, 607 const Query &Q) { 608 // Need both the dominator tree and the query location to do anything useful 609 if (!Q.DT || !Q.CxtI) 610 return; 611 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 612 // The context instruction might be in a statically unreachable block. If 613 // so, asking dominator queries may yield suprising results. (e.g. the block 614 // may not have a dom tree node) 615 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 616 return; 617 618 // Avoid useless work 619 if (auto VI = dyn_cast<Instruction>(V)) 620 if (VI->getParent() == Cxt->getParent()) 621 return; 622 623 // Note: We currently implement two options. It's not clear which of these 624 // will survive long term, we need data for that. 625 // Option 1 - Try walking the dominator tree looking for conditions which 626 // might apply. This works well for local conditions (loop guards, etc..), 627 // but not as well for things far from the context instruction (presuming a 628 // low max blocks explored). If we can set an high enough limit, this would 629 // be all we need. 630 // Option 2 - We restrict out search to those conditions which are uses of 631 // the value we're interested in. This is independent of dom structure, 632 // but is slightly less powerful without looking through lots of use chains. 633 // It does handle conditions far from the context instruction (e.g. early 634 // function exits on entry) really well though. 635 636 // Option 1 - Search the dom tree 637 unsigned NumBlocksExplored = 0; 638 BasicBlock *Current = Cxt->getParent(); 639 while (true) { 640 // Stop searching if we've gone too far up the chain 641 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 642 break; 643 NumBlocksExplored++; 644 645 if (!Q.DT->getNode(Current)->getIDom()) 646 break; 647 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 648 if (!Current) 649 // found function entry 650 break; 651 652 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 653 if (!BI || BI->isUnconditional()) 654 continue; 655 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 656 if (!Cmp) 657 continue; 658 659 // We're looking for conditions that are guaranteed to hold at the context 660 // instruction. Finding a condition where one path dominates the context 661 // isn't enough because both the true and false cases could merge before 662 // the context instruction we're actually interested in. Instead, we need 663 // to ensure that the taken *edge* dominates the context instruction. We 664 // know that the edge must be reachable since we started from a reachable 665 // block. 666 BasicBlock *BB0 = BI->getSuccessor(0); 667 BasicBlockEdge Edge(BI->getParent(), BB0); 668 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 669 continue; 670 671 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 672 Q); 673 } 674 675 // Option 2 - Search the other uses of V 676 unsigned NumUsesExplored = 0; 677 for (auto U : V->users()) { 678 // Avoid massive lists 679 if (NumUsesExplored >= DomConditionsMaxUses) 680 break; 681 NumUsesExplored++; 682 // Consider only compare instructions uniquely controlling a branch 683 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 684 if (!Cmp) 685 continue; 686 687 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 688 continue; 689 690 for (auto *CmpU : Cmp->users()) { 691 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 692 if (!BI || BI->isUnconditional()) 693 continue; 694 // We're looking for conditions that are guaranteed to hold at the 695 // context instruction. Finding a condition where one path dominates 696 // the context isn't enough because both the true and false cases could 697 // merge before the context instruction we're actually interested in. 698 // Instead, we need to ensure that the taken *edge* dominates the context 699 // instruction. 700 BasicBlock *BB0 = BI->getSuccessor(0); 701 BasicBlockEdge Edge(BI->getParent(), BB0); 702 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 703 continue; 704 705 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 706 Q); 707 } 708 } 709 } 710 711 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 712 APInt &KnownOne, const DataLayout &DL, 713 unsigned Depth, const Query &Q) { 714 // Use of assumptions is context-sensitive. If we don't have a context, we 715 // cannot use them! 716 if (!Q.AC || !Q.CxtI) 717 return; 718 719 unsigned BitWidth = KnownZero.getBitWidth(); 720 721 for (auto &AssumeVH : Q.AC->assumptions()) { 722 if (!AssumeVH) 723 continue; 724 CallInst *I = cast<CallInst>(AssumeVH); 725 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 726 "Got assumption for the wrong function!"); 727 if (Q.ExclInvs.count(I)) 728 continue; 729 730 // Warning: This loop can end up being somewhat performance sensetive. 731 // We're running this loop for once for each value queried resulting in a 732 // runtime of ~O(#assumes * #values). 733 734 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 735 "must be an assume intrinsic"); 736 737 Value *Arg = I->getArgOperand(0); 738 739 if (Arg == V && isValidAssumeForContext(I, Q)) { 740 assert(BitWidth == 1 && "assume operand is not i1?"); 741 KnownZero.clearAllBits(); 742 KnownOne.setAllBits(); 743 return; 744 } 745 746 // The remaining tests are all recursive, so bail out if we hit the limit. 747 if (Depth == MaxDepth) 748 continue; 749 750 Value *A, *B; 751 auto m_V = m_CombineOr(m_Specific(V), 752 m_CombineOr(m_PtrToInt(m_Specific(V)), 753 m_BitCast(m_Specific(V)))); 754 755 CmpInst::Predicate Pred; 756 ConstantInt *C; 757 // assume(v = a) 758 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 759 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 760 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 761 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 762 KnownZero |= RHSKnownZero; 763 KnownOne |= RHSKnownOne; 764 // assume(v & b = a) 765 } else if (match(Arg, 766 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 767 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 770 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 771 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 772 773 // For those bits in the mask that are known to be one, we can propagate 774 // known bits from the RHS to V. 775 KnownZero |= RHSKnownZero & MaskKnownOne; 776 KnownOne |= RHSKnownOne & MaskKnownOne; 777 // assume(~(v & b) = a) 778 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 779 m_Value(A))) && 780 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 781 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 782 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 783 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 784 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 785 786 // For those bits in the mask that are known to be one, we can propagate 787 // inverted known bits from the RHS to V. 788 KnownZero |= RHSKnownOne & MaskKnownOne; 789 KnownOne |= RHSKnownZero & MaskKnownOne; 790 // assume(v | b = a) 791 } else if (match(Arg, 792 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 793 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 794 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 795 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 796 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 797 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 798 799 // For those bits in B that are known to be zero, we can propagate known 800 // bits from the RHS to V. 801 KnownZero |= RHSKnownZero & BKnownZero; 802 KnownOne |= RHSKnownOne & BKnownZero; 803 // assume(~(v | b) = a) 804 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 805 m_Value(A))) && 806 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 807 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 808 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 809 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 810 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 811 812 // For those bits in B that are known to be zero, we can propagate 813 // inverted known bits from the RHS to V. 814 KnownZero |= RHSKnownOne & BKnownZero; 815 KnownOne |= RHSKnownZero & BKnownZero; 816 // assume(v ^ b = a) 817 } else if (match(Arg, 818 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 819 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 820 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 821 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 822 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 823 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 824 825 // For those bits in B that are known to be zero, we can propagate known 826 // bits from the RHS to V. For those bits in B that are known to be one, 827 // we can propagate inverted known bits from the RHS to V. 828 KnownZero |= RHSKnownZero & BKnownZero; 829 KnownOne |= RHSKnownOne & BKnownZero; 830 KnownZero |= RHSKnownOne & BKnownOne; 831 KnownOne |= RHSKnownZero & BKnownOne; 832 // assume(~(v ^ b) = a) 833 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 834 m_Value(A))) && 835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 840 841 // For those bits in B that are known to be zero, we can propagate 842 // inverted known bits from the RHS to V. For those bits in B that are 843 // known to be one, we can propagate known bits from the RHS to V. 844 KnownZero |= RHSKnownOne & BKnownZero; 845 KnownOne |= RHSKnownZero & BKnownZero; 846 KnownZero |= RHSKnownZero & BKnownOne; 847 KnownOne |= RHSKnownOne & BKnownOne; 848 // assume(v << c = a) 849 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 857 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 858 // assume(~(v << c) = a) 859 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 862 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 863 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 867 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 868 // assume(v >> c = a) 869 } else if (match(Arg, 870 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 871 m_AShr(m_V, m_ConstantInt(C))), 872 m_Value(A))) && 873 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 874 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 875 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 876 // For those bits in RHS that are known, we can propagate them to known 877 // bits in V shifted to the right by C. 878 KnownZero |= RHSKnownZero << C->getZExtValue(); 879 KnownOne |= RHSKnownOne << C->getZExtValue(); 880 // assume(~(v >> c) = a) 881 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 882 m_LShr(m_V, m_ConstantInt(C)), 883 m_AShr(m_V, m_ConstantInt(C)))), 884 m_Value(A))) && 885 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 886 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 887 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 888 // For those bits in RHS that are known, we can propagate them inverted 889 // to known bits in V shifted to the right by C. 890 KnownZero |= RHSKnownOne << C->getZExtValue(); 891 KnownOne |= RHSKnownZero << C->getZExtValue(); 892 // assume(v >=_s c) where c is non-negative 893 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 894 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 895 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 896 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 897 898 if (RHSKnownZero.isNegative()) { 899 // We know that the sign bit is zero. 900 KnownZero |= APInt::getSignBit(BitWidth); 901 } 902 // assume(v >_s c) where c is at least -1. 903 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 904 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 905 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 906 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 907 908 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 909 // We know that the sign bit is zero. 910 KnownZero |= APInt::getSignBit(BitWidth); 911 } 912 // assume(v <=_s c) where c is negative 913 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 914 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 915 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 916 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 917 918 if (RHSKnownOne.isNegative()) { 919 // We know that the sign bit is one. 920 KnownOne |= APInt::getSignBit(BitWidth); 921 } 922 // assume(v <_s c) where c is non-positive 923 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 924 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 925 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 926 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 927 928 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 929 // We know that the sign bit is one. 930 KnownOne |= APInt::getSignBit(BitWidth); 931 } 932 // assume(v <=_u c) 933 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 934 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 937 938 // Whatever high bits in c are zero are known to be zero. 939 KnownZero |= 940 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 941 // assume(v <_u c) 942 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 943 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 944 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 945 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 946 947 // Whatever high bits in c are zero are known to be zero (if c is a power 948 // of 2, then one more). 949 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 950 KnownZero |= 951 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 952 else 953 KnownZero |= 954 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 955 } 956 } 957 } 958 959 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 960 APInt &KnownOne, const DataLayout &DL, 961 unsigned Depth, const Query &Q) { 962 unsigned BitWidth = KnownZero.getBitWidth(); 963 964 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 965 switch (I->getOpcode()) { 966 default: break; 967 case Instruction::Load: 968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 969 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 970 break; 971 case Instruction::And: { 972 // If either the LHS or the RHS are Zero, the result is zero. 973 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 974 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 975 976 // Output known-1 bits are only known if set in both the LHS & RHS. 977 KnownOne &= KnownOne2; 978 // Output known-0 are known to be clear if zero in either the LHS | RHS. 979 KnownZero |= KnownZero2; 980 break; 981 } 982 case Instruction::Or: { 983 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 984 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 985 986 // Output known-0 bits are only known if clear in both the LHS & RHS. 987 KnownZero &= KnownZero2; 988 // Output known-1 are known to be set if set in either the LHS | RHS. 989 KnownOne |= KnownOne2; 990 break; 991 } 992 case Instruction::Xor: { 993 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 994 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 995 996 // Output known-0 bits are known if clear or set in both the LHS & RHS. 997 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 998 // Output known-1 are known to be set if set in only one of the LHS, RHS. 999 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1000 KnownZero = KnownZeroOut; 1001 break; 1002 } 1003 case Instruction::Mul: { 1004 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1005 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1006 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1007 break; 1008 } 1009 case Instruction::UDiv: { 1010 // For the purposes of computing leading zeros we can conservatively 1011 // treat a udiv as a logical right shift by the power of 2 known to 1012 // be less than the denominator. 1013 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1014 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1015 1016 KnownOne2.clearAllBits(); 1017 KnownZero2.clearAllBits(); 1018 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1019 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1020 if (RHSUnknownLeadingOnes != BitWidth) 1021 LeadZ = std::min(BitWidth, 1022 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1023 1024 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1025 break; 1026 } 1027 case Instruction::Select: 1028 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1029 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1030 1031 // Only known if known in both the LHS and RHS. 1032 KnownOne &= KnownOne2; 1033 KnownZero &= KnownZero2; 1034 break; 1035 case Instruction::FPTrunc: 1036 case Instruction::FPExt: 1037 case Instruction::FPToUI: 1038 case Instruction::FPToSI: 1039 case Instruction::SIToFP: 1040 case Instruction::UIToFP: 1041 break; // Can't work with floating point. 1042 case Instruction::PtrToInt: 1043 case Instruction::IntToPtr: 1044 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1045 // FALL THROUGH and handle them the same as zext/trunc. 1046 case Instruction::ZExt: 1047 case Instruction::Trunc: { 1048 Type *SrcTy = I->getOperand(0)->getType(); 1049 1050 unsigned SrcBitWidth; 1051 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1052 // which fall through here. 1053 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1054 1055 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1056 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1057 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1058 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1059 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1060 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1061 // Any top bits are known to be zero. 1062 if (BitWidth > SrcBitWidth) 1063 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1064 break; 1065 } 1066 case Instruction::BitCast: { 1067 Type *SrcTy = I->getOperand(0)->getType(); 1068 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1069 // TODO: For now, not handling conversions like: 1070 // (bitcast i64 %x to <2 x i32>) 1071 !I->getType()->isVectorTy()) { 1072 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1073 break; 1074 } 1075 break; 1076 } 1077 case Instruction::SExt: { 1078 // Compute the bits in the result that are not present in the input. 1079 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1080 1081 KnownZero = KnownZero.trunc(SrcBitWidth); 1082 KnownOne = KnownOne.trunc(SrcBitWidth); 1083 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1084 KnownZero = KnownZero.zext(BitWidth); 1085 KnownOne = KnownOne.zext(BitWidth); 1086 1087 // If the sign bit of the input is known set or clear, then we know the 1088 // top bits of the result. 1089 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1090 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1091 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1092 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1093 break; 1094 } 1095 case Instruction::Shl: 1096 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1097 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1098 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1099 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1100 KnownZero <<= ShiftAmt; 1101 KnownOne <<= ShiftAmt; 1102 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1103 } 1104 break; 1105 case Instruction::LShr: 1106 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1107 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1108 // Compute the new bits that are at the top now. 1109 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1110 1111 // Unsigned shift right. 1112 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1113 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1114 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1115 // high bits known zero. 1116 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1117 } 1118 break; 1119 case Instruction::AShr: 1120 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1121 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1122 // Compute the new bits that are at the top now. 1123 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1124 1125 // Signed shift right. 1126 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1127 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1128 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1129 1130 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1131 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1132 KnownZero |= HighBits; 1133 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1134 KnownOne |= HighBits; 1135 } 1136 break; 1137 case Instruction::Sub: { 1138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1139 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1140 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1141 Depth, Q); 1142 break; 1143 } 1144 case Instruction::Add: { 1145 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1146 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1147 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1148 Depth, Q); 1149 break; 1150 } 1151 case Instruction::SRem: 1152 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1153 APInt RA = Rem->getValue().abs(); 1154 if (RA.isPowerOf2()) { 1155 APInt LowBits = RA - 1; 1156 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1157 Q); 1158 1159 // The low bits of the first operand are unchanged by the srem. 1160 KnownZero = KnownZero2 & LowBits; 1161 KnownOne = KnownOne2 & LowBits; 1162 1163 // If the first operand is non-negative or has all low bits zero, then 1164 // the upper bits are all zero. 1165 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1166 KnownZero |= ~LowBits; 1167 1168 // If the first operand is negative and not all low bits are zero, then 1169 // the upper bits are all one. 1170 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1171 KnownOne |= ~LowBits; 1172 1173 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1174 } 1175 } 1176 1177 // The sign bit is the LHS's sign bit, except when the result of the 1178 // remainder is zero. 1179 if (KnownZero.isNonNegative()) { 1180 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1181 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1182 Depth + 1, Q); 1183 // If it's known zero, our sign bit is also zero. 1184 if (LHSKnownZero.isNegative()) 1185 KnownZero.setBit(BitWidth - 1); 1186 } 1187 1188 break; 1189 case Instruction::URem: { 1190 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1191 APInt RA = Rem->getValue(); 1192 if (RA.isPowerOf2()) { 1193 APInt LowBits = (RA - 1); 1194 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1195 Q); 1196 KnownZero |= ~LowBits; 1197 KnownOne &= LowBits; 1198 break; 1199 } 1200 } 1201 1202 // Since the result is less than or equal to either operand, any leading 1203 // zero bits in either operand must also exist in the result. 1204 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1205 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1206 1207 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1208 KnownZero2.countLeadingOnes()); 1209 KnownOne.clearAllBits(); 1210 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1211 break; 1212 } 1213 1214 case Instruction::Alloca: { 1215 AllocaInst *AI = cast<AllocaInst>(I); 1216 unsigned Align = AI->getAlignment(); 1217 if (Align == 0) 1218 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1219 1220 if (Align > 0) 1221 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1222 break; 1223 } 1224 case Instruction::GetElementPtr: { 1225 // Analyze all of the subscripts of this getelementptr instruction 1226 // to determine if we can prove known low zero bits. 1227 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1228 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1229 Depth + 1, Q); 1230 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1231 1232 gep_type_iterator GTI = gep_type_begin(I); 1233 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1234 Value *Index = I->getOperand(i); 1235 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1236 // Handle struct member offset arithmetic. 1237 1238 // Handle case when index is vector zeroinitializer 1239 Constant *CIndex = cast<Constant>(Index); 1240 if (CIndex->isZeroValue()) 1241 continue; 1242 1243 if (CIndex->getType()->isVectorTy()) 1244 Index = CIndex->getSplatValue(); 1245 1246 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1247 const StructLayout *SL = DL.getStructLayout(STy); 1248 uint64_t Offset = SL->getElementOffset(Idx); 1249 TrailZ = std::min<unsigned>(TrailZ, 1250 countTrailingZeros(Offset)); 1251 } else { 1252 // Handle array index arithmetic. 1253 Type *IndexedTy = GTI.getIndexedType(); 1254 if (!IndexedTy->isSized()) { 1255 TrailZ = 0; 1256 break; 1257 } 1258 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1259 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1260 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1261 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1262 Q); 1263 TrailZ = std::min(TrailZ, 1264 unsigned(countTrailingZeros(TypeSize) + 1265 LocalKnownZero.countTrailingOnes())); 1266 } 1267 } 1268 1269 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1270 break; 1271 } 1272 case Instruction::PHI: { 1273 PHINode *P = cast<PHINode>(I); 1274 // Handle the case of a simple two-predecessor recurrence PHI. 1275 // There's a lot more that could theoretically be done here, but 1276 // this is sufficient to catch some interesting cases. 1277 if (P->getNumIncomingValues() == 2) { 1278 for (unsigned i = 0; i != 2; ++i) { 1279 Value *L = P->getIncomingValue(i); 1280 Value *R = P->getIncomingValue(!i); 1281 Operator *LU = dyn_cast<Operator>(L); 1282 if (!LU) 1283 continue; 1284 unsigned Opcode = LU->getOpcode(); 1285 // Check for operations that have the property that if 1286 // both their operands have low zero bits, the result 1287 // will have low zero bits. 1288 if (Opcode == Instruction::Add || 1289 Opcode == Instruction::Sub || 1290 Opcode == Instruction::And || 1291 Opcode == Instruction::Or || 1292 Opcode == Instruction::Mul) { 1293 Value *LL = LU->getOperand(0); 1294 Value *LR = LU->getOperand(1); 1295 // Find a recurrence. 1296 if (LL == I) 1297 L = LR; 1298 else if (LR == I) 1299 L = LL; 1300 else 1301 break; 1302 // Ok, we have a PHI of the form L op= R. Check for low 1303 // zero bits. 1304 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1305 1306 // We need to take the minimum number of known bits 1307 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1308 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1309 1310 KnownZero = APInt::getLowBitsSet(BitWidth, 1311 std::min(KnownZero2.countTrailingOnes(), 1312 KnownZero3.countTrailingOnes())); 1313 break; 1314 } 1315 } 1316 } 1317 1318 // Unreachable blocks may have zero-operand PHI nodes. 1319 if (P->getNumIncomingValues() == 0) 1320 break; 1321 1322 // Otherwise take the unions of the known bit sets of the operands, 1323 // taking conservative care to avoid excessive recursion. 1324 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1325 // Skip if every incoming value references to ourself. 1326 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1327 break; 1328 1329 KnownZero = APInt::getAllOnesValue(BitWidth); 1330 KnownOne = APInt::getAllOnesValue(BitWidth); 1331 for (Value *IncValue : P->incoming_values()) { 1332 // Skip direct self references. 1333 if (IncValue == P) continue; 1334 1335 KnownZero2 = APInt(BitWidth, 0); 1336 KnownOne2 = APInt(BitWidth, 0); 1337 // Recurse, but cap the recursion to one level, because we don't 1338 // want to waste time spinning around in loops. 1339 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, 1340 MaxDepth - 1, Q); 1341 KnownZero &= KnownZero2; 1342 KnownOne &= KnownOne2; 1343 // If all bits have been ruled out, there's no need to check 1344 // more operands. 1345 if (!KnownZero && !KnownOne) 1346 break; 1347 } 1348 } 1349 break; 1350 } 1351 case Instruction::Call: 1352 case Instruction::Invoke: 1353 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1354 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1355 // If a range metadata is attached to this IntrinsicInst, intersect the 1356 // explicit range specified by the metadata and the implicit range of 1357 // the intrinsic. 1358 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1359 switch (II->getIntrinsicID()) { 1360 default: break; 1361 case Intrinsic::ctlz: 1362 case Intrinsic::cttz: { 1363 unsigned LowBits = Log2_32(BitWidth)+1; 1364 // If this call is undefined for 0, the result will be less than 2^n. 1365 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1366 LowBits -= 1; 1367 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1368 break; 1369 } 1370 case Intrinsic::ctpop: { 1371 unsigned LowBits = Log2_32(BitWidth)+1; 1372 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1373 break; 1374 } 1375 case Intrinsic::x86_sse42_crc32_64_64: 1376 KnownZero |= APInt::getHighBitsSet(64, 32); 1377 break; 1378 } 1379 } 1380 break; 1381 case Instruction::ExtractValue: 1382 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1383 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1384 if (EVI->getNumIndices() != 1) break; 1385 if (EVI->getIndices()[0] == 0) { 1386 switch (II->getIntrinsicID()) { 1387 default: break; 1388 case Intrinsic::uadd_with_overflow: 1389 case Intrinsic::sadd_with_overflow: 1390 computeKnownBitsAddSub(true, II->getArgOperand(0), 1391 II->getArgOperand(1), false, KnownZero, 1392 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1393 break; 1394 case Intrinsic::usub_with_overflow: 1395 case Intrinsic::ssub_with_overflow: 1396 computeKnownBitsAddSub(false, II->getArgOperand(0), 1397 II->getArgOperand(1), false, KnownZero, 1398 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1399 break; 1400 case Intrinsic::umul_with_overflow: 1401 case Intrinsic::smul_with_overflow: 1402 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1403 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1404 Depth, Q); 1405 break; 1406 } 1407 } 1408 } 1409 } 1410 } 1411 1412 static unsigned getAlignment(Value *V, const DataLayout &DL) { 1413 unsigned Align = 0; 1414 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1415 Align = GO->getAlignment(); 1416 if (Align == 0) { 1417 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1418 Type *ObjectType = GVar->getType()->getElementType(); 1419 if (ObjectType->isSized()) { 1420 // If the object is defined in the current Module, we'll be giving 1421 // it the preferred alignment. Otherwise, we have to assume that it 1422 // may only have the minimum ABI alignment. 1423 if (GVar->isStrongDefinitionForLinker()) 1424 Align = DL.getPreferredAlignment(GVar); 1425 else 1426 Align = DL.getABITypeAlignment(ObjectType); 1427 } 1428 } 1429 } 1430 } else if (Argument *A = dyn_cast<Argument>(V)) { 1431 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1432 1433 if (!Align && A->hasStructRetAttr()) { 1434 // An sret parameter has at least the ABI alignment of the return type. 1435 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1436 if (EltTy->isSized()) 1437 Align = DL.getABITypeAlignment(EltTy); 1438 } 1439 } 1440 return Align; 1441 } 1442 1443 /// Determine which bits of V are known to be either zero or one and return 1444 /// them in the KnownZero/KnownOne bit sets. 1445 /// 1446 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1447 /// we cannot optimize based on the assumption that it is zero without changing 1448 /// it to be an explicit zero. If we don't change it to zero, other code could 1449 /// optimized based on the contradictory assumption that it is non-zero. 1450 /// Because instcombine aggressively folds operations with undef args anyway, 1451 /// this won't lose us code quality. 1452 /// 1453 /// This function is defined on values with integer type, values with pointer 1454 /// type, and vectors of integers. In the case 1455 /// where V is a vector, known zero, and known one values are the 1456 /// same width as the vector element, and the bit is set only if it is true 1457 /// for all of the elements in the vector. 1458 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1459 const DataLayout &DL, unsigned Depth, const Query &Q) { 1460 assert(V && "No Value?"); 1461 assert(Depth <= MaxDepth && "Limit Search Depth"); 1462 unsigned BitWidth = KnownZero.getBitWidth(); 1463 1464 assert((V->getType()->isIntOrIntVectorTy() || 1465 V->getType()->getScalarType()->isPointerTy()) && 1466 "Not integer or pointer type!"); 1467 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1468 (!V->getType()->isIntOrIntVectorTy() || 1469 V->getType()->getScalarSizeInBits() == BitWidth) && 1470 KnownZero.getBitWidth() == BitWidth && 1471 KnownOne.getBitWidth() == BitWidth && 1472 "V, KnownOne and KnownZero should have same BitWidth"); 1473 1474 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1475 // We know all of the bits for a constant! 1476 KnownOne = CI->getValue(); 1477 KnownZero = ~KnownOne; 1478 return; 1479 } 1480 // Null and aggregate-zero are all-zeros. 1481 if (isa<ConstantPointerNull>(V) || 1482 isa<ConstantAggregateZero>(V)) { 1483 KnownOne.clearAllBits(); 1484 KnownZero = APInt::getAllOnesValue(BitWidth); 1485 return; 1486 } 1487 // Handle a constant vector by taking the intersection of the known bits of 1488 // each element. There is no real need to handle ConstantVector here, because 1489 // we don't handle undef in any particularly useful way. 1490 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1491 // We know that CDS must be a vector of integers. Take the intersection of 1492 // each element. 1493 KnownZero.setAllBits(); KnownOne.setAllBits(); 1494 APInt Elt(KnownZero.getBitWidth(), 0); 1495 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1496 Elt = CDS->getElementAsInteger(i); 1497 KnownZero &= ~Elt; 1498 KnownOne &= Elt; 1499 } 1500 return; 1501 } 1502 1503 // Start out not knowing anything. 1504 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1505 1506 // Limit search depth. 1507 // All recursive calls that increase depth must come after this. 1508 if (Depth == MaxDepth) 1509 return; 1510 1511 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1512 // the bits of its aliasee. 1513 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1514 if (!GA->mayBeOverridden()) 1515 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1516 return; 1517 } 1518 1519 if (Operator *I = dyn_cast<Operator>(V)) 1520 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); 1521 1522 // Aligned pointers have trailing zeros - refine KnownZero set 1523 if (V->getType()->isPointerTy()) { 1524 unsigned Align = getAlignment(V, DL); 1525 if (Align) 1526 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1527 } 1528 1529 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1530 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1531 // computeKnownBitsFromOperator. 1532 1533 // Check whether a nearby assume intrinsic can determine some known bits. 1534 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1535 1536 // Check whether there's a dominating condition which implies something about 1537 // this value at the given context. 1538 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1539 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1540 Q); 1541 1542 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1543 } 1544 1545 /// Determine whether the sign bit is known to be zero or one. 1546 /// Convenience wrapper around computeKnownBits. 1547 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1548 const DataLayout &DL, unsigned Depth, const Query &Q) { 1549 unsigned BitWidth = getBitWidth(V->getType(), DL); 1550 if (!BitWidth) { 1551 KnownZero = false; 1552 KnownOne = false; 1553 return; 1554 } 1555 APInt ZeroBits(BitWidth, 0); 1556 APInt OneBits(BitWidth, 0); 1557 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1558 KnownOne = OneBits[BitWidth - 1]; 1559 KnownZero = ZeroBits[BitWidth - 1]; 1560 } 1561 1562 /// Return true if the given value is known to have exactly one 1563 /// bit set when defined. For vectors return true if every element is known to 1564 /// be a power of two when defined. Supports values with integer or pointer 1565 /// types and vectors of integers. 1566 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1567 const Query &Q, const DataLayout &DL) { 1568 if (Constant *C = dyn_cast<Constant>(V)) { 1569 if (C->isNullValue()) 1570 return OrZero; 1571 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1572 return CI->getValue().isPowerOf2(); 1573 // TODO: Handle vector constants. 1574 } 1575 1576 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1577 // it is shifted off the end then the result is undefined. 1578 if (match(V, m_Shl(m_One(), m_Value()))) 1579 return true; 1580 1581 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1582 // bottom. If it is shifted off the bottom then the result is undefined. 1583 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1584 return true; 1585 1586 // The remaining tests are all recursive, so bail out if we hit the limit. 1587 if (Depth++ == MaxDepth) 1588 return false; 1589 1590 Value *X = nullptr, *Y = nullptr; 1591 // A shift of a power of two is a power of two or zero. 1592 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1593 match(V, m_Shr(m_Value(X), m_Value())))) 1594 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1595 1596 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1597 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1598 1599 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1600 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1601 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1602 1603 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1604 // A power of two and'd with anything is a power of two or zero. 1605 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1606 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1607 return true; 1608 // X & (-X) is always a power of two or zero. 1609 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1610 return true; 1611 return false; 1612 } 1613 1614 // Adding a power-of-two or zero to the same power-of-two or zero yields 1615 // either the original power-of-two, a larger power-of-two or zero. 1616 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1617 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1618 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1619 if (match(X, m_And(m_Specific(Y), m_Value())) || 1620 match(X, m_And(m_Value(), m_Specific(Y)))) 1621 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1622 return true; 1623 if (match(Y, m_And(m_Specific(X), m_Value())) || 1624 match(Y, m_And(m_Value(), m_Specific(X)))) 1625 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1626 return true; 1627 1628 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1629 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1630 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1631 1632 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1633 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1634 // If i8 V is a power of two or zero: 1635 // ZeroBits: 1 1 1 0 1 1 1 1 1636 // ~ZeroBits: 0 0 0 1 0 0 0 0 1637 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1638 // If OrZero isn't set, we cannot give back a zero result. 1639 // Make sure either the LHS or RHS has a bit set. 1640 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1641 return true; 1642 } 1643 } 1644 1645 // An exact divide or right shift can only shift off zero bits, so the result 1646 // is a power of two only if the first operand is a power of two and not 1647 // copying a sign bit (sdiv int_min, 2). 1648 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1649 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1650 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1651 Depth, Q, DL); 1652 } 1653 1654 return false; 1655 } 1656 1657 /// \brief Test whether a GEP's result is known to be non-null. 1658 /// 1659 /// Uses properties inherent in a GEP to try to determine whether it is known 1660 /// to be non-null. 1661 /// 1662 /// Currently this routine does not support vector GEPs. 1663 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1664 unsigned Depth, const Query &Q) { 1665 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1666 return false; 1667 1668 // FIXME: Support vector-GEPs. 1669 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1670 1671 // If the base pointer is non-null, we cannot walk to a null address with an 1672 // inbounds GEP in address space zero. 1673 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1674 return true; 1675 1676 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1677 // If so, then the GEP cannot produce a null pointer, as doing so would 1678 // inherently violate the inbounds contract within address space zero. 1679 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1680 GTI != GTE; ++GTI) { 1681 // Struct types are easy -- they must always be indexed by a constant. 1682 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1683 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1684 unsigned ElementIdx = OpC->getZExtValue(); 1685 const StructLayout *SL = DL.getStructLayout(STy); 1686 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1687 if (ElementOffset > 0) 1688 return true; 1689 continue; 1690 } 1691 1692 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1693 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1694 continue; 1695 1696 // Fast path the constant operand case both for efficiency and so we don't 1697 // increment Depth when just zipping down an all-constant GEP. 1698 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1699 if (!OpC->isZero()) 1700 return true; 1701 continue; 1702 } 1703 1704 // We post-increment Depth here because while isKnownNonZero increments it 1705 // as well, when we pop back up that increment won't persist. We don't want 1706 // to recurse 10k times just because we have 10k GEP operands. We don't 1707 // bail completely out because we want to handle constant GEPs regardless 1708 // of depth. 1709 if (Depth++ >= MaxDepth) 1710 continue; 1711 1712 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1713 return true; 1714 } 1715 1716 return false; 1717 } 1718 1719 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1720 /// ensure that the value it's attached to is never Value? 'RangeType' is 1721 /// is the type of the value described by the range. 1722 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1723 const APInt& Value) { 1724 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1725 assert(NumRanges >= 1); 1726 for (unsigned i = 0; i < NumRanges; ++i) { 1727 ConstantInt *Lower = 1728 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1729 ConstantInt *Upper = 1730 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1731 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1732 if (Range.contains(Value)) 1733 return false; 1734 } 1735 return true; 1736 } 1737 1738 /// Return true if the given value is known to be non-zero when defined. 1739 /// For vectors return true if every element is known to be non-zero when 1740 /// defined. Supports values with integer or pointer type and vectors of 1741 /// integers. 1742 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1743 const Query &Q) { 1744 if (Constant *C = dyn_cast<Constant>(V)) { 1745 if (C->isNullValue()) 1746 return false; 1747 if (isa<ConstantInt>(C)) 1748 // Must be non-zero due to null test above. 1749 return true; 1750 // TODO: Handle vectors 1751 return false; 1752 } 1753 1754 if (Instruction* I = dyn_cast<Instruction>(V)) { 1755 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1756 // If the possible ranges don't contain zero, then the value is 1757 // definitely non-zero. 1758 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1759 const APInt ZeroValue(Ty->getBitWidth(), 0); 1760 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1761 return true; 1762 } 1763 } 1764 } 1765 1766 // The remaining tests are all recursive, so bail out if we hit the limit. 1767 if (Depth++ >= MaxDepth) 1768 return false; 1769 1770 // Check for pointer simplifications. 1771 if (V->getType()->isPointerTy()) { 1772 if (isKnownNonNull(V)) 1773 return true; 1774 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1775 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1776 return true; 1777 } 1778 1779 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1780 1781 // X | Y != 0 if X != 0 or Y != 0. 1782 Value *X = nullptr, *Y = nullptr; 1783 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1784 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1785 1786 // ext X != 0 if X != 0. 1787 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1788 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1789 1790 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1791 // if the lowest bit is shifted off the end. 1792 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1793 // shl nuw can't remove any non-zero bits. 1794 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1795 if (BO->hasNoUnsignedWrap()) 1796 return isKnownNonZero(X, DL, Depth, Q); 1797 1798 APInt KnownZero(BitWidth, 0); 1799 APInt KnownOne(BitWidth, 0); 1800 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1801 if (KnownOne[0]) 1802 return true; 1803 } 1804 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1805 // defined if the sign bit is shifted off the end. 1806 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1807 // shr exact can only shift out zero bits. 1808 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1809 if (BO->isExact()) 1810 return isKnownNonZero(X, DL, Depth, Q); 1811 1812 bool XKnownNonNegative, XKnownNegative; 1813 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1814 if (XKnownNegative) 1815 return true; 1816 1817 // If the shifter operand is a constant, and all of the bits shifted 1818 // out are known to be zero, and X is known non-zero then at least one 1819 // non-zero bit must remain. 1820 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1821 APInt KnownZero(BitWidth, 0); 1822 APInt KnownOne(BitWidth, 0); 1823 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1824 1825 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1826 // Is there a known one in the portion not shifted out? 1827 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1828 return true; 1829 // Are all the bits to be shifted out known zero? 1830 if (KnownZero.countTrailingOnes() >= ShiftVal) 1831 return isKnownNonZero(X, DL, Depth, Q); 1832 } 1833 } 1834 // div exact can only produce a zero if the dividend is zero. 1835 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1836 return isKnownNonZero(X, DL, Depth, Q); 1837 } 1838 // X + Y. 1839 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1840 bool XKnownNonNegative, XKnownNegative; 1841 bool YKnownNonNegative, YKnownNegative; 1842 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1843 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 1844 1845 // If X and Y are both non-negative (as signed values) then their sum is not 1846 // zero unless both X and Y are zero. 1847 if (XKnownNonNegative && YKnownNonNegative) 1848 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 1849 return true; 1850 1851 // If X and Y are both negative (as signed values) then their sum is not 1852 // zero unless both X and Y equal INT_MIN. 1853 if (BitWidth && XKnownNegative && YKnownNegative) { 1854 APInt KnownZero(BitWidth, 0); 1855 APInt KnownOne(BitWidth, 0); 1856 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1857 // The sign bit of X is set. If some other bit is set then X is not equal 1858 // to INT_MIN. 1859 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1860 if ((KnownOne & Mask) != 0) 1861 return true; 1862 // The sign bit of Y is set. If some other bit is set then Y is not equal 1863 // to INT_MIN. 1864 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 1865 if ((KnownOne & Mask) != 0) 1866 return true; 1867 } 1868 1869 // The sum of a non-negative number and a power of two is not zero. 1870 if (XKnownNonNegative && 1871 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 1872 return true; 1873 if (YKnownNonNegative && 1874 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 1875 return true; 1876 } 1877 // X * Y. 1878 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1879 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1880 // If X and Y are non-zero then so is X * Y as long as the multiplication 1881 // does not overflow. 1882 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1883 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 1884 return true; 1885 } 1886 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1887 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1888 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 1889 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 1890 return true; 1891 } 1892 // PHI 1893 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1894 // Try and detect a recurrence that monotonically increases from a 1895 // starting value, as these are common as induction variables. 1896 if (PN->getNumIncomingValues() == 2) { 1897 Value *Start = PN->getIncomingValue(0); 1898 Value *Induction = PN->getIncomingValue(1); 1899 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1900 std::swap(Start, Induction); 1901 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1902 if (!C->isZero() && !C->isNegative()) { 1903 ConstantInt *X; 1904 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1905 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1906 !X->isNegative()) 1907 return true; 1908 } 1909 } 1910 } 1911 } 1912 1913 if (!BitWidth) return false; 1914 APInt KnownZero(BitWidth, 0); 1915 APInt KnownOne(BitWidth, 0); 1916 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1917 return KnownOne != 0; 1918 } 1919 1920 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1921 /// simplify operations downstream. Mask is known to be zero for bits that V 1922 /// cannot have. 1923 /// 1924 /// This function is defined on values with integer type, values with pointer 1925 /// type, and vectors of integers. In the case 1926 /// where V is a vector, the mask, known zero, and known one values are the 1927 /// same width as the vector element, and the bit is set only if it is true 1928 /// for all of the elements in the vector. 1929 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 1930 unsigned Depth, const Query &Q) { 1931 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1932 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1933 return (KnownZero & Mask) == Mask; 1934 } 1935 1936 1937 1938 /// Return the number of times the sign bit of the register is replicated into 1939 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1940 /// (itself), but other cases can give us information. For example, immediately 1941 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1942 /// other, so we return 3. 1943 /// 1944 /// 'Op' must have a scalar integer type. 1945 /// 1946 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 1947 const Query &Q) { 1948 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 1949 unsigned Tmp, Tmp2; 1950 unsigned FirstAnswer = 1; 1951 1952 // Note that ConstantInt is handled by the general computeKnownBits case 1953 // below. 1954 1955 if (Depth == 6) 1956 return 1; // Limit search depth. 1957 1958 Operator *U = dyn_cast<Operator>(V); 1959 switch (Operator::getOpcode(V)) { 1960 default: break; 1961 case Instruction::SExt: 1962 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1963 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 1964 1965 case Instruction::SDiv: { 1966 const APInt *Denominator; 1967 // sdiv X, C -> adds log(C) sign bits. 1968 if (match(U->getOperand(1), m_APInt(Denominator))) { 1969 1970 // Ignore non-positive denominator. 1971 if (!Denominator->isStrictlyPositive()) 1972 break; 1973 1974 // Calculate the incoming numerator bits. 1975 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1976 1977 // Add floor(log(C)) bits to the numerator bits. 1978 return std::min(TyBits, NumBits + Denominator->logBase2()); 1979 } 1980 break; 1981 } 1982 1983 case Instruction::SRem: { 1984 const APInt *Denominator; 1985 // srem X, C -> we know that the result is within [-C+1,C) when C is a 1986 // positive constant. This let us put a lower bound on the number of sign 1987 // bits. 1988 if (match(U->getOperand(1), m_APInt(Denominator))) { 1989 1990 // Ignore non-positive denominator. 1991 if (!Denominator->isStrictlyPositive()) 1992 break; 1993 1994 // Calculate the incoming numerator bits. SRem by a positive constant 1995 // can't lower the number of sign bits. 1996 unsigned NumrBits = 1997 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1998 1999 // Calculate the leading sign bit constraints by examining the 2000 // denominator. Given that the denominator is positive, there are two 2001 // cases: 2002 // 2003 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2004 // (1 << ceilLogBase2(C)). 2005 // 2006 // 2. the numerator is negative. Then the result range is (-C,0] and 2007 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2008 // 2009 // Thus a lower bound on the number of sign bits is `TyBits - 2010 // ceilLogBase2(C)`. 2011 2012 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2013 return std::max(NumrBits, ResBits); 2014 } 2015 break; 2016 } 2017 2018 case Instruction::AShr: { 2019 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2020 // ashr X, C -> adds C sign bits. Vectors too. 2021 const APInt *ShAmt; 2022 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2023 Tmp += ShAmt->getZExtValue(); 2024 if (Tmp > TyBits) Tmp = TyBits; 2025 } 2026 return Tmp; 2027 } 2028 case Instruction::Shl: { 2029 const APInt *ShAmt; 2030 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2031 // shl destroys sign bits. 2032 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2033 Tmp2 = ShAmt->getZExtValue(); 2034 if (Tmp2 >= TyBits || // Bad shift. 2035 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2036 return Tmp - Tmp2; 2037 } 2038 break; 2039 } 2040 case Instruction::And: 2041 case Instruction::Or: 2042 case Instruction::Xor: // NOT is handled here. 2043 // Logical binary ops preserve the number of sign bits at the worst. 2044 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2045 if (Tmp != 1) { 2046 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2047 FirstAnswer = std::min(Tmp, Tmp2); 2048 // We computed what we know about the sign bits as our first 2049 // answer. Now proceed to the generic code that uses 2050 // computeKnownBits, and pick whichever answer is better. 2051 } 2052 break; 2053 2054 case Instruction::Select: 2055 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2056 if (Tmp == 1) return 1; // Early out. 2057 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 2058 return std::min(Tmp, Tmp2); 2059 2060 case Instruction::Add: 2061 // Add can have at most one carry bit. Thus we know that the output 2062 // is, at worst, one more bit than the inputs. 2063 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2064 if (Tmp == 1) return 1; // Early out. 2065 2066 // Special case decrementing a value (ADD X, -1): 2067 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2068 if (CRHS->isAllOnesValue()) { 2069 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2070 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2071 Q); 2072 2073 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2074 // sign bits set. 2075 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2076 return TyBits; 2077 2078 // If we are subtracting one from a positive number, there is no carry 2079 // out of the result. 2080 if (KnownZero.isNegative()) 2081 return Tmp; 2082 } 2083 2084 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2085 if (Tmp2 == 1) return 1; 2086 return std::min(Tmp, Tmp2)-1; 2087 2088 case Instruction::Sub: 2089 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2090 if (Tmp2 == 1) return 1; 2091 2092 // Handle NEG. 2093 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2094 if (CLHS->isNullValue()) { 2095 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2096 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2097 Q); 2098 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2099 // sign bits set. 2100 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2101 return TyBits; 2102 2103 // If the input is known to be positive (the sign bit is known clear), 2104 // the output of the NEG has the same number of sign bits as the input. 2105 if (KnownZero.isNegative()) 2106 return Tmp2; 2107 2108 // Otherwise, we treat this like a SUB. 2109 } 2110 2111 // Sub can have at most one carry bit. Thus we know that the output 2112 // is, at worst, one more bit than the inputs. 2113 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2114 if (Tmp == 1) return 1; // Early out. 2115 return std::min(Tmp, Tmp2)-1; 2116 2117 case Instruction::PHI: { 2118 PHINode *PN = cast<PHINode>(U); 2119 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2120 // Don't analyze large in-degree PHIs. 2121 if (NumIncomingValues > 4) break; 2122 // Unreachable blocks may have zero-operand PHI nodes. 2123 if (NumIncomingValues == 0) break; 2124 2125 // Take the minimum of all incoming values. This can't infinitely loop 2126 // because of our depth threshold. 2127 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2128 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2129 if (Tmp == 1) return Tmp; 2130 Tmp = std::min( 2131 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2132 } 2133 return Tmp; 2134 } 2135 2136 case Instruction::Trunc: 2137 // FIXME: it's tricky to do anything useful for this, but it is an important 2138 // case for targets like X86. 2139 break; 2140 } 2141 2142 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2143 // use this information. 2144 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2145 APInt Mask; 2146 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2147 2148 if (KnownZero.isNegative()) { // sign bit is 0 2149 Mask = KnownZero; 2150 } else if (KnownOne.isNegative()) { // sign bit is 1; 2151 Mask = KnownOne; 2152 } else { 2153 // Nothing known. 2154 return FirstAnswer; 2155 } 2156 2157 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2158 // the number of identical bits in the top of the input value. 2159 Mask = ~Mask; 2160 Mask <<= Mask.getBitWidth()-TyBits; 2161 // Return # leading zeros. We use 'min' here in case Val was zero before 2162 // shifting. We don't want to return '64' as for an i32 "0". 2163 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2164 } 2165 2166 /// This function computes the integer multiple of Base that equals V. 2167 /// If successful, it returns true and returns the multiple in 2168 /// Multiple. If unsuccessful, it returns false. It looks 2169 /// through SExt instructions only if LookThroughSExt is true. 2170 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2171 bool LookThroughSExt, unsigned Depth) { 2172 const unsigned MaxDepth = 6; 2173 2174 assert(V && "No Value?"); 2175 assert(Depth <= MaxDepth && "Limit Search Depth"); 2176 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2177 2178 Type *T = V->getType(); 2179 2180 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2181 2182 if (Base == 0) 2183 return false; 2184 2185 if (Base == 1) { 2186 Multiple = V; 2187 return true; 2188 } 2189 2190 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2191 Constant *BaseVal = ConstantInt::get(T, Base); 2192 if (CO && CO == BaseVal) { 2193 // Multiple is 1. 2194 Multiple = ConstantInt::get(T, 1); 2195 return true; 2196 } 2197 2198 if (CI && CI->getZExtValue() % Base == 0) { 2199 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2200 return true; 2201 } 2202 2203 if (Depth == MaxDepth) return false; // Limit search depth. 2204 2205 Operator *I = dyn_cast<Operator>(V); 2206 if (!I) return false; 2207 2208 switch (I->getOpcode()) { 2209 default: break; 2210 case Instruction::SExt: 2211 if (!LookThroughSExt) return false; 2212 // otherwise fall through to ZExt 2213 case Instruction::ZExt: 2214 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2215 LookThroughSExt, Depth+1); 2216 case Instruction::Shl: 2217 case Instruction::Mul: { 2218 Value *Op0 = I->getOperand(0); 2219 Value *Op1 = I->getOperand(1); 2220 2221 if (I->getOpcode() == Instruction::Shl) { 2222 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2223 if (!Op1CI) return false; 2224 // Turn Op0 << Op1 into Op0 * 2^Op1 2225 APInt Op1Int = Op1CI->getValue(); 2226 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2227 APInt API(Op1Int.getBitWidth(), 0); 2228 API.setBit(BitToSet); 2229 Op1 = ConstantInt::get(V->getContext(), API); 2230 } 2231 2232 Value *Mul0 = nullptr; 2233 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2234 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2235 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2236 if (Op1C->getType()->getPrimitiveSizeInBits() < 2237 MulC->getType()->getPrimitiveSizeInBits()) 2238 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2239 if (Op1C->getType()->getPrimitiveSizeInBits() > 2240 MulC->getType()->getPrimitiveSizeInBits()) 2241 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2242 2243 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2244 Multiple = ConstantExpr::getMul(MulC, Op1C); 2245 return true; 2246 } 2247 2248 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2249 if (Mul0CI->getValue() == 1) { 2250 // V == Base * Op1, so return Op1 2251 Multiple = Op1; 2252 return true; 2253 } 2254 } 2255 2256 Value *Mul1 = nullptr; 2257 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2258 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2259 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2260 if (Op0C->getType()->getPrimitiveSizeInBits() < 2261 MulC->getType()->getPrimitiveSizeInBits()) 2262 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2263 if (Op0C->getType()->getPrimitiveSizeInBits() > 2264 MulC->getType()->getPrimitiveSizeInBits()) 2265 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2266 2267 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2268 Multiple = ConstantExpr::getMul(MulC, Op0C); 2269 return true; 2270 } 2271 2272 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2273 if (Mul1CI->getValue() == 1) { 2274 // V == Base * Op0, so return Op0 2275 Multiple = Op0; 2276 return true; 2277 } 2278 } 2279 } 2280 } 2281 2282 // We could not determine if V is a multiple of Base. 2283 return false; 2284 } 2285 2286 /// Return true if we can prove that the specified FP value is never equal to 2287 /// -0.0. 2288 /// 2289 /// NOTE: this function will need to be revisited when we support non-default 2290 /// rounding modes! 2291 /// 2292 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2293 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2294 return !CFP->getValueAPF().isNegZero(); 2295 2296 // FIXME: Magic number! At the least, this should be given a name because it's 2297 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2298 // expose it as a parameter, so it can be used for testing / experimenting. 2299 if (Depth == 6) 2300 return false; // Limit search depth. 2301 2302 const Operator *I = dyn_cast<Operator>(V); 2303 if (!I) return false; 2304 2305 // Check if the nsz fast-math flag is set 2306 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2307 if (FPO->hasNoSignedZeros()) 2308 return true; 2309 2310 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2311 if (I->getOpcode() == Instruction::FAdd) 2312 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2313 if (CFP->isNullValue()) 2314 return true; 2315 2316 // sitofp and uitofp turn into +0.0 for zero. 2317 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2318 return true; 2319 2320 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2321 // sqrt(-0.0) = -0.0, no other negative results are possible. 2322 if (II->getIntrinsicID() == Intrinsic::sqrt) 2323 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2324 2325 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2326 if (const Function *F = CI->getCalledFunction()) { 2327 if (F->isDeclaration()) { 2328 // abs(x) != -0.0 2329 if (F->getName() == "abs") return true; 2330 // fabs[lf](x) != -0.0 2331 if (F->getName() == "fabs") return true; 2332 if (F->getName() == "fabsf") return true; 2333 if (F->getName() == "fabsl") return true; 2334 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2335 F->getName() == "sqrtl") 2336 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2337 } 2338 } 2339 2340 return false; 2341 } 2342 2343 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2344 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2345 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2346 2347 // FIXME: Magic number! At the least, this should be given a name because it's 2348 // used similarly in CannotBeNegativeZero(). A better fix may be to 2349 // expose it as a parameter, so it can be used for testing / experimenting. 2350 if (Depth == 6) 2351 return false; // Limit search depth. 2352 2353 const Operator *I = dyn_cast<Operator>(V); 2354 if (!I) return false; 2355 2356 switch (I->getOpcode()) { 2357 default: break; 2358 case Instruction::FMul: 2359 // x*x is always non-negative or a NaN. 2360 if (I->getOperand(0) == I->getOperand(1)) 2361 return true; 2362 // Fall through 2363 case Instruction::FAdd: 2364 case Instruction::FDiv: 2365 case Instruction::FRem: 2366 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2367 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2368 case Instruction::FPExt: 2369 case Instruction::FPTrunc: 2370 // Widening/narrowing never change sign. 2371 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2372 case Instruction::Call: 2373 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2374 switch (II->getIntrinsicID()) { 2375 default: break; 2376 case Intrinsic::exp: 2377 case Intrinsic::exp2: 2378 case Intrinsic::fabs: 2379 case Intrinsic::sqrt: 2380 return true; 2381 case Intrinsic::powi: 2382 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2383 // powi(x,n) is non-negative if n is even. 2384 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2385 return true; 2386 } 2387 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2388 case Intrinsic::fma: 2389 case Intrinsic::fmuladd: 2390 // x*x+y is non-negative if y is non-negative. 2391 return I->getOperand(0) == I->getOperand(1) && 2392 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2393 } 2394 break; 2395 } 2396 return false; 2397 } 2398 2399 /// If the specified value can be set by repeating the same byte in memory, 2400 /// return the i8 value that it is represented with. This is 2401 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2402 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2403 /// byte store (e.g. i16 0x1234), return null. 2404 Value *llvm::isBytewiseValue(Value *V) { 2405 // All byte-wide stores are splatable, even of arbitrary variables. 2406 if (V->getType()->isIntegerTy(8)) return V; 2407 2408 // Handle 'null' ConstantArrayZero etc. 2409 if (Constant *C = dyn_cast<Constant>(V)) 2410 if (C->isNullValue()) 2411 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2412 2413 // Constant float and double values can be handled as integer values if the 2414 // corresponding integer value is "byteable". An important case is 0.0. 2415 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2416 if (CFP->getType()->isFloatTy()) 2417 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2418 if (CFP->getType()->isDoubleTy()) 2419 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2420 // Don't handle long double formats, which have strange constraints. 2421 } 2422 2423 // We can handle constant integers that are multiple of 8 bits. 2424 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2425 if (CI->getBitWidth() % 8 == 0) { 2426 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2427 2428 if (!CI->getValue().isSplat(8)) 2429 return nullptr; 2430 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2431 } 2432 } 2433 2434 // A ConstantDataArray/Vector is splatable if all its members are equal and 2435 // also splatable. 2436 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2437 Value *Elt = CA->getElementAsConstant(0); 2438 Value *Val = isBytewiseValue(Elt); 2439 if (!Val) 2440 return nullptr; 2441 2442 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2443 if (CA->getElementAsConstant(I) != Elt) 2444 return nullptr; 2445 2446 return Val; 2447 } 2448 2449 // Conceptually, we could handle things like: 2450 // %a = zext i8 %X to i16 2451 // %b = shl i16 %a, 8 2452 // %c = or i16 %a, %b 2453 // but until there is an example that actually needs this, it doesn't seem 2454 // worth worrying about. 2455 return nullptr; 2456 } 2457 2458 2459 // This is the recursive version of BuildSubAggregate. It takes a few different 2460 // arguments. Idxs is the index within the nested struct From that we are 2461 // looking at now (which is of type IndexedType). IdxSkip is the number of 2462 // indices from Idxs that should be left out when inserting into the resulting 2463 // struct. To is the result struct built so far, new insertvalue instructions 2464 // build on that. 2465 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2466 SmallVectorImpl<unsigned> &Idxs, 2467 unsigned IdxSkip, 2468 Instruction *InsertBefore) { 2469 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2470 if (STy) { 2471 // Save the original To argument so we can modify it 2472 Value *OrigTo = To; 2473 // General case, the type indexed by Idxs is a struct 2474 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2475 // Process each struct element recursively 2476 Idxs.push_back(i); 2477 Value *PrevTo = To; 2478 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2479 InsertBefore); 2480 Idxs.pop_back(); 2481 if (!To) { 2482 // Couldn't find any inserted value for this index? Cleanup 2483 while (PrevTo != OrigTo) { 2484 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2485 PrevTo = Del->getAggregateOperand(); 2486 Del->eraseFromParent(); 2487 } 2488 // Stop processing elements 2489 break; 2490 } 2491 } 2492 // If we successfully found a value for each of our subaggregates 2493 if (To) 2494 return To; 2495 } 2496 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2497 // the struct's elements had a value that was inserted directly. In the latter 2498 // case, perhaps we can't determine each of the subelements individually, but 2499 // we might be able to find the complete struct somewhere. 2500 2501 // Find the value that is at that particular spot 2502 Value *V = FindInsertedValue(From, Idxs); 2503 2504 if (!V) 2505 return nullptr; 2506 2507 // Insert the value in the new (sub) aggregrate 2508 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2509 "tmp", InsertBefore); 2510 } 2511 2512 // This helper takes a nested struct and extracts a part of it (which is again a 2513 // struct) into a new value. For example, given the struct: 2514 // { a, { b, { c, d }, e } } 2515 // and the indices "1, 1" this returns 2516 // { c, d }. 2517 // 2518 // It does this by inserting an insertvalue for each element in the resulting 2519 // struct, as opposed to just inserting a single struct. This will only work if 2520 // each of the elements of the substruct are known (ie, inserted into From by an 2521 // insertvalue instruction somewhere). 2522 // 2523 // All inserted insertvalue instructions are inserted before InsertBefore 2524 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2525 Instruction *InsertBefore) { 2526 assert(InsertBefore && "Must have someplace to insert!"); 2527 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2528 idx_range); 2529 Value *To = UndefValue::get(IndexedType); 2530 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2531 unsigned IdxSkip = Idxs.size(); 2532 2533 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2534 } 2535 2536 /// Given an aggregrate and an sequence of indices, see if 2537 /// the scalar value indexed is already around as a register, for example if it 2538 /// were inserted directly into the aggregrate. 2539 /// 2540 /// If InsertBefore is not null, this function will duplicate (modified) 2541 /// insertvalues when a part of a nested struct is extracted. 2542 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2543 Instruction *InsertBefore) { 2544 // Nothing to index? Just return V then (this is useful at the end of our 2545 // recursion). 2546 if (idx_range.empty()) 2547 return V; 2548 // We have indices, so V should have an indexable type. 2549 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2550 "Not looking at a struct or array?"); 2551 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2552 "Invalid indices for type?"); 2553 2554 if (Constant *C = dyn_cast<Constant>(V)) { 2555 C = C->getAggregateElement(idx_range[0]); 2556 if (!C) return nullptr; 2557 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2558 } 2559 2560 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2561 // Loop the indices for the insertvalue instruction in parallel with the 2562 // requested indices 2563 const unsigned *req_idx = idx_range.begin(); 2564 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2565 i != e; ++i, ++req_idx) { 2566 if (req_idx == idx_range.end()) { 2567 // We can't handle this without inserting insertvalues 2568 if (!InsertBefore) 2569 return nullptr; 2570 2571 // The requested index identifies a part of a nested aggregate. Handle 2572 // this specially. For example, 2573 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2574 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2575 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2576 // This can be changed into 2577 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2578 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2579 // which allows the unused 0,0 element from the nested struct to be 2580 // removed. 2581 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2582 InsertBefore); 2583 } 2584 2585 // This insert value inserts something else than what we are looking for. 2586 // See if the (aggregate) value inserted into has the value we are 2587 // looking for, then. 2588 if (*req_idx != *i) 2589 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2590 InsertBefore); 2591 } 2592 // If we end up here, the indices of the insertvalue match with those 2593 // requested (though possibly only partially). Now we recursively look at 2594 // the inserted value, passing any remaining indices. 2595 return FindInsertedValue(I->getInsertedValueOperand(), 2596 makeArrayRef(req_idx, idx_range.end()), 2597 InsertBefore); 2598 } 2599 2600 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2601 // If we're extracting a value from an aggregate that was extracted from 2602 // something else, we can extract from that something else directly instead. 2603 // However, we will need to chain I's indices with the requested indices. 2604 2605 // Calculate the number of indices required 2606 unsigned size = I->getNumIndices() + idx_range.size(); 2607 // Allocate some space to put the new indices in 2608 SmallVector<unsigned, 5> Idxs; 2609 Idxs.reserve(size); 2610 // Add indices from the extract value instruction 2611 Idxs.append(I->idx_begin(), I->idx_end()); 2612 2613 // Add requested indices 2614 Idxs.append(idx_range.begin(), idx_range.end()); 2615 2616 assert(Idxs.size() == size 2617 && "Number of indices added not correct?"); 2618 2619 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2620 } 2621 // Otherwise, we don't know (such as, extracting from a function return value 2622 // or load instruction) 2623 return nullptr; 2624 } 2625 2626 /// Analyze the specified pointer to see if it can be expressed as a base 2627 /// pointer plus a constant offset. Return the base and offset to the caller. 2628 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2629 const DataLayout &DL) { 2630 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2631 APInt ByteOffset(BitWidth, 0); 2632 while (1) { 2633 if (Ptr->getType()->isVectorTy()) 2634 break; 2635 2636 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2637 APInt GEPOffset(BitWidth, 0); 2638 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2639 break; 2640 2641 ByteOffset += GEPOffset; 2642 2643 Ptr = GEP->getPointerOperand(); 2644 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2645 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2646 Ptr = cast<Operator>(Ptr)->getOperand(0); 2647 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2648 if (GA->mayBeOverridden()) 2649 break; 2650 Ptr = GA->getAliasee(); 2651 } else { 2652 break; 2653 } 2654 } 2655 Offset = ByteOffset.getSExtValue(); 2656 return Ptr; 2657 } 2658 2659 2660 /// This function computes the length of a null-terminated C string pointed to 2661 /// by V. If successful, it returns true and returns the string in Str. 2662 /// If unsuccessful, it returns false. 2663 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2664 uint64_t Offset, bool TrimAtNul) { 2665 assert(V); 2666 2667 // Look through bitcast instructions and geps. 2668 V = V->stripPointerCasts(); 2669 2670 // If the value is a GEP instruction or constant expression, treat it as an 2671 // offset. 2672 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2673 // Make sure the GEP has exactly three arguments. 2674 if (GEP->getNumOperands() != 3) 2675 return false; 2676 2677 // Make sure the index-ee is a pointer to array of i8. 2678 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2679 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2680 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2681 return false; 2682 2683 // Check to make sure that the first operand of the GEP is an integer and 2684 // has value 0 so that we are sure we're indexing into the initializer. 2685 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2686 if (!FirstIdx || !FirstIdx->isZero()) 2687 return false; 2688 2689 // If the second index isn't a ConstantInt, then this is a variable index 2690 // into the array. If this occurs, we can't say anything meaningful about 2691 // the string. 2692 uint64_t StartIdx = 0; 2693 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2694 StartIdx = CI->getZExtValue(); 2695 else 2696 return false; 2697 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2698 TrimAtNul); 2699 } 2700 2701 // The GEP instruction, constant or instruction, must reference a global 2702 // variable that is a constant and is initialized. The referenced constant 2703 // initializer is the array that we'll use for optimization. 2704 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2705 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2706 return false; 2707 2708 // Handle the all-zeros case 2709 if (GV->getInitializer()->isNullValue()) { 2710 // This is a degenerate case. The initializer is constant zero so the 2711 // length of the string must be zero. 2712 Str = ""; 2713 return true; 2714 } 2715 2716 // Must be a Constant Array 2717 const ConstantDataArray *Array = 2718 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2719 if (!Array || !Array->isString()) 2720 return false; 2721 2722 // Get the number of elements in the array 2723 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2724 2725 // Start out with the entire array in the StringRef. 2726 Str = Array->getAsString(); 2727 2728 if (Offset > NumElts) 2729 return false; 2730 2731 // Skip over 'offset' bytes. 2732 Str = Str.substr(Offset); 2733 2734 if (TrimAtNul) { 2735 // Trim off the \0 and anything after it. If the array is not nul 2736 // terminated, we just return the whole end of string. The client may know 2737 // some other way that the string is length-bound. 2738 Str = Str.substr(0, Str.find('\0')); 2739 } 2740 return true; 2741 } 2742 2743 // These next two are very similar to the above, but also look through PHI 2744 // nodes. 2745 // TODO: See if we can integrate these two together. 2746 2747 /// If we can compute the length of the string pointed to by 2748 /// the specified pointer, return 'len+1'. If we can't, return 0. 2749 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2750 // Look through noop bitcast instructions. 2751 V = V->stripPointerCasts(); 2752 2753 // If this is a PHI node, there are two cases: either we have already seen it 2754 // or we haven't. 2755 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2756 if (!PHIs.insert(PN).second) 2757 return ~0ULL; // already in the set. 2758 2759 // If it was new, see if all the input strings are the same length. 2760 uint64_t LenSoFar = ~0ULL; 2761 for (Value *IncValue : PN->incoming_values()) { 2762 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2763 if (Len == 0) return 0; // Unknown length -> unknown. 2764 2765 if (Len == ~0ULL) continue; 2766 2767 if (Len != LenSoFar && LenSoFar != ~0ULL) 2768 return 0; // Disagree -> unknown. 2769 LenSoFar = Len; 2770 } 2771 2772 // Success, all agree. 2773 return LenSoFar; 2774 } 2775 2776 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2777 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2778 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2779 if (Len1 == 0) return 0; 2780 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2781 if (Len2 == 0) return 0; 2782 if (Len1 == ~0ULL) return Len2; 2783 if (Len2 == ~0ULL) return Len1; 2784 if (Len1 != Len2) return 0; 2785 return Len1; 2786 } 2787 2788 // Otherwise, see if we can read the string. 2789 StringRef StrData; 2790 if (!getConstantStringInfo(V, StrData)) 2791 return 0; 2792 2793 return StrData.size()+1; 2794 } 2795 2796 /// If we can compute the length of the string pointed to by 2797 /// the specified pointer, return 'len+1'. If we can't, return 0. 2798 uint64_t llvm::GetStringLength(Value *V) { 2799 if (!V->getType()->isPointerTy()) return 0; 2800 2801 SmallPtrSet<PHINode*, 32> PHIs; 2802 uint64_t Len = GetStringLengthH(V, PHIs); 2803 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2804 // an empty string as a length. 2805 return Len == ~0ULL ? 1 : Len; 2806 } 2807 2808 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2809 /// previous iteration of the loop was referring to the same object as \p PN. 2810 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2811 // Find the loop-defined value. 2812 Loop *L = LI->getLoopFor(PN->getParent()); 2813 if (PN->getNumIncomingValues() != 2) 2814 return true; 2815 2816 // Find the value from previous iteration. 2817 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2818 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2819 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2820 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2821 return true; 2822 2823 // If a new pointer is loaded in the loop, the pointer references a different 2824 // object in every iteration. E.g.: 2825 // for (i) 2826 // int *p = a[i]; 2827 // ... 2828 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2829 if (!L->isLoopInvariant(Load->getPointerOperand())) 2830 return false; 2831 return true; 2832 } 2833 2834 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2835 unsigned MaxLookup) { 2836 if (!V->getType()->isPointerTy()) 2837 return V; 2838 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2839 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2840 V = GEP->getPointerOperand(); 2841 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2842 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2843 V = cast<Operator>(V)->getOperand(0); 2844 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2845 if (GA->mayBeOverridden()) 2846 return V; 2847 V = GA->getAliasee(); 2848 } else { 2849 // See if InstructionSimplify knows any relevant tricks. 2850 if (Instruction *I = dyn_cast<Instruction>(V)) 2851 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2852 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2853 V = Simplified; 2854 continue; 2855 } 2856 2857 return V; 2858 } 2859 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2860 } 2861 return V; 2862 } 2863 2864 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2865 const DataLayout &DL, LoopInfo *LI, 2866 unsigned MaxLookup) { 2867 SmallPtrSet<Value *, 4> Visited; 2868 SmallVector<Value *, 4> Worklist; 2869 Worklist.push_back(V); 2870 do { 2871 Value *P = Worklist.pop_back_val(); 2872 P = GetUnderlyingObject(P, DL, MaxLookup); 2873 2874 if (!Visited.insert(P).second) 2875 continue; 2876 2877 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2878 Worklist.push_back(SI->getTrueValue()); 2879 Worklist.push_back(SI->getFalseValue()); 2880 continue; 2881 } 2882 2883 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2884 // If this PHI changes the underlying object in every iteration of the 2885 // loop, don't look through it. Consider: 2886 // int **A; 2887 // for (i) { 2888 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2889 // Curr = A[i]; 2890 // *Prev, *Curr; 2891 // 2892 // Prev is tracking Curr one iteration behind so they refer to different 2893 // underlying objects. 2894 if (!LI || !LI->isLoopHeader(PN->getParent()) || 2895 isSameUnderlyingObjectInLoop(PN, LI)) 2896 for (Value *IncValue : PN->incoming_values()) 2897 Worklist.push_back(IncValue); 2898 continue; 2899 } 2900 2901 Objects.push_back(P); 2902 } while (!Worklist.empty()); 2903 } 2904 2905 /// Return true if the only users of this pointer are lifetime markers. 2906 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2907 for (const User *U : V->users()) { 2908 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2909 if (!II) return false; 2910 2911 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2912 II->getIntrinsicID() != Intrinsic::lifetime_end) 2913 return false; 2914 } 2915 return true; 2916 } 2917 2918 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 2919 Type *Ty, const DataLayout &DL, 2920 const Instruction *CtxI, 2921 const DominatorTree *DT, 2922 const TargetLibraryInfo *TLI) { 2923 assert(Offset.isNonNegative() && "offset can't be negative"); 2924 assert(Ty->isSized() && "must be sized"); 2925 2926 APInt DerefBytes(Offset.getBitWidth(), 0); 2927 bool CheckForNonNull = false; 2928 if (const Argument *A = dyn_cast<Argument>(BV)) { 2929 DerefBytes = A->getDereferenceableBytes(); 2930 if (!DerefBytes.getBoolValue()) { 2931 DerefBytes = A->getDereferenceableOrNullBytes(); 2932 CheckForNonNull = true; 2933 } 2934 } else if (auto CS = ImmutableCallSite(BV)) { 2935 DerefBytes = CS.getDereferenceableBytes(0); 2936 if (!DerefBytes.getBoolValue()) { 2937 DerefBytes = CS.getDereferenceableOrNullBytes(0); 2938 CheckForNonNull = true; 2939 } 2940 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 2941 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 2942 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2943 DerefBytes = CI->getLimitedValue(); 2944 } 2945 if (!DerefBytes.getBoolValue()) { 2946 if (MDNode *MD = 2947 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 2948 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2949 DerefBytes = CI->getLimitedValue(); 2950 } 2951 CheckForNonNull = true; 2952 } 2953 } 2954 2955 if (DerefBytes.getBoolValue()) 2956 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 2957 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 2958 return true; 2959 2960 return false; 2961 } 2962 2963 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 2964 const Instruction *CtxI, 2965 const DominatorTree *DT, 2966 const TargetLibraryInfo *TLI) { 2967 Type *VTy = V->getType(); 2968 Type *Ty = VTy->getPointerElementType(); 2969 if (!Ty->isSized()) 2970 return false; 2971 2972 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 2973 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 2974 } 2975 2976 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 2977 const DataLayout &DL) { 2978 APInt BaseAlign(Offset.getBitWidth(), 0); 2979 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) 2980 BaseAlign = AI->getAlignment(); 2981 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) 2982 BaseAlign = GV->getAlignment(); 2983 else if (const Argument *A = dyn_cast<Argument>(Base)) 2984 BaseAlign = A->getParamAlignment(); 2985 else if (auto CS = ImmutableCallSite(Base)) 2986 BaseAlign = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 2987 else if (const LoadInst *LI = dyn_cast<LoadInst>(Base)) 2988 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 2989 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2990 BaseAlign = CI->getLimitedValue(); 2991 } 2992 2993 if (!BaseAlign) { 2994 Type *Ty = Base->getType()->getPointerElementType(); 2995 BaseAlign = DL.getABITypeAlignment(Ty); 2996 } 2997 2998 APInt Alignment(Offset.getBitWidth(), Align); 2999 3000 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3001 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3002 } 3003 3004 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3005 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0); 3006 return isAligned(Base, Offset, Align, DL); 3007 } 3008 3009 /// Test if V is always a pointer to allocated and suitably aligned memory for 3010 /// a simple load or store. 3011 static bool isDereferenceableAndAlignedPointer( 3012 const Value *V, unsigned Align, const DataLayout &DL, 3013 const Instruction *CtxI, const DominatorTree *DT, 3014 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3015 // Note that it is not safe to speculate into a malloc'd region because 3016 // malloc may return null. 3017 3018 // These are obviously ok if aligned. 3019 if (isa<AllocaInst>(V)) 3020 return isAligned(V, Align, DL); 3021 3022 // It's not always safe to follow a bitcast, for example: 3023 // bitcast i8* (alloca i8) to i32* 3024 // would result in a 4-byte load from a 1-byte alloca. However, 3025 // if we're casting from a pointer from a type of larger size 3026 // to a type of smaller size (or the same size), and the alignment 3027 // is at least as large as for the resulting pointer type, then 3028 // we can look through the bitcast. 3029 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3030 Type *STy = BC->getSrcTy()->getPointerElementType(), 3031 *DTy = BC->getDestTy()->getPointerElementType(); 3032 if (STy->isSized() && DTy->isSized() && 3033 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3034 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3035 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3036 CtxI, DT, TLI, Visited); 3037 } 3038 3039 // Global variables which can't collapse to null are ok. 3040 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3041 if (!GV->hasExternalWeakLinkage()) 3042 return isAligned(V, Align, DL); 3043 3044 // byval arguments are okay. 3045 if (const Argument *A = dyn_cast<Argument>(V)) 3046 if (A->hasByValAttr()) 3047 return isAligned(V, Align, DL); 3048 3049 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3050 return isAligned(V, Align, DL); 3051 3052 // For GEPs, determine if the indexing lands within the allocated object. 3053 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3054 Type *VTy = GEP->getType(); 3055 Type *Ty = VTy->getPointerElementType(); 3056 const Value *Base = GEP->getPointerOperand(); 3057 3058 // Conservatively require that the base pointer be fully dereferenceable 3059 // and aligned. 3060 if (!Visited.insert(Base).second) 3061 return false; 3062 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3063 Visited)) 3064 return false; 3065 3066 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); 3067 if (!GEP->accumulateConstantOffset(DL, Offset)) 3068 return false; 3069 3070 // Check if the load is within the bounds of the underlying object 3071 // and offset is aligned. 3072 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3073 Type *BaseType = Base->getType()->getPointerElementType(); 3074 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3075 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3076 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3077 } 3078 3079 // For gc.relocate, look through relocations 3080 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V)) 3081 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) { 3082 GCRelocateOperands RelocateInst(I); 3083 return isDereferenceableAndAlignedPointer( 3084 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3085 } 3086 3087 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3088 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3089 CtxI, DT, TLI, Visited); 3090 3091 // If we don't know, assume the worst. 3092 return false; 3093 } 3094 3095 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3096 const DataLayout &DL, 3097 const Instruction *CtxI, 3098 const DominatorTree *DT, 3099 const TargetLibraryInfo *TLI) { 3100 // When dereferenceability information is provided by a dereferenceable 3101 // attribute, we know exactly how many bytes are dereferenceable. If we can 3102 // determine the exact offset to the attributed variable, we can use that 3103 // information here. 3104 Type *VTy = V->getType(); 3105 Type *Ty = VTy->getPointerElementType(); 3106 3107 // Require ABI alignment for loads without alignment specification 3108 if (Align == 0) 3109 Align = DL.getABITypeAlignment(Ty); 3110 3111 if (Ty->isSized()) { 3112 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3113 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3114 3115 if (Offset.isNonNegative()) 3116 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3117 isAligned(BV, Offset, Align, DL)) 3118 return true; 3119 } 3120 3121 SmallPtrSet<const Value *, 32> Visited; 3122 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3123 Visited); 3124 } 3125 3126 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3127 const Instruction *CtxI, 3128 const DominatorTree *DT, 3129 const TargetLibraryInfo *TLI) { 3130 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3131 } 3132 3133 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3134 const Instruction *CtxI, 3135 const DominatorTree *DT, 3136 const TargetLibraryInfo *TLI) { 3137 const Operator *Inst = dyn_cast<Operator>(V); 3138 if (!Inst) 3139 return false; 3140 3141 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3142 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3143 if (C->canTrap()) 3144 return false; 3145 3146 switch (Inst->getOpcode()) { 3147 default: 3148 return true; 3149 case Instruction::UDiv: 3150 case Instruction::URem: { 3151 // x / y is undefined if y == 0. 3152 const APInt *V; 3153 if (match(Inst->getOperand(1), m_APInt(V))) 3154 return *V != 0; 3155 return false; 3156 } 3157 case Instruction::SDiv: 3158 case Instruction::SRem: { 3159 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3160 const APInt *Numerator, *Denominator; 3161 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3162 return false; 3163 // We cannot hoist this division if the denominator is 0. 3164 if (*Denominator == 0) 3165 return false; 3166 // It's safe to hoist if the denominator is not 0 or -1. 3167 if (*Denominator != -1) 3168 return true; 3169 // At this point we know that the denominator is -1. It is safe to hoist as 3170 // long we know that the numerator is not INT_MIN. 3171 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3172 return !Numerator->isMinSignedValue(); 3173 // The numerator *might* be MinSignedValue. 3174 return false; 3175 } 3176 case Instruction::Load: { 3177 const LoadInst *LI = cast<LoadInst>(Inst); 3178 if (!LI->isUnordered() || 3179 // Speculative load may create a race that did not exist in the source. 3180 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 3181 return false; 3182 const DataLayout &DL = LI->getModule()->getDataLayout(); 3183 return isDereferenceableAndAlignedPointer( 3184 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3185 } 3186 case Instruction::Call: { 3187 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3188 switch (II->getIntrinsicID()) { 3189 // These synthetic intrinsics have no side-effects and just mark 3190 // information about their operands. 3191 // FIXME: There are other no-op synthetic instructions that potentially 3192 // should be considered at least *safe* to speculate... 3193 case Intrinsic::dbg_declare: 3194 case Intrinsic::dbg_value: 3195 return true; 3196 3197 case Intrinsic::bswap: 3198 case Intrinsic::ctlz: 3199 case Intrinsic::ctpop: 3200 case Intrinsic::cttz: 3201 case Intrinsic::objectsize: 3202 case Intrinsic::sadd_with_overflow: 3203 case Intrinsic::smul_with_overflow: 3204 case Intrinsic::ssub_with_overflow: 3205 case Intrinsic::uadd_with_overflow: 3206 case Intrinsic::umul_with_overflow: 3207 case Intrinsic::usub_with_overflow: 3208 return true; 3209 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3210 // errno like libm sqrt would. 3211 case Intrinsic::sqrt: 3212 case Intrinsic::fma: 3213 case Intrinsic::fmuladd: 3214 case Intrinsic::fabs: 3215 case Intrinsic::minnum: 3216 case Intrinsic::maxnum: 3217 return true; 3218 // TODO: some fp intrinsics are marked as having the same error handling 3219 // as libm. They're safe to speculate when they won't error. 3220 // TODO: are convert_{from,to}_fp16 safe? 3221 // TODO: can we list target-specific intrinsics here? 3222 default: break; 3223 } 3224 } 3225 return false; // The called function could have undefined behavior or 3226 // side-effects, even if marked readnone nounwind. 3227 } 3228 case Instruction::VAArg: 3229 case Instruction::Alloca: 3230 case Instruction::Invoke: 3231 case Instruction::PHI: 3232 case Instruction::Store: 3233 case Instruction::Ret: 3234 case Instruction::Br: 3235 case Instruction::IndirectBr: 3236 case Instruction::Switch: 3237 case Instruction::Unreachable: 3238 case Instruction::Fence: 3239 case Instruction::AtomicRMW: 3240 case Instruction::AtomicCmpXchg: 3241 case Instruction::LandingPad: 3242 case Instruction::Resume: 3243 case Instruction::CatchPad: 3244 case Instruction::CatchEndPad: 3245 case Instruction::CatchRet: 3246 case Instruction::CleanupPad: 3247 case Instruction::CleanupEndPad: 3248 case Instruction::CleanupRet: 3249 case Instruction::TerminatePad: 3250 return false; // Misc instructions which have effects 3251 } 3252 } 3253 3254 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3255 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3256 } 3257 3258 /// Return true if we know that the specified value is never null. 3259 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3260 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3261 3262 // Alloca never returns null, malloc might. 3263 if (isa<AllocaInst>(V)) return true; 3264 3265 // A byval, inalloca, or nonnull argument is never null. 3266 if (const Argument *A = dyn_cast<Argument>(V)) 3267 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3268 3269 // A global variable in address space 0 is non null unless extern weak. 3270 // Other address spaces may have null as a valid address for a global, 3271 // so we can't assume anything. 3272 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3273 return !GV->hasExternalWeakLinkage() && 3274 GV->getType()->getAddressSpace() == 0; 3275 3276 // A Load tagged w/nonnull metadata is never null. 3277 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3278 return LI->getMetadata(LLVMContext::MD_nonnull); 3279 3280 if (auto CS = ImmutableCallSite(V)) 3281 if (CS.isReturnNonNull()) 3282 return true; 3283 3284 // operator new never returns null. 3285 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 3286 return true; 3287 3288 return false; 3289 } 3290 3291 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3292 const Instruction *CtxI, 3293 const DominatorTree *DT) { 3294 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3295 3296 unsigned NumUsesExplored = 0; 3297 for (auto U : V->users()) { 3298 // Avoid massive lists 3299 if (NumUsesExplored >= DomConditionsMaxUses) 3300 break; 3301 NumUsesExplored++; 3302 // Consider only compare instructions uniquely controlling a branch 3303 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3304 if (!Cmp) 3305 continue; 3306 3307 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3308 continue; 3309 3310 for (auto *CmpU : Cmp->users()) { 3311 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3312 if (!BI) 3313 continue; 3314 3315 assert(BI->isConditional() && "uses a comparison!"); 3316 3317 BasicBlock *NonNullSuccessor = nullptr; 3318 CmpInst::Predicate Pred; 3319 3320 if (match(const_cast<ICmpInst*>(Cmp), 3321 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3322 if (Pred == ICmpInst::ICMP_EQ) 3323 NonNullSuccessor = BI->getSuccessor(1); 3324 else if (Pred == ICmpInst::ICMP_NE) 3325 NonNullSuccessor = BI->getSuccessor(0); 3326 } 3327 3328 if (NonNullSuccessor) { 3329 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3330 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3331 return true; 3332 } 3333 } 3334 } 3335 3336 return false; 3337 } 3338 3339 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3340 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3341 if (isKnownNonNull(V, TLI)) 3342 return true; 3343 3344 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3345 } 3346 3347 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3348 const DataLayout &DL, 3349 AssumptionCache *AC, 3350 const Instruction *CxtI, 3351 const DominatorTree *DT) { 3352 // Multiplying n * m significant bits yields a result of n + m significant 3353 // bits. If the total number of significant bits does not exceed the 3354 // result bit width (minus 1), there is no overflow. 3355 // This means if we have enough leading zero bits in the operands 3356 // we can guarantee that the result does not overflow. 3357 // Ref: "Hacker's Delight" by Henry Warren 3358 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3359 APInt LHSKnownZero(BitWidth, 0); 3360 APInt LHSKnownOne(BitWidth, 0); 3361 APInt RHSKnownZero(BitWidth, 0); 3362 APInt RHSKnownOne(BitWidth, 0); 3363 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3364 DT); 3365 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3366 DT); 3367 // Note that underestimating the number of zero bits gives a more 3368 // conservative answer. 3369 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3370 RHSKnownZero.countLeadingOnes(); 3371 // First handle the easy case: if we have enough zero bits there's 3372 // definitely no overflow. 3373 if (ZeroBits >= BitWidth) 3374 return OverflowResult::NeverOverflows; 3375 3376 // Get the largest possible values for each operand. 3377 APInt LHSMax = ~LHSKnownZero; 3378 APInt RHSMax = ~RHSKnownZero; 3379 3380 // We know the multiply operation doesn't overflow if the maximum values for 3381 // each operand will not overflow after we multiply them together. 3382 bool MaxOverflow; 3383 LHSMax.umul_ov(RHSMax, MaxOverflow); 3384 if (!MaxOverflow) 3385 return OverflowResult::NeverOverflows; 3386 3387 // We know it always overflows if multiplying the smallest possible values for 3388 // the operands also results in overflow. 3389 bool MinOverflow; 3390 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3391 if (MinOverflow) 3392 return OverflowResult::AlwaysOverflows; 3393 3394 return OverflowResult::MayOverflow; 3395 } 3396 3397 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3398 const DataLayout &DL, 3399 AssumptionCache *AC, 3400 const Instruction *CxtI, 3401 const DominatorTree *DT) { 3402 bool LHSKnownNonNegative, LHSKnownNegative; 3403 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3404 AC, CxtI, DT); 3405 if (LHSKnownNonNegative || LHSKnownNegative) { 3406 bool RHSKnownNonNegative, RHSKnownNegative; 3407 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3408 AC, CxtI, DT); 3409 3410 if (LHSKnownNegative && RHSKnownNegative) { 3411 // The sign bit is set in both cases: this MUST overflow. 3412 // Create a simple add instruction, and insert it into the struct. 3413 return OverflowResult::AlwaysOverflows; 3414 } 3415 3416 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3417 // The sign bit is clear in both cases: this CANNOT overflow. 3418 // Create a simple add instruction, and insert it into the struct. 3419 return OverflowResult::NeverOverflows; 3420 } 3421 } 3422 3423 return OverflowResult::MayOverflow; 3424 } 3425 3426 static OverflowResult computeOverflowForSignedAdd( 3427 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3428 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3429 if (Add && Add->hasNoSignedWrap()) { 3430 return OverflowResult::NeverOverflows; 3431 } 3432 3433 bool LHSKnownNonNegative, LHSKnownNegative; 3434 bool RHSKnownNonNegative, RHSKnownNegative; 3435 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3436 AC, CxtI, DT); 3437 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3438 AC, CxtI, DT); 3439 3440 if ((LHSKnownNonNegative && RHSKnownNegative) || 3441 (LHSKnownNegative && RHSKnownNonNegative)) { 3442 // The sign bits are opposite: this CANNOT overflow. 3443 return OverflowResult::NeverOverflows; 3444 } 3445 3446 // The remaining code needs Add to be available. Early returns if not so. 3447 if (!Add) 3448 return OverflowResult::MayOverflow; 3449 3450 // If the sign of Add is the same as at least one of the operands, this add 3451 // CANNOT overflow. This is particularly useful when the sum is 3452 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3453 // operands. 3454 bool LHSOrRHSKnownNonNegative = 3455 (LHSKnownNonNegative || RHSKnownNonNegative); 3456 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3457 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3458 bool AddKnownNonNegative, AddKnownNegative; 3459 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3460 /*Depth=*/0, AC, CxtI, DT); 3461 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3462 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3463 return OverflowResult::NeverOverflows; 3464 } 3465 } 3466 3467 return OverflowResult::MayOverflow; 3468 } 3469 3470 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3471 const DataLayout &DL, 3472 AssumptionCache *AC, 3473 const Instruction *CxtI, 3474 const DominatorTree *DT) { 3475 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3476 Add, DL, AC, CxtI, DT); 3477 } 3478 3479 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3480 const DataLayout &DL, 3481 AssumptionCache *AC, 3482 const Instruction *CxtI, 3483 const DominatorTree *DT) { 3484 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3485 } 3486 3487 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3488 // FIXME: This conservative implementation can be relaxed. E.g. most 3489 // atomic operations are guaranteed to terminate on most platforms 3490 // and most functions terminate. 3491 3492 return !I->isAtomic() && // atomics may never succeed on some platforms 3493 !isa<CallInst>(I) && // could throw and might not terminate 3494 !isa<InvokeInst>(I) && // might not terminate and could throw to 3495 // non-successor (see bug 24185 for details). 3496 !isa<ResumeInst>(I) && // has no successors 3497 !isa<ReturnInst>(I); // has no successors 3498 } 3499 3500 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3501 const Loop *L) { 3502 // The loop header is guaranteed to be executed for every iteration. 3503 // 3504 // FIXME: Relax this constraint to cover all basic blocks that are 3505 // guaranteed to be executed at every iteration. 3506 if (I->getParent() != L->getHeader()) return false; 3507 3508 for (const Instruction &LI : *L->getHeader()) { 3509 if (&LI == I) return true; 3510 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3511 } 3512 llvm_unreachable("Instruction not contained in its own parent basic block."); 3513 } 3514 3515 bool llvm::propagatesFullPoison(const Instruction *I) { 3516 switch (I->getOpcode()) { 3517 case Instruction::Add: 3518 case Instruction::Sub: 3519 case Instruction::Xor: 3520 case Instruction::Trunc: 3521 case Instruction::BitCast: 3522 case Instruction::AddrSpaceCast: 3523 // These operations all propagate poison unconditionally. Note that poison 3524 // is not any particular value, so xor or subtraction of poison with 3525 // itself still yields poison, not zero. 3526 return true; 3527 3528 case Instruction::AShr: 3529 case Instruction::SExt: 3530 // For these operations, one bit of the input is replicated across 3531 // multiple output bits. A replicated poison bit is still poison. 3532 return true; 3533 3534 case Instruction::Shl: { 3535 // Left shift *by* a poison value is poison. The number of 3536 // positions to shift is unsigned, so no negative values are 3537 // possible there. Left shift by zero places preserves poison. So 3538 // it only remains to consider left shift of poison by a positive 3539 // number of places. 3540 // 3541 // A left shift by a positive number of places leaves the lowest order bit 3542 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3543 // make the poison operand violate that flag, yielding a fresh full-poison 3544 // value. 3545 auto *OBO = cast<OverflowingBinaryOperator>(I); 3546 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3547 } 3548 3549 case Instruction::Mul: { 3550 // A multiplication by zero yields a non-poison zero result, so we need to 3551 // rule out zero as an operand. Conservatively, multiplication by a 3552 // non-zero constant is not multiplication by zero. 3553 // 3554 // Multiplication by a non-zero constant can leave some bits 3555 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3556 // order bit unpoisoned. So we need to consider that. 3557 // 3558 // Multiplication by 1 preserves poison. If the multiplication has a 3559 // no-wrap flag, then we can make the poison operand violate that flag 3560 // when multiplied by any integer other than 0 and 1. 3561 auto *OBO = cast<OverflowingBinaryOperator>(I); 3562 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3563 for (Value *V : OBO->operands()) { 3564 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3565 // A ConstantInt cannot yield poison, so we can assume that it is 3566 // the other operand that is poison. 3567 return !CI->isZero(); 3568 } 3569 } 3570 } 3571 return false; 3572 } 3573 3574 case Instruction::GetElementPtr: 3575 // A GEP implicitly represents a sequence of additions, subtractions, 3576 // truncations, sign extensions and multiplications. The multiplications 3577 // are by the non-zero sizes of some set of types, so we do not have to be 3578 // concerned with multiplication by zero. If the GEP is in-bounds, then 3579 // these operations are implicitly no-signed-wrap so poison is propagated 3580 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3581 return cast<GEPOperator>(I)->isInBounds(); 3582 3583 default: 3584 return false; 3585 } 3586 } 3587 3588 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3589 switch (I->getOpcode()) { 3590 case Instruction::Store: 3591 return cast<StoreInst>(I)->getPointerOperand(); 3592 3593 case Instruction::Load: 3594 return cast<LoadInst>(I)->getPointerOperand(); 3595 3596 case Instruction::AtomicCmpXchg: 3597 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3598 3599 case Instruction::AtomicRMW: 3600 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3601 3602 case Instruction::UDiv: 3603 case Instruction::SDiv: 3604 case Instruction::URem: 3605 case Instruction::SRem: 3606 return I->getOperand(1); 3607 3608 default: 3609 return nullptr; 3610 } 3611 } 3612 3613 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3614 // We currently only look for uses of poison values within the same basic 3615 // block, as that makes it easier to guarantee that the uses will be 3616 // executed given that PoisonI is executed. 3617 // 3618 // FIXME: Expand this to consider uses beyond the same basic block. To do 3619 // this, look out for the distinction between post-dominance and strong 3620 // post-dominance. 3621 const BasicBlock *BB = PoisonI->getParent(); 3622 3623 // Set of instructions that we have proved will yield poison if PoisonI 3624 // does. 3625 SmallSet<const Value *, 16> YieldsPoison; 3626 YieldsPoison.insert(PoisonI); 3627 3628 for (const Instruction *I = PoisonI, *E = BB->end(); I != E; 3629 I = I->getNextNode()) { 3630 if (I != PoisonI) { 3631 const Value *NotPoison = getGuaranteedNonFullPoisonOp(I); 3632 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3633 if (!isGuaranteedToTransferExecutionToSuccessor(I)) return false; 3634 } 3635 3636 // Mark poison that propagates from I through uses of I. 3637 if (YieldsPoison.count(I)) { 3638 for (const User *User : I->users()) { 3639 const Instruction *UserI = cast<Instruction>(User); 3640 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3641 YieldsPoison.insert(User); 3642 } 3643 } 3644 } 3645 return false; 3646 } 3647 3648 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3649 if (FMF.noNaNs()) 3650 return true; 3651 3652 if (auto *C = dyn_cast<ConstantFP>(V)) 3653 return !C->isNaN(); 3654 return false; 3655 } 3656 3657 static bool isKnownNonZero(Value *V) { 3658 if (auto *C = dyn_cast<ConstantFP>(V)) 3659 return !C->isZero(); 3660 return false; 3661 } 3662 3663 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3664 FastMathFlags FMF, 3665 Value *CmpLHS, Value *CmpRHS, 3666 Value *TrueVal, Value *FalseVal, 3667 Value *&LHS, Value *&RHS) { 3668 LHS = CmpLHS; 3669 RHS = CmpRHS; 3670 3671 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3672 // return inconsistent results between implementations. 3673 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3674 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3675 // Therefore we behave conservatively and only proceed if at least one of the 3676 // operands is known to not be zero, or if we don't care about signed zeroes. 3677 switch (Pred) { 3678 default: break; 3679 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3680 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3681 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3682 !isKnownNonZero(CmpRHS)) 3683 return {SPF_UNKNOWN, SPNB_NA, false}; 3684 } 3685 3686 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3687 bool Ordered = false; 3688 3689 // When given one NaN and one non-NaN input: 3690 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3691 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3692 // ordered comparison fails), which could be NaN or non-NaN. 3693 // so here we discover exactly what NaN behavior is required/accepted. 3694 if (CmpInst::isFPPredicate(Pred)) { 3695 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3696 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3697 3698 if (LHSSafe && RHSSafe) { 3699 // Both operands are known non-NaN. 3700 NaNBehavior = SPNB_RETURNS_ANY; 3701 } else if (CmpInst::isOrdered(Pred)) { 3702 // An ordered comparison will return false when given a NaN, so it 3703 // returns the RHS. 3704 Ordered = true; 3705 if (LHSSafe) 3706 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3707 NaNBehavior = SPNB_RETURNS_NAN; 3708 else if (RHSSafe) 3709 NaNBehavior = SPNB_RETURNS_OTHER; 3710 else 3711 // Completely unsafe. 3712 return {SPF_UNKNOWN, SPNB_NA, false}; 3713 } else { 3714 Ordered = false; 3715 // An unordered comparison will return true when given a NaN, so it 3716 // returns the LHS. 3717 if (LHSSafe) 3718 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3719 NaNBehavior = SPNB_RETURNS_OTHER; 3720 else if (RHSSafe) 3721 NaNBehavior = SPNB_RETURNS_NAN; 3722 else 3723 // Completely unsafe. 3724 return {SPF_UNKNOWN, SPNB_NA, false}; 3725 } 3726 } 3727 3728 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3729 std::swap(CmpLHS, CmpRHS); 3730 Pred = CmpInst::getSwappedPredicate(Pred); 3731 if (NaNBehavior == SPNB_RETURNS_NAN) 3732 NaNBehavior = SPNB_RETURNS_OTHER; 3733 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3734 NaNBehavior = SPNB_RETURNS_NAN; 3735 Ordered = !Ordered; 3736 } 3737 3738 // ([if]cmp X, Y) ? X : Y 3739 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3740 switch (Pred) { 3741 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3742 case ICmpInst::ICMP_UGT: 3743 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3744 case ICmpInst::ICMP_SGT: 3745 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3746 case ICmpInst::ICMP_ULT: 3747 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3748 case ICmpInst::ICMP_SLT: 3749 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3750 case FCmpInst::FCMP_UGT: 3751 case FCmpInst::FCMP_UGE: 3752 case FCmpInst::FCMP_OGT: 3753 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3754 case FCmpInst::FCMP_ULT: 3755 case FCmpInst::FCMP_ULE: 3756 case FCmpInst::FCMP_OLT: 3757 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3758 } 3759 } 3760 3761 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3762 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3763 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3764 3765 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3766 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3767 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3768 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3769 } 3770 3771 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3772 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3773 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3774 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3775 } 3776 } 3777 3778 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3779 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3780 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3781 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3782 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3783 LHS = TrueVal; 3784 RHS = FalseVal; 3785 return {SPF_SMIN, SPNB_NA, false}; 3786 } 3787 } 3788 } 3789 3790 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3791 3792 return {SPF_UNKNOWN, SPNB_NA, false}; 3793 } 3794 3795 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3796 Instruction::CastOps *CastOp) { 3797 CastInst *CI = dyn_cast<CastInst>(V1); 3798 Constant *C = dyn_cast<Constant>(V2); 3799 CastInst *CI2 = dyn_cast<CastInst>(V2); 3800 if (!CI) 3801 return nullptr; 3802 *CastOp = CI->getOpcode(); 3803 3804 if (CI2) { 3805 // If V1 and V2 are both the same cast from the same type, we can look 3806 // through V1. 3807 if (CI2->getOpcode() == CI->getOpcode() && 3808 CI2->getSrcTy() == CI->getSrcTy()) 3809 return CI2->getOperand(0); 3810 return nullptr; 3811 } else if (!C) { 3812 return nullptr; 3813 } 3814 3815 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3816 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3817 // This is only valid if the truncated value can be sign-extended 3818 // back to the original value. 3819 if (ConstantExpr::getSExt(T, C->getType()) == C) 3820 return T; 3821 return nullptr; 3822 } 3823 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3824 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3825 3826 if (isa<TruncInst>(CI)) 3827 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3828 3829 if (isa<FPToUIInst>(CI)) 3830 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3831 3832 if (isa<FPToSIInst>(CI)) 3833 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3834 3835 if (isa<UIToFPInst>(CI)) 3836 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3837 3838 if (isa<SIToFPInst>(CI)) 3839 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3840 3841 if (isa<FPTruncInst>(CI)) 3842 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3843 3844 if (isa<FPExtInst>(CI)) 3845 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3846 3847 return nullptr; 3848 } 3849 3850 SelectPatternResult llvm::matchSelectPattern(Value *V, 3851 Value *&LHS, Value *&RHS, 3852 Instruction::CastOps *CastOp) { 3853 SelectInst *SI = dyn_cast<SelectInst>(V); 3854 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3855 3856 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3857 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3858 3859 CmpInst::Predicate Pred = CmpI->getPredicate(); 3860 Value *CmpLHS = CmpI->getOperand(0); 3861 Value *CmpRHS = CmpI->getOperand(1); 3862 Value *TrueVal = SI->getTrueValue(); 3863 Value *FalseVal = SI->getFalseValue(); 3864 FastMathFlags FMF; 3865 if (isa<FPMathOperator>(CmpI)) 3866 FMF = CmpI->getFastMathFlags(); 3867 3868 // Bail out early. 3869 if (CmpI->isEquality()) 3870 return {SPF_UNKNOWN, SPNB_NA, false}; 3871 3872 // Deal with type mismatches. 3873 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3874 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3875 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3876 cast<CastInst>(TrueVal)->getOperand(0), C, 3877 LHS, RHS); 3878 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3879 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3880 C, cast<CastInst>(FalseVal)->getOperand(0), 3881 LHS, RHS); 3882 } 3883 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3884 LHS, RHS); 3885 } 3886